1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//#define LOG_NDEBUG 0
18#define LOG_TAG "keystore"
19
20#include <stdio.h>
21#include <stdint.h>
22#include <string.h>
23#include <strings.h>
24#include <unistd.h>
25#include <signal.h>
26#include <errno.h>
27#include <dirent.h>
28#include <errno.h>
29#include <fcntl.h>
30#include <limits.h>
31#include <assert.h>
32#include <sys/types.h>
33#include <sys/socket.h>
34#include <sys/stat.h>
35#include <sys/time.h>
36#include <arpa/inet.h>
37
38#include <openssl/aes.h>
39#include <openssl/bio.h>
40#include <openssl/evp.h>
41#include <openssl/md5.h>
42#include <openssl/pem.h>
43
44#include <hardware/keymaster0.h>
45
46#include <keymaster/soft_keymaster_device.h>
47#include <keymaster/soft_keymaster_logger.h>
48#include <keymaster/softkeymaster.h>
49
50#include <UniquePtr.h>
51#include <utils/String8.h>
52#include <utils/Vector.h>
53
54#include <keystore/IKeystoreService.h>
55#include <binder/IPCThreadState.h>
56#include <binder/IServiceManager.h>
57
58#include <cutils/log.h>
59#include <cutils/sockets.h>
60#include <private/android_filesystem_config.h>
61
62#include <keystore/keystore.h>
63
64#include <selinux/android.h>
65
66#include <sstream>
67
68#include "auth_token_table.h"
69#include "defaults.h"
70#include "keystore_keymaster_enforcement.h"
71#include "operation.h"
72
73/* KeyStore is a secured storage for key-value pairs. In this implementation,
74 * each file stores one key-value pair. Keys are encoded in file names, and
75 * values are encrypted with checksums. The encryption key is protected by a
76 * user-defined password. To keep things simple, buffers are always larger than
77 * the maximum space we needed, so boundary checks on buffers are omitted. */
78
79#define KEY_SIZE        ((NAME_MAX - 15) / 2)
80#define VALUE_SIZE      32768
81#define PASSWORD_SIZE   VALUE_SIZE
82
83
84struct BIGNUM_Delete {
85    void operator()(BIGNUM* p) const {
86        BN_free(p);
87    }
88};
89typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM;
90
91struct BIO_Delete {
92    void operator()(BIO* p) const {
93        BIO_free(p);
94    }
95};
96typedef UniquePtr<BIO, BIO_Delete> Unique_BIO;
97
98struct EVP_PKEY_Delete {
99    void operator()(EVP_PKEY* p) const {
100        EVP_PKEY_free(p);
101    }
102};
103typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
104
105struct PKCS8_PRIV_KEY_INFO_Delete {
106    void operator()(PKCS8_PRIV_KEY_INFO* p) const {
107        PKCS8_PRIV_KEY_INFO_free(p);
108    }
109};
110typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO;
111
112static int keymaster_device_initialize(keymaster1_device_t** dev) {
113    int rc;
114
115    const hw_module_t* mod;
116    keymaster::SoftKeymasterDevice* softkeymaster = NULL;
117    rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
118    if (rc) {
119        ALOGE("could not find any keystore module");
120        goto out;
121    }
122
123    rc = mod->methods->open(mod, KEYSTORE_KEYMASTER, reinterpret_cast<struct hw_device_t**>(dev));
124    if (rc) {
125        ALOGE("could not open keymaster device in %s (%s)",
126            KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
127        goto out;
128    }
129
130    // Wrap older hardware modules with a softkeymaster adapter.
131    if ((*dev)->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0) {
132        return 0;
133    }
134    softkeymaster =
135            new keymaster::SoftKeymasterDevice(reinterpret_cast<keymaster0_device_t*>(*dev));
136    *dev = softkeymaster->keymaster_device();
137    return 0;
138
139out:
140    *dev = NULL;
141    return rc;
142}
143
144// softkeymaster_logger appears not to be used in keystore, but it installs itself as the
145// logger used by SoftKeymasterDevice.
146static keymaster::SoftKeymasterLogger softkeymaster_logger;
147
148static int fallback_keymaster_device_initialize(keymaster1_device_t** dev) {
149    keymaster::SoftKeymasterDevice* softkeymaster =
150            new keymaster::SoftKeymasterDevice();
151    *dev = softkeymaster->keymaster_device();
152    // softkeymaster will be freed by *dev->close_device; don't delete here.
153    return 0;
154}
155
156static void keymaster_device_release(keymaster1_device_t* dev) {
157    dev->common.close(&dev->common);
158}
159
160/***************
161 * PERMISSIONS *
162 ***************/
163
164/* Here are the permissions, actions, users, and the main function. */
165typedef enum {
166    P_GET_STATE     = 1 << 0,
167    P_GET           = 1 << 1,
168    P_INSERT        = 1 << 2,
169    P_DELETE        = 1 << 3,
170    P_EXIST         = 1 << 4,
171    P_LIST          = 1 << 5,
172    P_RESET         = 1 << 6,
173    P_PASSWORD      = 1 << 7,
174    P_LOCK          = 1 << 8,
175    P_UNLOCK        = 1 << 9,
176    P_IS_EMPTY      = 1 << 10,
177    P_SIGN          = 1 << 11,
178    P_VERIFY        = 1 << 12,
179    P_GRANT         = 1 << 13,
180    P_DUPLICATE     = 1 << 14,
181    P_CLEAR_UID     = 1 << 15,
182    P_ADD_AUTH      = 1 << 16,
183    P_USER_CHANGED  = 1 << 17,
184} perm_t;
185
186static struct user_euid {
187    uid_t uid;
188    uid_t euid;
189} user_euids[] = {
190    {AID_VPN, AID_SYSTEM},
191    {AID_WIFI, AID_SYSTEM},
192    {AID_ROOT, AID_SYSTEM},
193};
194
195/* perm_labels associcated with keystore_key SELinux class verbs. */
196const char *perm_labels[] = {
197    "get_state",
198    "get",
199    "insert",
200    "delete",
201    "exist",
202    "list",
203    "reset",
204    "password",
205    "lock",
206    "unlock",
207    "is_empty",
208    "sign",
209    "verify",
210    "grant",
211    "duplicate",
212    "clear_uid",
213    "add_auth",
214    "user_changed",
215};
216
217static struct user_perm {
218    uid_t uid;
219    perm_t perms;
220} user_perms[] = {
221    {AID_SYSTEM, static_cast<perm_t>((uint32_t)(~0)) },
222    {AID_VPN,    static_cast<perm_t>(P_GET | P_SIGN | P_VERIFY) },
223    {AID_WIFI,   static_cast<perm_t>(P_GET | P_SIGN | P_VERIFY) },
224    {AID_ROOT,   static_cast<perm_t>(P_GET) },
225};
226
227static const perm_t DEFAULT_PERMS = static_cast<perm_t>(P_GET_STATE | P_GET | P_INSERT | P_DELETE
228                                                        | P_EXIST | P_LIST | P_SIGN | P_VERIFY);
229
230static char *tctx;
231static int ks_is_selinux_enabled;
232
233static const char *get_perm_label(perm_t perm) {
234    unsigned int index = ffs(perm);
235    if (index > 0 && index <= (sizeof(perm_labels) / sizeof(perm_labels[0]))) {
236        return perm_labels[index - 1];
237    } else {
238        ALOGE("Keystore: Failed to retrieve permission label.\n");
239        abort();
240    }
241}
242
243/**
244 * Returns the app ID (in the Android multi-user sense) for the current
245 * UNIX UID.
246 */
247static uid_t get_app_id(uid_t uid) {
248    return uid % AID_USER;
249}
250
251/**
252 * Returns the user ID (in the Android multi-user sense) for the current
253 * UNIX UID.
254 */
255static uid_t get_user_id(uid_t uid) {
256    return uid / AID_USER;
257}
258
259static bool keystore_selinux_check_access(uid_t /*uid*/, perm_t perm, pid_t spid) {
260    if (!ks_is_selinux_enabled) {
261        return true;
262    }
263
264    char *sctx = NULL;
265    const char *selinux_class = "keystore_key";
266    const char *str_perm = get_perm_label(perm);
267
268    if (!str_perm) {
269        return false;
270    }
271
272    if (getpidcon(spid, &sctx) != 0) {
273        ALOGE("SELinux: Failed to get source pid context.\n");
274        return false;
275    }
276
277    bool allowed = selinux_check_access(sctx, tctx, selinux_class, str_perm,
278            NULL) == 0;
279    freecon(sctx);
280    return allowed;
281}
282
283static bool has_permission(uid_t uid, perm_t perm, pid_t spid) {
284    // All system users are equivalent for multi-user support.
285    if (get_app_id(uid) == AID_SYSTEM) {
286        uid = AID_SYSTEM;
287    }
288
289    for (size_t i = 0; i < sizeof(user_perms)/sizeof(user_perms[0]); i++) {
290        struct user_perm user = user_perms[i];
291        if (user.uid == uid) {
292            return (user.perms & perm) &&
293                keystore_selinux_check_access(uid, perm, spid);
294        }
295    }
296
297    return (DEFAULT_PERMS & perm) &&
298        keystore_selinux_check_access(uid, perm, spid);
299}
300
301/**
302 * Returns the UID that the callingUid should act as. This is here for
303 * legacy support of the WiFi and VPN systems and should be removed
304 * when WiFi can operate in its own namespace.
305 */
306static uid_t get_keystore_euid(uid_t uid) {
307    for (size_t i = 0; i < sizeof(user_euids)/sizeof(user_euids[0]); i++) {
308        struct user_euid user = user_euids[i];
309        if (user.uid == uid) {
310            return user.euid;
311        }
312    }
313
314    return uid;
315}
316
317/**
318 * Returns true if the callingUid is allowed to interact in the targetUid's
319 * namespace.
320 */
321static bool is_granted_to(uid_t callingUid, uid_t targetUid) {
322    if (callingUid == targetUid) {
323        return true;
324    }
325    for (size_t i = 0; i < sizeof(user_euids)/sizeof(user_euids[0]); i++) {
326        struct user_euid user = user_euids[i];
327        if (user.euid == callingUid && user.uid == targetUid) {
328            return true;
329        }
330    }
331
332    return false;
333}
334
335/* Here is the encoding of keys. This is necessary in order to allow arbitrary
336 * characters in keys. Characters in [0-~] are not encoded. Others are encoded
337 * into two bytes. The first byte is one of [+-.] which represents the first
338 * two bits of the character. The second byte encodes the rest of the bits into
339 * [0-o]. Therefore in the worst case the length of a key gets doubled. Note
340 * that Base64 cannot be used here due to the need of prefix match on keys. */
341
342static size_t encode_key_length(const android::String8& keyName) {
343    const uint8_t* in = reinterpret_cast<const uint8_t*>(keyName.string());
344    size_t length = keyName.length();
345    for (int i = length; i > 0; --i, ++in) {
346        if (*in < '0' || *in > '~') {
347            ++length;
348        }
349    }
350    return length;
351}
352
353static int encode_key(char* out, const android::String8& keyName) {
354    const uint8_t* in = reinterpret_cast<const uint8_t*>(keyName.string());
355    size_t length = keyName.length();
356    for (int i = length; i > 0; --i, ++in, ++out) {
357        if (*in < '0' || *in > '~') {
358            *out = '+' + (*in >> 6);
359            *++out = '0' + (*in & 0x3F);
360            ++length;
361        } else {
362            *out = *in;
363        }
364    }
365    *out = '\0';
366    return length;
367}
368
369/*
370 * Converts from the "escaped" format on disk to actual name.
371 * This will be smaller than the input string.
372 *
373 * Characters that should combine with the next at the end will be truncated.
374 */
375static size_t decode_key_length(const char* in, size_t length) {
376    size_t outLength = 0;
377
378    for (const char* end = in + length; in < end; in++) {
379        /* This combines with the next character. */
380        if (*in < '0' || *in > '~') {
381            continue;
382        }
383
384        outLength++;
385    }
386    return outLength;
387}
388
389static void decode_key(char* out, const char* in, size_t length) {
390    for (const char* end = in + length; in < end; in++) {
391        if (*in < '0' || *in > '~') {
392            /* Truncate combining characters at the end. */
393            if (in + 1 >= end) {
394                break;
395            }
396
397            *out = (*in++ - '+') << 6;
398            *out++ |= (*in - '0') & 0x3F;
399        } else {
400            *out++ = *in;
401        }
402    }
403    *out = '\0';
404}
405
406static size_t readFully(int fd, uint8_t* data, size_t size) {
407    size_t remaining = size;
408    while (remaining > 0) {
409        ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, remaining));
410        if (n <= 0) {
411            return size - remaining;
412        }
413        data += n;
414        remaining -= n;
415    }
416    return size;
417}
418
419static size_t writeFully(int fd, uint8_t* data, size_t size) {
420    size_t remaining = size;
421    while (remaining > 0) {
422        ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, remaining));
423        if (n < 0) {
424            ALOGW("write failed: %s", strerror(errno));
425            return size - remaining;
426        }
427        data += n;
428        remaining -= n;
429    }
430    return size;
431}
432
433class Entropy {
434public:
435    Entropy() : mRandom(-1) {}
436    ~Entropy() {
437        if (mRandom >= 0) {
438            close(mRandom);
439        }
440    }
441
442    bool open() {
443        const char* randomDevice = "/dev/urandom";
444        mRandom = TEMP_FAILURE_RETRY(::open(randomDevice, O_RDONLY));
445        if (mRandom < 0) {
446            ALOGE("open: %s: %s", randomDevice, strerror(errno));
447            return false;
448        }
449        return true;
450    }
451
452    bool generate_random_data(uint8_t* data, size_t size) const {
453        return (readFully(mRandom, data, size) == size);
454    }
455
456private:
457    int mRandom;
458};
459
460/* Here is the file format. There are two parts in blob.value, the secret and
461 * the description. The secret is stored in ciphertext, and its original size
462 * can be found in blob.length. The description is stored after the secret in
463 * plaintext, and its size is specified in blob.info. The total size of the two
464 * parts must be no more than VALUE_SIZE bytes. The first field is the version,
465 * the second is the blob's type, and the third byte is flags. Fields other
466 * than blob.info, blob.length, and blob.value are modified by encryptBlob()
467 * and decryptBlob(). Thus they should not be accessed from outside. */
468
469/* ** Note to future implementors of encryption: **
470 * Currently this is the construction:
471 *   metadata || Enc(MD5(data) || data)
472 *
473 * This should be the construction used for encrypting if re-implementing:
474 *
475 *   Derive independent keys for encryption and MAC:
476 *     Kenc = AES_encrypt(masterKey, "Encrypt")
477 *     Kmac = AES_encrypt(masterKey, "MAC")
478 *
479 *   Store this:
480 *     metadata || AES_CTR_encrypt(Kenc, rand_IV, data) ||
481 *             HMAC(Kmac, metadata || Enc(data))
482 */
483struct __attribute__((packed)) blob {
484    uint8_t version;
485    uint8_t type;
486    uint8_t flags;
487    uint8_t info;
488    uint8_t vector[AES_BLOCK_SIZE];
489    uint8_t encrypted[0]; // Marks offset to encrypted data.
