codegen_x86.h revision a77ee5103532abb197f492c14a9e6fb437054e2a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide);
40   protected:
41    Mir2Lir* ml_;
42   private:
43    int cur_core_reg_;
44    int cur_fp_reg_;
45  };
46
47  class InToRegStorageMapping {
48   public:
49    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50    initialized_(false) {}
51    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
52    int GetMaxMappedIn() { return max_mapped_in_; }
53    bool IsThereStackMapped() { return is_there_stack_mapped_; }
54    RegStorage Get(int in_position);
55    bool IsInitialized() { return initialized_; }
56   private:
57    std::map<int, RegStorage> mapping_;
58    int max_mapped_in_;
59    bool is_there_stack_mapped_;
60    bool initialized_;
61  };
62
63 public:
64  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65
66  // Required for target - codegen helpers.
67  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                          RegLocation rl_dest, int lit);
69  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70  LIR* CheckSuspendUsingLoad() OVERRIDE;
71  RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
72  RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
73  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
74                    OpSize size, VolatileKind is_volatile) OVERRIDE;
75  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
76                       OpSize size) OVERRIDE;
77  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
78                           RegStorage r_dest, OpSize size) OVERRIDE;
79  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
80  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
81  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
82                     OpSize size, VolatileKind is_volatile) OVERRIDE;
83  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
84                        OpSize size) OVERRIDE;
85  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
86                            RegStorage r_src, OpSize size) OVERRIDE;
87  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
88
89  // Required for target - register utilities.
90  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
91  RegStorage TargetReg32(SpecialTargetRegister reg);
92  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, bool is_wide) OVERRIDE {
93    RegStorage reg = TargetReg32(symbolic_reg);
94    if (is_wide) {
95      return (reg.Is64Bit()) ? reg : As64BitReg(reg);
96    } else {
97      return (reg.Is32Bit()) ? reg : As32BitReg(reg);
98    }
99  }
100  RegStorage TargetRefReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
101    return TargetReg(symbolic_reg, cu_->target64);
102  }
103  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
104    return TargetReg(symbolic_reg, cu_->target64);
105  }
106  RegStorage GetArgMappingToPhysicalReg(int arg_num);
107  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
108  RegLocation GetReturnAlt();
109  RegLocation GetReturnWideAlt();
110  RegLocation LocCReturn();
111  RegLocation LocCReturnRef();
112  RegLocation LocCReturnDouble();
113  RegLocation LocCReturnFloat();
114  RegLocation LocCReturnWide();
115  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
116  void AdjustSpillMask();
117  void ClobberCallerSave();
118  void FreeCallTemps();
119  void LockCallTemps();
120  void CompilerInitializeRegAlloc();
121
122  // Required for target - miscellaneous.
123  void AssembleLIR();
124  int AssignInsnOffsets();
125  void AssignOffsets();
126  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
127  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
128  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
129                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
130  const char* GetTargetInstFmt(int opcode);
131  const char* GetTargetInstName(int opcode);
132  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
133  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
134  uint64_t GetTargetInstFlags(int opcode);
135  size_t GetInsnSize(LIR* lir) OVERRIDE;
136  bool IsUnconditionalBranch(LIR* lir);
137
138  // Check support for volatile load/store of a given size.
139  bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
140  // Get the register class for load/store of a field.
141  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
142
143  // Required for target - Dalvik-level generators.
144  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
145                         RegLocation rl_src2);
146  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
147                   RegLocation rl_dest, int scale);
148  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
149                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
150  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
151                         RegLocation rl_src1, RegLocation rl_shift);
152  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
153                  RegLocation rl_src2);
154  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
155                  RegLocation rl_src2);
156  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
157                  RegLocation rl_src2);
158  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
159                        RegLocation rl_src2);
160  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
161                       RegLocation rl_src2);
162  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
163  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
164                RegLocation rl_src2);
165  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
166  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
167  bool GenInlinedMinMaxInt(CallInfo* info, bool is_min);
168  bool GenInlinedSqrt(CallInfo* info);
169  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
170  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
171  bool GenInlinedPeek(CallInfo* info, OpSize size);
172  bool GenInlinedPoke(CallInfo* info, OpSize size);
173  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
174  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
175  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
176                 RegLocation rl_src2);
177  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
178                  RegLocation rl_src2);
179  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
180                  RegLocation rl_src2);
181  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
182                     RegLocation rl_src2, bool is_div);
183  // TODO: collapse reg_lo, reg_hi
184  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
185  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
186  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
187  void GenDivZeroCheckWide(RegStorage reg);
188  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
189  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
190  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
191  void GenExitSequence();
192  void GenSpecialExitSequence();
193  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
194  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
195  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
196  void GenSelect(BasicBlock* bb, MIR* mir);
197  bool GenMemBarrier(MemBarrierKind barrier_kind);
198  void GenMoveException(RegLocation rl_dest);
199  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
200                                     int first_bit, int second_bit);
201  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
202  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
203  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
204  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
205  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
206
207  /*
208   * @brief Generate a two address long operation with a constant value
209   * @param rl_dest location of result
210   * @param rl_src constant source operand
211   * @param op Opcode to be generated
212   * @return success or not
213   */
214  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
215  /*
216   * @brief Generate a three address long operation with a constant value
217   * @param rl_dest location of result
218   * @param rl_src1 source operand
219   * @param rl_src2 constant source operand
220   * @param op Opcode to be generated
221   * @return success or not
222   */
223  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
224                      Instruction::Code op);
225
226  /**
227   * @brief Generate a long arithmetic operation.
