SensorManager.java revision 287b30920102b5466efa53a2f17ed69f2c776c16
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.content.Context;
20import android.os.Binder;
21import android.os.Looper;
22import android.os.ParcelFileDescriptor;
23import android.os.Process;
24import android.os.RemoteException;
25import android.os.Handler;
26import android.os.Message;
27import android.os.ServiceManager;
28import android.util.Log;
29import android.util.SparseArray;
30import android.view.IRotationWatcher;
31import android.view.IWindowManager;
32import android.view.Surface;
33
34import java.io.FileDescriptor;
35import java.io.IOException;
36import java.util.ArrayList;
37import java.util.Collections;
38import java.util.HashMap;
39import java.util.List;
40
41/**
42 * Class that lets you access the device's sensors. Get an instance of this
43 * class by calling {@link android.content.Context#getSystemService(java.lang.String)
44 * Context.getSystemService()} with an argument of {@link android.content.Context#SENSOR_SERVICE}.
45 */
46public class SensorManager
47{
48    private static final String TAG = "SensorManager";
49    private static final float[] mTempMatrix = new float[16];
50
51    /* NOTE: sensor IDs must be a power of 2 */
52
53    /**
54     * A constant describing an orientation sensor.
55     * See {@link android.hardware.SensorListener SensorListener} for more details.
56     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
57     */
58    @Deprecated
59    public static final int SENSOR_ORIENTATION = 1 << 0;
60
61    /**
62     * A constant describing an accelerometer.
63     * See {@link android.hardware.SensorListener SensorListener} for more details.
64     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
65     */
66    @Deprecated
67    public static final int SENSOR_ACCELEROMETER = 1 << 1;
68
69    /**
70     * A constant describing a temperature sensor
71     * See {@link android.hardware.SensorListener SensorListener} for more details.
72     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
73     */
74    @Deprecated
75    public static final int SENSOR_TEMPERATURE = 1 << 2;
76
77    /**
78     * A constant describing a magnetic sensor
79     * See {@link android.hardware.SensorListener SensorListener} for more details.
80     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
81     */
82    @Deprecated
83    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
84
85    /**
86     * A constant describing an ambient light sensor
87     * See {@link android.hardware.SensorListener SensorListener} for more details.
88     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
89     */
90    @Deprecated
91    public static final int SENSOR_LIGHT = 1 << 4;
92
93    /**
94     * A constant describing a proximity sensor
95     * See {@link android.hardware.SensorListener SensorListener} for more details.
96     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
97     */
98    @Deprecated
99    public static final int SENSOR_PROXIMITY = 1 << 5;
100
101    /**
102     * A constant describing a Tricorder
103     * See {@link android.hardware.SensorListener SensorListener} for more details.
104     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
105     */
106    @Deprecated
107    public static final int SENSOR_TRICORDER = 1 << 6;
108
109    /**
110     * A constant describing an orientation sensor.
111     * See {@link android.hardware.SensorListener SensorListener} for more details.
112     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
113     */
114    @Deprecated
115    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
116
117    /** A constant that includes all sensors */
118    @Deprecated
119    public static final int SENSOR_ALL = 0x7F;
120
121    /** Smallest sensor ID */
122    @Deprecated
123    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
124
125    /** Largest sensor ID */
126    @Deprecated
127    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
128
129
130    /** Index of the X value in the array returned by
131     * {@link android.hardware.SensorListener#onSensorChanged} */
132    @Deprecated
133    public static final int DATA_X = 0;
134    /** Index of the Y value in the array returned by
135     * {@link android.hardware.SensorListener#onSensorChanged} */
136    @Deprecated
137    public static final int DATA_Y = 1;
138    /** Index of the Z value in the array returned by
139     * {@link android.hardware.SensorListener#onSensorChanged} */
140    @Deprecated
141    public static final int DATA_Z = 2;
142
143    /** Offset to the untransformed values in the array returned by
144     * {@link android.hardware.SensorListener#onSensorChanged} */
145    @Deprecated
146    public static final int RAW_DATA_INDEX = 3;
147
148    /** Index of the untransformed X value in the array returned by
149     * {@link android.hardware.SensorListener#onSensorChanged} */
150    @Deprecated
151    public static final int RAW_DATA_X = 3;
152    /** Index of the untransformed Y value in the array returned by
153     * {@link android.hardware.SensorListener#onSensorChanged} */
154    @Deprecated
155    public static final int RAW_DATA_Y = 4;
156    /** Index of the untransformed Z value in the array returned by
157     * {@link android.hardware.SensorListener#onSensorChanged} */
158    @Deprecated
159    public static final int RAW_DATA_Z = 5;
160
161
162    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
163    public static final float STANDARD_GRAVITY = 9.80665f;
164
165    /** values returned by the accelerometer in various locations in the universe.