490    uint8_t digest[MD5_DIGEST_LENGTH];
491    uint8_t digested[0]; // Marks offset to digested data.
492    int32_t length; // in network byte order when encrypted
493    uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];
494};
495
496typedef enum {
497    TYPE_ANY = 0, // meta type that matches anything
498    TYPE_GENERIC = 1,
499    TYPE_MASTER_KEY = 2,
500    TYPE_KEY_PAIR = 3,
501    TYPE_KEYMASTER_10 = 4,
502} BlobType;
503
504static const uint8_t CURRENT_BLOB_VERSION = 2;
505
506class Blob {
507public:
508    Blob(const uint8_t* value, size_t valueLength, const uint8_t* info, uint8_t infoLength,
509            BlobType type) {
510        memset(&mBlob, 0, sizeof(mBlob));
511        if (valueLength > VALUE_SIZE) {
512            valueLength = VALUE_SIZE;
513            ALOGW("Provided blob length too large");
514        }
515        if (infoLength + valueLength > VALUE_SIZE) {
516            infoLength = VALUE_SIZE - valueLength;
517            ALOGW("Provided info length too large");
518        }
519        mBlob.length = valueLength;
520        memcpy(mBlob.value, value, valueLength);
521
522        mBlob.info = infoLength;
523        memcpy(mBlob.value + valueLength, info, infoLength);
524
525        mBlob.version = CURRENT_BLOB_VERSION;
526        mBlob.type = uint8_t(type);
527
528        if (type == TYPE_MASTER_KEY) {
529            mBlob.flags = KEYSTORE_FLAG_ENCRYPTED;
530        } else {
531            mBlob.flags = KEYSTORE_FLAG_NONE;
532        }
533    }
534
535    Blob(blob b) {
536        mBlob = b;
537    }
538
539    Blob() {
540        memset(&mBlob, 0, sizeof(mBlob));
541    }
542
543    const uint8_t* getValue() const {
544        return mBlob.value;
545    }
546
547    int32_t getLength() const {
548        return mBlob.length;
549    }
550
551    const uint8_t* getInfo() const {
552        return mBlob.value + mBlob.length;
553    }
554
555    uint8_t getInfoLength() const {
556        return mBlob.info;
557    }
558
559    uint8_t getVersion() const {
560        return mBlob.version;
561    }
562
563    bool isEncrypted() const {
564        if (mBlob.version < 2) {
565            return true;
566        }
567
568        return mBlob.flags & KEYSTORE_FLAG_ENCRYPTED;
569    }
570
571    void setEncrypted(bool encrypted) {
572        if (encrypted) {
573            mBlob.flags |= KEYSTORE_FLAG_ENCRYPTED;
574        } else {
575            mBlob.flags &= ~KEYSTORE_FLAG_ENCRYPTED;
576        }
577    }
578
579    bool isFallback() const {
580        return mBlob.flags & KEYSTORE_FLAG_FALLBACK;
581    }
582
583    void setFallback(bool fallback) {
584        if (fallback) {
585            mBlob.flags |= KEYSTORE_FLAG_FALLBACK;
586        } else {
587            mBlob.flags &= ~KEYSTORE_FLAG_FALLBACK;
588        }
589    }
590
591    void setVersion(uint8_t version) {
592        mBlob.version = version;
593    }
594
595    BlobType getType() const {
596        return BlobType(mBlob.type);
597    }
598
599    void setType(BlobType type) {
600        mBlob.type = uint8_t(type);
601    }
602
603    ResponseCode writeBlob(const char* filename, AES_KEY *aes_key, State state, Entropy* entropy) {
604        ALOGV("writing blob %s", filename);
605        if (isEncrypted()) {
606            if (state != STATE_NO_ERROR) {
607                ALOGD("couldn't insert encrypted blob while not unlocked");
608                return LOCKED;
609            }
610
611            if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) {
612                ALOGW("Could not read random data for: %s", filename);
613                return SYSTEM_ERROR;
614            }
615        }
616
617        // data includes the value and the value's length
618        size_t dataLength = mBlob.length + sizeof(mBlob.length);
619        // pad data to the AES_BLOCK_SIZE
620        size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1)
621                                 / AES_BLOCK_SIZE * AES_BLOCK_SIZE);
622        // encrypted data includes the digest value
623        size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH;
624        // move info after space for padding
625        memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info);
626        // zero padding area
627        memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength);
628
629        mBlob.length = htonl(mBlob.length);
630
631        if (isEncrypted()) {
632            MD5(mBlob.digested, digestedLength, mBlob.digest);
633
634            uint8_t vector[AES_BLOCK_SIZE];
635            memcpy(vector, mBlob.vector, AES_BLOCK_SIZE);
636            AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength,
637                            aes_key, vector, AES_ENCRYPT);
638        }
639
640        size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
641        size_t fileLength = encryptedLength + headerLength + mBlob.info;
642
643        const char* tmpFileName = ".tmp";
644        int out = TEMP_FAILURE_RETRY(open(tmpFileName,
645                O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR));
646        if (out < 0) {
647            ALOGW("could not open file: %s: %s", tmpFileName, strerror(errno));
648            return SYSTEM_ERROR;
649        }
650        size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength);
651        if (close(out) != 0) {
652            return SYSTEM_ERROR;
653        }
654        if (writtenBytes != fileLength) {
655            ALOGW("blob not fully written %zu != %zu", writtenBytes, fileLength);
656            unlink(tmpFileName);
657            return SYSTEM_ERROR;
658        }
659        if (rename(tmpFileName, filename) == -1) {
660            ALOGW("could not rename blob to %s: %s", filename, strerror(errno));
661            return SYSTEM_ERROR;
662        }
663        return NO_ERROR;
664    }
665
666    ResponseCode readBlob(const char* filename, AES_KEY *aes_key, State state) {
667        ALOGV("reading blob %s", filename);
668        int in = TEMP_FAILURE_RETRY(open(filename, O_RDONLY));
669        if (in < 0) {
670            return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR;
671        }
672        // fileLength may be less than sizeof(mBlob) since the in
673        // memory version has extra padding to tolerate rounding up to
674        // the AES_BLOCK_SIZE
675        size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob));
676        if (close(in) != 0) {
677            return SYSTEM_ERROR;
678        }
679
680        if (fileLength == 0) {
681            return VALUE_CORRUPTED;
682        }
683
684        if (isEncrypted() && (state != STATE_NO_ERROR)) {
685            return LOCKED;
686        }
687
688        size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
689        if (fileLength < headerLength) {
690            return VALUE_CORRUPTED;
691        }
692
693        ssize_t encryptedLength = fileLength - (headerLength + mBlob.info);
694        if (encryptedLength < 0) {
695            return VALUE_CORRUPTED;
696        }
697
698        ssize_t digestedLength;
699        if (isEncrypted()) {
700            if (encryptedLength % AES_BLOCK_SIZE != 0) {
701                return VALUE_CORRUPTED;
702            }
703
704            AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key,
705                            mBlob.vector, AES_DECRYPT);
706            digestedLength = encryptedLength - MD5_DIGEST_LENGTH;
707            uint8_t computedDigest[MD5_DIGEST_LENGTH];
708            MD5(mBlob.digested, digestedLength, computedDigest);
709            if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) {
710                return VALUE_CORRUPTED;
711            }
712        } else {
713            digestedLength = encryptedLength;
714        }
715
716        ssize_t maxValueLength = digestedLength - sizeof(mBlob.length);
717        mBlob.length = ntohl(mBlob.length);
718        if (mBlob.length < 0 || mBlob.length > maxValueLength) {
719            return VALUE_CORRUPTED;
720        }
721        if (mBlob.info != 0) {
722            // move info from after padding to after data
723            memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info);
724        }
725        return ::NO_ERROR;
726    }
727
728private:
729    struct blob mBlob;
730};
731
732class UserState {
733public:
734    UserState(uid_t userId) : mUserId(userId), mRetry(MAX_RETRY) {
735        asprintf(&mUserDir, "user_%u", mUserId);
736        asprintf(&mMasterKeyFile, "%s/.masterkey", mUserDir);
737    }
738
739    ~UserState() {
740        free(mUserDir);
741        free(mMasterKeyFile);
742    }
743
744    bool initialize() {
745        if ((mkdir(mUserDir, S_IRUSR | S_IWUSR | S_IXUSR) < 0) && (errno != EEXIST)) {
746            ALOGE("Could not create directory '%s'", mUserDir);
747            return false;
748        }
749
750        if (access(mMasterKeyFile, R_OK) == 0) {
751            setState(STATE_LOCKED);
752        } else {
753            setState(STATE_UNINITIALIZED);
754        }
755
756        return true;
757    }
758
759    uid_t getUserId() const {
760        return mUserId;
761    }
762
763    const char* getUserDirName() const {
764        return mUserDir;
765    }
766
767    const char* getMasterKeyFileName() const {
768        return mMasterKeyFile;
769    }
770
771    void setState(State state) {
772        mState = state;
773        if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) {
774            mRetry = MAX_RETRY;
775        }
776    }
777
778    State getState() const {
779        return mState;
780    }
781
782    int8_t getRetry() const {
783        return mRetry;
784    }
785
786    void zeroizeMasterKeysInMemory() {
787        memset(mMasterKey, 0, sizeof(mMasterKey));
788        memset(mSalt, 0, sizeof(mSalt));
789        memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption));
790        memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption));
791    }
792
793    bool deleteMasterKey() {
794        setState(STATE_UNINITIALIZED);
795        zeroizeMasterKeysInMemory();
796        return unlink(mMasterKeyFile) == 0 || errno == ENOENT;
797    }
798
799    ResponseCode initialize(const android::String8& pw, Entropy* entropy) {
800        if (!generateMasterKey(entropy)) {
801            return SYSTEM_ERROR;
802        }
803        ResponseCode response = writeMasterKey(pw, entropy);
804        if (response != NO_ERROR) {
805            return response;
806        }
807        setupMasterKeys();
808        return ::NO_ERROR;
809    }
810
811    ResponseCode copyMasterKey(UserState* src) {
812        if (mState != STATE_UNINITIALIZED) {
813            return ::SYSTEM_ERROR;
814        }
815        if (src->getState() != STATE_NO_ERROR) {
816            return ::SYSTEM_ERROR;
817        }
818        memcpy(mMasterKey, src->mMasterKey, MASTER_KEY_SIZE_BYTES);
819        setupMasterKeys();
820        return ::NO_ERROR;
821    }
822
823    ResponseCode writeMasterKey(const android::String8& pw, Entropy* entropy) {
824        uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
825        generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt);
826        AES_KEY passwordAesKey;
827        AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
828        Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt), TYPE_MASTER_KEY);
829        return masterKeyBlob.writeBlob(mMasterKeyFile, &passwordAesKey, STATE_NO_ERROR, entropy);
830    }
831
832    ResponseCode readMasterKey(const android::String8& pw, Entropy* entropy) {
833        int in = TEMP_FAILURE_RETRY(open(mMasterKeyFile, O_RDONLY));
834        if (in < 0) {
835            return SYSTEM_ERROR;
836        }
837
838        // we read the raw blob to just to get the salt to generate
839        // the AES key, then we create the Blob to use with decryptBlob
840        blob rawBlob;
841        size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob));
842        if (close(in) != 0) {
843            return SYSTEM_ERROR;
844        }
845        // find salt at EOF if present, otherwise we have an old file
846        uint8_t* salt;
847        if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) {
848            salt = (uint8_t*) &rawBlob + length - SALT_SIZE;
849        } else {
850            salt = NULL;
851        }
852        uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
853        generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt);
854        AES_KEY passwordAesKey;
855        AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
856        Blob masterKeyBlob(rawBlob);
857        ResponseCode response = masterKeyBlob.readBlob(mMasterKeyFile, &passwordAesKey,
858                STATE_NO_ERROR);
859        if (response == SYSTEM_ERROR) {
860            return response;
861        }
862        if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) {
863            // if salt was missing, generate one and write a new master key file with the salt.
864            if (salt == NULL) {
865                if (!generateSalt(entropy)) {
866                    return SYSTEM_ERROR;
867                }
868                response = writeMasterKey(pw, entropy);
869            }
870            if (response == NO_ERROR) {
871                memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES);
872                setupMasterKeys();
873            }
874            return response;
875        }
876        if (mRetry <= 0) {
877            reset();
878            return UNINITIALIZED;
879        }
880        --mRetry;
881        switch (mRetry) {
882            case 0: return WRONG_PASSWORD_0;
883            case 1: return WRONG_PASSWORD_1;
884            case 2: return WRONG_PASSWORD_2;
885            case 3: return WRONG_PASSWORD_3;
886            default: return WRONG_PASSWORD_3;
887        }
888    }
889
890    AES_KEY* getEncryptionKey() {
891        return &mMasterKeyEncryption;
892    }
893
894    AES_KEY* getDecryptionKey() {
895        return &mMasterKeyDecryption;
896    }
897
898    bool reset() {
899        DIR* dir = opendir(getUserDirName());
900        if (!dir) {
901            // If the directory doesn't exist then nothing to do.
902            if (errno == ENOENT) {
903                return true;
904            }
905            ALOGW("couldn't open user directory: %s", strerror(errno));
906            return false;
907        }
908
909        struct dirent* file;
910        while ((file = readdir(dir)) != NULL) {
911            // skip . and ..
