Threads.cpp revision f98ec8d0d42e6952c0a7cc5027935851073f7426
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51
52#include <powermanager/PowerManager.h>
53
54#include <common_time/cc_helper.h>
55#include <common_time/local_clock.h>
56
57#include "AudioFlinger.h"
58#include "AudioMixer.h"
59#include "BufferProviders.h"
60#include "FastMixer.h"
61#include "FastCapture.h"
62#include "ServiceUtilities.h"
63#include "SchedulingPolicyService.h"
64
65#ifdef ADD_BATTERY_DATA
66#include <media/IMediaPlayerService.h>
67#include <media/IMediaDeathNotifier.h>
68#endif
69
70#ifdef DEBUG_CPU_USAGE
71#include <cpustats/CentralTendencyStatistics.h>
72#include <cpustats/ThreadCpuUsage.h>
73#endif
74
75// ----------------------------------------------------------------------------
76
77// Note: the following macro is used for extremely verbose logging message.  In
78// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
79// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
80// are so verbose that we want to suppress them even when we have ALOG_ASSERT
81// turned on.  Do not uncomment the #def below unless you really know what you
82// are doing and want to see all of the extremely verbose messages.
83//#define VERY_VERY_VERBOSE_LOGGING
84#ifdef VERY_VERY_VERBOSE_LOGGING
85#define ALOGVV ALOGV
86#else
87#define ALOGVV(a...) do { } while(0)
88#endif
89
90// TODO: Move these macro/inlines to a header file.
91#define max(a, b) ((a) > (b) ? (a) : (b))
92template <typename T>
93static inline T min(const T& a, const T& b)
94{
95    return a < b ? a : b;
96}
97
98#ifndef ARRAY_SIZE
99#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
100#endif
101
102namespace android {
103
104// retry counts for buffer fill timeout
105// 50 * ~20msecs = 1 second
106static const int8_t kMaxTrackRetries = 50;
107static const int8_t kMaxTrackStartupRetries = 50;
108// allow less retry attempts on direct output thread.
109// direct outputs can be a scarce resource in audio hardware and should
110// be released as quickly as possible.
111static const int8_t kMaxTrackRetriesDirect = 2;
112
113// don't warn about blocked writes or record buffer overflows more often than this
114static const nsecs_t kWarningThrottleNs = seconds(5);
115
116// RecordThread loop sleep time upon application overrun or audio HAL read error
117static const int kRecordThreadSleepUs = 5000;
118
119// maximum time to wait in sendConfigEvent_l() for a status to be received
120static const nsecs_t kConfigEventTimeoutNs = seconds(2);
121
122// minimum sleep time for the mixer thread loop when tracks are active but in underrun
123static const uint32_t kMinThreadSleepTimeUs = 5000;
124// maximum divider applied to the active sleep time in the mixer thread loop
125static const uint32_t kMaxThreadSleepTimeShift = 2;
126
127// minimum normal sink buffer size, expressed in milliseconds rather than frames
128static const uint32_t kMinNormalSinkBufferSizeMs = 20;
129// maximum normal sink buffer size
130static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
131
132// Offloaded output thread standby delay: allows track transition without going to standby
133static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
134
135// Whether to use fast mixer
136static const enum {
137    FastMixer_Never,    // never initialize or use: for debugging only
138    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
139                        // normal mixer multiplier is 1
140    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
141                        // multiplier is calculated based on min & max normal mixer buffer size
142    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
143                        // multiplier is calculated based on min & max normal mixer buffer size
144    // FIXME for FastMixer_Dynamic:
145    //  Supporting this option will require fixing HALs that can't handle large writes.
146    //  For example, one HAL implementation returns an error from a large write,
147    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
148    //  We could either fix the HAL implementations, or provide a wrapper that breaks
149    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
150} kUseFastMixer = FastMixer_Static;
151
152// Whether to use fast capture
153static const enum {
154    FastCapture_Never,  // never initialize or use: for debugging only
155    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
156    FastCapture_Static, // initialize if needed, then use all the time if initialized
157} kUseFastCapture = FastCapture_Static;
158
159// Priorities for requestPriority
160static const int kPriorityAudioApp = 2;
161static const int kPriorityFastMixer = 3;
162static const int kPriorityFastCapture = 3;
163
164// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
165// for the track.  The client then sub-divides this into smaller buffers for its use.
166// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
167// So for now we just assume that client is double-buffered for fast tracks.
168// FIXME It would be better for client to tell AudioFlinger the value of N,
169// so AudioFlinger could allocate the right amount of memory.
170// See the client's minBufCount and mNotificationFramesAct calculations for details.
171
172// This is the default value, if not specified by property.
173static const int kFastTrackMultiplier = 2;
174
175// The minimum and maximum allowed values
176static const int kFastTrackMultiplierMin = 1;
177static const int kFastTrackMultiplierMax = 2;
178
179// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
180static int sFastTrackMultiplier = kFastTrackMultiplier;
181
182// See Thread::readOnlyHeap().
183// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
184// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
185// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
186static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
187
188// ----------------------------------------------------------------------------
189
190static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
191
192static void sFastTrackMultiplierInit()
193{
194    char value[PROPERTY_VALUE_MAX];
195    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
196        char *endptr;
197        unsigned long ul = strtoul(value, &endptr, 0);
198        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
199            sFastTrackMultiplier = (int) ul;
200        }
201    }
202}
203
204// ----------------------------------------------------------------------------
205
206#ifdef ADD_BATTERY_DATA
207// To collect the amplifier usage
208static void addBatteryData(uint32_t params) {
209    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
210    if (service == NULL) {
211        // it already logged
212        return;
213    }
214
215    service->addBatteryData(params);
216}
217#endif
218
219
220// ----------------------------------------------------------------------------
221//      CPU Stats
222// ----------------------------------------------------------------------------
223
224class CpuStats {
225public:
226    CpuStats();
227    void sample(const String8 &title);
228#ifdef DEBUG_CPU_USAGE
229private:
230    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
231    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
232
233    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
234
235    int mCpuNum;                        // thread's current CPU number
236    int mCpukHz;                        // frequency of thread's current CPU in kHz
237#endif
238};
239
240CpuStats::CpuStats()
241#ifdef DEBUG_CPU_USAGE
242    : mCpuNum(-1), mCpukHz(-1)
243#endif
244{
245}
246
247void CpuStats::sample(const String8 &title
248#ifndef DEBUG_CPU_USAGE
249                __unused
250#endif
251        ) {
252#ifdef DEBUG_CPU_USAGE
253    // get current thread's delta CPU time in wall clock ns
254    double wcNs;
255    bool valid = mCpuUsage.sampleAndEnable(wcNs);
256
257    // record sample for wall clock statistics
258    if (valid) {
259        mWcStats.sample(wcNs);
260    }
261
262    // get the current CPU number
263    int cpuNum = sched_getcpu();
264
265    // get the current CPU frequency in kHz
266    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
267
268    // check if either CPU number or frequency changed
269    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
270        mCpuNum = cpuNum;
271        mCpukHz = cpukHz;
272        // ignore sample for purposes of cycles
273        valid = false;
274    }
275
276    // if no change in CPU number or frequency, then record sample for cycle statistics
277    if (valid && mCpukHz > 0) {
278        double cycles = wcNs * cpukHz * 0.000001;
279        mHzStats.sample(cycles);
280    }
281
282    unsigned n = mWcStats.n();
283    // mCpuUsage.elapsed() is expensive, so don't call it every loop
284    if ((n & 127) == 1) {
285        long long elapsed = mCpuUsage.elapsed();
286        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
287            double perLoop = elapsed / (double) n;
288            double perLoop100 = perLoop * 0.01;
289            double perLoop1k = perLoop * 0.001;
290            double mean = mWcStats.mean();
291            double stddev = mWcStats.stddev();
292            double minimum = mWcStats.minimum();
293            double maximum = mWcStats.maximum();
294            double meanCycles = mHzStats.mean();
295            double stddevCycles = mHzStats.stddev();
296            double minCycles = mHzStats.minimum();
297            double maxCycles = mHzStats.maximum();
298            mCpuUsage.resetElapsed();
299            mWcStats.reset();
300            mHzStats.reset();
301            ALOGD("CPU usage for %s over past %.1f secs\n"
302                "  (%u mixer loops at %.1f mean ms per loop):\n"
303                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
304                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
305                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
306                    title.string(),
307                    elapsed * .000000001, n, perLoop * .000001,
308                    mean * .001,
309                    stddev * .001,
310                    minimum * .001,
311                    maximum * .001,
312                    mean / perLoop100,
313                    stddev / perLoop100,
314                    minimum / perLoop100,
315                    maximum / perLoop100,
316                    meanCycles / perLoop1k,
317                    stddevCycles / perLoop1k,
318                    minCycles / perLoop1k,
319                    maxCycles / perLoop1k);
320
321        }
322    }
323#endif
324};
325
326// ----------------------------------------------------------------------------
327//      ThreadBase
328// ----------------------------------------------------------------------------
329
330// static
331const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
332{
333    switch (type) {
334    case MIXER:
335        return "MIXER";
336    case DIRECT:
337        return "DIRECT";
338    case DUPLICATING:
339        return "DUPLICATING";
340    case RECORD:
341        return "RECORD";
342    case OFFLOAD:
343        return "OFFLOAD";
344    default:
345        return "unknown";
346    }
347}
348
349String8 devicesToString(audio_devices_t devices)
350{
351    static const struct mapping {
352        audio_devices_t mDevices;
353        const char *    mString;
354    } mappingsOut[] = {
355        AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
356        AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
357        AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
358        AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
359        AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
360        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
361    }, mappingsIn[] = {
362        AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
363        AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
364        AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
365        AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
366        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
367    };
368    String8 result;
369    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
370    const mapping *entry;
371    if (devices & AUDIO_DEVICE_BIT_IN) {
372        devices &= ~AUDIO_DEVICE_BIT_IN;
373        entry = mappingsIn;
374    } else {
375        entry = mappingsOut;
376    }
377    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
378        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
379        if (devices & entry->mDevices) {
380            if (!result.isEmpty()) {
381                result.append("|");
382            }
383            result.append(entry->mString);
384        }
385    }
386    if (devices & ~allDevices) {
387        if (!result.isEmpty()) {
388            result.append("|");
389        }
390        result.appendFormat("0x%X", devices & ~allDevices);
391    }
392    if (result.isEmpty()) {
393        result.append(entry->mString);
394    }
395    return result;
396}
397
398String8 inputFlagsToString(audio_input_flags_t flags)
399{
400    static const struct mapping {
401        audio_input_flags_t     mFlag;
402        const char *            mString;
403    } mappings[] = {
404        AUDIO_INPUT_FLAG_FAST,              "FAST",
405        AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
406        AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
407    };
408    String8 result;
409    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
410    const mapping *entry;
411    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
412        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
413        if (flags & entry->mFlag) {
414            if (!result.isEmpty()) {
415                result.append("|");
416            }
417            result.append(entry->mString);
418        }
419    }
420    if (flags & ~allFlags) {
421        if (!result.isEmpty()) {
422            result.append("|");
423        }
424        result.appendFormat("0x%X", flags & ~allFlags);
425    }
426    if (result.isEmpty()) {
427        result.append(entry->mString);
428    }
429    return result;
430}
431
432String8 outputFlagsToString(audio_output_flags_t flags)
433{
434    static const struct mapping {
435        audio_output_flags_t    mFlag;
436        const char *            mString;
437    } mappings[] = {
438        AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
439        AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
440        AUDIO_OUTPUT_FLAG_FAST,             "FAST",
441        AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
442        AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
443        AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
444        AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
445        AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
446    };
447    String8 result;
448    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
449    const mapping *entry;
450    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
451        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
452        if (flags & entry->mFlag) {
453            if (!result.isEmpty()) {
454                result.append("|");
455            }
456            result.append(entry->mString);
457        }
458    }
459    if (flags & ~allFlags) {
460        if (!result.isEmpty()) {
461            result.append("|");
462        }
463        result.appendFormat("0x%X", flags & ~allFlags);
464    }
465    if (result.isEmpty()) {
466        result.append(entry->mString);
467    }
468    return result;
469}
470
471const char *sourceToString(audio_source_t source)
472{
473    switch (source) {
474    case AUDIO_SOURCE_DEFAULT:              return "default";
475    case AUDIO_SOURCE_MIC:                  return "mic";
476    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
477    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
478    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
479    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
480    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
481    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
482    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
483    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
484    case AUDIO_SOURCE_HOTWORD:              return "hotword";
485    default:                                return "unknown";
486    }
487}
488
489AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
490        audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
491    :   Thread(false /*canCallJava*/),
492        mType(type),
493        mAudioFlinger(audioFlinger),
494        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
495        // are set by PlaybackThread::readOutputParameters_l() or
496        // RecordThread::readInputParameters_l()
497        //FIXME: mStandby should be true here. Is this some kind of hack?
498        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
499        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
500        // mName will be set by concrete (non-virtual) subclass
501        mDeathRecipient(new PMDeathRecipient(this))
502{
503    memset(&mPatch, 0, sizeof(struct audio_patch));
504}
505
506AudioFlinger::ThreadBase::~ThreadBase()
507{
508    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
509    mConfigEvents.clear();
510
511    // do not lock the mutex in destructor
512    releaseWakeLock_l();
513    if (mPowerManager != 0) {
514        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
515        binder->unlinkToDeath(mDeathRecipient);
516    }
517}
518
519status_t AudioFlinger::ThreadBase::readyToRun()
520{
521    status_t status = initCheck();
522    if (status == NO_ERROR) {
523        ALOGI("AudioFlinger's thread %p ready to run", this);
524    } else {
525        ALOGE("No working audio driver found.");
526    }
527    return status;
528}
529
530void AudioFlinger::ThreadBase::exit()
531{
532    ALOGV("ThreadBase::exit");
533    // do any cleanup required for exit to succeed
534    preExit();
535    {
536        // This lock prevents the following race in thread (uniprocessor for illustration):
537        //  if (!exitPending()) {
538        //      // context switch from here to exit()
539        //      // exit() calls requestExit(), what exitPending() observes
540        //      // exit() calls signal(), which is dropped since no waiters
541        //      // context switch back from exit() to here
542        //      mWaitWorkCV.wait(...);
543        //      // now thread is hung
544        //  }
545        AutoMutex lock(mLock);
546        requestExit();
547        mWaitWorkCV.broadcast();
548    }
549    // When Thread::requestExitAndWait is made virtual and this method is renamed to
550    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
551    requestExitAndWait();
552}
553
554status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
555{
556    status_t status;
557
558    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
559    Mutex::Autolock _l(mLock);
560
561    return sendSetParameterConfigEvent_l(keyValuePairs);
562}
563
564// sendConfigEvent_l() must be called with ThreadBase::mLock held
565// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
566status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
567{
568    status_t status = NO_ERROR;
569
570    mConfigEvents.add(event);
571    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
572    mWaitWorkCV.signal();
573    mLock.unlock();
574    {
575        Mutex::Autolock _l(event->mLock);
576        while (event->mWaitStatus) {
577            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
578                event->mStatus = TIMED_OUT;
579                event->mWaitStatus = false;
580            }
581        }
582        status = event->mStatus;
583    }
584    mLock.lock();
585    return status;
586}
587
588void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event)
589{
590    Mutex::Autolock _l(mLock);
591    sendIoConfigEvent_l(event);
592}
593
594// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
595void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event)
596{
597    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event);
598    sendConfigEvent_l(configEvent);
599}
600
601// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
602void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
603{
604    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
605    sendConfigEvent_l(configEvent);
606}
607
608// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
609status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
610{
611    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
612    return sendConfigEvent_l(configEvent);
613}
614
615status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
616                                                        const struct audio_patch *patch,
617                                                        audio_patch_handle_t *handle)
618{
619    Mutex::Autolock _l(mLock);
620    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
621    status_t status = sendConfigEvent_l(configEvent);
622    if (status == NO_ERROR) {
623        CreateAudioPatchConfigEventData *data =
624                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
625        *handle = data->mHandle;
626    }
627    return status;
628}
629
630status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
631                                                                const audio_patch_handle_t handle)
632{
633    Mutex::Autolock _l(mLock);
634    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
635    return sendConfigEvent_l(configEvent);
636}
637
638
639// post condition: mConfigEvents.isEmpty()
640void AudioFlinger::ThreadBase::processConfigEvents_l()
641{
642    bool configChanged = false;
643
644    while (!mConfigEvents.isEmpty()) {
645        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
646        sp<ConfigEvent> event = mConfigEvents[0];
647        mConfigEvents.removeAt(0);
648        switch (event->mType) {
649        case CFG_EVENT_PRIO: {
650            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
651            // FIXME Need to understand why this has to be done asynchronously
652            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
653                    true /*asynchronous*/);
654            if (err != 0) {
655                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
656                      data->mPrio, data->mPid, data->mTid, err);
657            }
658        } break;
659        case CFG_EVENT_IO: {
660            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
661            ioConfigChanged(data->mEvent);
662        } break;
663        case CFG_EVENT_SET_PARAMETER: {
664            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
665            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
666                configChanged = true;
667            }
668        } break;
669        case CFG_EVENT_CREATE_AUDIO_PATCH: {
670            CreateAudioPatchConfigEventData *data =
671                                            (CreateAudioPatchConfigEventData *)event->mData.get();
672            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
673        } break;
674        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
675            ReleaseAudioPatchConfigEventData *data =
676                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
677            event->mStatus = releaseAudioPatch_l(data->mHandle);
678        } break;
679        default:
680            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
681            break;
682        }
683        {
684            Mutex::Autolock _l(event->mLock);
685            if (event->mWaitStatus) {
686                event->mWaitStatus = false;
687                event->mCond.signal();
688            }
689        }
690        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
691    }
692
693    if (configChanged) {
694        cacheParameters_l();
695    }
696}
697
698String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
699    String8 s;
700    const audio_channel_representation_t representation = audio_channel_mask_get_representation(mask);
701
702    switch (representation) {
703    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
704        if (output) {
705            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
706            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
707            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
708            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
709            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
710            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
711            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
712            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
713            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
714            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
715            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
716            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
717            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
718            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
719            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
720            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
721            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
722            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
723            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
724        } else {
725            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
726            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
727            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
728            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
729            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
730            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
731            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
732            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
733            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
734            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
735            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
736            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
737            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
738            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
739            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
740        }
741        const int len = s.length();
742        if (len > 2) {
743            char *str = s.lockBuffer(len); // needed?
744            s.unlockBuffer(len - 2);       // remove trailing ", "
745        }
746        return s;
747    }
748    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
749        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
750        return s;
751    default:
752        s.appendFormat("unknown mask, representation:%d  bits:%#x",
753                representation, audio_channel_mask_get_bits(mask));
754        return s;
755    }
756}
757
758void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
759{
760    const size_t SIZE = 256;
761    char buffer[SIZE];
762    String8 result;
763
764    bool locked = AudioFlinger::dumpTryLock(mLock);
765    if (!locked) {
766        dprintf(fd, "thread %p may be deadlocked\n", this);
767    }
768
769    dprintf(fd, "  Thread name: %s\n", mThreadName);
770    dprintf(fd, "  I/O handle: %d\n", mId);
771    dprintf(fd, "  TID: %d\n", getTid());
772    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
773    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
774    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
775    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
776    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
777    dprintf(fd, "  Channel count: %u\n", mChannelCount);
778    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
779            channelMaskToString(mChannelMask, mType != RECORD).string());
780    dprintf(fd, "  Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
781    dprintf(fd, "  Frame size: %zu bytes\n", mFrameSize);
782    dprintf(fd, "  Pending config events:");
783    size_t numConfig = mConfigEvents.size();
784    if (numConfig) {
785        for (size_t i = 0; i < numConfig; i++) {
786            mConfigEvents[i]->dump(buffer, SIZE);
787            dprintf(fd, "\n    %s", buffer);
788        }
789        dprintf(fd, "\n");
790    } else {
791        dprintf(fd, " none\n");
792    }
793    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
794    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
795    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
796
797    if (locked) {
798        mLock.unlock();
799    }
800}
801
802void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
803{
804    const size_t SIZE = 256;
805    char buffer[SIZE];
806    String8 result;
807
808    size_t numEffectChains = mEffectChains.size();
809    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
810    write(fd, buffer, strlen(buffer));
811
812    for (size_t i = 0; i < numEffectChains; ++i) {
813        sp<EffectChain> chain = mEffectChains[i];
814        if (chain != 0) {
815            chain->dump(fd, args);
816        }
817    }
818}
819
820void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
821{
822    Mutex::Autolock _l(mLock);
823    acquireWakeLock_l(uid);
824}
825
826String16 AudioFlinger::ThreadBase::getWakeLockTag()
827{
828    switch (mType) {
829    case MIXER:
830        return String16("AudioMix");
831    case DIRECT:
832        return String16("AudioDirectOut");
833    case DUPLICATING:
834        return String16("AudioDup");
835    case RECORD:
836        return String16("AudioIn");
837    case OFFLOAD:
838        return String16("AudioOffload");
839    default:
840        ALOG_ASSERT(false);
841        return String16("AudioUnknown");
842    }
843}
844
845void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
846{
847    getPowerManager_l();
848    if (mPowerManager != 0) {
849        sp<IBinder> binder = new BBinder();
850        status_t status;
851        if (uid >= 0) {
852            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
853                    binder,
854                    getWakeLockTag(),
855                    String16("media"),
856                    uid,
857                    true /* FIXME force oneway contrary to .aidl */);
858        } else {
859            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
860                    binder,
861                    getWakeLockTag(),
862                    String16("media"),
863                    true /* FIXME force oneway contrary to .aidl */);
864        }
865        if (status == NO_ERROR) {
866            mWakeLockToken = binder;
867        }
868        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
869    }
870}
871
872void AudioFlinger::ThreadBase::releaseWakeLock()
873{
874    Mutex::Autolock _l(mLock);
875    releaseWakeLock_l();
876}
877
878void AudioFlinger::ThreadBase::releaseWakeLock_l()
879{
880    if (mWakeLockToken != 0) {
881        ALOGV("releaseWakeLock_l() %s", mThreadName);
882        if (mPowerManager != 0) {
883            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
884                    true /* FIXME force oneway contrary to .aidl */);
885        }
886        mWakeLockToken.clear();
887    }
888}
889
890void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
891    Mutex::Autolock _l(mLock);
892    updateWakeLockUids_l(uids);
893}
894
895void AudioFlinger::ThreadBase::getPowerManager_l() {
896
897    if (mPowerManager == 0) {
898        // use checkService() to avoid blocking if power service is not up yet
899        sp<IBinder> binder =
900            defaultServiceManager()->checkService(String16("power"));
901        if (binder == 0) {
902            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
903        } else {
904            mPowerManager = interface_cast<IPowerManager>(binder);
905            binder->linkToDeath(mDeathRecipient);
906        }
907    }
908}
909
910void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
911
912    getPowerManager_l();
913    if (mWakeLockToken == NULL) {
914        ALOGE("no wake lock to update!");
915        return;
916    }
917    if (mPowerManager != 0) {
918        sp<IBinder> binder = new BBinder();
919        status_t status;
920        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
921                    true /* FIXME force oneway contrary to .aidl */);
922        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
923    }
924}
925
926void AudioFlinger::ThreadBase::clearPowerManager()
927{
928    Mutex::Autolock _l(mLock);
929    releaseWakeLock_l();
930    mPowerManager.clear();
931}
932
933void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
934{
935    sp<ThreadBase> thread = mThread.promote();
936    if (thread != 0) {
937        thread->clearPowerManager();
938    }
939    ALOGW("power manager service died !!!");
940}
941
942void AudioFlinger::ThreadBase::setEffectSuspended(
943        const effect_uuid_t *type, bool suspend, int sessionId)
944{
945    Mutex::Autolock _l(mLock);
946    setEffectSuspended_l(type, suspend, sessionId);
947}
948
949void AudioFlinger::ThreadBase::setEffectSuspended_l(
950        const effect_uuid_t *type, bool suspend, int sessionId)
951{
952    sp<EffectChain> chain = getEffectChain_l(sessionId);
953    if (chain != 0) {
954        if (type != NULL) {
955            chain->setEffectSuspended_l(type, suspend);
956        } else {
957            chain->setEffectSuspendedAll_l(suspend);
958        }
959    }
960
961    updateSuspendedSessions_l(type, suspend, sessionId);
962}
963
964void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
965{
966    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
967    if (index < 0) {
968        return;
969    }
970
971    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
972            mSuspendedSessions.valueAt(index);
973
974    for (size_t i = 0; i < sessionEffects.size(); i++) {
975        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
976        for (int j = 0; j < desc->mRefCount; j++) {
977            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
978                chain->setEffectSuspendedAll_l(true);
979            } else {
980                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
981                    desc->mType.timeLow);
982                chain->setEffectSuspended_l(&desc->mType, true);
983            }
984        }
985    }
986}
987
988void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
989                                                         bool suspend,
990                                                         int sessionId)
991{
992    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
993
994    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
995
996    if (suspend) {
997        if (index >= 0) {
998            sessionEffects = mSuspendedSessions.valueAt(index);
999        } else {
1000            mSuspendedSessions.add(sessionId, sessionEffects);
1001        }
1002    } else {
1003        if (index < 0) {
1004            return;
1005        }
1006        sessionEffects = mSuspendedSessions.valueAt(index);
1007    }
1008
1009
1010    int key = EffectChain::kKeyForSuspendAll;
1011    if (type != NULL) {
1012        key = type->timeLow;
1013    }
1014    index = sessionEffects.indexOfKey(key);
1015
1016    sp<SuspendedSessionDesc> desc;
1017    if (suspend) {
1018        if (index >= 0) {
1019            desc = sessionEffects.valueAt(index);
1020        } else {
1021            desc = new SuspendedSessionDesc();
1022            if (type != NULL) {
1023                desc->mType = *type;
1024            }
1025            sessionEffects.add(key, desc);
1026            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1027        }
1028        desc->mRefCount++;
1029    } else {
1030        if (index < 0) {
1031            return;
1032        }
1033        desc = sessionEffects.valueAt(index);
1034        if (--desc->mRefCount == 0) {
1035            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1036            sessionEffects.removeItemsAt(index);
1037            if (sessionEffects.isEmpty()) {
1038                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1039                                 sessionId);
1040                mSuspendedSessions.removeItem(sessionId);
1041            }
1042        }
1043    }
1044    if (!sessionEffects.isEmpty()) {
1045        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1046    }
1047}
1048
1049void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1050                                                            bool enabled,
1051                                                            int sessionId)
1052{
1053    Mutex::Autolock _l(mLock);
1054    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1055}
1056
1057void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1058                                                            bool enabled,
1059                                                            int sessionId)
1060{
1061    if (mType != RECORD) {
1062        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1063        // another session. This gives the priority to well behaved effect control panels
1064        // and applications not using global effects.
