pthread_test.cpp revision 68d98d832b7935ed5be23836c481a14f00b19ef1
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include <gtest/gtest.h> 18 19#include "private/ScopeGuard.h" 20#include "BionicDeathTest.h" 21#include "ScopedSignalHandler.h" 22 23#include <errno.h> 24#include <inttypes.h> 25#include <limits.h> 26#include <malloc.h> 27#include <pthread.h> 28#include <signal.h> 29#include <sys/mman.h> 30#include <sys/syscall.h> 31#include <time.h> 32#include <unistd.h> 33 34 35TEST(pthread, pthread_key_create) { 36 pthread_key_t key; 37 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 38 ASSERT_EQ(0, pthread_key_delete(key)); 39 // Can't delete a key that's already been deleted. 40 ASSERT_EQ(EINVAL, pthread_key_delete(key)); 41} 42 43TEST(pthread, pthread_keys_max) { 44 // POSIX says PTHREAD_KEYS_MAX should be at least 128. 45 ASSERT_GE(PTHREAD_KEYS_MAX, 128); 46} 47 48TEST(pthread, _SC_THREAD_KEYS_MAX_big_enough_for_POSIX) { 49 // sysconf shouldn't return a smaller value. 50 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); 51 ASSERT_GE(sysconf_max, PTHREAD_KEYS_MAX); 52} 53 54TEST(pthread, pthread_key_many_distinct) { 55 // We should be able to allocate at least this many keys. 56 int nkeys = sysconf(_SC_THREAD_KEYS_MAX) / 2; 57 std::vector<pthread_key_t> keys; 58 59 auto scope_guard = make_scope_guard([&keys]{ 60 for (auto key : keys) { 61 EXPECT_EQ(0, pthread_key_delete(key)); 62 } 63 }); 64 65 for (int i = 0; i < nkeys; ++i) { 66 pthread_key_t key; 67 // If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is 68 // wrong. 69 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys; 70 keys.push_back(key); 71 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); 72 } 73 74 for (int i = keys.size() - 1; i >= 0; --i) { 75 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); 76 pthread_key_t key = keys.back(); 77 keys.pop_back(); 78 ASSERT_EQ(0, pthread_key_delete(key)); 79 } 80} 81 82TEST(pthread, pthread_key_EAGAIN) { 83 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); 84 85 std::vector<pthread_key_t> keys; 86 int rv = 0; 87 // Two keys are used by gtest, so sysconf_max should be more than we are 88 // allowed to allocate now. 89 for (int i = 0; i < sysconf_max; i++) { 90 pthread_key_t key; 91 rv = pthread_key_create(&key, NULL); 92 if (rv == EAGAIN) { 93 break; 94 } 95 EXPECT_EQ(0, rv); 96 keys.push_back(key); 97 } 98 99 // Don't leak keys. 100 for (auto key : keys) { 101 EXPECT_EQ(0, pthread_key_delete(key)); 102 } 103 keys.clear(); 104 105 // We should have eventually reached the maximum number of keys and received 106 // EAGAIN. 107 ASSERT_EQ(EAGAIN, rv); 108} 109 110TEST(pthread, pthread_key_delete) { 111 void* expected = reinterpret_cast<void*>(1234); 112 pthread_key_t key; 113 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 114 ASSERT_EQ(0, pthread_setspecific(key, expected)); 115 ASSERT_EQ(expected, pthread_getspecific(key)); 116 ASSERT_EQ(0, pthread_key_delete(key)); 117 // After deletion, pthread_getspecific returns NULL. 118 ASSERT_EQ(NULL, pthread_getspecific(key)); 119 // And you can't use pthread_setspecific with the deleted key. 120 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); 121} 122 123TEST(pthread, pthread_key_fork) { 124 void* expected = reinterpret_cast<void*>(1234); 125 pthread_key_t key; 126 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 127 ASSERT_EQ(0, pthread_setspecific(key, expected)); 128 ASSERT_EQ(expected, pthread_getspecific(key)); 129 130 pid_t pid = fork(); 131 ASSERT_NE(-1, pid) << strerror(errno); 132 133 if (pid == 0) { 134 // The surviving thread inherits all the forking thread's TLS values... 135 ASSERT_EQ(expected, pthread_getspecific(key)); 136 _exit(99); 137 } 138 139 int status; 140 ASSERT_EQ(pid, waitpid(pid, &status, 0)); 141 ASSERT_TRUE(WIFEXITED(status)); 142 ASSERT_EQ(99, WEXITSTATUS(status)); 143 144 ASSERT_EQ(expected, pthread_getspecific(key)); 145 ASSERT_EQ(0, pthread_key_delete(key)); 146} 147 148static void* DirtyKeyFn(void* key) { 149 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); 150} 151 152TEST(pthread, pthread_key_dirty) { 153 pthread_key_t key; 154 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 155 156 size_t stack_size = 128 * 1024; 157 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 158 ASSERT_NE(MAP_FAILED, stack); 159 memset(stack, 0xff, stack_size); 160 161 pthread_attr_t attr; 162 ASSERT_EQ(0, pthread_attr_init(&attr)); 163 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); 164 165 pthread_t t; 166 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); 167 168 void* result; 169 ASSERT_EQ(0, pthread_join(t, &result)); 170 ASSERT_EQ(nullptr, result); // Not ~0! 