SensorManager.java revision 5a0cb42f3ffc10502233d94fe4fae629c3111c7b
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.content.Context;
20import android.os.Binder;
21import android.os.Looper;
22import android.os.ParcelFileDescriptor;
23import android.os.Process;
24import android.os.RemoteException;
25import android.os.Handler;
26import android.os.Message;
27import android.os.ServiceManager;
28import android.util.Log;
29import android.util.SparseArray;
30import android.view.IRotationWatcher;
31import android.view.IWindowManager;
32import android.view.Surface;
33
34import java.io.FileDescriptor;
35import java.io.IOException;
36import java.util.ArrayList;
37import java.util.Collections;
38import java.util.HashMap;
39import java.util.List;
40
41/**
42 * Class that lets you access the device's sensors. Get an instance of this
43 * class by calling {@link android.content.Context#getSystemService(java.lang.String)
44 * Context.getSystemService()} with an argument of {@link android.content.Context#SENSOR_SERVICE}.
45 */
46public class SensorManager extends IRotationWatcher.Stub
47{
48    private static final String TAG = "SensorManager";
49    private static final float[] mTempMatrix = new float[16];
50
51    /* NOTE: sensor IDs must be a power of 2 */
52
53    /**
54     * A constant describing an orientation sensor.
55     * See {@link android.hardware.SensorListener SensorListener} for more details.
56     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
57     */
58    @Deprecated
59    public static final int SENSOR_ORIENTATION = 1 << 0;
60
61    /**
62     * A constant describing an accelerometer.
63     * See {@link android.hardware.SensorListener SensorListener} for more details.
64     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
65     */
66    @Deprecated
67    public static final int SENSOR_ACCELEROMETER = 1 << 1;
68
69    /**
70     * A constant describing a temperature sensor
71     * See {@link android.hardware.SensorListener SensorListener} for more details.
72     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
73     */
74    @Deprecated
75    public static final int SENSOR_TEMPERATURE = 1 << 2;
76
77    /**
78     * A constant describing a magnetic sensor
79     * See {@link android.hardware.SensorListener SensorListener} for more details.
80     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
81     */
82    @Deprecated
83    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
84
85    /**
86     * A constant describing an ambient light sensor
87     * See {@link android.hardware.SensorListener SensorListener} for more details.
88     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
89     */
90    @Deprecated
91    public static final int SENSOR_LIGHT = 1 << 4;
92
93    /**
94     * A constant describing a proximity sensor
95     * See {@link android.hardware.SensorListener SensorListener} for more details.
96     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
97     */
98    @Deprecated
99    public static final int SENSOR_PROXIMITY = 1 << 5;
100
101    /**
102     * A constant describing a Tricorder
103     * See {@link android.hardware.SensorListener SensorListener} for more details.
104     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
105     */
106    @Deprecated
107    public static final int SENSOR_TRICORDER = 1 << 6;
108
109    /**
110     * A constant describing an orientation sensor.
111     * See {@link android.hardware.SensorListener SensorListener} for more details.
112     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
113     */
114    @Deprecated
115    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
116
117    /** A constant that includes all sensors */
118    @Deprecated
119    public static final int SENSOR_ALL = 0x7F;
120
121    /** Smallest sensor ID */
122    @Deprecated
123    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
124
125    /** Largest sensor ID */
126    @Deprecated
127    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
128
129
130    /** Index of the X value in the array returned by
131     * {@link android.hardware.SensorListener#onSensorChanged} */
132    @Deprecated
133    public static final int DATA_X = 0;
134    /** Index of the Y value in the array returned by
135     * {@link android.hardware.SensorListener#onSensorChanged} */
136    @Deprecated
137    public static final int DATA_Y = 1;
138    /** Index of the Z value in the array returned by
139     * {@link android.hardware.SensorListener#onSensorChanged} */
140    @Deprecated
141    public static final int DATA_Z = 2;
142
143    /** Offset to the untransformed values in the array returned by
144     * {@link android.hardware.SensorListener#onSensorChanged} */
145    @Deprecated
146    public static final int RAW_DATA_INDEX = 3;
147
148    /** Index of the untransformed X value in the array returned by
149     * {@link android.hardware.SensorListener#onSensorChanged} */
150    @Deprecated
151    public static final int RAW_DATA_X = 3;
152    /** Index of the untransformed Y value in the array returned by
153     * {@link android.hardware.SensorListener#onSensorChanged} */
154    @Deprecated
155    public static final int RAW_DATA_Y = 4;
156    /** Index of the untransformed Z value in the array returned by
157     * {@link android.hardware.SensorListener#onSensorChanged} */
158    @Deprecated
159    public static final int RAW_DATA_Z = 5;
160
161
162    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
163    public static final float STANDARD_GRAVITY = 9.80665f;
164
165    /** values returned by the accelerometer in various locations in the universe.