166     * all values are in SI units (m/s^2) */
167    public static final float GRAVITY_SUN             = 275.0f;
168    public static final float GRAVITY_MERCURY         = 3.70f;
169    public static final float GRAVITY_VENUS           = 8.87f;
170    public static final float GRAVITY_EARTH           = 9.80665f;
171    public static final float GRAVITY_MOON            = 1.6f;
172    public static final float GRAVITY_MARS            = 3.71f;
173    public static final float GRAVITY_JUPITER         = 23.12f;
174    public static final float GRAVITY_SATURN          = 8.96f;
175    public static final float GRAVITY_URANUS          = 8.69f;
176    public static final float GRAVITY_NEPTUNE         = 11.0f;
177    public static final float GRAVITY_PLUTO           = 0.6f;
178    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
179    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
180
181
182    /** Maximum magnetic field on Earth's surface */
183    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
184
185    /** Minimum magnetic field on Earth's surface */
186    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
187
188
189    /** Various luminance values during the day (lux) */
190    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
191    public static final float LIGHT_SUNLIGHT     = 110000.0f;
192    public static final float LIGHT_SHADE        = 20000.0f;
193    public static final float LIGHT_OVERCAST     = 10000.0f;
194    public static final float LIGHT_SUNRISE      = 400.0f;
195    public static final float LIGHT_CLOUDY       = 100.0f;
196    /** Various luminance values during the night (lux) */
197    public static final float LIGHT_FULLMOON     = 0.25f;
198    public static final float LIGHT_NO_MOON      = 0.001f;
199
200    /** get sensor data as fast as possible */
201    public static final int SENSOR_DELAY_FASTEST = 0;
202    /** rate suitable for games */
203    public static final int SENSOR_DELAY_GAME = 1;
204    /** rate suitable for the user interface  */
205    public static final int SENSOR_DELAY_UI = 2;
206    /** rate (default) suitable for screen orientation changes */
207    public static final int SENSOR_DELAY_NORMAL = 3;
208
209
210    /** The values returned by this sensor cannot be trusted, calibration
211     * is needed or the environment doesn't allow readings */
212    public static final int SENSOR_STATUS_UNRELIABLE = 0;
213
214    /** This sensor is reporting data with low accuracy, calibration with the
215     * environment is needed */
216    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
217
218    /** This sensor is reporting data with an average level of accuracy,
219     * calibration with the environment may improve the readings */
220    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
221
222    /** This sensor is reporting data with maximum accuracy */
223    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
224
225    /** see {@link #remapCoordinateSystem} */
226    public static final int AXIS_X = 1;
227    /** see {@link #remapCoordinateSystem} */
228    public static final int AXIS_Y = 2;
229    /** see {@link #remapCoordinateSystem} */
230    public static final int AXIS_Z = 3;
231    /** see {@link #remapCoordinateSystem} */
232    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
233    /** see {@link #remapCoordinateSystem} */
234    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
235    /** see {@link #remapCoordinateSystem} */
236    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
237
238    /*-----------------------------------------------------------------------*/
239
240    private ISensorService mSensorService;
241    Looper mMainLooper;
242    @SuppressWarnings("deprecation")
243    private HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
244        new HashMap<SensorListener, LegacyListener>();
245
246    /*-----------------------------------------------------------------------*/
247
248    private static final int SENSOR_DISABLE = -1;
249    private static boolean sSensorModuleInitialized = false;
250    private static ArrayList<Sensor> sFullSensorsList = new ArrayList<Sensor>();
251    private static SparseArray<List<Sensor>> sSensorListByType = new SparseArray<List<Sensor>>();
252    private static IWindowManager sWindowManager;
253    private static int sRotation = Surface.ROTATION_0;
254    /* The thread and the sensor list are global to the process
255     * but the actual thread is spawned on demand */
256    private static SensorThread sSensorThread;
257
258    // Used within this module from outside SensorManager, don't make private
259    static SparseArray<Sensor> sHandleToSensor = new SparseArray<Sensor>();
260    static final ArrayList<ListenerDelegate> sListeners =
261        new ArrayList<ListenerDelegate>();
262
263    /*-----------------------------------------------------------------------*/
264
265    static private class SensorThread {
266
267        Thread mThread;
268
269        SensorThread() {
270            // this gets to the sensor module. We can have only one per process.
271            sensors_data_init();
272        }
273
274        @Override
275        protected void finalize() {
276            sensors_data_uninit();
277        }
278
279        // must be called with sListeners lock
280        void startLocked(ISensorService service) {
281            try {
282                if (mThread == null) {
283                    ParcelFileDescriptor fd = service.getDataChanel();
284                    mThread = new Thread(new SensorThreadRunnable(fd),
285                            SensorThread.class.getName());
286                    mThread.start();
287                }
288            } catch (RemoteException e) {
289                Log.e(TAG, "RemoteException in startLocked: ", e);
290            }
291        }
292
293        private class SensorThreadRunnable implements Runnable {
294            private ParcelFileDescriptor mSensorDataFd;
295            SensorThreadRunnable(ParcelFileDescriptor fd) {
296                mSensorDataFd = fd;
297            }
298            public void run() {
299                //Log.d(TAG, "entering main sensor thread");
300                final float[] values = new float[3];
301                final int[] status = new int[1];
302                final long timestamp[] = new long[1];
303                Process.setThreadPriority(Process.THREAD_PRIORITY_DISPLAY);
304
305                if (mSensorDataFd == null) {
306                    Log.e(TAG, "mSensorDataFd == NULL, exiting");
307                    synchronized (sListeners) {
308                        mThread = null;
309                    }
310                    return;
311                }
312                // this thread is guaranteed to be unique
313                sensors_data_open(mSensorDataFd.getFileDescriptor());
314                try {
315                    mSensorDataFd.close();
316                } catch (IOException e) {
317                    // *shrug*
318                    Log.e(TAG, "IOException: ", e);
319                }
320                mSensorDataFd = null;
321
322
323                while (true) {
324                    // wait for an event
325                    final int sensor = sensors_data_poll(values, status, timestamp);
326
327                    int accuracy = status[0];
328                    synchronized (sListeners) {
329                        if (sensor == -1 || sListeners.isEmpty()) {
330                            if (sensor == -1) {
331                                // we lost the connection to the event stream. this happens
332                                // when the last listener is removed.
333                                Log.d(TAG, "_sensors_data_poll() failed, we bail out.");
334                            }
335
336                            // we have no more listeners or polling failed, terminate the thread
337                            sensors_data_close();
338                            mThread = null;
339                            break;
340                        }
341                        final Sensor sensorObject = sHandleToSensor.get(sensor);
342                        if (sensorObject != null) {
343                            // report the sensor event to all listeners that
344                            // care about it.
345                            final int size = sListeners.size();
346                            for (int i=0 ; i<size ; i++) {
347                                ListenerDelegate listener = sListeners.get(i);
348                                if (listener.hasSensor(sensorObject)) {
349                                    // this is asynchronous (okay to call
350                                    // with sListeners lock held).
351                                    listener.onSensorChangedLocked(sensorObject,
352                                            values, timestamp, accuracy);
353                                }
354                            }
355                        }
356                    }
357                }
358                //Log.d(TAG, "exiting main sensor thread");
359            }
360        }
361    }
362
363    /*-----------------------------------------------------------------------*/
364
365    private class ListenerDelegate extends Binder {
366        final SensorEventListener mSensorEventListener;
367        private final ArrayList<Sensor> mSensorList = new ArrayList<Sensor>();
368        private final Handler mHandler;
369        private SensorEvent mValuesPool;
370        public int mSensors;
371
372        ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) {
373            mSensorEventListener = listener;
374            Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
375            // currently we create one Handler instance per listener, but we could
376            // have one per looper (we'd need to pass the ListenerDelegate
377            // instance to handleMessage and keep track of them separately).