171 172 ASSERT_EQ(0, munmap(stack, stack_size)); 173 ASSERT_EQ(0, pthread_key_delete(key)); 174} 175 176static void* IdFn(void* arg) { 177 return arg; 178} 179 180static void* SleepFn(void* arg) { 181 sleep(reinterpret_cast<uintptr_t>(arg)); 182 return NULL; 183} 184 185static void* SpinFn(void* arg) { 186 volatile bool* b = reinterpret_cast<volatile bool*>(arg); 187 while (!*b) { 188 } 189 return NULL; 190} 191 192static void* JoinFn(void* arg) { 193 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL)); 194} 195 196static void AssertDetached(pthread_t t, bool is_detached) { 197 pthread_attr_t attr; 198 ASSERT_EQ(0, pthread_getattr_np(t, &attr)); 199 int detach_state; 200 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); 201 pthread_attr_destroy(&attr); 202 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); 203} 204 205static void MakeDeadThread(pthread_t& t) { 206 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL)); 207 ASSERT_EQ(0, pthread_join(t, NULL)); 208} 209 210TEST(pthread, pthread_create) { 211 void* expected_result = reinterpret_cast<void*>(123); 212 // Can we create a thread? 213 pthread_t t; 214 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result)); 215 // If we join, do we get the expected value back? 216 void* result; 217 ASSERT_EQ(0, pthread_join(t, &result)); 218 ASSERT_EQ(expected_result, result); 219} 220 221TEST(pthread, pthread_create_EAGAIN) { 222 pthread_attr_t attributes; 223 ASSERT_EQ(0, pthread_attr_init(&attributes)); 224 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); 225 226 pthread_t t; 227 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL)); 228} 229 230TEST(pthread, pthread_no_join_after_detach) { 231 pthread_t t1; 232 ASSERT_EQ(0, pthread_create(&t1, NULL, SleepFn, reinterpret_cast<void*>(5))); 233 234 // After a pthread_detach... 235 ASSERT_EQ(0, pthread_detach(t1)); 236 AssertDetached(t1, true); 237 238 // ...pthread_join should fail. 239 ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); 240} 241 242TEST(pthread, pthread_no_op_detach_after_join) { 243 bool done = false; 244 245 pthread_t t1; 246 ASSERT_EQ(0, pthread_create(&t1, NULL, SpinFn, &done)); 247 248 // If thread 2 is already waiting to join thread 1... 249 pthread_t t2; 250 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); 251 252 sleep(1); // (Give t2 a chance to call pthread_join.) 253 254 // ...a call to pthread_detach on thread 1 will "succeed" (silently fail)... 255 ASSERT_EQ(0, pthread_detach(t1)); 256 AssertDetached(t1, false); 257 258 done = true; 259 260 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). 261 void* join_result; 262 ASSERT_EQ(0, pthread_join(t2, &join_result)); 263 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 264} 265 266TEST(pthread, pthread_join_self) { 267 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL)); 268} 269 270struct TestBug37410 { 271 pthread_t main_thread; 272 pthread_mutex_t mutex; 273 274 static void main() { 275 TestBug37410 data; 276 data.main_thread = pthread_self(); 277 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL)); 278 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); 279 280 pthread_t t; 281 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); 282 283 // Wait for the thread to be running... 284 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); 285 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); 286 287 // ...and exit. 288 pthread_exit(NULL); 289 } 290 291 private: 292 static void* thread_fn(void* arg) { 293 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); 294 295 // Let the main thread know we're running. 296 pthread_mutex_unlock(&data->mutex); 297 298 // And wait for the main thread to exit. 299 pthread_join(data->main_thread, NULL); 300 301 return NULL; 302 } 303}; 304 305// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to 306// run this test (which exits normally) in its own process. 307 308class pthread_DeathTest : public BionicDeathTest {}; 309 310TEST_F(pthread_DeathTest, pthread_bug_37410) { 311 // http://code.google.com/p/android/issues/detail?id=37410 312 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); 313} 314 315static void* SignalHandlerFn(void* arg) { 316 sigset_t wait_set; 317 sigfillset(&wait_set); 318 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg))); 319} 320 321TEST(pthread, pthread_sigmask) { 322 // Check that SIGUSR1 isn't blocked. 323 sigset_t original_set; 324 sigemptyset(&original_set); 325 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set)); 326 ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); 327 328 // Block SIGUSR1. 329 sigset_t set; 330 sigemptyset(&set); 331 sigaddset(&set, SIGUSR1); 332 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL)); 333 334 // Check that SIGUSR1 is blocked. 335 sigset_t final_set; 336 sigemptyset(&final_set); 337 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set)); 338 ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); 339 // ...and that sigprocmask agrees with pthread_sigmask. 