166     * all values are in SI units (m/s^2) */
167    public static final float GRAVITY_SUN             = 275.0f;
168    public static final float GRAVITY_MERCURY         = 3.70f;
169    public static final float GRAVITY_VENUS           = 8.87f;
170    public static final float GRAVITY_EARTH           = 9.80665f;
171    public static final float GRAVITY_MOON            = 1.6f;
172    public static final float GRAVITY_MARS            = 3.71f;
173    public static final float GRAVITY_JUPITER         = 23.12f;
174    public static final float GRAVITY_SATURN          = 8.96f;
175    public static final float GRAVITY_URANUS          = 8.69f;
176    public static final float GRAVITY_NEPTUNE         = 11.0f;
177    public static final float GRAVITY_PLUTO           = 0.6f;
178    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
179    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
180
181
182    /** Maximum magnetic field on Earth's surface */
183    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
184
185    /** Minimum magnetic field on Earth's surface */
186    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
187
188
189    /** Various luminance values during the day (lux) */
190    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
191    public static final float LIGHT_SUNLIGHT     = 110000.0f;
192    public static final float LIGHT_SHADE        = 20000.0f;
193    public static final float LIGHT_OVERCAST     = 10000.0f;
194    public static final float LIGHT_SUNRISE      = 400.0f;
195    public static final float LIGHT_CLOUDY       = 100.0f;
196    /** Various luminance values during the night (lux) */
197    public static final float LIGHT_FULLMOON     = 0.25f;
198    public static final float LIGHT_NO_MOON      = 0.001f;
199
200    /** get sensor data as fast as possible */
201    public static final int SENSOR_DELAY_FASTEST = 0;
202    /** rate suitable for games */
203    public static final int SENSOR_DELAY_GAME = 1;
204    /** rate suitable for the user interface  */
205    public static final int SENSOR_DELAY_UI = 2;
206    /** rate (default) suitable for screen orientation changes */
207    public static final int SENSOR_DELAY_NORMAL = 3;
208
209
210    /** The values returned by this sensor cannot be trusted, calibration
211     * is needed or the environment doesn't allow readings */
212    public static final int SENSOR_STATUS_UNRELIABLE = 0;
213
214    /** This sensor is reporting data with low accuracy, calibration with the
215     * environment is needed */
216    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
217
218    /** This sensor is reporting data with an average level of accuracy,
219     * calibration with the environment may improve the readings */
220    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
221
222    /** This sensor is reporting data with maximum accuracy */
223    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
224
225    /** see {@link #remapCoordinateSystem} */
226    public static final int AXIS_X = 1;
227    /** see {@link #remapCoordinateSystem} */
228    public static final int AXIS_Y = 2;
229    /** see {@link #remapCoordinateSystem} */
230    public static final int AXIS_Z = 3;
231    /** see {@link #remapCoordinateSystem} */
232    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
233    /** see {@link #remapCoordinateSystem} */
234    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
235    /** see {@link #remapCoordinateSystem} */
236    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
237
238    /*-----------------------------------------------------------------------*/
239
240    private ISensorService mSensorService;
241    Looper mMainLooper;
242    @SuppressWarnings("deprecation")
243    private HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
244        new HashMap<SensorListener, LegacyListener>();
245
246    /*-----------------------------------------------------------------------*/
247
248    private static final int SENSOR_DISABLE = -1;
249    private static boolean sSensorModuleInitialized = false;
250    private static ArrayList<Sensor> sFullSensorsList = new ArrayList<Sensor>();
251    private static SparseArray<List<Sensor>> sSensorListByType = new SparseArray<List<Sensor>>();
252    private static IWindowManager sWindowManager;
253    private static int sRotation = Surface.ROTATION_0;
254    /* The thread and the sensor list are global to the process
255     * but the actual thread is spawned on demand */
256    private static SensorThread sSensorThread;
257
258    // Used within this module from outside SensorManager, don't make private
259    static SparseArray<Sensor> sHandleToSensor = new SparseArray<Sensor>();
260    static final ArrayList<ListenerDelegate> sListeners =
261        new ArrayList<ListenerDelegate>();
262
263    /*-----------------------------------------------------------------------*/
264
265    static private class SensorThread {
266
267        Thread mThread;
268
269        SensorThread() {
270            // this gets to the sensor module. We can have only one per process.
271            sensors_data_init();
272        }
273
274        @Override
275        protected void finalize() {
276            sensors_data_uninit();
277        }
278
279        // must be called with sListeners lock
280        void startLocked(ISensorService service) {
281            try {
282                if (mThread == null) {
283                    ParcelFileDescriptor fd = service.getDataChanel();
284                    mThread = new Thread(new SensorThreadRunnable(fd),
285                            SensorThread.class.getName());
286                    mThread.start();
287                }
288            } catch (RemoteException e) {
289                Log.e(TAG, "RemoteException in startLocked: ", e);
290            }
291        }
292
293        private class SensorThreadRunnable implements Runnable {
294            private ParcelFileDescriptor mSensorDataFd;
295            SensorThreadRunnable(ParcelFileDescriptor fd) {
296                mSensorDataFd = fd;
297            }
298            public void run() {
299                //Log.d(TAG, "entering main sensor thread");
300                final float[] values = new float[3];
301                final int[] status = new int[1];
302                final long timestamp[] = new long[1];
303                Process.setThreadPriority(Process.THREAD_PRIORITY_DISPLAY);
304
305                if (mSensorDataFd == null) {
306                    Log.e(TAG, "mSensorDataFd == NULL, exiting");
307                    synchronized (sListeners) {
308                        mThread = null;
309                    }
310                    return;
311                }
312                // this thread is guaranteed to be unique
313                sensors_data_open(mSensorDataFd.getFileDescriptor());
314                try {
315                    mSensorDataFd.close();
316                } catch (IOException e) {
317                    // *shrug*
318                    Log.e(TAG, "IOException: ", e);
319                }
320                mSensorDataFd = null;
321
322
323                while (true) {
324                    // wait for an event
325                    final int sensor = sensors_data_poll(values, status, timestamp);
326
327                    int accuracy = status[0];
328                    synchronized (sListeners) {
329                        if (sensor == -1 || sListeners.isEmpty()) {
330                            if (sensor == -1) {
331                                // we lost the connection to the event stream. this happens
332                                // when the last listener is removed.
333                                Log.d(TAG, "_sensors_data_poll() failed, we bail out.");
334                            }
335
336                            // we have no more listeners or polling failed, terminate the thread
337                            sensors_data_close();
338                            mThread = null;
339                            break;
340                        }
341                        final Sensor sensorObject = sHandleToSensor.get(sensor);
342                        if (sensorObject != null) {
343                            // report the sensor event to all listeners that
344                            // care about it.
345                            final int size = sListeners.size();
346                            for (int i=0 ; i<size ; i++) {
347                                ListenerDelegate listener = sListeners.get(i);
348                                if (listener.hasSensor(sensorObject)) {
349                                    // this is asynchronous (okay to call
350                                    // with sListeners lock held).
351                                    listener.onSensorChangedLocked(sensorObject,
352                                            values, timestamp, accuracy);
353                                }
354                            }
355                        }
356                    }
357                }
358                //Log.d(TAG, "exiting main sensor thread");
359            }
360        }
361    }
362
363    /*-----------------------------------------------------------------------*/
364
365    private class ListenerDelegate extends Binder {
366        final SensorEventListener mSensorEventListener;
367        private final ArrayList<Sensor> mSensorList = new ArrayList<Sensor>();
368        private final Handler mHandler;
369        private SensorEvent mValuesPool;
370        public int mSensors;
371
372        ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) {
373            mSensorEventListener = listener;
374            Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
375            // currently we create one Handler instance per listener, but we could
376            // have one per looper (we'd need to pass the ListenerDelegate
377            // instance to handleMessage and keep track of them separately).
