SensorManager.java revision 4a51c20ce607c74914f90fd897f04080121ac13b
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.content.Context;
20import android.os.Binder;
21import android.os.Bundle;
22import android.os.Looper;
23import android.os.Parcelable;
24import android.os.ParcelFileDescriptor;
25import android.os.Process;
26import android.os.RemoteException;
27import android.os.Handler;
28import android.os.Message;
29import android.os.ServiceManager;
30import android.util.Log;
31import android.util.SparseArray;
32import android.view.IRotationWatcher;
33import android.view.IWindowManager;
34import android.view.Surface;
35
36import java.io.FileDescriptor;
37import java.io.IOException;
38import java.util.ArrayList;
39import java.util.Collections;
40import java.util.HashMap;
41import java.util.List;
42
43/**
44 * Class that lets you access the device's sensors. Get an instance of this
45 * class by calling {@link android.content.Context#getSystemService(java.lang.String)
46 * Context.getSystemService()} with an argument of {@link android.content.Context#SENSOR_SERVICE}.
47 */
48public class SensorManager
49{
50    private static final String TAG = "SensorManager";
51    private static final float[] mTempMatrix = new float[16];
52
53    /* NOTE: sensor IDs must be a power of 2 */
54
55    /**
56     * A constant describing an orientation sensor.
57     * See {@link android.hardware.SensorListener SensorListener} for more details.
58     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
59     */
60    @Deprecated
61    public static final int SENSOR_ORIENTATION = 1 << 0;
62
63    /**
64     * A constant describing an accelerometer.
65     * See {@link android.hardware.SensorListener SensorListener} for more details.
66     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
67     */
68    @Deprecated
69    public static final int SENSOR_ACCELEROMETER = 1 << 1;
70
71    /**
72     * A constant describing a temperature sensor
73     * See {@link android.hardware.SensorListener SensorListener} for more details.
74     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
75     */
76    @Deprecated
77    public static final int SENSOR_TEMPERATURE = 1 << 2;
78
79    /**
80     * A constant describing a magnetic sensor
81     * See {@link android.hardware.SensorListener SensorListener} for more details.
82     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
83     */
84    @Deprecated
85    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
86
87    /**
88     * A constant describing an ambient light sensor
89     * See {@link android.hardware.SensorListener SensorListener} for more details.
90     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
91     */
92    @Deprecated
93    public static final int SENSOR_LIGHT = 1 << 4;
94
95    /**
96     * A constant describing a proximity sensor
97     * See {@link android.hardware.SensorListener SensorListener} for more details.
98     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
99     */
100    @Deprecated
101    public static final int SENSOR_PROXIMITY = 1 << 5;
102
103    /**
104     * A constant describing a Tricorder
105     * See {@link android.hardware.SensorListener SensorListener} for more details.
106     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
107     */
108    @Deprecated
109    public static final int SENSOR_TRICORDER = 1 << 6;
110
111    /**
112     * A constant describing an orientation sensor.
113     * See {@link android.hardware.SensorListener SensorListener} for more details.
114     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
115     */
116    @Deprecated
117    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
118
119    /** A constant that includes all sensors
120     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
121     */
122    @Deprecated
123    public static final int SENSOR_ALL = 0x7F;
124
125    /** Smallest sensor ID
126     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
127     */
128    @Deprecated
129    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
130
131    /** Largest sensor ID
132     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
133     */
134    @Deprecated
135    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
136
137
138    /** Index of the X value in the array returned by
139     * {@link android.hardware.SensorListener#onSensorChanged}
140     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
141     */
142    @Deprecated
143    public static final int DATA_X = 0;
144    /** Index of the Y value in the array returned by
145     * {@link android.hardware.SensorListener#onSensorChanged}
146     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
147     */
148    @Deprecated
149    public static final int DATA_Y = 1;
150    /** Index of the Z value in the array returned by
151     * {@link android.hardware.SensorListener#onSensorChanged}
152     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
153     */
154    @Deprecated
155    public static final int DATA_Z = 2;
156
157    /** Offset to the untransformed values in the array returned by
158     * {@link android.hardware.SensorListener#onSensorChanged}
159     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
160     */
161    @Deprecated
162    public static final int RAW_DATA_INDEX = 3;
163
164    /** Index of the untransformed X value in the array returned by
165     * {@link android.hardware.SensorListener#onSensorChanged}
166     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
167     */
168    @Deprecated
169    public static final int RAW_DATA_X = 3;
170    /** Index of the untransformed Y value in the array returned by
171     * {@link android.hardware.SensorListener#onSensorChanged}
172     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
173     */
174    @Deprecated
175    public static final int RAW_DATA_Y = 4;
176    /** Index of the untransformed Z value in the array returned by
177     * {@link android.hardware.SensorListener#onSensorChanged}
178     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
179     */
180    @Deprecated
181    public static final int RAW_DATA_Z = 5;
182
183
184    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
185    public static final float STANDARD_GRAVITY = 9.80665f;
186
187    /** values returned by the accelerometer in various locations in the universe.