378            mHandler = new Handler(looper) {
379                @Override
380                public void handleMessage(Message msg) {
381                    SensorEvent t = (SensorEvent)msg.obj;
382                    if (t.accuracy >= 0) {
383                        mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy);
384                    }
385                    mSensorEventListener.onSensorChanged(t);
386                    returnToPool(t);
387                }
388            };
389            addSensor(sensor);
390        }
391
392        protected SensorEvent createSensorEvent() {
393            // maximal size for all legacy events is 3
394            return new SensorEvent(3);
395        }
396
397        protected SensorEvent getFromPool() {
398            SensorEvent t = null;
399            synchronized (this) {
400                // remove the array from the pool
401                t = mValuesPool;
402                mValuesPool = null;
403            }
404            if (t == null) {
405                // the pool was empty, we need a new one
406                t = createSensorEvent();
407            }
408            return t;
409        }
410
411        protected void returnToPool(SensorEvent t) {
412            synchronized (this) {
413                // put back the array into the pool
414                if (mValuesPool == null) {
415                    mValuesPool = t;
416                }
417            }
418        }
419
420        Object getListener() {
421            return mSensorEventListener;
422        }
423
424        int addSensor(Sensor sensor) {
425            mSensors |= 1<<sensor.getHandle();
426            mSensorList.add(sensor);
427            return mSensors;
428        }
429        int removeSensor(Sensor sensor) {
430            mSensors &= ~(1<<sensor.getHandle());
431            mSensorList.remove(sensor);
432            return mSensors;
433        }
434        boolean hasSensor(Sensor sensor) {
435            return ((mSensors & (1<<sensor.getHandle())) != 0);
436        }
437        List<Sensor> getSensors() {
438            return mSensorList;
439        }
440
441        void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) {
442            SensorEvent t = getFromPool();
443            final float[] v = t.values;
444            v[0] = values[0];
445            v[1] = values[1];
446            v[2] = values[2];
447            t.timestamp = timestamp[0];
448            t.accuracy = accuracy;
449            t.sensor = sensor;
450            Message msg = Message.obtain();
451            msg.what = 0;
452            msg.obj = t;
453            mHandler.sendMessage(msg);
454        }
455    }
456
457    /**
458     * {@hide}
459     */
460    public SensorManager(Looper mainLooper) {
461        mSensorService = ISensorService.Stub.asInterface(
462                ServiceManager.getService(Context.SENSOR_SERVICE));
463        mMainLooper = mainLooper;
464
465
466        synchronized(sListeners) {
467            if (!sSensorModuleInitialized) {
468                sSensorModuleInitialized = true;
469
470                nativeClassInit();
471
472                sWindowManager = IWindowManager.Stub.asInterface(
473                        ServiceManager.getService("window"));
474                if (sWindowManager != null) {
475                    // if it's null we're running in the system process
476                    // which won't get the rotated values
477                    try {
478                        sRotation = sWindowManager.watchRotation(
479                            new IRotationWatcher.Stub() {
480                                public void onRotationChanged(int rotation) {
481                                    SensorManager.this.onRotationChanged(rotation);
482                                }
483                            }
484                        );
485                    } catch (RemoteException e) {
486                    }
487                }
488
489                // initialize the sensor list
490                sensors_module_init();
491                final ArrayList<Sensor> fullList = sFullSensorsList;
492                int i = 0;
493                do {
494                    Sensor sensor = new Sensor();
495                    i = sensors_module_get_next_sensor(sensor, i);
496
497                    if (i>=0) {
498                        Log.d(TAG, "found sensor: " + sensor.getName() +
499                                ", handle=" + sensor.getHandle());
500                        sensor.setLegacyType(getLegacySensorType(sensor.getType()));
501                        fullList.add(sensor);
502                        sHandleToSensor.append(sensor.getHandle(), sensor);
503                    }
504                } while (i>0);
505
506                sSensorThread = new SensorThread();
507            }
508        }
509    }
510
511    private int getLegacySensorType(int type) {
512        switch (type) {
513            case Sensor.TYPE_ACCELEROMETER:
514                return SENSOR_ACCELEROMETER;
515            case Sensor.TYPE_MAGNETIC_FIELD:
516                return SENSOR_MAGNETIC_FIELD;
517            case Sensor.TYPE_ORIENTATION:
518                return SENSOR_ORIENTATION_RAW;
519            case Sensor.TYPE_TEMPERATURE:
520                return SENSOR_TEMPERATURE;
521        }
522        return 0;
523    }
524
525    /** @return available sensors.
526     * @deprecated This method is deprecated, use
527     * {@link SensorManager#getSensorList(int)} instead
528     */
529    @Deprecated
530    public int getSensors() {
531        int result = 0;
532        final ArrayList<Sensor> fullList = sFullSensorsList;
533        for (Sensor i : fullList) {
534            switch (i.getType()) {
535                case Sensor.TYPE_ACCELEROMETER:
536                    result |= SensorManager.SENSOR_ACCELEROMETER;
537                    break;
538                case Sensor.TYPE_MAGNETIC_FIELD:
539                    result |= SensorManager.SENSOR_MAGNETIC_FIELD;
540                    break;
541                case Sensor.TYPE_ORIENTATION:
542                    result |= SensorManager.SENSOR_ORIENTATION |
543                                    SensorManager.SENSOR_ORIENTATION_RAW;
544                    break;
545            }
546        }
547        return result;
548    }
549
550    /**
551     * Use this method to get the list of available sensors of a certain
552     * type. Make multiple calls to get sensors of different types or use
553     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all
554     * the sensors.
555     *
556     * @param type of sensors requested
557     * @return a list of sensors matching the asked type.
