1 2/*--------------------------------------------------------------------*/ 3/*--- malloc/free wrappers for detecting errors and updating bits. ---*/ 4/*--- mc_malloc_wrappers.c ---*/ 5/*--------------------------------------------------------------------*/ 6 7/* 8 This file is part of MemCheck, a heavyweight Valgrind tool for 9 detecting memory errors. 10 11 Copyright (C) 2000-2013 Julian Seward 12 jseward@acm.org 13 14 This program is free software; you can redistribute it and/or 15 modify it under the terms of the GNU General Public License as 16 published by the Free Software Foundation; either version 2 of the 17 License, or (at your option) any later version. 18 19 This program is distributed in the hope that it will be useful, but 20 WITHOUT ANY WARRANTY; without even the implied warranty of 21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 General Public License for more details. 23 24 You should have received a copy of the GNU General Public License 25 along with this program; if not, write to the Free Software 26 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 27 02111-1307, USA. 28 29 The GNU General Public License is contained in the file COPYING. 30*/ 31 32#include "pub_tool_basics.h" 33#include "pub_tool_execontext.h" 34#include "pub_tool_poolalloc.h" 35#include "pub_tool_hashtable.h" 36#include "pub_tool_libcbase.h" 37#include "pub_tool_libcassert.h" 38#include "pub_tool_libcprint.h" 39#include "pub_tool_mallocfree.h" 40#include "pub_tool_options.h" 41#include "pub_tool_replacemalloc.h" 42#include "pub_tool_threadstate.h" 43#include "pub_tool_tooliface.h" // Needed for mc_include.h 44#include "pub_tool_stacktrace.h" // For VG_(get_and_pp_StackTrace) 45 46#include "mc_include.h" 47 48/*------------------------------------------------------------*/ 49/*--- Defns ---*/ 50/*------------------------------------------------------------*/ 51 52/* Stats ... */ 53static SizeT cmalloc_n_mallocs = 0; 54static SizeT cmalloc_n_frees = 0; 55static ULong cmalloc_bs_mallocd = 0; 56 57/* For debug printing to do with mempools: what stack trace 58 depth to show. */ 59#define MEMPOOL_DEBUG_STACKTRACE_DEPTH 16 60 61 62/*------------------------------------------------------------*/ 63/*--- Tracking malloc'd and free'd blocks ---*/ 64/*------------------------------------------------------------*/ 65 66SizeT MC_(Malloc_Redzone_SzB) = -10000000; // If used before set, should BOMB 67 68/* Record malloc'd blocks. */ 69VgHashTable *MC_(malloc_list) = NULL; 70 71/* Memory pools: a hash table of MC_Mempools. Search key is 72 MC_Mempool::pool. */ 73VgHashTable *MC_(mempool_list) = NULL; 74 75/* Pool allocator for MC_Chunk. */ 76PoolAlloc *MC_(chunk_poolalloc) = NULL; 77static 78MC_Chunk* create_MC_Chunk ( ThreadId tid, Addr p, SizeT szB, 79 MC_AllocKind kind); 80static inline 81void delete_MC_Chunk (MC_Chunk* mc); 82 83/* Records blocks after freeing. */ 84/* Blocks freed by the client are queued in one of two lists of 85 freed blocks not yet physically freed: 86 "big blocks" freed list. 87 "small blocks" freed list 88 The blocks with a size >= MC_(clo_freelist_big_blocks) 89 are linked in the big blocks freed list. 90 This allows a client to allocate and free big blocks 91 (e.g. bigger than VG_(clo_freelist_vol)) without losing 92 immediately all protection against dangling pointers. 93 position [0] is for big blocks, [1] is for small blocks. */ 94static MC_Chunk* freed_list_start[2] = {NULL, NULL}; 95static MC_Chunk* freed_list_end[2] = {NULL, NULL}; 96 97/* Put a shadow chunk on the freed blocks queue, possibly freeing up 98 some of the oldest blocks in the queue at the same time. */ 99static void add_to_freed_queue ( MC_Chunk* mc ) 100{ 101 const Bool show = False; 102 const int l = (mc->szB >= MC_(clo_freelist_big_blocks) ? 0 : 1); 103 104 /* Put it at the end of the freed list, unless the block 105 would be directly released any way : in this case, we 106 put it at the head of the freed list. */ 107 if (freed_list_end[l] == NULL) { 108 tl_assert(freed_list_start[l] == NULL); 109 mc->next = NULL; 110 freed_list_end[l] = freed_list_start[l] = mc; 111 } else { 112 tl_assert(freed_list_end[l]->next == NULL); 113 if (mc->szB >= MC_(clo_freelist_vol)) { 114 mc->next = freed_list_start[l]; 115 freed_list_start[l] = mc; 116 } else { 117 mc->next = NULL; 118 freed_list_end[l]->next = mc; 119 freed_list_end[l] = mc; 120 } 121 } 122 VG_(free_queue_volume) += (Long)mc->szB; 123 if (show) 124 VG_(printf)("mc_freelist: acquire: volume now %lld\n", 125 VG_(free_queue_volume)); 126 VG_(free_queue_length)++; 127} 128 129/* Release enough of the oldest blocks to bring the free queue 130 volume below vg_clo_freelist_vol. 131 Start with big block list first. 