188     * all values are in SI units (m/s^2) */
189    public static final float GRAVITY_SUN             = 275.0f;
190    public static final float GRAVITY_MERCURY         = 3.70f;
191    public static final float GRAVITY_VENUS           = 8.87f;
192    public static final float GRAVITY_EARTH           = 9.80665f;
193    public static final float GRAVITY_MOON            = 1.6f;
194    public static final float GRAVITY_MARS            = 3.71f;
195    public static final float GRAVITY_JUPITER         = 23.12f;
196    public static final float GRAVITY_SATURN          = 8.96f;
197    public static final float GRAVITY_URANUS          = 8.69f;
198    public static final float GRAVITY_NEPTUNE         = 11.0f;
199    public static final float GRAVITY_PLUTO           = 0.6f;
200    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
201    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
202
203
204    /** Maximum magnetic field on Earth's surface */
205    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
206
207    /** Minimum magnetic field on Earth's surface */
208    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
209
210
211    /** Various luminance values during the day (lux) */
212    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
213    public static final float LIGHT_SUNLIGHT     = 110000.0f;
214    public static final float LIGHT_SHADE        = 20000.0f;
215    public static final float LIGHT_OVERCAST     = 10000.0f;
216    public static final float LIGHT_SUNRISE      = 400.0f;
217    public static final float LIGHT_CLOUDY       = 100.0f;
218    /** Various luminance values during the night (lux) */
219    public static final float LIGHT_FULLMOON     = 0.25f;
220    public static final float LIGHT_NO_MOON      = 0.001f;
221
222    /** get sensor data as fast as possible */
223    public static final int SENSOR_DELAY_FASTEST = 0;
224    /** rate suitable for games */
225    public static final int SENSOR_DELAY_GAME = 1;
226    /** rate suitable for the user interface  */
227    public static final int SENSOR_DELAY_UI = 2;
228    /** rate (default) suitable for screen orientation changes */
229    public static final int SENSOR_DELAY_NORMAL = 3;
230
231
232    /** The values returned by this sensor cannot be trusted, calibration
233     * is needed or the environment doesn't allow readings */
234    public static final int SENSOR_STATUS_UNRELIABLE = 0;
235
236    /** This sensor is reporting data with low accuracy, calibration with the
237     * environment is needed */
238    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
239
240    /** This sensor is reporting data with an average level of accuracy,
241     * calibration with the environment may improve the readings */
242    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
243
244    /** This sensor is reporting data with maximum accuracy */
245    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
246
247    /** see {@link #remapCoordinateSystem} */
248    public static final int AXIS_X = 1;
249    /** see {@link #remapCoordinateSystem} */
250    public static final int AXIS_Y = 2;
251    /** see {@link #remapCoordinateSystem} */
252    public static final int AXIS_Z = 3;
253    /** see {@link #remapCoordinateSystem} */
254    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
255    /** see {@link #remapCoordinateSystem} */
256    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
257    /** see {@link #remapCoordinateSystem} */
258    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
259
260    /*-----------------------------------------------------------------------*/
261
262    private ISensorService mSensorService;
263    Looper mMainLooper;
264    @SuppressWarnings("deprecation")
265    private HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
266        new HashMap<SensorListener, LegacyListener>();
267
268    /*-----------------------------------------------------------------------*/
269
270    private static final int SENSOR_DISABLE = -1;
271    private static boolean sSensorModuleInitialized = false;
272    private static ArrayList<Sensor> sFullSensorsList = new ArrayList<Sensor>();
273    private static SparseArray<List<Sensor>> sSensorListByType = new SparseArray<List<Sensor>>();
274    private static IWindowManager sWindowManager;
275    private static int sRotation = Surface.ROTATION_0;
276    /* The thread and the sensor list are global to the process
277     * but the actual thread is spawned on demand */
278    private static SensorThread sSensorThread;
279
280    // Used within this module from outside SensorManager, don't make private
281    static SparseArray<Sensor> sHandleToSensor = new SparseArray<Sensor>();
282    static final ArrayList<ListenerDelegate> sListeners =
283        new ArrayList<ListenerDelegate>();
284
285    /*-----------------------------------------------------------------------*/
286
287    static private class SensorThread {
288
289        Thread mThread;
290
291        SensorThread() {
292            // this gets to the sensor module. We can have only one per process.
293            sensors_data_init();
294        }
295
296        @Override
297        protected void finalize() {
298            sensors_data_uninit();
299        }
300
301        // must be called with sListeners lock
302        void startLocked(ISensorService service) {
303            try {
304                if (mThread == null) {
305                    Bundle dataChannel = service.getDataChannel();
306                    mThread = new Thread(new SensorThreadRunnable(dataChannel),
307                            SensorThread.class.getName());
308                    mThread.start();
309                }
310            } catch (RemoteException e) {
311                Log.e(TAG, "RemoteException in startLocked: ", e);
312            }
313        }
314
315        private class SensorThreadRunnable implements Runnable {
316            private Bundle mDataChannel;
317            SensorThreadRunnable(Bundle dataChannel) {
318                mDataChannel = dataChannel;
319            }
320
321            private boolean open() {
322                if (mDataChannel == null) {
323                    Log.e(TAG, "mDataChannel == NULL, exiting");
324                    synchronized (sListeners) {
325                        mThread = null;
326                    }
327                    return false;
328                }
329
330                // this thread is guaranteed to be unique
331                Parcelable[] pfds = mDataChannel.getParcelableArray("fds");
332                FileDescriptor[] fds;
333                if (pfds != null) {
334                    int length = pfds.length;
335                    fds = new FileDescriptor[length];
336                    for (int i = 0; i < length; i++) {
337                        ParcelFileDescriptor pfd = (ParcelFileDescriptor)pfds[i];
338                        fds[i] = pfd.getFileDescriptor();
339                    }
340                } else {
341                    fds = null;
342                }
343                int[] ints = mDataChannel.getIntArray("ints");
344                sensors_data_open(fds, ints);
345                if (pfds != null) {
346                    try {
347                        // close our copies of the file descriptors,
348                        // since we are just passing these to the JNI code and not using them here.
349                        for (int i = pfds.length - 1; i >= 0; i--) {
350                            ParcelFileDescriptor pfd = (ParcelFileDescriptor)pfds[i];
351                            pfd.close();
352                        }
353                    } catch (IOException e) {
354                        // *shrug*
355                        Log.e(TAG, "IOException: ", e);
356                    }
357                }
358                mDataChannel = null;
359                return true;
360            }
361
362            public void run() {
363                //Log.d(TAG, "entering main sensor thread");
364                final float[] values = new float[3];
365                final int[] status = new int[1];
366                final long timestamp[] = new long[1];
367                Process.setThreadPriority(Process.THREAD_PRIORITY_DISPLAY);
368
369                if (!open()) {
370                    return;
371                }
372
373                while (true) {
374                    // wait for an event
375                    final int sensor = sensors_data_poll(values, status, timestamp);
376
377                    int accuracy = status[0];
378                    synchronized (sListeners) {
379                        if (sensor == -1 || sListeners.isEmpty()) {
380                            if (sensor == -1) {
381                                // we lost the connection to the event stream. this happens
382                                // when the last listener is removed.
383                                Log.d(TAG, "_sensors_data_poll() failed, we bail out.");
384                            }
385
386                            // we have no more listeners or polling failed, terminate the thread
387                            sensors_data_close();
388                            mThread = null;
389                            break;
390                        }
391                        final Sensor sensorObject = sHandleToSensor.get(sensor);
392                        if (sensorObject != null) {
393                            // report the sensor event to all listeners that
394                            // care about it.