378            mHandler = new Handler(looper) {
379                @Override
380                public void handleMessage(Message msg) {
381                    SensorEvent t = (SensorEvent)msg.obj;
382                    if (t.accuracy >= 0) {
383                        mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy);
384                    }
385                    mSensorEventListener.onSensorChanged(t);
386                    returnToPool(t);
387                }
388            };
389            addSensor(sensor);
390        }
391
392        protected SensorEvent createSensorEvent() {
393            // maximal size for all legacy events is 3
394            return new SensorEvent(3);
395        }
396
397        protected SensorEvent getFromPool() {
398            SensorEvent t = null;
399            synchronized (this) {
400                // remove the array from the pool
401                t = mValuesPool;
402                mValuesPool = null;
403            }
404            if (t == null) {
405                // the pool was empty, we need a new one
406                t = createSensorEvent();
407            }
408            return t;
409        }
410
411        protected void returnToPool(SensorEvent t) {
412            synchronized (this) {
413                // put back the array into the pool
414                if (mValuesPool == null) {
415                    mValuesPool = t;
416                }
417            }
418        }
419
420        Object getListener() {
421            return mSensorEventListener;
422        }
423
424        int addSensor(Sensor sensor) {
425            mSensors |= 1<<sensor.getHandle();
426            mSensorList.add(sensor);
427            return mSensors;
428        }
429        int removeSensor(Sensor sensor) {
430            mSensors &= ~(1<<sensor.getHandle());
431            mSensorList.remove(sensor);
432            return mSensors;
433        }
434        boolean hasSensor(Sensor sensor) {
435            return ((mSensors & (1<<sensor.getHandle())) != 0);
436        }
437        List<Sensor> getSensors() {
438            return mSensorList;
439        }
440
441        void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) {
442            SensorEvent t = getFromPool();
443            final float[] v = t.values;
444            v[0] = values[0];
445            v[1] = values[1];
446            v[2] = values[2];
447            t.timestamp = timestamp[0];
448            t.accuracy = accuracy;
449            t.sensor = sensor;
450            Message msg = Message.obtain();
451            msg.what = 0;
452            msg.obj = t;
453            mHandler.sendMessage(msg);
454        }
455    }
456
457    /**
458     * {@hide}
459     */
460    public SensorManager(Looper mainLooper) {
461        mSensorService = ISensorService.Stub.asInterface(
462                ServiceManager.getService(Context.SENSOR_SERVICE));
463        mMainLooper = mainLooper;
464
465
466        synchronized(sListeners) {
467            if (!sSensorModuleInitialized) {
468                sSensorModuleInitialized = true;
469
470                nativeClassInit();
471
472                sWindowManager = IWindowManager.Stub.asInterface(
473                        ServiceManager.getService("window"));
474                if (sWindowManager != null) {
475                    // if it's null we're running in the system process
476                    // which won't get the rotated values
477                    try {
478                        sRotation = sWindowManager.watchRotation(this);
479                    } catch (RemoteException e) {
480                    }
481                }
482
483                // initialize the sensor list
484                sensors_module_init();
485                final ArrayList<Sensor> fullList = sFullSensorsList;
486                int i = 0;
487                do {
488                    Sensor sensor = new Sensor();
489                    i = sensors_module_get_next_sensor(sensor, i);
490
491                    if (i>=0) {
492                        Log.d(TAG, "found sensor: " + sensor.getName() +
493                                ", handle=" + sensor.getHandle());
494                        sensor.setLegacyType(getLegacySensorType(sensor.getType()));
495                        fullList.add(sensor);
496                        sHandleToSensor.append(sensor.getHandle(), sensor);
497                    }
498                } while (i>0);
499
500                sSensorThread = new SensorThread();
501            }
502        }
503    }
504
505    private int getLegacySensorType(int type) {
506        switch (type) {
507            case Sensor.TYPE_ACCELEROMETER:
508                return SENSOR_ACCELEROMETER;
509            case Sensor.TYPE_MAGNETIC_FIELD:
510                return SENSOR_MAGNETIC_FIELD;
511            case Sensor.TYPE_ORIENTATION:
512                return SENSOR_ORIENTATION_RAW;
513            case Sensor.TYPE_TEMPERATURE:
514                return SENSOR_TEMPERATURE;
515        }
516        return 0;
517    }
518
519    /** @return available sensors.
520     * @deprecated This method is deprecated, use
521     * {@link SensorManager#getSensorList(int)} instead
522     */
523    @Deprecated
524    public int getSensors() {
525        int result = 0;
526        final ArrayList<Sensor> fullList = sFullSensorsList;
527        for (Sensor i : fullList) {
528            switch (i.getType()) {
529                case Sensor.TYPE_ACCELEROMETER:
530                    result |= SensorManager.SENSOR_ACCELEROMETER;
531                    break;
532                case Sensor.TYPE_MAGNETIC_FIELD:
533                    result |= SensorManager.SENSOR_MAGNETIC_FIELD;
534                    break;
535                case Sensor.TYPE_ORIENTATION:
536                    result |= SensorManager.SENSOR_ORIENTATION |
537                                    SensorManager.SENSOR_ORIENTATION_RAW;
538                    break;
539            }
540        }
541        return result;
542    }
543
544    /**
545     * Use this method to get the list of available sensors of a certain
546     * type. Make multiple calls to get sensors of different types or use
547     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all
548     * the sensors.
549     *
550     * @param type of sensors requested
551     * @return a list of sensors matching the asked type.