912            if (!strcmp(".", file->d_name) || !strcmp("..", file->d_name)) {
913                continue;
914            }
915
916            unlinkat(dirfd(dir), file->d_name, 0);
917        }
918        closedir(dir);
919        return true;
920    }
921
922private:
923    static const int MASTER_KEY_SIZE_BYTES = 16;
924    static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8;
925
926    static const int MAX_RETRY = 4;
927    static const size_t SALT_SIZE = 16;
928
929    void generateKeyFromPassword(uint8_t* key, ssize_t keySize, const android::String8& pw,
930            uint8_t* salt) {
931        size_t saltSize;
932        if (salt != NULL) {
933            saltSize = SALT_SIZE;
934        } else {
935            // pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found
936            salt = (uint8_t*) "keystore";
937            // sizeof = 9, not strlen = 8
938            saltSize = sizeof("keystore");
939        }
940
941        PKCS5_PBKDF2_HMAC_SHA1(reinterpret_cast<const char*>(pw.string()), pw.length(), salt,
942                saltSize, 8192, keySize, key);
943    }
944
945    bool generateSalt(Entropy* entropy) {
946        return entropy->generate_random_data(mSalt, sizeof(mSalt));
947    }
948
949    bool generateMasterKey(Entropy* entropy) {
950        if (!entropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) {
951            return false;
952        }
953        if (!generateSalt(entropy)) {
954            return false;
955        }
956        return true;
957    }
958
959    void setupMasterKeys() {
960        AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption);
961        AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption);
962        setState(STATE_NO_ERROR);
963    }
964
965    uid_t mUserId;
966
967    char* mUserDir;
968    char* mMasterKeyFile;
969
970    State mState;
971    int8_t mRetry;
972
973    uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES];
974    uint8_t mSalt[SALT_SIZE];
975
976    AES_KEY mMasterKeyEncryption;
977    AES_KEY mMasterKeyDecryption;
978};
979
980typedef struct {
981    uint32_t uid;
982    const uint8_t* filename;
983} grant_t;
984
985class KeyStore {
986public:
987    KeyStore(Entropy* entropy, keymaster1_device_t* device, keymaster1_device_t* fallback)
988        : mEntropy(entropy)
989        , mDevice(device)
990        , mFallbackDevice(fallback)
991    {
992        memset(&mMetaData, '\0', sizeof(mMetaData));
993    }
994
995    ~KeyStore() {
996        for (android::Vector<grant_t*>::iterator it(mGrants.begin());
997                it != mGrants.end(); it++) {
998            delete *it;
999        }
1000        mGrants.clear();
1001
1002        for (android::Vector<UserState*>::iterator it(mMasterKeys.begin());
1003                it != mMasterKeys.end(); it++) {
1004            delete *it;
1005        }
1006        mMasterKeys.clear();
1007    }
1008
1009    /**
1010     * Depending on the hardware keymaster version is this may return a
1011     * keymaster0_device_t* cast to a keymaster1_device_t*. All methods from
1012     * keymaster0 are safe to call, calls to keymaster1_device_t methods should
1013     * be guarded by a check on the device's version.
1014     */
1015    keymaster1_device_t *getDevice() const {
1016        return mDevice;
1017    }
1018
1019    keymaster1_device_t *getFallbackDevice() const {
1020        return mFallbackDevice;
1021    }
1022
1023    keymaster1_device_t *getDeviceForBlob(const Blob& blob) const {
1024        return blob.isFallback() ? mFallbackDevice: mDevice;
1025    }
1026
1027    ResponseCode initialize() {
1028        readMetaData();
1029        if (upgradeKeystore()) {
1030            writeMetaData();
1031        }
1032
1033        return ::NO_ERROR;
1034    }
1035
1036    State getState(uid_t userId) {
1037        return getUserState(userId)->getState();
1038    }
1039
1040    ResponseCode initializeUser(const android::String8& pw, uid_t userId) {
1041        UserState* userState = getUserState(userId);
1042        return userState->initialize(pw, mEntropy);
1043    }
1044
1045    ResponseCode copyMasterKey(uid_t srcUser, uid_t dstUser) {
1046        UserState *userState = getUserState(dstUser);
1047        UserState *initState = getUserState(srcUser);
1048        return userState->copyMasterKey(initState);
1049    }
1050
1051    ResponseCode writeMasterKey(const android::String8& pw, uid_t userId) {
1052        UserState* userState = getUserState(userId);
1053        return userState->writeMasterKey(pw, mEntropy);
1054    }
1055
1056    ResponseCode readMasterKey(const android::String8& pw, uid_t userId) {
1057        UserState* userState = getUserState(userId);
1058        return userState->readMasterKey(pw, mEntropy);
1059    }
1060
1061    android::String8 getKeyName(const android::String8& keyName) {
1062        char encoded[encode_key_length(keyName) + 1];	// add 1 for null char
1063        encode_key(encoded, keyName);
1064        return android::String8(encoded);
1065    }
1066
1067    android::String8 getKeyNameForUid(const android::String8& keyName, uid_t uid) {
1068        char encoded[encode_key_length(keyName) + 1];	// add 1 for null char
1069        encode_key(encoded, keyName);
1070        return android::String8::format("%u_%s", uid, encoded);
1071    }
1072
1073    android::String8 getKeyNameForUidWithDir(const android::String8& keyName, uid_t uid) {
1074        char encoded[encode_key_length(keyName) + 1];	// add 1 for null char
1075        encode_key(encoded, keyName);
1076        return android::String8::format("%s/%u_%s", getUserStateByUid(uid)->getUserDirName(), uid,
1077                encoded);
1078    }
1079
1080    /*
1081     * Delete entries owned by userId. If keepUnencryptedEntries is true
1082     * then only encrypted entries will be removed, otherwise all entries will
1083     * be removed.
1084     */
1085    void resetUser(uid_t userId, bool keepUnenryptedEntries) {
1086        android::String8 prefix("");
1087        android::Vector<android::String16> aliases;
1088        UserState* userState = getUserState(userId);
1089        if (list(prefix, &aliases, userId) != ::NO_ERROR) {
1090            return;
1091        }
1092        for (uint32_t i = 0; i < aliases.size(); i++) {
1093            android::String8 filename(aliases[i]);
1094            filename = android::String8::format("%s/%s", userState->getUserDirName(),
1095                                                getKeyName(filename).string());
1096            bool shouldDelete = true;
1097            if (keepUnenryptedEntries) {
1098                Blob blob;
1099                ResponseCode rc = get(filename, &blob, ::TYPE_ANY, userId);
1100
1101                /* get can fail if the blob is encrypted and the state is
1102                 * not unlocked, only skip deleting blobs that were loaded and
1103                 * who are not encrypted. If there are blobs we fail to read for
1104                 * other reasons err on the safe side and delete them since we
1105                 * can't tell if they're encrypted.
1106                 */
1107                shouldDelete = !(rc == ::NO_ERROR && !blob.isEncrypted());
1108            }
1109            if (shouldDelete) {
1110                del(filename, ::TYPE_ANY, userId);
1111            }
1112        }
1113        if (!userState->deleteMasterKey()) {
1114            ALOGE("Failed to delete user %d's master key", userId);
1115        }
1116        if (!keepUnenryptedEntries) {
1117            if(!userState->reset()) {
1118                ALOGE("Failed to remove user %d's directory", userId);
1119            }
1120        }
1121    }
1122
1123    bool isEmpty(uid_t userId) const {
1124        const UserState* userState = getUserState(userId);
1125        if (userState == NULL) {
1126            return true;
1127        }
1128
1129        DIR* dir = opendir(userState->getUserDirName());
1130        if (!dir) {
1131            return true;
1132        }
1133
1134        bool result = true;
1135        struct dirent* file;
1136        while ((file = readdir(dir)) != NULL) {
1137            // We only care about files.
1138            if (file->d_type != DT_REG) {
1139                continue;
1140            }
1141
1142            // Skip anything that starts with a "."
1143            if (file->d_name[0] == '.') {
1144                continue;
1145            }
1146
1147            result = false;
1148            break;
1149        }
1150        closedir(dir);
1151        return result;
1152    }
1153
1154    void lock(uid_t userId) {
1155        UserState* userState = getUserState(userId);
1156        userState->zeroizeMasterKeysInMemory();
1157        userState->setState(STATE_LOCKED);
1158    }
1159
1160    ResponseCode get(const char* filename, Blob* keyBlob, const BlobType type, uid_t userId) {
1161        UserState* userState = getUserState(userId);
1162        ResponseCode rc = keyBlob->readBlob(filename, userState->getDecryptionKey(),
1163                userState->getState());
1164        if (rc != NO_ERROR) {
1165            return rc;
1166        }
1167
1168        const uint8_t version = keyBlob->getVersion();
1169        if (version < CURRENT_BLOB_VERSION) {
1170            /* If we upgrade the key, we need to write it to disk again. Then
1171             * it must be read it again since the blob is encrypted each time
1172             * it's written.
1173             */
1174            if (upgradeBlob(filename, keyBlob, version, type, userId)) {
1175                if ((rc = this->put(filename, keyBlob, userId)) != NO_ERROR
1176                        || (rc = keyBlob->readBlob(filename, userState->getDecryptionKey(),
1177                                userState->getState())) != NO_ERROR) {
1178                    return rc;
1179                }
1180            }
1181        }
1182
1183        /*
1184         * This will upgrade software-backed keys to hardware-backed keys when
1185         * the HAL for the device supports the newer key types.
1186         */
1187        if (rc == NO_ERROR && type == TYPE_KEY_PAIR
1188                && mDevice->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_0_2
1189                && keyBlob->isFallback()) {
1190            ResponseCode imported = importKey(keyBlob->getValue(), keyBlob->getLength(), filename,
1191                    userId, keyBlob->isEncrypted() ? KEYSTORE_FLAG_ENCRYPTED : KEYSTORE_FLAG_NONE);
1192
1193            // The HAL allowed the import, reget the key to have the "fresh"
1194            // version.
1195            if (imported == NO_ERROR) {
1196                rc = get(filename, keyBlob, TYPE_KEY_PAIR, userId);
1197            }
1198        }
1199
1200        // Keymaster 0.3 keys are valid keymaster 1.0 keys, so silently upgrade.
1201        if (keyBlob->getType() == TYPE_KEY_PAIR) {
1202            keyBlob->setType(TYPE_KEYMASTER_10);
1203            rc = this->put(filename, keyBlob, userId);
1204        }
1205
1206        if (type != TYPE_ANY && keyBlob->getType() != type) {
1207            ALOGW("key found but type doesn't match: %d vs %d", keyBlob->getType(), type);
1208            return KEY_NOT_FOUND;
1209        }
1210
1211        return rc;
1212    }
1213
1214    ResponseCode put(const char* filename, Blob* keyBlob, uid_t userId) {
1215        UserState* userState = getUserState(userId);
1216        return keyBlob->writeBlob(filename, userState->getEncryptionKey(), userState->getState(),
1217                mEntropy);
1218    }
1219
1220    ResponseCode del(const char *filename, const BlobType type, uid_t userId) {
1221        Blob keyBlob;
1222        ResponseCode rc = get(filename, &keyBlob, type, userId);
1223        if (rc == ::VALUE_CORRUPTED) {
1224            // The file is corrupt, the best we can do is rm it.
1225            return (unlink(filename) && errno != ENOENT) ? ::SYSTEM_ERROR : ::NO_ERROR;
1226        }
1227        if (rc != ::NO_ERROR) {
1228            return rc;
1229        }
1230
1231        if (keyBlob.getType() == ::TYPE_KEY_PAIR) {
1232            // A device doesn't have to implement delete_keypair.
1233            if (mDevice->delete_keypair != NULL && !keyBlob.isFallback()) {
1234                if (mDevice->delete_keypair(mDevice, keyBlob.getValue(), keyBlob.getLength())) {
1235                    rc = ::SYSTEM_ERROR;
1236                }
1237            }
1238        }
1239        if (keyBlob.getType() == ::TYPE_KEYMASTER_10) {
1240            keymaster1_device_t* dev = getDeviceForBlob(keyBlob);
1241            if (dev->delete_key) {
1242                keymaster_key_blob_t blob;
1243                blob.key_material = keyBlob.getValue();
1244                blob.key_material_size = keyBlob.getLength();
1245                dev->delete_key(dev, &blob);
1246            }
1247        }
1248        if (rc != ::NO_ERROR) {
1249            return rc;
1250        }
1251
1252        return (unlink(filename) && errno != ENOENT) ? ::SYSTEM_ERROR : ::NO_ERROR;
1253    }
1254
1255    ResponseCode list(const android::String8& prefix, android::Vector<android::String16> *matches,
1256            uid_t userId) {
1257
1258        UserState* userState = getUserState(userId);
1259        size_t n = prefix.length();
1260
1261        DIR* dir = opendir(userState->getUserDirName());
1262        if (!dir) {
1263            ALOGW("can't open directory for user: %s", strerror(errno));
1264            return ::SYSTEM_ERROR;
1265        }
1266
1267        struct dirent* file;
1268        while ((file = readdir(dir)) != NULL) {
1269            // We only care about files.
1270            if (file->d_type != DT_REG) {
1271                continue;
1272            }
1273
1274            // Skip anything that starts with a "."
1275            if (file->d_name[0] == '.') {
1276                continue;
1277            }
1278
1279            if (!strncmp(prefix.string(), file->d_name, n)) {
1280                const char* p = &file->d_name[n];
1281                size_t plen = strlen(p);
1282
1283                size_t extra = decode_key_length(p, plen);
1284                char *match = (char*) malloc(extra + 1);
1285                if (match != NULL) {
1286                    decode_key(match, p, plen);
1287                    matches->push(android::String16(match, extra));
1288                    free(match);
1289                } else {
1290                    ALOGW("could not allocate match of size %zd", extra);
1291                }
1292            }
1293        }
1294        closedir(dir);
1295        return ::NO_ERROR;
1296    }
1297
1298    void addGrant(const char* filename, uid_t granteeUid) {
1299        const grant_t* existing = getGrant(filename, granteeUid);
1300        if (existing == NULL) {
1301            grant_t* grant = new grant_t;
1302            grant->uid = granteeUid;
1303            grant->filename = reinterpret_cast<const uint8_t*>(strdup(filename));
1304            mGrants.add(grant);
1305        }
1306    }
1307
1308    bool removeGrant(const char* filename, uid_t granteeUid) {
1309        for (android::Vector<grant_t*>::iterator it(mGrants.begin());
1310                it != mGrants.end(); it++) {
1311            grant_t* grant = *it;
1312            if (grant->uid == granteeUid
1313                    && !strcmp(reinterpret_cast<const char*>(grant->filename), filename)) {
1314                mGrants.erase(it);
1315                return true;
1316            }
1317        }
1318        return false;
1319    }
1320
1321    bool hasGrant(const char* filename, const uid_t uid) const {
1322        return getGrant(filename, uid) != NULL;
1323    }
1324
1325    ResponseCode importKey(const uint8_t* key, size_t keyLen, const char* filename, uid_t userId,
1326            int32_t flags) {
1327        uint8_t* data;
1328        size_t dataLength;
1329        int rc;
1330
1331        if (mDevice->import_keypair == NULL) {
1332            ALOGE("Keymaster doesn't support import!");
1333            return SYSTEM_ERROR;
1334        }
1335
1336        bool isFallback = false;
1337        rc = mDevice->import_keypair(mDevice, key, keyLen, &data, &dataLength);
1338        if (rc) {
1339            /*
1340             * Maybe the device doesn't support this type of key. Try to use the
1341             * software fallback keymaster implementation. This is a little bit
1342             * lazier than checking the PKCS#8 key type, but the software
1343             * implementation will do that anyway.