395                            final int size = sListeners.size();
396                            for (int i=0 ; i<size ; i++) {
397                                ListenerDelegate listener = sListeners.get(i);
398                                if (listener.hasSensor(sensorObject)) {
399                                    // this is asynchronous (okay to call
400                                    // with sListeners lock held).
401                                    listener.onSensorChangedLocked(sensorObject,
402                                            values, timestamp, accuracy);
403                                }
404                            }
405                        }
406                    }
407                }
408                //Log.d(TAG, "exiting main sensor thread");
409            }
410        }
411    }
412
413    /*-----------------------------------------------------------------------*/
414
415    private class ListenerDelegate extends Binder {
416        final SensorEventListener mSensorEventListener;
417        private final ArrayList<Sensor> mSensorList = new ArrayList<Sensor>();
418        private final Handler mHandler;
419        private SensorEvent mValuesPool;
420        public int mSensors;
421
422        ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) {
423            mSensorEventListener = listener;
424            Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
425            // currently we create one Handler instance per listener, but we could
426            // have one per looper (we'd need to pass the ListenerDelegate
427            // instance to handleMessage and keep track of them separately).
428            mHandler = new Handler(looper) {
429                @Override
430                public void handleMessage(Message msg) {
431                    SensorEvent t = (SensorEvent)msg.obj;
432                    if (t.accuracy >= 0) {
433                        mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy);
434                    }
435                    mSensorEventListener.onSensorChanged(t);
436                    returnToPool(t);
437                }
438            };
439            addSensor(sensor);
440        }
441
442        protected SensorEvent createSensorEvent() {
443            // maximal size for all legacy events is 3
444            return new SensorEvent(3);
445        }
446
447        protected SensorEvent getFromPool() {
448            SensorEvent t = null;
449            synchronized (this) {
450                // remove the array from the pool
451                t = mValuesPool;
452                mValuesPool = null;
453            }
454            if (t == null) {
455                // the pool was empty, we need a new one
456                t = createSensorEvent();
457            }
458            return t;
459        }
460
461        protected void returnToPool(SensorEvent t) {
462            synchronized (this) {
463                // put back the array into the pool
464                if (mValuesPool == null) {
465                    mValuesPool = t;
466                }
467            }
468        }
469
470        Object getListener() {
471            return mSensorEventListener;
472        }
473
474        int addSensor(Sensor sensor) {
475            mSensors |= 1<<sensor.getHandle();
476            mSensorList.add(sensor);
477            return mSensors;
478        }
479        int removeSensor(Sensor sensor) {
480            mSensors &= ~(1<<sensor.getHandle());
481            mSensorList.remove(sensor);
482            return mSensors;
483        }
484        boolean hasSensor(Sensor sensor) {
485            return ((mSensors & (1<<sensor.getHandle())) != 0);
486        }
487        List<Sensor> getSensors() {
488            return mSensorList;
489        }
490
491        void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) {
492            SensorEvent t = getFromPool();
493            final float[] v = t.values;
494            v[0] = values[0];
495            v[1] = values[1];
496            v[2] = values[2];
497            t.timestamp = timestamp[0];
498            t.accuracy = accuracy;
499            t.sensor = sensor;
500            Message msg = Message.obtain();
501            msg.what = 0;
502            msg.obj = t;
503            mHandler.sendMessage(msg);
504        }
505    }
506
507    /**
508     * {@hide}
509     */
510    public SensorManager(Looper mainLooper) {
511        mSensorService = ISensorService.Stub.asInterface(
512                ServiceManager.getService(Context.SENSOR_SERVICE));
513        mMainLooper = mainLooper;
514
515
516        synchronized(sListeners) {
517            if (!sSensorModuleInitialized) {
518                sSensorModuleInitialized = true;
519
520                nativeClassInit();
521
522                sWindowManager = IWindowManager.Stub.asInterface(
523                        ServiceManager.getService("window"));
524                if (sWindowManager != null) {
525                    // if it's null we're running in the system process
526                    // which won't get the rotated values
527                    try {
528                        sRotation = sWindowManager.watchRotation(
529                            new IRotationWatcher.Stub() {
530                                public void onRotationChanged(int rotation) {
531                                    SensorManager.this.onRotationChanged(rotation);
532                                }
533                            }
534                        );
535                    } catch (RemoteException e) {
536                    }
537                }
538
539                // initialize the sensor list
540                sensors_module_init();
541                final ArrayList<Sensor> fullList = sFullSensorsList;
542                int i = 0;
543                do {
544                    Sensor sensor = new Sensor();
545                    i = sensors_module_get_next_sensor(sensor, i);
546
547                    if (i>=0) {
548                        Log.d(TAG, "found sensor: " + sensor.getName() +
549                                ", handle=" + sensor.getHandle());
550                        sensor.setLegacyType(getLegacySensorType(sensor.getType()));
551                        fullList.add(sensor);
552                        sHandleToSensor.append(sensor.getHandle(), sensor);
553                    }
554                } while (i>0);
555
556                sSensorThread = new SensorThread();
557            }
558        }
559    }
560
561    private int getLegacySensorType(int type) {
562        switch (type) {
563            case Sensor.TYPE_ACCELEROMETER:
564                return SENSOR_ACCELEROMETER;
565            case Sensor.TYPE_MAGNETIC_FIELD:
566                return SENSOR_MAGNETIC_FIELD;
567            case Sensor.TYPE_ORIENTATION:
568                return SENSOR_ORIENTATION_RAW;
569            case Sensor.TYPE_TEMPERATURE:
570                return SENSOR_TEMPERATURE;
571        }
572        return 0;
573    }
574
575    /** @return available sensors.
576     * @deprecated This method is deprecated, use
577     * {@link SensorManager#getSensorList(int)} instead
578     */
579    @Deprecated
580    public int getSensors() {
581        int result = 0;
582        final ArrayList<Sensor> fullList = sFullSensorsList;
583        for (Sensor i : fullList) {
584            switch (i.getType()) {
585                case Sensor.TYPE_ACCELEROMETER:
586                    result |= SensorManager.SENSOR_ACCELEROMETER;
587                    break;
588                case Sensor.TYPE_MAGNETIC_FIELD:
589                    result |= SensorManager.SENSOR_MAGNETIC_FIELD;
590                    break;
591                case Sensor.TYPE_ORIENTATION:
592                    result |= SensorManager.SENSOR_ORIENTATION |
593                                    SensorManager.SENSOR_ORIENTATION_RAW;
594                    break;
595            }
596        }
597        return result;
598    }
599
600    /**
601     * Use this method to get the list of available sensors of a certain
602     * type. Make multiple calls to get sensors of different types or use
603     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all
604     * the sensors.