552     */
553    public List<Sensor> getSensorList(int type) {
554        // cache the returned lists the first time
555        List<Sensor> list;
556        final ArrayList<Sensor> fullList = sFullSensorsList;
557        synchronized(fullList) {
558            list = sSensorListByType.get(type);
559            if (list == null) {
560                if (type == Sensor.TYPE_ALL) {
561                    list = fullList;
562                } else {
563                    list = new ArrayList<Sensor>();
564                    for (Sensor i : fullList) {
565                        if (i.getType() == type)
566                            list.add(i);
567                    }
568                }
569                list = Collections.unmodifiableList(list);
570                sSensorListByType.append(type, list);
571            }
572        }
573        return list;
574    }
575
576    /**
577     * Use this method to get the default sensor for a given type. Note that
578     * the returned sensor could be a composite sensor, and its data could be
579     * averaged or filtered. If you need to access the raw sensors use
580     * {@link SensorManager#getSensorList(int) getSensorList}.
581     *
582     *
583     * @param type of sensors requested
584     * @return the default sensors matching the asked type.
585     */
586    public Sensor getDefaultSensor(int type) {
587        // TODO: need to be smarter, for now, just return the 1st sensor
588        List<Sensor> l = getSensorList(type);
589        return l.isEmpty() ? null : l.get(0);
590    }
591
592
593    /**
594     * Registers a listener for given sensors.
595     * @deprecated This method is deprecated, use
596     * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
597     * instead.
598     *
599     * @param listener sensor listener object
600     * @param sensors a bit masks of the sensors to register to
601     *
602     * @return true if the sensor is supported and successfully enabled
603     */
604    @Deprecated
605    public boolean registerListener(SensorListener listener, int sensors) {
606        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
607    }
608
609    /**
610     * Registers a SensorListener for given sensors.
611     * @deprecated This method is deprecated, use
612     * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
613     * instead.
614     *
615     * @param listener sensor listener object
616     * @param sensors a bit masks of the sensors to register to
617     * @param rate rate of events. This is only a hint to the system. events
618     * may be received faster or slower than the specified rate. Usually events
619     * are received faster. The value must be one of {@link #SENSOR_DELAY_NORMAL},
620     * {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
621     *
622     * @return true if the sensor is supported and successfully enabled
623     */
624    @Deprecated
625    public boolean registerListener(SensorListener listener, int sensors, int rate) {
626        if (listener == null) {
627            return false;
628        }
629        boolean result = false;
630        result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
631                listener, sensors, rate) || result;
632        result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
633                listener, sensors, rate) || result;
634        result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
635                listener, sensors, rate) || result;
636        result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
637                listener, sensors, rate) || result;
638        result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
639                listener, sensors, rate) || result;
640        return result;
641    }
642
643    @SuppressWarnings("deprecation")
644    private boolean registerLegacyListener(int legacyType, int type,
645            SensorListener listener, int sensors, int rate)
646    {
647        if (listener == null) {
648            return false;
649        }
650        boolean result = false;
651        // Are we activating this legacy sensor?
652        if ((sensors & legacyType) != 0) {
653            // if so, find a suitable Sensor
654            Sensor sensor = getDefaultSensor(type);
655            if (sensor != null) {
656                // If we don't already have one, create a LegacyListener
657                // to wrap this listener and process the events as
658                // they are expected by legacy apps.
659                LegacyListener legacyListener = null;
660                synchronized (mLegacyListenersMap) {
661                    legacyListener = mLegacyListenersMap.get(listener);
662                    if (legacyListener == null) {
663                        // we didn't find a LegacyListener for this client,
664                        // create one, and put it in our list.
665                        legacyListener = new LegacyListener(listener);
666                        mLegacyListenersMap.put(listener, legacyListener);
667                    }
668                }
669                // register this legacy sensor with this legacy listener
670                legacyListener.registerSensor(legacyType);
671                // and finally, register the legacy listener with the new apis
672                result = registerListener(legacyListener, sensor, rate);
673            }
674        }
675        return result;
676    }
677
678    /**
679     * Unregisters a listener for the sensors with which it is registered.
680     * @deprecated This method is deprecated, use
681     * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
682     * instead.
683     *
684     * @param listener a SensorListener object
685     * @param sensors a bit masks of the sensors to unregister from
686     */
687    @Deprecated
688    public void unregisterListener(SensorListener listener, int sensors) {
689        unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
690                listener, sensors);
691        unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
692                listener, sensors);
693        unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
694                listener, sensors);
695        unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
696                listener, sensors);
697        unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
698                listener, sensors);
699    }
700
701    @SuppressWarnings("deprecation")
702    private void unregisterLegacyListener(int legacyType, int type,
703            SensorListener listener, int sensors)
704    {
705        if (listener == null) {
706            return;
707        }
708        // do we know about this listener?
709        LegacyListener legacyListener = null;
710        synchronized (mLegacyListenersMap) {
711            legacyListener = mLegacyListenersMap.get(listener);
712        }
713        if (legacyListener != null) {
714            // Are we deactivating this legacy sensor?
715            if ((sensors & legacyType) != 0) {
716                // if so, find the corresponding Sensor
717                Sensor sensor = getDefaultSensor(type);
718                if (sensor != null) {
719                    // unregister this legacy sensor and if we don't
720                    // need the corresponding Sensor, unregister it too
721                    if (legacyListener.unregisterSensor(legacyType)) {
722                        // corresponding sensor not needed, unregister
723                        unregisterListener(legacyListener, sensor);
724                        // finally check if we still need the legacyListener
725                        // in our mapping, if not, get rid of it too.
726                        synchronized(sListeners) {
727                            boolean found = false;
728                            for (ListenerDelegate i : sListeners) {
729                                if (i.getListener() == legacyListener) {
730                                    found = true;
731                                    break;
732                                }
733                            }
734                            if (!found) {
735                                synchronized (mLegacyListenersMap) {
736                                    mLegacyListenersMap.remove(listener);
737                                }
738                            }
739                        }
740                    }
741                }
742            }
743        }
744    }
745
746    /**
747     * Unregisters a listener for all sensors.
748     * @deprecated This method is deprecated, use
749     * {@link SensorManager#unregisterListener(SensorEventListener)}
750     * instead.
751     *
752     * @param listener a SensorListener object
753     */
754    @Deprecated
755    public void unregisterListener(SensorListener listener) {
756        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
757    }
758
759    /**
760     * Unregisters a listener for the sensors with which it is registered.