1344             */
1345            rc = mFallbackDevice->import_keypair(mFallbackDevice, key, keyLen, &data, &dataLength);
1346            isFallback = true;
1347
1348            if (rc) {
1349                ALOGE("Error while importing keypair: %d", rc);
1350                return SYSTEM_ERROR;
1351            }
1352        }
1353
1354        Blob keyBlob(data, dataLength, NULL, 0, TYPE_KEY_PAIR);
1355        free(data);
1356
1357        keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED);
1358        keyBlob.setFallback(isFallback);
1359
1360        return put(filename, &keyBlob, userId);
1361    }
1362
1363    bool isHardwareBacked(const android::String16& keyType) const {
1364        if (mDevice == NULL) {
1365            ALOGW("can't get keymaster device");
1366            return false;
1367        }
1368
1369        if (sRSAKeyType == keyType) {
1370            return (mDevice->flags & KEYMASTER_SOFTWARE_ONLY) == 0;
1371        } else {
1372            return (mDevice->flags & KEYMASTER_SOFTWARE_ONLY) == 0
1373                    && (mDevice->common.module->module_api_version
1374                            >= KEYMASTER_MODULE_API_VERSION_0_2);
1375        }
1376    }
1377
1378    ResponseCode getKeyForName(Blob* keyBlob, const android::String8& keyName, const uid_t uid,
1379            const BlobType type) {
1380        android::String8 filepath8(getKeyNameForUidWithDir(keyName, uid));
1381        uid_t userId = get_user_id(uid);
1382
1383        ResponseCode responseCode = get(filepath8.string(), keyBlob, type, userId);
1384        if (responseCode == NO_ERROR) {
1385            return responseCode;
1386        }
1387
1388        // If this is one of the legacy UID->UID mappings, use it.
1389        uid_t euid = get_keystore_euid(uid);
1390        if (euid != uid) {
1391            filepath8 = getKeyNameForUidWithDir(keyName, euid);
1392            responseCode = get(filepath8.string(), keyBlob, type, userId);
1393            if (responseCode == NO_ERROR) {
1394                return responseCode;
1395            }
1396        }
1397
1398        // They might be using a granted key.
1399        android::String8 filename8 = getKeyName(keyName);
1400        char* end;
1401        strtoul(filename8.string(), &end, 10);
1402        if (end[0] != '_' || end[1] == 0) {
1403            return KEY_NOT_FOUND;
1404        }
1405        filepath8 = android::String8::format("%s/%s", getUserState(userId)->getUserDirName(),
1406                filename8.string());
1407        if (!hasGrant(filepath8.string(), uid)) {
1408            return responseCode;
1409        }
1410
1411        // It is a granted key. Try to load it.
1412        return get(filepath8.string(), keyBlob, type, userId);
1413    }
1414
1415    /**
1416     * Returns any existing UserState or creates it if it doesn't exist.
1417     */
1418    UserState* getUserState(uid_t userId) {
1419        for (android::Vector<UserState*>::iterator it(mMasterKeys.begin());
1420                it != mMasterKeys.end(); it++) {
1421            UserState* state = *it;
1422            if (state->getUserId() == userId) {
1423                return state;
1424            }
1425        }
1426
1427        UserState* userState = new UserState(userId);
1428        if (!userState->initialize()) {
1429            /* There's not much we can do if initialization fails. Trying to
1430             * unlock the keystore for that user will fail as well, so any
1431             * subsequent request for this user will just return SYSTEM_ERROR.
1432             */
1433            ALOGE("User initialization failed for %u; subsuquent operations will fail", userId);
1434        }
1435        mMasterKeys.add(userState);
1436        return userState;
1437    }
1438
1439    /**
1440     * Returns any existing UserState or creates it if it doesn't exist.
1441     */
1442    UserState* getUserStateByUid(uid_t uid) {
1443        uid_t userId = get_user_id(uid);
1444        return getUserState(userId);
1445    }
1446
1447    /**
1448     * Returns NULL if the UserState doesn't already exist.
1449     */
1450    const UserState* getUserState(uid_t userId) const {
1451        for (android::Vector<UserState*>::const_iterator it(mMasterKeys.begin());
1452                it != mMasterKeys.end(); it++) {
1453            UserState* state = *it;
1454            if (state->getUserId() == userId) {
1455                return state;
1456            }
1457        }
1458
1459        return NULL;
1460    }
1461
1462    /**
1463     * Returns NULL if the UserState doesn't already exist.
1464     */
1465    const UserState* getUserStateByUid(uid_t uid) const {
1466        uid_t userId = get_user_id(uid);
1467        return getUserState(userId);
1468    }
1469
1470private:
1471    static const char* sOldMasterKey;
1472    static const char* sMetaDataFile;
1473    static const android::String16 sRSAKeyType;
1474    Entropy* mEntropy;
1475
1476    keymaster1_device_t* mDevice;
1477    keymaster1_device_t* mFallbackDevice;
1478
1479    android::Vector<UserState*> mMasterKeys;
1480
1481    android::Vector<grant_t*> mGrants;
1482
1483    typedef struct {
1484        uint32_t version;
1485    } keystore_metadata_t;
1486
1487    keystore_metadata_t mMetaData;
1488
1489    const grant_t* getGrant(const char* filename, uid_t uid) const {
1490        for (android::Vector<grant_t*>::const_iterator it(mGrants.begin());
1491                it != mGrants.end(); it++) {
1492            grant_t* grant = *it;
1493            if (grant->uid == uid
1494                    && !strcmp(reinterpret_cast<const char*>(grant->filename), filename)) {
1495                return grant;
1496            }
1497        }
1498        return NULL;
1499    }
1500
1501    /**
1502     * Upgrade code. This will upgrade the key from the current version
1503     * to whatever is newest.
1504     */
1505    bool upgradeBlob(const char* filename, Blob* blob, const uint8_t oldVersion,
1506            const BlobType type, uid_t uid) {
1507        bool updated = false;
1508        uint8_t version = oldVersion;
1509
1510        /* From V0 -> V1: All old types were unknown */
1511        if (version == 0) {
1512            ALOGV("upgrading to version 1 and setting type %d", type);
1513
1514            blob->setType(type);
1515            if (type == TYPE_KEY_PAIR) {
1516                importBlobAsKey(blob, filename, uid);
1517            }
1518            version = 1;
1519            updated = true;
1520        }
1521
1522        /* From V1 -> V2: All old keys were encrypted */
1523        if (version == 1) {
1524            ALOGV("upgrading to version 2");
1525
1526            blob->setEncrypted(true);
1527            version = 2;
1528            updated = true;
1529        }
1530
1531        /*
1532         * If we've updated, set the key blob to the right version
1533         * and write it.
1534         */
1535        if (updated) {
1536            ALOGV("updated and writing file %s", filename);
1537            blob->setVersion(version);
1538        }
1539
1540        return updated;
1541    }
1542
1543    /**
1544     * Takes a blob that is an PEM-encoded RSA key as a byte array and
1545     * converts it to a DER-encoded PKCS#8 for import into a keymaster.
1546     * Then it overwrites the original blob with the new blob
1547     * format that is returned from the keymaster.
1548     */
1549    ResponseCode importBlobAsKey(Blob* blob, const char* filename, uid_t uid) {
1550        // We won't even write to the blob directly with this BIO, so const_cast is okay.
1551        Unique_BIO b(BIO_new_mem_buf(const_cast<uint8_t*>(blob->getValue()), blob->getLength()));
1552        if (b.get() == NULL) {
1553            ALOGE("Problem instantiating BIO");
1554            return SYSTEM_ERROR;
1555        }
1556
1557        Unique_EVP_PKEY pkey(PEM_read_bio_PrivateKey(b.get(), NULL, NULL, NULL));
1558        if (pkey.get() == NULL) {
1559            ALOGE("Couldn't read old PEM file");
1560            return SYSTEM_ERROR;
1561        }
1562
1563        Unique_PKCS8_PRIV_KEY_INFO pkcs8(EVP_PKEY2PKCS8(pkey.get()));
1564        int len = i2d_PKCS8_PRIV_KEY_INFO(pkcs8.get(), NULL);
1565        if (len < 0) {
1566            ALOGE("Couldn't measure PKCS#8 length");
1567            return SYSTEM_ERROR;
1568        }
1569
1570        UniquePtr<unsigned char[]> pkcs8key(new unsigned char[len]);
1571        uint8_t* tmp = pkcs8key.get();
1572        if (i2d_PKCS8_PRIV_KEY_INFO(pkcs8.get(), &tmp) != len) {
1573            ALOGE("Couldn't convert to PKCS#8");
1574            return SYSTEM_ERROR;
1575        }
1576
1577        ResponseCode rc = importKey(pkcs8key.get(), len, filename, get_user_id(uid),
1578                blob->isEncrypted() ? KEYSTORE_FLAG_ENCRYPTED : KEYSTORE_FLAG_NONE);
1579        if (rc != NO_ERROR) {
1580            return rc;
1581        }
1582
1583        return get(filename, blob, TYPE_KEY_PAIR, uid);
1584    }
1585
1586    void readMetaData() {
1587        int in = TEMP_FAILURE_RETRY(open(sMetaDataFile, O_RDONLY));
1588        if (in < 0) {
1589            return;
1590        }
1591        size_t fileLength = readFully(in, (uint8_t*) &mMetaData, sizeof(mMetaData));
1592        if (fileLength != sizeof(mMetaData)) {
1593            ALOGI("Metadata file is %zd bytes (%zd experted); upgrade?", fileLength,
1594                    sizeof(mMetaData));
1595        }
1596        close(in);
1597    }
1598
1599    void writeMetaData() {
1600        const char* tmpFileName = ".metadata.tmp";
1601        int out = TEMP_FAILURE_RETRY(open(tmpFileName,
1602                O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR));
1603        if (out < 0) {
1604            ALOGE("couldn't write metadata file: %s", strerror(errno));
1605            return;
1606        }
1607        size_t fileLength = writeFully(out, (uint8_t*) &mMetaData, sizeof(mMetaData));
1608        if (fileLength != sizeof(mMetaData)) {
1609            ALOGI("Could only write %zd bytes to metadata file (%zd expected)", fileLength,
1610                    sizeof(mMetaData));
1611        }
1612        close(out);
1613        rename(tmpFileName, sMetaDataFile);
1614    }
1615
1616    bool upgradeKeystore() {
1617        bool upgraded = false;
1618
1619        if (mMetaData.version == 0) {
1620            UserState* userState = getUserStateByUid(0);
1621
1622            // Initialize first so the directory is made.
1623            userState->initialize();
1624
1625            // Migrate the old .masterkey file to user 0.
1626            if (access(sOldMasterKey, R_OK) == 0) {
1627                if (rename(sOldMasterKey, userState->getMasterKeyFileName()) < 0) {
1628                    ALOGE("couldn't migrate old masterkey: %s", strerror(errno));
1629                    return false;
1630                }
1631            }
1632
1633            // Initialize again in case we had a key.
1634            userState->initialize();
1635
1636            // Try to migrate existing keys.
1637            DIR* dir = opendir(".");
1638            if (!dir) {
1639                // Give up now; maybe we can upgrade later.
1640                ALOGE("couldn't open keystore's directory; something is wrong");
1641                return false;
1642            }
1643
1644            struct dirent* file;
1645            while ((file = readdir(dir)) != NULL) {
1646                // We only care about files.
1647                if (file->d_type != DT_REG) {
1648                    continue;
1649                }
1650
1651                // Skip anything that starts with a "."
1652                if (file->d_name[0] == '.') {
1653                    continue;
1654                }
1655
1656                // Find the current file's user.
1657                char* end;
1658                unsigned long thisUid = strtoul(file->d_name, &end, 10);
1659                if (end[0] != '_' || end[1] == 0) {
1660                    continue;
1661                }
1662                UserState* otherUser = getUserStateByUid(thisUid);
1663                if (otherUser->getUserId() != 0) {
1664                    unlinkat(dirfd(dir), file->d_name, 0);
1665                }
1666
1667                // Rename the file into user directory.
1668                DIR* otherdir = opendir(otherUser->getUserDirName());
1669                if (otherdir == NULL) {
1670                    ALOGW("couldn't open user directory for rename");
1671                    continue;
1672                }
1673                if (renameat(dirfd(dir), file->d_name, dirfd(otherdir), file->d_name) < 0) {
1674                    ALOGW("couldn't rename blob: %s: %s", file->d_name, strerror(errno));
1675                }
1676                closedir(otherdir);
1677            }
1678            closedir(dir);
1679
1680            mMetaData.version = 1;
1681            upgraded = true;
1682        }
1683
1684        return upgraded;
1685    }
1686};
1687
1688const char* KeyStore::sOldMasterKey = ".masterkey";
1689const char* KeyStore::sMetaDataFile = ".metadata";
1690
1691const android::String16 KeyStore::sRSAKeyType("RSA");
1692
1693namespace android {
1694class KeyStoreProxy : public BnKeystoreService, public IBinder::DeathRecipient {
1695public:
1696    KeyStoreProxy(KeyStore* keyStore)
1697        : mKeyStore(keyStore),
1698          mOperationMap(this)
1699    {
1700    }
1701
1702    void binderDied(const wp<IBinder>& who) {
1703        auto operations = mOperationMap.getOperationsForToken(who.unsafe_get());
1704        for (auto token: operations) {
1705            abort(token);
1706        }
1707    }
1708
1709    int32_t getState(int32_t userId) {
1710        if (!checkBinderPermission(P_GET_STATE)) {
1711            return ::PERMISSION_DENIED;
1712        }
1713
1714        return mKeyStore->getState(userId);
1715    }
1716
1717    int32_t get(const String16& name, uint8_t** item, size_t* itemLength) {
1718        if (!checkBinderPermission(P_GET)) {
1719            return ::PERMISSION_DENIED;
1720        }
1721
1722        uid_t callingUid = IPCThreadState::self()->getCallingUid();
1723        String8 name8(name);
1724        Blob keyBlob;
1725
1726        ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid,
1727                TYPE_GENERIC);
1728        if (responseCode != ::NO_ERROR) {
1729            *item = NULL;
1730            *itemLength = 0;
1731            return responseCode;
1732        }
1733
1734        *item = (uint8_t*) malloc(keyBlob.getLength());
1735        memcpy(*item, keyBlob.getValue(), keyBlob.getLength());
1736        *itemLength = keyBlob.getLength();
1737
1738        return ::NO_ERROR;
1739    }
1740
1741    int32_t insert(const String16& name, const uint8_t* item, size_t itemLength, int targetUid,
1742            int32_t flags) {
1743        targetUid = getEffectiveUid(targetUid);
1744        int32_t result = checkBinderPermissionAndKeystoreState(P_INSERT, targetUid,
1745                                                    flags & KEYSTORE_FLAG_ENCRYPTED);
1746        if (result != ::NO_ERROR) {
1747            return result;
1748        }
1749
1750        String8 name8(name);
1751        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid));
1752
1753        Blob keyBlob(item, itemLength, NULL, 0, ::TYPE_GENERIC);
1754        keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED);
1755
1756        return mKeyStore->put(filename.string(), &keyBlob, get_user_id(targetUid));
1757    }
1758
1759    int32_t del(const String16& name, int targetUid) {
1760        targetUid = getEffectiveUid(targetUid);
1761        if (!checkBinderPermission(P_DELETE, targetUid)) {
1762            return ::PERMISSION_DENIED;
1763        }
1764        String8 name8(name);
1765        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid));
1766        return mKeyStore->del(filename.string(), ::TYPE_ANY, get_user_id(targetUid));
1767    }
1768
1769    int32_t exist(const String16& name, int targetUid) {
1770        targetUid = getEffectiveUid(targetUid);
1771        if (!checkBinderPermission(P_EXIST, targetUid)) {
1772            return ::PERMISSION_DENIED;
1773        }
1774
1775        String8 name8(name);
1776        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid));
1777
1778        if (access(filename.string(), R_OK) == -1) {
1779            return (errno != ENOENT) ? ::SYSTEM_ERROR : ::KEY_NOT_FOUND;
1780        }
1781        return ::NO_ERROR;
1782    }
1783
1784    int32_t list(const String16& prefix, int targetUid, Vector<String16>* matches) {
1785        targetUid = getEffectiveUid(targetUid);
1786        if (!checkBinderPermission(P_LIST, targetUid)) {
1787            return ::PERMISSION_DENIED;
1788        }
1789        const String8 prefix8(prefix);
1790        String8 filename(mKeyStore->getKeyNameForUid(prefix8, targetUid));
1791
1792        if (mKeyStore->list(filename, matches, get_user_id(targetUid)) != ::NO_ERROR) {
1793            return ::SYSTEM_ERROR;
1794        }
1795        return ::NO_ERROR;
1796    }
1797
1798    int32_t reset() {
1799        if (!checkBinderPermission(P_RESET)) {
1800            return ::PERMISSION_DENIED;
1801        }
1802
1803        uid_t callingUid = IPCThreadState::self()->getCallingUid();
1804        mKeyStore->resetUser(get_user_id(callingUid), false);
1805        return ::NO_ERROR;
1806    }
1807
1808    int32_t onUserPasswordChanged(int32_t userId, const String16& password) {
1809        if (!checkBinderPermission(P_PASSWORD)) {
1810            return ::PERMISSION_DENIED;
1811        }
1812
1813        const String8 password8(password);
1814        // Flush the auth token table to prevent stale tokens from sticking
1815        // around.