132 On entry, VG_(free_queue_volume) must be > MC_(clo_freelist_vol). 133 On exit, VG_(free_queue_volume) will be <= MC_(clo_freelist_vol). */ 134static void release_oldest_block(void) 135{ 136 const Bool show = False; 137 int i; 138 tl_assert (VG_(free_queue_volume) > MC_(clo_freelist_vol)); 139 tl_assert (freed_list_start[0] != NULL || freed_list_start[1] != NULL); 140 141 for (i = 0; i < 2; i++) { 142 while (VG_(free_queue_volume) > MC_(clo_freelist_vol) 143 && freed_list_start[i] != NULL) { 144 MC_Chunk* mc1; 145 146 tl_assert(freed_list_end[i] != NULL); 147 148 mc1 = freed_list_start[i]; 149 VG_(free_queue_volume) -= (Long)mc1->szB; 150 VG_(free_queue_length)--; 151 if (show) 152 VG_(printf)("mc_freelist: discard: volume now %lld\n", 153 VG_(free_queue_volume)); 154 tl_assert(VG_(free_queue_volume) >= 0); 155 156 if (freed_list_start[i] == freed_list_end[i]) { 157 freed_list_start[i] = freed_list_end[i] = NULL; 158 } else { 159 freed_list_start[i] = mc1->next; 160 } 161 mc1->next = NULL; /* just paranoia */ 162 163 /* free MC_Chunk */ 164 if (MC_AllocCustom != mc1->allockind) 165 VG_(cli_free) ( (void*)(mc1->data) ); 166 delete_MC_Chunk ( mc1 ); 167 } 168 } 169} 170 171MC_Chunk* MC_(get_freed_block_bracketting) (Addr a) 172{ 173 int i; 174 for (i = 0; i < 2; i++) { 175 MC_Chunk* mc; 176 mc = freed_list_start[i]; 177 while (mc) { 178 if (VG_(addr_is_in_block)( a, mc->data, mc->szB, 179 MC_(Malloc_Redzone_SzB) )) 180 return mc; 181 mc = mc->next; 182 } 183 } 184 return NULL; 185} 186 187/* Allocate a shadow chunk, put it on the appropriate list. 188 If needed, release oldest blocks from freed list. */ 189static 190MC_Chunk* create_MC_Chunk ( ThreadId tid, Addr p, SizeT szB, 191 MC_AllocKind kind) 192{ 193 MC_Chunk* mc = VG_(allocEltPA)(MC_(chunk_poolalloc)); 194 mc->data = p; 195 mc->szB = szB; 196 mc->allockind = kind; 197 switch ( MC_(n_where_pointers)() ) { 198 case 2: mc->where[1] = 0; // fallback to 1 199 case 1: mc->where[0] = 0; // fallback to 0 200 case 0: break; 201 default: tl_assert(0); 202 } 203 MC_(set_allocated_at) (tid, mc); 204 205 /* Each time a new MC_Chunk is created, release oldest blocks 206 if the free list volume is exceeded. */ 207 if (VG_(free_queue_volume) > MC_(clo_freelist_vol)) 208 release_oldest_block(); 209 210 /* Paranoia ... ensure the MC_Chunk is off-limits to the client, so 211 the mc->data field isn't visible to the leak checker. If memory 212 management is working correctly, any pointer returned by VG_(malloc) 213 should be noaccess as far as the client is concerned. */ 214 if (!MC_(check_mem_is_noaccess)( (Addr)mc, sizeof(MC_Chunk), NULL )) { 215 VG_(tool_panic)("create_MC_Chunk: shadow area is accessible"); 216 } 217 return mc; 218} 219 220static inline 221void delete_MC_Chunk (MC_Chunk* mc) 222{ 223 VG_(freeEltPA) (MC_(chunk_poolalloc), mc); 224} 225 226// True if mc is in the given block list. 227static Bool in_block_list (const VgHashTable *block_list, MC_Chunk* mc) 228{ 229 MC_Chunk* found_mc = VG_(HT_lookup) ( block_list, (UWord)mc->data ); 230 if (found_mc) { 231 tl_assert (found_mc->data == mc->data); 232 /* If a user builds a pool from a malloc-ed superblock 233 and uses VALGRIND_MALLOCLIKE_BLOCK to "mark" 234 an address at the beginning of this superblock, then 235 this address will be twice in the block_list. 236 We handle this case by checking size and allockind. 237 Note: I suspect that having the same block 238 twice in MC_(malloc_list) is a recipe for bugs. 239 We might maybe better create a "standard" mempool to 240 handle all this more cleanly. */ 241 if (found_mc->szB != mc->szB 242 || found_mc->allockind != mc->allockind) 243 return False; 244 tl_assert (found_mc == mc); 245 return True; 246 } else 247 return False; 248} 249 250// True if mc is a live block (not yet freed). 