1065        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1066        // global effects
1067        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1068            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1069        }
1070    }
1071
1072    sp<EffectChain> chain = getEffectChain_l(sessionId);
1073    if (chain != 0) {
1074        chain->checkSuspendOnEffectEnabled(effect, enabled);
1075    }
1076}
1077
1078// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1079sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1080        const sp<AudioFlinger::Client>& client,
1081        const sp<IEffectClient>& effectClient,
1082        int32_t priority,
1083        int sessionId,
1084        effect_descriptor_t *desc,
1085        int *enabled,
1086        status_t *status)
1087{
1088    sp<EffectModule> effect;
1089    sp<EffectHandle> handle;
1090    status_t lStatus;
1091    sp<EffectChain> chain;
1092    bool chainCreated = false;
1093    bool effectCreated = false;
1094    bool effectRegistered = false;
1095
1096    lStatus = initCheck();
1097    if (lStatus != NO_ERROR) {
1098        ALOGW("createEffect_l() Audio driver not initialized.");
1099        goto Exit;
1100    }
1101
1102    // Reject any effect on Direct output threads for now, since the format of
1103    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1104    if (mType == DIRECT) {
1105        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1106                desc->name, mThreadName);
1107        lStatus = BAD_VALUE;
1108        goto Exit;
1109    }
1110
1111    // Reject any effect on mixer or duplicating multichannel sinks.
1112    // TODO: fix both format and multichannel issues with effects.
1113    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1114        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1115                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1116        lStatus = BAD_VALUE;
1117        goto Exit;
1118    }
1119
1120    // Allow global effects only on offloaded and mixer threads
1121    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1122        switch (mType) {
1123        case MIXER:
1124        case OFFLOAD:
1125            break;
1126        case DIRECT:
1127        case DUPLICATING:
1128        case RECORD:
1129        default:
1130            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1131                    desc->name, mThreadName);
1132            lStatus = BAD_VALUE;
1133            goto Exit;
1134        }
1135    }
1136
1137    // Only Pre processor effects are allowed on input threads and only on input threads
1138    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1139        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1140                desc->name, desc->flags, mType);
1141        lStatus = BAD_VALUE;
1142        goto Exit;
1143    }
1144
1145    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1146
1147    { // scope for mLock
1148        Mutex::Autolock _l(mLock);
1149
1150        // check for existing effect chain with the requested audio session
1151        chain = getEffectChain_l(sessionId);
1152        if (chain == 0) {
1153            // create a new chain for this session
1154            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1155            chain = new EffectChain(this, sessionId);
1156            addEffectChain_l(chain);
1157            chain->setStrategy(getStrategyForSession_l(sessionId));
1158            chainCreated = true;
1159        } else {
1160            effect = chain->getEffectFromDesc_l(desc);
1161        }
1162
1163        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1164
1165        if (effect == 0) {
1166            int id = mAudioFlinger->nextUniqueId();
1167            // Check CPU and memory usage
1168            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1169            if (lStatus != NO_ERROR) {
1170                goto Exit;
1171            }
1172            effectRegistered = true;
1173            // create a new effect module if none present in the chain
1174            effect = new EffectModule(this, chain, desc, id, sessionId);
1175            lStatus = effect->status();
1176            if (lStatus != NO_ERROR) {
1177                goto Exit;
1178            }
1179            effect->setOffloaded(mType == OFFLOAD, mId);
1180
1181            lStatus = chain->addEffect_l(effect);
1182            if (lStatus != NO_ERROR) {
1183                goto Exit;
1184            }
1185            effectCreated = true;
1186
1187            effect->setDevice(mOutDevice);
1188            effect->setDevice(mInDevice);
1189            effect->setMode(mAudioFlinger->getMode());
1190            effect->setAudioSource(mAudioSource);
1191        }
1192        // create effect handle and connect it to effect module
1193        handle = new EffectHandle(effect, client, effectClient, priority);
1194        lStatus = handle->initCheck();
1195        if (lStatus == OK) {
1196            lStatus = effect->addHandle(handle.get());
1197        }
1198        if (enabled != NULL) {
1199            *enabled = (int)effect->isEnabled();
1200        }
1201    }
1202
1203Exit:
1204    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1205        Mutex::Autolock _l(mLock);
1206        if (effectCreated) {
1207            chain->removeEffect_l(effect);
1208        }
1209        if (effectRegistered) {
1210            AudioSystem::unregisterEffect(effect->id());
1211        }
1212        if (chainCreated) {
1213            removeEffectChain_l(chain);
1214        }
1215        handle.clear();
1216    }
1217
1218    *status = lStatus;
1219    return handle;
1220}
1221
1222sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1223{
1224    Mutex::Autolock _l(mLock);
1225    return getEffect_l(sessionId, effectId);
1226}
1227
1228sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1229{
1230    sp<EffectChain> chain = getEffectChain_l(sessionId);
1231    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1232}
1233
1234// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1235// PlaybackThread::mLock held
1236status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1237{
1238    // check for existing effect chain with the requested audio session
1239    int sessionId = effect->sessionId();
1240    sp<EffectChain> chain = getEffectChain_l(sessionId);
1241    bool chainCreated = false;
1242
1243    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1244             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1245                    this, effect->desc().name, effect->desc().flags);
1246
1247    if (chain == 0) {
1248        // create a new chain for this session
1249        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1250        chain = new EffectChain(this, sessionId);
1251        addEffectChain_l(chain);
1252        chain->setStrategy(getStrategyForSession_l(sessionId));
1253        chainCreated = true;
1254    }
1255    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1256
1257    if (chain->getEffectFromId_l(effect->id()) != 0) {
1258        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1259                this, effect->desc().name, chain.get());
1260        return BAD_VALUE;
1261    }
1262
1263    effect->setOffloaded(mType == OFFLOAD, mId);
1264
1265    status_t status = chain->addEffect_l(effect);
1266    if (status != NO_ERROR) {
1267        if (chainCreated) {
1268            removeEffectChain_l(chain);
1269        }
1270        return status;
1271    }
1272
1273    effect->setDevice(mOutDevice);
1274    effect->setDevice(mInDevice);
1275    effect->setMode(mAudioFlinger->getMode());
1276    effect->setAudioSource(mAudioSource);
1277    return NO_ERROR;
1278}
1279
1280void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1281
1282    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1283    effect_descriptor_t desc = effect->desc();
1284    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1285        detachAuxEffect_l(effect->id());
1286    }
1287
1288    sp<EffectChain> chain = effect->chain().promote();
1289    if (chain != 0) {
1290        // remove effect chain if removing last effect
1291        if (chain->removeEffect_l(effect) == 0) {
1292            removeEffectChain_l(chain);
1293        }
1294    } else {
1295        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1296    }
1297}
1298
1299void AudioFlinger::ThreadBase::lockEffectChains_l(
1300        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1301{
1302    effectChains = mEffectChains;
1303    for (size_t i = 0; i < mEffectChains.size(); i++) {
1304        mEffectChains[i]->lock();
1305    }
1306}
1307
1308void AudioFlinger::ThreadBase::unlockEffectChains(
1309        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1310{
1311    for (size_t i = 0; i < effectChains.size(); i++) {
1312        effectChains[i]->unlock();
1313    }
1314}
1315
1316sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1317{
1318    Mutex::Autolock _l(mLock);
1319    return getEffectChain_l(sessionId);
1320}
1321
1322sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1323{
1324    size_t size = mEffectChains.size();
1325    for (size_t i = 0; i < size; i++) {
1326        if (mEffectChains[i]->sessionId() == sessionId) {
1327            return mEffectChains[i];
1328        }
1329    }
1330    return 0;
1331}
1332
1333void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1334{
1335    Mutex::Autolock _l(mLock);
1336    size_t size = mEffectChains.size();
1337    for (size_t i = 0; i < size; i++) {
1338        mEffectChains[i]->setMode_l(mode);
1339    }
1340}
1341
1342void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1343{
1344    config->type = AUDIO_PORT_TYPE_MIX;
1345    config->ext.mix.handle = mId;
1346    config->sample_rate = mSampleRate;
1347    config->format = mFormat;
1348    config->channel_mask = mChannelMask;
1349    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1350                            AUDIO_PORT_CONFIG_FORMAT;
1351}
1352
1353
1354// ----------------------------------------------------------------------------
1355//      Playback
1356// ----------------------------------------------------------------------------
1357
1358AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1359                                             AudioStreamOut* output,
1360                                             audio_io_handle_t id,
1361                                             audio_devices_t device,
1362                                             type_t type)
1363    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1364        mNormalFrameCount(0), mSinkBuffer(NULL),
1365        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1366        mMixerBuffer(NULL),
1367        mMixerBufferSize(0),
1368        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1369        mMixerBufferValid(false),
1370        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1371        mEffectBuffer(NULL),
1372        mEffectBufferSize(0),
1373        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1374        mEffectBufferValid(false),
1375        mSuspended(0), mBytesWritten(0),
1376        mActiveTracksGeneration(0),
1377        // mStreamTypes[] initialized in constructor body
1378        mOutput(output),
1379        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1380        mMixerStatus(MIXER_IDLE),
1381        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1382        standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1383        mBytesRemaining(0),
1384        mCurrentWriteLength(0),
1385        mUseAsyncWrite(false),
1386        mWriteAckSequence(0),
1387        mDrainSequence(0),
1388        mSignalPending(false),
1389        mScreenState(AudioFlinger::mScreenState),
1390        // index 0 is reserved for normal mixer's submix
1391        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1392        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1393        // mLatchD, mLatchQ,
1394        mLatchDValid(false), mLatchQValid(false)
1395{
1396    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1397    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1398
1399    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1400    // it would be safer to explicitly pass initial masterVolume/masterMute as
1401    // parameter.
1402    //
1403    // If the HAL we are using has support for master volume or master mute,
1404    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1405    // and the mute set to false).
1406    mMasterVolume = audioFlinger->masterVolume_l();
1407    mMasterMute = audioFlinger->masterMute_l();
1408    if (mOutput && mOutput->audioHwDev) {
1409        if (mOutput->audioHwDev->canSetMasterVolume()) {
1410            mMasterVolume = 1.0;
1411        }
1412
1413        if (mOutput->audioHwDev->canSetMasterMute()) {
1414            mMasterMute = false;
1415        }
1416    }
1417
1418    readOutputParameters_l();
1419
1420    // ++ operator does not compile
1421    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1422            stream = (audio_stream_type_t) (stream + 1)) {
1423        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1424        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1425    }
1426}
1427
1428AudioFlinger::PlaybackThread::~PlaybackThread()
1429{
1430    mAudioFlinger->unregisterWriter(mNBLogWriter);
1431    free(mSinkBuffer);
1432    free(mMixerBuffer);
1433    free(mEffectBuffer);
1434}
1435
1436void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1437{
1438    dumpInternals(fd, args);
1439    dumpTracks(fd, args);
1440    dumpEffectChains(fd, args);
1441}
1442
1443void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1444{
1445    const size_t SIZE = 256;
1446    char buffer[SIZE];
1447    String8 result;
1448
1449    result.appendFormat("  Stream volumes in dB: ");
1450    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1451        const stream_type_t *st = &mStreamTypes[i];
1452        if (i > 0) {
1453            result.appendFormat(", ");
1454        }
1455        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1456        if (st->mute) {
1457            result.append("M");
1458        }
1459    }
1460    result.append("\n");
1461    write(fd, result.string(), result.length());
1462    result.clear();
1463
1464    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1465    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1466    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1467            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1468
1469    size_t numtracks = mTracks.size();
1470    size_t numactive = mActiveTracks.size();
1471    dprintf(fd, "  %d Tracks", numtracks);
1472    size_t numactiveseen = 0;
1473    if (numtracks) {
1474        dprintf(fd, " of which %d are active\n", numactive);
1475        Track::appendDumpHeader(result);
1476        for (size_t i = 0; i < numtracks; ++i) {
1477            sp<Track> track = mTracks[i];
1478            if (track != 0) {
1479                bool active = mActiveTracks.indexOf(track) >= 0;
1480                if (active) {
1481                    numactiveseen++;
1482                }
1483                track->dump(buffer, SIZE, active);
1484                result.append(buffer);
1485            }
1486        }
1487    } else {
1488        result.append("\n");
1489    }
1490    if (numactiveseen != numactive) {
1491        // some tracks in the active list were not in the tracks list
1492        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1493                " not in the track list\n");
1494        result.append(buffer);
1495        Track::appendDumpHeader(result);
1496        for (size_t i = 0; i < numactive; ++i) {
1497            sp<Track> track = mActiveTracks[i].promote();
1498            if (track != 0 && mTracks.indexOf(track) < 0) {
1499                track->dump(buffer, SIZE, true);
1500                result.append(buffer);
1501            }
1502        }
1503    }
1504
1505    write(fd, result.string(), result.size());
1506}
1507
1508void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1509{
1510    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1511
1512    dumpBase(fd, args);
1513
1514    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1515    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1516    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1517    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1518    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1519    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1520    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1521    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1522    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1523    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1524    AudioStreamOut *output = mOutput;
1525    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1526    String8 flagsAsString = outputFlagsToString(flags);
1527    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1528}
1529
1530// Thread virtuals
1531
1532void AudioFlinger::PlaybackThread::onFirstRef()
1533{
1534    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1535}
1536
1537// ThreadBase virtuals
1538void AudioFlinger::PlaybackThread::preExit()
1539{
1540    ALOGV("  preExit()");
1541    // FIXME this is using hard-coded strings but in the future, this functionality will be
1542    //       converted to use audio HAL extensions required to support tunneling
1543    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1544}
1545
1546// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1547sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1548        const sp<AudioFlinger::Client>& client,
1549        audio_stream_type_t streamType,
1550        uint32_t sampleRate,
1551        audio_format_t format,
1552        audio_channel_mask_t channelMask,
1553        size_t *pFrameCount,
1554        const sp<IMemory>& sharedBuffer,
1555        int sessionId,
1556        IAudioFlinger::track_flags_t *flags,
1557        pid_t tid,
1558        int uid,
1559        status_t *status)
1560{
1561    size_t frameCount = *pFrameCount;
1562    sp<Track> track;
1563    status_t lStatus;
1564
1565    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1566
1567    // client expresses a preference for FAST, but we get the final say
1568    if (*flags & IAudioFlinger::TRACK_FAST) {
1569      if (
1570            // not timed
1571            (!isTimed) &&
1572            // either of these use cases:
1573            (
1574              // use case 1: shared buffer with any frame count
1575              (
1576                (sharedBuffer != 0)
1577              ) ||
1578              // use case 2: frame count is default or at least as large as HAL
1579              (
1580                // we formerly checked for a callback handler (non-0 tid),
1581                // but that is no longer required for TRANSFER_OBTAIN mode
1582                ((frameCount == 0) ||
1583                (frameCount >= mFrameCount))
1584              )
1585            ) &&
1586            // PCM data
1587            audio_is_linear_pcm(format) &&
1588            // identical channel mask to sink, or mono in and stereo sink
1589            (channelMask == mChannelMask ||
1590                    (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1591                            mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1592            // hardware sample rate
1593            (sampleRate == mSampleRate) &&
1594            // normal mixer has an associated fast mixer
1595            hasFastMixer() &&
1596            // there are sufficient fast track slots available
1597            (mFastTrackAvailMask != 0)
1598            // FIXME test that MixerThread for this fast track has a capable output HAL
1599            // FIXME add a permission test also?
1600        ) {
1601        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1602        if (frameCount == 0) {
1603            // read the fast track multiplier property the first time it is needed
1604            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1605            if (ok != 0) {
1606                ALOGE("%s pthread_once failed: %d", __func__, ok);
1607            }
1608            frameCount = mFrameCount * sFastTrackMultiplier;
1609        }
1610        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1611                frameCount, mFrameCount);
1612      } else {
1613        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1614                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1615                "sampleRate=%u mSampleRate=%u "
1616                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1617                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1618                audio_is_linear_pcm(format),
1619                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1620        *flags &= ~IAudioFlinger::TRACK_FAST;
1621      }
1622    }
1623    // For normal PCM streaming tracks, update minimum frame count.
1624    // For compatibility with AudioTrack calculation, buffer depth is forced
1625    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1626    // This is probably too conservative, but legacy application code may depend on it.
1627    // If you change this calculation, also review the start threshold which is related.
1628    if (!(*flags & IAudioFlinger::TRACK_FAST)
1629            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1630        // this must match AudioTrack.cpp calculateMinFrameCount().
1631        // TODO: Move to a common library
1632        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1633        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1634        if (minBufCount < 2) {
1635            minBufCount = 2;
1636        }
1637        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1638        // or the client should compute and pass in a larger buffer request.
1639        size_t minFrameCount =
1640                minBufCount * sourceFramesNeededWithTimestretch(
1641                        sampleRate, mNormalFrameCount,
1642                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1643        if (frameCount < minFrameCount) { // including frameCount == 0
1644            frameCount = minFrameCount;
1645        }
1646    }
1647    *pFrameCount = frameCount;
1648
1649    switch (mType) {
1650
1651    case DIRECT:
1652        if (audio_is_linear_pcm(format)) {
1653            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1654                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1655                        "for output %p with format %#x",
1656                        sampleRate, format, channelMask, mOutput, mFormat);
1657                lStatus = BAD_VALUE;
1658                goto Exit;
1659            }
1660        }
1661        break;
1662
1663    case OFFLOAD:
1664        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1665            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1666                    "for output %p with format %#x",
1667                    sampleRate, format, channelMask, mOutput, mFormat);
1668            lStatus = BAD_VALUE;
1669            goto Exit;
1670        }
1671        break;
1672
1673    default:
1674        if (!audio_is_linear_pcm(format)) {
1675                ALOGE("createTrack_l() Bad parameter: format %#x \""
1676                        "for output %p with format %#x",
1677                        format, mOutput, mFormat);
1678                lStatus = BAD_VALUE;
1679                goto Exit;
1680        }
1681        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1682            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1683            lStatus = BAD_VALUE;
1684            goto Exit;
1685        }
1686        break;
1687
1688    }
1689
1690    lStatus = initCheck();
1691    if (lStatus != NO_ERROR) {
1692        ALOGE("createTrack_l() audio driver not initialized");
1693        goto Exit;
1694    }
1695
1696    { // scope for mLock
1697        Mutex::Autolock _l(mLock);
1698
1699        // all tracks in same audio session must share the same routing strategy otherwise
1700        // conflicts will happen when tracks are moved from one output to another by audio policy
1701        // manager
1702        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1703        for (size_t i = 0; i < mTracks.size(); ++i) {
1704            sp<Track> t = mTracks[i];
1705            if (t != 0 && t->isExternalTrack()) {
1706                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1707                if (sessionId == t->sessionId() && strategy != actual) {
1708                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1709                            strategy, actual);
1710                    lStatus = BAD_VALUE;
1711                    goto Exit;
1712                }
1713            }
1714        }
1715
1716        if (!isTimed) {
1717            track = new Track(this, client, streamType, sampleRate, format,
1718                              channelMask, frameCount, NULL, sharedBuffer,
1719                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1720        } else {
1721            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1722                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1723        }
1724
1725        // new Track always returns non-NULL,
1726        // but TimedTrack::create() is a factory that could fail by returning NULL
1727        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1728        if (lStatus != NO_ERROR) {
1729            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1730            // track must be cleared from the caller as the caller has the AF lock
1731            goto Exit;
1732        }
1733        mTracks.add(track);
1734
1735        sp<EffectChain> chain = getEffectChain_l(sessionId);
1736        if (chain != 0) {
1737            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1738            track->setMainBuffer(chain->inBuffer());
1739            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1740            chain->incTrackCnt();
1741        }
1742
1743        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1744            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1745            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1746            // so ask activity manager to do this on our behalf
1747            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1748        }
1749    }
1750
1751    lStatus = NO_ERROR;
1752
1753Exit:
1754    *status = lStatus;
1755    return track;
1756}
1757
1758uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1759{
1760    return latency;
1761}
1762
1763uint32_t AudioFlinger::PlaybackThread::latency() const
1764{
1765    Mutex::Autolock _l(mLock);
1766    return latency_l();
1767}
1768uint32_t AudioFlinger::PlaybackThread::latency_l() const
1769{
1770    if (initCheck() == NO_ERROR) {
1771        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1772    } else {
1773        return 0;
1774    }
1775}
1776
1777void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1778{
1779    Mutex::Autolock _l(mLock);
1780    // Don't apply master volume in SW if our HAL can do it for us.
1781    if (mOutput && mOutput->audioHwDev &&
1782        mOutput->audioHwDev->canSetMasterVolume()) {
1783        mMasterVolume = 1.0;
1784    } else {
1785        mMasterVolume = value;
1786    }
1787}
1788
1789void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1790{
1791    Mutex::Autolock _l(mLock);
1792    // Don't apply master mute in SW if our HAL can do it for us.
1793    if (mOutput && mOutput->audioHwDev &&
1794        mOutput->audioHwDev->canSetMasterMute()) {
1795        mMasterMute = false;
1796    } else {
1797        mMasterMute = muted;
1798    }
1799}
1800
1801void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1802{
1803    Mutex::Autolock _l(mLock);
1804    mStreamTypes[stream].volume = value;
1805    broadcast_l();
1806}
1807
1808void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1809{
1810    Mutex::Autolock _l(mLock);
1811    mStreamTypes[stream].mute = muted;
1812    broadcast_l();
1813}
1814
1815float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1816{
1817    Mutex::Autolock _l(mLock);
1818    return mStreamTypes[stream].volume;
1819}
1820
1821// addTrack_l() must be called with ThreadBase::mLock held
1822status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1823{
1824    status_t status = ALREADY_EXISTS;
1825
1826    // set retry count for buffer fill
1827    track->mRetryCount = kMaxTrackStartupRetries;
1828    if (mActiveTracks.indexOf(track) < 0) {
1829        // the track is newly added, make sure it fills up all its
1830        // buffers before playing. This is to ensure the client will
1831        // effectively get the latency it requested.