340 sigemptyset(&final_set); 341 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set)); 342 ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); 343 344 // Spawn a thread that calls sigwait and tells us what it received. 345 pthread_t signal_thread; 346 int received_signal = -1; 347 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal)); 348 349 // Send that thread SIGUSR1. 350 pthread_kill(signal_thread, SIGUSR1); 351 352 // See what it got. 353 void* join_result; 354 ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); 355 ASSERT_EQ(SIGUSR1, received_signal); 356 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 357 358 // Restore the original signal mask. 359 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL)); 360} 361 362TEST(pthread, pthread_setname_np__too_long) { 363 ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux")); 364} 365 366TEST(pthread, pthread_setname_np__self) { 367 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1")); 368} 369 370TEST(pthread, pthread_setname_np__other) { 371 pthread_t t1; 372 ASSERT_EQ(0, pthread_create(&t1, NULL, SleepFn, reinterpret_cast<void*>(5))); 373 ASSERT_EQ(0, pthread_setname_np(t1, "short 2")); 374} 375 376TEST(pthread, pthread_setname_np__no_such_thread) { 377 pthread_t dead_thread; 378 MakeDeadThread(dead_thread); 379 380 // Call pthread_setname_np after thread has already exited. 381 ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3")); 382} 383 384TEST(pthread, pthread_kill__0) { 385 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. 386 ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); 387} 388 389TEST(pthread, pthread_kill__invalid_signal) { 390 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); 391} 392 393static void pthread_kill__in_signal_handler_helper(int signal_number) { 394 static int count = 0; 395 ASSERT_EQ(SIGALRM, signal_number); 396 if (++count == 1) { 397 // Can we call pthread_kill from a signal handler? 398 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); 399 } 400} 401 402TEST(pthread, pthread_kill__in_signal_handler) { 403 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); 404 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); 405} 406 407TEST(pthread, pthread_detach__no_such_thread) { 408 pthread_t dead_thread; 409 MakeDeadThread(dead_thread); 410 411 ASSERT_EQ(ESRCH, pthread_detach(dead_thread)); 412} 413 414TEST(pthread, pthread_detach__leak) { 415 size_t initial_bytes = 0; 416 // Run this loop more than once since the first loop causes some memory 417 // to be allocated permenantly. Run an extra loop to help catch any subtle 418 // memory leaks. 419 for (size_t loop = 0; loop < 3; loop++) { 420 // Set the initial bytes on the second loop since the memory in use 421 // should have stabilized. 422 if (loop == 1) { 423 initial_bytes = mallinfo().uordblks; 424 } 425 426 pthread_attr_t attr; 427 ASSERT_EQ(0, pthread_attr_init(&attr)); 428 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); 429 430 std::vector<pthread_t> threads; 431 for (size_t i = 0; i < 32; ++i) { 432 pthread_t t; 433 ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL)); 434 threads.push_back(t); 435 } 436 437 sleep(1); 438 439 for (size_t i = 0; i < 32; ++i) { 440 ASSERT_EQ(0, pthread_detach(threads[i])) << i; 441 } 442 } 443 444 size_t final_bytes = mallinfo().uordblks; 445 int leaked_bytes = (final_bytes - initial_bytes); 446 447 // User code (like this test) doesn't know how large pthread_internal_t is. 448 // We can be pretty sure it's more than 128 bytes. 449 ASSERT_LT(leaked_bytes, 32 /*threads*/ * 128 /*bytes*/); 450} 451 452TEST(pthread, pthread_getcpuclockid__clock_gettime) { 453 pthread_t t; 454 ASSERT_EQ(0, pthread_create(&t, NULL, SleepFn, reinterpret_cast<void*>(5))); 455 456 clockid_t c; 457 ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); 458 timespec ts; 459 ASSERT_EQ(0, clock_gettime(c, &ts)); 460} 461 462TEST(pthread, pthread_getcpuclockid__no_such_thread) { 463 pthread_t dead_thread; 464 MakeDeadThread(dead_thread); 465 466 clockid_t c; 467 ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c)); 468} 469 470TEST(pthread, pthread_getschedparam__no_such_thread) { 471 pthread_t dead_thread; 472 MakeDeadThread(dead_thread); 473 474 int policy; 475 sched_param param; 476 ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m)); 477} 478 479TEST(pthread, pthread_setschedparam__no_such_thread) { 480 pthread_t dead_thread; 481 MakeDeadThread(dead_thread); 482 483 int policy = 0; 484 sched_param param; 485 ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m)); 486} 487 488TEST(pthread, pthread_join__no_such_thread) { 489 pthread_t dead_thread; 490 MakeDeadThread(dead_thread); 491 492 ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL)); 493} 494 495TEST(pthread, pthread_kill__no_such_thread) { 496 pthread_t dead_thread; 497 MakeDeadThread(dead_thread); 498 499 ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0)); 500} 501 502TEST(pthread, pthread_join__multijoin) { 503 bool done = false; 504 505 pthread_t t1; 506 ASSERT_EQ(0, pthread_create(&t1, NULL, SpinFn, &done)); 507 508 pthread_t t2; 509 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); 510 511 sleep(1); // (Give t2 a chance to call pthread_join.) 512 513 // Multiple joins to the same thread should fail. 514 ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); 515 516 done = true; 517 518 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). 