761     *
762     * @param listener a SensorEventListener object
763     * @param sensor the sensor to unregister from
764     *
765     */
766    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
767        unregisterListener((Object)listener, sensor);
768    }
769
770    /**
771     * Unregisters a listener for all sensors.
772     *
773     * @param listener a SensorListener object
774     *
775     */
776    public void unregisterListener(SensorEventListener listener) {
777        unregisterListener((Object)listener);
778    }
779
780
781    /**
782     * Registers a {@link android.hardware.SensorEventListener SensorEventListener}
783     * for the given sensor.
784     *
785     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
786     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
787     * @param rate The rate {@link android.hardware.SensorEvent sensor events} are delivered at.
788     * This is only a hint to the system. Events may be received faster or
789     * slower than the specified rate. Usually events are received faster. The value must be
790     * one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME},
791     * or {@link #SENSOR_DELAY_FASTEST}.
792     *
793     * @return true if the sensor is supported and successfully enabled.
794     *
795     */
796    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) {
797        return registerListener(listener, sensor, rate, null);
798    }
799
800    /**
801     * Registers a {@link android.hardware.SensorEventListener SensorEventListener}
802     * for the given sensor.
803     *
804     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
805     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
806     * @param rate The rate {@link android.hardware.SensorEvent sensor events} are delivered at.
807     * This is only a hint to the system. Events may be received faster or
808     * slower than the specified rate. Usually events are received faster. The value must be one
809     * of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, {@link #SENSOR_DELAY_GAME}, or
810     * {@link #SENSOR_DELAY_FASTEST}.
811     * @param handler The {@link android.os.Handler Handler} the
812     * {@link android.hardware.SensorEvent sensor events} will be delivered to.
813     *
814     * @return true if the sensor is supported and successfully enabled.
815     *
816     */
817    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate,
818            Handler handler) {
819        if (listener == null || sensor == null) {
820            return false;
821        }
822        boolean result;
823        int delay = -1;
824        switch (rate) {
825            case SENSOR_DELAY_FASTEST:
826                delay = 0;
827                break;
828            case SENSOR_DELAY_GAME:
829                delay = 20;
830                break;
831            case SENSOR_DELAY_UI:
832                delay = 60;
833                break;
834            case SENSOR_DELAY_NORMAL:
835                delay = 200;
836                break;
837            default:
838                return false;
839        }
840
841        try {
842            synchronized (sListeners) {
843                ListenerDelegate l = null;
844                for (ListenerDelegate i : sListeners) {
845                    if (i.getListener() == listener) {
846                        l = i;
847                        break;
848                    }
849                }
850
851                String name = sensor.getName();
852                int handle = sensor.getHandle();
853                if (l == null) {
854                    l = new ListenerDelegate(listener, sensor, handler);
855                    result = mSensorService.enableSensor(l, name, handle, delay);
856                    if (result) {
857                        sListeners.add(l);
858                        sListeners.notify();
859                    }
860                    if (!sListeners.isEmpty()) {
861                        sSensorThread.startLocked(mSensorService);
862                    }
863                } else {
864                    result = mSensorService.enableSensor(l, name, handle, delay);
865                    if (result) {
866                        l.addSensor(sensor);
867                    }
868                }
869            }
870        } catch (RemoteException e) {
871            Log.e(TAG, "RemoteException in registerListener: ", e);
872            result = false;
873        }
874        return result;
875    }
876
877    private void unregisterListener(Object listener, Sensor sensor) {
878        if (listener == null || sensor == null) {
879            return;
880        }
881        try {
882            synchronized (sListeners) {
883                final int size = sListeners.size();
884                for (int i=0 ; i<size ; i++) {
885                    ListenerDelegate l = sListeners.get(i);
886                    if (l.getListener() == listener) {
887                        // disable these sensors
888                        String name = sensor.getName();
889                        int handle = sensor.getHandle();
890                        mSensorService.enableSensor(l, name, handle, SENSOR_DISABLE);
891                        // if we have no more sensors enabled on this listener,
892                        // take it off the list.
893                        if (l.removeSensor(sensor) == 0) {
894                            sListeners.remove(i);
895                        }
896                        break;
897                    }
898                }
899            }
900        } catch (RemoteException e) {
901            Log.e(TAG, "RemoteException in unregisterListener: ", e);
902        }
903    }
904
905    private void unregisterListener(Object listener) {
906        if (listener == null) {
907            return;
908        }
909        try {
910            synchronized (sListeners) {
911                final int size = sListeners.size();
912                for (int i=0 ; i<size ; i++) {
913                    ListenerDelegate l = sListeners.get(i);
914                    if (l.getListener() == listener) {
915                        // disable all sensors for this listener
916                        for (Sensor sensor : l.getSensors()) {
917                            String name = sensor.getName();
918                            int handle = sensor.getHandle();
919                            mSensorService.enableSensor(l, name, handle, SENSOR_DISABLE);
920                        }
921                        sListeners.remove(i);
922                        break;
923                    }
924                }
925            }
926        } catch (RemoteException e) {
927            Log.e(TAG, "RemoteException in unregisterListener: ", e);
928        }
929    }
930
931    /**
932     * Computes the inclination matrix <b>I</b> as well as the rotation
933     * matrix <b>R</b> transforming a vector from the
934     * device coordinate system to the world's coordinate system which is
935     * defined as a direct orthonormal basis, where:
936     *
937     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
938     * the ground at the device's current location and roughly points East).</li>
939     * <li>Y is tangential to the ground at the device's current location and
940     * points towards the magnetic North Pole.</li>
941     * <li>Z points towards the sky and is perpendicular to the ground.</li>
942     * <p>
943     * <hr>
944     * <p>By definition:
945     * <p>[0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
946     * <p>[0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b>
947     * (m = magnitude of geomagnetic field)
948     * <p><b>R</b> is the identity matrix when the device is aligned with the
949     * world's coordinate system, that is, when the device's X axis points
950     * toward East, the Y axis points to the North Pole and the device is facing
951     * the sky.
952     *
953     * <p><b>I</b> is a rotation matrix transforming the geomagnetic
954     * vector into the same coordinate space as gravity (the world's coordinate
955     * space). <b>I</b> is a simple rotation around the X axis.
