/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.inputmethod.keyboard.internal; import com.android.inputmethod.annotations.UsedForTesting; import com.android.inputmethod.keyboard.internal.MatrixUtils.MatrixOperationFailedException; import android.util.Log; import java.util.Arrays; /** * Utilities to smooth coordinates. Currently, we calculate 3d least squares formula by using * Lagrangian smoothing */ @UsedForTesting public class SmoothingUtils { private static final String TAG = SmoothingUtils.class.getSimpleName(); private static final boolean DEBUG = false; private SmoothingUtils() { // not allowed to instantiate publicly } /** * Find a most likely 3d least squares formula for specified coordinates. * "retval" should be a 1x4 size matrix. */ @UsedForTesting public static void get3DParameters(final float[] xs, final float[] ys, final float[][] retval) throws MatrixOperationFailedException { final int COEFF_COUNT = 4; // Coefficient count for 3d smoothing if (retval.length != COEFF_COUNT || retval[0].length != 1) { Log.d(TAG, "--- invalid length of 3d retval " + retval.length + ", " + retval[0].length); return; } final int N = xs.length; // TODO: Never isntantiate the matrix final float[][] m0 = new float[COEFF_COUNT][COEFF_COUNT]; final float[][] m0Inv = new float[COEFF_COUNT][COEFF_COUNT]; final float[][] m1 = new float[COEFF_COUNT][N]; final float[][] m2 = new float[N][1]; // m0 for (int i = 0; i < COEFF_COUNT; ++i) { Arrays.fill(m0[i], 0); for (int j = 0; j < COEFF_COUNT; ++j) { final int pow = i + j; for (int k = 0; k < N; ++k) { m0[i][j] += (float) Math.pow(xs[k], pow); } } } // m0Inv MatrixUtils.inverse(m0, m0Inv); if (DEBUG) { MatrixUtils.dump("m0-1", m0Inv); } // m1 for (int i = 0; i < COEFF_COUNT; ++i) { for (int j = 0; j < N; ++j) { m1[i][j] = (i == 0) ? 1.0f : m1[i - 1][j] * xs[j]; } } // m2 for (int i = 0; i < N; ++i) { m2[i][0] = ys[i]; } final float[][] m0Invxm1 = new float[COEFF_COUNT][N]; if (DEBUG) { MatrixUtils.dump("a0", m0Inv); MatrixUtils.dump("a1", m1); } MatrixUtils.multiply(m0Inv, m1, m0Invxm1); if (DEBUG) { MatrixUtils.dump("a2", m0Invxm1); MatrixUtils.dump("a3", m2); } MatrixUtils.multiply(m0Invxm1, m2, retval); if (DEBUG) { MatrixUtils.dump("result", retval); } } }