251static Bool live_block (MC_Chunk* mc) 252{ 253 if (mc->allockind == MC_AllocCustom) { 254 MC_Mempool* mp; 255 VG_(HT_ResetIter)(MC_(mempool_list)); 256 while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) { 257 if ( in_block_list (mp->chunks, mc) ) 258 return True; 259 } 260 } 261 /* Note: we fallback here for a not found MC_AllocCustom 262 as such a block can be inserted in MC_(malloc_list) 263 by VALGRIND_MALLOCLIKE_BLOCK. */ 264 return in_block_list ( MC_(malloc_list), mc ); 265} 266 267ExeContext* MC_(allocated_at) (MC_Chunk* mc) 268{ 269 switch (MC_(clo_keep_stacktraces)) { 270 case KS_none: return VG_(null_ExeContext) (); 271 case KS_alloc: return mc->where[0]; 272 case KS_free: return VG_(null_ExeContext) (); 273 case KS_alloc_then_free: return (live_block(mc) ? 274 mc->where[0] : VG_(null_ExeContext) ()); 275 case KS_alloc_and_free: return mc->where[0]; 276 default: tl_assert (0); 277 } 278} 279 280ExeContext* MC_(freed_at) (MC_Chunk* mc) 281{ 282 switch (MC_(clo_keep_stacktraces)) { 283 case KS_none: return VG_(null_ExeContext) (); 284 case KS_alloc: return VG_(null_ExeContext) (); 285 case KS_free: return (mc->where[0] ? 286 mc->where[0] : VG_(null_ExeContext) ()); 287 case KS_alloc_then_free: return (live_block(mc) ? 288 VG_(null_ExeContext) () : mc->where[0]); 289 case KS_alloc_and_free: return (mc->where[1] ? 290 mc->where[1] : VG_(null_ExeContext) ()); 291 default: tl_assert (0); 292 } 293} 294 295void MC_(set_allocated_at) (ThreadId tid, MC_Chunk* mc) 296{ 297 switch (MC_(clo_keep_stacktraces)) { 298 case KS_none: return; 299 case KS_alloc: break; 300 case KS_free: return; 301 case KS_alloc_then_free: break; 302 case KS_alloc_and_free: break; 303 default: tl_assert (0); 304 } 305 mc->where[0] = VG_(record_ExeContext) ( tid, 0/*first_ip_delta*/ ); 306} 307 308void MC_(set_freed_at) (ThreadId tid, MC_Chunk* mc) 309{ 310 UInt pos; 311 switch (MC_(clo_keep_stacktraces)) { 312 case KS_none: return; 313 case KS_alloc: return; 314 case KS_free: pos = 0; break; 315 case KS_alloc_then_free: pos = 0; break; 316 case KS_alloc_and_free: pos = 1; break; 317 default: tl_assert (0); 318 } 319 mc->where[pos] = VG_(record_ExeContext) ( tid, 0/*first_ip_delta*/ ); 320} 321 322UInt MC_(n_where_pointers) (void) 323{ 324 switch (MC_(clo_keep_stacktraces)) { 325 case KS_none: return 0; 326 case KS_alloc: 327 case KS_free: 328 case KS_alloc_then_free: return 1; 329 case KS_alloc_and_free: return 2; 330 default: tl_assert (0); 331 } 332} 333 334/*------------------------------------------------------------*/ 335/*--- client_malloc(), etc ---*/ 336/*------------------------------------------------------------*/ 337 338/* Allocate memory and note change in memory available */ 339void* MC_(new_block) ( ThreadId tid, 340 Addr p, SizeT szB, SizeT alignB, 341 Bool is_zeroed, MC_AllocKind kind, VgHashTable *table) 342{ 343 MC_Chunk* mc; 344 345 // Allocate and zero if necessary 346 if (p) { 347 tl_assert(MC_AllocCustom == kind); 348 } else { 349 tl_assert(MC_AllocCustom != kind); 350 p = (Addr)VG_(cli_malloc)( alignB, szB ); 351 if (!p) { 352 return NULL; 353 } 354 if (is_zeroed) { 355 VG_(memset)((void*)p, 0, szB); 356 } else 357 if (MC_(clo_malloc_fill) != -1) { 358 tl_assert(MC_(clo_malloc_fill) >= 0x00 && MC_(clo_malloc_fill) <= 0xFF); 359 VG_(memset)((void*)p, MC_(clo_malloc_fill), szB); 360 } 361 } 362 363 // Only update stats if allocation succeeded. 364 cmalloc_n_mallocs ++; 365 cmalloc_bs_mallocd += (ULong)szB; 366 mc = create_MC_Chunk (tid, p, szB, kind); 367 VG_(HT_add_node)( table, mc ); 368 369 if (is_zeroed) 370 MC_(make_mem_defined)( p, szB ); 371 else { 372 UInt ecu = VG_(get_ECU_from_ExeContext)(MC_(allocated_at)(mc)); 373 tl_assert(VG_(is_plausible_ECU)(ecu)); 374 MC_(make_mem_undefined_w_otag)( p, szB, ecu | MC_OKIND_HEAP ); 375 } 376 377 return (void*)p; 378} 379 380void* MC_(malloc) ( ThreadId tid, SizeT n ) 381{ 382 if (MC_(record_fishy_value_error)(tid, "malloc", "size", n)) { 383 return NULL; 384 } else { 385 return MC_(new_block) ( tid, 0, n, VG_(clo_alignment), 386 /*is_zeroed*/False, MC_AllocMalloc, MC_(malloc_list)); 387 } 388} 389 390void* MC_(__builtin_new) ( ThreadId tid, SizeT n ) 391{ 392 if (MC_(record_fishy_value_error)(tid, "__builtin_new", "size", n)) { 393 return NULL; 394 } else { 395 return MC_(new_block) ( tid, 