605     *
606     * @param type of sensors requested
607     * @return a list of sensors matching the asked type.
608     */
609    public List<Sensor> getSensorList(int type) {
610        // cache the returned lists the first time
611        List<Sensor> list;
612        final ArrayList<Sensor> fullList = sFullSensorsList;
613        synchronized(fullList) {
614            list = sSensorListByType.get(type);
615            if (list == null) {
616                if (type == Sensor.TYPE_ALL) {
617                    list = fullList;
618                } else {
619                    list = new ArrayList<Sensor>();
620                    for (Sensor i : fullList) {
621                        if (i.getType() == type)
622                            list.add(i);
623                    }
624                }
625                list = Collections.unmodifiableList(list);
626                sSensorListByType.append(type, list);
627            }
628        }
629        return list;
630    }
631
632    /**
633     * Use this method to get the default sensor for a given type. Note that
634     * the returned sensor could be a composite sensor, and its data could be
635     * averaged or filtered. If you need to access the raw sensors use
636     * {@link SensorManager#getSensorList(int) getSensorList}.
637     *
638     *
639     * @param type of sensors requested
640     * @return the default sensors matching the asked type.
641     */
642    public Sensor getDefaultSensor(int type) {
643        // TODO: need to be smarter, for now, just return the 1st sensor
644        List<Sensor> l = getSensorList(type);
645        return l.isEmpty() ? null : l.get(0);
646    }
647
648
649    /**
650     * Registers a listener for given sensors.
651     * @deprecated This method is deprecated, use
652     * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
653     * instead.
654     *
655     * @param listener sensor listener object
656     * @param sensors a bit masks of the sensors to register to
657     *
658     * @return true if the sensor is supported and successfully enabled
659     */
660    @Deprecated
661    public boolean registerListener(SensorListener listener, int sensors) {
662        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
663    }
664
665    /**
666     * Registers a SensorListener for given sensors.
667     * @deprecated This method is deprecated, use
668     * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
669     * instead.
670     *
671     * @param listener sensor listener object
672     * @param sensors a bit masks of the sensors to register to
673     * @param rate rate of events. This is only a hint to the system. events
674     * may be received faster or slower than the specified rate. Usually events
675     * are received faster. The value must be one of {@link #SENSOR_DELAY_NORMAL},
676     * {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
677     *
678     * @return true if the sensor is supported and successfully enabled
679     */
680    @Deprecated
681    public boolean registerListener(SensorListener listener, int sensors, int rate) {
682        if (listener == null) {
683            return false;
684        }
685        boolean result = false;
686        result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
687                listener, sensors, rate) || result;
688        result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
689                listener, sensors, rate) || result;
690        result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
691                listener, sensors, rate) || result;
692        result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
693                listener, sensors, rate) || result;
694        result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
695                listener, sensors, rate) || result;
696        return result;
697    }
698
699    @SuppressWarnings("deprecation")
700    private boolean registerLegacyListener(int legacyType, int type,
701            SensorListener listener, int sensors, int rate)
702    {
703        if (listener == null) {
704            return false;
705        }
706        boolean result = false;
707        // Are we activating this legacy sensor?
708        if ((sensors & legacyType) != 0) {
709            // if so, find a suitable Sensor
710            Sensor sensor = getDefaultSensor(type);
711            if (sensor != null) {
712                // If we don't already have one, create a LegacyListener
713                // to wrap this listener and process the events as
714                // they are expected by legacy apps.
715                LegacyListener legacyListener = null;
716                synchronized (mLegacyListenersMap) {
717                    legacyListener = mLegacyListenersMap.get(listener);
718                    if (legacyListener == null) {
719                        // we didn't find a LegacyListener for this client,
720                        // create one, and put it in our list.
721                        legacyListener = new LegacyListener(listener);
722                        mLegacyListenersMap.put(listener, legacyListener);
723                    }
724                }
725                // register this legacy sensor with this legacy listener
726                legacyListener.registerSensor(legacyType);
727                // and finally, register the legacy listener with the new apis
728                result = registerListener(legacyListener, sensor, rate);
729            }
730        }
731        return result;
732    }
733
734    /**
735     * Unregisters a listener for the sensors with which it is registered.
736     * @deprecated This method is deprecated, use
737     * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
738     * instead.
739     *
740     * @param listener a SensorListener object
741     * @param sensors a bit masks of the sensors to unregister from
742     */
743    @Deprecated
744    public void unregisterListener(SensorListener listener, int sensors) {
745        unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
746                listener, sensors);
747        unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
748                listener, sensors);
749        unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
750                listener, sensors);
751        unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
752                listener, sensors);
753        unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
754                listener, sensors);
755    }
756
757    @SuppressWarnings("deprecation")
758    private void unregisterLegacyListener(int legacyType, int type,
759            SensorListener listener, int sensors)
760    {
761        if (listener == null) {
762            return;
763        }
764        // do we know about this listener?
765        LegacyListener legacyListener = null;
766        synchronized (mLegacyListenersMap) {
767            legacyListener = mLegacyListenersMap.get(listener);
768        }
769        if (legacyListener != null) {
770            // Are we deactivating this legacy sensor?
771            if ((sensors & legacyType) != 0) {
772                // if so, find the corresponding Sensor
773                Sensor sensor = getDefaultSensor(type);
774                if (sensor != null) {
775                    // unregister this legacy sensor and if we don't
776                    // need the corresponding Sensor, unregister it too
777                    if (legacyListener.unregisterSensor(legacyType)) {
778                        // corresponding sensor not needed, unregister
779                        unregisterListener(legacyListener, sensor);
780                        // finally check if we still need the legacyListener
781                        // in our mapping, if not, get rid of it too.
782                        synchronized(sListeners) {
783                            boolean found = false;
784                            for (ListenerDelegate i : sListeners) {
785                                if (i.getListener() == legacyListener) {
786                                    found = true;
787                                    break;
788                                }
789                            }
790                            if (!found) {
791                                synchronized (mLegacyListenersMap) {
792                                    mLegacyListenersMap.remove(listener);
793                                }
794                            }
795                        }
796                    }
797                }
798            }
799        }
800    }
801
802    /**
803     * Unregisters a listener for all sensors.
