s_linetemp.h revision 22ae633d1ea636e0e07ba044a0f8fa2195c83bc6
1
2/*
3 * Mesa 3-D graphics library
4 * Version:  5.1
5 *
6 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27/*
28 * Line Rasterizer Template
29 *
30 * This file is #include'd to generate custom line rasterizers.
31 *
32 * The following macros may be defined to indicate what auxillary information
33 * must be interplated along the line:
34 *    INTERP_Z        - if defined, interpolate Z values
35 *    INTERP_FOG      - if defined, interpolate FOG values
36 *    INTERP_RGBA     - if defined, interpolate RGBA values
37 *    INTERP_SPEC     - if defined, interpolate specular RGB values
38 *    INTERP_INDEX    - if defined, interpolate color index values
39 *    INTERP_TEX      - if defined, interpolate unit 0 texcoords
40 *    INTERP_MULTITEX - if defined, interpolate multi-texcoords
41 *
42 * When one can directly address pixels in the color buffer the following
43 * macros can be defined and used to directly compute pixel addresses during
44 * rasterization (see pixelPtr):
45 *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46 *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47 *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48 *                          Y==0 at bottom of screen and increases upward.
49 *
50 * Similarly, for direct depth buffer access, this type is used for depth
51 * buffer addressing:
52 *    DEPTH_TYPE          - either GLushort or GLuint
53 *
54 * Optionally, one may provide one-time setup code
55 *    SETUP_CODE    - code which is to be executed once per line
56 *
57 * To actually "plot" each pixel the PLOT macro must be defined...
58 *    PLOT(X,Y) - code to plot a pixel.  Example:
59 *                if (Z < *zPtr) {
60 *                   *zPtr = Z;
61 *                   color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
62 *                                     FixedToInt(b0) );
63 *                   put_pixel( X, Y, color );
64 *                }
65 *
66 * This code was designed for the origin to be in the lower-left corner.
67 *
68 */
69
70
71static void
72NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
73{
74   struct sw_span span;
75   GLuint interpFlags = 0;
76   GLint x0 = (GLint) vert0->win[0];
77   GLint x1 = (GLint) vert1->win[0];
78   GLint y0 = (GLint) vert0->win[1];
79   GLint y1 = (GLint) vert1->win[1];
80   GLint dx, dy;
81   GLint numPixels;
82   GLint xstep, ystep;
83#if defined(DEPTH_TYPE)
84   const GLint depthBits = ctx->Visual.depthBits;
85   const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
86#define FixedToDepth(F)  ((F) >> fixedToDepthShift)
87   GLint zPtrXstep, zPtrYstep;
88   DEPTH_TYPE *zPtr;
89#elif defined(INTERP_Z)
90   const GLint depthBits = ctx->Visual.depthBits;
91#endif
92#ifdef PIXEL_ADDRESS
93   PIXEL_TYPE *pixelPtr;
94   GLint pixelXstep, pixelYstep;
95#endif
96
97#ifdef SETUP_CODE
98   SETUP_CODE
99#endif
100
101   /* Cull primitives with malformed coordinates.
102    */
103   {
104      GLfloat tmp = vert0->win[0] + vert0->win[1]
105                  + vert1->win[0] + vert1->win[1];
106      if (IS_INF_OR_NAN(tmp))
107	 return;
108   }
109
110   /*
111   printf("%s():\n", __FUNCTION__);
112   printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
113          vert0->win[0], vert0->win[1], vert0->win[2],
114          vert1->win[0], vert1->win[1], vert1->win[2]);
115   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
116          vert0->color[0], vert0->color[1], vert0->color[2],
117          vert1->color[0], vert1->color[1], vert1->color[2]);
118   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
119          vert0->specular[0], vert0->specular[1], vert0->specular[2],
120          vert1->specular[0], vert1->specular[1], vert1->specular[2]);
121   */
122
123/*
124 * Despite being clipped to the view volume, the line's window coordinates
125 * may just lie outside the window bounds.  That is, if the legal window
126 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
127 * This quick and dirty code nudges the endpoints inside the window if
128 * necessary.