0, n, VG_(clo_alignment), 396 /*is_zeroed*/False, MC_AllocNew, MC_(malloc_list)); 397 } 398} 399 400void* MC_(__builtin_vec_new) ( ThreadId tid, SizeT n ) 401{ 402 if (MC_(record_fishy_value_error)(tid, "__builtin_vec_new", "size", n)) { 403 return NULL; 404 } else { 405 return MC_(new_block) ( tid, 0, n, VG_(clo_alignment), 406 /*is_zeroed*/False, MC_AllocNewVec, MC_(malloc_list)); 407 } 408} 409 410void* MC_(memalign) ( ThreadId tid, SizeT alignB, SizeT n ) 411{ 412 if (MC_(record_fishy_value_error)(tid, "memalign", "size", n)) { 413 return NULL; 414 } else { 415 return MC_(new_block) ( tid, 0, n, alignB, 416 /*is_zeroed*/False, MC_AllocMalloc, MC_(malloc_list)); 417 } 418} 419 420void* MC_(calloc) ( ThreadId tid, SizeT nmemb, SizeT size1 ) 421{ 422 if (MC_(record_fishy_value_error)(tid, "calloc", "nmemb", nmemb) || 423 MC_(record_fishy_value_error)(tid, "calloc", "size", size1)) { 424 return NULL; 425 } else { 426 return MC_(new_block) ( tid, 0, nmemb*size1, VG_(clo_alignment), 427 /*is_zeroed*/True, MC_AllocMalloc, MC_(malloc_list)); 428 } 429} 430 431static 432void die_and_free_mem ( ThreadId tid, MC_Chunk* mc, SizeT rzB ) 433{ 434 /* Note: we do not free fill the custom allocs produced 435 by MEMPOOL or by MALLOC/FREELIKE_BLOCK requests. */ 436 if (MC_(clo_free_fill) != -1 && MC_AllocCustom != mc->allockind ) { 437 tl_assert(MC_(clo_free_fill) >= 0x00 && MC_(clo_free_fill) <= 0xFF); 438 VG_(memset)((void*)mc->data, MC_(clo_free_fill), mc->szB); 439 } 440 441 /* Note: make redzones noaccess again -- just in case user made them 442 accessible with a client request... */ 443 MC_(make_mem_noaccess)( mc->data-rzB, mc->szB + 2*rzB ); 444 445 /* Record where freed */ 446 MC_(set_freed_at) (tid, mc); 447 /* Put it out of harm's way for a while */ 448 add_to_freed_queue ( mc ); 449 /* If the free list volume is bigger than MC_(clo_freelist_vol), 450 we wait till the next block allocation to release blocks. 451 This increase the chance to discover dangling pointer usage, 452 even for big blocks being freed by the client. */ 453} 454 455 456static 457void record_freemismatch_error (ThreadId tid, MC_Chunk* mc) 458{ 459 /* Only show such an error if the user hasn't disabled doing so. */ 460 if (!MC_(clo_show_mismatched_frees)) 461 return; 462 463 /* MC_(record_freemismatch_error) reports errors for still 464 allocated blocks but we are in the middle of freeing it. To 465 report the error correctly, we re-insert the chunk (making it 466 again a "clean allocated block", report the error, and then 467 re-remove the chunk. This avoids to do a VG_(HT_lookup) 468 followed by a VG_(HT_remove) in all "non-erroneous cases". */ 469 VG_(HT_add_node)( MC_(malloc_list), mc ); 470 MC_(record_freemismatch_error) ( tid, mc ); 471 if ((mc != VG_(HT_remove) ( MC_(malloc_list), (UWord)mc->data ))) 472 tl_assert(0); 473} 474 475void MC_(handle_free) ( ThreadId tid, Addr p, UInt rzB, MC_AllocKind kind ) 476{ 477 MC_Chunk* mc; 478 479 cmalloc_n_frees++; 480 481 mc = VG_(HT_remove) ( MC_(malloc_list), (UWord)p ); 482 if (mc == NULL) { 483 MC_(record_free_error) ( tid, p ); 484 } else { 485 /* check if it is a matching free() / delete / delete [] */ 486 if (kind != mc->allockind) { 487 tl_assert(p == mc->data); 488 record_freemismatch_error ( tid, mc ); 489 } 490 die_and_free_mem ( tid, mc, rzB ); 491 } 492} 493 494void MC_(free) ( ThreadId tid, void* p ) 495{ 496 MC_(handle_free)( 497 tid, (Addr)p, MC_(Malloc_Redzone_SzB), MC_AllocMalloc ); 498} 499 500void MC_(__builtin_delete) ( ThreadId tid, void* p ) 501{ 502 MC_(handle_free)( 503 tid, (Addr)p, MC_(Malloc_Redzone_SzB), MC_AllocNew); 504} 505 506void MC_(__builtin_vec_delete) ( ThreadId tid, void* p ) 507{ 508 MC_(handle_free)( 509 tid, (Addr)p, MC_(Malloc_Redzone_SzB), MC_AllocNewVec); 510} 511 512void* MC_(realloc) ( ThreadId tid, void* p_old, SizeT new_szB ) 513{ 514 MC_Chunk* old_mc; 515 MC_Chunk* new_mc; 516 Addr a_new; 517 SizeT old_szB; 518 519 if (MC_(record_fishy_value_error)(tid, "realloc", "size", new_szB)) 520 return NULL; 521 522 cmalloc_n_frees ++; 523 cmalloc_n_mallocs ++; 524 cmalloc_bs_mallocd += (ULong)new_szB; 525 526 /* Remove the old block */ 527 old_mc = VG_(HT_remove) ( MC_(malloc_list), (UWord)p_old ); 528 if (old_mc == NULL) { 529 MC_(record_free_error) ( tid, (Addr)p_old ); 530 /* We return to the program regardless. */ 531 return NULL; 532 } 533 534 /* check if its a matching free() / delete / delete [] */ 535 if (MC_AllocMalloc != old_mc->allockind) { 536 /* can not realloc a range that was allocated with new or new [] */ 537 tl_assert((Addr)p_old == old_mc->data); 538 record_freemismatch_error ( tid, old_mc ); 539 /* but keep going anyway */ 540 } 541 542 old_szB = old_mc->szB; 543 544 /* Get new memory */ 545 a_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_szB); 546 547 if (a_new) { 548 /* In all cases, even when the new size is smaller or unchanged, we 549 reallocate and copy the contents, and make the old block 550 inaccessible. This is so as to guarantee to catch all cases of 551 accesses via the old address after reallocation, regardless of 552 the change in size. (Of course the ability to detect accesses 553 to the old block also depends on the size of the freed blocks 554 queue). */ 555 556 // Allocate a new chunk. 557 new_mc = create_MC_Chunk( tid, a_new, new_szB, MC_AllocMalloc ); 558 559 // Now insert the new mc (with a new 'data' field) into malloc_list. 560 VG_(HT_add_node)( MC_(malloc_list), new_mc ); 561 562 /* Retained part is copied, red zones set as normal */ 563 564 /* Redzone at the front */ 565 MC_(make_mem_noaccess)( a_new-MC_(Malloc_Redzone_SzB), 566 MC_(Malloc_Redzone_SzB) ); 567 568 /* payload */ 569 if (old_szB >= new_szB) { 570 /* new size is smaller or the same */ 571 572 /* Copy address range state and value from old to new */ 573 MC_(copy_address_range_state) ( (Addr)p_old, a_new, new_szB ); 574 VG_(memcpy)((void*)a_new, p_old, new_szB); 575 } else { 576 /* new size is bigger */ 577 UInt ecu; 578 579 /* Copy address range state and value from old to new */ 580 MC_(copy_address_range_state) ( (Addr)p_old, a_new, old_szB ); 581 VG_(memcpy)((void*)a_new, p_old, old_szB); 582 583 // If the block has grown, we mark the grown area as undefined. 584 // We have to do that after VG_(HT_add_node) to ensure the ecu 585 // execontext is for a fully allocated block. 586 ecu = VG_(get_ECU_from_ExeContext)(MC_(allocated_at)(new_mc)); 587 tl_assert(VG_(is_plausible_ECU)(ecu)); 588 MC_(make_mem_undefined_w_otag)( a_new+old_szB, 589 new_szB-old_szB, 590 ecu | MC_OKIND_HEAP ); 591 592 /* Possibly fill new area with specified junk */ 593 if (MC_(clo_malloc_fill) != -1) { 594 tl_assert(MC_(clo_malloc_fill) >= 0x00 595 && MC_(clo_malloc_fill) <= 0xFF); 596 VG_(memset)((void*)(a_new+old_szB), MC_(clo_malloc_fill), 597 new_szB-old_szB); 598 } 599 } 600 601 /* Redzone at the back. */ 602 MC_(make_mem_noaccess) ( a_new+new_szB, MC_(Malloc_Redzone_SzB)); 603 604 /* Possibly fill freed area with specified junk. */ 605 if (MC_(clo_free_fill) != -1) { 606 tl_assert(MC_(clo_free_fill) >= 0x00 && MC_(clo_free_fill) <= 0xFF); 607 VG_(memset)((void*)p_old, MC_(clo_free_fill), old_szB); 608 } 609 610 /* Free old memory */ 611 /* Nb: we have to allocate a new MC_Chunk for the new memory rather 612 than recycling the old one, so that any erroneous accesses to the 613 old memory are reported. */ 614 die_and_free_mem ( tid, old_mc, MC_(Malloc_Redzone_SzB) ); 615 616 } else { 617 /* Could not allocate new client memory. 618 Re-insert the old_mc (with the old ptr) in the HT, as old_mc was 619 unconditionally removed at the beginning of the function. */ 620 VG_(HT_add_node)( MC_(malloc_list), old_mc ); 621 } 622 623 return (void*)a_new; 624} 625 626SizeT MC_(malloc_usable_size) ( ThreadId tid, void* p ) 627{ 628 MC_Chunk* mc = VG_(HT_lookup) ( MC_(malloc_list), (UWord)p ); 629 630 // There may be slop, but pretend there isn't because only the asked-for 631 // area will be marked as addressable. 