558     */
559    public List<Sensor> getSensorList(int type) {
560        // cache the returned lists the first time
561        List<Sensor> list;
562        final ArrayList<Sensor> fullList = sFullSensorsList;
563        synchronized(fullList) {
564            list = sSensorListByType.get(type);
565            if (list == null) {
566                if (type == Sensor.TYPE_ALL) {
567                    list = fullList;
568                } else {
569                    list = new ArrayList<Sensor>();
570                    for (Sensor i : fullList) {
571                        if (i.getType() == type)
572                            list.add(i);
573                    }
574                }
575                list = Collections.unmodifiableList(list);
576                sSensorListByType.append(type, list);
577            }
578        }
579        return list;
580    }
581
582    /**
583     * Use this method to get the default sensor for a given type. Note that
584     * the returned sensor could be a composite sensor, and its data could be
585     * averaged or filtered. If you need to access the raw sensors use
586     * {@link SensorManager#getSensorList(int) getSensorList}.
587     *
588     *
589     * @param type of sensors requested
590     * @return the default sensors matching the asked type.
591     */
592    public Sensor getDefaultSensor(int type) {
593        // TODO: need to be smarter, for now, just return the 1st sensor
594        List<Sensor> l = getSensorList(type);
595        return l.isEmpty() ? null : l.get(0);
596    }
597
598
599    /**
600     * Registers a listener for given sensors.
601     * @deprecated This method is deprecated, use
602     * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
603     * instead.
604     *
605     * @param listener sensor listener object
606     * @param sensors a bit masks of the sensors to register to
607     *
608     * @return true if the sensor is supported and successfully enabled
609     */
610    @Deprecated
611    public boolean registerListener(SensorListener listener, int sensors) {
612        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
613    }
614
615    /**
616     * Registers a SensorListener for given sensors.
617     * @deprecated This method is deprecated, use
618     * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
619     * instead.
620     *
621     * @param listener sensor listener object
622     * @param sensors a bit masks of the sensors to register to
623     * @param rate rate of events. This is only a hint to the system. events
624     * may be received faster or slower than the specified rate. Usually events
625     * are received faster. The value must be one of {@link #SENSOR_DELAY_NORMAL},
626     * {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
627     *
628     * @return true if the sensor is supported and successfully enabled
629     */
630    @Deprecated
631    public boolean registerListener(SensorListener listener, int sensors, int rate) {
632        if (listener == null) {
633            return false;
634        }
635        boolean result = false;
636        result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
637                listener, sensors, rate) || result;
638        result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
639                listener, sensors, rate) || result;
640        result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
641                listener, sensors, rate) || result;
642        result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
643                listener, sensors, rate) || result;
644        result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
645                listener, sensors, rate) || result;
646        return result;
647    }
648
649    @SuppressWarnings("deprecation")
650    private boolean registerLegacyListener(int legacyType, int type,
651            SensorListener listener, int sensors, int rate)
652    {
653        if (listener == null) {
654            return false;
655        }
656        boolean result = false;
657        // Are we activating this legacy sensor?
658        if ((sensors & legacyType) != 0) {
659            // if so, find a suitable Sensor
660            Sensor sensor = getDefaultSensor(type);
661            if (sensor != null) {
662                // If we don't already have one, create a LegacyListener
663                // to wrap this listener and process the events as
664                // they are expected by legacy apps.
665                LegacyListener legacyListener = null;
666                synchronized (mLegacyListenersMap) {
667                    legacyListener = mLegacyListenersMap.get(listener);
668                    if (legacyListener == null) {
669                        // we didn't find a LegacyListener for this client,
670                        // create one, and put it in our list.
671                        legacyListener = new LegacyListener(listener);
672                        mLegacyListenersMap.put(listener, legacyListener);
673                    }
674                }
675                // register this legacy sensor with this legacy listener
676                legacyListener.registerSensor(legacyType);
677                // and finally, register the legacy listener with the new apis
678                result = registerListener(legacyListener, sensor, rate);
679            }
680        }
681        return result;
682    }
683
684    /**
685     * Unregisters a listener for the sensors with which it is registered.
686     * @deprecated This method is deprecated, use
687     * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
688     * instead.
689     *
690     * @param listener a SensorListener object
691     * @param sensors a bit masks of the sensors to unregister from
692     */
693    @Deprecated
694    public void unregisterListener(SensorListener listener, int sensors) {
695        unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
696                listener, sensors);
697        unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
698                listener, sensors);
699        unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
700                listener, sensors);
701        unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
702                listener, sensors);
703        unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
704                listener, sensors);
705    }
706
707    @SuppressWarnings("deprecation")
708    private void unregisterLegacyListener(int legacyType, int type,
709            SensorListener listener, int sensors)
710    {
711        if (listener == null) {
712            return;
713        }
714        // do we know about this listener?
715        LegacyListener legacyListener = null;
716        synchronized (mLegacyListenersMap) {
717            legacyListener = mLegacyListenersMap.get(listener);
718        }
719        if (legacyListener != null) {
720            // Are we deactivating this legacy sensor?
721            if ((sensors & legacyType) != 0) {
722                // if so, find the corresponding Sensor
723                Sensor sensor = getDefaultSensor(type);
724                if (sensor != null) {
725                    // unregister this legacy sensor and if we don't
726                    // need the corresponding Sensor, unregister it too
727                    if (legacyListener.unregisterSensor(legacyType)) {
728                        // corresponding sensor not needed, unregister
729                        unregisterListener(legacyListener, sensor);
730                        // finally check if we still need the legacyListener
731                        // in our mapping, if not, get rid of it too.
732                        synchronized(sListeners) {
733                            boolean found = false;
734                            for (ListenerDelegate i : sListeners) {
735                                if (i.getListener() == legacyListener) {
736                                    found = true;
737                                    break;
738                                }
739                            }
740                            if (!found) {
741                                synchronized (mLegacyListenersMap) {
742                                    mLegacyListenersMap.remove(listener);
743                                }
744                            }
745                        }
746                    }
747                }
748            }
749        }
750    }
751
752    /**
753     * Unregisters a listener for all sensors.
754     * @deprecated This method is deprecated, use
755     * {@link SensorManager#unregisterListener(SensorEventListener)}
756     * instead.
757     *
758     * @param listener a SensorListener object
759     */
760    @Deprecated
761    public void unregisterListener(SensorListener listener) {
762        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
763    }
764
765    /**
766     * Unregisters a listener for the sensors with which it is registered.
