target_x86.cc revision 60bfe7b3e8f00f0a8ef3f5d8716adfdf86b71f43
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
56static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
57static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
58static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
59static constexpr RegStorage core_temps_arr_64[] = {
60    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
61    rs_r8, rs_r9, rs_r10, rs_r11
62};
63static constexpr RegStorage core_temps_arr_64q[] = {
64    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
65    rs_r8q, rs_r9q, rs_r10q, rs_r11q
66};
67static constexpr RegStorage sp_temps_arr_32[] = {
68    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
69};
70static constexpr RegStorage sp_temps_arr_64[] = {
71    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
72    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
73};
74static constexpr RegStorage dp_temps_arr_32[] = {
75    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
76};
77static constexpr RegStorage dp_temps_arr_64[] = {
78    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
79    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
80};
81
82static constexpr RegStorage xp_temps_arr_32[] = {
83    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
84};
85static constexpr RegStorage xp_temps_arr_64[] = {
86    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
87    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
88};
89
90static constexpr ArrayRef<const RegStorage> empty_pool;
91static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
92static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
93static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
94static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
95static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
96static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
97static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
98static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
100static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
101static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
102static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
103static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
104static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
105static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
106static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
107static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
108
109static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
110static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
111
112RegStorage rs_rX86_SP;
113
114X86NativeRegisterPool rX86_ARG0;
115X86NativeRegisterPool rX86_ARG1;
116X86NativeRegisterPool rX86_ARG2;
117X86NativeRegisterPool rX86_ARG3;
118X86NativeRegisterPool rX86_ARG4;
119X86NativeRegisterPool rX86_ARG5;
120X86NativeRegisterPool rX86_FARG0;
121X86NativeRegisterPool rX86_FARG1;
122X86NativeRegisterPool rX86_FARG2;
123X86NativeRegisterPool rX86_FARG3;
124X86NativeRegisterPool rX86_FARG4;
125X86NativeRegisterPool rX86_FARG5;
126X86NativeRegisterPool rX86_FARG6;
127X86NativeRegisterPool rX86_FARG7;
128X86NativeRegisterPool rX86_RET0;
129X86NativeRegisterPool rX86_RET1;
130X86NativeRegisterPool rX86_INVOKE_TGT;
131X86NativeRegisterPool rX86_COUNT;
132
133RegStorage rs_rX86_ARG0;
134RegStorage rs_rX86_ARG1;
135RegStorage rs_rX86_ARG2;
136RegStorage rs_rX86_ARG3;
137RegStorage rs_rX86_ARG4;
138RegStorage rs_rX86_ARG5;
139RegStorage rs_rX86_FARG0;
140RegStorage rs_rX86_FARG1;
141RegStorage rs_rX86_FARG2;
142RegStorage rs_rX86_FARG3;
143RegStorage rs_rX86_FARG4;
144RegStorage rs_rX86_FARG5;
145RegStorage rs_rX86_FARG6;
146RegStorage rs_rX86_FARG7;
147RegStorage rs_rX86_RET0;
148RegStorage rs_rX86_RET1;
149RegStorage rs_rX86_INVOKE_TGT;
150RegStorage rs_rX86_COUNT;
151
152RegLocation X86Mir2Lir::LocCReturn() {
153  return x86_loc_c_return;
154}
155
156RegLocation X86Mir2Lir::LocCReturnRef() {
157  return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
158}
159
160RegLocation X86Mir2Lir::LocCReturnWide() {
161  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
162}
163
164RegLocation X86Mir2Lir::LocCReturnFloat() {
165  return x86_loc_c_return_float;
166}
167
168RegLocation X86Mir2Lir::LocCReturnDouble() {
169  return x86_loc_c_return_double;
170}
171
172// Return a target-dependent special register for 32-bit.
173RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
174  RegStorage res_reg = RegStorage::InvalidReg();
175  switch (reg) {
176    case kSelf: res_reg = RegStorage::InvalidReg(); break;
177    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
178    case kLr: res_reg =  RegStorage::InvalidReg(); break;
179    case kPc: res_reg =  RegStorage::InvalidReg(); break;
180    case kSp: res_reg =  rs_rX86_SP; break;
181    case kArg0: res_reg = rs_rX86_ARG0; break;
182    case kArg1: res_reg = rs_rX86_ARG1; break;
183    case kArg2: res_reg = rs_rX86_ARG2; break;
184    case kArg3: res_reg = rs_rX86_ARG3; break;
185    case kArg4: res_reg = rs_rX86_ARG4; break;
186    case kArg5: res_reg = rs_rX86_ARG5; break;
187    case kFArg0: res_reg = rs_rX86_FARG0; break;
188    case kFArg1: res_reg = rs_rX86_FARG1; break;
189    case kFArg2: res_reg = rs_rX86_FARG2; break;
190    case kFArg3: res_reg = rs_rX86_FARG3; break;
191    case kFArg4: res_reg = rs_rX86_FARG4; break;
192    case kFArg5: res_reg = rs_rX86_FARG5; break;
193    case kFArg6: res_reg = rs_rX86_FARG6; break;
194    case kFArg7: res_reg = rs_rX86_FARG7; break;
195    case kRet0: res_reg = rs_rX86_RET0; break;
196    case kRet1: res_reg = rs_rX86_RET1; break;
197    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198    case kHiddenArg: res_reg = rs_rAX; break;
199    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
200    case kCount: res_reg = rs_rX86_COUNT; break;
201    default: res_reg = RegStorage::InvalidReg();
202  }
203  return res_reg;
204}
205
206RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
207  LOG(FATAL) << "Do not use this function!!!";
208  return RegStorage::InvalidReg();
209}
210
211/*
212 * Decode the register id.
213 */
214ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
215  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
216  return ResourceMask::Bit(
217      /* FP register starts at bit position 16 */
218      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
219}
220
221ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
222  /*
223   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
224   * able to clean up some of the x86/Arm_Mips differences
225   */
226  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
227  return kEncodeNone;
228}
229
230void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
231                                          ResourceMask* use_mask, ResourceMask* def_mask) {
232  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
233  DCHECK(!lir->flags.use_def_invalid);
234
235  // X86-specific resource map setup here.
236  if (flags & REG_USE_SP) {
237    use_mask->SetBit(kX86RegSP);
238  }
239
240  if (flags & REG_DEF_SP) {
241    def_mask->SetBit(kX86RegSP);
242  }
243
244  if (flags & REG_DEFA) {
245    SetupRegMask(def_mask, rs_rAX.GetReg());
246  }
247
248  if (flags & REG_DEFD) {
249    SetupRegMask(def_mask, rs_rDX.GetReg());
250  }
251  if (flags & REG_USEA) {
252    SetupRegMask(use_mask, rs_rAX.GetReg());
253  }
254
255  if (flags & REG_USEC) {
256    SetupRegMask(use_mask, rs_rCX.GetReg());
257  }
258
259  if (flags & REG_USED) {
260    SetupRegMask(use_mask, rs_rDX.GetReg());
261  }
262
263  if (flags & REG_USEB) {
264    SetupRegMask(use_mask, rs_rBX.GetReg());
265  }
266
267  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
268  if (lir->opcode == kX86RepneScasw) {
269    SetupRegMask(use_mask, rs_rAX.GetReg());
270    SetupRegMask(use_mask, rs_rCX.GetReg());
271    SetupRegMask(use_mask, rs_rDI.GetReg());
272    SetupRegMask(def_mask, rs_rDI.GetReg());
273  }
274
275  if (flags & USE_FP_STACK) {
276    use_mask->SetBit(kX86FPStack);
277    def_mask->SetBit(kX86FPStack);
278  }
279}
280
281/* For dumping instructions */
282static const char* x86RegName[] = {
283  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
284  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
285};
286
287static const char* x86CondName[] = {
288  "O",
289  "NO",
290  "B/NAE/C",
291  "NB/AE/NC",
292  "Z/EQ",
293  "NZ/NE",
294  "BE/NA",
295  "NBE/A",
296  "S",
297  "NS",
298  "P/PE",
299  "NP/PO",
300  "L/NGE",
301  "NL/GE",
302  "LE/NG",
303  "NLE/G"
304};
305
306/*
307 * Interpret a format string and build a string no longer than size
308 * See format key in Assemble.cc.