804     * @deprecated This method is deprecated, use
805     * {@link SensorManager#unregisterListener(SensorEventListener)}
806     * instead.
807     *
808     * @param listener a SensorListener object
809     */
810    @Deprecated
811    public void unregisterListener(SensorListener listener) {
812        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
813    }
814
815    /**
816     * Unregisters a listener for the sensors with which it is registered.
817     *
818     * @param listener a SensorEventListener object
819     * @param sensor the sensor to unregister from
820     *
821     */
822    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
823        unregisterListener((Object)listener, sensor);
824    }
825
826    /**
827     * Unregisters a listener for all sensors.
828     *
829     * @param listener a SensorListener object
830     *
831     */
832    public void unregisterListener(SensorEventListener listener) {
833        unregisterListener((Object)listener);
834    }
835
836
837    /**
838     * Registers a {@link android.hardware.SensorEventListener SensorEventListener}
839     * for the given sensor.
840     *
841     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
842     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
843     * @param rate The rate {@link android.hardware.SensorEvent sensor events} are delivered at.
844     * This is only a hint to the system. Events may be received faster or
845     * slower than the specified rate. Usually events are received faster. The value must be
846     * one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME},
847     * or {@link #SENSOR_DELAY_FASTEST}.
848     *
849     * @return true if the sensor is supported and successfully enabled.
850     *
851     */
852    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) {
853        return registerListener(listener, sensor, rate, null);
854    }
855
856    /**
857     * Registers a {@link android.hardware.SensorEventListener SensorEventListener}
858     * for the given sensor.
859     *
860     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
861     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
862     * @param rate The rate {@link android.hardware.SensorEvent sensor events} are delivered at.
863     * This is only a hint to the system. Events may be received faster or
864     * slower than the specified rate. Usually events are received faster. The value must be one
865     * of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME}, or
866     * {@link #SENSOR_DELAY_FASTEST}.
867     * @param handler The {@link android.os.Handler Handler} the
868     * {@link android.hardware.SensorEvent sensor events} will be delivered to.
869     *
870     * @return true if the sensor is supported and successfully enabled.
871     *
872     */
873    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate,
874            Handler handler) {
875        if (listener == null || sensor == null) {
876            return false;
877        }
878        boolean result;
879        int delay = -1;
880        switch (rate) {
881            case SENSOR_DELAY_FASTEST:
882                delay = 0;
883                break;
884            case SENSOR_DELAY_GAME:
885                delay = 20;
886                break;
887            case SENSOR_DELAY_UI:
888                delay = 60;
889                break;
890            case SENSOR_DELAY_NORMAL:
891                delay = 200;
892                break;
893            default:
894                return false;
895        }
896
897        try {
898            synchronized (sListeners) {
899                ListenerDelegate l = null;
900                for (ListenerDelegate i : sListeners) {
901                    if (i.getListener() == listener) {
902                        l = i;
903                        break;
904                    }
905                }
906
907                String name = sensor.getName();
908                int handle = sensor.getHandle();
909                if (l == null) {
910                    l = new ListenerDelegate(listener, sensor, handler);
911                    result = mSensorService.enableSensor(l, name, handle, delay);
912                    if (result) {
913                        sListeners.add(l);
914                        sListeners.notify();
915                    }
916                    if (!sListeners.isEmpty()) {
917                        sSensorThread.startLocked(mSensorService);
918                    }
919                } else {
920                    result = mSensorService.enableSensor(l, name, handle, delay);
921                    if (result) {
922                        l.addSensor(sensor);
923                    }
924                }
925            }
926        } catch (RemoteException e) {
927            Log.e(TAG, "RemoteException in registerListener: ", e);
928            result = false;
929        }
930        return result;
931    }
932
933    private void unregisterListener(Object listener, Sensor sensor) {
934        if (listener == null || sensor == null) {
935            return;
936        }
937        try {
938            synchronized (sListeners) {
939                final int size = sListeners.size();
940                for (int i=0 ; i<size ; i++) {
941                    ListenerDelegate l = sListeners.get(i);
942                    if (l.getListener() == listener) {
943                        // disable these sensors
944                        String name = sensor.getName();
945                        int handle = sensor.getHandle();
946                        mSensorService.enableSensor(l, name, handle, SENSOR_DISABLE);
947                        // if we have no more sensors enabled on this listener,
948                        // take it off the list.
949                        if (l.removeSensor(sensor) == 0) {
950                            sListeners.remove(i);
951                        }
952                        break;
953                    }
954                }
955            }
956        } catch (RemoteException e) {
957            Log.e(TAG, "RemoteException in unregisterListener: ", e);
958        }
959    }
960
961    private void unregisterListener(Object listener) {
962        if (listener == null) {
963            return;
964        }
965        try {
966            synchronized (sListeners) {
967                final int size = sListeners.size();
968                for (int i=0 ; i<size ; i++) {
969                    ListenerDelegate l = sListeners.get(i);
970                    if (l.getListener() == listener) {
971                        // disable all sensors for this listener
972                        for (Sensor sensor : l.getSensors()) {
973                            String name = sensor.getName();
974                            int handle = sensor.getHandle();
975                            mSensorService.enableSensor(l, name, handle, SENSOR_DISABLE);
976                        }
977                        sListeners.remove(i);
978                        break;
979                    }
980                }
981            }
982        } catch (RemoteException e) {
983            Log.e(TAG, "RemoteException in unregisterListener: ", e);
984        }
985    }
986
987    /**
988     * Computes the inclination matrix <b>I</b> as well as the rotation
989     * matrix <b>R</b> transforming a vector from the
990     * device coordinate system to the world's coordinate system which is
991     * defined as a direct orthonormal basis, where:
992     *
993     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
994     * the ground at the device's current location and roughly points East).</li>
995     * <li>Y is tangential to the ground at the device's current location and
996     * points towards the magnetic North Pole.</li>
997     * <li>Z points towards the sky and is perpendicular to the ground.</li>
998     * <p>
999     * <hr>
1000     * <p>By definition:
1001     * <p>[0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1002     * <p>[0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b>
1003     * (m = magnitude of geomagnetic field)
1004     * <p><b>R</b> is the identity matrix when the device is aligned with the
1005     * world's coordinate system, that is, when the device's X axis points
1006     * toward East, the Y axis points to the North Pole and the device is facing
1007     * the sky.