767     *
768     * @param listener a SensorEventListener object
769     * @param sensor the sensor to unregister from
770     *
771     */
772    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
773        unregisterListener((Object)listener, sensor);
774    }
775
776    /**
777     * Unregisters a listener for all sensors.
778     *
779     * @param listener a SensorListener object
780     *
781     */
782    public void unregisterListener(SensorEventListener listener) {
783        unregisterListener((Object)listener);
784    }
785
786
787    /**
788     * Registers a {@link android.hardware.SensorEventListener SensorEventListener}
789     * for the given sensor.
790     *
791     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
792     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
793     * @param rate The rate {@link android.hardware.SensorEvent sensor events} are delivered at.
794     * This is only a hint to the system. Events may be received faster or
795     * slower than the specified rate. Usually events are received faster. The value must be
796     * one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME},
797     * or {@link #SENSOR_DELAY_FASTEST}.
798     *
799     * @return true if the sensor is supported and successfully enabled.
800     *
801     */
802    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) {
803        return registerListener(listener, sensor, rate, null);
804    }
805
806    /**
807     * Registers a {@link android.hardware.SensorEventListener SensorEventListener}
808     * for the given sensor.
809     *
810     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
811     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
812     * @param rate The rate {@link android.hardware.SensorEvent sensor events} are delivered at.
813     * This is only a hint to the system. Events may be received faster or
814     * slower than the specified rate. Usually events are received faster. The value must be one
815     * of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME}, or
816     * {@link #SENSOR_DELAY_FASTEST}.
817     * @param handler The {@link android.os.Handler Handler} the
818     * {@link android.hardware.SensorEvent sensor events} will be delivered to.
819     *
820     * @return true if the sensor is supported and successfully enabled.
821     *
822     */
823    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate,
824            Handler handler) {
825        if (listener == null || sensor == null) {
826            return false;
827        }
828        boolean result;
829        int delay = -1;
830        switch (rate) {
831            case SENSOR_DELAY_FASTEST:
832                delay = 0;
833                break;
834            case SENSOR_DELAY_GAME:
835                delay = 20;
836                break;
837            case SENSOR_DELAY_UI:
838                delay = 60;
839                break;
840            case SENSOR_DELAY_NORMAL:
841                delay = 200;
842                break;
843            default:
844                return false;
845        }
846
847        try {
848            synchronized (sListeners) {
849                ListenerDelegate l = null;
850                for (ListenerDelegate i : sListeners) {
851                    if (i.getListener() == listener) {
852                        l = i;
853                        break;
854                    }
855                }
856
857                String name = sensor.getName();
858                int handle = sensor.getHandle();
859                if (l == null) {
860                    l = new ListenerDelegate(listener, sensor, handler);
861                    result = mSensorService.enableSensor(l, name, handle, delay);
862                    if (result) {
863                        sListeners.add(l);
864                        sListeners.notify();
865                    }
866                    if (!sListeners.isEmpty()) {
867                        sSensorThread.startLocked(mSensorService);
868                    }
869                } else {
870                    result = mSensorService.enableSensor(l, name, handle, delay);
871                    if (result) {
872                        l.addSensor(sensor);
873                    }
874                }
875            }
876        } catch (RemoteException e) {
877            Log.e(TAG, "RemoteException in registerListener: ", e);
878            result = false;
879        }
880        return result;
881    }
882
883    private void unregisterListener(Object listener, Sensor sensor) {
884        if (listener == null || sensor == null) {
885            return;
886        }
887        try {
888            synchronized (sListeners) {
889                final int size = sListeners.size();
890                for (int i=0 ; i<size ; i++) {
891                    ListenerDelegate l = sListeners.get(i);
892                    if (l.getListener() == listener) {
893                        // disable these sensors
894                        String name = sensor.getName();
895                        int handle = sensor.getHandle();
896                        mSensorService.enableSensor(l, name, handle, SENSOR_DISABLE);
897                        // if we have no more sensors enabled on this listener,
898                        // take it off the list.
899                        if (l.removeSensor(sensor) == 0) {
900                            sListeners.remove(i);
901                        }
902                        break;
903                    }
904                }
905            }
906        } catch (RemoteException e) {
907            Log.e(TAG, "RemoteException in unregisterListener: ", e);
908        }
909    }
910
911    private void unregisterListener(Object listener) {
912        if (listener == null) {
913            return;
914        }
915        try {
916            synchronized (sListeners) {
917                final int size = sListeners.size();
918                for (int i=0 ; i<size ; i++) {
919                    ListenerDelegate l = sListeners.get(i);
920                    if (l.getListener() == listener) {
921                        // disable all sensors for this listener
922                        for (Sensor sensor : l.getSensors()) {
923                            String name = sensor.getName();
924                            int handle = sensor.getHandle();
925                            mSensorService.enableSensor(l, name, handle, SENSOR_DISABLE);
926                        }
927                        sListeners.remove(i);
928                        break;
929                    }
930                }
931            }
932        } catch (RemoteException e) {
933            Log.e(TAG, "RemoteException in unregisterListener: ", e);
934        }
935    }
936
937    /**
938     * Computes the inclination matrix <b>I</b> as well as the rotation
939     * matrix <b>R</b> transforming a vector from the
940     * device coordinate system to the world's coordinate system which is
941     * defined as a direct orthonormal basis, where:
942     *
943     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
944     * the ground at the device's current location and roughly points East).</li>
945     * <li>Y is tangential to the ground at the device's current location and
946     * points towards the magnetic North Pole.</li>
947     * <li>Z points towards the sky and is perpendicular to the ground.</li>
948     * <p>
949     * <hr>
950     * <p>By definition:
951     * <p>[0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
952     * <p>[0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b>
953     * (m = magnitude of geomagnetic field)
954     * <p><b>R</b> is the identity matrix when the device is aligned with the
955     * world's coordinate system, that is, when the device's X axis points
956     * toward East, the Y axis points to the North Pole and the device is facing
957     * the sky.
958     *
959     * <p><b>I</b> is a rotation matrix transforming the geomagnetic
960     * vector into the same coordinate space as gravity (the world's coordinate
961     * space). <b>I</b> is a simple rotation around the X axis.