632 return ( mc ? mc->szB : 0 ); 633} 634 635/* This handles the in place resize of a block, as performed by the 636 VALGRIND_RESIZEINPLACE_BLOCK client request. It is unrelated to, 637 and not used for, handling of the normal libc realloc() 638 function. */ 639void MC_(handle_resizeInPlace)(ThreadId tid, Addr p, 640 SizeT oldSizeB, SizeT newSizeB, SizeT rzB) 641{ 642 MC_Chunk* mc = VG_(HT_lookup) ( MC_(malloc_list), (UWord)p ); 643 if (!mc || mc->szB != oldSizeB || newSizeB == 0) { 644 /* Reject if: p is not found, or oldSizeB is wrong, 645 or new block would be empty. */ 646 MC_(record_free_error) ( tid, p ); 647 return; 648 } 649 650 if (oldSizeB == newSizeB) 651 return; 652 653 mc->szB = newSizeB; 654 if (newSizeB < oldSizeB) { 655 MC_(make_mem_noaccess)( p + newSizeB, oldSizeB - newSizeB + rzB ); 656 } else { 657 ExeContext* ec = VG_(record_ExeContext)(tid, 0/*first_ip_delta*/); 658 UInt ecu = VG_(get_ECU_from_ExeContext)(ec); 659 MC_(make_mem_undefined_w_otag)( p + oldSizeB, newSizeB - oldSizeB, 660 ecu | MC_OKIND_HEAP ); 661 if (rzB > 0) 662 MC_(make_mem_noaccess)( p + newSizeB, rzB ); 663 } 664} 665 666 667/*------------------------------------------------------------*/ 668/*--- Memory pool stuff. ---*/ 669/*------------------------------------------------------------*/ 670 671/* Set to 1 for intensive sanity checking. Is very expensive though 672 and should not be used in production scenarios. See #255966. */ 673#define MP_DETAILED_SANITY_CHECKS 0 674 675static void check_mempool_sane(MC_Mempool* mp); /*forward*/ 676 677 678void MC_(create_mempool)(Addr pool, UInt rzB, Bool is_zeroed) 679{ 680 MC_Mempool* mp; 681 682 if (VG_(clo_verbosity) > 2) { 683 VG_(message)(Vg_UserMsg, "create_mempool(0x%lx, %d, %d)\n", 684 pool, rzB, is_zeroed); 685 VG_(get_and_pp_StackTrace) 686 (VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH); 687 } 688 689 mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); 690 if (mp != NULL) { 691 VG_(tool_panic)("MC_(create_mempool): duplicate pool creation"); 692 } 693 694 mp = VG_(malloc)("mc.cm.1", sizeof(MC_Mempool)); 695 mp->pool = pool; 696 mp->rzB = rzB; 697 mp->is_zeroed = is_zeroed; 698 mp->chunks = VG_(HT_construct)( "MC_(create_mempool)" ); 699 check_mempool_sane(mp); 700 701 /* Paranoia ... ensure this area is off-limits to the client, so 702 the mp->data field isn't visible to the leak checker. If memory 703 management is working correctly, anything pointer returned by 704 VG_(malloc) should be noaccess as far as the client is 705 concerned. */ 706 if (!MC_(check_mem_is_noaccess)( (Addr)mp, sizeof(MC_Mempool), NULL )) { 707 VG_(tool_panic)("MC_(create_mempool): shadow area is accessible"); 708 } 709 710 VG_(HT_add_node)( MC_(mempool_list), mp ); 711} 712 713void MC_(destroy_mempool)(Addr pool) 714{ 715 MC_Chunk* mc; 716 MC_Mempool* mp; 717 718 if (VG_(clo_verbosity) > 2) { 719 VG_(message)(Vg_UserMsg, "destroy_mempool(0x%lx)\n", pool); 720 VG_(get_and_pp_StackTrace) 721 (VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH); 722 } 723 724 mp = VG_(HT_remove) ( MC_(mempool_list), (UWord)pool ); 725 726 if (mp == NULL) { 727 ThreadId tid = VG_(get_running_tid)(); 728 MC_(record_illegal_mempool_error) ( tid, pool ); 729 return; 730 } 731 check_mempool_sane(mp); 732 733 // Clean up the chunks, one by one 734 VG_(HT_ResetIter)(mp->chunks); 735 while ( (mc = VG_(HT_Next)(mp->chunks)) ) { 736 /* Note: make redzones noaccess again -- just in case user made them 737 accessible with a client request... */ 738 MC_(make_mem_noaccess)(mc->data-mp->rzB, mc->szB + 2*mp->rzB ); 739 } 740 // Destroy the chunk table 741 VG_(HT_destruct)(mp->chunks, (void (*)(void *))delete_MC_Chunk); 742 743 VG_(free)(mp); 744} 745 746static Int 747mp_compar(const void* n1, const void* n2) 748{ 749 const MC_Chunk* mc1 = *(const MC_Chunk *const *)n1; 750 const MC_Chunk* mc2 = *(const MC_Chunk *const *)n2; 751 if (mc1->data < mc2->data) return -1; 752 if (mc1->data > mc2->data) return 1; 753 return 0; 754} 755 756static void 757check_mempool_sane(MC_Mempool* mp) 758{ 759 UInt n_chunks, i, bad = 0; 760 static UInt tick = 0; 761 762 MC_Chunk **chunks = (MC_Chunk**) VG_(HT_to_array)( mp->chunks, &n_chunks ); 763 if (!chunks) 764 return; 765 766 if (VG_(clo_verbosity) > 1) { 767 if (tick++ >= 10000) 768 { 769 UInt total_pools = 0, total_chunks = 0; 770 MC_Mempool* mp2; 771 772 VG_(HT_ResetIter)(MC_(mempool_list)); 773 while ( (mp2 = VG_(HT_Next)(MC_(mempool_list))) ) { 774 total_pools++; 775 VG_(HT_ResetIter)(mp2->chunks); 776 while (VG_(HT_Next)(mp2->chunks)) { 777 total_chunks++; 778 } 779 } 780 781 VG_(message)(Vg_UserMsg, 782 "Total mempools active: %d pools, %d chunks\n", 783 total_pools, total_chunks); 784 tick = 0; 785 } 786 } 787 788 789 VG_(ssort)((void*)chunks, n_chunks, sizeof(VgHashNode*), mp_compar); 790 791 /* Sanity check; assert that the blocks are