956     * The inclination angle in radians can be computed with
957     * {@link #getInclination}.
958     * <hr>
959     *
960     * <p> Each matrix is returned either as a 3x3 or 4x4 row-major matrix
961     * depending on the length of the passed array:
962     * <p><u>If the array length is 16:</u>
963     * <pre>
964     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
965     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
966     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
967     *   \  M[12]   M[13]   M[14]   M[15]  /
968     *</pre>
969     * This matrix is ready to be used by OpenGL ES's
970     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
971     * glLoadMatrixf(float[], int)}.
972     * <p>Note that because OpenGL matrices are column-major matrices you must
973     * transpose the matrix before using it. However, since the matrix is a
974     * rotation matrix, its transpose is also its inverse, conveniently, it is
975     * often the inverse of the rotation that is needed for rendering; it can
976     * therefore be used with OpenGL ES directly.
977     * <p>
978     * Also note that the returned matrices always have this form:
979     * <pre>
980     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
981     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
982     *   |  M[ 8]   M[ 9]   M[10]   0  |
983     *   \      0       0       0   1  /
984     *</pre>
985     * <p><u>If the array length is 9:</u>
986     * <pre>
987     *   /  M[ 0]   M[ 1]   M[ 2]  \
988     *   |  M[ 3]   M[ 4]   M[ 5]  |
989     *   \  M[ 6]   M[ 7]   M[ 8]  /
990     *</pre>
991     *
992     * <hr>
993     * <p>The inverse of each matrix can be computed easily by taking its
994     * transpose.
995     *
996     * <p>The matrices returned by this function are meaningful only when the
997     * device is not free-falling and it is not close to the magnetic north.
998     * If the device is accelerating, or placed into a strong magnetic field,
999     * the returned matrices may be inaccurate.
1000     *
1001     * @param R is an array of 9 floats holding the rotation matrix <b>R</b>
1002     * when this function returns. R can be null.<p>
1003     * @param I is an array of 9 floats holding the rotation matrix <b>I</b>
1004     * when this function returns. I can be null.<p>
1005     * @param gravity is an array of 3 floats containing the gravity vector
1006     * expressed in the device's coordinate. You can simply use the
1007     * {@link android.hardware.SensorEvent#values values}
1008     * returned by a {@link android.hardware.SensorEvent SensorEvent} of a
1009     * {@link android.hardware.Sensor Sensor} of type
1010     * {@link android.hardware.Sensor#TYPE_ACCELEROMETER TYPE_ACCELEROMETER}.<p>
1011     * @param geomagnetic is an array of 3 floats containing the geomagnetic
1012     * vector expressed in the device's coordinate. You can simply use the
1013     * {@link android.hardware.SensorEvent#values values}
1014     * returned by a {@link android.hardware.SensorEvent SensorEvent} of a
1015     * {@link android.hardware.Sensor Sensor} of type
1016     * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD TYPE_MAGNETIC_FIELD}.
1017     * @return
1018     *   true on success<p>
1019     *   false on failure (for instance, if the device is in free fall).
1020     *   On failure the output matrices are not modified.
1021     */
1022
1023    public static boolean getRotationMatrix(float[] R, float[] I,
1024            float[] gravity, float[] geomagnetic) {
1025        // TODO: move this to native code for efficiency
1026        float Ax = gravity[0];
1027        float Ay = gravity[1];
1028        float Az = gravity[2];
1029        final float Ex = geomagnetic[0];
1030        final float Ey = geomagnetic[1];
1031        final float Ez = geomagnetic[2];
1032        float Hx = Ey*Az - Ez*Ay;
1033        float Hy = Ez*Ax - Ex*Az;
1034        float Hz = Ex*Ay - Ey*Ax;
1035        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1036        if (normH < 0.1f) {
1037            // device is close to free fall (or in space?), or close to
1038            // magnetic north pole. Typical values are  > 100.
1039            return false;
1040        }
1041        final float invH = 1.0f / normH;
1042        Hx *= invH;
1043        Hy *= invH;
1044        Hz *= invH;
1045        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1046        Ax *= invA;
1047        Ay *= invA;
1048        Az *= invA;
1049        final float Mx = Ay*Hz - Az*Hy;
1050        final float My = Az*Hx - Ax*Hz;
1051        final float Mz = Ax*Hy - Ay*Hx;
1052        if (R != null) {
1053            if (R.length == 9) {
1054                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1055                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1056                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1057            } else if (R.length == 16) {
1058                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1059                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1060                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1061                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1062            }
1063        }
1064        if (I != null) {
1065            // compute the inclination matrix by projecting the geomagnetic
1066            // vector onto the Z (gravity) and X (horizontal component
1067            // of geomagnetic vector) axes.
1068            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1069            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1070            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1071            if (I.length == 9) {
1072                I[0] = 1;     I[1] = 0;     I[2] = 0;
1073                I[3] = 0;     I[4] = c;     I[5] = s;
1074                I[6] = 0;     I[7] =-s;     I[8] = c;
1075            } else if (I.length == 16) {
1076                I[0] = 1;     I[1] = 0;     I[2] = 0;
1077                I[4] = 0;     I[5] = c;     I[6] = s;
1078                I[8] = 0;     I[9] =-s;     I[10]= c;
1079                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1080                I[15] = 1;
1081            }
1082        }
1083        return true;
1084    }
1085
1086    /**
1087     * Computes the geomagnetic inclination angle in radians from the
1088     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1089     * @param I inclination matrix see {@link #getRotationMatrix}.
1090     * @return The geomagnetic inclination angle in radians.
1091     */
1092    public static float getInclination(float[] I) {
1093        if (I.length == 9) {
1094            return (float)Math.atan2(I[5], I[4]);
1095        } else {
1096            return (float)Math.atan2(I[6], I[5]);
1097        }
1098    }
1099
1100    /**
1101     * Rotates the supplied rotation matrix so it is expressed in a
1102     * different coordinate system. This is typically used when an application
1103     * needs to compute the three orientation angles of the device (see
1104     * {@link #getOrientation}) in a different coordinate system.