1832        if (track->isExternalTrack()) {
1833            TrackBase::track_state state = track->mState;
1834            mLock.unlock();
1835            status = AudioSystem::startOutput(mId, track->streamType(),
1836                                              (audio_session_t)track->sessionId());
1837            mLock.lock();
1838            // abort track was stopped/paused while we released the lock
1839            if (state != track->mState) {
1840                if (status == NO_ERROR) {
1841                    mLock.unlock();
1842                    AudioSystem::stopOutput(mId, track->streamType(),
1843                                            (audio_session_t)track->sessionId());
1844                    mLock.lock();
1845                }
1846                return INVALID_OPERATION;
1847            }
1848            // abort if start is rejected by audio policy manager
1849            if (status != NO_ERROR) {
1850                return PERMISSION_DENIED;
1851            }
1852#ifdef ADD_BATTERY_DATA
1853            // to track the speaker usage
1854            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1855#endif
1856        }
1857
1858        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1859        track->mResetDone = false;
1860        track->mPresentationCompleteFrames = 0;
1861        mActiveTracks.add(track);
1862        mWakeLockUids.add(track->uid());
1863        mActiveTracksGeneration++;
1864        mLatestActiveTrack = track;
1865        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1866        if (chain != 0) {
1867            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1868                    track->sessionId());
1869            chain->incActiveTrackCnt();
1870        }
1871
1872        status = NO_ERROR;
1873    }
1874
1875    onAddNewTrack_l();
1876    return status;
1877}
1878
1879bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1880{
1881    track->terminate();
1882    // active tracks are removed by threadLoop()
1883    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1884    track->mState = TrackBase::STOPPED;
1885    if (!trackActive) {
1886        removeTrack_l(track);
1887    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1888        track->mState = TrackBase::STOPPING_1;
1889    }
1890
1891    return trackActive;
1892}
1893
1894void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1895{
1896    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1897    mTracks.remove(track);
1898    deleteTrackName_l(track->name());
1899    // redundant as track is about to be destroyed, for dumpsys only
1900    track->mName = -1;
1901    if (track->isFastTrack()) {
1902        int index = track->mFastIndex;
1903        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1904        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1905        mFastTrackAvailMask |= 1 << index;
1906        // redundant as track is about to be destroyed, for dumpsys only
1907        track->mFastIndex = -1;
1908    }
1909    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1910    if (chain != 0) {
1911        chain->decTrackCnt();
1912    }
1913}
1914
1915void AudioFlinger::PlaybackThread::broadcast_l()
1916{
1917    // Thread could be blocked waiting for async
1918    // so signal it to handle state changes immediately
1919    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1920    // be lost so we also flag to prevent it blocking on mWaitWorkCV
1921    mSignalPending = true;
1922    mWaitWorkCV.broadcast();
1923}
1924
1925String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1926{
1927    Mutex::Autolock _l(mLock);
1928    if (initCheck() != NO_ERROR) {
1929        return String8();
1930    }
1931
1932    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1933    const String8 out_s8(s);
1934    free(s);
1935    return out_s8;
1936}
1937
1938void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event) {
1939    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
1940    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
1941
1942    desc->mIoHandle = mId;
1943
1944    switch (event) {
1945    case AUDIO_OUTPUT_OPENED:
1946    case AUDIO_OUTPUT_CONFIG_CHANGED:
1947        desc->mPatch = mPatch;
1948        desc->mChannelMask = mChannelMask;
1949        desc->mSamplingRate = mSampleRate;
1950        desc->mFormat = mFormat;
1951        desc->mFrameCount = mNormalFrameCount; // FIXME see
1952                                             // AudioFlinger::frameCount(audio_io_handle_t)
1953        desc->mLatency = latency_l();
1954        break;
1955
1956    case AUDIO_OUTPUT_CLOSED:
1957    default:
1958        break;
1959    }
1960    mAudioFlinger->ioConfigChanged(event, desc);
1961}
1962
1963void AudioFlinger::PlaybackThread::writeCallback()
1964{
1965    ALOG_ASSERT(mCallbackThread != 0);
1966    mCallbackThread->resetWriteBlocked();
1967}
1968
1969void AudioFlinger::PlaybackThread::drainCallback()
1970{
1971    ALOG_ASSERT(mCallbackThread != 0);
1972    mCallbackThread->resetDraining();
1973}
1974
1975void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1976{
1977    Mutex::Autolock _l(mLock);
1978    // reject out of sequence requests
1979    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1980        mWriteAckSequence &= ~1;
1981        mWaitWorkCV.signal();
1982    }
1983}
1984
1985void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1986{
1987    Mutex::Autolock _l(mLock);
1988    // reject out of sequence requests
1989    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1990        mDrainSequence &= ~1;
1991        mWaitWorkCV.signal();
1992    }
1993}
1994
1995// static
1996int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1997                                                void *param __unused,
1998                                                void *cookie)
1999{
2000    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2001    ALOGV("asyncCallback() event %d", event);
2002    switch (event) {
2003    case STREAM_CBK_EVENT_WRITE_READY:
2004        me->writeCallback();
2005        break;
2006    case STREAM_CBK_EVENT_DRAIN_READY:
2007        me->drainCallback();
2008        break;
2009    default:
2010        ALOGW("asyncCallback() unknown event %d", event);
2011        break;
2012    }
2013    return 0;
2014}
2015
2016void AudioFlinger::PlaybackThread::readOutputParameters_l()
2017{
2018    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2019    mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
2020    mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
2021    if (!audio_is_output_channel(mChannelMask)) {
2022        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2023    }
2024    if ((mType == MIXER || mType == DUPLICATING)
2025            && !isValidPcmSinkChannelMask(mChannelMask)) {
2026        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2027                mChannelMask);
2028    }
2029    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2030    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2031    mFormat = mHALFormat;
2032    if (!audio_is_valid_format(mFormat)) {
2033        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2034    }
2035    if ((mType == MIXER || mType == DUPLICATING)
2036            && !isValidPcmSinkFormat(mFormat)) {
2037        LOG_FATAL("HAL format %#x not supported for mixed output",
2038                mFormat);
2039    }
2040    mFrameSize = mOutput->getFrameSize();
2041    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2042    mFrameCount = mBufferSize / mFrameSize;
2043    if (mFrameCount & 15) {
2044        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2045                mFrameCount);
2046    }
2047
2048    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2049            (mOutput->stream->set_callback != NULL)) {
2050        if (mOutput->stream->set_callback(mOutput->stream,
2051                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2052            mUseAsyncWrite = true;
2053            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2054        }
2055    }
2056
2057    mHwSupportsPause = false;
2058    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2059        if (mOutput->stream->pause != NULL) {
2060            if (mOutput->stream->resume != NULL) {
2061                mHwSupportsPause = true;
2062            } else {
2063                ALOGW("direct output implements pause but not resume");
2064            }
2065        } else if (mOutput->stream->resume != NULL) {
2066            ALOGW("direct output implements resume but not pause");
2067        }
2068    }
2069    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2070        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2071    }
2072
2073    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2074        // For best precision, we use float instead of the associated output
2075        // device format (typically PCM 16 bit).
2076
2077        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2078        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2079        mBufferSize = mFrameSize * mFrameCount;
2080
2081        // TODO: We currently use the associated output device channel mask and sample rate.
2082        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2083        // (if a valid mask) to avoid premature downmix.
2084        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2085        // instead of the output device sample rate to avoid loss of high frequency information.
2086        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2087    }
2088
2089    // Calculate size of normal sink buffer relative to the HAL output buffer size
2090    double multiplier = 1.0;
2091    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2092            kUseFastMixer == FastMixer_Dynamic)) {
2093        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2094        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2095        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2096        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2097        maxNormalFrameCount = maxNormalFrameCount & ~15;
2098        if (maxNormalFrameCount < minNormalFrameCount) {
2099            maxNormalFrameCount = minNormalFrameCount;
2100        }
2101        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2102        if (multiplier <= 1.0) {
2103            multiplier = 1.0;
2104        } else if (multiplier <= 2.0) {
2105            if (2 * mFrameCount <= maxNormalFrameCount) {
2106                multiplier = 2.0;
2107            } else {
2108                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2109            }
2110        } else {
2111            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2112            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2113            // track, but we sometimes have to do this to satisfy the maximum frame count
2114            // constraint)
2115            // FIXME this rounding up should not be done if no HAL SRC
2116            uint32_t truncMult = (uint32_t) multiplier;
2117            if ((truncMult & 1)) {
2118                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2119                    ++truncMult;
2120                }
2121            }
2122            multiplier = (double) truncMult;
2123        }
2124    }
2125    mNormalFrameCount = multiplier * mFrameCount;
2126    // round up to nearest 16 frames to satisfy AudioMixer
2127    if (mType == MIXER || mType == DUPLICATING) {
2128        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2129    }
2130    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2131            mNormalFrameCount);
2132
2133    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2134    // Originally this was int16_t[] array, need to remove legacy implications.
2135    free(mSinkBuffer);
2136    mSinkBuffer = NULL;
2137    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2138    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2139    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2140    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2141
2142    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2143    // drives the output.
2144    free(mMixerBuffer);
2145    mMixerBuffer = NULL;
2146    if (mMixerBufferEnabled) {
2147        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2148        mMixerBufferSize = mNormalFrameCount * mChannelCount
2149                * audio_bytes_per_sample(mMixerBufferFormat);
2150        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2151    }
2152    free(mEffectBuffer);
2153    mEffectBuffer = NULL;
2154    if (mEffectBufferEnabled) {
2155        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2156        mEffectBufferSize = mNormalFrameCount * mChannelCount
2157                * audio_bytes_per_sample(mEffectBufferFormat);
2158        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2159    }
2160
2161    // force reconfiguration of effect chains and engines to take new buffer size and audio
2162    // parameters into account
2163    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2164    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2165    // matter.
2166    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2167    Vector< sp<EffectChain> > effectChains = mEffectChains;
2168    for (size_t i = 0; i < effectChains.size(); i ++) {
2169        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2170    }
2171}
2172
2173
2174status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2175{
2176    if (halFrames == NULL || dspFrames == NULL) {
2177        return BAD_VALUE;
2178    }
2179    Mutex::Autolock _l(mLock);
2180    if (initCheck() != NO_ERROR) {
2181        return INVALID_OPERATION;
2182    }
2183    size_t framesWritten = mBytesWritten / mFrameSize;
2184    *halFrames = framesWritten;
2185
2186    if (isSuspended()) {
2187        // return an estimation of rendered frames when the output is suspended
2188        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2189        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2190        return NO_ERROR;
2191    } else {
2192        status_t status;
2193        uint32_t frames;
2194        status = mOutput->getRenderPosition(&frames);
2195        *dspFrames = (size_t)frames;
2196        return status;
2197    }
2198}
2199
2200uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2201{
2202    Mutex::Autolock _l(mLock);
2203    uint32_t result = 0;
2204    if (getEffectChain_l(sessionId) != 0) {
2205        result = EFFECT_SESSION;
2206    }
2207
2208    for (size_t i = 0; i < mTracks.size(); ++i) {
2209        sp<Track> track = mTracks[i];
2210        if (sessionId == track->sessionId() && !track->isInvalid()) {
2211            result |= TRACK_SESSION;
2212            break;
2213        }
2214    }
2215
2216    return result;
2217}
2218
2219uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2220{
2221    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2222    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2223    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2224        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2225    }
2226    for (size_t i = 0; i < mTracks.size(); i++) {
2227        sp<Track> track = mTracks[i];
2228        if (sessionId == track->sessionId() && !track->isInvalid()) {
2229            return AudioSystem::getStrategyForStream(track->streamType());
2230        }
2231    }
2232    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2233}
2234
2235
2236AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2237{
2238    Mutex::Autolock _l(mLock);
2239    return mOutput;
2240}
2241
2242AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2243{
2244    Mutex::Autolock _l(mLock);
2245    AudioStreamOut *output = mOutput;
2246    mOutput = NULL;
2247    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2248    //       must push a NULL and wait for ack
2249    mOutputSink.clear();
2250    mPipeSink.clear();
2251    mNormalSink.clear();
2252    return output;
2253}
2254
2255// this method must always be called either with ThreadBase mLock held or inside the thread loop
2256audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2257{
2258    if (mOutput == NULL) {
2259        return NULL;
2260    }
2261    return &mOutput->stream->common;
2262}
2263
2264uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2265{
2266    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2267}
2268
2269status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2270{
2271    if (!isValidSyncEvent(event)) {
2272        return BAD_VALUE;
2273    }
2274
2275    Mutex::Autolock _l(mLock);
2276
2277    for (size_t i = 0; i < mTracks.size(); ++i) {
2278        sp<Track> track = mTracks[i];
2279        if (event->triggerSession() == track->sessionId()) {
2280            (void) track->setSyncEvent(event);
2281            return NO_ERROR;
2282        }
2283    }
2284
2285    return NAME_NOT_FOUND;
2286}
2287
2288bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2289{
2290    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2291}
2292
2293void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2294        const Vector< sp<Track> >& tracksToRemove)
2295{
2296    size_t count = tracksToRemove.size();
2297    if (count > 0) {
2298        for (size_t i = 0 ; i < count ; i++) {
2299            const sp<Track>& track = tracksToRemove.itemAt(i);
2300            if (track->isExternalTrack()) {
2301                AudioSystem::stopOutput(mId, track->streamType(),
2302                                        (audio_session_t)track->sessionId());
2303#ifdef ADD_BATTERY_DATA
2304                // to track the speaker usage
2305                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2306#endif
2307                if (track->isTerminated()) {
2308                    AudioSystem::releaseOutput(mId, track->streamType(),
2309                                               (audio_session_t)track->sessionId());
2310                }
2311            }
2312        }
2313    }
2314}
2315
2316void AudioFlinger::PlaybackThread::checkSilentMode_l()
2317{
2318    if (!mMasterMute) {
2319        char value[PROPERTY_VALUE_MAX];
2320        if (property_get("ro.audio.silent", value, "0") > 0) {
2321            char *endptr;
2322            unsigned long ul = strtoul(value, &endptr, 0);
2323            if (*endptr == '\0' && ul != 0) {
2324                ALOGD("Silence is golden");
2325                // The setprop command will not allow a property to be changed after
2326                // the first time it is set, so we don't have to worry about un-muting.
2327                setMasterMute_l(true);
2328            }
2329        }
2330    }
2331}
2332
2333// shared by MIXER and DIRECT, overridden by DUPLICATING
2334ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2335{
2336    // FIXME rewrite to reduce number of system calls
2337    mLastWriteTime = systemTime();
2338    mInWrite = true;
2339    ssize_t bytesWritten;
2340    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2341
2342    // If an NBAIO sink is present, use it to write the normal mixer's submix
2343    if (mNormalSink != 0) {
2344
2345        const size_t count = mBytesRemaining / mFrameSize;
2346
2347        ATRACE_BEGIN("write");
2348        // update the setpoint when AudioFlinger::mScreenState changes
2349        uint32_t screenState = AudioFlinger::mScreenState;
2350        if (screenState != mScreenState) {
2351            mScreenState = screenState;
2352            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2353            if (pipe != NULL) {
2354                pipe->setAvgFrames((mScreenState & 1) ?
2355                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2356            }
2357        }
2358        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2359        ATRACE_END();
2360        if (framesWritten > 0) {
2361            bytesWritten = framesWritten * mFrameSize;
2362        } else {
2363            bytesWritten = framesWritten;
2364        }
2365        mLatchDValid = false;
2366        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2367        if (status == NO_ERROR) {
2368            size_t totalFramesWritten = mNormalSink->framesWritten();
2369            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2370                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2371                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2372                mLatchDValid = true;
2373            }
2374        }
2375    // otherwise use the HAL / AudioStreamOut directly
2376    } else {
2377        // Direct output and offload threads
2378
2379        if (mUseAsyncWrite) {
2380            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2381            mWriteAckSequence += 2;
2382            mWriteAckSequence |= 1;
2383            ALOG_ASSERT(mCallbackThread != 0);
2384            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2385        }
2386        // FIXME We should have an implementation of timestamps for direct output threads.
2387        // They are used e.g for multichannel PCM playback over HDMI.
2388        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2389        if (mUseAsyncWrite &&
2390                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2391            // do not wait for async callback in case of error of full write
2392            mWriteAckSequence &= ~1;
2393            ALOG_ASSERT(mCallbackThread != 0);
2394            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2395        }
2396    }
2397
2398    mNumWrites++;
2399    mInWrite = false;
2400    mStandby = false;
2401    return bytesWritten;
2402}
2403
2404void AudioFlinger::PlaybackThread::threadLoop_drain()
2405{
2406    if (mOutput->stream->drain) {
2407        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2408        if (mUseAsyncWrite) {
2409            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2410            mDrainSequence |= 1;
2411            ALOG_ASSERT(mCallbackThread != 0);
2412            mCallbackThread->setDraining(mDrainSequence);
2413        }
2414        mOutput->stream->drain(mOutput->stream,
2415            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2416                                                : AUDIO_DRAIN_ALL);
2417    }
2418}
2419
2420void AudioFlinger::PlaybackThread::threadLoop_exit()
2421{
2422    {
2423        Mutex::Autolock _l(mLock);
2424        for (size_t i = 0; i < mTracks.size(); i++) {
2425            sp<Track> track = mTracks[i];
2426            track->invalidate();
2427        }
2428    }
2429}
2430
2431/*
2432The derived values that are cached:
2433 - mSinkBufferSize from frame count * frame size
2434 - activeSleepTime from activeSleepTimeUs()
2435 - idleSleepTime from idleSleepTimeUs()
2436 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2437 - maxPeriod from frame count and sample rate (MIXER only)
2438
2439The parameters that affect these derived values are:
2440 - frame count
2441 - frame size
2442 - sample rate
2443 - device type: A2DP or not
2444 - device latency
2445 - format: PCM or not
2446 - active sleep time
2447 - idle sleep time
2448*/
2449
2450void AudioFlinger::PlaybackThread::cacheParameters_l()
2451{
2452    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2453    activeSleepTime = activeSleepTimeUs();
2454    idleSleepTime = idleSleepTimeUs();
2455}
2456
2457void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2458{
2459    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2460            this,  streamType, mTracks.size());
2461    Mutex::Autolock _l(mLock);
2462
2463    size_t size = mTracks.size();
2464    for (size_t i = 0; i < size; i++) {
2465        sp<Track> t = mTracks[i];
2466        if (t->streamType() == streamType) {
2467            t->invalidate();
2468        }
2469    }
2470}
2471
2472status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2473{
2474    int session = chain->sessionId();
2475    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2476            ? mEffectBuffer : mSinkBuffer);
2477    bool ownsBuffer = false;
2478
2479    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2480    if (session > 0) {
2481        // Only one effect chain can be present in direct output thread and it uses
2482        // the sink buffer as input
2483        if (mType != DIRECT) {
2484            size_t numSamples = mNormalFrameCount * mChannelCount;
2485            buffer = new int16_t[numSamples];
2486            memset(buffer, 0, numSamples * sizeof(int16_t));
2487            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2488            ownsBuffer = true;
2489        }
2490
2491        // Attach all tracks with same session ID to this chain.
2492        for (size_t i = 0; i < mTracks.size(); ++i) {
2493            sp<Track> track = mTracks[i];
2494            if (session == track->sessionId()) {
2495                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2496                        buffer);
2497                track->setMainBuffer(buffer);
2498                chain->incTrackCnt();
2499            }
2500        }
2501
2502        // indicate all active tracks in the chain
2503        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2504            sp<Track> track = mActiveTracks[i].promote();
2505            if (track == 0) {
2506                continue;
2507            }
2508            if (session == track->sessionId()) {
2509                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2510                chain->incActiveTrackCnt();
2511            }
2512        }
2513    }
2514    chain->setThread(this);
2515    chain->setInBuffer(buffer, ownsBuffer);
2516    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2517            ? mEffectBuffer : mSinkBuffer));
2518    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2519    // chains list in order to be processed last as it contains output stage effects
2520    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2521    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2522    // after track specific effects and before output stage
2523    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2524    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2525    // Effect chain for other sessions are inserted at beginning of effect
2526    // chains list to be processed before output mix effects. Relative order between other
2527    // sessions is not important
2528    size_t size = mEffectChains.size();
2529    size_t i = 0;
2530    for (i = 0; i < size; i++) {
2531        if (mEffectChains[i]->sessionId() < session) {
2532            break;
2533        }
2534    }
2535    mEffectChains.insertAt(chain, i);
2536    checkSuspendOnAddEffectChain_l(chain);
2537
2538    return NO_ERROR;
2539}
2540
2541size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2542{
2543    int session = chain->sessionId();
2544
2545    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2546
2547    for (size_t i = 0; i < mEffectChains.size(); i++) {
2548        if (chain == mEffectChains[i]) {
2549            mEffectChains.removeAt(i);
2550            // detach all active tracks from the chain
2551            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2552                sp<Track> track = mActiveTracks[i].promote();
2553                if (track == 0) {
2554                    continue;
2555                }
2556                if (session == track->sessionId()) {
2557                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2558                            chain.get(), session);
2559                    chain->decActiveTrackCnt();
2560                }
2561            }
2562
2563            // detach all tracks with same session ID from this chain
2564            for (size_t i = 0; i < mTracks.size(); ++i) {
2565                sp<Track> track = mTracks[i];
2566                if (session == track->sessionId()) {
2567                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2568                    chain->decTrackCnt();
2569                }
2570            }
2571            break;
2572        }
2573    }
2574    return mEffectChains.size();
2575}
2576
2577status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2578        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2579{
2580    Mutex::Autolock _l(mLock);
2581    return attachAuxEffect_l(track, EffectId);
2582}
2583
2584status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2585        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2586{
2587    status_t status = NO_ERROR;
2588
2589    if (EffectId == 0) {
2590        track->setAuxBuffer(0, NULL);
2591    } else {
2592        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2593        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2594        if (effect != 0) {
2595            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2596                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2597            } else {
2598                status = INVALID_OPERATION;
2599            }
2600        } else {
2601            status = BAD_VALUE;
2602        }
2603    }
2604    return status;
2605}
2606
2607void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2608{
2609    for (size_t i = 0; i < mTracks.size(); ++i) {
2610        sp<Track> track = mTracks[i];
2611        if (track->auxEffectId() == effectId) {
2612            attachAuxEffect_l(track, 0);
2613        }
2614    }
2615}
2616
2617bool AudioFlinger::PlaybackThread::threadLoop()
2618{
2619    Vector< sp<Track> > tracksToRemove;
2620
2621    standbyTime = systemTime();
2622
2623    // MIXER
2624    nsecs_t lastWarning = 0;
2625
2626    // DUPLICATING
2627    // FIXME could this be made local to while loop?
2628    writeFrames = 0;
2629
2630    int lastGeneration = 0;
2631
2632    cacheParameters_l();
2633    sleepTime = idleSleepTime;
2634
2635    if (mType == MIXER) {
2636        sleepTimeShift = 0;
2637    }
2638
2639    CpuStats cpuStats;
2640    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2641
2642    acquireWakeLock();
2643
2644    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2645    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2646    // and then that string will be logged at the next convenient opportunity.
2647    const char *logString = NULL;
2648
2649    checkSilentMode_l();
2650
2651    while (!exitPending())
2652    {
2653        cpuStats.sample(myName);
2654
2655        Vector< sp<EffectChain> > effectChains;
2656
2657        { // scope for mLock
2658
2659            Mutex::Autolock _l(mLock);
2660
2661            processConfigEvents_l();
2662
2663            if (logString != NULL) {
2664                mNBLogWriter->logTimestamp();
2665                mNBLogWriter->log(logString);
2666                logString = NULL;
2667            }
2668
2669            // Gather the framesReleased counters for all active tracks,
2670            // and latch them atomically with the timestamp.
2671            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2672            mLatchD.mFramesReleased.clear();
2673            size_t size = mActiveTracks.size();
2674            for (size_t i = 0; i < size; i++) {
2675                sp<Track> t = mActiveTracks[i].promote();
2676                if (t != 0) {
2677                    mLatchD.mFramesReleased.add(t.get(),
2678                            t->mAudioTrackServerProxy->framesReleased());
2679                }
2680            }
2681            if (mLatchDValid) {
2682                mLatchQ = mLatchD;
2683                mLatchDValid = false;
2684                mLatchQValid = true;
2685            }
2686
2687            saveOutputTracks();
2688            if (mSignalPending) {
2689                // A signal was raised while we were unlocked
2690                mSignalPending = false;
2691            } else if (waitingAsyncCallback_l()) {
2692                if (exitPending()) {
2693                    break;
2694                }
2695                bool released = false;
2696                // The following works around a bug in the offload driver. Ideally we would release
2697                // the wake lock every time, but that causes the last offload buffer(s) to be
2698                // dropped while the device is on battery, so we need to hold a wake lock during
2699                // the drain phase.
2700                if (mBytesRemaining && !(mDrainSequence & 1)) {
2701                    releaseWakeLock_l();
2702                    released = true;
2703                }
2704                mWakeLockUids.clear();
2705                mActiveTracksGeneration++;
2706                ALOGV("wait async completion");
2707                mWaitWorkCV.wait(mLock);
2708                ALOGV("async completion/wake");
2709                if (released) {
2710                    acquireWakeLock_l();
2711                }
2712                standbyTime = systemTime() + standbyDelay;
2713                sleepTime = 0;
2714
2715                continue;
2716            }
2717            if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2718                                   isSuspended()) {
2719                // put audio hardware into standby after short delay
2720                if (shouldStandby_l()) {
2721
2722                    threadLoop_standby();
2723
2724                    mStandby = true;
2725                }
2726
2727                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2728                    // we're about to wait, flush the binder command buffer
2729                    IPCThreadState::self()->flushCommands();
2730
2731                    clearOutputTracks();
2732
2733                    if (exitPending()) {
2734                        break;
2735                    }
2736
2737                    releaseWakeLock_l();
2738                    mWakeLockUids.clear();
2739                    mActiveTracksGeneration++;
2740                    // wait until we have something to do...
2741                    ALOGV("%s going to sleep", myName.string());
2742                    mWaitWorkCV.wait(mLock);
2743                    ALOGV("%s waking up", myName.string());
2744                    acquireWakeLock_l();
2745
2746                    mMixerStatus = MIXER_IDLE;
2747                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2748                    mBytesWritten = 0;
2749                    mBytesRemaining = 0;
2750                    checkSilentMode_l();
2751
2752                    standbyTime = systemTime() + standbyDelay;
2753                    sleepTime = idleSleepTime;
2754                    if (mType == MIXER) {
2755                        sleepTimeShift = 0;
2756                    }
2757
2758                    continue;
2759                }
2760            }
2761            // mMixerStatusIgnoringFastTracks is also updated internally
2762            mMixerStatus = prepareTracks_l(&tracksToRemove);
2763
2764            // compare with previously applied list
2765            if (lastGeneration != mActiveTracksGeneration) {
2766                // update wakelock
2767                updateWakeLockUids_l(mWakeLockUids);
2768                lastGeneration = mActiveTracksGeneration;
2769            }
2770
2771            // prevent any changes in effect chain list and in each effect chain
2772            // during mixing and effect process as the audio buffers could be deleted
2773            // or modified if an effect is created or deleted
2774            lockEffectChains_l(effectChains);
2775        } // mLock scope ends
2776
2777        if (mBytesRemaining == 0) {
2778            mCurrentWriteLength = 0;
2779            if (mMixerStatus == MIXER_TRACKS_READY) {
2780                // threadLoop_mix() sets mCurrentWriteLength
2781                threadLoop_mix();
2782            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2783                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2784                // threadLoop_sleepTime sets sleepTime to 0 if data
2785                // must be written to HAL
2786                threadLoop_sleepTime();
2787                if (sleepTime == 0) {
2788                    mCurrentWriteLength = mSinkBufferSize;
2789                }
2790            }
2791            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2792            // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2793            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2794            // or mSinkBuffer (if there are no effects).
2795            //
2796            // This is done pre-effects computation; if effects change to
2797            // support higher precision, this needs to move.
2798            //
2799            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2800            // TODO use sleepTime == 0 as an additional condition.