now in order */ 792 for (i = 0; i < n_chunks-1; i++) { 793 if (chunks[i]->data > chunks[i+1]->data) { 794 VG_(message)(Vg_UserMsg, 795 "Mempool chunk %d / %d is out of order " 796 "wrt. its successor\n", 797 i+1, n_chunks); 798 bad = 1; 799 } 800 } 801 802 /* Sanity check -- make sure they don't overlap */ 803 for (i = 0; i < n_chunks-1; i++) { 804 if (chunks[i]->data + chunks[i]->szB > chunks[i+1]->data ) { 805 VG_(message)(Vg_UserMsg, 806 "Mempool chunk %d / %d overlaps with its successor\n", 807 i+1, n_chunks); 808 bad = 1; 809 } 810 } 811 812 if (bad) { 813 VG_(message)(Vg_UserMsg, 814 "Bad mempool (%d chunks), dumping chunks for inspection:\n", 815 n_chunks); 816 for (i = 0; i < n_chunks; ++i) { 817 VG_(message)(Vg_UserMsg, 818 "Mempool chunk %d / %d: %ld bytes " 819 "[%lx,%lx), allocated:\n", 820 i+1, 821 n_chunks, 822 chunks[i]->szB + 0UL, 823 chunks[i]->data, 824 chunks[i]->data + chunks[i]->szB); 825 826 VG_(pp_ExeContext)(MC_(allocated_at)(chunks[i])); 827 } 828 } 829 VG_(free)(chunks); 830} 831 832void MC_(mempool_alloc)(ThreadId tid, Addr pool, Addr addr, SizeT szB) 833{ 834 MC_Mempool* mp; 835 836 if (VG_(clo_verbosity) > 2) { 837 VG_(message)(Vg_UserMsg, "mempool_alloc(0x%lx, 0x%lx, %ld)\n", 838 pool, addr, szB); 839 VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); 840 } 841 842 mp = VG_(HT_lookup) ( MC_(mempool_list), (UWord)pool ); 843 if (mp == NULL) { 844 MC_(record_illegal_mempool_error) ( tid, pool ); 845 } else { 846 if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); 847 MC_(new_block)(tid, addr, szB, /*ignored*/0, mp->is_zeroed, 848 MC_AllocCustom, mp->chunks); 849 if (mp->rzB > 0) { 850 // This is not needed if the user application has properly 851 // marked the superblock noaccess when defining the mempool. 852 // We however still mark the redzones noaccess to still catch 853 // some bugs if user forgot. 854 MC_(make_mem_noaccess) ( addr - mp->rzB, mp->rzB); 855 MC_(make_mem_noaccess) ( addr + szB, mp->rzB); 856 } 857 if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); 858 } 859} 860 861void MC_(mempool_free)(Addr pool, Addr addr) 862{ 863 MC_Mempool* mp; 864 MC_Chunk* mc; 865 ThreadId tid = VG_(get_running_tid)(); 866 867 mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); 868 if (mp == NULL) { 869 MC_(record_illegal_mempool_error)(tid, pool); 870 return; 871 } 872 873 if (VG_(clo_verbosity) > 2) { 874 VG_(message)(Vg_UserMsg, "mempool_free(0x%lx, 0x%lx)\n", pool, addr); 875 VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); 876 } 877 878 if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); 879 mc = VG_(HT_remove)(mp->chunks, (UWord)addr); 880 if (mc == NULL) { 881 MC_(record_free_error)(tid, (Addr)addr); 882 return; 883 } 884 885 if (VG_(clo_verbosity) > 2) { 886 VG_(message)(Vg_UserMsg, 887 "mempool_free(0x%lx, 0x%lx) freed chunk of %ld bytes\n", 888 pool, addr, mc->szB + 0UL); 889 } 890 891 die_and_free_mem ( tid, mc, mp->rzB ); 892 if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); 893} 894 895 896void MC_(mempool_trim)(Addr pool, Addr addr, SizeT szB) 897{ 898 MC_Mempool* mp; 899 MC_Chunk* mc; 900 ThreadId tid = VG_(get_running_tid)(); 901 UInt n_shadows, i; 902 VgHashNode** chunks; 903 904 if (VG_(clo_verbosity) > 2) { 905 VG_(message)(Vg_UserMsg, "mempool_trim(0x%lx, 0x%lx, %ld)\n", 906 pool, addr, szB); 907 VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); 908 } 909 910 mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); 911 if (mp == NULL) { 912 MC_(record_illegal_mempool_error)(tid, pool); 913 return; 914 } 915 916 check_mempool_sane(mp); 917 chunks = VG_(HT_to_array) ( mp->chunks, &n_shadows ); 918 if (n_shadows == 0) { 919 tl_assert(chunks == NULL); 920 return; 921 } 922 923 tl_assert(chunks != NULL); 924 for (i = 0; i < n_shadows; ++i) { 925 926 Addr lo, hi, min, max; 927 928 mc = (MC_Chunk*) chunks[i]; 929 930 lo = mc->data; 931 hi = mc->szB == 0 ? mc->data : mc->data + mc->szB - 1; 932 933#define EXTENT_CONTAINS(x) ((addr <= (x)) && ((x) < addr + szB)) 934 935 if (EXTENT_CONTAINS(lo) && EXTENT_CONTAINS(hi)) { 936 937 /* The current chunk is entirely within the trim extent: keep 938 it. */ 939 940 continue; 941 942 } else if ( (! EXTENT_CONTAINS(lo)) && 943 (! EXTENT_CONTAINS(hi)) ) { 944 945 /* The current chunk