129 */
130#ifdef CLIP_HACK
131   {
132      GLint w = ctx->DrawBuffer->Width;
133      GLint h = ctx->DrawBuffer->Height;
134      if ((x0==w) | (x1==w)) {
135         if ((x0==w) & (x1==w))
136           return;
137         x0 -= x0==w;
138         x1 -= x1==w;
139      }
140      if ((y0==h) | (y1==h)) {
141         if ((y0==h) & (y1==h))
142           return;
143         y0 -= y0==h;
144         y1 -= y1==h;
145      }
146   }
147#endif
148
149   dx = x1 - x0;
150   dy = y1 - y0;
151   if (dx == 0 && dy == 0)
152      return;
153
154#ifdef DEPTH_TYPE
155   zPtr = (DEPTH_TYPE *) _swrast_zbuffer_address(ctx, x0, y0);
156#endif
157#ifdef PIXEL_ADDRESS
158   pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
159#endif
160
161   if (dx<0) {
162      dx = -dx;   /* make positive */
163      xstep = -1;
164#ifdef DEPTH_TYPE
165      zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
166#endif
167#ifdef PIXEL_ADDRESS
168      pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
169#endif
170   }
171   else {
172      xstep = 1;
173#ifdef DEPTH_TYPE
174      zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
175#endif
176#ifdef PIXEL_ADDRESS
177      pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
178#endif
179   }
180
181   if (dy<0) {
182      dy = -dy;   /* make positive */
183      ystep = -1;
184#ifdef DEPTH_TYPE
185      zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
186#endif
187#ifdef PIXEL_ADDRESS
188      pixelYstep = BYTES_PER_ROW;
189#endif
190   }
191   else {
192      ystep = 1;
193#ifdef DEPTH_TYPE
194      zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
195#endif
196#ifdef PIXEL_ADDRESS
197      pixelYstep = -(BYTES_PER_ROW);
198#endif
199   }
200
201   ASSERT(dx >= 0);
202   ASSERT(dy >= 0);
203
204   numPixels = MAX2(dx, dy);
205
206   /*
207    * Span setup: compute start and step values for all interpolated values.
208    */
209#ifdef INTERP_RGBA
210   interpFlags |= SPAN_RGBA;
211   if (ctx->Light.ShadeModel == GL_SMOOTH) {
212      span.red   = ChanToFixed(vert0->color[0]);
213      span.green = ChanToFixed(vert0->color[1]);
214      span.blue  = ChanToFixed(vert0->color[2]);
215      span.alpha = ChanToFixed(vert0->color[3]);
216      span.redStep   = (ChanToFixed(vert1->color[0]) - span.red  ) / numPixels;
217      span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
218      span.blueStep  = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
219      span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
220   }
221   else {
222      span.red   = ChanToFixed(vert1->color[0]);
223      span.green = ChanToFixed(vert1->color[1]);
224      span.blue  = ChanToFixed(vert1->color[2]);
225      span.alpha = ChanToFixed(vert1->color[3]);
226      span.redStep   = 0;
227      span.greenStep = 0;
228      span.blueStep  = 0;
229      span.alphaStep = 0;
230   }
231#endif
232#ifdef INTERP_SPEC
233   interpFlags |= SPAN_SPEC;
234   if (ctx->Light.ShadeModel == GL_SMOOTH) {
235      span.specRed       = ChanToFixed(vert0->specular[0]);
236      span.specGreen     = ChanToFixed(vert0->specular[1]);
237      span.specBlue      = ChanToFixed(vert0->specular[2]);
238      span.specRedStep   = (ChanToFixed(vert1->specular[0]) - span.specRed) / numPixels;