1816        mAuthTokenTable.Clear();
1817
1818        if (password.size() == 0) {
1819            ALOGI("Secure lockscreen for user %d removed, deleting encrypted entries", userId);
1820            mKeyStore->resetUser(userId, true);
1821            return ::NO_ERROR;
1822        } else {
1823            switch (mKeyStore->getState(userId)) {
1824                case ::STATE_UNINITIALIZED: {
1825                    // generate master key, encrypt with password, write to file,
1826                    // initialize mMasterKey*.
1827                    return mKeyStore->initializeUser(password8, userId);
1828                }
1829                case ::STATE_NO_ERROR: {
1830                    // rewrite master key with new password.
1831                    return mKeyStore->writeMasterKey(password8, userId);
1832                }
1833                case ::STATE_LOCKED: {
1834                    ALOGE("Changing user %d's password while locked, clearing old encryption",
1835                          userId);
1836                    mKeyStore->resetUser(userId, true);
1837                    return mKeyStore->initializeUser(password8, userId);
1838                }
1839            }
1840            return ::SYSTEM_ERROR;
1841        }
1842    }
1843
1844    int32_t onUserAdded(int32_t userId, int32_t parentId) {
1845        if (!checkBinderPermission(P_USER_CHANGED)) {
1846            return ::PERMISSION_DENIED;
1847        }
1848
1849        // Sanity check that the new user has an empty keystore.
1850        if (!mKeyStore->isEmpty(userId)) {
1851            ALOGW("New user %d's keystore not empty. Clearing old entries.", userId);
1852        }
1853        // Unconditionally clear the keystore, just to be safe.
1854        mKeyStore->resetUser(userId, false);
1855
1856        // If the user has a parent user then use the parent's
1857        // masterkey/password, otherwise there's nothing to do.
1858        if (parentId != -1) {
1859            return mKeyStore->copyMasterKey(parentId, userId);
1860        } else {
1861            return ::NO_ERROR;
1862        }
1863    }
1864
1865    int32_t onUserRemoved(int32_t userId) {
1866        if (!checkBinderPermission(P_USER_CHANGED)) {
1867            return ::PERMISSION_DENIED;
1868        }
1869
1870        mKeyStore->resetUser(userId, false);
1871        return ::NO_ERROR;
1872    }
1873
1874    int32_t lock(int32_t userId) {
1875        if (!checkBinderPermission(P_LOCK)) {
1876            return ::PERMISSION_DENIED;
1877        }
1878
1879        State state = mKeyStore->getState(userId);
1880        if (state != ::STATE_NO_ERROR) {
1881            ALOGD("calling lock in state: %d", state);
1882            return state;
1883        }
1884
1885        mKeyStore->lock(userId);
1886        return ::NO_ERROR;
1887    }
1888
1889    int32_t unlock(int32_t userId, const String16& pw) {
1890        if (!checkBinderPermission(P_UNLOCK)) {
1891            return ::PERMISSION_DENIED;
1892        }
1893
1894        State state = mKeyStore->getState(userId);
1895        if (state != ::STATE_LOCKED) {
1896            ALOGI("calling unlock when not locked, ignoring.");
1897            return state;
1898        }
1899
1900        const String8 password8(pw);
1901        // read master key, decrypt with password, initialize mMasterKey*.
1902        return mKeyStore->readMasterKey(password8, userId);
1903    }
1904
1905    bool isEmpty(int32_t userId) {
1906        if (!checkBinderPermission(P_IS_EMPTY)) {
1907            return false;
1908        }
1909
1910        return mKeyStore->isEmpty(userId);
1911    }
1912
1913    int32_t generate(const String16& name, int32_t targetUid, int32_t keyType, int32_t keySize,
1914            int32_t flags, Vector<sp<KeystoreArg> >* args) {
1915        targetUid = getEffectiveUid(targetUid);
1916        int32_t result = checkBinderPermissionAndKeystoreState(P_INSERT, targetUid,
1917                                                       flags & KEYSTORE_FLAG_ENCRYPTED);
1918        if (result != ::NO_ERROR) {
1919            return result;
1920        }
1921
1922        KeymasterArguments params;
1923        addLegacyKeyAuthorizations(params.params, keyType);
1924
1925        switch (keyType) {
1926            case EVP_PKEY_EC: {
1927                params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_EC));
1928                if (keySize == -1) {
1929                    keySize = EC_DEFAULT_KEY_SIZE;
1930                } else if (keySize < EC_MIN_KEY_SIZE || keySize > EC_MAX_KEY_SIZE) {
1931                    ALOGI("invalid key size %d", keySize);
1932                    return ::SYSTEM_ERROR;
1933                }
1934                params.params.push_back(keymaster_param_int(KM_TAG_KEY_SIZE, keySize));
1935                break;
1936            }
1937            case EVP_PKEY_RSA: {
1938                params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_RSA));
1939                if (keySize == -1) {
1940                    keySize = RSA_DEFAULT_KEY_SIZE;
1941                } else if (keySize < RSA_MIN_KEY_SIZE || keySize > RSA_MAX_KEY_SIZE) {
1942                    ALOGI("invalid key size %d", keySize);
1943                    return ::SYSTEM_ERROR;
1944                }
1945                params.params.push_back(keymaster_param_int(KM_TAG_KEY_SIZE, keySize));
1946                unsigned long exponent = RSA_DEFAULT_EXPONENT;
1947                if (args->size() > 1) {
1948                    ALOGI("invalid number of arguments: %zu", args->size());
1949                    return ::SYSTEM_ERROR;
1950                } else if (args->size() == 1) {
1951                    sp<KeystoreArg> expArg = args->itemAt(0);
1952                    if (expArg != NULL) {
1953                        Unique_BIGNUM pubExpBn(
1954                                BN_bin2bn(reinterpret_cast<const unsigned char*>(expArg->data()),
1955                                          expArg->size(), NULL));
1956                        if (pubExpBn.get() == NULL) {
1957                            ALOGI("Could not convert public exponent to BN");
1958                            return ::SYSTEM_ERROR;
1959                        }
1960                        exponent = BN_get_word(pubExpBn.get());
1961                        if (exponent == 0xFFFFFFFFL) {
1962                            ALOGW("cannot represent public exponent as a long value");
1963                            return ::SYSTEM_ERROR;
1964                        }
1965                    } else {
1966                        ALOGW("public exponent not read");
1967                        return ::SYSTEM_ERROR;
1968                    }
1969                }
1970                params.params.push_back(keymaster_param_long(KM_TAG_RSA_PUBLIC_EXPONENT,
1971                                                             exponent));
1972                break;
1973            }
1974            default: {
1975                ALOGW("Unsupported key type %d", keyType);
1976                return ::SYSTEM_ERROR;
1977            }
1978        }
1979
1980        int32_t rc = generateKey(name, params, NULL, 0, targetUid, flags,
1981                                 /*outCharacteristics*/ NULL);
1982        if (rc != ::NO_ERROR) {
1983            ALOGW("generate failed: %d", rc);
1984        }
1985        return translateResultToLegacyResult(rc);
1986    }
1987
1988    int32_t import(const String16& name, const uint8_t* data, size_t length, int targetUid,
1989            int32_t flags) {
1990        const uint8_t* ptr = data;
1991
1992        Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &ptr, length));
1993        if (!pkcs8.get()) {
1994            return ::SYSTEM_ERROR;
1995        }
1996        Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get()));
1997        if (!pkey.get()) {
1998            return ::SYSTEM_ERROR;
1999        }
2000        int type = EVP_PKEY_type(pkey->type);
2001        KeymasterArguments params;
2002        addLegacyKeyAuthorizations(params.params, type);
2003        switch (type) {
2004            case EVP_PKEY_RSA:
2005                params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_RSA));
2006                break;
2007            case EVP_PKEY_EC:
2008                params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM,
2009                                                             KM_ALGORITHM_EC));
2010                break;
2011            default:
2012                ALOGW("Unsupported key type %d", type);
2013                return ::SYSTEM_ERROR;
2014        }
2015        int32_t rc = importKey(name, params, KM_KEY_FORMAT_PKCS8, data, length, targetUid, flags,
2016                               /*outCharacteristics*/ NULL);
2017        if (rc != ::NO_ERROR) {
2018            ALOGW("importKey failed: %d", rc);
2019        }
2020        return translateResultToLegacyResult(rc);
2021    }
2022
2023    int32_t sign(const String16& name, const uint8_t* data, size_t length, uint8_t** out,
2024                 size_t* outLength) {
2025        if (!checkBinderPermission(P_SIGN)) {
2026            return ::PERMISSION_DENIED;
2027        }
2028        return doLegacySignVerify(name, data, length, out, outLength, NULL, 0, KM_PURPOSE_SIGN);
2029    }
2030
2031    int32_t verify(const String16& name, const uint8_t* data, size_t dataLength,
2032            const uint8_t* signature, size_t signatureLength) {
2033        if (!checkBinderPermission(P_VERIFY)) {
2034            return ::PERMISSION_DENIED;
2035        }
2036        return doLegacySignVerify(name, data, dataLength, NULL, NULL, signature, signatureLength,
2037                                 KM_PURPOSE_VERIFY);
2038    }
2039
2040    /*
2041     * TODO: The abstraction between things stored in hardware and regular blobs
2042     * of data stored on the filesystem should be moved down to keystore itself.
2043     * Unfortunately the Java code that calls this has naming conventions that it
2044     * knows about. Ideally keystore shouldn't be used to store random blobs of
2045     * data.
2046     *
2047     * Until that happens, it's necessary to have a separate "get_pubkey" and
2048     * "del_key" since the Java code doesn't really communicate what it's
2049     * intentions are.