is entirely outside the trim extent: 946 delete it. */ 947 948 if (VG_(HT_remove)(mp->chunks, (UWord)mc->data) == NULL) { 949 MC_(record_free_error)(tid, (Addr)mc->data); 950 VG_(free)(chunks); 951 if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); 952 return; 953 } 954 die_and_free_mem ( tid, mc, mp->rzB ); 955 956 } else { 957 958 /* The current chunk intersects the trim extent: remove, 959 trim, and reinsert it. */ 960 961 tl_assert(EXTENT_CONTAINS(lo) || 962 EXTENT_CONTAINS(hi)); 963 if (VG_(HT_remove)(mp->chunks, (UWord)mc->data) == NULL) { 964 MC_(record_free_error)(tid, (Addr)mc->data); 965 VG_(free)(chunks); 966 if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); 967 return; 968 } 969 970 if (mc->data < addr) { 971 min = mc->data; 972 lo = addr; 973 } else { 974 min = addr; 975 lo = mc->data; 976 } 977 978 if (mc->data + szB > addr + szB) { 979 max = mc->data + szB; 980 hi = addr + szB; 981 } else { 982 max = addr + szB; 983 hi = mc->data + szB; 984 } 985 986 tl_assert(min <= lo); 987 tl_assert(lo < hi); 988 tl_assert(hi <= max); 989 990 if (min < lo && !EXTENT_CONTAINS(min)) { 991 MC_(make_mem_noaccess)( min, lo - min); 992 } 993 994 if (hi < max && !EXTENT_CONTAINS(max)) { 995 MC_(make_mem_noaccess)( hi, max - hi ); 996 } 997 998 mc->data = lo; 999 mc->szB = (UInt) (hi - lo); 1000 VG_(HT_add_node)( mp->chunks, mc ); 1001 } 1002 1003#undef EXTENT_CONTAINS 1004 1005 } 1006 check_mempool_sane(mp); 1007 VG_(free)(chunks); 1008} 1009 1010void MC_(move_mempool)(Addr poolA, Addr poolB) 1011{ 1012 MC_Mempool* mp; 1013 1014 if (VG_(clo_verbosity) > 2) { 1015 VG_(message)(Vg_UserMsg, "move_mempool(0x%lx, 0x%lx)\n", poolA, poolB); 1016 VG_(get_and_pp_StackTrace) 1017 (VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH); 1018 } 1019 1020 mp = VG_(HT_remove) ( MC_(mempool_list), (UWord)poolA ); 1021 1022 if (mp == NULL) { 1023 ThreadId tid = VG_(get_running_tid)(); 1024 MC_(record_illegal_mempool_error) ( tid, poolA ); 1025 return; 1026 } 1027 1028 mp->pool = poolB; 1029 VG_(HT_add_node)( MC_(mempool_list), mp ); 1030} 1031 1032void MC_(mempool_change)(Addr pool, Addr addrA, Addr addrB, SizeT szB) 1033{ 1034 MC_Mempool* mp; 1035 MC_Chunk* mc; 1036 ThreadId tid = VG_(get_running_tid)(); 1037 1038 if (VG_(clo_verbosity) > 2) { 1039 VG_(message)(Vg_UserMsg, "mempool_change(0x%lx, 0x%lx, 0x%lx, %ld)\n", 1040 pool, addrA, addrB, szB); 1041 VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); 1042 } 1043 1044 mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); 1045 if (mp == NULL) { 1046 MC_(record_illegal_mempool_error)(tid, pool); 1047 return; 1048 } 1049 1050 check_mempool_sane(mp); 1051 1052 mc = VG_(HT_remove)(mp->chunks, (UWord)addrA); 1053 if (mc == NULL) { 1054 MC_(record_free_error)(tid, (Addr)addrA); 1055 return; 1056 } 1057 1058 mc->data = addrB; 1059 mc->szB = szB; 1060 VG_(HT_add_node)( mp->chunks, mc ); 1061 1062 check_mempool_sane(mp); 1063} 1064 1065Bool MC_(mempool_exists)(Addr pool) 1066{ 1067 MC_Mempool* mp; 1068 1069 mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); 1070 if (mp == NULL) { 1071 return False; 1072 } 1073 return True; 1074} 1075 1076 1077/*------------------------------------------------------------*/ 1078/*--- Statistics printing ---*/ 1079/*------------------------------------------------------------*/ 1080 1081void MC_(print_malloc_stats) ( void ) 1082{ 1083 MC_Chunk* mc; 1084 SizeT nblocks = 0; 1085 ULong nbytes = 0; 1086 1087 if (VG_(clo_verbosity) == 0) 1088 return; 1089 if (VG_(clo_xml)) 1090 return; 1091 1092 /* Count memory still in use. */ 1093 VG_(HT_ResetIter)(MC_(malloc_list)); 1094 while ( (mc = VG_(HT_Next)(MC_(malloc_list))) ) { 1095 nblocks++; 1096 nbytes += (ULong)mc->szB; 1097 } 1098 1099 VG_(umsg)( 1100 "HEAP SUMMARY:\n" 1101 " in use at exit: %'llu bytes in %'lu blocks\n" 1102 " total heap usage: %'lu allocs, %'lu frees, %'llu bytes allocated\n" 1103 "\n", 1104 nbytes, nblocks, 1105 cmalloc_n_mallocs, 1106 cmalloc_n_frees, cmalloc_bs_mallocd 1107 ); 1108} 1109 1110SizeT MC_(get_cmalloc_n_frees) ( void ) 1111{ 1112 return cmalloc_n_frees; 1113} 1114 1115 1116/*--------------------------------------------------------------------*/ 1117/*--- end ---*/ 1118/*--------------------------------------------------------------------*/ 1119