239      span.specGreenStep = (ChanToFixed(vert1->specular[1]) - span.specBlue) / numPixels;
240      span.specBlueStep  = (ChanToFixed(vert1->specular[2]) - span.specGreen) / numPixels;
241   }
242   else {
243      span.specRed       = ChanToFixed(vert1->specular[0]);
244      span.specGreen     = ChanToFixed(vert1->specular[1]);
245      span.specBlue      = ChanToFixed(vert1->specular[2]);
246      span.specRedStep   = 0;
247      span.specGreenStep = 0;
248      span.specBlueStep  = 0;
249   }
250#endif
251#ifdef INTERP_INDEX
252   interpFlags |= SPAN_INDEX;
253   if (ctx->Light.ShadeModel == GL_SMOOTH) {
254      span.index = FloatToFixed(vert0->index);
255      span.indexStep = FloatToFixed(vert1->index - vert0->index) / numPixels;
256   }
257   else {
258      span.index = FloatToFixed(vert1->index);
259      span.indexStep = 0;
260   }
261#endif
262#if defined(INTERP_Z) || defined(DEPTH_TYPE)
263   interpFlags |= SPAN_Z;
264   {
265      if (depthBits <= 16) {
266         span.z = FloatToFixed(vert0->win[2]) + FIXED_HALF;
267         span.zStep = FloatToFixed(vert1->win[2] - vert0->win[2]) / numPixels;
268      }
269      else {
270         /* don't use fixed point */
271         span.z = (GLint) vert0->win[2];
272         span.zStep = (GLint) ((vert1->win[2] - vert0->win[2]) / numPixels);
273      }
274   }
275#endif
276#ifdef INTERP_FOG
277   interpFlags |= SPAN_FOG;
278   span.fog = vert0->fog;
279   span.fogStep = (vert1->fog - vert0->fog) / numPixels;
280#endif
281#ifdef INTERP_TEX
282   interpFlags |= SPAN_TEXTURE;
283   {
284      const GLfloat invw0 = vert0->win[3];
285      const GLfloat invw1 = vert1->win[3];
286      const GLfloat invLen = 1.0F / numPixels;
287      GLfloat ds, dt, dr, dq;
288      span.tex[0][0] = invw0 * vert0->texcoord[0][0];
289      span.tex[0][1] = invw0 * vert0->texcoord[0][1];
290      span.tex[0][2] = invw0 * vert0->texcoord[0][2];
291      span.tex[0][3] = invw0 * vert0->texcoord[0][3];
292      ds = (invw1 * vert1->texcoord[0][0]) - span.tex[0][0];
293      dt = (invw1 * vert1->texcoord[0][1]) - span.tex[0][1];
294      dr = (invw1 * vert1->texcoord[0][2]) - span.tex[0][2];
295      dq = (invw1 * vert1->texcoord[0][3]) - span.tex[0][3];
296      span.texStepX[0][0] = ds * invLen;
297      span.texStepX[0][1] = dt * invLen;
298      span.texStepX[0][2] = dr * invLen;
299      span.texStepX[0][3] = dq * invLen;
300      span.texStepY[0][0] = 0.0F;
301      span.texStepY[0][1] = 0.0F;
302      span.texStepY[0][2] = 0.0F;
303      span.texStepY[0][3] = 0.0F;
304   }
305#endif
306#ifdef INTERP_MULTITEX
307   interpFlags |= SPAN_TEXTURE;
308   {
309      const GLfloat invLen = 1.0F / numPixels;
310      GLuint u;
311      for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
312         if (ctx->Texture.Unit[u]._ReallyEnabled) {
313            const GLfloat invw0 = vert0->win[3];
314            const GLfloat invw1 = vert1->win[3];
315            GLfloat ds, dt, dr, dq;
316            span.tex[u][0] = invw0 * vert0->texcoord[u][0];
317            span.tex[u][1] = invw0 * vert0->texcoord[u][1];
318            span.tex[u][2] = invw0 * vert0->texcoord[u][2];
319            span.tex[u][3] = invw0 * vert0->texcoord[u][3];
320            ds = (invw1 * vert1->texcoord[u][0]) - span.tex[u][0];