1008     *
1009     * <p><b>I</b> is a rotation matrix transforming the geomagnetic
1010     * vector into the same coordinate space as gravity (the world's coordinate
1011     * space). <b>I</b> is a simple rotation around the X axis.
1012     * The inclination angle in radians can be computed with
1013     * {@link #getInclination}.
1014     * <hr>
1015     *
1016     * <p> Each matrix is returned either as a 3x3 or 4x4 row-major matrix
1017     * depending on the length of the passed array:
1018     * <p><u>If the array length is 16:</u>
1019     * <pre>
1020     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1021     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1022     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1023     *   \  M[12]   M[13]   M[14]   M[15]  /
1024     *</pre>
1025     * This matrix is ready to be used by OpenGL ES's
1026     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1027     * glLoadMatrixf(float[], int)}.
1028     * <p>Note that because OpenGL matrices are column-major matrices you must
1029     * transpose the matrix before using it. However, since the matrix is a
1030     * rotation matrix, its transpose is also its inverse, conveniently, it is
1031     * often the inverse of the rotation that is needed for rendering; it can
1032     * therefore be used with OpenGL ES directly.
1033     * <p>
1034     * Also note that the returned matrices always have this form:
1035     * <pre>
1036     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1037     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1038     *   |  M[ 8]   M[ 9]   M[10]   0  |
1039     *   \      0       0       0   1  /
1040     *</pre>
1041     * <p><u>If the array length is 9:</u>
1042     * <pre>
1043     *   /  M[ 0]   M[ 1]   M[ 2]  \
1044     *   |  M[ 3]   M[ 4]   M[ 5]  |
1045     *   \  M[ 6]   M[ 7]   M[ 8]  /
1046     *</pre>
1047     *
1048     * <hr>
1049     * <p>The inverse of each matrix can be computed easily by taking its
1050     * transpose.
1051     *
1052     * <p>The matrices returned by this function are meaningful only when the
1053     * device is not free-falling and it is not close to the magnetic north.
1054     * If the device is accelerating, or placed into a strong magnetic field,
1055     * the returned matrices may be inaccurate.
1056     *
1057     * @param R is an array of 9 floats holding the rotation matrix <b>R</b>
1058     * when this function returns. R can be null.<p>
1059     * @param I is an array of 9 floats holding the rotation matrix <b>I</b>
1060     * when this function returns. I can be null.<p>
1061     * @param gravity is an array of 3 floats containing the gravity vector
1062     * expressed in the device's coordinate. You can simply use the
1063     * {@link android.hardware.SensorEvent#values values}
1064     * returned by a {@link android.hardware.SensorEvent SensorEvent} of a
1065     * {@link android.hardware.Sensor Sensor} of type
1066     * {@link android.hardware.Sensor#TYPE_ACCELEROMETER TYPE_ACCELEROMETER}.<p>
1067     * @param geomagnetic is an array of 3 floats containing the geomagnetic
1068     * vector expressed in the device's coordinate. You can simply use the
1069     * {@link android.hardware.SensorEvent#values values}
1070     * returned by a {@link android.hardware.SensorEvent SensorEvent} of a
1071     * {@link android.hardware.Sensor Sensor} of type
1072     * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD TYPE_MAGNETIC_FIELD}.
1073     * @return
1074     *   true on success<p>
1075     *   false on failure (for instance, if the device is in free fall).
1076     *   On failure the output matrices are not modified.
1077     */
1078
1079    public static boolean getRotationMatrix(float[] R, float[] I,
1080            float[] gravity, float[] geomagnetic) {
1081        // TODO: move this to native code for efficiency
1082        float Ax = gravity[0];
1083        float Ay = gravity[1];
1084        float Az = gravity[2];
1085        final float Ex = geomagnetic[0];
1086        final float Ey = geomagnetic[1];
1087        final float Ez = geomagnetic[2];
1088        float Hx = Ey*Az - Ez*Ay;
1089        float Hy = Ez*Ax - Ex*Az;
1090        float Hz = Ex*Ay - Ey*Ax;
1091        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1092        if (normH < 0.1f) {
1093            // device is close to free fall (or in space?), or close to
1094            // magnetic north pole. Typical values are  > 100.
1095            return false;
1096        }
1097        final float invH = 1.0f / normH;
1098        Hx *= invH;
1099        Hy *= invH;
1100        Hz *= invH;
1101        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1102        Ax *= invA;
1103        Ay *= invA;
1104        Az *= invA;
1105        final float Mx = Ay*Hz - Az*Hy;
1106        final float My = Az*Hx - Ax*Hz;
1107        final float Mz = Ax*Hy - Ay*Hx;
1108        if (R != null) {
1109            if (R.length == 9) {
1110                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1111                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1112                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1113            } else if (R.length == 16) {
1114                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1115                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1116                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1117                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1118            }
1119        }
1120        if (I != null) {
1121            // compute the inclination matrix by projecting the geomagnetic
1122            // vector onto the Z (gravity) and X (horizontal component
1123            // of geomagnetic vector) axes.
1124            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1125            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1126            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1127            if (I.length == 9) {
1128                I[0] = 1;     I[1] = 0;     I[2] = 0;
1129                I[3] = 0;     I[4] = c;     I[5] = s;
1130                I[6] = 0;     I[7] =-s;     I[8] = c;
1131            } else if (I.length == 16) {
1132                I[0] = 1;     I[1] = 0;     I[2] = 0;
1133                I[4] = 0;     I[5] = c;     I[6] = s;
1134                I[8] = 0;     I[9] =-s;     I[10]= c;
1135                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1136                I[15] = 1;
1137            }
1138        }
1139        return true;
1140    }
1141
1142    /**
1143     * Computes the geomagnetic inclination angle in radians from the
1144     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1145     * @param I inclination matrix see {@link #getRotationMatrix}.
1146     * @return The geomagnetic inclination angle in radians.
1147     */
1148    public static float getInclination(float[] I) {
1149        if (I.length == 9) {
1150            return (float)Math.atan2(I[5], I[4]);
1151        } else {
1152            return (float)Math.atan2(I[6], I[5]);
1153        }
1154    }
1155
1156    /**
1157     * Rotates the supplied rotation matrix so it is expressed in a
1158     * different coordinate system. This is typically used when an application
1159     * needs to compute the three orientation angles of the device (see
1160     * {@link #getOrientation}) in a different coordinate system.