1105     *
1106     * <p>When the rotation matrix is used for drawing (for instance with
1107     * OpenGL ES), it usually <b>doesn't need</b> to be transformed by this
1108     * function, unless the screen is physically rotated, such as when used
1109     * in landscape mode.
1110     *
1111     * <p><u>Examples:</u><p>
1112     *
1113     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1114     * reality application where the rotation angles are needed :</li><p>
1115     *
1116     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code><p>
1117     *
1118     * <li>Using the device as a mechanical compass in landscape mode:</li><p>
1119     *
1120     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code><p>
1121     *
1122     * Beware of the above example. This call is needed only if the device is
1123     * physically used in landscape mode to calculate the rotation angles (see
1124     * {@link #getOrientation}).
1125     * If the rotation matrix is also used for rendering, it may not need to
1126     * be transformed, for instance if your {@link android.app.Activity
1127     * Activity} is running in landscape mode.
1128     *
1129     * <p>Since the resulting coordinate system is orthonormal, only two axes
1130     * need to be specified.
1131     *
1132     * @param inR the rotation matrix to be transformed. Usually it is the
1133     * matrix returned by {@link #getRotationMatrix}.
1134     * @param X defines on which world axis and direction the X axis of the
1135     *        device is mapped.
1136     * @param Y defines on which world axis and direction the Y axis of the
1137     *        device is mapped.
1138     * @param outR the transformed rotation matrix. inR and outR can be the same
1139     *        array, but it is not recommended for performance reason.
1140     * @return true on success. false if the input parameters are incorrect, for
1141     * instance if X and Y define the same axis. Or if inR and outR don't have
1142     * the same length.
1143     */
1144
1145    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1146            float[] outR)
1147    {
1148        if (inR == outR) {
1149            final float[] temp = mTempMatrix;
1150            synchronized(temp) {
1151                // we don't expect to have a lot of contention
1152                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1153                    final int size = outR.length;
1154                    for (int i=0 ; i<size ; i++)
1155                        outR[i] = temp[i];
1156                    return true;
1157                }
1158            }
1159        }
1160        return remapCoordinateSystemImpl(inR, X, Y, outR);
1161    }
1162
1163    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1164            float[] outR)
1165    {
1166        /*
1167         * X and Y define a rotation matrix 'r':
1168         *
1169         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1170         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1171         *                              r[0] ^ r[1]
1172         *
1173         * where the 3rd line is the vector product of the first 2 lines
1174         *
1175         */
1176
1177        final int length = outR.length;
1178        if (inR.length != length)
1179            return false;   // invalid parameter
1180        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1181            return false;   // invalid parameter
1182        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1183            return false;   // no axis specified
1184        if ((X & 0x3) == (Y & 0x3))
1185            return false;   // same axis specified
1186
1187        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1188        // this can be calculated by exclusive-or'ing X and Y; except for
1189        // the sign inversion (+/-) which is calculated below.
1190        int Z = X ^ Y;
1191
1192        // extract the axis (remove the sign), offset in the range 0 to 2.
1193        final int x = (X & 0x3)-1;
1194        final int y = (Y & 0x3)-1;
1195        final int z = (Z & 0x3)-1;
1196
1197        // compute the sign of Z (whether it needs to be inverted)
1198        final int axis_y = (z+1)%3;
1199        final int axis_z = (z+2)%3;
1200        if (((x^axis_y)|(y^axis_z)) != 0)
1201            Z ^= 0x80;
1202
1203        final boolean sx = (X>=0x80);
1204        final boolean sy = (Y>=0x80);
1205        final boolean sz = (Z>=0x80);
1206
1207        // Perform R * r, in avoiding actual muls and adds.
1208        final int rowLength = ((length==16)?4:3);
1209        for (int j=0 ; j<3 ; j++) {
1210            final int offset = j*rowLength;
1211            for (int i=0 ; i<3 ; i++) {
1212                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1213                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1214                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1215            }
1216        }
1217        if (length == 16) {
1218            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1219            outR[15] = 1;
1220        }
1221        return true;
1222    }
1223
1224    /**
1225     * Computes the device's orientation based on the rotation matrix.
1226     * <p> When it returns, the array values is filled with the result:
1227     * <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
1228     * <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
1229     * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
1230     * <p>
1231     *
1232     * @param R rotation matrix see {@link #getRotationMatrix}.
1233     * @param values an array of 3 floats to hold the result.
1234     * @return The array values passed as argument.
1235     */
1236    public static float[] getOrientation(float[] R, float values[]) {
1237        /*
1238         * 4x4 (length=16) case:
1239         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1240         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1241         *   |  R[ 8]   R[ 9]   R[10]   0  |
1242         *   \      0       0       0   1  /
1243         *
1244         * 3x3 (length=9) case:
1245         *   /  R[ 0]   R[ 1]   R[ 2]  \
1246         *   |  R[ 3]   R[ 4]   R[ 5]  |
1247         *   \  R[ 6]   R[ 7]   R[ 8]  /
1248         *
1249         */
1250        if (R.length == 9) {
1251            values[0] = (float)Math.atan2(R[1], R[4]);
1252            values[1] = (float)Math.asin(-R[7]);
1253            values[2] = (float)Math.atan2(-R[6], R[8]);
1254        } else {
1255            values[0] = (float)Math.atan2(R[1], R[5]);
1256            values[1] = (float)Math.asin(-R[9]);
1257            values[2] = (float)Math.atan2(-R[8], R[10]);
1258        }
1259        return values;
1260    }
1261
1262
1263    /**
1264     * {@hide}
1265     */
1266    public void onRotationChanged(int rotation) {
1267        synchronized(sListeners) {
1268            sRotation  = rotation;
1269        }
1270    }
1271
1272    static int getRotation() {
1273        synchronized(sListeners) {
1274            return sRotation;
1275        }
1276    }
1277
1278    private class LegacyListener implements SensorEventListener {
1279        private float mValues[] = new float[6];
1280        @SuppressWarnings("deprecation")
1281        private SensorListener mTarget;
1282        private int mSensors;
1283        private final LmsFilter mYawfilter = new LmsFilter();
1284
1285        @SuppressWarnings("deprecation")
1286        LegacyListener(SensorListener target) {
1287            mTarget = target;
1288            mSensors = 0;
1289        }
1290
1291        void registerSensor(int legacyType) {
1292            mSensors |= legacyType;
1293        }
1294
1295        boolean unregisterSensor(int legacyType) {
1296            mSensors &= ~legacyType;
1297            int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW;
1298            if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) {
1299                return false;
1300            }
1301            return true;
1302        }
1303
1304        @SuppressWarnings("deprecation")
1305        public void onAccuracyChanged(Sensor sensor, int accuracy) {
1306            try {
1307                mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy);
1308            } catch (AbstractMethodError e) {
1309                // old app that doesn't implement this method
1310                // just ignore it.