962     * The inclination angle in radians can be computed with
963     * {@link #getInclination}.
964     * <hr>
965     *
966     * <p> Each matrix is returned either as a 3x3 or 4x4 row-major matrix
967     * depending on the length of the passed array:
968     * <p><u>If the array length is 16:</u>
969     * <pre>
970     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
971     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
972     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
973     *   \  M[12]   M[13]   M[14]   M[15]  /
974     *</pre>
975     * This matrix is ready to be used by OpenGL ES's
976     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
977     * glLoadMatrixf(float[], int)}.
978     * <p>Note that because OpenGL matrices are column-major matrices you must
979     * transpose the matrix before using it. However, since the matrix is a
980     * rotation matrix, its transpose is also its inverse, conveniently, it is
981     * often the inverse of the rotation that is needed for rendering; it can
982     * therefore be used with OpenGL ES directly.
983     * <p>
984     * Also note that the returned matrices always have this form:
985     * <pre>
986     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
987     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
988     *   |  M[ 8]   M[ 9]   M[10]   0  |
989     *   \      0       0       0   1  /
990     *</pre>
991     * <p><u>If the array length is 9:</u>
992     * <pre>
993     *   /  M[ 0]   M[ 1]   M[ 2]  \
994     *   |  M[ 3]   M[ 4]   M[ 5]  |
995     *   \  M[ 6]   M[ 7]   M[ 8]  /
996     *</pre>
997     *
998     * <hr>
999     * <p>The inverse of each matrix can be computed easily by taking its
1000     * transpose.
1001     *
1002     * <p>The matrices returned by this function are meaningful only when the
1003     * device is not free-falling and it is not close to the magnetic north.
1004     * If the device is accelerating, or placed into a strong magnetic field,
1005     * the returned matrices may be inaccurate.
1006     *
1007     * @param R is an array of 9 floats holding the rotation matrix <b>R</b>
1008     * when this function returns. R can be null.<p>
1009     * @param I is an array of 9 floats holding the rotation matrix <b>I</b>
1010     * when this function returns. I can be null.<p>
1011     * @param gravity is an array of 3 floats containing the gravity vector
1012     * expressed in the device's coordinate. You can simply use the
1013     * {@link android.hardware.SensorEvent#values values}
1014     * returned by a {@link android.hardware.SensorEvent SensorEvent} of a
1015     * {@link android.hardware.Sensor Sensor} of type
1016     * {@link android.hardware.Sensor#TYPE_ACCELEROMETER TYPE_ACCELEROMETER}.<p>
1017     * @param geomagnetic is an array of 3 floats containing the geomagnetic
1018     * vector expressed in the device's coordinate. You can simply use the
1019     * {@link android.hardware.SensorEvent#values values}
1020     * returned by a {@link android.hardware.SensorEvent SensorEvent} of a
1021     * {@link android.hardware.Sensor Sensor} of type
1022     * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD TYPE_MAGNETIC_FIELD}.
1023     * @return
1024     *   true on success<p>
1025     *   false on failure (for instance, if the device is in free fall).
1026     *   On failure the output matrices are not modified.
1027     */
1028
1029    public static boolean getRotationMatrix(float[] R, float[] I,
1030            float[] gravity, float[] geomagnetic) {
1031        // TODO: move this to native code for efficiency
1032        float Ax = gravity[0];
1033        float Ay = gravity[1];
1034        float Az = gravity[2];
1035        final float Ex = geomagnetic[0];
1036        final float Ey = geomagnetic[1];
1037        final float Ez = geomagnetic[2];
1038        float Hx = Ey*Az - Ez*Ay;
1039        float Hy = Ez*Ax - Ex*Az;
1040        float Hz = Ex*Ay - Ey*Ax;
1041        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1042        if (normH < 0.1f) {
1043            // device is close to free fall (or in space?), or close to
1044            // magnetic north pole. Typical values are  > 100.
1045            return false;
1046        }
1047        final float invH = 1.0f / normH;
1048        Hx *= invH;
1049        Hy *= invH;
1050        Hz *= invH;
1051        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1052        Ax *= invA;
1053        Ay *= invA;
1054        Az *= invA;
1055        final float Mx = Ay*Hz - Az*Hy;
1056        final float My = Az*Hx - Ax*Hz;
1057        final float Mz = Ax*Hy - Ay*Hx;
1058        if (R != null) {
1059            if (R.length == 9) {
1060                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1061                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1062                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1063            } else if (R.length == 16) {
1064                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1065                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1066                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1067                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1068            }
1069        }
1070        if (I != null) {
1071            // compute the inclination matrix by projecting the geomagnetic
1072            // vector onto the Z (gravity) and X (horizontal component
1073            // of geomagnetic vector) axes.
1074            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1075            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1076            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1077            if (I.length == 9) {
1078                I[0] = 1;     I[1] = 0;     I[2] = 0;
1079                I[3] = 0;     I[4] = c;     I[5] = s;
1080                I[6] = 0;     I[7] =-s;     I[8] = c;
1081            } else if (I.length == 16) {
1082                I[0] = 1;     I[1] = 0;     I[2] = 0;
1083                I[4] = 0;     I[5] = c;     I[6] = s;
1084                I[8] = 0;     I[9] =-s;     I[10]= c;
1085                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1086                I[15] = 1;
1087            }
1088        }
1089        return true;
1090    }
1091
1092    /**
1093     * Computes the geomagnetic inclination angle in radians from the
1094     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1095     * @param I inclination matrix see {@link #getRotationMatrix}.
1096     * @return The geomagnetic inclination angle in radians.
1097     */
1098    public static float getInclination(float[] I) {
1099        if (I.length == 9) {
1100            return (float)Math.atan2(I[5], I[4]);
1101        } else {
1102            return (float)Math.atan2(I[6], I[5]);
1103        }
1104    }
1105
1106    /**
1107     * Rotates the supplied rotation matrix so it is expressed in a
1108     * different coordinate system. This is typically used when an application
1109     * needs to compute the three orientation angles of the device (see
1110     * {@link #getOrientation}) in a different coordinate system.