2801            if (mMixerBufferValid) {
2802                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2803                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2804
2805                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2806                        mNormalFrameCount * mChannelCount);
2807            }
2808
2809            mBytesRemaining = mCurrentWriteLength;
2810            if (isSuspended()) {
2811                sleepTime = suspendSleepTimeUs();
2812                // simulate write to HAL when suspended
2813                mBytesWritten += mSinkBufferSize;
2814                mBytesRemaining = 0;
2815            }
2816
2817            // only process effects if we're going to write
2818            if (sleepTime == 0 && mType != OFFLOAD) {
2819                for (size_t i = 0; i < effectChains.size(); i ++) {
2820                    effectChains[i]->process_l();
2821                }
2822            }
2823        }
2824        // Process effect chains for offloaded thread even if no audio
2825        // was read from audio track: process only updates effect state
2826        // and thus does have to be synchronized with audio writes but may have
2827        // to be called while waiting for async write callback
2828        if (mType == OFFLOAD) {
2829            for (size_t i = 0; i < effectChains.size(); i ++) {
2830                effectChains[i]->process_l();
2831            }
2832        }
2833
2834        // Only if the Effects buffer is enabled and there is data in the
2835        // Effects buffer (buffer valid), we need to
2836        // copy into the sink buffer.
2837        // TODO use sleepTime == 0 as an additional condition.
2838        if (mEffectBufferValid) {
2839            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2840            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2841                    mNormalFrameCount * mChannelCount);
2842        }
2843
2844        // enable changes in effect chain
2845        unlockEffectChains(effectChains);
2846
2847        if (!waitingAsyncCallback()) {
2848            // sleepTime == 0 means we must write to audio hardware
2849            if (sleepTime == 0) {
2850                if (mBytesRemaining) {
2851                    ssize_t ret = threadLoop_write();
2852                    if (ret < 0) {
2853                        mBytesRemaining = 0;
2854                    } else {
2855                        mBytesWritten += ret;
2856                        mBytesRemaining -= ret;
2857                    }
2858                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2859                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2860                    threadLoop_drain();
2861                }
2862                if (mType == MIXER) {
2863                    // write blocked detection
2864                    nsecs_t now = systemTime();
2865                    nsecs_t delta = now - mLastWriteTime;
2866                    if (!mStandby && delta > maxPeriod) {
2867                        mNumDelayedWrites++;
2868                        if ((now - lastWarning) > kWarningThrottleNs) {
2869                            ATRACE_NAME("underrun");
2870                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2871                                    ns2ms(delta), mNumDelayedWrites, this);
2872                            lastWarning = now;
2873                        }
2874                    }
2875                }
2876
2877            } else {
2878                ATRACE_BEGIN("sleep");
2879                usleep(sleepTime);
2880                ATRACE_END();
2881            }
2882        }
2883
2884        // Finally let go of removed track(s), without the lock held
2885        // since we can't guarantee the destructors won't acquire that
2886        // same lock.  This will also mutate and push a new fast mixer state.
2887        threadLoop_removeTracks(tracksToRemove);
2888        tracksToRemove.clear();
2889
2890        // FIXME I don't understand the need for this here;
2891        //       it was in the original code but maybe the
2892        //       assignment in saveOutputTracks() makes this unnecessary?
2893        clearOutputTracks();
2894
2895        // Effect chains will be actually deleted here if they were removed from
2896        // mEffectChains list during mixing or effects processing
2897        effectChains.clear();
2898
2899        // FIXME Note that the above .clear() is no longer necessary since effectChains
2900        // is now local to this block, but will keep it for now (at least until merge done).
2901    }
2902
2903    threadLoop_exit();
2904
2905    if (!mStandby) {
2906        threadLoop_standby();
2907        mStandby = true;
2908    }
2909
2910    releaseWakeLock();
2911    mWakeLockUids.clear();
2912    mActiveTracksGeneration++;
2913
2914    ALOGV("Thread %p type %d exiting", this, mType);
2915    return false;
2916}
2917
2918// removeTracks_l() must be called with ThreadBase::mLock held
2919void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2920{
2921    size_t count = tracksToRemove.size();
2922    if (count > 0) {
2923        for (size_t i=0 ; i<count ; i++) {
2924            const sp<Track>& track = tracksToRemove.itemAt(i);
2925            mActiveTracks.remove(track);
2926            mWakeLockUids.remove(track->uid());
2927            mActiveTracksGeneration++;
2928            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2929            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2930            if (chain != 0) {
2931                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2932                        track->sessionId());
2933                chain->decActiveTrackCnt();
2934            }
2935            if (track->isTerminated()) {
2936                removeTrack_l(track);
2937            }
2938        }
2939    }
2940
2941}
2942
2943status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2944{
2945    if (mNormalSink != 0) {
2946        return mNormalSink->getTimestamp(timestamp);
2947    }
2948    if ((mType == OFFLOAD || mType == DIRECT)
2949            && mOutput != NULL && mOutput->stream->get_presentation_position) {
2950        uint64_t position64;
2951        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
2952        if (ret == 0) {
2953            timestamp.mPosition = (uint32_t)position64;
2954            return NO_ERROR;
2955        }
2956    }
2957    return INVALID_OPERATION;
2958}
2959
2960status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
2961                                                          audio_patch_handle_t *handle)
2962{
2963    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
2964    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
2965    if (mFastMixer != 0) {
2966        FastMixerStateQueue *sq = mFastMixer->sq();
2967        FastMixerState *state = sq->begin();
2968        if (!(state->mCommand & FastMixerState::IDLE)) {
2969            previousCommand = state->mCommand;
2970            state->mCommand = FastMixerState::HOT_IDLE;
2971            sq->end();
2972            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
2973        } else {
2974            sq->end(false /*didModify*/);
2975        }
2976    }
2977    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
2978
2979    if (!(previousCommand & FastMixerState::IDLE)) {
2980        ALOG_ASSERT(mFastMixer != 0);
2981        FastMixerStateQueue *sq = mFastMixer->sq();
2982        FastMixerState *state = sq->begin();
2983        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
2984        state->mCommand = previousCommand;
2985        sq->end();
2986        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2987    }
2988
2989    return status;
2990}
2991
2992status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2993                                                          audio_patch_handle_t *handle)
2994{
2995    status_t status = NO_ERROR;
2996
2997    // store new device and send to effects
2998    audio_devices_t type = AUDIO_DEVICE_NONE;
2999    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3000        type |= patch->sinks[i].ext.device.type;
3001    }
3002
3003#ifdef ADD_BATTERY_DATA
3004    // when changing the audio output device, call addBatteryData to notify
3005    // the change
3006    if (mOutDevice != type) {
3007        uint32_t params = 0;
3008        // check whether speaker is on
3009        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3010            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3011        }
3012
3013        audio_devices_t deviceWithoutSpeaker
3014            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3015        // check if any other device (except speaker) is on
3016        if (type & deviceWithoutSpeaker) {
3017            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3018        }
3019
3020        if (params != 0) {
3021            addBatteryData(params);
3022        }
3023    }
3024#endif
3025
3026    for (size_t i = 0; i < mEffectChains.size(); i++) {
3027        mEffectChains[i]->setDevice_l(type);
3028    }
3029    mOutDevice = type;
3030    mPatch = *patch;
3031
3032    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3033        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3034        status = hwDevice->create_audio_patch(hwDevice,
3035                                               patch->num_sources,
3036                                               patch->sources,
3037                                               patch->num_sinks,
3038                                               patch->sinks,
3039                                               handle);
3040    } else {
3041        char *address;
3042        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3043            //FIXME: we only support address on first sink with HAL version < 3.0
3044            address = audio_device_address_to_parameter(
3045                                                        patch->sinks[0].ext.device.type,
3046                                                        patch->sinks[0].ext.device.address);
3047        } else {
3048            address = (char *)calloc(1, 1);
3049        }
3050        AudioParameter param = AudioParameter(String8(address));
3051        free(address);
3052        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3053        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3054                param.toString().string());
3055        *handle = AUDIO_PATCH_HANDLE_NONE;
3056    }
3057    sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3058    return status;
3059}
3060
3061status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3062{
3063    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3064    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3065    if (mFastMixer != 0) {
3066        FastMixerStateQueue *sq = mFastMixer->sq();
3067        FastMixerState *state = sq->begin();
3068        if (!(state->mCommand & FastMixerState::IDLE)) {
3069            previousCommand = state->mCommand;
3070            state->mCommand = FastMixerState::HOT_IDLE;
3071            sq->end();
3072            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3073        } else {
3074            sq->end(false /*didModify*/);
3075        }
3076    }
3077
3078    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3079
3080    if (!(previousCommand & FastMixerState::IDLE)) {
3081        ALOG_ASSERT(mFastMixer != 0);
3082        FastMixerStateQueue *sq = mFastMixer->sq();
3083        FastMixerState *state = sq->begin();
3084        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3085        state->mCommand = previousCommand;
3086        sq->end();
3087        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3088    }
3089
3090    return status;
3091}
3092
3093status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3094{
3095    status_t status = NO_ERROR;
3096
3097    mOutDevice = AUDIO_DEVICE_NONE;
3098
3099    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3100        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3101        status = hwDevice->release_audio_patch(hwDevice, handle);
3102    } else {
3103        AudioParameter param;
3104        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3105        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3106                param.toString().string());
3107    }
3108    return status;
3109}
3110
3111void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3112{
3113    Mutex::Autolock _l(mLock);
3114    mTracks.add(track);
3115}
3116
3117void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3118{
3119    Mutex::Autolock _l(mLock);
3120    destroyTrack_l(track);
3121}
3122
3123void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3124{
3125    ThreadBase::getAudioPortConfig(config);
3126    config->role = AUDIO_PORT_ROLE_SOURCE;
3127    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3128    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3129}
3130
3131// ----------------------------------------------------------------------------
3132
3133AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3134        audio_io_handle_t id, audio_devices_t device, type_t type)
3135    :   PlaybackThread(audioFlinger, output, id, device, type),
3136        // mAudioMixer below
3137        // mFastMixer below
3138        mFastMixerFutex(0)
3139        // mOutputSink below
3140        // mPipeSink below
3141        // mNormalSink below
3142{
3143    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3144    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3145            "mFrameCount=%d, mNormalFrameCount=%d",
3146            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3147            mNormalFrameCount);
3148    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3149
3150    if (type == DUPLICATING) {
3151        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3152        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3153        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3154        return;
3155    }
3156    // create an NBAIO sink for the HAL output stream, and negotiate
3157    mOutputSink = new AudioStreamOutSink(output->stream);
3158    size_t numCounterOffers = 0;
3159    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3160    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3161    ALOG_ASSERT(index == 0);
3162
3163    // initialize fast mixer depending on configuration
3164    bool initFastMixer;
3165    switch (kUseFastMixer) {
3166    case FastMixer_Never:
3167        initFastMixer = false;
3168        break;
3169    case FastMixer_Always:
3170        initFastMixer = true;
3171        break;
3172    case FastMixer_Static:
3173    case FastMixer_Dynamic:
3174        initFastMixer = mFrameCount < mNormalFrameCount;
3175        break;
3176    }
3177    if (initFastMixer) {
3178        audio_format_t fastMixerFormat;
3179        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3180            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3181        } else {
3182            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3183        }
3184        if (mFormat != fastMixerFormat) {
3185            // change our Sink format to accept our intermediate precision
3186            mFormat = fastMixerFormat;
3187            free(mSinkBuffer);
3188            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3189            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3190            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3191        }
3192
3193        // create a MonoPipe to connect our submix to FastMixer
3194        NBAIO_Format format = mOutputSink->format();
3195        NBAIO_Format origformat = format;
3196        // adjust format to match that of the Fast Mixer
3197        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3198        format.mFormat = fastMixerFormat;
3199        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3200
3201        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3202        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3203        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3204        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3205        const NBAIO_Format offers[1] = {format};
3206        size_t numCounterOffers = 0;
3207        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3208        ALOG_ASSERT(index == 0);
3209        monoPipe->setAvgFrames((mScreenState & 1) ?
3210                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3211        mPipeSink = monoPipe;
3212
3213#ifdef TEE_SINK
3214        if (mTeeSinkOutputEnabled) {
3215            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3216            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3217            const NBAIO_Format offers2[1] = {origformat};
3218            numCounterOffers = 0;
3219            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3220            ALOG_ASSERT(index == 0);
3221            mTeeSink = teeSink;
3222            PipeReader *teeSource = new PipeReader(*teeSink);
3223            numCounterOffers = 0;
3224            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3225            ALOG_ASSERT(index == 0);
3226            mTeeSource = teeSource;
3227        }
3228#endif
3229
3230        // create fast mixer and configure it initially with just one fast track for our submix
3231        mFastMixer = new FastMixer();
3232        FastMixerStateQueue *sq = mFastMixer->sq();
3233#ifdef STATE_QUEUE_DUMP
3234        sq->setObserverDump(&mStateQueueObserverDump);
3235        sq->setMutatorDump(&mStateQueueMutatorDump);
3236#endif
3237        FastMixerState *state = sq->begin();
3238        FastTrack *fastTrack = &state->mFastTracks[0];
3239        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3240        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3241        fastTrack->mVolumeProvider = NULL;
3242        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3243        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3244        fastTrack->mGeneration++;
3245        state->mFastTracksGen++;
3246        state->mTrackMask = 1;
3247        // fast mixer will use the HAL output sink
3248        state->mOutputSink = mOutputSink.get();
3249        state->mOutputSinkGen++;
3250        state->mFrameCount = mFrameCount;
3251        state->mCommand = FastMixerState::COLD_IDLE;
3252        // already done in constructor initialization list
3253        //mFastMixerFutex = 0;
3254        state->mColdFutexAddr = &mFastMixerFutex;
3255        state->mColdGen++;
3256        state->mDumpState = &mFastMixerDumpState;
3257#ifdef TEE_SINK
3258        state->mTeeSink = mTeeSink.get();
3259#endif
3260        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3261        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3262        sq->end();
3263        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3264
3265        // start the fast mixer
3266        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3267        pid_t tid = mFastMixer->getTid();
3268        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3269        if (err != 0) {
3270            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3271                    kPriorityFastMixer, getpid_cached, tid, err);
3272        }
3273
3274#ifdef AUDIO_WATCHDOG
3275        // create and start the watchdog
3276        mAudioWatchdog = new AudioWatchdog();
3277        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3278        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3279        tid = mAudioWatchdog->getTid();
3280        err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3281        if (err != 0) {
3282            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3283                    kPriorityFastMixer, getpid_cached, tid, err);
3284        }
3285#endif
3286
3287    }
3288
3289    switch (kUseFastMixer) {
3290    case FastMixer_Never:
3291    case FastMixer_Dynamic:
3292        mNormalSink = mOutputSink;
3293        break;
3294    case FastMixer_Always:
3295        mNormalSink = mPipeSink;
3296        break;
3297    case FastMixer_Static:
3298        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3299        break;
3300    }
3301}
3302
3303AudioFlinger::MixerThread::~MixerThread()
3304{
3305    if (mFastMixer != 0) {
3306        FastMixerStateQueue *sq = mFastMixer->sq();
3307        FastMixerState *state = sq->begin();
3308        if (state->mCommand == FastMixerState::COLD_IDLE) {
3309            int32_t old = android_atomic_inc(&mFastMixerFutex);
3310            if (old == -1) {
3311                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3312            }
3313        }
3314        state->mCommand = FastMixerState::EXIT;
3315        sq->end();
3316        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3317        mFastMixer->join();
3318        // Though the fast mixer thread has exited, it's state queue is still valid.
3319        // We'll use that extract the final state which contains one remaining fast track
3320        // corresponding to our sub-mix.
3321        state = sq->begin();
3322        ALOG_ASSERT(state->mTrackMask == 1);
3323        FastTrack *fastTrack = &state->mFastTracks[0];
3324        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3325        delete fastTrack->mBufferProvider;
3326        sq->end(false /*didModify*/);
3327        mFastMixer.clear();
3328#ifdef AUDIO_WATCHDOG
3329        if (mAudioWatchdog != 0) {
3330            mAudioWatchdog->requestExit();
3331            mAudioWatchdog->requestExitAndWait();
3332            mAudioWatchdog.clear();
3333        }
3334#endif
3335    }
3336    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3337    delete mAudioMixer;
3338}
3339
3340
3341uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3342{
3343    if (mFastMixer != 0) {
3344        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3345        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3346    }
3347    return latency;
3348}
3349
3350
3351void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3352{
3353    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3354}
3355
3356ssize_t AudioFlinger::MixerThread::threadLoop_write()
3357{
3358    // FIXME we should only do one push per cycle; confirm this is true
3359    // Start the fast mixer if it's not already running
3360    if (mFastMixer != 0) {
3361        FastMixerStateQueue *sq = mFastMixer->sq();
3362        FastMixerState *state = sq->begin();
3363        if (state->mCommand != FastMixerState::MIX_WRITE &&
3364                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3365            if (state->mCommand == FastMixerState::COLD_IDLE) {
3366                int32_t old = android_atomic_inc(&mFastMixerFutex);
3367                if (old == -1) {
3368                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3369                }
3370#ifdef AUDIO_WATCHDOG
3371                if (mAudioWatchdog != 0) {
3372                    mAudioWatchdog->resume();
3373                }
3374#endif
3375            }
3376            state->mCommand = FastMixerState::MIX_WRITE;
3377#ifdef FAST_THREAD_STATISTICS
3378            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3379                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3380#endif
3381            sq->end();
3382            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3383            if (kUseFastMixer == FastMixer_Dynamic) {
3384                mNormalSink = mPipeSink;
3385            }
3386        } else {
3387            sq->end(false /*didModify*/);
3388        }
3389    }
3390    return PlaybackThread::threadLoop_write();
3391}
3392
3393void AudioFlinger::MixerThread::threadLoop_standby()
3394{
3395    // Idle the fast mixer if it's currently running
3396    if (mFastMixer != 0) {
3397        FastMixerStateQueue *sq = mFastMixer->sq();
3398        FastMixerState *state = sq->begin();
3399        if (!(state->mCommand & FastMixerState::IDLE)) {
3400            state->mCommand = FastMixerState::COLD_IDLE;
3401            state->mColdFutexAddr = &mFastMixerFutex;
3402            state->mColdGen++;
3403            mFastMixerFutex = 0;
3404            sq->end();
3405            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3406            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3407            if (kUseFastMixer == FastMixer_Dynamic) {
3408                mNormalSink = mOutputSink;
3409            }
3410#ifdef AUDIO_WATCHDOG
3411            if (mAudioWatchdog != 0) {
3412                mAudioWatchdog->pause();
3413            }
3414#endif
3415        } else {
3416            sq->end(false /*didModify*/);
3417        }
3418    }
3419    PlaybackThread::threadLoop_standby();
3420}
3421
3422bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3423{
3424    return false;
3425}
3426
3427bool AudioFlinger::PlaybackThread::shouldStandby_l()
3428{
3429    return !mStandby;
3430}
3431
3432bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3433{
3434    Mutex::Autolock _l(mLock);
3435    return waitingAsyncCallback_l();
3436}
3437
3438// shared by MIXER and DIRECT, overridden by DUPLICATING
3439void AudioFlinger::PlaybackThread::threadLoop_standby()
3440{
3441    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3442    mOutput->standby();
3443    if (mUseAsyncWrite != 0) {
3444        // discard any pending drain or write ack by incrementing sequence
3445        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3446        mDrainSequence = (mDrainSequence + 2) & ~1;
3447        ALOG_ASSERT(mCallbackThread != 0);
3448        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3449        mCallbackThread->setDraining(mDrainSequence);
3450    }
3451    mHwPaused = false;
3452}
3453
3454void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3455{
3456    ALOGV("signal playback thread");
3457    broadcast_l();
3458}
3459
3460void AudioFlinger::MixerThread::threadLoop_mix()
3461{
3462    // obtain the presentation timestamp of the next output buffer
3463    int64_t pts;
3464    status_t status = INVALID_OPERATION;
3465
3466    if (mNormalSink != 0) {
3467        status = mNormalSink->getNextWriteTimestamp(&pts);
3468    } else {
3469        status = mOutputSink->getNextWriteTimestamp(&pts);
3470    }
3471
3472    if (status != NO_ERROR) {
3473        pts = AudioBufferProvider::kInvalidPTS;
3474    }
3475
3476    // mix buffers...
3477    mAudioMixer->process(pts);
3478    mCurrentWriteLength = mSinkBufferSize;
3479    // increase sleep time progressively when application underrun condition clears.
3480    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3481    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3482    // such that we would underrun the audio HAL.
3483    if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3484        sleepTimeShift--;
3485    }
3486    sleepTime = 0;
3487    standbyTime = systemTime() + standbyDelay;
3488    //TODO: delay standby when effects have a tail
3489
3490}
3491
3492void AudioFlinger::MixerThread::threadLoop_sleepTime()
3493{
3494    // If no tracks are ready, sleep once for the duration of an output
3495    // buffer size, then write 0s to the output
3496    if (sleepTime == 0) {
3497        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3498            sleepTime = activeSleepTime >> sleepTimeShift;
3499            if (sleepTime < kMinThreadSleepTimeUs) {
3500                sleepTime = kMinThreadSleepTimeUs;
3501            }
3502            // reduce sleep time in case of consecutive application underruns to avoid
3503            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3504            // duration we would end up writing less data than needed by the audio HAL if
3505            // the condition persists.
3506            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3507                sleepTimeShift++;
3508            }
3509        } else {
3510            sleepTime = idleSleepTime;
3511        }
3512    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3513        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3514        // before effects processing or output.
3515        if (mMixerBufferValid) {
3516            memset(mMixerBuffer, 0, mMixerBufferSize);
3517        } else {
3518            memset(mSinkBuffer, 0, mSinkBufferSize);
3519        }
3520        sleepTime = 0;
3521        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3522                "anticipated start");
3523    }
3524    // TODO add standby time extension fct of effect tail
3525}
3526
3527// prepareTracks_l() must be called with ThreadBase::mLock held
3528AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3529        Vector< sp<Track> > *tracksToRemove)
3530{
3531
3532    mixer_state mixerStatus = MIXER_IDLE;
3533    // find out which tracks need to be processed
3534    size_t count = mActiveTracks.size();
3535    size_t mixedTracks = 0;
3536    size_t tracksWithEffect = 0;
3537    // counts only _active_ fast tracks
3538    size_t fastTracks = 0;
3539    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3540
3541    float masterVolume = mMasterVolume;
3542    bool masterMute = mMasterMute;
3543
3544    if (masterMute) {
3545        masterVolume = 0;
3546    }
3547    // Delegate master volume control to effect in output mix effect chain if needed
3548    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3549    if (chain != 0) {
3550        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3551        chain->setVolume_l(&v, &v);
3552        masterVolume = (float)((v + (1 << 23)) >> 24);
3553        chain.clear();
3554    }
3555
3556    // prepare a new state to push
3557    FastMixerStateQueue *sq = NULL;
3558    FastMixerState *state = NULL;
3559    bool didModify = false;
3560    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3561    if (mFastMixer != 0) {
3562        sq = mFastMixer->sq();
3563        state = sq->begin();
3564    }
3565
3566    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3567    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3568
3569    for (size_t i=0 ; i<count ; i++) {
3570        const sp<Track> t = mActiveTracks[i].promote();
3571        if (t == 0) {
3572            continue;
3573        }
3574
3575        // this const just means the local variable doesn't change
3576        Track* const track = t.get();
3577
3578        // process fast tracks
3579        if (track->isFastTrack()) {
3580
3581            // It's theoretically possible (though unlikely) for a fast track to be created
3582            // and then removed within the same normal mix cycle.  This is not a problem, as
3583            // the track never becomes active so it's fast mixer slot is never touched.
3584            // The converse, of removing an (active) track and then creating a new track
3585            // at the identical fast mixer slot within the same normal mix cycle,
3586            // is impossible because the slot isn't marked available until the end of each cycle.
3587            int j = track->mFastIndex;
3588            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3589            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3590            FastTrack *fastTrack = &state->mFastTracks[j];
3591
3592            // Determine whether the track is currently in underrun condition,
3593            // and whether it had a recent underrun.
3594            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3595            FastTrackUnderruns underruns = ftDump->mUnderruns;
3596            uint32_t recentFull = (underruns.mBitFields.mFull -
3597                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3598            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3599                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3600            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3601                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3602            uint32_t recentUnderruns = recentPartial + recentEmpty;
3603            track->mObservedUnderruns = underruns;
3604            // don't count underruns that occur while stopping or pausing
3605            // or stopped which can occur when flush() is called while active
3606            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3607                    recentUnderruns > 0) {
3608                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3609                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3610            }
3611
3612            // This is similar to the state machine for normal tracks,
3613            // with a few modifications for fast tracks.
3614            bool isActive = true;
3615            switch (track->mState) {
3616            case TrackBase::STOPPING_1:
3617                // track stays active in STOPPING_1 state until first underrun
3618                if (recentUnderruns > 0 || track->isTerminated()) {
3619                    track->mState = TrackBase::STOPPING_2;
3620                }
3621                break;
3622            case TrackBase::PAUSING:
3623                // ramp down is not yet implemented
3624                track->setPaused();
3625                break;
3626            case TrackBase::RESUMING:
3627                // ramp up is not yet implemented
3628                track->mState = TrackBase::ACTIVE;
3629                break;
3630            case TrackBase::ACTIVE:
3631                if (recentFull > 0 || recentPartial > 0) {
3632                    // track has provided at least some frames recently: reset retry count
3633                    track->mRetryCount = kMaxTrackRetries;
3634                }
3635                if (recentUnderruns == 0) {
3636                    // no recent underruns: stay active
3637                    break;
3638                }
3639                // there has recently been an underrun of some kind
3640                if (track->sharedBuffer() == 0) {
3641                    // were any of the recent underruns "empty" (no frames available)?
3642                    if (recentEmpty == 0) {
3643                        // no, then ignore the partial underruns as they are allowed indefinitely
3644                        break;
3645                    }
3646                    // there has recently been an "empty" underrun: decrement the retry counter
3647                    if (--(track->mRetryCount) > 0) {
3648                        break;
3649                    }
3650                    // indicate to client process that the track was disabled because of underrun;
3651                    // it will then automatically call start() when data is available
3652                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3653                    // remove from active list, but state remains ACTIVE [confusing but true]
3654                    isActive = false;
3655                    break;
3656                }
3657                // fall through
3658            case TrackBase::STOPPING_2:
3659            case TrackBase::PAUSED:
3660            case TrackBase::STOPPED:
3661            case TrackBase::FLUSHED:   // flush() while active
3662                // Check for presentation complete if track is inactive
3663                // We have consumed all the buffers of this track.