1161     *
1162     * <p>When the rotation matrix is used for drawing (for instance with
1163     * OpenGL ES), it usually <b>doesn't need</b> to be transformed by this
1164     * function, unless the screen is physically rotated, such as when used
1165     * in landscape mode.
1166     *
1167     * <p><u>Examples:</u><p>
1168     *
1169     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1170     * reality application where the rotation angles are needed :</li><p>
1171     *
1172     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code><p>
1173     *
1174     * <li>Using the device as a mechanical compass in landscape mode:</li><p>
1175     *
1176     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code><p>
1177     *
1178     * Beware of the above example. This call is needed only if the device is
1179     * physically used in landscape mode to calculate the rotation angles (see
1180     * {@link #getOrientation}).
1181     * If the rotation matrix is also used for rendering, it may not need to
1182     * be transformed, for instance if your {@link android.app.Activity
1183     * Activity} is running in landscape mode.
1184     *
1185     * <p>Since the resulting coordinate system is orthonormal, only two axes
1186     * need to be specified.
1187     *
1188     * @param inR the rotation matrix to be transformed. Usually it is the
1189     * matrix returned by {@link #getRotationMatrix}.
1190     * @param X defines on which world axis and direction the X axis of the
1191     *        device is mapped.
1192     * @param Y defines on which world axis and direction the Y axis of the
1193     *        device is mapped.
1194     * @param outR the transformed rotation matrix. inR and outR can be the same
1195     *        array, but it is not recommended for performance reason.
1196     * @return true on success. false if the input parameters are incorrect, for
1197     * instance if X and Y define the same axis. Or if inR and outR don't have
1198     * the same length.
1199     */
1200
1201    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1202            float[] outR)
1203    {
1204        if (inR == outR) {
1205            final float[] temp = mTempMatrix;
1206            synchronized(temp) {
1207                // we don't expect to have a lot of contention
1208                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1209                    final int size = outR.length;
1210                    for (int i=0 ; i<size ; i++)
1211                        outR[i] = temp[i];
1212                    return true;
1213                }
1214            }
1215        }
1216        return remapCoordinateSystemImpl(inR, X, Y, outR);
1217    }
1218
1219    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1220            float[] outR)
1221    {
1222        /*
1223         * X and Y define a rotation matrix 'r':
1224         *
1225         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1226         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1227         *                              r[0] ^ r[1]
1228         *
1229         * where the 3rd line is the vector product of the first 2 lines
1230         *
1231         */
1232
1233        final int length = outR.length;
1234        if (inR.length != length)
1235            return false;   // invalid parameter
1236        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1237            return false;   // invalid parameter
1238        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1239            return false;   // no axis specified
1240        if ((X & 0x3) == (Y & 0x3))
1241            return false;   // same axis specified
1242
1243        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1244        // this can be calculated by exclusive-or'ing X and Y; except for
1245        // the sign inversion (+/-) which is calculated below.
1246        int Z = X ^ Y;
1247
1248        // extract the axis (remove the sign), offset in the range 0 to 2.
1249        final int x = (X & 0x3)-1;
1250        final int y = (Y & 0x3)-1;
1251        final int z = (Z & 0x3)-1;
1252
1253        // compute the sign of Z (whether it needs to be inverted)
1254        final int axis_y = (z+1)%3;
1255        final int axis_z = (z+2)%3;
1256        if (((x^axis_y)|(y^axis_z)) != 0)
1257            Z ^= 0x80;
1258
1259        final boolean sx = (X>=0x80);
1260        final boolean sy = (Y>=0x80);
1261        final boolean sz = (Z>=0x80);
1262
1263        // Perform R * r, in avoiding actual muls and adds.
1264        final int rowLength = ((length==16)?4:3);
1265        for (int j=0 ; j<3 ; j++) {
1266            final int offset = j*rowLength;
1267            for (int i=0 ; i<3 ; i++) {
1268                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1269                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1270                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1271            }
1272        }
1273        if (length == 16) {
1274            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1275            outR[15] = 1;
1276        }
1277        return true;
1278    }
1279
1280    /**
1281     * Computes the device's orientation based on the rotation matrix.
1282     * <p> When it returns, the array values is filled with the result:
1283     * <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
1284     * <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
1285     * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
1286     * <p>
1287     *
1288     * @param R rotation matrix see {@link #getRotationMatrix}.
1289     * @param values an array of 3 floats to hold the result.
1290     * @return The array values passed as argument.
1291     */
1292    public static float[] getOrientation(float[] R, float values[]) {
1293        /*
1294         * 4x4 (length=16) case:
1295         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1296         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1297         *   |  R[ 8]   R[ 9]   R[10]   0  |
1298         *   \      0       0       0   1  /
1299         *
1300         * 3x3 (length=9) case:
1301         *   /  R[ 0]   R[ 1]   R[ 2]  \
1302         *   |  R[ 3]   R[ 4]   R[ 5]  |
1303         *   \  R[ 6]   R[ 7]   R[ 8]  /
1304         *
1305         */
1306        if (R.length == 9) {
1307            values[0] = (float)Math.atan2(R[1], R[4]);
1308            values[1] = (float)Math.asin(-R[7]);
1309            values[2] = (float)Math.atan2(-R[6], R[8]);
1310        } else {
1311            values[0] = (float)Math.atan2(R[1], R[5]);
1312            values[1] = (float)Math.asin(-R[9]);
1313            values[2] = (float)Math.atan2(-R[8], R[10]);
1314        }
1315        return values;
1316    }
1317
1318
1319    /**
1320     * {@hide}
1321     */
1322    public void onRotationChanged(int rotation) {
1323        synchronized(sListeners) {
1324            sRotation  = rotation;
1325        }
1326    }
1327
1328    static int getRotation() {
1329        synchronized(sListeners) {
1330            return sRotation;
1331        }
1332    }
1333
1334    private class LegacyListener implements SensorEventListener {
1335        private float mValues[] = new float[6];
1336        @SuppressWarnings("deprecation")
1337        private SensorListener mTarget;
1338        private int mSensors;
1339        private final LmsFilter mYawfilter = new LmsFilter();
1340
1341        @SuppressWarnings("deprecation")
1342        LegacyListener(SensorListener target) {
1343            mTarget = target;
1344            mSensors = 0;
1345        }
1346
1347        void registerSensor(int legacyType) {
1348            mSensors |= legacyType;
1349        }
1350
1351        boolean unregisterSensor(int legacyType) {
1352            mSensors &= ~legacyType;
1353            int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW;
1354            if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) {
1355                return false;
1356            }
1357            return true;
1358        }
1359
1360        @SuppressWarnings("deprecation")
1361        public void onAccuracyChanged(Sensor sensor, int accuracy) {
1362            try {
1363                mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy);
1364            } catch (AbstractMethodError e) {
1365                // old app that doesn't implement this method
1366                // just ignore it.