321            dt = (invw1 * vert1->texcoord[u][1]) - span.tex[u][1];
322            dr = (invw1 * vert1->texcoord[u][2]) - span.tex[u][2];
323            dq = (invw1 * vert1->texcoord[u][3]) - span.tex[u][3];
324            span.texStepX[u][0] = ds * invLen;
325            span.texStepX[u][1] = dt * invLen;
326            span.texStepX[u][2] = dr * invLen;
327            span.texStepX[u][3] = dq * invLen;
328            span.texStepY[u][0] = 0.0F;
329            span.texStepY[u][1] = 0.0F;
330            span.texStepY[u][2] = 0.0F;
331            span.texStepY[u][3] = 0.0F;
332	 }
333      }
334   }
335#endif
336
337   INIT_SPAN(span, GL_LINE, numPixels, interpFlags, SPAN_XY);
338
339   /*
340    * Draw
341    */
342
343   if (dx > dy) {
344      /*** X-major line ***/
345      GLint i;
346      GLint errorInc = dy+dy;
347      GLint error = errorInc-dx;
348      GLint errorDec = error-dx;
349
350      for (i = 0; i < dx; i++) {
351#ifdef DEPTH_TYPE
352         GLdepth Z = FixedToDepth(span.z);
353#endif
354#ifdef PLOT
355         PLOT( x0, y0 );
356#else
357         span.array->x[i] = x0;
358         span.array->y[i] = y0;
359#endif
360         x0 += xstep;
361#ifdef DEPTH_TYPE
362         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
363         span.z += span.zStep;
364#endif
365#ifdef PIXEL_ADDRESS
366         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
367#endif
368         if (error<0) {
369            error += errorInc;
370         }
371         else {
372            error += errorDec;
373            y0 += ystep;
374#ifdef DEPTH_TYPE
375            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
376#endif
377#ifdef PIXEL_ADDRESS
378            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
379#endif
380         }
381      }
382   }
383   else {
384      /*** Y-major line ***/
385      GLint i;
386      GLint errorInc = dx+dx;
387      GLint error = errorInc-dy;
388      GLint errorDec = error-dy;
389
390      for (i=0;i<dy;i++) {
391#ifdef DEPTH_TYPE
392         GLdepth Z = FixedToDepth(span.z);
393#endif
394#ifdef PLOT
395         PLOT( x0, y0 );
396#else
397         span.array->x[i] = x0;
398         span.array->y[i] = y0;
399#endif
400         y0 += ystep;
401#ifdef DEPTH_TYPE
402         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
403         span.z += span.zStep;
404#endif
405#ifdef PIXEL_ADDRESS
406         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
407#endif
408         if (error<0) {
409            error += errorInc;
410         }
411         else {
412            error += errorDec;
413            x0 += xstep;
414#ifdef DEPTH_TYPE
415            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
416#endif
417#ifdef PIXEL_ADDRESS
418            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
419#endif
420         }
421      }
422   }
423
424#ifdef RENDER_SPAN
425   RENDER_SPAN( span );
426#endif
427
428   (void)span;
429
430}
431
432
433#undef NAME
434#undef INTERP_Z
435#undef INTERP_FOG
436#undef INTERP_RGBA
437#undef INTERP_SPEC
438#undef INTERP_TEX
439#undef INTERP_MULTITEX
440#undef INTERP_INDEX
441#undef PIXEL_ADDRESS
442#undef PIXEL_TYPE
443#undef DEPTH_TYPE
444#undef BYTES_PER_ROW
445#undef SETUP_CODE
446#undef PLOT
447#undef CLIP_HACK
448#undef FixedToDepth
449#undef RENDER_SPAN
450