3664                // This would be incomplete if we auto-paused on underrun
3665                {
3666                    size_t audioHALFrames =
3667                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3668                    size_t framesWritten = mBytesWritten / mFrameSize;
3669                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3670                        // track stays in active list until presentation is complete
3671                        break;
3672                    }
3673                }
3674                if (track->isStopping_2()) {
3675                    track->mState = TrackBase::STOPPED;
3676                }
3677                if (track->isStopped()) {
3678                    // Can't reset directly, as fast mixer is still polling this track
3679                    //   track->reset();
3680                    // So instead mark this track as needing to be reset after push with ack
3681                    resetMask |= 1 << i;
3682                }
3683                isActive = false;
3684                break;
3685            case TrackBase::IDLE:
3686            default:
3687                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3688            }
3689
3690            if (isActive) {
3691                // was it previously inactive?
3692                if (!(state->mTrackMask & (1 << j))) {
3693                    ExtendedAudioBufferProvider *eabp = track;
3694                    VolumeProvider *vp = track;
3695                    fastTrack->mBufferProvider = eabp;
3696                    fastTrack->mVolumeProvider = vp;
3697                    fastTrack->mChannelMask = track->mChannelMask;
3698                    fastTrack->mFormat = track->mFormat;
3699                    fastTrack->mGeneration++;
3700                    state->mTrackMask |= 1 << j;
3701                    didModify = true;
3702                    // no acknowledgement required for newly active tracks
3703                }
3704                // cache the combined master volume and stream type volume for fast mixer; this
3705                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3706                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3707                ++fastTracks;
3708            } else {
3709                // was it previously active?
3710                if (state->mTrackMask & (1 << j)) {
3711                    fastTrack->mBufferProvider = NULL;
3712                    fastTrack->mGeneration++;
3713                    state->mTrackMask &= ~(1 << j);
3714                    didModify = true;
3715                    // If any fast tracks were removed, we must wait for acknowledgement
3716                    // because we're about to decrement the last sp<> on those tracks.
3717                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3718                } else {
3719                    LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3720                }
3721                tracksToRemove->add(track);
3722                // Avoids a misleading display in dumpsys
3723                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3724            }
3725            continue;
3726        }
3727
3728        {   // local variable scope to avoid goto warning
3729
3730        audio_track_cblk_t* cblk = track->cblk();
3731
3732        // The first time a track is added we wait
3733        // for all its buffers to be filled before processing it
3734        int name = track->name();
3735        // make sure that we have enough frames to mix one full buffer.
3736        // enforce this condition only once to enable draining the buffer in case the client
3737        // app does not call stop() and relies on underrun to stop:
3738        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3739        // during last round
3740        size_t desiredFrames;
3741        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3742        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3743
3744        desiredFrames = sourceFramesNeededWithTimestretch(
3745                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3746        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3747        // add frames already consumed but not yet released by the resampler
3748        // because mAudioTrackServerProxy->framesReady() will include these frames
3749        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3750
3751        uint32_t minFrames = 1;
3752        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3753                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3754            minFrames = desiredFrames;
3755        }
3756
3757        size_t framesReady = track->framesReady();
3758        if (ATRACE_ENABLED()) {
3759            // I wish we had formatted trace names
3760            char traceName[16];
3761            strcpy(traceName, "nRdy");
3762            int name = track->name();
3763            if (AudioMixer::TRACK0 <= name &&
3764                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3765                name -= AudioMixer::TRACK0;
3766                traceName[4] = (name / 10) + '0';
3767                traceName[5] = (name % 10) + '0';
3768            } else {
3769                traceName[4] = '?';
3770                traceName[5] = '?';
3771            }
3772            traceName[6] = '\0';
3773            ATRACE_INT(traceName, framesReady);
3774        }
3775        if ((framesReady >= minFrames) && track->isReady() &&
3776                !track->isPaused() && !track->isTerminated())
3777        {
3778            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3779
3780            mixedTracks++;
3781
3782            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3783            // there is an effect chain connected to the track
3784            chain.clear();
3785            if (track->mainBuffer() != mSinkBuffer &&
3786                    track->mainBuffer() != mMixerBuffer) {
3787                if (mEffectBufferEnabled) {
3788                    mEffectBufferValid = true; // Later can set directly.
3789                }
3790                chain = getEffectChain_l(track->sessionId());
3791                // Delegate volume control to effect in track effect chain if needed
3792                if (chain != 0) {
3793                    tracksWithEffect++;
3794                } else {
3795                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3796                            "session %d",
3797                            name, track->sessionId());
3798                }
3799            }
3800
3801
3802            int param = AudioMixer::VOLUME;
3803            if (track->mFillingUpStatus == Track::FS_FILLED) {
3804                // no ramp for the first volume setting
3805                track->mFillingUpStatus = Track::FS_ACTIVE;
3806                if (track->mState == TrackBase::RESUMING) {
3807                    track->mState = TrackBase::ACTIVE;
3808                    param = AudioMixer::RAMP_VOLUME;
3809                }
3810                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3811            // FIXME should not make a decision based on mServer
3812            } else if (cblk->mServer != 0) {
3813                // If the track is stopped before the first frame was mixed,
3814                // do not apply ramp
3815                param = AudioMixer::RAMP_VOLUME;
3816            }
3817
3818            // compute volume for this track
3819            uint32_t vl, vr;       // in U8.24 integer format
3820            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3821            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3822                vl = vr = 0;
3823                vlf = vrf = vaf = 0.;
3824                if (track->isPausing()) {
3825                    track->setPaused();
3826                }
3827            } else {
3828
3829                // read original volumes with volume control
3830                float typeVolume = mStreamTypes[track->streamType()].volume;
3831                float v = masterVolume * typeVolume;
3832                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3833                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3834                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3835                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3836                // track volumes come from shared memory, so can't be trusted and must be clamped
3837                if (vlf > GAIN_FLOAT_UNITY) {
3838                    ALOGV("Track left volume out of range: %.3g", vlf);
3839                    vlf = GAIN_FLOAT_UNITY;
3840                }
3841                if (vrf > GAIN_FLOAT_UNITY) {
3842                    ALOGV("Track right volume out of range: %.3g", vrf);
3843                    vrf = GAIN_FLOAT_UNITY;
3844                }
3845                // now apply the master volume and stream type volume
3846                vlf *= v;
3847                vrf *= v;
3848                // assuming master volume and stream type volume each go up to 1.0,
3849                // then derive vl and vr as U8.24 versions for the effect chain
3850                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3851                vl = (uint32_t) (scaleto8_24 * vlf);
3852                vr = (uint32_t) (scaleto8_24 * vrf);
3853                // vl and vr are now in U8.24 format
3854                uint16_t sendLevel = proxy->getSendLevel_U4_12();
3855                // send level comes from shared memory and so may be corrupt
3856                if (sendLevel > MAX_GAIN_INT) {
3857                    ALOGV("Track send level out of range: %04X", sendLevel);
3858                    sendLevel = MAX_GAIN_INT;
3859                }
3860                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3861                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3862            }
3863
3864            // Delegate volume control to effect in track effect chain if needed
3865            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3866                // Do not ramp volume if volume is controlled by effect
3867                param = AudioMixer::VOLUME;
3868                // Update remaining floating point volume levels
3869                vlf = (float)vl / (1 << 24);
3870                vrf = (float)vr / (1 << 24);
3871                track->mHasVolumeController = true;
3872            } else {
3873                // force no volume ramp when volume controller was just disabled or removed
3874                // from effect chain to avoid volume spike
3875                if (track->mHasVolumeController) {
3876                    param = AudioMixer::VOLUME;
3877                }
3878                track->mHasVolumeController = false;
3879            }
3880
3881            // XXX: these things DON'T need to be done each time
3882            mAudioMixer->setBufferProvider(name, track);
3883            mAudioMixer->enable(name);
3884
3885            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3886            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3887            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3888            mAudioMixer->setParameter(
3889                name,
3890                AudioMixer::TRACK,
3891                AudioMixer::FORMAT, (void *)track->format());
3892            mAudioMixer->setParameter(
3893                name,
3894                AudioMixer::TRACK,
3895                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3896            mAudioMixer->setParameter(
3897                name,
3898                AudioMixer::TRACK,
3899                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3900            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3901            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3902            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3903            if (reqSampleRate == 0) {
3904                reqSampleRate = mSampleRate;
3905            } else if (reqSampleRate > maxSampleRate) {
3906                reqSampleRate = maxSampleRate;
3907            }
3908            mAudioMixer->setParameter(
3909                name,
3910                AudioMixer::RESAMPLE,
3911                AudioMixer::SAMPLE_RATE,
3912                (void *)(uintptr_t)reqSampleRate);
3913
3914            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3915            mAudioMixer->setParameter(
3916                name,
3917                AudioMixer::TIMESTRETCH,
3918                AudioMixer::PLAYBACK_RATE,
3919                &playbackRate);
3920
3921            /*
3922             * Select the appropriate output buffer for the track.
3923             *
3924             * Tracks with effects go into their own effects chain buffer
3925             * and from there into either mEffectBuffer or mSinkBuffer.
3926             *
3927             * Other tracks can use mMixerBuffer for higher precision
3928             * channel accumulation.  If this buffer is enabled
3929             * (mMixerBufferEnabled true), then selected tracks will accumulate
3930             * into it.
3931             *
3932             */
3933            if (mMixerBufferEnabled
3934                    && (track->mainBuffer() == mSinkBuffer
3935                            || track->mainBuffer() == mMixerBuffer)) {
3936                mAudioMixer->setParameter(
3937                        name,
3938                        AudioMixer::TRACK,
3939                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3940                mAudioMixer->setParameter(
3941                        name,
3942                        AudioMixer::TRACK,
3943                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3944                // TODO: override track->mainBuffer()?
3945                mMixerBufferValid = true;
3946            } else {
3947                mAudioMixer->setParameter(
3948                        name,
3949                        AudioMixer::TRACK,
3950                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3951                mAudioMixer->setParameter(
3952                        name,
3953                        AudioMixer::TRACK,
3954                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3955            }
3956            mAudioMixer->setParameter(
3957                name,
3958                AudioMixer::TRACK,
3959                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3960
3961            // reset retry count
3962            track->mRetryCount = kMaxTrackRetries;
3963
3964            // If one track is ready, set the mixer ready if:
3965            //  - the mixer was not ready during previous round OR
3966            //  - no other track is not ready
3967            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3968                    mixerStatus != MIXER_TRACKS_ENABLED) {
3969                mixerStatus = MIXER_TRACKS_READY;
3970            }
3971        } else {
3972            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3973                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3974            }
3975            // clear effect chain input buffer if an active track underruns to avoid sending
3976            // previous audio buffer again to effects
3977            chain = getEffectChain_l(track->sessionId());
3978            if (chain != 0) {
3979                chain->clearInputBuffer();
3980            }
3981
3982            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3983            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3984                    track->isStopped() || track->isPaused()) {
3985                // We have consumed all the buffers of this track.
3986                // Remove it from the list of active tracks.
3987                // TODO: use actual buffer filling status instead of latency when available from
3988                // audio HAL
3989                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3990                size_t framesWritten = mBytesWritten / mFrameSize;
3991                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3992                    if (track->isStopped()) {
3993                        track->reset();
3994                    }
3995                    tracksToRemove->add(track);
3996                }
3997            } else {
3998                // No buffers for this track. Give it a few chances to
3999                // fill a buffer, then remove it from active list.
4000                if (--(track->mRetryCount) <= 0) {
4001                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4002                    tracksToRemove->add(track);
4003                    // indicate to client process that the track was disabled because of underrun;
4004                    // it will then automatically call start() when data is available
4005                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4006                // If one track is not ready, mark the mixer also not ready if:
4007                //  - the mixer was ready during previous round OR
4008                //  - no other track is ready
4009                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4010                                mixerStatus != MIXER_TRACKS_READY) {
4011                    mixerStatus = MIXER_TRACKS_ENABLED;
4012                }
4013            }
4014            mAudioMixer->disable(name);
4015        }
4016
4017        }   // local variable scope to avoid goto warning
4018track_is_ready: ;
4019
4020    }
4021
4022    // Push the new FastMixer state if necessary
4023    bool pauseAudioWatchdog = false;
4024    if (didModify) {
4025        state->mFastTracksGen++;
4026        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4027        if (kUseFastMixer == FastMixer_Dynamic &&
4028                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4029            state->mCommand = FastMixerState::COLD_IDLE;
4030            state->mColdFutexAddr = &mFastMixerFutex;
4031            state->mColdGen++;
4032            mFastMixerFutex = 0;
4033            if (kUseFastMixer == FastMixer_Dynamic) {
4034                mNormalSink = mOutputSink;
4035            }
4036            // If we go into cold idle, need to wait for acknowledgement
4037            // so that fast mixer stops doing I/O.
4038            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4039            pauseAudioWatchdog = true;
4040        }
4041    }
4042    if (sq != NULL) {
4043        sq->end(didModify);
4044        sq->push(block);
4045    }
4046#ifdef AUDIO_WATCHDOG
4047    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4048        mAudioWatchdog->pause();
4049    }
4050#endif
4051
4052    // Now perform the deferred reset on fast tracks that have stopped
4053    while (resetMask != 0) {
4054        size_t i = __builtin_ctz(resetMask);
4055        ALOG_ASSERT(i < count);
4056        resetMask &= ~(1 << i);
4057        sp<Track> t = mActiveTracks[i].promote();
4058        if (t == 0) {
4059            continue;
4060        }
4061        Track* track = t.get();
4062        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4063        track->reset();
4064    }
4065
4066    // remove all the tracks that need to be...
4067    removeTracks_l(*tracksToRemove);
4068
4069    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4070        mEffectBufferValid = true;
4071    }
4072
4073    if (mEffectBufferValid) {
4074        // as long as there are effects we should clear the effects buffer, to avoid
4075        // passing a non-clean buffer to the effect chain
4076        memset(mEffectBuffer, 0, mEffectBufferSize);
4077    }
4078    // sink or mix buffer must be cleared if all tracks are connected to an
4079    // effect chain as in this case the mixer will not write to the sink or mix buffer
4080    // and track effects will accumulate into it
4081    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4082            (mixedTracks == 0 && fastTracks > 0))) {
4083        // FIXME as a performance optimization, should remember previous zero status
4084        if (mMixerBufferValid) {
4085            memset(mMixerBuffer, 0, mMixerBufferSize);
4086            // TODO: In testing, mSinkBuffer below need not be cleared because
4087            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4088            // after mixing.
4089            //
4090            // To enforce this guarantee:
4091            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4092            // (mixedTracks == 0 && fastTracks > 0))
4093            // must imply MIXER_TRACKS_READY.
4094            // Later, we may clear buffers regardless, and skip much of this logic.
4095        }
4096        // FIXME as a performance optimization, should remember previous zero status
4097        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4098    }
4099
4100    // if any fast tracks, then status is ready
4101    mMixerStatusIgnoringFastTracks = mixerStatus;
4102    if (fastTracks > 0) {
4103        mixerStatus = MIXER_TRACKS_READY;
4104    }
4105    return mixerStatus;
4106}
4107
4108// getTrackName_l() must be called with ThreadBase::mLock held
4109int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4110        audio_format_t format, int sessionId)
4111{
4112    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4113}
4114
4115// deleteTrackName_l() must be called with ThreadBase::mLock held
4116void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4117{
4118    ALOGV("remove track (%d) and delete from mixer", name);
4119    mAudioMixer->deleteTrackName(name);
4120}
4121
4122// checkForNewParameter_l() must be called with ThreadBase::mLock held
4123bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4124                                                       status_t& status)
4125{
4126    bool reconfig = false;
4127
4128    status = NO_ERROR;
4129
4130    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4131    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4132    if (mFastMixer != 0) {
4133        FastMixerStateQueue *sq = mFastMixer->sq();
4134        FastMixerState *state = sq->begin();
4135        if (!(state->mCommand & FastMixerState::IDLE)) {
4136            previousCommand = state->mCommand;
4137            state->mCommand = FastMixerState::HOT_IDLE;
4138            sq->end();
4139            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4140        } else {
4141            sq->end(false /*didModify*/);
4142        }
4143    }
4144
4145    AudioParameter param = AudioParameter(keyValuePair);
4146    int value;
4147    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4148        reconfig = true;
4149    }
4150    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4151        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4152            status = BAD_VALUE;
4153        } else {
4154            // no need to save value, since it's constant
4155            reconfig = true;
4156        }
4157    }
4158    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4159        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4160            status = BAD_VALUE;
4161        } else {
4162            // no need to save value, since it's constant
4163            reconfig = true;
4164        }
4165    }
4166    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4167        // do not accept frame count changes if tracks are open as the track buffer
4168        // size depends on frame count and correct behavior would not be guaranteed
4169        // if frame count is changed after track creation
4170        if (!mTracks.isEmpty()) {
4171            status = INVALID_OPERATION;
4172        } else {
4173            reconfig = true;
4174        }
4175    }
4176    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4177#ifdef ADD_BATTERY_DATA
4178        // when changing the audio output device, call addBatteryData to notify
4179        // the change
4180        if (mOutDevice != value) {
4181            uint32_t params = 0;
4182            // check whether speaker is on
4183            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4184                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4185            }
4186
4187            audio_devices_t deviceWithoutSpeaker
4188                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4189            // check if any other device (except speaker) is on
4190            if (value & deviceWithoutSpeaker) {
4191                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4192            }
4193
4194            if (params != 0) {
4195                addBatteryData(params);
4196            }
4197        }
4198#endif
4199
4200        // forward device change to effects that have requested to be
4201        // aware of attached audio device.
4202        if (value != AUDIO_DEVICE_NONE) {
4203            mOutDevice = value;
4204            for (size_t i = 0; i < mEffectChains.size(); i++) {
4205                mEffectChains[i]->setDevice_l(mOutDevice);
4206            }
4207        }
4208    }
4209
4210    if (status == NO_ERROR) {
4211        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4212                                                keyValuePair.string());
4213        if (!mStandby && status == INVALID_OPERATION) {
4214            mOutput->standby();
4215            mStandby = true;
4216            mBytesWritten = 0;
4217            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4218                                                   keyValuePair.string());
4219        }
4220        if (status == NO_ERROR && reconfig) {
4221            readOutputParameters_l();
4222            delete mAudioMixer;
4223            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4224            for (size_t i = 0; i < mTracks.size() ; i++) {
4225                int name = getTrackName_l(mTracks[i]->mChannelMask,
4226                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4227                if (name < 0) {
4228                    break;
4229                }
4230                mTracks[i]->mName = name;
4231            }
4232            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4233        }
4234    }
4235
4236    if (!(previousCommand & FastMixerState::IDLE)) {
4237        ALOG_ASSERT(mFastMixer != 0);
4238        FastMixerStateQueue *sq = mFastMixer->sq();
4239        FastMixerState *state = sq->begin();
4240        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4241        state->mCommand = previousCommand;
4242        sq->end();
4243        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4244    }
4245
4246    return reconfig;
4247}
4248
4249
4250void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4251{
4252    const size_t SIZE = 256;
4253    char buffer[SIZE];
4254    String8 result;
4255
4256    PlaybackThread::dumpInternals(fd, args);
4257
4258    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4259
4260    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4261    const FastMixerDumpState copy(mFastMixerDumpState);
4262    copy.dump(fd);
4263
4264#ifdef STATE_QUEUE_DUMP
4265    // Similar for state queue
4266    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4267    observerCopy.dump(fd);
4268    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4269    mutatorCopy.dump(fd);
4270#endif
4271
4272#ifdef TEE_SINK
4273    // Write the tee output to a .wav file
4274    dumpTee(fd, mTeeSource, mId);
4275#endif
4276
4277#ifdef AUDIO_WATCHDOG
4278    if (mAudioWatchdog != 0) {
4279        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4280        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4281        wdCopy.dump(fd);
4282    }
4283#endif
4284}
4285
4286uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4287{
4288    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4289}
4290
4291uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4292{
4293    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4294}
4295
4296void AudioFlinger::MixerThread::cacheParameters_l()
4297{
4298    PlaybackThread::cacheParameters_l();
4299
4300    // FIXME: Relaxed timing because of a certain device that can't meet latency
4301    // Should be reduced to 2x after the vendor fixes the driver issue
4302    // increase threshold again due to low power audio mode. The way this warning
4303    // threshold is calculated and its usefulness should be reconsidered anyway.
4304    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4305}
4306
4307// ----------------------------------------------------------------------------
4308
4309AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4310        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
4311    :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
4312        // mLeftVolFloat, mRightVolFloat
4313{
4314}
4315
4316AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4317        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4318        ThreadBase::type_t type)
4319    :   PlaybackThread(audioFlinger, output, id, device, type)
4320        // mLeftVolFloat, mRightVolFloat
4321{
4322}
4323
4324AudioFlinger::DirectOutputThread::~DirectOutputThread()
4325{
4326}
4327
4328void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4329{
4330    audio_track_cblk_t* cblk = track->cblk();
4331    float left, right;
4332
4333    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4334        left = right = 0;
4335    } else {
4336        float typeVolume = mStreamTypes[track->streamType()].volume;
4337        float v = mMasterVolume * typeVolume;
4338        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4339        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4340        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4341        if (left > GAIN_FLOAT_UNITY) {
4342            left = GAIN_FLOAT_UNITY;
4343        }
4344        left *= v;
4345        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4346        if (right > GAIN_FLOAT_UNITY) {
4347            right = GAIN_FLOAT_UNITY;
4348        }
4349        right *= v;
4350    }
4351
4352    if (lastTrack) {
4353        if (left != mLeftVolFloat || right != mRightVolFloat) {
4354            mLeftVolFloat = left;
4355            mRightVolFloat = right;
4356
4357            // Convert volumes from float to 8.24
4358            uint32_t vl = (uint32_t)(left * (1 << 24));
4359            uint32_t vr = (uint32_t)(right * (1 << 24));
4360
4361            // Delegate volume control to effect in track effect chain if needed
4362            // only one effect chain can be present on DirectOutputThread, so if
4363            // there is one, the track is connected to it
4364            if (!mEffectChains.isEmpty()) {
4365                mEffectChains[0]->setVolume_l(&vl, &vr);
4366                left = (float)vl / (1 << 24);
4367                right = (float)vr / (1 << 24);
4368            }
4369            if (mOutput->stream->set_volume) {
4370                mOutput->stream->set_volume(mOutput->stream, left, right);
4371            }
4372        }
4373    }
4374}
4375
4376
4377AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4378    Vector< sp<Track> > *tracksToRemove
4379)
4380{
4381    size_t count = mActiveTracks.size();
4382    mixer_state mixerStatus = MIXER_IDLE;
4383    bool doHwPause = false;
4384    bool doHwResume = false;
4385    bool flushPending = false;
4386
4387    // find out which tracks need to be processed
4388    for (size_t i = 0; i < count; i++) {
4389        sp<Track> t = mActiveTracks[i].promote();
4390        // The track died recently
4391        if (t == 0) {
4392            continue;
4393        }
4394
4395        Track* const track = t.get();
4396        audio_track_cblk_t* cblk = track->cblk();
4397        // Only consider last track started for volume and mixer state control.
4398        // In theory an older track could underrun and restart after the new one starts
4399        // but as we only care about the transition phase between two tracks on a
4400        // direct output, it is not a problem to ignore the underrun case.
4401        sp<Track> l = mLatestActiveTrack.promote();
4402        bool last = l.get() == track;
4403
4404        if (track->isPausing()) {
4405            track->setPaused();
4406            if (mHwSupportsPause && last && !mHwPaused) {
4407                doHwPause = true;
4408                mHwPaused = true;
4409            }
4410            tracksToRemove->add(track);
4411        } else if (track->isFlushPending()) {
4412            track->flushAck();
4413            if (last) {
4414                flushPending = true;
4415            }
4416        } else if (track->isResumePending()) {
4417            track->resumeAck();
4418            if (last && mHwPaused) {
4419                doHwResume = true;
4420                mHwPaused = false;
4421            }
4422        }
4423
4424        // The first time a track is added we wait
4425        // for all its buffers to be filled before processing it.
4426        // Allow draining the buffer in case the client
4427        // app does not call stop() and relies on underrun to stop:
4428        // hence the test on (track->mRetryCount > 1).
4429        // If retryCount<=1 then track is about to underrun and be removed.
4430        uint32_t minFrames;
4431        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4432            && (track->mRetryCount > 1)) {
4433            minFrames = mNormalFrameCount;
4434        } else {
4435            minFrames = 1;
4436        }
4437
4438        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4439                !track->isStopping_2() && !track->isStopped())
4440        {
4441            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4442
4443            if (track->mFillingUpStatus == Track::FS_FILLED) {
4444                track->mFillingUpStatus = Track::FS_ACTIVE;
4445                // make sure processVolume_l() will apply new volume even if 0
4446                mLeftVolFloat = mRightVolFloat = -1.0;
4447                if (!mHwSupportsPause) {
4448                    track->resumeAck();
4449                }
4450            }
4451
4452            // compute volume for this track
4453            processVolume_l(track, last);
4454            if (last) {
4455                // reset retry count
4456                track->mRetryCount = kMaxTrackRetriesDirect;
4457                mActiveTrack = t;
4458                mixerStatus = MIXER_TRACKS_READY;
4459                if (usesHwAvSync() && mHwPaused) {
4460                    doHwResume = true;
4461                    mHwPaused = false;
4462                }
4463            }
4464        } else {
4465            // clear effect chain input buffer if the last active track started underruns
4466            // to avoid sending previous audio buffer again to effects
4467            if (!mEffectChains.isEmpty() && last) {
4468                mEffectChains[0]->clearInputBuffer();
4469            }
4470            if (track->isStopping_1()) {
4471                track->mState = TrackBase::STOPPING_2;
4472                if (last && mHwPaused) {
4473                     doHwResume = true;
4474                     mHwPaused = false;
4475                 }
4476            }
4477            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4478                    track->isStopping_2() || track->isPaused()) {
4479                // We have consumed all the buffers of this track.