519 void* join_result; 520 ASSERT_EQ(0, pthread_join(t2, &join_result)); 521 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 522} 523 524TEST(pthread, pthread_join__race) { 525 // http://b/11693195 --- pthread_join could return before the thread had actually exited. 526 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. 527 for (size_t i = 0; i < 1024; ++i) { 528 size_t stack_size = 64*1024; 529 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); 530 531 pthread_attr_t a; 532 pthread_attr_init(&a); 533 pthread_attr_setstack(&a, stack, stack_size); 534 535 pthread_t t; 536 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL)); 537 ASSERT_EQ(0, pthread_join(t, NULL)); 538 ASSERT_EQ(0, munmap(stack, stack_size)); 539 } 540} 541 542static void* GetActualGuardSizeFn(void* arg) { 543 pthread_attr_t attributes; 544 pthread_getattr_np(pthread_self(), &attributes); 545 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); 546 return NULL; 547} 548 549static size_t GetActualGuardSize(const pthread_attr_t& attributes) { 550 size_t result; 551 pthread_t t; 552 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); 553 pthread_join(t, NULL); 554 return result; 555} 556 557static void* GetActualStackSizeFn(void* arg) { 558 pthread_attr_t attributes; 559 pthread_getattr_np(pthread_self(), &attributes); 560 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); 561 return NULL; 562} 563 564static size_t GetActualStackSize(const pthread_attr_t& attributes) { 565 size_t result; 566 pthread_t t; 567 pthread_create(&t, &attributes, GetActualStackSizeFn, &result); 568 pthread_join(t, NULL); 569 return result; 570} 571 572TEST(pthread, pthread_attr_setguardsize) { 573 pthread_attr_t attributes; 574 ASSERT_EQ(0, pthread_attr_init(&attributes)); 575 576 // Get the default guard size. 577 size_t default_guard_size; 578 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size)); 579 580 // No such thing as too small: will be rounded up to one page by pthread_create. 581 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); 582 size_t guard_size; 583 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 584 ASSERT_EQ(128U, guard_size); 585 ASSERT_EQ(4096U, GetActualGuardSize(attributes)); 586 587 // Large enough and a multiple of the page size. 588 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); 589 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 590 ASSERT_EQ(32*1024U, guard_size); 591 592 // Large enough but not a multiple of the page size; will be rounded up by pthread_create. 593 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); 594 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 595 ASSERT_EQ(32*1024U + 1, guard_size); 596} 597 598TEST(pthread, pthread_attr_setstacksize) { 599 pthread_attr_t attributes; 600 ASSERT_EQ(0, pthread_attr_init(&attributes)); 601 602 // Get the default stack size. 603 size_t default_stack_size; 604 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); 605 606 // Too small. 607 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); 608 size_t stack_size; 609 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 610 ASSERT_EQ(default_stack_size, stack_size); 611 ASSERT_GE(GetActualStackSize(attributes), default_stack_size); 612 613 // Large enough and a multiple of the page size. 614 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); 615 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 616 ASSERT_EQ(32*1024U, stack_size); 617 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); 618 619 // Large enough but not a multiple of the page size; will be rounded up by pthread_create. 620 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); 621 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 622 ASSERT_EQ(32*1024U + 1, stack_size); 623#if defined(__BIONIC__) 624 // Bionic rounds up, which is what POSIX allows. 625 ASSERT_EQ(GetActualStackSize(attributes), (32 + 4)*1024U); 626#else // __BIONIC__ 627 // glibc rounds down, in violation of POSIX. They document this in their BUGS section. 