309 */
310std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
311  std::string buf;
312  size_t i = 0;
313  size_t fmt_len = strlen(fmt);
314  while (i < fmt_len) {
315    if (fmt[i] != '!') {
316      buf += fmt[i];
317      i++;
318    } else {
319      i++;
320      DCHECK_LT(i, fmt_len);
321      char operand_number_ch = fmt[i];
322      i++;
323      if (operand_number_ch == '!') {
324        buf += "!";
325      } else {
326        int operand_number = operand_number_ch - '0';
327        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
328        DCHECK_LT(i, fmt_len);
329        int operand = lir->operands[operand_number];
330        switch (fmt[i]) {
331          case 'c':
332            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
333            buf += x86CondName[operand];
334            break;
335          case 'd':
336            buf += StringPrintf("%d", operand);
337            break;
338          case 'q': {
339             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
340                             static_cast<uint32_t>(lir->operands[operand_number+1]));
341             buf +=StringPrintf("%" PRId64, value);
342          }
343          case 'p': {
344            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
345            buf += StringPrintf("0x%08x", tab_rec->offset);
346            break;
347          }
348          case 'r':
349            if (RegStorage::IsFloat(operand)) {
350              int fp_reg = RegStorage::RegNum(operand);
351              buf += StringPrintf("xmm%d", fp_reg);
352            } else {
353              int reg_num = RegStorage::RegNum(operand);
354              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
355              buf += x86RegName[reg_num];
356            }
357            break;
358          case 't':
359            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
360                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
361                                lir->target);
362            break;
363          default:
364            buf += StringPrintf("DecodeError '%c'", fmt[i]);
365            break;
366        }
367        i++;
368      }
369    }
370  }
371  return buf;
372}
373
374void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
375  char buf[256];
376  buf[0] = 0;
377
378  if (mask.Equals(kEncodeAll)) {
379    strcpy(buf, "all");
380  } else {
381    char num[8];
382    int i;
383
384    for (i = 0; i < kX86RegEnd; i++) {
385      if (mask.HasBit(i)) {
386        snprintf(num, arraysize(num), "%d ", i);
387        strcat(buf, num);
388      }
389    }
390
391    if (mask.HasBit(ResourceMask::kCCode)) {
392      strcat(buf, "cc ");
393    }
394    /* Memory bits */
395    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
396      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
397               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
398               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
399    }
400    if (mask.HasBit(ResourceMask::kLiteral)) {
401      strcat(buf, "lit ");
402    }
403
404    if (mask.HasBit(ResourceMask::kHeapRef)) {
405      strcat(buf, "heap ");
406    }
407    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
408      strcat(buf, "noalias ");
409    }
410  }
411  if (buf[0]) {
412    LOG(INFO) << prefix << ": " <<  buf;
413  }
414}
415
416void X86Mir2Lir::AdjustSpillMask() {
417  // Adjustment for LR spilling, x86 has no LR so nothing to do here
418  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
419  num_core_spills_++;
420}
421
422RegStorage X86Mir2Lir::AllocateByteRegister() {
423  RegStorage reg = AllocTypedTemp(false, kCoreReg);
424  if (!cu_->target64) {
425    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
426  }
427  return reg;
428}
429
430RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
431  return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
432}
433
434bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
435  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
436}
437
438/* Clobber all regs that might be used by an external C call */
439void X86Mir2Lir::ClobberCallerSave() {
440  Clobber(rs_rAX);
441  Clobber(rs_rCX);
442  Clobber(rs_rDX);
443  Clobber(rs_rBX);
444
445  Clobber(rs_fr0);
446  Clobber(rs_fr1);
447  Clobber(rs_fr2);
448  Clobber(rs_fr3);
449  Clobber(rs_fr4);
450  Clobber(rs_fr5);
451  Clobber(rs_fr6);
452  Clobber(rs_fr7);
453
454  if (cu_->target64) {
455    Clobber(rs_r8);
456    Clobber(rs_r9);
457    Clobber(rs_r10);
458    Clobber(rs_r11);
459
460    Clobber(rs_fr8);
461    Clobber(rs_fr9);
462    Clobber(rs_fr10);
463    Clobber(rs_fr11);
464    Clobber(rs_fr12);
465    Clobber(rs_fr13);
466    Clobber(rs_fr14);
467    Clobber(rs_fr15);
468  }
469}
470
471RegLocation X86Mir2Lir::GetReturnWideAlt() {
472  RegLocation res = LocCReturnWide();
473  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
474  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
475  Clobber(rs_rAX);
476  Clobber(rs_rDX);
477  MarkInUse(rs_rAX);
478  MarkInUse(rs_rDX);
479  MarkWide(res.reg);
480  return res;
481}
482
483RegLocation X86Mir2Lir::GetReturnAlt() {
484  RegLocation res = LocCReturn();
485  res.reg.SetReg(rs_rDX.GetReg());
486  Clobber(rs_rDX);
487  MarkInUse(rs_rDX);
488  return res;
489}
490
491/* To be used when explicitly managing register use */
492void X86Mir2Lir::LockCallTemps() {
493  LockTemp(rs_rX86_ARG0);
494  LockTemp(rs_rX86_ARG1);
495  LockTemp(rs_rX86_ARG2);
496  LockTemp(rs_rX86_ARG3);
497  if (cu_->target64) {
498    LockTemp(rs_rX86_ARG4);
499    LockTemp(rs_rX86_ARG5);
500    LockTemp(rs_rX86_FARG0);
501    LockTemp(rs_rX86_FARG1);
502    LockTemp(rs_rX86_FARG2);
503    LockTemp(rs_rX86_FARG3);
504    LockTemp(rs_rX86_FARG4);
505    LockTemp(rs_rX86_FARG5);
506    LockTemp(rs_rX86_FARG6);
507    LockTemp(rs_rX86_FARG7);
508  }
509}
510
511/* To be used when explicitly managing register use */
512void X86Mir2Lir::FreeCallTemps() {
513  FreeTemp(rs_rX86_ARG0);
514  FreeTemp(rs_rX86_ARG1);
515  FreeTemp(rs_rX86_ARG2);
516  FreeTemp(rs_rX86_ARG3);
517  if (cu_->target64) {
518    FreeTemp(rs_rX86_ARG4);
519    FreeTemp(rs_rX86_ARG5);
520    FreeTemp(rs_rX86_FARG0);
521    FreeTemp(rs_rX86_FARG1);
522    FreeTemp(rs_rX86_FARG2);
523    FreeTemp(rs_rX86_FARG3);
524    FreeTemp(rs_rX86_FARG4);
525    FreeTemp(rs_rX86_FARG5);
526    FreeTemp(rs_rX86_FARG6);
527    FreeTemp(rs_rX86_FARG7);
528  }
529}
530
531bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
532    switch (opcode) {
533      case kX86LockCmpxchgMR:
534      case kX86LockCmpxchgAR:
535      case kX86LockCmpxchg64M:
536      case kX86LockCmpxchg64A:
537      case kX86XchgMR:
538      case kX86Mfence:
539        // Atomic memory instructions provide full barrier.
540        return true;
541      default:
542        break;
543    }
544
545    // Conservative if cannot prove it provides full barrier.
546    return false;
547}
548
549bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
550#if ANDROID_SMP != 0
551  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
552  LIR* mem_barrier = last_lir_insn_;
553
554  bool ret = false;
555  /*
556   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
557   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
558   * to ensure is that there is a scheduling barrier in place.
559   */
560  if (barrier_kind == kStoreLoad) {
561    // If no LIR exists already that can be used a barrier, then generate an mfence.
562    if (mem_barrier == nullptr) {
563      mem_barrier = NewLIR0(kX86Mfence);
564      ret = true;
565    }
566
567    // If last instruction does not provide full barrier, then insert an mfence.
568    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
569      mem_barrier = NewLIR0(kX86Mfence);
570      ret = true;
571    }
572  }
573
574  // Now ensure that a scheduling barrier is in place.
575  if (mem_barrier == nullptr) {
576    GenBarrier();
577  } else {
578    // Mark as a scheduling barrier.
579    DCHECK(!mem_barrier->flags.use_def_invalid);
580    mem_barrier->u.m.def_mask = &kEncodeAll;
581  }
582  return ret;
583#else
584  return false;
585#endif
586}
587
588void X86Mir2Lir::CompilerInitializeRegAlloc() {
589  if (cu_->target64) {
590    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
591                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
592                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
593  } else {
594    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
595                                          dp_regs_32, reserved_regs_32, empty_pool,
596                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
597  }
598
599  // Target-specific adjustments.
600
601  // Add in XMM registers.
602  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
603  for (RegStorage reg : *xp_temps) {
604    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
605    reginfo_map_.Put(reg.GetReg(), info);
606    info->SetIsTemp(true);
607  }
608
609  // Alias single precision xmm to double xmms.
610  // TODO: as needed, add larger vector sizes - alias all to the largest.
611  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
612  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
613    int sp_reg_num = info->GetReg().GetRegNum();
614    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
615    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
616    // 128-bit xmm vector register's master storage should refer to itself.
617    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
618
619    // Redirect 32-bit vector's master storage to 128-bit vector.
620    info->SetMaster(xp_reg_info);
621
622    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
623    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
624    // Redirect 64-bit vector's master storage to 128-bit vector.
625    dp_reg_info->SetMaster(xp_reg_info);
626    // Singles should show a single 32-bit mask bit, at first referring to the low half.
627    DCHECK_EQ(info->StorageMask(), 0x1U);
628  }
629
630  if (cu_->target64) {
631    // Alias 32bit W registers to corresponding 64bit X registers.
632    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
633    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
634      int x_reg_num = info->GetReg().GetRegNum();
635      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
636      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
637      // 64bit X register's master storage should refer to itself.
638      DCHECK_EQ(x_reg_info, x_reg_info->Master());
639      // Redirect 32bit W master storage to 64bit X.
640      info->SetMaster(x_reg_info);
641      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
642      DCHECK_EQ(info->StorageMask(), 0x1U);
643    }
644  }
645
646  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
647  // TODO: adjust for x86/hard float calling convention.