4480                // Remove it from the list of active tracks.
4481                size_t audioHALFrames;
4482                if (audio_is_linear_pcm(mFormat)) {
4483                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4484                } else {
4485                    audioHALFrames = 0;
4486                }
4487
4488                size_t framesWritten = mBytesWritten / mFrameSize;
4489                if (mStandby || !last ||
4490                        track->presentationComplete(framesWritten, audioHALFrames)) {
4491                    if (track->isStopping_2()) {
4492                        track->mState = TrackBase::STOPPED;
4493                    }
4494                    if (track->isStopped()) {
4495                        track->reset();
4496                    }
4497                    tracksToRemove->add(track);
4498                }
4499            } else {
4500                // No buffers for this track. Give it a few chances to
4501                // fill a buffer, then remove it from active list.
4502                // Only consider last track started for mixer state control
4503                if (--(track->mRetryCount) <= 0) {
4504                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4505                    tracksToRemove->add(track);
4506                    // indicate to client process that the track was disabled because of underrun;
4507                    // it will then automatically call start() when data is available
4508                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4509                } else if (last) {
4510                    mixerStatus = MIXER_TRACKS_ENABLED;
4511                    if (usesHwAvSync() && !mHwPaused && !mStandby) {
4512                        doHwPause = true;
4513                        mHwPaused = true;
4514                    }
4515                }
4516            }
4517        }
4518    }
4519
4520    // if an active track did not command a flush, check for pending flush on stopped tracks
4521    if (!flushPending) {
4522        for (size_t i = 0; i < mTracks.size(); i++) {
4523            if (mTracks[i]->isFlushPending()) {
4524                mTracks[i]->flushAck();
4525                flushPending = true;
4526            }
4527        }
4528    }
4529
4530    // make sure the pause/flush/resume sequence is executed in the right order.
4531    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4532    // before flush and then resume HW. This can happen in case of pause/flush/resume
4533    // if resume is received before pause is executed.
4534    if (mHwSupportsPause && !mStandby &&
4535            (doHwPause || (flushPending && !mHwPaused && (count != 0)))) {
4536        mOutput->stream->pause(mOutput->stream);
4537    }
4538    if (flushPending) {
4539        flushHw_l();
4540    }
4541    if (mHwSupportsPause && !mStandby && doHwResume) {
4542        mOutput->stream->resume(mOutput->stream);
4543    }
4544    // remove all the tracks that need to be...
4545    removeTracks_l(*tracksToRemove);
4546
4547    return mixerStatus;
4548}
4549
4550void AudioFlinger::DirectOutputThread::threadLoop_mix()
4551{
4552    size_t frameCount = mFrameCount;
4553    int8_t *curBuf = (int8_t *)mSinkBuffer;
4554    // output audio to hardware
4555    while (frameCount) {
4556        AudioBufferProvider::Buffer buffer;
4557        buffer.frameCount = frameCount;
4558        status_t status = mActiveTrack->getNextBuffer(&buffer);
4559        if (status != NO_ERROR || buffer.raw == NULL) {
4560            memset(curBuf, 0, frameCount * mFrameSize);
4561            break;
4562        }
4563        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4564        frameCount -= buffer.frameCount;
4565        curBuf += buffer.frameCount * mFrameSize;
4566        mActiveTrack->releaseBuffer(&buffer);
4567    }
4568    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4569    sleepTime = 0;
4570    standbyTime = systemTime() + standbyDelay;
4571    mActiveTrack.clear();
4572}
4573
4574void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4575{
4576    // do not write to HAL when paused
4577    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4578        sleepTime = idleSleepTime;
4579        return;
4580    }
4581    if (sleepTime == 0) {
4582        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4583            sleepTime = activeSleepTime;
4584        } else {
4585            sleepTime = idleSleepTime;
4586        }
4587    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4588        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4589        sleepTime = 0;
4590    }
4591}
4592
4593void AudioFlinger::DirectOutputThread::threadLoop_exit()
4594{
4595    {
4596        Mutex::Autolock _l(mLock);
4597        bool flushPending = false;
4598        for (size_t i = 0; i < mTracks.size(); i++) {
4599            if (mTracks[i]->isFlushPending()) {
4600                mTracks[i]->flushAck();
4601                flushPending = true;
4602            }
4603        }
4604        if (flushPending) {
4605            flushHw_l();
4606        }
4607    }
4608    PlaybackThread::threadLoop_exit();
4609}
4610
4611// must be called with thread mutex locked
4612bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4613{
4614    bool trackPaused = false;
4615    bool trackStopped = false;
4616
4617    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4618    // after a timeout and we will enter standby then.
4619    if (mTracks.size() > 0) {
4620        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4621        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4622                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4623    }
4624
4625    return !mStandby && !(trackPaused || (usesHwAvSync() && mHwPaused && !trackStopped));
4626}
4627
4628// getTrackName_l() must be called with ThreadBase::mLock held
4629int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4630        audio_format_t format __unused, int sessionId __unused)
4631{
4632    return 0;
4633}
4634
4635// deleteTrackName_l() must be called with ThreadBase::mLock held
4636void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4637{
4638}
4639
4640// checkForNewParameter_l() must be called with ThreadBase::mLock held
4641bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4642                                                              status_t& status)
4643{
4644    bool reconfig = false;
4645
4646    status = NO_ERROR;
4647
4648    AudioParameter param = AudioParameter(keyValuePair);
4649    int value;
4650    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4651        // forward device change to effects that have requested to be
4652        // aware of attached audio device.
4653        if (value != AUDIO_DEVICE_NONE) {
4654            mOutDevice = value;
4655            for (size_t i = 0; i < mEffectChains.size(); i++) {
4656                mEffectChains[i]->setDevice_l(mOutDevice);
4657            }
4658        }
4659    }
4660    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4661        // do not accept frame count changes if tracks are open as the track buffer
4662        // size depends on frame count and correct behavior would not be garantied
4663        // if frame count is changed after track creation
4664        if (!mTracks.isEmpty()) {
4665            status = INVALID_OPERATION;
4666        } else {
4667            reconfig = true;
4668        }
4669    }
4670    if (status == NO_ERROR) {
4671        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4672                                                keyValuePair.string());
4673        if (!mStandby && status == INVALID_OPERATION) {
4674            mOutput->standby();
4675            mStandby = true;
4676            mBytesWritten = 0;
4677            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4678                                                   keyValuePair.string());
4679        }
4680        if (status == NO_ERROR && reconfig) {
4681            readOutputParameters_l();
4682            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4683        }
4684    }
4685
4686    return reconfig;
4687}
4688
4689uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4690{
4691    uint32_t time;
4692    if (audio_is_linear_pcm(mFormat)) {
4693        time = PlaybackThread::activeSleepTimeUs();
4694    } else {
4695        time = 10000;
4696    }
4697    return time;
4698}
4699
4700uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4701{
4702    uint32_t time;
4703    if (audio_is_linear_pcm(mFormat)) {
4704        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4705    } else {
4706        time = 10000;
4707    }
4708    return time;
4709}
4710
4711uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4712{
4713    uint32_t time;
4714    if (audio_is_linear_pcm(mFormat)) {
4715        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4716    } else {
4717        time = 10000;
4718    }
4719    return time;
4720}
4721
4722void AudioFlinger::DirectOutputThread::cacheParameters_l()
4723{
4724    PlaybackThread::cacheParameters_l();
4725
4726    // use shorter standby delay as on normal output to release
4727    // hardware resources as soon as possible
4728    // no delay on outputs with HW A/V sync
4729    if (usesHwAvSync()) {
4730        standbyDelay = 0;
4731    } else if (audio_is_linear_pcm(mFormat)) {
4732        standbyDelay = microseconds(activeSleepTime*2);
4733    } else {
4734        standbyDelay = kOffloadStandbyDelayNs;
4735    }
4736}
4737
4738void AudioFlinger::DirectOutputThread::flushHw_l()
4739{
4740    mOutput->flush();
4741    mHwPaused = false;
4742}
4743
4744// ----------------------------------------------------------------------------
4745
4746AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4747        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4748    :   Thread(false /*canCallJava*/),
4749        mPlaybackThread(playbackThread),
4750        mWriteAckSequence(0),
4751        mDrainSequence(0)
4752{
4753}
4754
4755AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4756{
4757}
4758
4759void AudioFlinger::AsyncCallbackThread::onFirstRef()
4760{
4761    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4762}
4763
4764bool AudioFlinger::AsyncCallbackThread::threadLoop()
4765{
4766    while (!exitPending()) {
4767        uint32_t writeAckSequence;
4768        uint32_t drainSequence;
4769
4770        {
4771            Mutex::Autolock _l(mLock);
4772            while (!((mWriteAckSequence & 1) ||
4773                     (mDrainSequence & 1) ||
4774                     exitPending())) {
4775                mWaitWorkCV.wait(mLock);
4776            }
4777
4778            if (exitPending()) {
4779                break;
4780            }
4781            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4782                  mWriteAckSequence, mDrainSequence);
4783            writeAckSequence = mWriteAckSequence;
4784            mWriteAckSequence &= ~1;
4785            drainSequence = mDrainSequence;
4786            mDrainSequence &= ~1;
4787        }
4788        {
4789            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4790            if (playbackThread != 0) {
4791                if (writeAckSequence & 1) {
4792                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4793                }
4794                if (drainSequence & 1) {
4795                    playbackThread->resetDraining(drainSequence >> 1);
4796                }
4797            }
4798        }
4799    }
4800    return false;
4801}
4802
4803void AudioFlinger::AsyncCallbackThread::exit()
4804{
4805    ALOGV("AsyncCallbackThread::exit");
4806    Mutex::Autolock _l(mLock);
4807    requestExit();
4808    mWaitWorkCV.broadcast();
4809}
4810
4811void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4812{
4813    Mutex::Autolock _l(mLock);
4814    // bit 0 is cleared
4815    mWriteAckSequence = sequence << 1;
4816}
4817
4818void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4819{
4820    Mutex::Autolock _l(mLock);
4821    // ignore unexpected callbacks
4822    if (mWriteAckSequence & 2) {
4823        mWriteAckSequence |= 1;
4824        mWaitWorkCV.signal();
4825    }
4826}
4827
4828void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4829{
4830    Mutex::Autolock _l(mLock);
4831    // bit 0 is cleared
4832    mDrainSequence = sequence << 1;
4833}
4834
4835void AudioFlinger::AsyncCallbackThread::resetDraining()
4836{
4837    Mutex::Autolock _l(mLock);
4838    // ignore unexpected callbacks
4839    if (mDrainSequence & 2) {
4840        mDrainSequence |= 1;
4841        mWaitWorkCV.signal();
4842    }
4843}
4844
4845
4846// ----------------------------------------------------------------------------
4847AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4848        AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4849    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4850        mPausedBytesRemaining(0)
4851{
4852    //FIXME: mStandby should be set to true by ThreadBase constructor
4853    mStandby = true;
4854}
4855
4856void AudioFlinger::OffloadThread::threadLoop_exit()
4857{
4858    if (mFlushPending || mHwPaused) {
4859        // If a flush is pending or track was paused, just discard buffered data
4860        flushHw_l();
4861    } else {
4862        mMixerStatus = MIXER_DRAIN_ALL;
4863        threadLoop_drain();
4864    }
4865    if (mUseAsyncWrite) {
4866        ALOG_ASSERT(mCallbackThread != 0);
4867        mCallbackThread->exit();
4868    }
4869    PlaybackThread::threadLoop_exit();
4870}
4871
4872AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4873    Vector< sp<Track> > *tracksToRemove
4874)
4875{
4876    size_t count = mActiveTracks.size();
4877
4878    mixer_state mixerStatus = MIXER_IDLE;
4879    bool doHwPause = false;
4880    bool doHwResume = false;
4881
4882    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4883
4884    // find out which tracks need to be processed
4885    for (size_t i = 0; i < count; i++) {
4886        sp<Track> t = mActiveTracks[i].promote();
4887        // The track died recently
4888        if (t == 0) {
4889            continue;
4890        }
4891        Track* const track = t.get();
4892        audio_track_cblk_t* cblk = track->cblk();
4893        // Only consider last track started for volume and mixer state control.
4894        // In theory an older track could underrun and restart after the new one starts
4895        // but as we only care about the transition phase between two tracks on a
4896        // direct output, it is not a problem to ignore the underrun case.
4897        sp<Track> l = mLatestActiveTrack.promote();
4898        bool last = l.get() == track;
4899
4900        if (track->isInvalid()) {
4901            ALOGW("An invalidated track shouldn't be in active list");
4902            tracksToRemove->add(track);
4903            continue;
4904        }
4905
4906        if (track->mState == TrackBase::IDLE) {
4907            ALOGW("An idle track shouldn't be in active list");
4908            continue;
4909        }
4910
4911        if (track->isPausing()) {
4912            track->setPaused();
4913            if (last) {
4914                if (!mHwPaused) {
4915                    doHwPause = true;
4916                    mHwPaused = true;
4917                }
4918                // If we were part way through writing the mixbuffer to
4919                // the HAL we must save this until we resume
4920                // BUG - this will be wrong if a different track is made active,
4921                // in that case we want to discard the pending data in the
4922                // mixbuffer and tell the client to present it again when the
4923                // track is resumed
4924                mPausedWriteLength = mCurrentWriteLength;
4925                mPausedBytesRemaining = mBytesRemaining;
4926                mBytesRemaining = 0;    // stop writing
4927            }
4928            tracksToRemove->add(track);
4929        } else if (track->isFlushPending()) {
4930            track->flushAck();
4931            if (last) {
4932                mFlushPending = true;
4933            }
4934        } else if (track->isResumePending()){
4935            track->resumeAck();
4936            if (last) {
4937                if (mPausedBytesRemaining) {
4938                    // Need to continue write that was interrupted
4939                    mCurrentWriteLength = mPausedWriteLength;
4940                    mBytesRemaining = mPausedBytesRemaining;
4941                    mPausedBytesRemaining = 0;
4942                }
4943                if (mHwPaused) {
4944                    doHwResume = true;
4945                    mHwPaused = false;
4946                    // threadLoop_mix() will handle the case that we need to
4947                    // resume an interrupted write
4948                }
4949                // enable write to audio HAL
4950                sleepTime = 0;
4951
4952                // Do not handle new data in this iteration even if track->framesReady()
4953                mixerStatus = MIXER_TRACKS_ENABLED;
4954            }
4955        }  else if (track->framesReady() && track->isReady() &&
4956                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4957            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4958            if (track->mFillingUpStatus == Track::FS_FILLED) {
4959                track->mFillingUpStatus = Track::FS_ACTIVE;
4960                // make sure processVolume_l() will apply new volume even if 0
4961                mLeftVolFloat = mRightVolFloat = -1.0;
4962            }
4963
4964            if (last) {
4965                sp<Track> previousTrack = mPreviousTrack.promote();
4966                if (previousTrack != 0) {
4967                    if (track != previousTrack.get()) {
4968                        // Flush any data still being written from last track
4969                        mBytesRemaining = 0;
4970                        if (mPausedBytesRemaining) {
4971                            // Last track was paused so we also need to flush saved
4972                            // mixbuffer state and invalidate track so that it will
4973                            // re-submit that unwritten data when it is next resumed
4974                            mPausedBytesRemaining = 0;
4975                            // Invalidate is a bit drastic - would be more efficient
4976                            // to have a flag to tell client that some of the
4977                            // previously written data was lost
4978                            previousTrack->invalidate();
4979                        }
4980                        // flush data already sent to the DSP if changing audio session as audio
4981                        // comes from a different source. Also invalidate previous track to force a
4982                        // seek when resuming.
4983                        if (previousTrack->sessionId() != track->sessionId()) {
4984                            previousTrack->invalidate();
4985                        }
4986                    }
4987                }
4988                mPreviousTrack = track;
4989                // reset retry count
4990                track->mRetryCount = kMaxTrackRetriesOffload;
4991                mActiveTrack = t;
4992                mixerStatus = MIXER_TRACKS_READY;
4993            }
4994        } else {
4995            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4996            if (track->isStopping_1()) {
4997                // Hardware buffer can hold a large amount of audio so we must
4998                // wait for all current track's data to drain before we say
4999                // that the track is stopped.
5000                if (mBytesRemaining == 0) {
5001                    // Only start draining when all data in mixbuffer
5002                    // has been written
5003                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5004                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5005                    // do not drain if no data was ever sent to HAL (mStandby == true)
5006                    if (last && !mStandby) {
5007                        // do not modify drain sequence if we are already draining. This happens
5008                        // when resuming from pause after drain.
5009                        if ((mDrainSequence & 1) == 0) {
5010                            sleepTime = 0;
5011                            standbyTime = systemTime() + standbyDelay;
5012                            mixerStatus = MIXER_DRAIN_TRACK;
5013                            mDrainSequence += 2;
5014                        }
5015                        if (mHwPaused) {
5016                            // It is possible to move from PAUSED to STOPPING_1 without
5017                            // a resume so we must ensure hardware is running
5018                            doHwResume = true;
5019                            mHwPaused = false;
5020                        }
5021                    }
5022                }
5023            } else if (track->isStopping_2()) {
5024                // Drain has completed or we are in standby, signal presentation complete
5025                if (!(mDrainSequence & 1) || !last || mStandby) {
5026                    track->mState = TrackBase::STOPPED;
5027                    size_t audioHALFrames =
5028                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5029                    size_t framesWritten =
5030                            mBytesWritten / mOutput->getFrameSize();
5031                    track->presentationComplete(framesWritten, audioHALFrames);
5032                    track->reset();
5033                    tracksToRemove->add(track);
5034                }
5035            } else {
5036                // No buffers for this track. Give it a few chances to
5037                // fill a buffer, then remove it from active list.
5038                if (--(track->mRetryCount) <= 0) {
5039                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5040                          track->name());
5041                    tracksToRemove->add(track);
5042                    // indicate to client process that the track was disabled because of underrun;
5043                    // it will then automatically call start() when data is available
5044                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5045                } else if (last){
5046                    mixerStatus = MIXER_TRACKS_ENABLED;
5047                }
5048            }
5049        }
5050        // compute volume for this track
5051        processVolume_l(track, last);
5052    }
5053
5054    // make sure the pause/flush/resume sequence is executed in the right order.
5055    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5056    // before flush and then resume HW. This can happen in case of pause/flush/resume
5057    // if resume is received before pause is executed.
5058    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5059        mOutput->stream->pause(mOutput->stream);
5060    }
5061    if (mFlushPending) {
5062        flushHw_l();
5063        mFlushPending = false;
5064    }
5065    if (!mStandby && doHwResume) {
5066        mOutput->stream->resume(mOutput->stream);
5067    }
5068
5069    // remove all the tracks that need to be...
5070    removeTracks_l(*tracksToRemove);
5071
5072    return mixerStatus;
5073}
5074
5075// must be called with thread mutex locked
5076bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5077{
5078    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5079          mWriteAckSequence, mDrainSequence);
5080    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5081        return true;
5082    }
5083    return false;
5084}
5085
5086bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5087{
5088    Mutex::Autolock _l(mLock);
5089    return waitingAsyncCallback_l();
5090}
5091
5092void AudioFlinger::OffloadThread::flushHw_l()
5093{
5094    DirectOutputThread::flushHw_l();
5095    // Flush anything still waiting in the mixbuffer
5096    mCurrentWriteLength = 0;
5097    mBytesRemaining = 0;
5098    mPausedWriteLength = 0;
5099    mPausedBytesRemaining = 0;
5100
5101    if (mUseAsyncWrite) {
5102        // discard any pending drain or write ack by incrementing sequence
5103        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5104        mDrainSequence = (mDrainSequence + 2) & ~1;
5105        ALOG_ASSERT(mCallbackThread != 0);
5106        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5107        mCallbackThread->setDraining(mDrainSequence);
5108    }
5109}
5110
5111void AudioFlinger::OffloadThread::onAddNewTrack_l()
5112{
5113    sp<Track> previousTrack = mPreviousTrack.promote();
5114    sp<Track> latestTrack = mLatestActiveTrack.promote();
5115
5116    if (previousTrack != 0 && latestTrack != 0 &&
5117        (previousTrack->sessionId() != latestTrack->sessionId())) {
5118        mFlushPending = true;
5119    }
5120    PlaybackThread::onAddNewTrack_l();
5121}
5122
5123// ----------------------------------------------------------------------------
5124
5125AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5126        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
5127    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5128                DUPLICATING),
5129        mWaitTimeMs(UINT_MAX)
5130{
5131    addOutputTrack(mainThread);
5132}
5133
5134AudioFlinger::DuplicatingThread::~DuplicatingThread()
5135{
5136    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5137        mOutputTracks[i]->destroy();
5138    }
5139}
5140
5141void AudioFlinger::DuplicatingThread::threadLoop_mix()
5142{
5143    // mix buffers...
5144    if (outputsReady(outputTracks)) {
5145        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5146    } else {
5147        if (mMixerBufferValid) {
5148            memset(mMixerBuffer, 0, mMixerBufferSize);
5149        } else {
5150            memset(mSinkBuffer, 0, mSinkBufferSize);
5151        }
5152    }
5153    sleepTime = 0;
5154    writeFrames = mNormalFrameCount;
5155    mCurrentWriteLength = mSinkBufferSize;
5156    standbyTime = systemTime() + standbyDelay;
5157}
5158
5159void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5160{
5161    if (sleepTime == 0) {
5162        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5163            sleepTime = activeSleepTime;
5164        } else {
5165            sleepTime = idleSleepTime;
5166        }
5167    } else if (mBytesWritten != 0) {
5168        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5169            writeFrames = mNormalFrameCount;
5170            memset(mSinkBuffer, 0, mSinkBufferSize);
5171        } else {
5172            // flush remaining overflow buffers in output tracks
5173            writeFrames = 0;
5174        }
5175        sleepTime = 0;
5176    }
5177}
5178
5179ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5180{
5181    for (size_t i = 0; i < outputTracks.size(); i++) {
5182        outputTracks[i]->write(mSinkBuffer, writeFrames);
5183    }
5184    mStandby = false;
5185    return (ssize_t)mSinkBufferSize;
5186}
5187
5188void AudioFlinger::DuplicatingThread::threadLoop_standby()
5189{
5190    // DuplicatingThread implements standby by stopping all tracks
5191    for (size_t i = 0; i < outputTracks.size(); i++) {
5192        outputTracks[i]->stop();
5193    }
5194}
5195
5196void AudioFlinger::DuplicatingThread::saveOutputTracks()
5197{
5198    outputTracks = mOutputTracks;
5199}
5200
5201void AudioFlinger::DuplicatingThread::clearOutputTracks()
5202{
5203    outputTracks.clear();
5204}
5205
5206void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5207{
5208    Mutex::Autolock _l(mLock);
5209    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5210    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5211    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5212    const size_t frameCount =
5213            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5214    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5215    // from different OutputTracks and their associated MixerThreads (e.g. one may
5216    // nearly empty and the other may be dropping data).