628 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); 629#endif // __BIONIC__ 630} 631 632TEST(pthread, pthread_rwlock_smoke) { 633 pthread_rwlock_t l; 634 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL)); 635 636 // Single read lock 637 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 638 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 639 640 // Multiple read lock 641 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 642 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 643 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 644 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 645 646 // Write lock 647 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 648 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 649 650 // Try writer lock 651 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); 652 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); 653 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); 654 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 655 656 // Try reader lock 657 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); 658 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); 659 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); 660 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 661 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 662 663 // Try writer lock after unlock 664 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 665 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 666 667#ifdef __BIONIC__ 668 // EDEADLK in "read after write" 669 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 670 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); 671 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 672 673 // EDEADLK in "write after write" 674 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 675 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); 676 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 677#endif 678 679 ASSERT_EQ(0, pthread_rwlock_destroy(&l)); 680} 681 682static int g_once_fn_call_count = 0; 683static void OnceFn() { 684 ++g_once_fn_call_count; 685} 686 687TEST(pthread, pthread_once_smoke) { 688 pthread_once_t once_control = PTHREAD_ONCE_INIT; 689 ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); 690 ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); 691 ASSERT_EQ(1, g_once_fn_call_count); 692} 693 694static std::string pthread_once_1934122_result = ""; 695 696static void Routine2() { 697 pthread_once_1934122_result += "2"; 698} 699 700static void Routine1() { 701 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; 702 pthread_once_1934122_result += "1"; 703 pthread_once(&once_control_2, &Routine2); 704} 705 706TEST(pthread, pthread_once_1934122) { 707 // Very old versions of Android couldn't call pthread_once from a 708 // pthread_once init routine. http://b/1934122. 709 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; 710 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); 711 ASSERT_EQ("12", pthread_once_1934122_result); 712} 713 714static int g_atfork_prepare_calls = 0; 715static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 1; } 716static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 2; } 717static int g_atfork_parent_calls = 0; 718static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 1; } 719static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 2; } 720static int g_atfork_child_calls = 0; 721static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 1; } 722static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 2; } 723 724TEST(pthread, pthread_atfork) { 725 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); 726 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); 727 728 int pid = fork(); 729 ASSERT_NE(-1, pid) << strerror(errno); 730 731 // Child and parent calls are made in the order they were registered. 732 if (pid == 0) { 733 ASSERT_EQ(0x12, g_atfork_child_calls); 734 _exit(0); 735 } 736 ASSERT_EQ(0x12, g_atfork_parent_calls); 737 738 // Prepare calls are made in the reverse order. 739 ASSERT_EQ(0x21, g_atfork_prepare_calls); 740} 741 742TEST(pthread, pthread_attr_getscope) { 743 pthread_attr_t attr; 744 ASSERT_EQ(0, pthread_attr_init(&attr)); 745 746 int scope; 747 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); 748 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); 749} 750 751TEST(pthread, pthread_condattr_init) { 752 pthread_condattr_t attr; 753 pthread_condattr_init(&attr); 754 755 clockid_t clock; 756 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 757 ASSERT_EQ(CLOCK_REALTIME, clock); 758 759 int pshared; 760 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); 761 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); 762} 763 764TEST(pthread, pthread_condattr_setclock) { 765 pthread_condattr_t attr; 766 pthread_condattr_init(&attr); 767 768 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); 769 clockid_t clock; 770 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 771 ASSERT_EQ(CLOCK_REALTIME, clock); 772 773 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); 774 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 775 ASSERT_EQ(CLOCK_MONOTONIC, clock); 776 777 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); 778} 779 780TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { 781#if defined(__BIONIC__) // This tests a bionic implementation detail. 