1311            }
1312        }
1313
1314        @SuppressWarnings("deprecation")
1315        public void onSensorChanged(SensorEvent event) {
1316            final float v[] = mValues;
1317            v[0] = event.values[0];
1318            v[1] = event.values[1];
1319            v[2] = event.values[2];
1320            int legacyType = event.sensor.getLegacyType();
1321            mapSensorDataToWindow(legacyType, v, SensorManager.getRotation());
1322            if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) {
1323                if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) {
1324                    mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v);
1325                }
1326                if ((mSensors & SENSOR_ORIENTATION)!=0) {
1327                    v[0] = mYawfilter.filter(event.timestamp, v[0]);
1328                    mTarget.onSensorChanged(SENSOR_ORIENTATION, v);
1329                }
1330            } else {
1331                mTarget.onSensorChanged(legacyType, v);
1332            }
1333        }
1334
1335        /*
1336         * Helper function to convert the specified sensor's data to the windows's
1337         * coordinate space from the device's coordinate space.
1338         *
1339         * output: 3,4,5: values in the old API format
1340         *         0,1,2: transformed values in the old API format
1341         *
1342         */
1343        private void mapSensorDataToWindow(int sensor,
1344                float[] values, int orientation) {
1345            float x = values[0];
1346            float y = values[1];
1347            float z = values[2];
1348
1349            switch (sensor) {
1350                case SensorManager.SENSOR_ORIENTATION:
1351                case SensorManager.SENSOR_ORIENTATION_RAW:
1352                    z = -z;
1353                    break;
1354                case SensorManager.SENSOR_ACCELEROMETER:
1355                    x = -x;
1356                    y = -y;
1357                    z = -z;
1358                    break;
1359                case SensorManager.SENSOR_MAGNETIC_FIELD:
1360                    x = -x;
1361                    y = -y;
1362                    break;
1363            }
1364            values[0] = x;
1365            values[1] = y;
1366            values[2] = z;
1367            values[3] = x;
1368            values[4] = y;
1369            values[5] = z;
1370            // TODO: add support for 180 and 270 orientations
1371            if (orientation == Surface.ROTATION_90) {
1372                switch (sensor) {
1373                    case SENSOR_ACCELEROMETER:
1374                    case SENSOR_MAGNETIC_FIELD:
1375                        values[0] =-y;
1376                        values[1] = x;
1377                        values[2] = z;
1378                        break;
1379                    case SENSOR_ORIENTATION:
1380                    case SENSOR_ORIENTATION_RAW:
1381                        values[0] = x + ((x < 270) ? 90 : -270);
1382                        values[1] = z;
1383                        values[2] = y;
1384                        break;
1385                }
1386            }
1387        }
1388    }
1389
1390    class LmsFilter {
1391        private static final int SENSORS_RATE_MS = 20;
1392        private static final int COUNT = 12;
1393        private static final float PREDICTION_RATIO = 1.0f/3.0f;
1394        private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO;
1395        private float mV[] = new float[COUNT*2];
1396        private float mT[] = new float[COUNT*2];
1397        private int mIndex;
1398
1399        public LmsFilter() {
1400            mIndex = COUNT;
1401        }
1402
1403        public float filter(long time, float in) {
1404            float v = in;
1405            final float ns = 1.0f / 1000000000.0f;
1406            final float t = time*ns;
1407            float v1 = mV[mIndex];
1408            if ((v-v1) > 180) {
1409                v -= 360;
1410            } else if ((v1-v) > 180) {
1411                v += 360;
1412            }
1413            /* Manage the circular buffer, we write the data twice spaced
1414             * by COUNT values, so that we don't have to copy the array
1415             * when it's full
1416             */
1417            mIndex++;
1418            if (mIndex >= COUNT*2)
1419                mIndex = COUNT;
1420            mV[mIndex] = v;
1421            mT[mIndex] = t;
1422            mV[mIndex-COUNT] = v;
1423            mT[mIndex-COUNT] = t;
1424
1425            float A, B, C, D, E;
1426            float a, b;
1427            int i;
1428
1429            A = B = C = D = E = 0;
1430            for (i=0 ; i<COUNT-1 ; i++) {
1431                final int j = mIndex - 1 - i;
1432                final float Z = mV[j];
1433                final float T = 0.5f*(mT[j] + mT[j+1]) - t;
1434                float dT = mT[j] - mT[j+1];
1435                dT *= dT;
1436                A += Z*dT;
1437                B += T*(T*dT);
1438                C +=   (T*dT);
1439                D += Z*(T*dT);
1440                E += dT;
1441            }
1442            b = (A*B + C*D) / (E*B + C*C);
1443            a = (E*b - A) / C;
1444            float f = b + PREDICTION_TIME*a;
1445
1446            // Normalize
1447            f *= (1.0f / 360.0f);
1448            if (((f>=0)?f:-f) >= 0.5f)
1449                f = f - (float)Math.ceil(f + 0.5f) + 1.0f;
1450            if (f < 0)
1451                f += 1.0f;
1452            f *= 360.0f;
1453            return f;
1454        }
1455    }
1456
1457
1458    private static native void nativeClassInit();
1459
1460    private static native int sensors_module_init();
1461    private static native int sensors_module_get_next_sensor(Sensor sensor, int next);
1462
1463    // Used within this module from outside SensorManager, don't make private
1464    static native int sensors_data_init();
1465    static native int sensors_data_uninit();
1466    static native int sensors_data_open(FileDescriptor fd);
1467    static native int sensors_data_close();
1468    static native int sensors_data_poll(float[] values, int[] status, long[] timestamp);
1469}
1470