648  reg_pool_->next_core_reg_ = 2;
649  reg_pool_->next_sp_reg_ = 2;
650  reg_pool_->next_dp_reg_ = 1;
651}
652
653int X86Mir2Lir::VectorRegisterSize() {
654  return 128;
655}
656
657int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
658  return fp_used ? 5 : 7;
659}
660
661void X86Mir2Lir::SpillCoreRegs() {
662  if (num_core_spills_ == 0) {
663    return;
664  }
665  // Spill mask not including fake return address register
666  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
667  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
668  for (int reg = 0; mask; mask >>= 1, reg++) {
669    if (mask & 0x1) {
670      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
671      offset += GetInstructionSetPointerSize(cu_->instruction_set);
672    }
673  }
674}
675
676void X86Mir2Lir::UnSpillCoreRegs() {
677  if (num_core_spills_ == 0) {
678    return;
679  }
680  // Spill mask not including fake return address register
681  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
682  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
683  for (int reg = 0; mask; mask >>= 1, reg++) {
684    if (mask & 0x1) {
685      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
686      offset += GetInstructionSetPointerSize(cu_->instruction_set);
687    }
688  }
689}
690
691bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
692  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
693}
694
695bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
696  return true;
697}
698
699RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
700  // X86_64 can handle any size.
701  if (cu_->target64) {
702    if (size == kReference) {
703      return kRefReg;
704    }
705    return kCoreReg;
706  }
707
708  if (UNLIKELY(is_volatile)) {
709    // On x86, atomic 64-bit load/store requires an fp register.
710    // Smaller aligned load/store is atomic for both core and fp registers.
711    if (size == k64 || size == kDouble) {
712      return kFPReg;
713    }
714  }
715  return RegClassBySize(size);
716}
717
718X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
719    : Mir2Lir(cu, mir_graph, arena),
720      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
721      method_address_insns_(arena, 100, kGrowableArrayMisc),
722      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
723      call_method_insns_(arena, 100, kGrowableArrayMisc),
724      stack_decrement_(nullptr), stack_increment_(nullptr),
725      const_vectors_(nullptr) {
726  store_method_addr_used_ = false;
727  if (kIsDebugBuild) {
728    for (int i = 0; i < kX86Last; i++) {
729      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
730        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
731                   << " is wrong: expecting " << i << ", seeing "
732                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
733      }
734    }
735  }
736  if (cu_->target64) {
737    rs_rX86_SP = rs_rX86_SP_64;
738
739    rs_rX86_ARG0 = rs_rDI;
740    rs_rX86_ARG1 = rs_rSI;
741    rs_rX86_ARG2 = rs_rDX;
742    rs_rX86_ARG3 = rs_rCX;
743    rs_rX86_ARG4 = rs_r8;
744    rs_rX86_ARG5 = rs_r9;
745    rs_rX86_FARG0 = rs_fr0;
746    rs_rX86_FARG1 = rs_fr1;
747    rs_rX86_FARG2 = rs_fr2;
748    rs_rX86_FARG3 = rs_fr3;
749    rs_rX86_FARG4 = rs_fr4;
750    rs_rX86_FARG5 = rs_fr5;
751    rs_rX86_FARG6 = rs_fr6;
752    rs_rX86_FARG7 = rs_fr7;
753    rX86_ARG0 = rDI;
754    rX86_ARG1 = rSI;
755    rX86_ARG2 = rDX;
756    rX86_ARG3 = rCX;
757    rX86_ARG4 = r8;
758    rX86_ARG5 = r9;
759    rX86_FARG0 = fr0;
760    rX86_FARG1 = fr1;
761    rX86_FARG2 = fr2;
762    rX86_FARG3 = fr3;
763    rX86_FARG4 = fr4;
764    rX86_FARG5 = fr5;
765    rX86_FARG6 = fr6;
766    rX86_FARG7 = fr7;
767    rs_rX86_INVOKE_TGT = rs_rDI;
768  } else {
769    rs_rX86_SP = rs_rX86_SP_32;
770
771    rs_rX86_ARG0 = rs_rAX;
772    rs_rX86_ARG1 = rs_rCX;
773    rs_rX86_ARG2 = rs_rDX;
774    rs_rX86_ARG3 = rs_rBX;
775    rs_rX86_ARG4 = RegStorage::InvalidReg();
776    rs_rX86_ARG5 = RegStorage::InvalidReg();
777    rs_rX86_FARG0 = rs_rAX;
778    rs_rX86_FARG1 = rs_rCX;
779    rs_rX86_FARG2 = rs_rDX;
780    rs_rX86_FARG3 = rs_rBX;
781    rs_rX86_FARG4 = RegStorage::InvalidReg();
782    rs_rX86_FARG5 = RegStorage::InvalidReg();
783    rs_rX86_FARG6 = RegStorage::InvalidReg();
784    rs_rX86_FARG7 = RegStorage::InvalidReg();
785    rX86_ARG0 = rAX;
786    rX86_ARG1 = rCX;
787    rX86_ARG2 = rDX;
788    rX86_ARG3 = rBX;
789    rX86_FARG0 = rAX;
790    rX86_FARG1 = rCX;
791    rX86_FARG2 = rDX;
792    rX86_FARG3 = rBX;
793    rs_rX86_INVOKE_TGT = rs_rAX;
794    // TODO(64): Initialize with invalid reg
795//    rX86_ARG4 = RegStorage::InvalidReg();
796//    rX86_ARG5 = RegStorage::InvalidReg();
797  }
798  rs_rX86_RET0 = rs_rAX;
799  rs_rX86_RET1 = rs_rDX;
800  rs_rX86_COUNT = rs_rCX;
801  rX86_RET0 = rAX;
802  rX86_RET1 = rDX;
803  rX86_INVOKE_TGT = rAX;
804  rX86_COUNT = rCX;
805
806  // Initialize the number of reserved vector registers
807  num_reserved_vector_regs_ = -1;
808}
809
810Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
811                          ArenaAllocator* const arena) {
812  return new X86Mir2Lir(cu, mir_graph, arena);
813}
814
815// Not used in x86
816RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
817  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
818  return RegStorage::InvalidReg();
819}
820
821// Not used in x86
822RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
823  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
824  return RegStorage::InvalidReg();
825}
826
827LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
828  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
829  return nullptr;
830}
831
832uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
833  DCHECK(!IsPseudoLirOp(opcode));
834  return X86Mir2Lir::EncodingMap[opcode].flags;
835}
836
837const char* X86Mir2Lir::GetTargetInstName(int opcode) {
838  DCHECK(!IsPseudoLirOp(opcode));
839  return X86Mir2Lir::EncodingMap[opcode].name;
840}
841
842const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
843  DCHECK(!IsPseudoLirOp(opcode));
844  return X86Mir2Lir::EncodingMap[opcode].fmt;
845}
846
847void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
848  // Can we do this directly to memory?
849  rl_dest = UpdateLocWide(rl_dest);
850  if ((rl_dest.location == kLocDalvikFrame) ||
851      (rl_dest.location == kLocCompilerTemp)) {
852    int32_t val_lo = Low32Bits(value);
853    int32_t val_hi = High32Bits(value);
854    int r_base = rs_rX86_SP.GetReg();
855    int displacement = SRegOffset(rl_dest.s_reg_low);
856
857    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
858    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
859    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
860                              false /* is_load */, true /* is64bit */);
861    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
862    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
863                              false /* is_load */, true /* is64bit */);
864    return;
865  }
866
867  // Just use the standard code to do the generation.
868  Mir2Lir::GenConstWide(rl_dest, value);
869}
870
871// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
872void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
873  LOG(INFO)  << "location: " << loc.location << ','
874             << (loc.wide ? " w" : "  ")
875             << (loc.defined ? " D" : "  ")
876             << (loc.is_const ? " c" : "  ")
877             << (loc.fp ? " F" : "  ")
878             << (loc.core ? " C" : "  ")
879             << (loc.ref ? " r" : "  ")
880             << (loc.high_word ? " h" : "  ")
881             << (loc.home ? " H" : "  ")
882             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
883             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
884             << ", s_reg: " << loc.s_reg_low
885             << ", orig: " << loc.orig_sreg;
886}
887
888void X86Mir2Lir::Materialize() {
889  // A good place to put the analysis before starting.
890  AnalyzeMIR();
891
892  // Now continue with regular code generation.
893  Mir2Lir::Materialize();
894}
895
896void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
897                                   SpecialTargetRegister symbolic_reg) {
898  /*
899   * For x86, just generate a 32 bit move immediate instruction, that will be filled
900   * in at 'link time'.  For now, put a unique value based on target to ensure that
901   * code deduplication works.
902   */
903  int target_method_idx = target_method.dex_method_index;
904  const DexFile* target_dex_file = target_method.dex_file;
905  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
906  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
907
908  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
909  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
910                     static_cast<int>(target_method_id_ptr), target_method_idx,
911                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
912  AppendLIR(move);
913  method_address_insns_.Insert(move);
914}
915
916void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
917  /*
918   * For x86, just generate a 32 bit move immediate instruction, that will be filled
919   * in at 'link time'.  For now, put a unique value based on target to ensure that
920   * code deduplication works.
921   */
922  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
923  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
924
925  // Generate the move instruction with the unique pointer and save index and type.
926  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
927                     static_cast<int>(ptr), type_idx);
928  AppendLIR(move);
929  class_type_address_insns_.Insert(move);
930}
931
932LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
933  /*
934   * For x86, just generate a 32 bit call relative instruction, that will be filled
935   * in at 'link time'.  For now, put a unique value based on target to ensure that
936   * code deduplication works.