1111     *
1112     * <p>When the rotation matrix is used for drawing (for instance with
1113     * OpenGL ES), it usually <b>doesn't need</b> to be transformed by this
1114     * function, unless the screen is physically rotated, such as when used
1115     * in landscape mode.
1116     *
1117     * <p><u>Examples:</u><p>
1118     *
1119     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1120     * reality application where the rotation angles are needed :</li><p>
1121     *
1122     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code><p>
1123     *
1124     * <li>Using the device as a mechanical compass in landscape mode:</li><p>
1125     *
1126     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code><p>
1127     *
1128     * Beware of the above example. This call is needed only if the device is
1129     * physically used in landscape mode to calculate the rotation angles (see
1130     * {@link #getOrientation}).
1131     * If the rotation matrix is also used for rendering, it may not need to
1132     * be transformed, for instance if your {@link android.app.Activity
1133     * Activity} is running in landscape mode.
1134     *
1135     * <p>Since the resulting coordinate system is orthonormal, only two axes
1136     * need to be specified.
1137     *
1138     * @param inR the rotation matrix to be transformed. Usually it is the
1139     * matrix returned by {@link #getRotationMatrix}.
1140     * @param X defines on which world axis and direction the X axis of the
1141     *        device is mapped.
1142     * @param Y defines on which world axis and direction the Y axis of the
1143     *        device is mapped.
1144     * @param outR the transformed rotation matrix. inR and outR can be the same
1145     *        array, but it is not recommended for performance reason.
1146     * @return true on success. false if the input parameters are incorrect, for
1147     * instance if X and Y define the same axis. Or if inR and outR don't have
1148     * the same length.
1149     */
1150
1151    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1152            float[] outR)
1153    {
1154        if (inR == outR) {
1155            final float[] temp = mTempMatrix;
1156            synchronized(temp) {
1157                // we don't expect to have a lot of contention
1158                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1159                    final int size = outR.length;
1160                    for (int i=0 ; i<size ; i++)
1161                        outR[i] = temp[i];
1162                    return true;
1163                }
1164            }
1165        }
1166        return remapCoordinateSystemImpl(inR, X, Y, outR);
1167    }
1168
1169    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1170            float[] outR)
1171    {
1172        /*
1173         * X and Y define a rotation matrix 'r':
1174         *
1175         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1176         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1177         *                              r[0] ^ r[1]
1178         *
1179         * where the 3rd line is the vector product of the first 2 lines
1180         *
1181         */
1182
1183        final int length = outR.length;
1184        if (inR.length != length)
1185            return false;   // invalid parameter
1186        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1187            return false;   // invalid parameter
1188        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1189            return false;   // no axis specified
1190        if ((X & 0x3) == (Y & 0x3))
1191            return false;   // same axis specified
1192
1193        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1194        // this can be calculated by exclusive-or'ing X and Y; except for
1195        // the sign inversion (+/-) which is calculated below.
1196        int Z = X ^ Y;
1197
1198        // extract the axis (remove the sign), offset in the range 0 to 2.
1199        final int x = (X & 0x3)-1;
1200        final int y = (Y & 0x3)-1;
1201        final int z = (Z & 0x3)-1;
1202
1203        // compute the sign of Z (whether it needs to be inverted)
1204        final int axis_y = (z+1)%3;
1205        final int axis_z = (z+2)%3;
1206        if (((x^axis_y)|(y^axis_z)) != 0)
1207            Z ^= 0x80;
1208
1209        final boolean sx = (X>=0x80);
1210        final boolean sy = (Y>=0x80);
1211        final boolean sz = (Z>=0x80);
1212
1213        // Perform R * r, in avoiding actual muls and adds.
1214        final int rowLength = ((length==16)?4:3);
1215        for (int j=0 ; j<3 ; j++) {
1216            final int offset = j*rowLength;
1217            for (int i=0 ; i<3 ; i++) {
1218                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1219                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1220                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1221            }
1222        }
1223        if (length == 16) {
1224            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1225            outR[15] = 1;
1226        }
1227        return true;
1228    }
1229
1230    /**
1231     * Computes the device's orientation based on the rotation matrix.
1232     * <p> When it returns, the array values is filled with the result:
1233     * <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
1234     * <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
1235     * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
1236     * <p>
1237     *
1238     * @param R rotation matrix see {@link #getRotationMatrix}.
1239     * @param values an array of 3 floats to hold the result.
1240     * @return The array values passed as argument.
1241     */
1242    public static float[] getOrientation(float[] R, float values[]) {
1243        /*
1244         * 4x4 (length=16) case:
1245         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1246         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1247         *   |  R[ 8]   R[ 9]   R[10]   0  |
1248         *   \      0       0       0   1  /
1249         *
1250         * 3x3 (length=9) case:
1251         *   /  R[ 0]   R[ 1]   R[ 2]  \
1252         *   |  R[ 3]   R[ 4]   R[ 5]  |
1253         *   \  R[ 6]   R[ 7]   R[ 8]  /
1254         *
1255         */
1256        if (R.length == 9) {
1257            values[0] = (float)Math.atan2(R[1], R[4]);
1258            values[1] = (float)Math.asin(-R[7]);
1259            values[2] = (float)Math.atan2(-R[6], R[8]);
1260        } else {
1261            values[0] = (float)Math.atan2(R[1], R[5]);
1262            values[1] = (float)Math.asin(-R[9]);
1263            values[2] = (float)Math.atan2(-R[8], R[10]);
1264        }
1265        return values;
1266    }
1267
1268
1269    /**
1270     * {@hide}
1271     */
1272    public void onRotationChanged(int rotation) {
1273        synchronized(sListeners) {
1274            sRotation  = rotation;
1275        }
1276    }
1277
1278    static int getRotation() {
1279        synchronized(sListeners) {
1280            return sRotation;
1281        }
1282    }
1283
1284    private class LegacyListener implements SensorEventListener {
1285        private float mValues[] = new float[6];
1286        @SuppressWarnings("deprecation")
1287        private SensorListener mTarget;
1288        private int mSensors;
1289        private final LmsFilter mYawfilter = new LmsFilter();
1290
1291        @SuppressWarnings("deprecation")
1292        LegacyListener(SensorListener target) {
1293            mTarget = target;
1294            mSensors = 0;
1295        }
1296
1297        void registerSensor(int legacyType) {
1298            mSensors |= legacyType;
1299        }
1300
1301        boolean unregisterSensor(int legacyType) {
1302            mSensors &= ~legacyType;
1303            int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW;
1304            if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) {
1305                return false;
1306            }
1307            return true;
1308        }
1309
1310        @SuppressWarnings("deprecation")
1311        public void onAccuracyChanged(Sensor sensor, int accuracy) {
1312            try {
1313                mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy);
1314            } catch (AbstractMethodError e) {
1315                // old app that doesn't implement this method
1316                // just ignore it.