782 pthread_condattr_t attr; 783 pthread_condattr_init(&attr); 784 785 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); 786 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); 787 788 pthread_cond_t cond_var; 789 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); 790 791 ASSERT_EQ(0, pthread_cond_signal(&cond_var)); 792 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); 793 794 attr = static_cast<pthread_condattr_t>(cond_var.value); 795 clockid_t clock; 796 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 797 ASSERT_EQ(CLOCK_MONOTONIC, clock); 798 int pshared; 799 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); 800 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); 801#else // __BIONIC__ 802 GTEST_LOG_(INFO) << "This test does nothing.\n"; 803#endif // __BIONIC__ 804} 805 806TEST(pthread, pthread_mutex_timedlock) { 807 pthread_mutex_t m; 808 ASSERT_EQ(0, pthread_mutex_init(&m, NULL)); 809 810 // If the mutex is already locked, pthread_mutex_timedlock should time out. 811 ASSERT_EQ(0, pthread_mutex_lock(&m)); 812 813 timespec ts; 814 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 815 ts.tv_nsec += 1; 816 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts)); 817 818 // If the mutex is unlocked, pthread_mutex_timedlock should succeed. 819 ASSERT_EQ(0, pthread_mutex_unlock(&m)); 820 821 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 822 ts.tv_nsec += 1; 823 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts)); 824 825 ASSERT_EQ(0, pthread_mutex_unlock(&m)); 826 ASSERT_EQ(0, pthread_mutex_destroy(&m)); 827} 828 829TEST(pthread, pthread_attr_getstack__main_thread) { 830 // This test is only meaningful for the main thread, so make sure we're running on it! 831 ASSERT_EQ(getpid(), syscall(__NR_gettid)); 832 833 // Get the main thread's attributes. 834 pthread_attr_t attributes; 835 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 836 837 // Check that we correctly report that the main thread has no guard page. 838 size_t guard_size; 839 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 840 ASSERT_EQ(0U, guard_size); // The main thread has no guard page. 841 842 // Get the stack base and the stack size (both ways). 843 void* stack_base; 844 size_t stack_size; 845 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 846 size_t stack_size2; 847 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 848 849 // The two methods of asking for the stack size should agree. 850 EXPECT_EQ(stack_size, stack_size2); 851 852 // What does /proc/self/maps' [stack] line say? 853 void* maps_stack_hi = NULL; 854 FILE* fp = fopen("/proc/self/maps", "r"); 855 ASSERT_TRUE(fp != NULL); 856 char line[BUFSIZ]; 857 while (fgets(line, sizeof(line), fp) != NULL) { 858 uintptr_t lo, hi; 859 char name[10]; 860 sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name); 861 if (strcmp(name, "[stack]") == 0) { 862 maps_stack_hi = reinterpret_cast<void*>(hi); 863 break; 864 } 865 } 866 fclose(fp); 867 868 // The stack size should correspond to RLIMIT_STACK. 869 rlimit rl; 870 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); 871 uint64_t original_rlim_cur = rl.rlim_cur; 872#if defined(__BIONIC__) 873 if (rl.rlim_cur == RLIM_INFINITY) { 874 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. 875 } 876#endif 877 EXPECT_EQ(rl.rlim_cur, stack_size); 878 879 auto guard = make_scope_guard([&rl, original_rlim_cur]() { 880 rl.rlim_cur = original_rlim_cur; 881 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 882 }); 883 884 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size. 885 // Remember that the stack grows down (and is mapped in on demand), so the low address of the 886 // region isn't very interesting. 887 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); 888 889 // 890 // What if RLIMIT_STACK is smaller than the stack's current extent? 891 // 892 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. 893 rl.rlim_max = RLIM_INFINITY; 894 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 895 896 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 897 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 898 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 899 900 EXPECT_EQ(stack_size, stack_size2); 901 ASSERT_EQ(1024U, stack_size); 902 903 // 904 // What if RLIMIT_STACK isn't a whole number of pages? 905 // 906 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. 