2050     */
2051    int32_t get_pubkey(const String16& name, uint8_t** pubkey, size_t* pubkeyLength) {
2052        ExportResult result;
2053        exportKey(name, KM_KEY_FORMAT_X509, NULL, NULL, &result);
2054        if (result.resultCode != ::NO_ERROR) {
2055            ALOGW("export failed: %d", result.resultCode);
2056            return translateResultToLegacyResult(result.resultCode);
2057        }
2058
2059        *pubkey = result.exportData.release();
2060        *pubkeyLength = result.dataLength;
2061        return ::NO_ERROR;
2062    }
2063
2064    int32_t grant(const String16& name, int32_t granteeUid) {
2065        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2066        int32_t result = checkBinderPermissionAndKeystoreState(P_GRANT);
2067        if (result != ::NO_ERROR) {
2068            return result;
2069        }
2070
2071        String8 name8(name);
2072        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, callingUid));
2073
2074        if (access(filename.string(), R_OK) == -1) {
2075            return (errno != ENOENT) ? ::SYSTEM_ERROR : ::KEY_NOT_FOUND;
2076        }
2077
2078        mKeyStore->addGrant(filename.string(), granteeUid);
2079        return ::NO_ERROR;
2080    }
2081
2082    int32_t ungrant(const String16& name, int32_t granteeUid) {
2083        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2084        int32_t result = checkBinderPermissionAndKeystoreState(P_GRANT);
2085        if (result != ::NO_ERROR) {
2086            return result;
2087        }
2088
2089        String8 name8(name);
2090        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, callingUid));
2091
2092        if (access(filename.string(), R_OK) == -1) {
2093            return (errno != ENOENT) ? ::SYSTEM_ERROR : ::KEY_NOT_FOUND;
2094        }
2095
2096        return mKeyStore->removeGrant(filename.string(), granteeUid) ? ::NO_ERROR : ::KEY_NOT_FOUND;
2097    }
2098
2099    int64_t getmtime(const String16& name) {
2100        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2101        if (!checkBinderPermission(P_GET)) {
2102            ALOGW("permission denied for %d: getmtime", callingUid);
2103            return -1L;
2104        }
2105
2106        String8 name8(name);
2107        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, callingUid));
2108
2109        if (access(filename.string(), R_OK) == -1) {
2110            ALOGW("could not access %s for getmtime", filename.string());
2111            return -1L;
2112        }
2113
2114        int fd = TEMP_FAILURE_RETRY(open(filename.string(), O_NOFOLLOW, O_RDONLY));
2115        if (fd < 0) {
2116            ALOGW("could not open %s for getmtime", filename.string());
2117            return -1L;
2118        }
2119
2120        struct stat s;
2121        int ret = fstat(fd, &s);
2122        close(fd);
2123        if (ret == -1) {
2124            ALOGW("could not stat %s for getmtime", filename.string());
2125            return -1L;
2126        }
2127
2128        return static_cast<int64_t>(s.st_mtime);
2129    }
2130
2131    int32_t duplicate(const String16& srcKey, int32_t srcUid, const String16& destKey,
2132            int32_t destUid) {
2133        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2134        pid_t spid = IPCThreadState::self()->getCallingPid();
2135        if (!has_permission(callingUid, P_DUPLICATE, spid)) {
2136            ALOGW("permission denied for %d: duplicate", callingUid);
2137            return -1L;
2138        }
2139
2140        State state = mKeyStore->getState(get_user_id(callingUid));
2141        if (!isKeystoreUnlocked(state)) {
2142            ALOGD("calling duplicate in state: %d", state);
2143            return state;
2144        }
2145
2146        if (srcUid == -1 || static_cast<uid_t>(srcUid) == callingUid) {
2147            srcUid = callingUid;
2148        } else if (!is_granted_to(callingUid, srcUid)) {
2149            ALOGD("migrate not granted from source: %d -> %d", callingUid, srcUid);
2150            return ::PERMISSION_DENIED;
2151        }
2152
2153        if (destUid == -1) {
2154            destUid = callingUid;
2155        }
2156
2157        if (srcUid != destUid) {
2158            if (static_cast<uid_t>(srcUid) != callingUid) {
2159                ALOGD("can only duplicate from caller to other or to same uid: "
2160                      "calling=%d, srcUid=%d, destUid=%d", callingUid, srcUid, destUid);
2161                return ::PERMISSION_DENIED;
2162            }
2163
2164            if (!is_granted_to(callingUid, destUid)) {
2165                ALOGD("duplicate not granted to dest: %d -> %d", callingUid, destUid);
2166                return ::PERMISSION_DENIED;
2167            }
2168        }
2169
2170        String8 source8(srcKey);
2171        String8 sourceFile(mKeyStore->getKeyNameForUidWithDir(source8, srcUid));
2172
2173        String8 target8(destKey);
2174        String8 targetFile(mKeyStore->getKeyNameForUidWithDir(target8, destUid));
2175
2176        if (access(targetFile.string(), W_OK) != -1 || errno != ENOENT) {
2177            ALOGD("destination already exists: %s", targetFile.string());
2178            return ::SYSTEM_ERROR;
2179        }
2180
2181        Blob keyBlob;
2182        ResponseCode responseCode = mKeyStore->get(sourceFile.string(), &keyBlob, TYPE_ANY,
2183                get_user_id(srcUid));
2184        if (responseCode != ::NO_ERROR) {
2185            return responseCode;
2186        }
2187
2188        return mKeyStore->put(targetFile.string(), &keyBlob, get_user_id(destUid));
2189    }
2190
2191    int32_t is_hardware_backed(const String16& keyType) {
2192        return mKeyStore->isHardwareBacked(keyType) ? 1 : 0;
2193    }
2194
2195    int32_t clear_uid(int64_t targetUid64) {
2196        uid_t targetUid = getEffectiveUid(targetUid64);
2197        if (!checkBinderPermissionSelfOrSystem(P_CLEAR_UID, targetUid)) {
2198            return ::PERMISSION_DENIED;
2199        }
2200
2201        String8 prefix = String8::format("%u_", targetUid);
2202        Vector<String16> aliases;
2203        if (mKeyStore->list(prefix, &aliases, get_user_id(targetUid)) != ::NO_ERROR) {
2204            return ::SYSTEM_ERROR;
2205        }
2206
2207        for (uint32_t i = 0; i < aliases.size(); i++) {
2208            String8 name8(aliases[i]);
2209            String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid));
2210            mKeyStore->del(filename.string(), ::TYPE_ANY, get_user_id(targetUid));
2211        }
2212        return ::NO_ERROR;
2213    }
2214
2215    int32_t addRngEntropy(const uint8_t* data, size_t dataLength) {
2216        const keymaster1_device_t* device = mKeyStore->getDevice();
2217        const keymaster1_device_t* fallback = mKeyStore->getFallbackDevice();
2218        int32_t devResult = KM_ERROR_UNIMPLEMENTED;
2219        int32_t fallbackResult = KM_ERROR_UNIMPLEMENTED;
2220        if (device->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0 &&
2221                device->add_rng_entropy != NULL) {
2222            devResult = device->add_rng_entropy(device, data, dataLength);
2223        }
2224        if (fallback->add_rng_entropy) {
2225            fallbackResult = fallback->add_rng_entropy(fallback, data, dataLength);
2226        }
2227        if (devResult) {
2228            return devResult;
2229        }
2230        if (fallbackResult) {
2231            return fallbackResult;
2232        }
2233        return ::NO_ERROR;
2234    }
2235
2236    int32_t generateKey(const String16& name, const KeymasterArguments& params,
2237                        const uint8_t* entropy, size_t entropyLength, int uid, int flags,
2238                        KeyCharacteristics* outCharacteristics) {
2239        uid = getEffectiveUid(uid);
2240        int rc = checkBinderPermissionAndKeystoreState(P_INSERT, uid,
2241                                                       flags & KEYSTORE_FLAG_ENCRYPTED);
2242        if (rc != ::NO_ERROR) {
2243            return rc;
2244        }
2245
2246        rc = KM_ERROR_UNIMPLEMENTED;
2247        bool isFallback = false;
2248        keymaster_key_blob_t blob;
2249        keymaster_key_characteristics_t *out = NULL;
2250
2251        const keymaster1_device_t* device = mKeyStore->getDevice();
2252        const keymaster1_device_t* fallback = mKeyStore->getFallbackDevice();
2253        std::vector<keymaster_key_param_t> opParams(params.params);
2254        const keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()};
2255        if (device == NULL) {
2256            return ::SYSTEM_ERROR;
2257        }
2258        // TODO: Seed from Linux RNG before this.
2259        if (device->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0 &&
2260                device->generate_key != NULL) {
2261            if (!entropy) {
2262                rc = KM_ERROR_OK;
2263            } else if (device->add_rng_entropy) {
2264                rc = device->add_rng_entropy(device, entropy, entropyLength);
2265            } else {
2266                rc = KM_ERROR_UNIMPLEMENTED;
2267            }
2268            if (rc == KM_ERROR_OK) {
2269                rc = device->generate_key(device, &inParams, &blob, &out);
2270            }
2271        }
2272        // If the HW device didn't support generate_key or generate_key failed
2273        // fall back to the software implementation.
2274        if (rc && fallback->generate_key != NULL) {
2275            isFallback = true;
2276            if (!entropy) {
2277                rc = KM_ERROR_OK;
2278            } else if (fallback->add_rng_entropy) {
2279                rc = fallback->add_rng_entropy(fallback, entropy, entropyLength);
2280            } else {
2281                rc = KM_ERROR_UNIMPLEMENTED;
2282            }
2283            if (rc == KM_ERROR_OK) {
2284                rc = fallback->generate_key(fallback, &inParams, &blob, &out);
2285            }
2286        }
2287
2288        if (out) {
2289            if (outCharacteristics) {
2290                outCharacteristics->characteristics = *out;
2291            } else {
2292                keymaster_free_characteristics(out);
2293            }
2294            free(out);
2295        }
2296
2297        if (rc) {
2298            return rc;
2299        }
2300
2301        String8 name8(name);
2302        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, uid));
2303
2304        Blob keyBlob(blob.key_material, blob.key_material_size, NULL, 0, ::TYPE_KEYMASTER_10);
2305        keyBlob.setFallback(isFallback);
2306        keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED);
2307
2308        free(const_cast<uint8_t*>(blob.key_material));
2309
2310        return mKeyStore->put(filename.string(), &keyBlob, get_user_id(uid));
2311    }
2312
2313    int32_t getKeyCharacteristics(const String16& name,
2314                                  const keymaster_blob_t* clientId,
2315                                  const keymaster_blob_t* appData,
2316                                  KeyCharacteristics* outCharacteristics) {
2317        if (!outCharacteristics) {
2318            return KM_ERROR_UNEXPECTED_NULL_POINTER;
2319        }
2320
2321        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2322
2323        Blob keyBlob;
2324        String8 name8(name);
2325        int rc;
2326
2327        ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid,
2328                TYPE_KEYMASTER_10);
2329        if (responseCode != ::NO_ERROR) {
2330            return responseCode;
2331        }
2332        keymaster_key_blob_t key;
2333        key.key_material_size = keyBlob.getLength();
2334        key.key_material = keyBlob.getValue();
2335        keymaster1_device_t* dev = mKeyStore->getDeviceForBlob(keyBlob);
2336        keymaster_key_characteristics_t *out = NULL;
2337        if (!dev->get_key_characteristics) {
2338            ALOGW("device does not implement get_key_characteristics");
2339            return KM_ERROR_UNIMPLEMENTED;
2340        }
2341        rc = dev->get_key_characteristics(dev, &key, clientId, appData, &out);
2342        if (out) {
2343            outCharacteristics->characteristics = *out;
2344            free(out);
2345        }
2346        return rc ? rc : ::NO_ERROR;
2347    }
2348
2349    int32_t importKey(const String16& name, const KeymasterArguments& params,
2350                                keymaster_key_format_t format, const uint8_t *keyData,
2351                                size_t keyLength, int uid, int flags,
2352                                KeyCharacteristics* outCharacteristics) {
2353        uid = getEffectiveUid(uid);
2354        int rc = checkBinderPermissionAndKeystoreState(P_INSERT, uid,
2355                                                       flags & KEYSTORE_FLAG_ENCRYPTED);
2356        if (rc != ::NO_ERROR) {
2357            return rc;
2358        }
2359
2360        rc = KM_ERROR_UNIMPLEMENTED;
2361        bool isFallback = false;
2362        keymaster_key_blob_t blob;
2363        keymaster_key_characteristics_t *out = NULL;
2364
2365        const keymaster1_device_t* device = mKeyStore->getDevice();
2366        const keymaster1_device_t* fallback = mKeyStore->getFallbackDevice();
2367        std::vector<keymaster_key_param_t> opParams(params.params);
2368        const keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()};
2369        const keymaster_blob_t input = {keyData, keyLength};
2370        if (device == NULL) {
2371            return ::SYSTEM_ERROR;
2372        }
2373        if (device->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0 &&
2374                device->import_key != NULL) {
2375            rc = device->import_key(device, &inParams, format,&input, &blob, &out);
2376        }
2377        if (rc && fallback->import_key != NULL) {
2378            isFallback = true;
2379            rc = fallback->import_key(fallback, &inParams, format, &input, &blob, &out);
2380        }
2381        if (out) {
2382            if (outCharacteristics) {
2383                outCharacteristics->characteristics = *out;
2384            } else {
2385                keymaster_free_characteristics(out);
2386            }
2387            free(out);
2388        }
2389        if (rc) {
2390            return rc;
2391        }
2392
2393        String8 name8(name);
2394        String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, uid));
2395
2396        Blob keyBlob(blob.key_material, blob.key_material_size, NULL, 0, ::TYPE_KEYMASTER_10);
2397        keyBlob.setFallback(isFallback);
2398        keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED);
2399
2400        free((void*) blob.key_material);
2401
2402        return mKeyStore->put(filename.string(), &keyBlob, get_user_id(uid));
2403    }
2404
2405    void exportKey(const String16& name, keymaster_key_format_t format,
2406                           const keymaster_blob_t* clientId,
2407                           const keymaster_blob_t* appData, ExportResult* result) {
2408
2409        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2410
2411        Blob keyBlob;
2412        String8 name8(name);
2413        int rc;
2414
2415        ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid,
2416                TYPE_KEYMASTER_10);
2417        if (responseCode != ::NO_ERROR) {
2418            result->resultCode = responseCode;
2419            return;
2420        }
2421        keymaster_key_blob_t key;
2422        key.key_material_size = keyBlob.getLength();
2423        key.key_material = keyBlob.getValue();
2424        keymaster1_device_t* dev = mKeyStore->getDeviceForBlob(keyBlob);
2425        if (!dev->export_key) {
2426            result->resultCode = KM_ERROR_UNIMPLEMENTED;
2427            return;
2428        }
2429        keymaster_blob_t output = {NULL, 0};
2430        rc = dev->export_key(dev, format, &key, clientId, appData, &output);
2431        result->exportData.reset(const_cast<uint8_t*>(output.data));
2432        result->dataLength = output.data_length;
2433        result->resultCode = rc ? rc : ::NO_ERROR;
2434    }
2435
2436
2437    void begin(const sp<IBinder>& appToken, const String16& name, keymaster_purpose_t purpose,
2438               bool pruneable, const KeymasterArguments& params, const uint8_t* entropy,
2439               size_t entropyLength, OperationResult* result) {
2440        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2441        if (!pruneable && get_app_id(callingUid) != AID_SYSTEM) {
2442            ALOGE("Non-system uid %d trying to start non-pruneable operation", callingUid);
2443            result->resultCode = ::PERMISSION_DENIED;
2444            return;
2445        }
2446        if (!checkAllowedOperationParams(params.params)) {
2447            result->resultCode = KM_ERROR_INVALID_ARGUMENT;
2448            return;
2449        }
2450        Blob keyBlob;
2451        String8 name8(name);
2452        ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid,
2453                TYPE_KEYMASTER_10);
2454        if (responseCode != ::NO_ERROR) {
2455            result->resultCode = responseCode;
2456            return;
2457        }
2458        keymaster_key_blob_t key;
2459        key.key_material_size = keyBlob.getLength();
2460        key.key_material = keyBlob.getValue();
2461        keymaster_operation_handle_t handle;
2462        keymaster1_device_t* dev = mKeyStore->getDeviceForBlob(keyBlob);
2463        keymaster_error_t err = KM_ERROR_UNIMPLEMENTED;
2464        std::vector<keymaster_key_param_t> opParams(params.params);
2465        Unique_keymaster_key_characteristics characteristics;
2466        characteristics.reset(new keymaster_key_characteristics_t);
2467        err = getOperationCharacteristics(key, dev, opParams, characteristics.get());
2468        if (err) {
2469            result->resultCode = err;
2470            return;
2471        }
2472        const hw_auth_token_t* authToken = NULL;
2473        int32_t authResult = getAuthToken(characteristics.get(), 0, purpose, &authToken,
2474                                                /*failOnTokenMissing*/ false);
2475        // If per-operation auth is needed we need to begin the operation and
2476        // the client will need to authorize that operation before calling
2477        // update. Any other auth issues stop here.
2478        if (authResult != ::NO_ERROR && authResult != ::OP_AUTH_NEEDED) {
2479            result->resultCode = authResult;
2480            return;
2481        }
2482        addAuthToParams(&opParams, authToken);
2483        // Add entropy to the device first.