1367            }
1368        }
1369
1370        @SuppressWarnings("deprecation")
1371        public void onSensorChanged(SensorEvent event) {
1372            final float v[] = mValues;
1373            v[0] = event.values[0];
1374            v[1] = event.values[1];
1375            v[2] = event.values[2];
1376            int legacyType = event.sensor.getLegacyType();
1377            mapSensorDataToWindow(legacyType, v, SensorManager.getRotation());
1378            if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) {
1379                if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) {
1380                    mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v);
1381                }
1382                if ((mSensors & SENSOR_ORIENTATION)!=0) {
1383                    v[0] = mYawfilter.filter(event.timestamp, v[0]);
1384                    mTarget.onSensorChanged(SENSOR_ORIENTATION, v);
1385                }
1386            } else {
1387                mTarget.onSensorChanged(legacyType, v);
1388            }
1389        }
1390
1391        /*
1392         * Helper function to convert the specified sensor's data to the windows's
1393         * coordinate space from the device's coordinate space.
1394         *
1395         * output: 3,4,5: values in the old API format
1396         *         0,1,2: transformed values in the old API format
1397         *
1398         */
1399        private void mapSensorDataToWindow(int sensor,
1400                float[] values, int orientation) {
1401            float x = values[0];
1402            float y = values[1];
1403            float z = values[2];
1404
1405            switch (sensor) {
1406                case SensorManager.SENSOR_ORIENTATION:
1407                case SensorManager.SENSOR_ORIENTATION_RAW:
1408                    z = -z;
1409                    break;
1410                case SensorManager.SENSOR_ACCELEROMETER:
1411                    x = -x;
1412                    y = -y;
1413                    z = -z;
1414                    break;
1415                case SensorManager.SENSOR_MAGNETIC_FIELD:
1416                    x = -x;
1417                    y = -y;
1418                    break;
1419            }
1420            values[0] = x;
1421            values[1] = y;
1422            values[2] = z;
1423            values[3] = x;
1424            values[4] = y;
1425            values[5] = z;
1426            // TODO: add support for 180 and 270 orientations
1427            if (orientation == Surface.ROTATION_90) {
1428                switch (sensor) {
1429                    case SENSOR_ACCELEROMETER:
1430                    case SENSOR_MAGNETIC_FIELD:
1431                        values[0] =-y;
1432                        values[1] = x;
1433                        values[2] = z;
1434                        break;
1435                    case SENSOR_ORIENTATION:
1436                    case SENSOR_ORIENTATION_RAW:
1437                        values[0] = x + ((x < 270) ? 90 : -270);
1438                        values[1] = z;
1439                        values[2] = y;
1440                        break;
1441                }
1442            }
1443        }
1444    }
1445
1446    class LmsFilter {
1447        private static final int SENSORS_RATE_MS = 20;
1448        private static final int COUNT = 12;
1449        private static final float PREDICTION_RATIO = 1.0f/3.0f;
1450        private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO;
1451        private float mV[] = new float[COUNT*2];
1452        private float mT[] = new float[COUNT*2];
1453        private int mIndex;
1454
1455        public LmsFilter() {
1456            mIndex = COUNT;
1457        }
1458
1459        public float filter(long time, float in) {
1460            float v = in;
1461            final float ns = 1.0f / 1000000000.0f;
1462            final float t = time*ns;
1463            float v1 = mV[mIndex];
1464            if ((v-v1) > 180) {
1465                v -= 360;
1466            } else if ((v1-v) > 180) {
1467                v += 360;
1468            }
1469            /* Manage the circular buffer, we write the data twice spaced
1470             * by COUNT values, so that we don't have to copy the array
1471             * when it's full
1472             */
1473            mIndex++;
1474            if (mIndex >= COUNT*2)
1475                mIndex = COUNT;
1476            mV[mIndex] = v;
1477            mT[mIndex] = t;
1478            mV[mIndex-COUNT] = v;
1479            mT[mIndex-COUNT] = t;
1480
1481            float A, B, C, D, E;
1482            float a, b;
1483            int i;
1484
1485            A = B = C = D = E = 0;
1486            for (i=0 ; i<COUNT-1 ; i++) {
1487                final int j = mIndex - 1 - i;
1488                final float Z = mV[j];
1489                final float T = 0.5f*(mT[j] + mT[j+1]) - t;
1490                float dT = mT[j] - mT[j+1];
1491                dT *= dT;
1492                A += Z*dT;
1493                B += T*(T*dT);
1494                C +=   (T*dT);
1495                D += Z*(T*dT);
1496                E += dT;
1497            }
1498            b = (A*B + C*D) / (E*B + C*C);
1499            a = (E*b - A) / C;
1500            float f = b + PREDICTION_TIME*a;
1501
1502            // Normalize
1503            f *= (1.0f / 360.0f);
1504            if (((f>=0)?f:-f) >= 0.5f)
1505                f = f - (float)Math.ceil(f + 0.5f) + 1.0f;
1506            if (f < 0)
1507                f += 1.0f;
1508            f *= 360.0f;
1509            return f;
1510        }
1511    }
1512
1513
1514    private static native void nativeClassInit();
1515
1516    private static native int sensors_module_init();
1517    private static native int sensors_module_get_next_sensor(Sensor sensor, int next);
1518
1519    // Used within this module from outside SensorManager, don't make private
1520    static native int sensors_data_init();
1521    static native int sensors_data_uninit();
1522    static native int sensors_data_open(FileDescriptor[] fds, int[] ints);
1523    static native int sensors_data_close();
1524    static native int sensors_data_poll(float[] values, int[] status, long[] timestamp);
1525}
1526