937   */
938  int target_method_idx = target_method.dex_method_index;
939  const DexFile* target_dex_file = target_method.dex_file;
940  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
941  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
942
943  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
944  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
945                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
946  AppendLIR(call);
947  call_method_insns_.Insert(call);
948  return call;
949}
950
951/*
952 * @brief Enter a 32 bit quantity into a buffer
953 * @param buf buffer.
954 * @param data Data value.
955 */
956
957static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
958  buf.push_back(data & 0xff);
959  buf.push_back((data >> 8) & 0xff);
960  buf.push_back((data >> 16) & 0xff);
961  buf.push_back((data >> 24) & 0xff);
962}
963
964void X86Mir2Lir::InstallLiteralPools() {
965  // These are handled differently for x86.
966  DCHECK(code_literal_list_ == nullptr);
967  DCHECK(method_literal_list_ == nullptr);
968  DCHECK(class_literal_list_ == nullptr);
969
970  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
971  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
972  // will fail at runtime)?
973  if (const_vectors_ != nullptr) {
974    int align_size = (16-4) - (code_buffer_.size() & 0xF);
975    if (align_size < 0) {
976      align_size += 16;
977    }
978
979    while (align_size > 0) {
980      code_buffer_.push_back(0);
981      align_size--;
982    }
983    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
984      PushWord(code_buffer_, p->operands[0]);
985      PushWord(code_buffer_, p->operands[1]);
986      PushWord(code_buffer_, p->operands[2]);
987      PushWord(code_buffer_, p->operands[3]);
988    }
989  }
990
991  // Handle the fixups for methods.
992  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
993      LIR* p = method_address_insns_.Get(i);
994      DCHECK_EQ(p->opcode, kX86Mov32RI);
995      uint32_t target_method_idx = p->operands[2];
996      const DexFile* target_dex_file =
997          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
998
999      // The offset to patch is the last 4 bytes of the instruction.
1000      int patch_offset = p->offset + p->flags.size - 4;
1001      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1002                                           cu_->method_idx, cu_->invoke_type,
1003                                           target_method_idx, target_dex_file,
1004                                           static_cast<InvokeType>(p->operands[4]),
1005                                           patch_offset);
1006  }
1007
1008  // Handle the fixups for class types.
1009  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1010      LIR* p = class_type_address_insns_.Get(i);
1011      DCHECK_EQ(p->opcode, kX86Mov32RI);
1012      uint32_t target_method_idx = p->operands[2];
1013
1014      // The offset to patch is the last 4 bytes of the instruction.
1015      int patch_offset = p->offset + p->flags.size - 4;
1016      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1017                                          cu_->method_idx, target_method_idx, patch_offset);
1018  }
1019
1020  // And now the PC-relative calls to methods.
1021  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1022      LIR* p = call_method_insns_.Get(i);
1023      DCHECK_EQ(p->opcode, kX86CallI);
1024      uint32_t target_method_idx = p->operands[1];
1025      const DexFile* target_dex_file =
1026          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1027
1028      // The offset to patch is the last 4 bytes of the instruction.
1029      int patch_offset = p->offset + p->flags.size - 4;
1030      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1031                                                 cu_->method_idx, cu_->invoke_type,
1032                                                 target_method_idx, target_dex_file,
1033                                                 static_cast<InvokeType>(p->operands[3]),
1034                                                 patch_offset, -4 /* offset */);
1035  }
1036
1037  // And do the normal processing.
1038  Mir2Lir::InstallLiteralPools();
1039}
1040
1041/*
1042 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1043 * otherwise bails to standard library code.
1044 */
1045bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1046  ClobberCallerSave();
1047  LockCallTemps();  // Using fixed registers
1048
1049  // EAX: 16 bit character being searched.
1050  // ECX: count: number of words to be searched.
1051  // EDI: String being searched.
1052  // EDX: temporary during execution.
1053  // EBX or R11: temporary during execution (depending on mode).
1054
1055  RegLocation rl_obj = info->args[0];
1056  RegLocation rl_char = info->args[1];
1057  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1058  RegStorage tmpReg = cu_->target64 ? rs_r11 : rs_rBX;
1059
1060  uint32_t char_value =
1061    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1062
1063  if (char_value > 0xFFFF) {
1064    // We have to punt to the real String.indexOf.
1065    return false;
1066  }
1067
1068  // Okay, we are commited to inlining this.
1069  RegLocation rl_return = GetReturn(kCoreReg);
1070  RegLocation rl_dest = InlineTarget(info);
1071
1072  // Is the string non-NULL?
1073  LoadValueDirectFixed(rl_obj, rs_rDX);
1074  GenNullCheck(rs_rDX, info->opt_flags);
1075  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1076
1077  // Does the character fit in 16 bits?
1078  LIR* slowpath_branch = nullptr;
1079  if (rl_char.is_const) {
1080    // We need the value in EAX.
1081    LoadConstantNoClobber(rs_rAX, char_value);
1082  } else {
1083    // Character is not a constant; compare at runtime.
1084    LoadValueDirectFixed(rl_char, rs_rAX);
1085    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1086  }
1087
1088  // From here down, we know that we are looking for a char that fits in 16 bits.
1089  // Location of reference to data array within the String object.
1090  int value_offset = mirror::String::ValueOffset().Int32Value();
1091  // Location of count within the String object.
1092  int count_offset = mirror::String::CountOffset().Int32Value();
1093  // Starting offset within data array.
1094  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1095  // Start of char data with array_.
1096  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1097
1098  // Character is in EAX.
1099  // Object pointer is in EDX.
1100
1101  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1102  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1103  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1104
1105  // Compute the number of words to search in to rCX.
1106  Load32Disp(rs_rDX, count_offset, rs_rCX);
1107  LIR *length_compare = nullptr;
1108  int start_value = 0;
1109  bool is_index_on_stack = false;
1110  if (zero_based) {
1111    // We have to handle an empty string.  Use special instruction JECXZ.
1112    length_compare = NewLIR0(kX86Jecxz8);
1113  } else {
1114    rl_start = info->args[2];
1115    // We have to offset by the start index.
1116    if (rl_start.is_const) {
1117      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1118      start_value = std::max(start_value, 0);
1119
1120      // Is the start > count?
1121      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1122
1123      if (start_value != 0) {
1124        OpRegImm(kOpSub, rs_rCX, start_value);
1125      }
1126    } else {
1127      // Runtime start index.
1128      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1129      if (rl_start.location == kLocPhysReg) {
1130        // Handle "start index < 0" case.
1131        OpRegReg(kOpXor, tmpReg, tmpReg);
1132        OpRegReg(kOpCmp, rl_start.reg, tmpReg);
1133        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, tmpReg);
1134
1135        // The length of the string should be greater than the start index.
1136        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1137        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1138        if (rl_start.reg == rs_rDI) {
1139          // The special case. We will use EDI further, so lets put start index to stack.
1140          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1141          is_index_on_stack = true;
1142        }
1143      } else {
1144        // Load the start index from stack, remembering that we pushed EDI.
1145        int displacement = SRegOffset(rl_start.s_reg_low) + (cu_->target64 ? 2 : 1) * sizeof(uint32_t);
1146        {
1147          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1148          Load32Disp(rs_rX86_SP, displacement, tmpReg);
1149        }
1150        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1151        OpRegReg(kOpCmp, tmpReg, rs_rDI);
1152        OpCondRegReg(kOpCmov, kCondLt, tmpReg, rs_rDI);
1153
1154        length_compare = OpCmpBranch(kCondLe, rs_rCX, tmpReg, nullptr);
1155        OpRegReg(kOpSub, rs_rCX, tmpReg);
1156        // Put the start index to stack.
1157        NewLIR1(kX86Push32R, tmpReg.GetReg());
1158        is_index_on_stack = true;
1159      }
1160    }
1161  }
1162  DCHECK(length_compare != nullptr);
1163
1164  // ECX now contains the count in words to be searched.
1165
1166  // Load the address of the string into R11 or EBX (depending on mode).
1167  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1168  Load32Disp(rs_rDX, value_offset, rs_rDI);
1169  Load32Disp(rs_rDX, offset_offset, tmpReg);
1170  OpLea(tmpReg, rs_rDI, tmpReg, 1, data_offset);
1171
1172  // Now compute into EDI where the search will start.
1173  if (zero_based || rl_start.is_const) {
1174    if (start_value == 0) {
1175      OpRegCopy(rs_rDI, tmpReg);
1176    } else {
1177      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), tmpReg.GetReg(), 2 * start_value);
1178    }
1179  } else {
1180    if (is_index_on_stack == true) {
1181      // Load the start index from stack.
1182      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1183      OpLea(rs_rDI, tmpReg, rs_rDX, 1, 0);
1184    } else {
1185      OpLea(rs_rDI, tmpReg, rl_start.reg, 1, 0);
1186    }
1187  }
1188
1189  // EDI now contains the start of the string to be searched.
1190  // We are all prepared to do the search for the character.
1191  NewLIR0(kX86RepneScasw);
1192
1193  // Did we find a match?
1194  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1195
1196  // yes, we matched.  Compute the index of the result.
1197  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1198  OpRegReg(kOpSub, rs_rDI, tmpReg);
1199  OpRegImm(kOpAsr, rs_rDI, 1);
1200  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1201  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1202
1203  // Failed to match; return -1.