5217
5218    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5219                                            this,
5220                                            mSampleRate,
5221                                            mFormat,
5222                                            mChannelMask,
5223                                            frameCount,
5224                                            IPCThreadState::self()->getCallingUid());
5225    if (outputTrack->cblk() != NULL) {
5226        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5227        mOutputTracks.add(outputTrack);
5228        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5229        updateWaitTime_l();
5230    }
5231}
5232
5233void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5234{
5235    Mutex::Autolock _l(mLock);
5236    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5237        if (mOutputTracks[i]->thread() == thread) {
5238            mOutputTracks[i]->destroy();
5239            mOutputTracks.removeAt(i);
5240            updateWaitTime_l();
5241            if (thread->getOutput() == mOutput) {
5242                mOutput = NULL;
5243            }
5244            return;
5245        }
5246    }
5247    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5248}
5249
5250// caller must hold mLock
5251void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5252{
5253    mWaitTimeMs = UINT_MAX;
5254    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5255        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5256        if (strong != 0) {
5257            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5258            if (waitTimeMs < mWaitTimeMs) {
5259                mWaitTimeMs = waitTimeMs;
5260            }
5261        }
5262    }
5263}
5264
5265
5266bool AudioFlinger::DuplicatingThread::outputsReady(
5267        const SortedVector< sp<OutputTrack> > &outputTracks)
5268{
5269    for (size_t i = 0; i < outputTracks.size(); i++) {
5270        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5271        if (thread == 0) {
5272            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5273                    outputTracks[i].get());
5274            return false;
5275        }
5276        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5277        // see note at standby() declaration
5278        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5279            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5280                    thread.get());
5281            return false;
5282        }
5283    }
5284    return true;
5285}
5286
5287uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5288{
5289    return (mWaitTimeMs * 1000) / 2;
5290}
5291
5292void AudioFlinger::DuplicatingThread::cacheParameters_l()
5293{
5294    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5295    updateWaitTime_l();
5296
5297    MixerThread::cacheParameters_l();
5298}
5299
5300// ----------------------------------------------------------------------------
5301//      Record
5302// ----------------------------------------------------------------------------
5303
5304AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5305                                         AudioStreamIn *input,
5306                                         audio_io_handle_t id,
5307                                         audio_devices_t outDevice,
5308                                         audio_devices_t inDevice
5309#ifdef TEE_SINK
5310                                         , const sp<NBAIO_Sink>& teeSink
5311#endif
5312                                         ) :
5313    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
5314    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5315    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5316    mRsmpInRear(0)
5317#ifdef TEE_SINK
5318    , mTeeSink(teeSink)
5319#endif
5320    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5321            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5322    // mFastCapture below
5323    , mFastCaptureFutex(0)
5324    // mInputSource
5325    // mPipeSink
5326    // mPipeSource
5327    , mPipeFramesP2(0)
5328    // mPipeMemory
5329    // mFastCaptureNBLogWriter
5330    , mFastTrackAvail(false)
5331{
5332    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5333    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5334
5335    readInputParameters_l();
5336
5337    // create an NBAIO source for the HAL input stream, and negotiate
5338    mInputSource = new AudioStreamInSource(input->stream);
5339    size_t numCounterOffers = 0;
5340    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5341    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5342    ALOG_ASSERT(index == 0);
5343
5344    // initialize fast capture depending on configuration
5345    bool initFastCapture;
5346    switch (kUseFastCapture) {
5347    case FastCapture_Never:
5348        initFastCapture = false;
5349        break;
5350    case FastCapture_Always:
5351        initFastCapture = true;
5352        break;
5353    case FastCapture_Static:
5354        uint32_t primaryOutputSampleRate;
5355        {
5356            AutoMutex _l(audioFlinger->mHardwareLock);
5357            primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
5358        }
5359        initFastCapture =
5360                // either capture sample rate is same as (a reasonable) primary output sample rate
5361                ((isMusicRate(primaryOutputSampleRate) &&
5362                    (mSampleRate == primaryOutputSampleRate)) ||
5363                // or primary output sample rate is unknown, and capture sample rate is reasonable
5364                ((primaryOutputSampleRate == 0) &&
5365                        isMusicRate(mSampleRate))) &&
5366                // and the buffer size is < 12 ms
5367                (mFrameCount * 1000) / mSampleRate < 12;
5368        break;
5369    // case FastCapture_Dynamic:
5370    }
5371
5372    if (initFastCapture) {
5373        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5374        NBAIO_Format format = mInputSource->format();
5375        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5376        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5377        void *pipeBuffer;
5378        const sp<MemoryDealer> roHeap(readOnlyHeap());
5379        sp<IMemory> pipeMemory;
5380        if ((roHeap == 0) ||
5381                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5382                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5383            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5384            goto failed;
5385        }
5386        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5387        memset(pipeBuffer, 0, pipeSize);
5388        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5389        const NBAIO_Format offers[1] = {format};
5390        size_t numCounterOffers = 0;
5391        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5392        ALOG_ASSERT(index == 0);
5393        mPipeSink = pipe;
5394        PipeReader *pipeReader = new PipeReader(*pipe);
5395        numCounterOffers = 0;
5396        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5397        ALOG_ASSERT(index == 0);
5398        mPipeSource = pipeReader;
5399        mPipeFramesP2 = pipeFramesP2;
5400        mPipeMemory = pipeMemory;
5401
5402        // create fast capture
5403        mFastCapture = new FastCapture();
5404        FastCaptureStateQueue *sq = mFastCapture->sq();
5405#ifdef STATE_QUEUE_DUMP
5406        // FIXME
5407#endif
5408        FastCaptureState *state = sq->begin();
5409        state->mCblk = NULL;
5410        state->mInputSource = mInputSource.get();
5411        state->mInputSourceGen++;
5412        state->mPipeSink = pipe;
5413        state->mPipeSinkGen++;
5414        state->mFrameCount = mFrameCount;
5415        state->mCommand = FastCaptureState::COLD_IDLE;
5416        // already done in constructor initialization list
5417        //mFastCaptureFutex = 0;
5418        state->mColdFutexAddr = &mFastCaptureFutex;
5419        state->mColdGen++;
5420        state->mDumpState = &mFastCaptureDumpState;
5421#ifdef TEE_SINK
5422        // FIXME
5423#endif
5424        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5425        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5426        sq->end();
5427        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5428
5429        // start the fast capture
5430        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5431        pid_t tid = mFastCapture->getTid();
5432        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
5433        if (err != 0) {
5434            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
5435                    kPriorityFastCapture, getpid_cached, tid, err);
5436        }
5437
5438#ifdef AUDIO_WATCHDOG
5439        // FIXME
5440#endif
5441
5442        mFastTrackAvail = true;
5443    }
5444failed: ;
5445
5446    // FIXME mNormalSource
5447}
5448
5449AudioFlinger::RecordThread::~RecordThread()
5450{
5451    if (mFastCapture != 0) {
5452        FastCaptureStateQueue *sq = mFastCapture->sq();
5453        FastCaptureState *state = sq->begin();
5454        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5455            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5456            if (old == -1) {
5457                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5458            }
5459        }
5460        state->mCommand = FastCaptureState::EXIT;
5461        sq->end();
5462        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5463        mFastCapture->join();
5464        mFastCapture.clear();
5465    }
5466    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5467    mAudioFlinger->unregisterWriter(mNBLogWriter);
5468    free(mRsmpInBuffer);
5469}
5470
5471void AudioFlinger::RecordThread::onFirstRef()
5472{
5473    run(mThreadName, PRIORITY_URGENT_AUDIO);
5474}
5475
5476bool AudioFlinger::RecordThread::threadLoop()
5477{
5478    nsecs_t lastWarning = 0;
5479
5480    inputStandBy();
5481
5482reacquire_wakelock:
5483    sp<RecordTrack> activeTrack;
5484    int activeTracksGen;
5485    {
5486        Mutex::Autolock _l(mLock);
5487        size_t size = mActiveTracks.size();
5488        activeTracksGen = mActiveTracksGen;
5489        if (size > 0) {
5490            // FIXME an arbitrary choice
5491            activeTrack = mActiveTracks[0];
5492            acquireWakeLock_l(activeTrack->uid());
5493            if (size > 1) {
5494                SortedVector<int> tmp;
5495                for (size_t i = 0; i < size; i++) {
5496                    tmp.add(mActiveTracks[i]->uid());
5497                }
5498                updateWakeLockUids_l(tmp);
5499            }
5500        } else {
5501            acquireWakeLock_l(-1);
5502        }
5503    }
5504
5505    // used to request a deferred sleep, to be executed later while mutex is unlocked
5506    uint32_t sleepUs = 0;
5507
5508    // loop while there is work to do
5509    for (;;) {
5510        Vector< sp<EffectChain> > effectChains;
5511
5512        // sleep with mutex unlocked
5513        if (sleepUs > 0) {
5514            ATRACE_BEGIN("sleep");
5515            usleep(sleepUs);
5516            ATRACE_END();
5517            sleepUs = 0;
5518        }
5519
5520        // activeTracks accumulates a copy of a subset of mActiveTracks
5521        Vector< sp<RecordTrack> > activeTracks;
5522
5523        // reference to the (first and only) active fast track
5524        sp<RecordTrack> fastTrack;
5525
5526        // reference to a fast track which is about to be removed
5527        sp<RecordTrack> fastTrackToRemove;
5528
5529        { // scope for mLock
5530            Mutex::Autolock _l(mLock);
5531
5532            processConfigEvents_l();
5533
5534            // check exitPending here because checkForNewParameters_l() and
5535            // checkForNewParameters_l() can temporarily release mLock
5536            if (exitPending()) {
5537                break;
5538            }
5539
5540            // if no active track(s), then standby and release wakelock
5541            size_t size = mActiveTracks.size();
5542            if (size == 0) {
5543                standbyIfNotAlreadyInStandby();
5544                // exitPending() can't become true here
5545                releaseWakeLock_l();
5546                ALOGV("RecordThread: loop stopping");
5547                // go to sleep
5548                mWaitWorkCV.wait(mLock);
5549                ALOGV("RecordThread: loop starting");
5550                goto reacquire_wakelock;
5551            }
5552
5553            if (mActiveTracksGen != activeTracksGen) {
5554                activeTracksGen = mActiveTracksGen;
5555                SortedVector<int> tmp;
5556                for (size_t i = 0; i < size; i++) {
5557                    tmp.add(mActiveTracks[i]->uid());
5558                }
5559                updateWakeLockUids_l(tmp);
5560            }
5561
5562            bool doBroadcast = false;
5563            for (size_t i = 0; i < size; ) {
5564
5565                activeTrack = mActiveTracks[i];
5566                if (activeTrack->isTerminated()) {
5567                    if (activeTrack->isFastTrack()) {
5568                        ALOG_ASSERT(fastTrackToRemove == 0);
5569                        fastTrackToRemove = activeTrack;
5570                    }
5571                    removeTrack_l(activeTrack);
5572                    mActiveTracks.remove(activeTrack);
5573                    mActiveTracksGen++;
5574                    size--;
5575                    continue;
5576                }
5577
5578                TrackBase::track_state activeTrackState = activeTrack->mState;
5579                switch (activeTrackState) {
5580
5581                case TrackBase::PAUSING:
5582                    mActiveTracks.remove(activeTrack);
5583                    mActiveTracksGen++;
5584                    doBroadcast = true;
5585                    size--;
5586                    continue;
5587
5588                case TrackBase::STARTING_1:
5589                    sleepUs = 10000;
5590                    i++;
5591                    continue;
5592
5593                case TrackBase::STARTING_2:
5594                    doBroadcast = true;
5595                    mStandby = false;
5596                    activeTrack->mState = TrackBase::ACTIVE;
5597                    break;
5598
5599                case TrackBase::ACTIVE:
5600                    break;
5601
5602                case TrackBase::IDLE:
5603                    i++;
5604                    continue;
5605
5606                default:
5607                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5608                }
5609
5610                activeTracks.add(activeTrack);
5611                i++;
5612
5613                if (activeTrack->isFastTrack()) {
5614                    ALOG_ASSERT(!mFastTrackAvail);
5615                    ALOG_ASSERT(fastTrack == 0);
5616                    fastTrack = activeTrack;
5617                }
5618            }
5619            if (doBroadcast) {
5620                mStartStopCond.broadcast();
5621            }
5622
5623            // sleep if there are no active tracks to process
5624            if (activeTracks.size() == 0) {
5625                if (sleepUs == 0) {
5626                    sleepUs = kRecordThreadSleepUs;
5627                }
5628                continue;
5629            }
5630            sleepUs = 0;
5631
5632            lockEffectChains_l(effectChains);
5633        }
5634
5635        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5636
5637        size_t size = effectChains.size();
5638        for (size_t i = 0; i < size; i++) {
5639            // thread mutex is not locked, but effect chain is locked
5640            effectChains[i]->process_l();
5641        }
5642
5643        // Push a new fast capture state if fast capture is not already running, or cblk change
5644        if (mFastCapture != 0) {
5645            FastCaptureStateQueue *sq = mFastCapture->sq();
5646            FastCaptureState *state = sq->begin();
5647            bool didModify = false;
5648            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5649            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5650                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5651                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5652                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5653                    if (old == -1) {
5654                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5655                    }
5656                }
5657                state->mCommand = FastCaptureState::READ_WRITE;
5658#if 0   // FIXME
5659                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5660                        FastThreadDumpState::kSamplingNforLowRamDevice :
5661                        FastThreadDumpState::kSamplingN);
5662#endif
5663                didModify = true;
5664            }
5665            audio_track_cblk_t *cblkOld = state->mCblk;
5666            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5667            if (cblkNew != cblkOld) {
5668                state->mCblk = cblkNew;
5669                // block until acked if removing a fast track
5670                if (cblkOld != NULL) {
5671                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5672                }
5673                didModify = true;
5674            }
5675            sq->end(didModify);
5676            if (didModify) {
5677                sq->push(block);
5678#if 0
5679                if (kUseFastCapture == FastCapture_Dynamic) {
5680                    mNormalSource = mPipeSource;
5681                }
5682#endif
5683            }
5684        }
5685
5686        // now run the fast track destructor with thread mutex unlocked
5687        fastTrackToRemove.clear();
5688
5689        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5690        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5691        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5692        // If destination is non-contiguous, first read past the nominal end of buffer, then
5693        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5694
5695        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5696        ssize_t framesRead;
5697
5698        // If an NBAIO source is present, use it to read the normal capture's data
5699        if (mPipeSource != 0) {
5700            size_t framesToRead = mBufferSize / mFrameSize;
5701            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5702                    framesToRead, AudioBufferProvider::kInvalidPTS);
5703            if (framesRead == 0) {
5704                // since pipe is non-blocking, simulate blocking input
5705                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5706            }
5707        // otherwise use the HAL / AudioStreamIn directly
5708        } else {
5709            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5710                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5711            if (bytesRead < 0) {
5712                framesRead = bytesRead;
5713            } else {
5714                framesRead = bytesRead / mFrameSize;
5715            }
5716        }
5717
5718        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5719            ALOGE("read failed: framesRead=%d", framesRead);
5720            // Force input into standby so that it tries to recover at next read attempt
5721            inputStandBy();
5722            sleepUs = kRecordThreadSleepUs;
5723        }
5724        if (framesRead <= 0) {
5725            goto unlock;
5726        }
5727        ALOG_ASSERT(framesRead > 0);
5728
5729        if (mTeeSink != 0) {
5730            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5731        }
5732        // If destination is non-contiguous, we now correct for reading past end of buffer.
5733        {
5734            size_t part1 = mRsmpInFramesP2 - rear;
5735            if ((size_t) framesRead > part1) {
5736                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5737                        (framesRead - part1) * mFrameSize);
5738            }
5739        }
5740        rear = mRsmpInRear += framesRead;
5741
5742        size = activeTracks.size();
5743        // loop over each active track
5744        for (size_t i = 0; i < size; i++) {
5745            activeTrack = activeTracks[i];
5746
5747            // skip fast tracks, as those are handled directly by FastCapture
5748            if (activeTrack->isFastTrack()) {
5749                continue;
5750            }
5751
5752            // TODO: This code probably should be moved to RecordTrack.
5753            // TODO: Update the activeTrack buffer converter in case of reconfigure.
5754
5755            enum {
5756                OVERRUN_UNKNOWN,
5757                OVERRUN_TRUE,
5758                OVERRUN_FALSE
5759            } overrun = OVERRUN_UNKNOWN;
5760
5761            // loop over getNextBuffer to handle circular sink
5762            for (;;) {
5763
5764                activeTrack->mSink.frameCount = ~0;
5765                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5766                size_t framesOut = activeTrack->mSink.frameCount;
5767                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5768
5769                // check available frames and handle overrun conditions
5770                // if the record track isn't draining fast enough.
5771                bool hasOverrun;
5772                size_t framesIn;
5773                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5774                if (hasOverrun) {
5775                    overrun = OVERRUN_TRUE;
5776                }
5777                if (framesOut == 0 || framesIn == 0) {
5778                    break;
5779                }
5780
5781                // Don't allow framesOut to be larger than what is possible with resampling
5782                // from framesIn.
5783                // This isn't strictly necessary but helps limit buffer resizing in
5784                // RecordBufferConverter.  TODO: remove when no longer needed.
5785                framesOut = min(framesOut,
5786                        destinationFramesPossible(
5787                                framesIn, mSampleRate, activeTrack->mSampleRate));
5788                // process frames from the RecordThread buffer provider to the RecordTrack buffer
5789                framesOut = activeTrack->mRecordBufferConverter->convert(
5790                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5791
5792                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5793                    overrun = OVERRUN_FALSE;
5794                }
5795
5796                if (activeTrack->mFramesToDrop == 0) {
5797                    if (framesOut > 0) {
5798                        activeTrack->mSink.frameCount = framesOut;
5799                        activeTrack->releaseBuffer(&activeTrack->mSink);
5800                    }
5801                } else {
5802                    // FIXME could do a partial drop of framesOut
5803                    if (activeTrack->mFramesToDrop > 0) {
5804                        activeTrack->mFramesToDrop -= framesOut;
5805                        if (activeTrack->mFramesToDrop <= 0) {
5806                            activeTrack->clearSyncStartEvent();
5807                        }
5808                    } else {
5809                        activeTrack->mFramesToDrop += framesOut;
5810                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5811                                activeTrack->mSyncStartEvent->isCancelled()) {
5812                            ALOGW("Synced record %s, session %d, trigger session %d",
5813                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5814                                  activeTrack->sessionId(),
5815                                  (activeTrack->mSyncStartEvent != 0) ?
5816                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5817                            activeTrack->clearSyncStartEvent();
5818                        }
5819                    }
5820                }
5821
5822                if (framesOut == 0) {
5823                    break;
5824                }
5825            }
5826
5827            switch (overrun) {
5828            case OVERRUN_TRUE:
5829                // client isn't retrieving buffers fast enough
5830                if (!activeTrack->setOverflow()) {
5831                    nsecs_t now = systemTime();
5832                    // FIXME should lastWarning per track?
5833                    if ((now - lastWarning) > kWarningThrottleNs) {
5834                        ALOGW("RecordThread: buffer overflow");
5835                        lastWarning = now;
5836                    }
5837                }
5838                break;
5839            case OVERRUN_FALSE:
5840                activeTrack->clearOverflow();
5841                break;
5842            case OVERRUN_UNKNOWN:
5843                break;
5844            }
5845
5846        }
5847
5848unlock:
5849        // enable changes in effect chain
5850        unlockEffectChains(effectChains);
5851        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5852    }
5853
5854    standbyIfNotAlreadyInStandby();
5855
5856    {
5857        Mutex::Autolock _l(mLock);
5858        for (size_t i = 0; i < mTracks.size(); i++) {
5859            sp<RecordTrack> track = mTracks[i];
5860            track->invalidate();
5861        }
5862        mActiveTracks.clear();
5863        mActiveTracksGen++;
5864        mStartStopCond.broadcast();
5865    }
5866
5867    releaseWakeLock();
5868
5869    ALOGV("RecordThread %p exiting", this);
5870    return false;
5871}
5872
5873void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5874{
5875    if (!mStandby) {
5876        inputStandBy();
5877        mStandby = true;
5878    }
5879}
5880
5881void AudioFlinger::RecordThread::inputStandBy()
5882{
5883    // Idle the fast capture if it's currently running
5884    if (mFastCapture != 0) {
5885        FastCaptureStateQueue *sq = mFastCapture->sq();
5886        FastCaptureState *state = sq->begin();
5887        if (!(state->mCommand & FastCaptureState::IDLE)) {
5888            state->mCommand = FastCaptureState::COLD_IDLE;
5889            state->mColdFutexAddr = &mFastCaptureFutex;
5890            state->mColdGen++;
5891            mFastCaptureFutex = 0;
5892            sq->end();
5893            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5894            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5895#if 0
5896            if (kUseFastCapture == FastCapture_Dynamic) {
5897                // FIXME
5898            }
5899#endif
5900#ifdef AUDIO_WATCHDOG
5901            // FIXME
5902#endif
5903        } else {
5904            sq->end(false /*didModify*/);
5905        }
5906    }
5907    mInput->stream->common.standby(&mInput->stream->common);
5908}
5909
5910// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
5911sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5912        const sp<AudioFlinger::Client>& client,
5913        uint32_t sampleRate,
5914        audio_format_t format,
5915        audio_channel_mask_t channelMask,
5916        size_t *pFrameCount,
5917        int sessionId,
5918        size_t *notificationFrames,
5919        int uid,
5920        IAudioFlinger::track_flags_t *flags,
5921        pid_t tid,
5922        status_t *status)
5923{
5924    size_t frameCount = *pFrameCount;
5925    sp<RecordTrack> track;
5926    status_t lStatus;
5927
5928    // client expresses a preference for FAST, but we get the final say
5929    if (*flags & IAudioFlinger::TRACK_FAST) {
5930      if (
5931            // we formerly checked for a callback handler (non-0 tid),
5932            // but that is no longer required for TRANSFER_OBTAIN mode
5933            //
5934            // frame count is not specified, or is exactly the pipe depth
5935            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5936            // PCM data
5937            audio_is_linear_pcm(format) &&
5938            // native format
5939            (format == mFormat) &&
5940            // native channel mask
5941            (channelMask == mChannelMask) &&
5942            // native hardware sample rate
5943            (sampleRate == mSampleRate) &&
5944            // record thread has an associated fast capture
5945            hasFastCapture() &&
5946            // there are sufficient fast track slots available
5947            mFastTrackAvail
5948        ) {
5949        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5950                frameCount, mFrameCount);
5951      } else {
5952        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5953                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5954                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5955                frameCount, mFrameCount, mPipeFramesP2,
5956                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5957                hasFastCapture(), tid, mFastTrackAvail);
5958        *flags &= ~IAudioFlinger::TRACK_FAST;
5959      }
5960    }
5961
5962    // compute track buffer size in frames, and suggest the notification frame count
5963    if (*flags & IAudioFlinger::TRACK_FAST) {
5964        // fast track: frame count is exactly the pipe depth
5965        frameCount = mPipeFramesP2;
5966        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5967        *notificationFrames = mFrameCount;
5968    } else {
5969        // not fast track: max notification period is resampled equivalent of one HAL buffer time
5970        //                 or 20 ms if there is a fast capture
5971        // TODO This could be a roundupRatio inline, and const
5972        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5973                * sampleRate + mSampleRate - 1) / mSampleRate;
5974        // minimum number of notification periods is at least kMinNotifications,
5975        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5976        static const size_t kMinNotifications = 3;
5977        static const uint32_t kMinMs = 30;
5978        // TODO This could be a roundupRatio inline
5979        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5980        // TODO This could be a roundupRatio inline
5981        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5982                maxNotificationFrames;
5983        const size_t minFrameCount = maxNotificationFrames *
5984                max(kMinNotifications, minNotificationsByMs);
5985        frameCount = max(frameCount, minFrameCount);
5986        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5987            *notificationFrames = maxNotificationFrames;
5988        }
5989    }
5990    *pFrameCount = frameCount;
5991
5992    lStatus = initCheck();
5993    if (lStatus != NO_ERROR) {
5994        ALOGE("createRecordTrack_l() audio driver not initialized");
5995        goto Exit;
5996    }
5997
5998    { // scope for mLock
5999        Mutex::Autolock _l(mLock);
6000
6001        track = new RecordTrack(this, client, sampleRate,
6002                      format, channelMask, frameCount, NULL, sessionId, uid,
6003                      *flags, TrackBase::TYPE_DEFAULT);
6004
6005        lStatus = track->initCheck();
6006        if (lStatus != NO_ERROR) {
6007            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6008            // track must be cleared from the caller as the caller has the AF lock
6009            goto Exit;
6010        }
6011        mTracks.add(track);
6012
6013        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6014        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6015                        mAudioFlinger->btNrecIsOff();
6016        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6017        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6018
6019        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6020            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6021            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6022            // so ask activity manager to do this on our behalf
6023            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6024        }
6025    }
6026
6027    lStatus = NO_ERROR;
6028
6029Exit:
6030    *status = lStatus;
6031    return track;
6032}
6033
6034status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6035                                           AudioSystem::sync_event_t event,
6036                                           int triggerSession)
6037{
6038    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6039    sp<ThreadBase> strongMe = this;
6040    status_t status = NO_ERROR;
6041
6042    if (event == AudioSystem::SYNC_EVENT_NONE) {
6043        recordTrack->clearSyncStartEvent();
6044    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6045        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6046                                       triggerSession,
6047                                       recordTrack->sessionId(),
6048                                       syncStartEventCallback,
6049                                       recordTrack);
6050        // Sync event can be cancelled by the trigger session if the track is not in a
6051        // compatible state in which case we start record immediately
6052        if (recordTrack->mSyncStartEvent->isCancelled()) {
6053            recordTrack->clearSyncStartEvent();
6054        } else {
6055            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6056            recordTrack->mFramesToDrop = -
6057                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6058        }
6059    }
6060
6061    {
6062        // This section is a rendezvous between binder thread executing start() and RecordThread
6063        AutoMutex lock(mLock);
6064        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6065            if (recordTrack->mState == TrackBase::PAUSING) {
6066                ALOGV("active record track PAUSING -> ACTIVE");
6067                recordTrack->mState = TrackBase::ACTIVE;
6068            } else {
6069                ALOGV("active record track state %d", recordTrack->mState);
6070            }
6071            return status;
6072        }
6073
6074        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6075        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6076        //      or using a separate command thread
6077        recordTrack->mState = TrackBase::STARTING_1;
6078        mActiveTracks.add(recordTrack);
6079        mActiveTracksGen++;
6080        status_t status = NO_ERROR;
6081        if (recordTrack->isExternalTrack()) {
6082            mLock.unlock();
6083            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6084            mLock.lock();
6085            // FIXME should verify that recordTrack is still in mActiveTracks
6086            if (status != NO_ERROR) {
6087                mActiveTracks.remove(recordTrack);
6088                mActiveTracksGen++;
6089                recordTrack->clearSyncStartEvent();
6090                ALOGV("RecordThread::start error %d", status);
6091                return status;
6092            }
6093        }
6094        // Catch up with current buffer indices if thread is already running.
6095        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6096        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6097        // see previously buffered data before it called start(), but with greater risk of overrun.
6098
6099        recordTrack->mResamplerBufferProvider->reset();
6100        // clear any converter state as new data will be discontinuous
6101        recordTrack->mRecordBufferConverter->reset();
6102        recordTrack->mState = TrackBase::STARTING_2;
6103        // signal thread to start
6104        mWaitWorkCV.broadcast();
6105        if (mActiveTracks.indexOf(recordTrack) < 0) {
6106            ALOGV("Record failed to start");
6107            status = BAD_VALUE;
6108            goto startError;
6109        }
6110        return status;
6111    }
6112
6113startError:
6114    if (recordTrack->isExternalTrack()) {
6115        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6116    }
6117    recordTrack->clearSyncStartEvent();
6118    // FIXME I wonder why we do not reset the state here?