2484        if (entropy) {
2485            if (dev->add_rng_entropy) {
2486                err = dev->add_rng_entropy(dev, entropy, entropyLength);
2487            } else {
2488                err = KM_ERROR_UNIMPLEMENTED;
2489            }
2490            if (err) {
2491                result->resultCode = err;
2492                return;
2493            }
2494        }
2495        keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()};
2496
2497        // Create a keyid for this key.
2498        keymaster::km_id_t keyid;
2499        if (!enforcement_policy.CreateKeyId(key, &keyid)) {
2500            ALOGE("Failed to create a key ID for authorization checking.");
2501            result->resultCode = KM_ERROR_UNKNOWN_ERROR;
2502            return;
2503        }
2504
2505        // Check that all key authorization policy requirements are met.
2506        keymaster::AuthorizationSet key_auths(characteristics->hw_enforced);
2507        key_auths.push_back(characteristics->sw_enforced);
2508        keymaster::AuthorizationSet operation_params(inParams);
2509        err = enforcement_policy.AuthorizeOperation(purpose, keyid, key_auths, operation_params,
2510                                                    0 /* op_handle */,
2511                                                    true /* is_begin_operation */);
2512        if (err) {
2513            result->resultCode = err;
2514            return;
2515        }
2516
2517        keymaster_key_param_set_t outParams = {NULL, 0};
2518        err = dev->begin(dev, purpose, &key, &inParams, &outParams, &handle);
2519
2520        // If there are too many operations abort the oldest operation that was
2521        // started as pruneable and try again.
2522        while (err == KM_ERROR_TOO_MANY_OPERATIONS && mOperationMap.hasPruneableOperation()) {
2523            sp<IBinder> oldest = mOperationMap.getOldestPruneableOperation();
2524            ALOGD("Ran out of operation handles, trying to prune %p", oldest.get());
2525
2526            // We mostly ignore errors from abort() below because all we care about is whether at
2527            // least one pruneable operation has been removed.
2528            size_t op_count_before = mOperationMap.getPruneableOperationCount();
2529            int abort_error = abort(oldest);
2530            size_t op_count_after = mOperationMap.getPruneableOperationCount();
2531            if (op_count_after >= op_count_before) {
2532                // Failed to create space for a new operation. Bail to avoid an infinite loop.
2533                ALOGE("Failed to remove pruneable operation %p, error: %d",
2534                      oldest.get(), abort_error);
2535                break;
2536            }
2537            err = dev->begin(dev, purpose, &key, &inParams, &outParams, &handle);
2538        }
2539        if (err) {
2540            result->resultCode = err;
2541            return;
2542        }
2543
2544        sp<IBinder> operationToken = mOperationMap.addOperation(handle, keyid, purpose, dev,
2545                                                                appToken, characteristics.release(),
2546                                                                pruneable);
2547        if (authToken) {
2548            mOperationMap.setOperationAuthToken(operationToken, authToken);
2549        }
2550        // Return the authentication lookup result. If this is a per operation
2551        // auth'd key then the resultCode will be ::OP_AUTH_NEEDED and the
2552        // application should get an auth token using the handle before the
2553        // first call to update, which will fail if keystore hasn't received the
2554        // auth token.
2555        result->resultCode = authResult;
2556        result->token = operationToken;
2557        result->handle = handle;
2558        if (outParams.params) {
2559            result->outParams.params.assign(outParams.params, outParams.params + outParams.length);
2560            free(outParams.params);
2561        }
2562    }
2563
2564    void update(const sp<IBinder>& token, const KeymasterArguments& params, const uint8_t* data,
2565                size_t dataLength, OperationResult* result) {
2566        if (!checkAllowedOperationParams(params.params)) {
2567            result->resultCode = KM_ERROR_INVALID_ARGUMENT;
2568            return;
2569        }
2570        const keymaster1_device_t* dev;
2571        keymaster_operation_handle_t handle;
2572        keymaster_purpose_t purpose;
2573        keymaster::km_id_t keyid;
2574        const keymaster_key_characteristics_t* characteristics;
2575        if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, &characteristics)) {
2576            result->resultCode = KM_ERROR_INVALID_OPERATION_HANDLE;
2577            return;
2578        }
2579        std::vector<keymaster_key_param_t> opParams(params.params);
2580        int32_t authResult = addOperationAuthTokenIfNeeded(token, &opParams);
2581        if (authResult != ::NO_ERROR) {
2582            result->resultCode = authResult;
2583            return;
2584        }
2585        keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()};
2586        keymaster_blob_t input = {data, dataLength};
2587        size_t consumed = 0;
2588        keymaster_blob_t output = {NULL, 0};
2589        keymaster_key_param_set_t outParams = {NULL, 0};
2590
2591        // Check that all key authorization policy requirements are met.
2592        keymaster::AuthorizationSet key_auths(characteristics->hw_enforced);
2593        key_auths.push_back(characteristics->sw_enforced);
2594        keymaster::AuthorizationSet operation_params(inParams);
2595        result->resultCode =
2596                enforcement_policy.AuthorizeOperation(purpose, keyid, key_auths,
2597                                                      operation_params, handle,
2598                                                      false /* is_begin_operation */);
2599        if (result->resultCode) {
2600            return;
2601        }
2602
2603        keymaster_error_t err = dev->update(dev, handle, &inParams, &input, &consumed, &outParams,
2604                                            &output);
2605        result->data.reset(const_cast<uint8_t*>(output.data));
2606        result->dataLength = output.data_length;
2607        result->inputConsumed = consumed;
2608        result->resultCode = err ? (int32_t) err : ::NO_ERROR;
2609        if (outParams.params) {
2610            result->outParams.params.assign(outParams.params, outParams.params + outParams.length);
2611            free(outParams.params);
2612        }
2613    }
2614
2615    void finish(const sp<IBinder>& token, const KeymasterArguments& params,
2616                const uint8_t* signature, size_t signatureLength,
2617                const uint8_t* entropy, size_t entropyLength, OperationResult* result) {
2618        if (!checkAllowedOperationParams(params.params)) {
2619            result->resultCode = KM_ERROR_INVALID_ARGUMENT;
2620            return;
2621        }
2622        const keymaster1_device_t* dev;
2623        keymaster_operation_handle_t handle;
2624        keymaster_purpose_t purpose;
2625        keymaster::km_id_t keyid;
2626        const keymaster_key_characteristics_t* characteristics;
2627        if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, &characteristics)) {
2628            result->resultCode = KM_ERROR_INVALID_OPERATION_HANDLE;
2629            return;
2630        }
2631        std::vector<keymaster_key_param_t> opParams(params.params);
2632        int32_t authResult = addOperationAuthTokenIfNeeded(token, &opParams);
2633        if (authResult != ::NO_ERROR) {
2634            result->resultCode = authResult;
2635            return;
2636        }
2637        keymaster_error_t err;
2638        if (entropy) {
2639            if (dev->add_rng_entropy) {
2640                err = dev->add_rng_entropy(dev, entropy, entropyLength);
2641            } else {
2642                err = KM_ERROR_UNIMPLEMENTED;
2643            }
2644            if (err) {
2645                result->resultCode = err;
2646                return;
2647            }
2648        }
2649
2650        keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()};
2651        keymaster_blob_t input = {signature, signatureLength};
2652        keymaster_blob_t output = {NULL, 0};
2653        keymaster_key_param_set_t outParams = {NULL, 0};
2654
2655        // Check that all key authorization policy requirements are met.
2656        keymaster::AuthorizationSet key_auths(characteristics->hw_enforced);
2657        key_auths.push_back(characteristics->sw_enforced);
2658        keymaster::AuthorizationSet operation_params(inParams);
2659        err = enforcement_policy.AuthorizeOperation(purpose, keyid, key_auths, operation_params,
2660                                                    handle, false /* is_begin_operation */);
2661        if (err) {
2662            result->resultCode = err;
2663            return;
2664        }
2665
2666        err = dev->finish(dev, handle, &inParams, &input, &outParams, &output);
2667        // Remove the operation regardless of the result
2668        mOperationMap.removeOperation(token);
2669        mAuthTokenTable.MarkCompleted(handle);
2670
2671        result->data.reset(const_cast<uint8_t*>(output.data));
2672        result->dataLength = output.data_length;
2673        result->resultCode = err ? (int32_t) err : ::NO_ERROR;
2674        if (outParams.params) {
2675            result->outParams.params.assign(outParams.params, outParams.params + outParams.length);
2676            free(outParams.params);
2677        }
2678    }
2679
2680    int32_t abort(const sp<IBinder>& token) {
2681        const keymaster1_device_t* dev;
2682        keymaster_operation_handle_t handle;
2683        keymaster_purpose_t purpose;
2684        keymaster::km_id_t keyid;
2685        if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, NULL)) {
2686            return KM_ERROR_INVALID_OPERATION_HANDLE;
2687        }
2688        mOperationMap.removeOperation(token);
2689        int32_t rc;
2690        if (!dev->abort) {
2691            rc = KM_ERROR_UNIMPLEMENTED;
2692        } else {
2693            rc = dev->abort(dev, handle);
2694        }
2695        mAuthTokenTable.MarkCompleted(handle);
2696        if (rc) {
2697            return rc;
2698        }
2699        return ::NO_ERROR;
2700    }
2701
2702    bool isOperationAuthorized(const sp<IBinder>& token) {
2703        const keymaster1_device_t* dev;
2704        keymaster_operation_handle_t handle;
2705        const keymaster_key_characteristics_t* characteristics;
2706        keymaster_purpose_t purpose;
2707        keymaster::km_id_t keyid;
2708        if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, &characteristics)) {
2709            return false;
2710        }
2711        const hw_auth_token_t* authToken = NULL;
2712        mOperationMap.getOperationAuthToken(token, &authToken);
2713        std::vector<keymaster_key_param_t> ignored;
2714        int32_t authResult = addOperationAuthTokenIfNeeded(token, &ignored);
2715        return authResult == ::NO_ERROR;
2716    }
2717
2718    int32_t addAuthToken(const uint8_t* token, size_t length) {
2719        if (!checkBinderPermission(P_ADD_AUTH)) {
2720            ALOGW("addAuthToken: permission denied for %d",
2721                  IPCThreadState::self()->getCallingUid());
2722            return ::PERMISSION_DENIED;
2723        }
2724        if (length != sizeof(hw_auth_token_t)) {
2725            return KM_ERROR_INVALID_ARGUMENT;
2726        }
2727        hw_auth_token_t* authToken = new hw_auth_token_t;
2728        memcpy(reinterpret_cast<void*>(authToken), token, sizeof(hw_auth_token_t));
2729        // The table takes ownership of authToken.
2730        mAuthTokenTable.AddAuthenticationToken(authToken);
2731        return ::NO_ERROR;
2732    }
2733
2734private:
2735    static const int32_t UID_SELF = -1;
2736
2737    /**
2738     * Get the effective target uid for a binder operation that takes an
2739     * optional uid as the target.
2740     */
2741    inline uid_t getEffectiveUid(int32_t targetUid) {
2742        if (targetUid == UID_SELF) {
2743            return IPCThreadState::self()->getCallingUid();
2744        }
2745        return static_cast<uid_t>(targetUid);
2746    }
2747
2748    /**
2749     * Check if the caller of the current binder method has the required
2750     * permission and if acting on other uids the grants to do so.
2751     */
2752    inline bool checkBinderPermission(perm_t permission, int32_t targetUid = UID_SELF) {
2753        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2754        pid_t spid = IPCThreadState::self()->getCallingPid();
2755        if (!has_permission(callingUid, permission, spid)) {
2756            ALOGW("permission %s denied for %d", get_perm_label(permission), callingUid);
2757            return false;
2758        }
2759        if (!is_granted_to(callingUid, getEffectiveUid(targetUid))) {
2760            ALOGW("uid %d not granted to act for %d", callingUid, targetUid);
2761            return false;
2762        }
2763        return true;
2764    }
2765
2766    /**
2767     * Check if the caller of the current binder method has the required
2768     * permission and the target uid is the caller or the caller is system.
2769     */
2770    inline bool checkBinderPermissionSelfOrSystem(perm_t permission, int32_t targetUid) {
2771        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2772        pid_t spid = IPCThreadState::self()->getCallingPid();
2773        if (!has_permission(callingUid, permission, spid)) {
2774            ALOGW("permission %s denied for %d", get_perm_label(permission), callingUid);
2775            return false;
2776        }
2777        return getEffectiveUid(targetUid) == callingUid || callingUid == AID_SYSTEM;
2778    }
2779
2780    /**
2781     * Check if the caller of the current binder method has the required
2782     * permission or the target of the operation is the caller's uid. This is
2783     * for operation where the permission is only for cross-uid activity and all
2784     * uids are allowed to act on their own (ie: clearing all entries for a
2785     * given uid).
2786     */
2787    inline bool checkBinderPermissionOrSelfTarget(perm_t permission, int32_t targetUid) {
2788        uid_t callingUid = IPCThreadState::self()->getCallingUid();
2789        if (getEffectiveUid(targetUid) == callingUid) {
2790            return true;
2791        } else {
2792            return checkBinderPermission(permission, targetUid);
2793        }
2794    }
2795
2796    /**
2797     * Helper method to check that the caller has the required permission as
2798     * well as the keystore is in the unlocked state if checkUnlocked is true.
2799     *
2800     * Returns NO_ERROR on success, PERMISSION_DENIED on a permission error and
2801     * otherwise the state of keystore when not unlocked and checkUnlocked is
2802     * true.
2803     */
2804    inline int32_t checkBinderPermissionAndKeystoreState(perm_t permission, int32_t targetUid = -1,
2805                                                 bool checkUnlocked = true) {
2806        if (!checkBinderPermission(permission, targetUid)) {
2807            return ::PERMISSION_DENIED;
2808        }
2809        State state = mKeyStore->getState(get_user_id(getEffectiveUid(targetUid)));
2810        if (checkUnlocked && !isKeystoreUnlocked(state)) {
2811            return state;
2812        }
2813
2814        return ::NO_ERROR;
2815
2816    }
2817
2818    inline bool isKeystoreUnlocked(State state) {
2819        switch (state) {
2820        case ::STATE_NO_ERROR:
2821            return true;
2822        case ::STATE_UNINITIALIZED:
2823        case ::STATE_LOCKED:
2824            return false;
2825        }
2826        return false;
2827    }
2828
2829    bool isKeyTypeSupported(const keymaster1_device_t* device, keymaster_keypair_t keyType) {
2830        const int32_t device_api = device->common.module->module_api_version;
2831        if (device_api == KEYMASTER_MODULE_API_VERSION_0_2) {
2832            switch (keyType) {
2833                case TYPE_RSA:
2834                case TYPE_DSA:
2835                case TYPE_EC:
2836                    return true;
2837                default:
2838                    return false;
2839            }
2840        } else if (device_api >= KEYMASTER_MODULE_API_VERSION_0_3) {
2841            switch (keyType) {
2842                case TYPE_RSA:
2843                    return true;
2844                case TYPE_DSA:
2845                    return device->flags & KEYMASTER_SUPPORTS_DSA;
2846                case TYPE_EC:
2847                    return device->flags & KEYMASTER_SUPPORTS_EC;
2848                default:
2849                    return false;
2850            }
2851        } else {
2852            return keyType == TYPE_RSA;
2853        }
2854    }
2855
2856    /**
2857     * Check that all keymaster_key_param_t's provided by the application are
2858     * allowed. Any parameter that keystore adds itself should be disallowed here.