1204  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1205  length_compare->target = not_found;
1206  failed_branch->target = not_found;
1207  LoadConstantNoClobber(rl_return.reg, -1);
1208
1209  // And join up at the end.
1210  all_done->target = NewLIR0(kPseudoTargetLabel);
1211  // Restore EDI from the stack.
1212  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1213
1214  // Out of line code returns here.
1215  if (slowpath_branch != nullptr) {
1216    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1217    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1218  }
1219
1220  StoreValue(rl_dest, rl_return);
1221  return true;
1222}
1223
1224/*
1225 * @brief Enter an 'advance LOC' into the FDE buffer
1226 * @param buf FDE buffer.
1227 * @param increment Amount by which to increase the current location.
1228 */
1229static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1230  if (increment < 64) {
1231    // Encoding in opcode.
1232    buf.push_back(0x1 << 6 | increment);
1233  } else if (increment < 256) {
1234    // Single byte delta.
1235    buf.push_back(0x02);
1236    buf.push_back(increment);
1237  } else if (increment < 256 * 256) {
1238    // Two byte delta.
1239    buf.push_back(0x03);
1240    buf.push_back(increment & 0xff);
1241    buf.push_back((increment >> 8) & 0xff);
1242  } else {
1243    // Four byte delta.
1244    buf.push_back(0x04);
1245    PushWord(buf, increment);
1246  }
1247}
1248
1249
1250std::vector<uint8_t>* X86CFIInitialization() {
1251  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1252}
1253
1254std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1255  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1256
1257  // Length of the CIE (except for this field).
1258  PushWord(*cfi_info, 16);
1259
1260  // CIE id.
1261  PushWord(*cfi_info, 0xFFFFFFFFU);
1262
1263  // Version: 3.
1264  cfi_info->push_back(0x03);
1265
1266  // Augmentation: empty string.
1267  cfi_info->push_back(0x0);
1268
1269  // Code alignment: 1.
1270  cfi_info->push_back(0x01);
1271
1272  // Data alignment: -4.
1273  cfi_info->push_back(0x7C);
1274
1275  // Return address register (R8).
1276  cfi_info->push_back(0x08);
1277
1278  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1279  cfi_info->push_back(0x0C);
1280  cfi_info->push_back(0x04);
1281  cfi_info->push_back(0x04);
1282
1283  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1284  cfi_info->push_back(0x2 << 6 | 0x08);
1285  cfi_info->push_back(0x01);
1286
1287  // And 2 Noops to align to 4 byte boundary.
1288  cfi_info->push_back(0x0);
1289  cfi_info->push_back(0x0);
1290
1291  DCHECK_EQ(cfi_info->size() & 3, 0U);
1292  return cfi_info;
1293}
1294
1295static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1296  uint8_t buffer[12];
1297  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1298  for (uint8_t *p = buffer; p < ptr; p++) {
1299    buf.push_back(*p);
1300  }
1301}
1302
1303std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1304  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1305
1306  // Generate the FDE for the method.
1307  DCHECK_NE(data_offset_, 0U);
1308
1309  // Length (will be filled in later in this routine).
1310  PushWord(*cfi_info, 0);
1311
1312  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1313  // one CIE for the whole debug_frame section.
1314  PushWord(*cfi_info, 0);
1315
1316  // 'initial_location' (filled in by linker).
1317  PushWord(*cfi_info, 0);
1318
1319  // 'address_range' (number of bytes in the method).
1320  PushWord(*cfi_info, data_offset_);
1321
1322  // The instructions in the FDE.
1323  if (stack_decrement_ != nullptr) {
1324    // Advance LOC to just past the stack decrement.
1325    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1326    AdvanceLoc(*cfi_info, pc);
1327
1328    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1329    cfi_info->push_back(0x0e);
1330    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1331
1332    // We continue with that stack until the epilogue.
1333    if (stack_increment_ != nullptr) {
1334      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1335      AdvanceLoc(*cfi_info, new_pc - pc);
1336
1337      // We probably have code snippets after the epilogue, so save the
1338      // current state: DW_CFA_remember_state.
1339      cfi_info->push_back(0x0a);
1340
1341      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1342      // PC on the stack now.
1343      cfi_info->push_back(0x0e);
1344      EncodeUnsignedLeb128(*cfi_info, 4);
1345
1346      // Everything after that is the same as before the epilogue.
1347      // Stack bump was followed by RET instruction.
1348      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1349      if (post_ret_insn != nullptr) {
1350        pc = new_pc;
1351        new_pc = post_ret_insn->offset;
1352        AdvanceLoc(*cfi_info, new_pc - pc);
1353        // Restore the state: DW_CFA_restore_state.
1354        cfi_info->push_back(0x0b);
1355      }
1356    }
1357  }
1358
1359  // Padding to a multiple of 4
1360  while ((cfi_info->size() & 3) != 0) {
1361    // DW_CFA_nop is encoded as 0.
1362    cfi_info->push_back(0);
1363  }
1364
1365  // Set the length of the FDE inside the generated bytes.
1366  uint32_t length = cfi_info->size() - 4;
1367  (*cfi_info)[0] = length;
1368  (*cfi_info)[1] = length >> 8;
1369  (*cfi_info)[2] = length >> 16;
1370  (*cfi_info)[3] = length >> 24;
1371  return cfi_info;
1372}
1373
1374void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1375  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1376    case kMirOpReserveVectorRegisters:
1377      ReserveVectorRegisters(mir);
1378      break;
1379    case kMirOpReturnVectorRegisters:
1380      ReturnVectorRegisters();
1381      break;
1382    case kMirOpConstVector:
1383      GenConst128(bb, mir);
1384      break;
1385    case kMirOpMoveVector:
1386      GenMoveVector(bb, mir);
1387      break;
1388    case kMirOpPackedMultiply:
1389      GenMultiplyVector(bb, mir);
1390      break;
1391    case kMirOpPackedAddition:
1392      GenAddVector(bb, mir);
1393      break;
1394    case kMirOpPackedSubtract:
1395      GenSubtractVector(bb, mir);
1396      break;
1397    case kMirOpPackedShiftLeft:
1398      GenShiftLeftVector(bb, mir);
1399      break;
1400    case kMirOpPackedSignedShiftRight:
1401      GenSignedShiftRightVector(bb, mir);
1402      break;
1403    case kMirOpPackedUnsignedShiftRight:
1404      GenUnsignedShiftRightVector(bb, mir);
1405      break;
1406    case kMirOpPackedAnd:
1407      GenAndVector(bb, mir);
1408      break;
1409    case kMirOpPackedOr:
1410      GenOrVector(bb, mir);
1411      break;
1412    case kMirOpPackedXor:
1413      GenXorVector(bb, mir);
1414      break;
1415    case kMirOpPackedAddReduce:
1416      GenAddReduceVector(bb, mir);
1417      break;
1418    case kMirOpPackedReduce:
1419      GenReduceVector(bb, mir);
1420      break;
1421    case kMirOpPackedSet:
1422      GenSetVector(bb, mir);
1423      break;
1424    default:
1425      break;
1426  }
1427}
1428
1429void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1430  // We should not try to reserve twice without returning the registers
1431  DCHECK_NE(num_reserved_vector_regs_, -1);
1432
1433  int num_vector_reg = mir->dalvikInsn.vA;
1434  for (int i = 0; i < num_vector_reg; i++) {
1435    RegStorage xp_reg = RegStorage::Solo128(i);
1436    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1437    Clobber(xp_reg);
1438
1439    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1440                       info != nullptr;
1441                       info = info->GetAliasChain()) {
1442      if (info->GetReg().IsSingle()) {
1443        reg_pool_->sp_regs_.Delete(info);
1444      } else {
1445        reg_pool_->dp_regs_.Delete(info);
1446      }
1447    }
1448  }
1449
1450  num_reserved_vector_regs_ = num_vector_reg;
1451}
1452
1453void X86Mir2Lir::ReturnVectorRegisters() {
1454  // Return all the reserved registers
1455  for (int i = 0; i < num_reserved_vector_regs_; i++) {
1456    RegStorage xp_reg = RegStorage::Solo128(i);
1457    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1458
1459    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1460                       info != nullptr;
1461                       info = info->GetAliasChain()) {
1462      if (info->GetReg().IsSingle()) {
1463        reg_pool_->sp_regs_.Insert(info);
1464      } else {
1465        reg_pool_->dp_regs_.Insert(info);
1466      }
1467    }
1468  }
1469
1470  // We don't have anymore reserved vector registers
1471  num_reserved_vector_regs_ = -1;
1472}
1473
1474void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1475  store_method_addr_used_ = true;
1476  int type_size = mir->dalvikInsn.vB;
1477  // We support 128 bit vectors.
1478  DCHECK_EQ(type_size & 0xFFFF, 128);
1479  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1480  uint32_t *args = mir->dalvikInsn.arg;
1481  int reg = rs_dest.GetReg();
1482  // Check for all 0 case.
1483  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1484    NewLIR2(kX86XorpsRR, reg, reg);
1485    return;
1486  }
1487
1488  // Append the mov const vector to reg opcode.
1489  AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1490}
1491
1492void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1493  // Okay, load it from the constant vector area.
1494  LIR *data_target = ScanVectorLiteral(mir);
1495  if (data_target == nullptr) {
1496    data_target = AddVectorLiteral(mir);
1497  }
1498
1499  // Address the start of the method.