6119    return status;
6120}
6121
6122void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6123{
6124    sp<SyncEvent> strongEvent = event.promote();
6125
6126    if (strongEvent != 0) {
6127        sp<RefBase> ptr = strongEvent->cookie().promote();
6128        if (ptr != 0) {
6129            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6130            recordTrack->handleSyncStartEvent(strongEvent);
6131        }
6132    }
6133}
6134
6135bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6136    ALOGV("RecordThread::stop");
6137    AutoMutex _l(mLock);
6138    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6139        return false;
6140    }
6141    // note that threadLoop may still be processing the track at this point [without lock]
6142    recordTrack->mState = TrackBase::PAUSING;
6143    // do not wait for mStartStopCond if exiting
6144    if (exitPending()) {
6145        return true;
6146    }
6147    // FIXME incorrect usage of wait: no explicit predicate or loop
6148    mStartStopCond.wait(mLock);
6149    // if we have been restarted, recordTrack is in mActiveTracks here
6150    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6151        ALOGV("Record stopped OK");
6152        return true;
6153    }
6154    return false;
6155}
6156
6157bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6158{
6159    return false;
6160}
6161
6162status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6163{
6164#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6165    if (!isValidSyncEvent(event)) {
6166        return BAD_VALUE;
6167    }
6168
6169    int eventSession = event->triggerSession();
6170    status_t ret = NAME_NOT_FOUND;
6171
6172    Mutex::Autolock _l(mLock);
6173
6174    for (size_t i = 0; i < mTracks.size(); i++) {
6175        sp<RecordTrack> track = mTracks[i];
6176        if (eventSession == track->sessionId()) {
6177            (void) track->setSyncEvent(event);
6178            ret = NO_ERROR;
6179        }
6180    }
6181    return ret;
6182#else
6183    return BAD_VALUE;
6184#endif
6185}
6186
6187// destroyTrack_l() must be called with ThreadBase::mLock held
6188void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6189{
6190    track->terminate();
6191    track->mState = TrackBase::STOPPED;
6192    // active tracks are removed by threadLoop()
6193    if (mActiveTracks.indexOf(track) < 0) {
6194        removeTrack_l(track);
6195    }
6196}
6197
6198void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6199{
6200    mTracks.remove(track);
6201    // need anything related to effects here?
6202    if (track->isFastTrack()) {
6203        ALOG_ASSERT(!mFastTrackAvail);
6204        mFastTrackAvail = true;
6205    }
6206}
6207
6208void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6209{
6210    dumpInternals(fd, args);
6211    dumpTracks(fd, args);
6212    dumpEffectChains(fd, args);
6213}
6214
6215void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6216{
6217    dprintf(fd, "\nInput thread %p:\n", this);
6218
6219    dumpBase(fd, args);
6220
6221    if (mActiveTracks.size() == 0) {
6222        dprintf(fd, "  No active record clients\n");
6223    }
6224    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6225    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6226
6227    //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6228    const FastCaptureDumpState copy(mFastCaptureDumpState);
6229    copy.dump(fd);
6230}
6231
6232void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6233{
6234    const size_t SIZE = 256;
6235    char buffer[SIZE];
6236    String8 result;
6237
6238    size_t numtracks = mTracks.size();
6239    size_t numactive = mActiveTracks.size();
6240    size_t numactiveseen = 0;
6241    dprintf(fd, "  %d Tracks", numtracks);
6242    if (numtracks) {
6243        dprintf(fd, " of which %d are active\n", numactive);
6244        RecordTrack::appendDumpHeader(result);
6245        for (size_t i = 0; i < numtracks ; ++i) {
6246            sp<RecordTrack> track = mTracks[i];
6247            if (track != 0) {
6248                bool active = mActiveTracks.indexOf(track) >= 0;
6249                if (active) {
6250                    numactiveseen++;
6251                }
6252                track->dump(buffer, SIZE, active);
6253                result.append(buffer);
6254            }
6255        }
6256    } else {
6257        dprintf(fd, "\n");
6258    }
6259
6260    if (numactiveseen != numactive) {
6261        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6262                " not in the track list\n");
6263        result.append(buffer);
6264        RecordTrack::appendDumpHeader(result);
6265        for (size_t i = 0; i < numactive; ++i) {
6266            sp<RecordTrack> track = mActiveTracks[i];
6267            if (mTracks.indexOf(track) < 0) {
6268                track->dump(buffer, SIZE, true);
6269                result.append(buffer);
6270            }
6271        }
6272
6273    }
6274    write(fd, result.string(), result.size());
6275}
6276
6277
6278void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6279{
6280    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6281    RecordThread *recordThread = (RecordThread *) threadBase.get();
6282    mRsmpInFront = recordThread->mRsmpInRear;
6283    mRsmpInUnrel = 0;
6284}
6285
6286void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6287        size_t *framesAvailable, bool *hasOverrun)
6288{
6289    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6290    RecordThread *recordThread = (RecordThread *) threadBase.get();
6291    const int32_t rear = recordThread->mRsmpInRear;
6292    const int32_t front = mRsmpInFront;
6293    const ssize_t filled = rear - front;
6294
6295    size_t framesIn;
6296    bool overrun = false;
6297    if (filled < 0) {
6298        // should not happen, but treat like a massive overrun and re-sync
6299        framesIn = 0;
6300        mRsmpInFront = rear;
6301        overrun = true;
6302    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6303        framesIn = (size_t) filled;
6304    } else {
6305        // client is not keeping up with server, but give it latest data
6306        framesIn = recordThread->mRsmpInFrames;
6307        mRsmpInFront = /* front = */ rear - framesIn;
6308        overrun = true;
6309    }
6310    if (framesAvailable != NULL) {
6311        *framesAvailable = framesIn;
6312    }
6313    if (hasOverrun != NULL) {
6314        *hasOverrun = overrun;
6315    }
6316}
6317
6318// AudioBufferProvider interface
6319status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6320        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6321{
6322    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6323    if (threadBase == 0) {
6324        buffer->frameCount = 0;
6325        buffer->raw = NULL;
6326        return NOT_ENOUGH_DATA;
6327    }
6328    RecordThread *recordThread = (RecordThread *) threadBase.get();
6329    int32_t rear = recordThread->mRsmpInRear;
6330    int32_t front = mRsmpInFront;
6331    ssize_t filled = rear - front;
6332    // FIXME should not be P2 (don't want to increase latency)
6333    // FIXME if client not keeping up, discard
6334    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6335    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6336    front &= recordThread->mRsmpInFramesP2 - 1;
6337    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6338    if (part1 > (size_t) filled) {
6339        part1 = filled;
6340    }
6341    size_t ask = buffer->frameCount;
6342    ALOG_ASSERT(ask > 0);
6343    if (part1 > ask) {
6344        part1 = ask;
6345    }
6346    if (part1 == 0) {
6347        // out of data is fine since the resampler will return a short-count.
6348        buffer->raw = NULL;
6349        buffer->frameCount = 0;
6350        mRsmpInUnrel = 0;
6351        return NOT_ENOUGH_DATA;
6352    }
6353
6354    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6355    buffer->frameCount = part1;
6356    mRsmpInUnrel = part1;
6357    return NO_ERROR;
6358}
6359
6360// AudioBufferProvider interface
6361void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6362        AudioBufferProvider::Buffer* buffer)
6363{
6364    size_t stepCount = buffer->frameCount;
6365    if (stepCount == 0) {
6366        return;
6367    }
6368    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6369    mRsmpInUnrel -= stepCount;
6370    mRsmpInFront += stepCount;
6371    buffer->raw = NULL;
6372    buffer->frameCount = 0;
6373}
6374
6375AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6376        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6377        uint32_t srcSampleRate,
6378        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6379        uint32_t dstSampleRate) :
6380            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6381            // mSrcFormat
6382            // mSrcSampleRate
6383            // mDstChannelMask
6384            // mDstFormat
6385            // mDstSampleRate
6386            // mSrcChannelCount
6387            // mDstChannelCount
6388            // mDstFrameSize
6389            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6390            mResampler(NULL),
6391            mIsLegacyDownmix(false),
6392            mIsLegacyUpmix(false),
6393            mRequiresFloat(false),
6394            mInputConverterProvider(NULL)
6395{
6396    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6397            dstChannelMask, dstFormat, dstSampleRate);
6398}
6399
6400AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6401    free(mBuf);
6402    delete mResampler;
6403    delete mInputConverterProvider;
6404}
6405
6406size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6407        AudioBufferProvider *provider, size_t frames)
6408{
6409    if (mInputConverterProvider != NULL) {
6410        mInputConverterProvider->setBufferProvider(provider);
6411        provider = mInputConverterProvider;
6412    }
6413
6414    if (mResampler == NULL) {
6415        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6416                mSrcSampleRate, mSrcFormat, mDstFormat);
6417
6418        AudioBufferProvider::Buffer buffer;
6419        for (size_t i = frames; i > 0; ) {
6420            buffer.frameCount = i;
6421            status_t status = provider->getNextBuffer(&buffer, 0);
6422            if (status != OK || buffer.frameCount == 0) {
6423                frames -= i; // cannot fill request.
6424                break;
6425            }
6426            // format convert to destination buffer
6427            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6428
6429            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6430            i -= buffer.frameCount;
6431            provider->releaseBuffer(&buffer);
6432        }
6433    } else {
6434         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6435                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6436
6437         // reallocate buffer if needed
6438         if (mBufFrameSize != 0 && mBufFrames < frames) {
6439             free(mBuf);
6440             mBufFrames = frames;
6441             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6442         }
6443        // resampler accumulates, but we only have one source track
6444        memset(mBuf, 0, frames * mBufFrameSize);
6445        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6446        // format convert to destination buffer
6447        convertResampler(dst, mBuf, frames);
6448    }
6449    return frames;
6450}
6451
6452status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6453        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6454        uint32_t srcSampleRate,
6455        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6456        uint32_t dstSampleRate)
6457{
6458    // quick evaluation if there is any change.
6459    if (mSrcFormat == srcFormat
6460            && mSrcChannelMask == srcChannelMask
6461            && mSrcSampleRate == srcSampleRate
6462            && mDstFormat == dstFormat
6463            && mDstChannelMask == dstChannelMask
6464            && mDstSampleRate == dstSampleRate) {
6465        return NO_ERROR;
6466    }
6467
6468    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6469            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6470            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6471    const bool valid =
6472            audio_is_input_channel(srcChannelMask)
6473            && audio_is_input_channel(dstChannelMask)
6474            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6475            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6476            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6477            ; // no upsampling checks for now
6478    if (!valid) {
6479        return BAD_VALUE;
6480    }
6481
6482    mSrcFormat = srcFormat;
6483    mSrcChannelMask = srcChannelMask;
6484    mSrcSampleRate = srcSampleRate;
6485    mDstFormat = dstFormat;
6486    mDstChannelMask = dstChannelMask;
6487    mDstSampleRate = dstSampleRate;
6488
6489    // compute derived parameters
6490    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6491    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6492    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6493
6494    // do we need to resample?
6495    delete mResampler;
6496    mResampler = NULL;
6497    if (mSrcSampleRate != mDstSampleRate) {
6498        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6499                mSrcChannelCount, mDstSampleRate);
6500        mResampler->setSampleRate(mSrcSampleRate);
6501        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6502    }
6503
6504    // are we running legacy channel conversion modes?
6505    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6506                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6507                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6508    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6509                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6510                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6511
6512    // do we need to process in float?
6513    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6514
6515    // do we need a staging buffer to convert for destination (we can still optimize this)?
6516    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6517    if (mResampler != NULL) {
6518        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6519                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6520    } else if ((mIsLegacyUpmix || mIsLegacyDownmix) && mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6521        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6522    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6523        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6524    } else {
6525        mBufFrameSize = 0;
6526    }
6527    mBufFrames = 0; // force the buffer to be resized.
6528
6529    // do we need an input converter buffer provider to give us float?
6530    delete mInputConverterProvider;
6531    mInputConverterProvider = NULL;
6532    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6533        mInputConverterProvider = new ReformatBufferProvider(
6534                audio_channel_count_from_in_mask(mSrcChannelMask),
6535                mSrcFormat,
6536                AUDIO_FORMAT_PCM_FLOAT,
6537                256 /* provider buffer frame count */);
6538    }
6539
6540    // do we need a remixer to do channel mask conversion
6541    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6542        (void) memcpy_by_index_array_initialization_from_channel_mask(
6543                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6544    }
6545    return NO_ERROR;
6546}
6547
6548void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6549        void *dst, const void *src, size_t frames)
6550{
6551    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6552    if (mBufFrameSize != 0 && mBufFrames < frames) {
6553        free(mBuf);
6554        mBufFrames = frames;
6555        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6556    }
6557    // do we need to do legacy upmix and downmix?
6558    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6559        void *dstBuf = mBuf != NULL ? mBuf : dst;
6560        if (mIsLegacyUpmix) {
6561            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6562                    (const float *)src, frames);
6563        } else /*mIsLegacyDownmix */ {
6564            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6565                    (const float *)src, frames);
6566        }
6567        if (mBuf != NULL) {
6568            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6569                    frames * mDstChannelCount);
6570        }
6571        return;
6572    }
6573    // do we need to do channel mask conversion?
6574    if (mSrcChannelMask != mDstChannelMask) {
6575        void *dstBuf = mBuf != NULL ? mBuf : dst;
6576        memcpy_by_index_array(dstBuf, mDstChannelCount,
6577                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6578        if (dstBuf == dst) {
6579            return; // format is the same
6580        }
6581    }
6582    // convert to destination buffer
6583    const void *convertBuf = mBuf != NULL ? mBuf : src;
6584    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6585            frames * mDstChannelCount);
6586}
6587
6588void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6589        void *dst, /*not-a-const*/ void *src, size_t frames)
6590{
6591    // src buffer format is ALWAYS float when entering this routine
6592    if (mIsLegacyUpmix) {
6593        ; // mono to stereo already handled by resampler
6594    } else if (mIsLegacyDownmix
6595            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6596        // the resampler outputs stereo for mono input channel (a feature?)
6597        // must convert to mono
6598        downmix_to_mono_float_from_stereo_float((float *)src,
6599                (const float *)src, frames);
6600    } else if (mSrcChannelMask != mDstChannelMask) {
6601        // convert to mono channel again for channel mask conversion (could be skipped
6602        // with further optimization).
6603        if (mSrcChannelCount == 1) {
6604            downmix_to_mono_float_from_stereo_float((float *)src,
6605                (const float *)src, frames);
6606        }
6607        // convert to destination format (in place, OK as float is larger than other types)
6608        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6609            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6610                    frames * mSrcChannelCount);
6611        }
6612        // channel convert and save to dst
6613        memcpy_by_index_array(dst, mDstChannelCount,
6614                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6615        return;
6616    }
6617    // convert to destination format and save to dst
6618    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6619            frames * mDstChannelCount);
6620}
6621
6622bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6623                                                        status_t& status)
6624{
6625    bool reconfig = false;
6626
6627    status = NO_ERROR;
6628
6629    audio_format_t reqFormat = mFormat;
6630    uint32_t samplingRate = mSampleRate;
6631    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6632    // possible that we are > 2 channels, use channel index mask
6633    if (channelMask == AUDIO_CHANNEL_INVALID && mChannelCount <= FCC_8) {
6634        audio_channel_mask_for_index_assignment_from_count(mChannelCount);
6635    }
6636
6637    AudioParameter param = AudioParameter(keyValuePair);
6638    int value;
6639    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6640    //      channel count change can be requested. Do we mandate the first client defines the
6641    //      HAL sampling rate and channel count or do we allow changes on the fly?
6642    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6643        samplingRate = value;
6644        reconfig = true;
6645    }
6646    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6647        if (!audio_is_linear_pcm((audio_format_t) value)) {
6648            status = BAD_VALUE;
6649        } else {
6650            reqFormat = (audio_format_t) value;
6651            reconfig = true;
6652        }
6653    }
6654    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6655        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6656        if (!audio_is_input_channel(mask) ||
6657                audio_channel_count_from_in_mask(mask) > FCC_8) {
6658            status = BAD_VALUE;
6659        } else {
6660            channelMask = mask;
6661            reconfig = true;
6662        }
6663    }
6664    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6665        // do not accept frame count changes if tracks are open as the track buffer
6666        // size depends on frame count and correct behavior would not be guaranteed
6667        // if frame count is changed after track creation
6668        if (mActiveTracks.size() > 0) {
6669            status = INVALID_OPERATION;
6670        } else {
6671            reconfig = true;
6672        }
6673    }
6674    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6675        // forward device change to effects that have requested to be
6676        // aware of attached audio device.
6677        for (size_t i = 0; i < mEffectChains.size(); i++) {
6678            mEffectChains[i]->setDevice_l(value);
6679        }
6680
6681        // store input device and output device but do not forward output device to audio HAL.
6682        // Note that status is ignored by the caller for output device
6683        // (see AudioFlinger::setParameters()
6684        if (audio_is_output_devices(value)) {
6685            mOutDevice = value;
6686            status = BAD_VALUE;
6687        } else {
6688            mInDevice = value;
6689            // disable AEC and NS if the device is a BT SCO headset supporting those
6690            // pre processings
6691            if (mTracks.size() > 0) {
6692                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6693                                    mAudioFlinger->btNrecIsOff();
6694                for (size_t i = 0; i < mTracks.size(); i++) {
6695                    sp<RecordTrack> track = mTracks[i];
6696                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6697                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6698                }
6699            }
6700        }
6701    }
6702    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6703            mAudioSource != (audio_source_t)value) {
6704        // forward device change to effects that have requested to be
6705        // aware of attached audio device.
6706        for (size_t i = 0; i < mEffectChains.size(); i++) {
6707            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6708        }
6709        mAudioSource = (audio_source_t)value;
6710    }
6711
6712    if (status == NO_ERROR) {
6713        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6714                keyValuePair.string());
6715        if (status == INVALID_OPERATION) {
6716            inputStandBy();
6717            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6718                    keyValuePair.string());
6719        }
6720        if (reconfig) {
6721            if (status == BAD_VALUE &&
6722                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6723                audio_is_linear_pcm(reqFormat) &&
6724                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6725                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6726                audio_channel_count_from_in_mask(
6727                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
6728                status = NO_ERROR;
6729            }
6730            if (status == NO_ERROR) {
6731                readInputParameters_l();
6732                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6733            }
6734        }
6735    }
6736
6737    return reconfig;
6738}
6739
6740String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6741{
6742    Mutex::Autolock _l(mLock);
6743    if (initCheck() != NO_ERROR) {
6744        return String8();
6745    }
6746
6747    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6748    const String8 out_s8(s);
6749    free(s);
6750    return out_s8;
6751}
6752
6753void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event) {
6754    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
6755
6756    desc->mIoHandle = mId;
6757
6758    switch (event) {
6759    case AUDIO_INPUT_OPENED:
6760    case AUDIO_INPUT_CONFIG_CHANGED:
6761        desc->mPatch = mPatch;
6762        desc->mChannelMask = mChannelMask;
6763        desc->mSamplingRate = mSampleRate;
6764        desc->mFormat = mFormat;
6765        desc->mFrameCount = mFrameCount;
6766        desc->mLatency = 0;
6767        break;
6768
6769    case AUDIO_INPUT_CLOSED:
6770    default:
6771        break;
6772    }
6773    mAudioFlinger->ioConfigChanged(event, desc);
6774}
6775
6776void AudioFlinger::RecordThread::readInputParameters_l()
6777{
6778    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6779    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6780    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6781    if (mChannelCount > FCC_8) {
6782        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6783    }
6784    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6785    mFormat = mHALFormat;
6786    if (!audio_is_linear_pcm(mFormat)) {
6787        ALOGE("HAL format %#x is not linear pcm", mFormat);
6788    }
6789    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6790    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6791    mFrameCount = mBufferSize / mFrameSize;
6792    // This is the formula for calculating the temporary buffer size.
6793    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6794    // 1 full output buffer, regardless of the alignment of the available input.
6795    // The value is somewhat arbitrary, and could probably be even larger.
6796    // A larger value should allow more old data to be read after a track calls start(),
6797    // without increasing latency.
6798    //
6799    // Note this is independent of the maximum downsampling ratio permitted for capture.
6800    mRsmpInFrames = mFrameCount * 7;
6801    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6802    free(mRsmpInBuffer);
6803
6804    // TODO optimize audio capture buffer sizes ...
6805    // Here we calculate the size of the sliding buffer used as a source
6806    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6807    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6808    // be better to have it derived from the pipe depth in the long term.
6809    // The current value is higher than necessary.  However it should not add to latency.
6810
6811    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6812    (void)posix_memalign(&mRsmpInBuffer, 32, (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize);
6813
6814    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6815    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6816}
6817
6818uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6819{
6820    Mutex::Autolock _l(mLock);
6821    if (initCheck() != NO_ERROR) {
6822        return 0;
6823    }
6824
6825    return mInput->stream->get_input_frames_lost(mInput->stream);
6826}
6827
6828uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6829{
6830    Mutex::Autolock _l(mLock);
6831    uint32_t result = 0;
6832    if (getEffectChain_l(sessionId) != 0) {
6833        result = EFFECT_SESSION;
6834    }
6835
6836    for (size_t i = 0; i < mTracks.size(); ++i) {
6837        if (sessionId == mTracks[i]->sessionId()) {
6838            result |= TRACK_SESSION;
6839            break;
6840        }
6841    }
6842
6843    return result;
6844}
6845
6846KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6847{
6848    KeyedVector<int, bool> ids;
6849    Mutex::Autolock _l(mLock);
6850    for (size_t j = 0; j < mTracks.size(); ++j) {
6851        sp<RecordThread::RecordTrack> track = mTracks[j];
6852        int sessionId = track->sessionId();
6853        if (ids.indexOfKey(sessionId) < 0) {
6854            ids.add(sessionId, true);
6855        }
6856    }
6857    return ids;
6858}
6859
6860AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6861{
6862    Mutex::Autolock _l(mLock);
6863    AudioStreamIn *input = mInput;
6864    mInput = NULL;
6865    return input;
6866}
6867
6868// this method must always be called either with ThreadBase mLock held or inside the thread loop
6869audio_stream_t* AudioFlinger::RecordThread::stream() const
6870{
6871    if (mInput == NULL) {
6872        return NULL;
6873    }
6874    return &mInput->stream->common;
6875}
6876
6877status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6878{
6879    // only one chain per input thread
6880    if (mEffectChains.size() != 0) {
6881        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6882        return INVALID_OPERATION;
6883    }
6884    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6885    chain->setThread(this);
6886    chain->setInBuffer(NULL);
6887    chain->setOutBuffer(NULL);
6888
6889    checkSuspendOnAddEffectChain_l(chain);
6890
6891    // make sure enabled pre processing effects state is communicated to the HAL as we
6892    // just moved them to a new input stream.
6893    chain->syncHalEffectsState();
6894
6895    mEffectChains.add(chain);
6896
6897    return NO_ERROR;
6898}
6899
6900size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6901{
6902    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6903    ALOGW_IF(mEffectChains.size() != 1,
6904            "removeEffectChain_l() %p invalid chain size %d on thread %p",
6905            chain.get(), mEffectChains.size(), this);
6906    if (mEffectChains.size() == 1) {
6907        mEffectChains.removeAt(0);
6908    }
6909    return 0;
6910}
6911
6912status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6913                                                          audio_patch_handle_t *handle)
6914{
6915    status_t status = NO_ERROR;
6916
6917    // store new device and send to effects
6918    mInDevice = patch->sources[0].ext.device.type;
6919    mPatch = *patch;
6920    for (size_t i = 0; i < mEffectChains.size(); i++) {
6921        mEffectChains[i]->setDevice_l(mInDevice);
6922    }
6923
6924    // disable AEC and NS if the device is a BT SCO headset supporting those
6925    // pre processings
6926    if (mTracks.size() > 0) {
6927        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6928                            mAudioFlinger->btNrecIsOff();
6929        for (size_t i = 0; i < mTracks.size(); i++) {
6930            sp<RecordTrack> track = mTracks[i];
6931            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6932            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6933        }
6934    }
6935
6936    // store new source and send to effects
6937    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6938        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6939        for (size_t i = 0; i < mEffectChains.size(); i++) {
6940            mEffectChains[i]->setAudioSource_l(mAudioSource);
6941        }
6942    }
6943
6944    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6945        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6946        status = hwDevice->create_audio_patch(hwDevice,
6947                                               patch->num_sources,
6948                                               patch->sources,
6949                                               patch->num_sinks,
6950                                               patch->sinks,
6951                                               handle);
6952    } else {
6953        char *address;
6954        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
6955            address = audio_device_address_to_parameter(
6956                                                patch->sources[0].ext.device.type,
6957                                                patch->sources[0].ext.device.address);
6958        } else {
6959            address = (char *)calloc(1, 1);
6960        }
6961        AudioParameter param = AudioParameter(String8(address));
6962        free(address);
6963        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
6964                     (int)patch->sources[0].ext.device.type);
6965        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
6966                                         (int)patch->sinks[0].ext.mix.usecase.source);
6967        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6968                param.toString().string());
6969        *handle = AUDIO_PATCH_HANDLE_NONE;
6970    }
6971
6972    sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6973
6974    return status;
6975}
6976
6977status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6978{
6979    status_t status = NO_ERROR;
6980
6981    mInDevice = AUDIO_DEVICE_NONE;
6982
6983    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6984        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6985        status = hwDevice->release_audio_patch(hwDevice, handle);
6986    } else {
6987        AudioParameter param;
6988        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
6989        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6990                param.toString().string());
6991    }
6992    return status;
6993}
6994
6995void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6996{
6997    Mutex::Autolock _l(mLock);
6998    mTracks.add(record);
6999}
7000
7001void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7002{
7003    Mutex::Autolock _l(mLock);
7004    destroyTrack_l(record);
7005}
7006
7007void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7008{
7009    ThreadBase::getAudioPortConfig(config);
7010    config->role = AUDIO_PORT_ROLE_SINK;
7011    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7012    config->ext.mix.usecase.source = mAudioSource;
7013}
7014
7015} // namespace android
7016