1317            }
1318        }
1319
1320        @SuppressWarnings("deprecation")
1321        public void onSensorChanged(SensorEvent event) {
1322            final float v[] = mValues;
1323            v[0] = event.values[0];
1324            v[1] = event.values[1];
1325            v[2] = event.values[2];
1326            int legacyType = event.sensor.getLegacyType();
1327            mapSensorDataToWindow(legacyType, v, SensorManager.getRotation());
1328            if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) {
1329                if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) {
1330                    mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v);
1331                }
1332                if ((mSensors & SENSOR_ORIENTATION)!=0) {
1333                    v[0] = mYawfilter.filter(event.timestamp, v[0]);
1334                    mTarget.onSensorChanged(SENSOR_ORIENTATION, v);
1335                }
1336            } else {
1337                mTarget.onSensorChanged(legacyType, v);
1338            }
1339        }
1340
1341        /*
1342         * Helper function to convert the specified sensor's data to the windows's
1343         * coordinate space from the device's coordinate space.
1344         *
1345         * output: 3,4,5: values in the old API format
1346         *         0,1,2: transformed values in the old API format
1347         *
1348         */
1349        private void mapSensorDataToWindow(int sensor,
1350                float[] values, int orientation) {
1351            float x = values[0];
1352            float y = values[1];
1353            float z = values[2];
1354
1355            switch (sensor) {
1356                case SensorManager.SENSOR_ORIENTATION:
1357                case SensorManager.SENSOR_ORIENTATION_RAW:
1358                    z = -z;
1359                    break;
1360                case SensorManager.SENSOR_ACCELEROMETER:
1361                    x = -x;
1362                    y = -y;
1363                    z = -z;
1364                    break;
1365                case SensorManager.SENSOR_MAGNETIC_FIELD:
1366                    x = -x;
1367                    y = -y;
1368                    break;
1369            }
1370            values[0] = x;
1371            values[1] = y;
1372            values[2] = z;
1373            values[3] = x;
1374            values[4] = y;
1375            values[5] = z;
1376            // TODO: add support for 180 and 270 orientations
1377            if (orientation == Surface.ROTATION_90) {
1378                switch (sensor) {
1379                    case SENSOR_ACCELEROMETER:
1380                    case SENSOR_MAGNETIC_FIELD:
1381                        values[0] =-y;
1382                        values[1] = x;
1383                        values[2] = z;
1384                        break;
1385                    case SENSOR_ORIENTATION:
1386                    case SENSOR_ORIENTATION_RAW:
1387                        values[0] = x + ((x < 270) ? 90 : -270);
1388                        values[1] = z;
1389                        values[2] = y;
1390                        break;
1391                }
1392            }
1393        }
1394    }
1395
1396    class LmsFilter {
1397        private static final int SENSORS_RATE_MS = 20;
1398        private static final int COUNT = 12;
1399        private static final float PREDICTION_RATIO = 1.0f/3.0f;
1400        private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO;
1401        private float mV[] = new float[COUNT*2];
1402        private float mT[] = new float[COUNT*2];
1403        private int mIndex;
1404
1405        public LmsFilter() {
1406            mIndex = COUNT;
1407        }
1408
1409        public float filter(long time, float in) {
1410            float v = in;
1411            final float ns = 1.0f / 1000000000.0f;
1412            final float t = time*ns;
1413            float v1 = mV[mIndex];
1414            if ((v-v1) > 180) {
1415                v -= 360;
1416            } else if ((v1-v) > 180) {
1417                v += 360;
1418            }
1419            /* Manage the circular buffer, we write the data twice spaced
1420             * by COUNT values, so that we don't have to copy the array
1421             * when it's full
1422             */
1423            mIndex++;
1424            if (mIndex >= COUNT*2)
1425                mIndex = COUNT;
1426            mV[mIndex] = v;
1427            mT[mIndex] = t;
1428            mV[mIndex-COUNT] = v;
1429            mT[mIndex-COUNT] = t;
1430
1431            float A, B, C, D, E;
1432            float a, b;
1433            int i;
1434
1435            A = B = C = D = E = 0;
1436            for (i=0 ; i<COUNT-1 ; i++) {
1437                final int j = mIndex - 1 - i;
1438                final float Z = mV[j];
1439                final float T = 0.5f*(mT[j] + mT[j+1]) - t;
1440                float dT = mT[j] - mT[j+1];
1441                dT *= dT;
1442                A += Z*dT;
1443                B += T*(T*dT);
1444                C +=   (T*dT);
1445                D += Z*(T*dT);
1446                E += dT;
1447            }
1448            b = (A*B + C*D) / (E*B + C*C);
1449            a = (E*b - A) / C;
1450            float f = b + PREDICTION_TIME*a;
1451
1452            // Normalize
1453            f *= (1.0f / 360.0f);
1454            if (((f>=0)?f:-f) >= 0.5f)
1455                f = f - (float)Math.ceil(f + 0.5f) + 1.0f;
1456            if (f < 0)
1457                f += 1.0f;
1458            f *= 360.0f;
1459            return f;
1460        }
1461    }
1462
1463
1464    private static native void nativeClassInit();
1465
1466    private static native int sensors_module_init();
1467    private static native int sensors_module_get_next_sensor(Sensor sensor, int next);
1468
1469    // Used within this module from outside SensorManager, don't make private
1470    static native int sensors_data_init();
1471    static native int sensors_data_uninit();
1472    static native int sensors_data_open(FileDescriptor fd);
1473    static native int sensors_data_close();
1474    static native int sensors_data_poll(float[] values, int[] status, long[] timestamp);
1475}
1476