1500  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1501  if (rl_method.wide) {
1502    rl_method = LoadValueWide(rl_method, kCoreReg);
1503  } else {
1504    rl_method = LoadValue(rl_method, kCoreReg);
1505  }
1506
1507  // Load the proper value from the literal area.
1508  // We don't know the proper offset for the value, so pick one that will force
1509  // 4 byte offset.  We will fix this up in the assembler later to have the right
1510  // value.
1511  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1512  LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1513  load->flags.fixup = kFixupLoad;
1514  load->target = data_target;
1515}
1516
1517void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1518  // We only support 128 bit registers.
1519  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1520  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1521  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1522  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1523}
1524
1525void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1526  const int BYTE_SIZE = 8;
1527  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1528  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1529  RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1530
1531  /*
1532   * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1533   * and multiplying 8 at a time before recombining back into one XMM register.
1534   *
1535   *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1536   *       xmm3 is tmp             (operate on high bits of 16bit lanes)
1537   *
1538   *    xmm3 = xmm1
1539   *    xmm1 = xmm1 .* xmm2
1540   *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
1541   *    xmm3 = xmm3 .>> 8
1542   *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1543   *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
1544   *    xmm1 = xmm1 | xmm2                                // combine results
1545   */
1546
1547  // Copy xmm1.
1548  NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1549
1550  // Multiply low bits.
1551  NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1552
1553  // xmm1 now has low bits.
1554  AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1555
1556  // Prepare high bits for multiplication.
1557  NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1558  AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1559
1560  // Multiply high bits and xmm2 now has high bits.
1561  NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1562
1563  // Combine back into dest XMM register.
1564  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1565}
1566
1567void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1568  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1569  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1570  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1571  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1572  int opcode = 0;
1573  switch (opsize) {
1574    case k32:
1575      opcode = kX86PmulldRR;
1576      break;
1577    case kSignedHalf:
1578      opcode = kX86PmullwRR;
1579      break;
1580    case kSingle:
1581      opcode = kX86MulpsRR;
1582      break;
1583    case kDouble:
1584      opcode = kX86MulpdRR;
1585      break;
1586    case kSignedByte:
1587      // HW doesn't support 16x16 byte multiplication so emulate it.
1588      GenMultiplyVectorSignedByte(bb, mir);
1589      return;
1590    default:
1591      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1592      break;
1593  }
1594  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1595}
1596
1597void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1598  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1599  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1600  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1601  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1602  int opcode = 0;
1603  switch (opsize) {
1604    case k32:
1605      opcode = kX86PadddRR;
1606      break;
1607    case kSignedHalf:
1608    case kUnsignedHalf:
1609      opcode = kX86PaddwRR;
1610      break;
1611    case kUnsignedByte:
1612    case kSignedByte:
1613      opcode = kX86PaddbRR;
1614      break;
1615    case kSingle:
1616      opcode = kX86AddpsRR;
1617      break;
1618    case kDouble:
1619      opcode = kX86AddpdRR;
1620      break;
1621    default:
1622      LOG(FATAL) << "Unsupported vector addition " << opsize;
1623      break;
1624  }
1625  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1626}
1627
1628void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1629  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1630  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1631  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1632  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1633  int opcode = 0;
1634  switch (opsize) {
1635    case k32:
1636      opcode = kX86PsubdRR;
1637      break;
1638    case kSignedHalf:
1639    case kUnsignedHalf:
1640      opcode = kX86PsubwRR;
1641      break;
1642    case kUnsignedByte:
1643    case kSignedByte:
1644      opcode = kX86PsubbRR;
1645      break;
1646    case kSingle:
1647      opcode = kX86SubpsRR;
1648      break;
1649    case kDouble:
1650      opcode = kX86SubpdRR;
1651      break;
1652    default:
1653      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1654      break;
1655  }
1656  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1657}
1658
1659void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1660  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1661  RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1662
1663  int opcode = 0;
1664  int imm = mir->dalvikInsn.vB;
1665
1666  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1667    case kMirOpPackedShiftLeft:
1668      opcode = kX86PsllwRI;
1669      break;
1670    case kMirOpPackedSignedShiftRight:
1671      opcode = kX86PsrawRI;
1672      break;
1673    case kMirOpPackedUnsignedShiftRight:
1674      opcode = kX86PsrlwRI;
1675      break;
1676    default:
1677      LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1678      break;
1679  }
1680
1681  /*
1682   * xmm1 will have low bits
1683   * xmm2 will have high bits
1684   *
1685   * xmm2 = xmm1
1686   * xmm1 = xmm1 .<< N
1687   * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1688   * xmm2 = xmm2 .<< N
1689   * xmm1 = xmm1 | xmm2
1690   */
1691
1692  // Copy xmm1.
1693  NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
1694
1695  // Shift lower values.
1696  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1697
1698  // Mask bottom bits.
1699  AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1700
1701  // Shift higher values.
1702  NewLIR2(opcode, rs_tmp.GetReg(), imm);
1703
1704  // Combine back into dest XMM register.
1705  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
1706}
1707
1708void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1709  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1710  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1711  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1712  int imm = mir->dalvikInsn.vB;
1713  int opcode = 0;
1714  switch (opsize) {
1715    case k32:
1716      opcode = kX86PslldRI;
1717      break;
1718    case k64:
1719      opcode = kX86PsllqRI;
1720      break;
1721    case kSignedHalf:
1722    case kUnsignedHalf:
1723      opcode = kX86PsllwRI;
1724      break;
1725    case kSignedByte:
1726    case kUnsignedByte:
1727      GenShiftByteVector(bb, mir);
1728      return;
1729    default:
1730      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1731      break;
1732  }
1733  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1734}
1735
1736void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1737  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1738  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1739  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1740  int imm = mir->dalvikInsn.vB;
1741  int opcode = 0;
1742  switch (opsize) {
1743    case k32:
1744      opcode = kX86PsradRI;
1745      break;
1746    case kSignedHalf:
1747    case kUnsignedHalf:
1748      opcode = kX86PsrawRI;
1749      break;
1750    case kSignedByte:
1751    case kUnsignedByte:
1752      GenShiftByteVector(bb, mir);
1753      return;
1754    default:
1755      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1756      break;
1757  }
1758  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1759}
1760
1761void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1762  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1763  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1764  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1765  int imm = mir->dalvikInsn.vB;
1766  int opcode = 0;
1767  switch (opsize) {
1768    case k32:
1769      opcode = kX86PsrldRI;
1770      break;
1771    case k64:
1772      opcode = kX86PsrlqRI;
1773      break;
1774    case kSignedHalf:
1775    case kUnsignedHalf:
1776      opcode = kX86PsrlwRI;
1777      break;
1778    case kSignedByte:
1779    case kUnsignedByte:
1780      GenShiftByteVector(bb, mir);
1781      return;
1782    default:
1783      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1784      break;
1785  }
1786  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1787}
1788
1789void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1790  // We only support 128 bit registers.
1791  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1792  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1793  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1794  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1795}
1796
1797void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1798  // We only support 128 bit registers.
1799  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1800  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1801  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1802  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1803}
1804
1805void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1806  // We only support 128 bit registers.
1807  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1808  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1809  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1810  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1811}
1812
1813void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
1814  MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
1815}
1816
1817void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
1818  // Create temporary MIR as container for 128-bit binary mask.
1819  MIR const_mir;
1820  MIR* const_mirp = &const_mir;
1821  const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
1822  const_mirp->dalvikInsn.arg[0] = m0;
1823  const_mirp->dalvikInsn.arg[1] = m1;
1824  const_mirp->dalvikInsn.arg[2] = m2;
1825  const_mirp->dalvikInsn.arg[3] = m3;
1826
1827  // Mask vector with const from literal pool.
1828  AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
1829}
1830
1831void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1832  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1833  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1834  RegLocation rl_dest = mir_graph_->GetDest(mir);
1835  RegStorage rs_tmp;
1836
1837  int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
1838  int vec_unit_size = 0;
1839  int opcode = 0;
1840  int extr_opcode = 0;
1841  RegLocation rl_result;
1842
1843  switch (opsize) {
1844    case k32:
1845      extr_opcode = kX86PextrdRRI;
1846      opcode = kX86PhadddRR;
1847      vec_unit_size = 4;
1848      break;
1849    case kSignedByte:
1850    case kUnsignedByte:
1851      extr_opcode = kX86PextrbRRI;
1852      opcode = kX86PhaddwRR;
1853      vec_unit_size = 2;
1854      break;
1855    case kSignedHalf:
1856    case kUnsignedHalf:
1857      extr_opcode = kX86PextrwRRI;
1858      opcode = kX86PhaddwRR;
1859      vec_unit_size = 2;
1860      break;
1861    case kSingle:
1862      rl_result = EvalLoc(rl_dest, kFPReg, true);
1863      vec_unit_size = 4;
1864      for (int i = 0; i < 3; i++) {
1865        NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
1866        NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
1867      }
1868      NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
1869      StoreValue(rl_dest, rl_result);
1870
1871      // For single-precision floats, we are done here
1872      return;
1873    default:
1874      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1875      break;
1876  }
1877
1878  int elems = vec_bytes / vec_unit_size;
1879
1880  // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
1881  // TODO is overflow handled correctly?
1882  if (opsize == kSignedByte || opsize == kUnsignedByte) {
1883    rs_tmp = Get128BitRegister(AllocTempWide());
1884
1885    // tmp = xmm1 .>> 8.