907 rl.rlim_max = RLIM_INFINITY; 908 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 909 910 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 911 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 912 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 913 914 EXPECT_EQ(stack_size, stack_size2); 915 ASSERT_EQ(6666U, stack_size); 916} 917 918#if defined(__BIONIC__) 919static void* pthread_gettid_np_helper(void* arg) { 920 *reinterpret_cast<pid_t*>(arg) = gettid(); 921 return NULL; 922} 923#endif 924 925TEST(pthread, pthread_gettid_np) { 926#if defined(__BIONIC__) 927 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); 928 929 pid_t t_gettid_result; 930 pthread_t t; 931 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result); 932 933 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); 934 935 pthread_join(t, NULL); 936 937 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); 938#else 939 GTEST_LOG_(INFO) << "This test does nothing.\n"; 940#endif 941} 942 943static size_t cleanup_counter = 0; 944 945static void AbortCleanupRoutine(void*) { 946 abort(); 947} 948 949static void CountCleanupRoutine(void*) { 950 ++cleanup_counter; 951} 952 953static void PthreadCleanupTester() { 954 pthread_cleanup_push(CountCleanupRoutine, NULL); 955 pthread_cleanup_push(CountCleanupRoutine, NULL); 956 pthread_cleanup_push(AbortCleanupRoutine, NULL); 957 958 pthread_cleanup_pop(0); // Pop the abort without executing it. 959 pthread_cleanup_pop(1); // Pop one count while executing it. 960 ASSERT_EQ(1U, cleanup_counter); 961 // Exit while the other count is still on the cleanup stack. 962 pthread_exit(NULL); 963 964 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. 965 pthread_cleanup_pop(0); 966} 967 968static void* PthreadCleanupStartRoutine(void*) { 969 PthreadCleanupTester(); 970 return NULL; 971} 972 973TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { 974 pthread_t t; 975 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL)); 976 pthread_join(t, NULL); 977 ASSERT_EQ(2U, cleanup_counter); 978} 979 980TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { 981 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); 982} 983 984TEST(pthread, pthread_mutexattr_gettype) { 985 pthread_mutexattr_t attr; 986 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 987 988 int attr_type; 989 990 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); 991 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 992 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); 993 994 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); 995 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 996 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); 997 998 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); 999 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1000 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); 1001} 1002 1003TEST(pthread, pthread_mutex_lock_NORMAL) { 1004 pthread_mutexattr_t attr; 1005 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1006 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); 1007 1008 pthread_mutex_t lock; 1009 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); 1010 1011 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1012 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1013 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1014} 1015 1016TEST(pthread, pthread_mutex_lock_ERRORCHECK) { 1017 pthread_mutexattr_t attr; 1018 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1019 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); 1020 1021 pthread_mutex_t lock; 1022 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); 1023 1024 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1025 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&lock)); 1026 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1027 ASSERT_EQ(0, pthread_mutex_trylock(&lock)); 1028 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&lock)); 1029 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1030 ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock)); 1031 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1032} 1033 1034TEST(pthread, pthread_mutex_lock_RECURSIVE) { 1035 pthread_mutexattr_t attr; 1036 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1037 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); 1038 1039 pthread_mutex_t lock; 1040 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); 1041 1042 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1043 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1044 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1045 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1046 ASSERT_EQ(0, pthread_mutex_trylock(&lock)); 1047 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1048 ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock)); 1049 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1050} 1051