2859     */
2860    bool checkAllowedOperationParams(const std::vector<keymaster_key_param_t>& params) {
2861        for (auto param: params) {
2862            switch (param.tag) {
2863                case KM_TAG_AUTH_TOKEN:
2864                    return false;
2865                default:
2866                    break;
2867            }
2868        }
2869        return true;
2870    }
2871
2872    keymaster_error_t getOperationCharacteristics(const keymaster_key_blob_t& key,
2873                                    const keymaster1_device_t* dev,
2874                                    const std::vector<keymaster_key_param_t>& params,
2875                                    keymaster_key_characteristics_t* out) {
2876        UniquePtr<keymaster_blob_t> appId;
2877        UniquePtr<keymaster_blob_t> appData;
2878        for (auto param : params) {
2879            if (param.tag == KM_TAG_APPLICATION_ID) {
2880                appId.reset(new keymaster_blob_t);
2881                appId->data = param.blob.data;
2882                appId->data_length = param.blob.data_length;
2883            } else if (param.tag == KM_TAG_APPLICATION_DATA) {
2884                appData.reset(new keymaster_blob_t);
2885                appData->data = param.blob.data;
2886                appData->data_length = param.blob.data_length;
2887            }
2888        }
2889        keymaster_key_characteristics_t* result = NULL;
2890        if (!dev->get_key_characteristics) {
2891            return KM_ERROR_UNIMPLEMENTED;
2892        }
2893        keymaster_error_t error = dev->get_key_characteristics(dev, &key, appId.get(),
2894                                                               appData.get(), &result);
2895        if (result) {
2896            *out = *result;
2897            free(result);
2898        }
2899        return error;
2900    }
2901
2902    /**
2903     * Get the auth token for this operation from the auth token table.
2904     *
2905     * Returns ::NO_ERROR if the auth token was set or none was required.
2906     *         ::OP_AUTH_NEEDED if it is a per op authorization, no
2907     *         authorization token exists for that operation and
2908     *         failOnTokenMissing is false.
2909     *         KM_ERROR_KEY_USER_NOT_AUTHENTICATED if there is no valid auth
2910     *         token for the operation
2911     */
2912    int32_t getAuthToken(const keymaster_key_characteristics_t* characteristics,
2913                         keymaster_operation_handle_t handle,
2914                         keymaster_purpose_t purpose,
2915                         const hw_auth_token_t** authToken,
2916                         bool failOnTokenMissing = true) {
2917
2918        std::vector<keymaster_key_param_t> allCharacteristics;
2919        for (size_t i = 0; i < characteristics->sw_enforced.length; i++) {
2920            allCharacteristics.push_back(characteristics->sw_enforced.params[i]);
2921        }
2922        for (size_t i = 0; i < characteristics->hw_enforced.length; i++) {
2923            allCharacteristics.push_back(characteristics->hw_enforced.params[i]);
2924        }
2925        keymaster::AuthTokenTable::Error err = mAuthTokenTable.FindAuthorization(
2926                allCharacteristics.data(), allCharacteristics.size(), purpose, handle, authToken);
2927        switch (err) {
2928            case keymaster::AuthTokenTable::OK:
2929            case keymaster::AuthTokenTable::AUTH_NOT_REQUIRED:
2930                return ::NO_ERROR;
2931            case keymaster::AuthTokenTable::AUTH_TOKEN_NOT_FOUND:
2932            case keymaster::AuthTokenTable::AUTH_TOKEN_EXPIRED:
2933            case keymaster::AuthTokenTable::AUTH_TOKEN_WRONG_SID:
2934                return KM_ERROR_KEY_USER_NOT_AUTHENTICATED;
2935            case keymaster::AuthTokenTable::OP_HANDLE_REQUIRED:
2936                return failOnTokenMissing ? (int32_t) KM_ERROR_KEY_USER_NOT_AUTHENTICATED :
2937                        (int32_t) ::OP_AUTH_NEEDED;
2938            default:
2939                ALOGE("Unexpected FindAuthorization return value %d", err);
2940                return KM_ERROR_INVALID_ARGUMENT;
2941        }
2942    }
2943
2944    inline void addAuthToParams(std::vector<keymaster_key_param_t>* params,
2945                                const hw_auth_token_t* token) {
2946        if (token) {
2947            params->push_back(keymaster_param_blob(KM_TAG_AUTH_TOKEN,
2948                                                   reinterpret_cast<const uint8_t*>(token),
2949                                                   sizeof(hw_auth_token_t)));
2950        }
2951    }
2952
2953    /**
2954     * Add the auth token for the operation to the param list if the operation
2955     * requires authorization. Uses the cached result in the OperationMap if available
2956     * otherwise gets the token from the AuthTokenTable and caches the result.
2957     *
2958     * Returns ::NO_ERROR if the auth token was added or not needed.
2959     *         KM_ERROR_KEY_USER_NOT_AUTHENTICATED if the operation is not
2960     *         authenticated.
2961     *         KM_ERROR_INVALID_OPERATION_HANDLE if token is not a valid
2962     *         operation token.
2963     */
2964    int32_t addOperationAuthTokenIfNeeded(sp<IBinder> token,
2965                                          std::vector<keymaster_key_param_t>* params) {
2966        const hw_auth_token_t* authToken = NULL;
2967        mOperationMap.getOperationAuthToken(token, &authToken);
2968        if (!authToken) {
2969            const keymaster1_device_t* dev;
2970            keymaster_operation_handle_t handle;
2971            const keymaster_key_characteristics_t* characteristics = NULL;
2972            keymaster_purpose_t purpose;
2973            keymaster::km_id_t keyid;
2974            if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev,
2975                                            &characteristics)) {
2976                return KM_ERROR_INVALID_OPERATION_HANDLE;
2977            }
2978            int32_t result = getAuthToken(characteristics, handle, purpose, &authToken);
2979            if (result != ::NO_ERROR) {
2980                return result;
2981            }
2982            if (authToken) {
2983                mOperationMap.setOperationAuthToken(token, authToken);
2984            }
2985        }
2986        addAuthToParams(params, authToken);
2987        return ::NO_ERROR;
2988    }
2989
2990    /**
2991     * Translate a result value to a legacy return value. All keystore errors are
2992     * preserved and keymaster errors become SYSTEM_ERRORs
2993     */
2994    inline int32_t translateResultToLegacyResult(int32_t result) {
2995        if (result > 0) {
2996            return result;
2997        }
2998        return ::SYSTEM_ERROR;
2999    }
3000
3001    void addLegacyKeyAuthorizations(std::vector<keymaster_key_param_t>& params, int keyType) {
3002        params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_SIGN));
3003        params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_VERIFY));
3004        params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_ENCRYPT));
3005        params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_DECRYPT));
3006        params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE));
3007        if (keyType == EVP_PKEY_RSA) {
3008            params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN));
3009            params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT));
3010            params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_PSS));
3011            params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_OAEP));
3012        }
3013        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE));
3014        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_MD5));
3015        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA1));
3016        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_224));
3017        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_256));
3018        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_384));
3019        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_512));
3020        params.push_back(keymaster_param_bool(KM_TAG_ALL_USERS));
3021        params.push_back(keymaster_param_bool(KM_TAG_NO_AUTH_REQUIRED));
3022        params.push_back(keymaster_param_date(KM_TAG_ORIGINATION_EXPIRE_DATETIME, LLONG_MAX));
3023        params.push_back(keymaster_param_date(KM_TAG_USAGE_EXPIRE_DATETIME, LLONG_MAX));
3024        params.push_back(keymaster_param_date(KM_TAG_ACTIVE_DATETIME, 0));
3025        uint64_t now = keymaster::java_time(time(NULL));
3026        params.push_back(keymaster_param_date(KM_TAG_CREATION_DATETIME, now));
3027    }
3028
3029    keymaster_key_param_t* getKeyAlgorithm(keymaster_key_characteristics_t* characteristics) {
3030        for (size_t i = 0; i < characteristics->hw_enforced.length; i++) {
3031            if (characteristics->hw_enforced.params[i].tag == KM_TAG_ALGORITHM) {
3032                return &characteristics->hw_enforced.params[i];
3033            }
3034        }
3035        for (size_t i = 0; i < characteristics->sw_enforced.length; i++) {
3036            if (characteristics->sw_enforced.params[i].tag == KM_TAG_ALGORITHM) {
3037                return &characteristics->sw_enforced.params[i];
3038            }
3039        }
3040        return NULL;
3041    }
3042
3043    void addLegacyBeginParams(const String16& name, std::vector<keymaster_key_param_t>& params) {
3044        // All legacy keys are DIGEST_NONE/PAD_NONE.
3045        params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE));
3046        params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE));
3047
3048        // Look up the algorithm of the key.
3049        KeyCharacteristics characteristics;
3050        int32_t rc = getKeyCharacteristics(name, NULL, NULL, &characteristics);
3051        if (rc != ::NO_ERROR) {
3052            ALOGE("Failed to get key characteristics");
3053            return;
3054        }
3055        keymaster_key_param_t* algorithm = getKeyAlgorithm(&characteristics.characteristics);
3056        if (!algorithm) {
3057            ALOGE("getKeyCharacteristics did not include KM_TAG_ALGORITHM");
3058            return;
3059        }
3060        params.push_back(*algorithm);
3061    }
3062
3063    int32_t doLegacySignVerify(const String16& name, const uint8_t* data, size_t length,
3064                              uint8_t** out, size_t* outLength, const uint8_t* signature,
3065                              size_t signatureLength, keymaster_purpose_t purpose) {
3066
3067        std::basic_stringstream<uint8_t> outBuffer;
3068        OperationResult result;
3069        KeymasterArguments inArgs;
3070        addLegacyBeginParams(name, inArgs.params);
3071        sp<IBinder> appToken(new BBinder);
3072        sp<IBinder> token;
3073
3074        begin(appToken, name, purpose, true, inArgs, NULL, 0, &result);
3075        if (result.resultCode != ResponseCode::NO_ERROR) {
3076            if (result.resultCode == ::KEY_NOT_FOUND) {
3077                ALOGW("Key not found");
3078            } else {
3079                ALOGW("Error in begin: %d", result.resultCode);
3080            }
3081            return translateResultToLegacyResult(result.resultCode);
3082        }
3083        inArgs.params.clear();
3084        token = result.token;
3085        size_t consumed = 0;
3086        size_t lastConsumed = 0;
3087        do {
3088            update(token, inArgs, data + consumed, length - consumed, &result);
3089            if (result.resultCode != ResponseCode::NO_ERROR) {
3090                ALOGW("Error in update: %d", result.resultCode);
3091                return translateResultToLegacyResult(result.resultCode);
3092            }
3093            if (out) {
3094                outBuffer.write(result.data.get(), result.dataLength);
3095            }
3096            lastConsumed = result.inputConsumed;
3097            consumed += lastConsumed;
3098        } while (consumed < length && lastConsumed > 0);
3099
3100        if (consumed != length) {
3101            ALOGW("Not all data consumed. Consumed %zu of %zu", consumed, length);
3102            return ::SYSTEM_ERROR;
3103        }
3104
3105        finish(token, inArgs, signature, signatureLength, NULL, 0, &result);
3106        if (result.resultCode != ResponseCode::NO_ERROR) {
3107            ALOGW("Error in finish: %d", result.resultCode);
3108            return translateResultToLegacyResult(result.resultCode);
3109        }
3110        if (out) {
3111            outBuffer.write(result.data.get(), result.dataLength);
3112        }
3113
3114        if (out) {
3115            auto buf = outBuffer.str();
3116            *out = new uint8_t[buf.size()];
3117            memcpy(*out, buf.c_str(), buf.size());
3118            *outLength = buf.size();
3119        }
3120
3121        return ::NO_ERROR;
3122    }
3123
3124    ::KeyStore* mKeyStore;
3125    OperationMap mOperationMap;
3126    keymaster::AuthTokenTable mAuthTokenTable;
3127    KeystoreKeymasterEnforcement enforcement_policy;
3128};
3129
3130}; // namespace android
3131
3132int main(int argc, char* argv[]) {
3133    if (argc < 2) {
3134        ALOGE("A directory must be specified!");
3135        return 1;
3136    }
3137    if (chdir(argv[1]) == -1) {
3138        ALOGE("chdir: %s: %s", argv[1], strerror(errno));
3139        return 1;
3140    }
3141
3142    Entropy entropy;
3143    if (!entropy.open()) {
3144        return 1;
3145    }
3146
3147    keymaster1_device_t* dev;
3148    if (keymaster_device_initialize(&dev)) {
3149        ALOGE("keystore keymaster could not be initialized; exiting");
3150        return 1;
3151    }
3152
3153    keymaster1_device_t* fallback;
3154    if (fallback_keymaster_device_initialize(&fallback)) {
3155        ALOGE("software keymaster could not be initialized; exiting");
3156        return 1;
3157    }
3158
3159    ks_is_selinux_enabled = is_selinux_enabled();
3160    if (ks_is_selinux_enabled) {
3161        union selinux_callback cb;
3162        cb.func_log = selinux_log_callback;
3163        selinux_set_callback(SELINUX_CB_LOG, cb);
3164        if (getcon(&tctx) != 0) {
3165            ALOGE("SELinux: Could not acquire target context. Aborting keystore.\n");
3166            return -1;
3167        }
3168    } else {
3169        ALOGI("SELinux: Keystore SELinux is disabled.\n");
3170    }
3171
3172    KeyStore keyStore(&entropy, dev, fallback);
3173    keyStore.initialize();
3174    android::sp<android::IServiceManager> sm = android::defaultServiceManager();
3175    android::sp<android::KeyStoreProxy> proxy = new android::KeyStoreProxy(&keyStore);
3176    android::status_t ret = sm->addService(android::String16("android.security.keystore"), proxy);
3177    if (ret != android::OK) {
3178        ALOGE("Couldn't register binder service!");
3179        return -1;
3180    }
3181
3182    /*
3183     * We're the only thread in existence, so we're just going to process
3184     * Binder transaction as a single-threaded program.
3185     */
3186    android::IPCThreadState::self()->joinThreadPool();
3187
3188    keymaster_device_release(dev);
3189    return 1;
3190}
3191