1886    NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
1887    NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
1888
1889    // Zero extend low bits in xmm1.
1890    AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1891  }
1892
1893  while (elems > 1) {
1894    if (opsize == kSignedByte || opsize == kUnsignedByte) {
1895      NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
1896    }
1897    NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
1898    elems >>= 1;
1899  }
1900
1901  // Combine the results if we separated them.
1902  if (opsize == kSignedByte || opsize == kUnsignedByte) {
1903    NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
1904  }
1905
1906  // We need to extract to a GPR.
1907  RegStorage temp = AllocTemp();
1908  NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
1909
1910  // Can we do this directly into memory?
1911  rl_result = UpdateLocTyped(rl_dest, kCoreReg);
1912  if (rl_result.location == kLocPhysReg) {
1913    // Ensure res is in a core reg
1914    rl_result = EvalLoc(rl_dest, kCoreReg, true);
1915    OpRegReg(kOpAdd, rl_result.reg, temp);
1916    StoreFinalValue(rl_dest, rl_result);
1917  } else {
1918    OpMemReg(kOpAdd, rl_result, temp.GetReg());
1919  }
1920
1921  FreeTemp(temp);
1922}
1923
1924void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1925  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1926  RegLocation rl_dest = mir_graph_->GetDest(mir);
1927  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1928  int extract_index = mir->dalvikInsn.arg[0];
1929  int extr_opcode = 0;
1930  RegLocation rl_result;
1931  bool is_wide = false;
1932
1933  switch (opsize) {
1934    case k32:
1935      rl_result = UpdateLocTyped(rl_dest, kCoreReg);
1936      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
1937      break;
1938    case kSignedHalf:
1939    case kUnsignedHalf:
1940      rl_result= UpdateLocTyped(rl_dest, kCoreReg);
1941      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
1942      break;
1943    default:
1944      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1945      return;
1946      break;
1947  }
1948
1949  if (rl_result.location == kLocPhysReg) {
1950    NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
1951    if (is_wide == true) {
1952      StoreFinalValue(rl_dest, rl_result);
1953    } else {
1954      StoreFinalValueWide(rl_dest, rl_result);
1955    }
1956  } else {
1957    int displacement = SRegOffset(rl_result.s_reg_low);
1958    LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
1959    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
1960    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
1961  }
1962}
1963
1964void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1965  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1966  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1967  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1968  int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
1969  RegisterClass reg_type = kCoreReg;
1970
1971  switch (opsize) {
1972    case k32:
1973      op_low = kX86PshufdRRI;
1974      break;
1975    case kSingle:
1976      op_low = kX86PshufdRRI;
1977      op_mov = kX86Mova128RR;
1978      reg_type = kFPReg;
1979      break;
1980    case k64:
1981      op_low = kX86PshufdRRI;
1982      imm = 0x44;
1983      break;
1984    case kDouble:
1985      op_low = kX86PshufdRRI;
1986      op_mov = kX86Mova128RR;
1987      reg_type = kFPReg;
1988      imm = 0x44;
1989      break;
1990    case kSignedByte:
1991    case kUnsignedByte:
1992      // Shuffle 8 bit value into 16 bit word.
1993      // We set val = val + (val << 8) below and use 16 bit shuffle.
1994    case kSignedHalf:
1995    case kUnsignedHalf:
1996      // Handles low quadword.
1997      op_low = kX86PshuflwRRI;
1998      // Handles upper quadword.
1999      op_high = kX86PshufdRRI;
2000      break;
2001    default:
2002      LOG(FATAL) << "Unsupported vector set " << opsize;
2003      break;
2004  }
2005
2006  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2007
2008  // Load the value from the VR into the reg.
2009  if (rl_src.wide == 0) {
2010    rl_src = LoadValue(rl_src, reg_type);
2011  } else {
2012    rl_src = LoadValueWide(rl_src, reg_type);
2013  }
2014
2015  // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2016  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2017    RegStorage temp = AllocTemp();
2018    // val = val + (val << 8).
2019    NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2020    NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2021    NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2022    FreeTemp(temp);
2023  }
2024
2025  // Load the value into the XMM register.
2026  NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2027
2028  // Now shuffle the value across the destination.
2029  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2030
2031  // And then repeat as needed.
2032  if (op_high != 0) {
2033    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2034  }
2035}
2036
2037LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2038  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2039  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2040    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2041        args[2] == p->operands[2] && args[3] == p->operands[3]) {
2042      return p;
2043    }
2044  }
2045  return nullptr;
2046}
2047
2048LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2049  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2050  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2051  new_value->operands[0] = args[0];
2052  new_value->operands[1] = args[1];
2053  new_value->operands[2] = args[2];
2054  new_value->operands[3] = args[3];
2055  new_value->next = const_vectors_;
2056  if (const_vectors_ == nullptr) {
2057    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
2058  }
2059  estimated_native_code_size_ += 16;  // Space for one vector.
2060  const_vectors_ = new_value;
2061  return new_value;
2062}
2063
2064// ------------ ABI support: mapping of args to physical registers -------------
2065RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
2066  const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2067  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
2068  const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2069                                                  kFArg4, kFArg5, kFArg6, kFArg7};
2070  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
2071
2072  if (is_double_or_float) {
2073    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2074      return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide);
2075    }
2076  } else {
2077    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2078      return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], is_wide);
2079    }
2080  }
2081  return RegStorage::InvalidReg();
2082}
2083
2084RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2085  DCHECK(IsInitialized());
2086  auto res = mapping_.find(in_position);
2087  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2088}
2089
2090void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
2091  DCHECK(mapper != nullptr);
2092  max_mapped_in_ = -1;
2093  is_there_stack_mapped_ = false;
2094  for (int in_position = 0; in_position < count; in_position++) {
2095     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
2096     if (reg.Valid()) {
2097       mapping_[in_position] = reg;
2098       max_mapped_in_ = std::max(max_mapped_in_, in_position);
2099       if (reg.Is64BitSolo()) {
2100         // We covered 2 args, so skip the next one
2101         in_position++;
2102       }
2103     } else {
2104       is_there_stack_mapped_ = true;
2105     }
2106  }
2107  initialized_ = true;
2108}
2109
2110RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2111  if (!cu_->target64) {
2112    return GetCoreArgMappingToPhysicalReg(arg_num);
2113  }
2114
2115  if (!in_to_reg_storage_mapping_.IsInitialized()) {
2116    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2117    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2118
2119    InToRegStorageX86_64Mapper mapper(this);
2120    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2121  }
2122  return in_to_reg_storage_mapping_.Get(arg_num);
2123}
2124
2125RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2126  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2127  // Not used for 64-bit, TODO: Move X86_32 to the same framework
2128  switch (core_arg_num) {
2129    case 0:
2130      return rs_rX86_ARG1;
2131    case 1:
2132      return rs_rX86_ARG2;
2133    case 2:
2134      return rs_rX86_ARG3;
2135    default:
2136      return RegStorage::InvalidReg();
2137  }
2138}
2139
2140// ---------End of ABI support: mapping of args to physical registers -------------
2141
2142/*
2143 * If there are any ins passed in registers that have not been promoted
2144 * to a callee-save register, flush them to the frame.  Perform initial
2145 * assignment of promoted arguments.
2146 *
2147 * ArgLocs is an array of location records describing the incoming arguments
2148 * with one location record per word of argument.
2149 */
2150void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2151  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2152  /*
2153   * Dummy up a RegLocation for the incoming Method*
2154   * It will attempt to keep kArg0 live (or copy it to home location
2155   * if promoted).
2156   */
2157
2158  RegLocation rl_src = rl_method;
2159  rl_src.location = kLocPhysReg;
2160  rl_src.reg = TargetRefReg(kArg0);
2161  rl_src.home = false;
2162  MarkLive(rl_src);
2163  StoreValue(rl_method, rl_src);
2164  // If Method* has been promoted, explicitly flush
2165  if (rl_method.location == kLocPhysReg) {
2166    StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetRefReg(kArg0)), kNotVolatile);
2167  }
2168
2169  if (cu_->num_ins == 0) {
2170    return;
2171  }
2172
2173  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2174  /*
2175   * Copy incoming arguments to their proper home locations.
2176   * NOTE: an older version of dx had an issue in which
2177   * it would reuse static method argument registers.
2178   * This could result in the same Dalvik virtual register
2179   * being promoted to both core and fp regs. To account for this,
2180   * we only copy to the corresponding promoted physical register
2181   * if it matches the type of the SSA name for the incoming
2182   * argument.  It is also possible that long and double arguments
2183   * end up half-promoted.  In those cases, we must flush the promoted
2184   * half to memory as well.
2185   */
2186  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2187  for (int i = 0; i < cu_->num_ins; i++) {
2188    // get reg corresponding to input
2189    RegStorage reg = GetArgMappingToPhysicalReg(i);
2190
2191    RegLocation* t_loc = &ArgLocs[i];
2192    if (reg.Valid()) {
2193      // If arriving in register.
2194
2195      // We have already updated the arg location with promoted info
2196      // so we can be based on it.
2197      if (t_loc->location == kLocPhysReg) {
2198        // Just copy it.
2199        OpRegCopy(t_loc->reg, reg);
2200      } else {
2201        // Needs flush.
2202        if (t_loc->ref) {
2203          StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2204        } else {
2205          StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2206                        kNotVolatile);
2207        }
2208      }
2209    } else {
2210      // If arriving in frame & promoted.
2211      if (t_loc->location == kLocPhysReg) {
2212        if (t_loc->ref) {
2213          LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2214        } else {
2215          LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2216                       t_loc->wide ? k64 : k32, kNotVolatile);
2217        }
2218      }
2219    }
2220    if (t_loc->wide) {
2221      // Increment i to skip the next one.
2222      i++;
2223    }
2224  }
2225}
2226
2227/*
2228 * Load up to 5 arguments, the first three of which will be in
2229 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
2230 * and as part of the load sequence, it must be replaced with
2231 * the target method pointer.  Note, this may also be called
2232 * for "range" variants if the number of arguments is 5 or fewer.
2233 */
2234int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2235                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2236                                  const MethodReference& target_method,
2237                                  uint32_t vtable_idx, uintptr_t direct_code,
2238                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
2239  if (!cu_->target64) {
2240    return Mir2Lir::GenDalvikArgsNoRange(info,
2241                                  call_state, pcrLabel, next_call_insn,
2242                                  target_method,
2243                                  vtable_idx, direct_code,
2244                                  direct_method, type, skip_this);
2245  }
2246  return GenDalvikArgsRange(info,
2247                       call_state, pcrLabel, next_call_insn,
2248                       target_method,
2249                       vtable_idx, direct_code,
2250                       direct_method, type, skip_this);
2251}
2252
2253/*
2254 * May have 0+ arguments (also used for jumbo).  Note that
2255 * source virtual registers may be in physical registers, so may
2256 * need to be flushed to home location before copying.  This
2257 * applies to arg3 and above (see below).
2258 *
2259 * Two general strategies:
2260 *    If < 20 arguments
2261 *       Pass args 3-18 using vldm/vstm block copy
2262 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2263 *    If 20+ arguments
2264 *       Pass args arg19+ using memcpy block copy
2265 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2266 *
2267 */
2268int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2269                                LIR** pcrLabel, NextCallInsn next_call_insn,
2270                                const MethodReference& target_method,
2271                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2272                                InvokeType type, bool skip_this) {
2273  if (!cu_->target64) {
2274    return Mir2Lir::GenDalvikArgsRange(info, call_state,
2275                                pcrLabel, next_call_insn,
2276                                target_method,
2277                                vtable_idx, direct_code, direct_method,
2278                                type, skip_this);
2279  }
2280
2281  /* If no arguments, just return */
2282  if (info->num_arg_words == 0)
2283    return call_state;
2284
2285  const int start_index = skip_this ? 1 : 0;
2286
2287  InToRegStorageX86_64Mapper mapper(this);
2288  InToRegStorageMapping in_to_reg_storage_mapping;
2289  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2290  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2291  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2292          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2293  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2294
2295  // Fisrt of all, check whether it make sense to use bulk copying
2296  // Optimization is aplicable only for range case
2297  // TODO: make a constant instead of 2
2298  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2299    // Scan the rest of the args - if in phys_reg flush to memory
2300    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2301      RegLocation loc = info->args[next_arg];
2302      if (loc.wide) {
2303        loc = UpdateLocWide(loc);
2304        if (loc.location == kLocPhysReg) {
2305          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2306          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2307        }
2308        next_arg += 2;
2309      } else {
2310        loc = UpdateLoc(loc);
2311        if (loc.location == kLocPhysReg) {
2312          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2313          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2314        }
2315        next_arg++;
2316      }
2317    }
2318
2319    // Logic below assumes that Method pointer is at offset zero from SP.
2320    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2321
2322    // The rest can be copied together
2323    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2324    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2325
2326    int current_src_offset = start_offset;
2327    int current_dest_offset = outs_offset;
2328
2329    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2330    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2331    while (regs_left_to_pass_via_stack > 0) {
2332      // This is based on the knowledge that the stack itself is 16-byte aligned.
2333      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2334      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2335      size_t bytes_to_move;
2336
2337      /*
2338       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2339       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2340       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2341       * We do this because we could potentially do a smaller move to align.
2342       */
2343      if (regs_left_to_pass_via_stack == 4 ||
2344          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2345        // Moving 128-bits via xmm register.
2346        bytes_to_move = sizeof(uint32_t) * 4;
2347
2348        // Allocate a free xmm temp. Since we are working through the calling sequence,
2349        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2350        // there are no free registers.
2351        RegStorage temp = AllocTempDouble();
2352
2353        LIR* ld1 = nullptr;
2354        LIR* ld2 = nullptr;
2355        LIR* st1 = nullptr;
2356        LIR* st2 = nullptr;
2357
2358        /*
2359         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2360         * do an aligned move. If we have 8-byte alignment, then do the move in two
2361         * parts. This approach prevents possible cache line splits. Finally, fall back
2362         * to doing an unaligned move. In most cases we likely won't split the cache
2363         * line but we cannot prove it and thus take a conservative approach.
2364         */
2365        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2366        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2367
2368        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2369        if (src_is_16b_aligned) {
2370          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2371        } else if (src_is_8b_aligned) {
2372          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2373          ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2374                            kMovHi128FP);
2375        } else {
2376          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2377        }
2378
2379        if (dest_is_16b_aligned) {
2380          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2381        } else if (dest_is_8b_aligned) {
2382          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2383          st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2384                            temp, kMovHi128FP);
2385        } else {
2386          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2387        }
2388
2389        // TODO If we could keep track of aliasing information for memory accesses that are wider
2390        // than 64-bit, we wouldn't need to set up a barrier.
2391        if (ld1 != nullptr) {
2392          if (ld2 != nullptr) {
2393            // For 64-bit load we can actually set up the aliasing information.
2394            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2395            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2396          } else {
2397            // Set barrier for 128-bit load.
2398            ld1->u.m.def_mask = &kEncodeAll;
2399          }
2400        }
2401        if (st1 != nullptr) {
2402          if (st2 != nullptr) {
2403            // For 64-bit store we can actually set up the aliasing information.
2404            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2405            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2406          } else {
2407            // Set barrier for 128-bit store.
2408            st1->u.m.def_mask = &kEncodeAll;
2409          }
2410        }
2411
2412        // Free the temporary used for the data movement.
2413        FreeTemp(temp);
2414      } else {
2415        // Moving 32-bits via general purpose register.
2416        bytes_to_move = sizeof(uint32_t);
2417
2418        // Instead of allocating a new temp, simply reuse one of the registers being used
2419        // for argument passing.
2420        RegStorage temp = TargetReg(kArg3, false);
2421
2422        // Now load the argument VR and store to the outs.
2423        Load32Disp(rs_rX86_SP, current_src_offset, temp);
2424        Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2425      }
2426
2427      current_src_offset += bytes_to_move;
2428      current_dest_offset += bytes_to_move;
2429      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2430    }
2431    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2432  }
2433
2434  // Now handle rest not registers if they are
2435  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2436    RegStorage regSingle = TargetReg(kArg2, false);
2437    RegStorage regWide = TargetReg(kArg3, true);
2438    for (int i = start_index;
2439         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2440      RegLocation rl_arg = info->args[i];
2441      rl_arg = UpdateRawLoc(rl_arg);
2442      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2443      if (!reg.Valid()) {
2444        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2445
2446        {
2447          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2448          if (rl_arg.wide) {
2449            if (rl_arg.location == kLocPhysReg) {
2450              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2451            } else {
2452              LoadValueDirectWideFixed(rl_arg, regWide);
2453              StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2454            }
2455          } else {
2456            if (rl_arg.location == kLocPhysReg) {
2457              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2458            } else {
2459              LoadValueDirectFixed(rl_arg, regSingle);
2460              StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2461            }
2462          }
2463        }
2464        call_state = next_call_insn(cu_, info, call_state, target_method,
2465                                    vtable_idx, direct_code, direct_method, type);
2466      }
2467      if (rl_arg.wide) {
2468        i++;
2469      }
2470    }
2471  }
2472
2473  // Finish with mapped registers
2474  for (int i = start_index; i <= last_mapped_in; i++) {
2475    RegLocation rl_arg = info->args[i];
2476    rl_arg = UpdateRawLoc(rl_arg);
2477    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2478    if (reg.Valid()) {
2479      if (rl_arg.wide) {
2480        LoadValueDirectWideFixed(rl_arg, reg);
2481      } else {
2482        LoadValueDirectFixed(rl_arg, reg);
2483      }
2484      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2485                               direct_code, direct_method, type);
2486    }
2487    if (rl_arg.wide) {
2488      i++;
2489    }
2490  }
2491
2492  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2493                           direct_code, direct_method, type);
2494  if (pcrLabel) {
2495    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2496      *pcrLabel = GenExplicitNullCheck(TargetRefReg(kArg1), info->opt_flags);
2497    } else {
2498      *pcrLabel = nullptr;
2499      // In lieu of generating a check for kArg1 being null, we need to
2500      // perform a load when doing implicit checks.
2501      RegStorage tmp = AllocTemp();
2502      Load32Disp(TargetRefReg(kArg1), 0, tmp);
2503      MarkPossibleNullPointerException(info->opt_flags);
2504      FreeTemp(tmp);
2505    }
2506  }
2507  return call_state;
2508}
2509
2510}  // namespace art
2511