228   * @param rl_dest The destination.
229   * @param rl_src1 First operand.
230   * @param rl_src2 Second operand.
231   * @param op The DEX opcode for the operation.
232   * @param is_commutative The sources can be swapped if needed.
233   */
234  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
235                            Instruction::Code op, bool is_commutative);
236
237  /**
238   * @brief Generate a two operand long arithmetic operation.
239   * @param rl_dest The destination.
240   * @param rl_src Second operand.
241   * @param op The DEX opcode for the operation.
242   */
243  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
244
245  /**
246   * @brief Generate a long operation.
247   * @param rl_dest The destination.  Must be in a register
248   * @param rl_src The other operand.  May be in a register or in memory.
249   * @param op The DEX opcode for the operation.
250   */
251  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
252
253  /**
254   * @brief Implement instanceof a final class with x86 specific code.
255   * @param use_declaring_class 'true' if we can use the class itself.
256   * @param type_idx Type index to use if use_declaring_class is 'false'.
257   * @param rl_dest Result to be set to 0 or 1.
258   * @param rl_src Object to be tested.
259   */
260  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
261                          RegLocation rl_src);
262  /*
263   *
264   * @brief Implement Set up instanceof a class with x86 specific code.
265   * @param needs_access_check 'true' if we must check the access.
266   * @param type_known_final 'true' if the type is known to be a final class.
267   * @param type_known_abstract 'true' if the type is known to be an abstract class.
268   * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
269   * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
270   * @param type_idx Type index to use if use_declaring_class is 'false'.
271   * @param rl_dest Result to be set to 0 or 1.
272   * @param rl_src Object to be tested.
273   */
274  void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
275                                  bool type_known_abstract, bool use_declaring_class,
276                                  bool can_assume_type_is_in_dex_cache,
277                                  uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
278
279  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
280                      RegLocation rl_src1, RegLocation rl_shift);
281
282  // Single operation generators.
283  LIR* OpUnconditionalBranch(LIR* target);
284  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
285  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
286  LIR* OpCondBranch(ConditionCode cc, LIR* target);
287  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
288  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
289  LIR* OpIT(ConditionCode cond, const char* guide);
290  void OpEndIT(LIR* it);
291  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
292  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
293  LIR* OpReg(OpKind op, RegStorage r_dest_src);
294  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
295  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
296  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
297  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
298  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
299  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
300  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
301  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
302  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
303  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
304  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
305  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
306  LIR* OpTestSuspend(LIR* target);
307  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
308  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
309  LIR* OpVldm(RegStorage r_base, int count);
310  LIR* OpVstm(RegStorage r_base, int count);
311  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
312  void OpRegCopyWide(RegStorage dest, RegStorage src);
313  void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
314  void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
315
316  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
317  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
318  void SpillCoreRegs();
319  void UnSpillCoreRegs();
320  static const X86EncodingMap EncodingMap[kX86Last];
321  bool InexpensiveConstantInt(int32_t value);
322  bool InexpensiveConstantFloat(int32_t value);
323  bool InexpensiveConstantLong(int64_t value);
324  bool InexpensiveConstantDouble(int64_t value);
325
326  /*
327   * @brief Should try to optimize for two address instructions?
328   * @return true if we try to avoid generating three operand instructions.
329   */
330  virtual bool GenerateTwoOperandInstructions() const { return true; }
331
332  /*
333   * @brief x86 specific codegen for int operations.
334   * @param opcode Operation to perform.
335   * @param rl_dest Destination for the result.
336   * @param rl_lhs Left hand operand.
337   * @param rl_rhs Right hand operand.
338   */
339  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
340                     RegLocation rl_rhs);
341
342  /*
343   * @brief Dump a RegLocation using printf
344   * @param loc Register location to dump
345   */
346  static void DumpRegLocation(RegLocation loc);
347
348  /*
349   * @brief Load the Method* of a dex method into the register.
350   * @param target_method The MethodReference of the method to be invoked.
351   * @param type How the method will be invoked.
352   * @param register that will contain the code address.
353   * @note register will be passed to TargetReg to get physical register.
354   */
355  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
356                         SpecialTargetRegister symbolic_reg);
357
358  /*
359   * @brief Load the Class* of a Dex Class type into the register.
360   * @param type How the method will be invoked.
361   * @param register that will contain the code address.
362   * @note register will be passed to TargetReg to get physical register.
363   */
364  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
365
366  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
367
368  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
369                           NextCallInsn next_call_insn,
370                           const MethodReference& target_method,
371                           uint32_t vtable_idx,
372                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
373                           bool skip_this);
374
375  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
376                         NextCallInsn next_call_insn,
377                         const MethodReference& target_method,
378                         uint32_t vtable_idx,
379                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
380                         bool skip_this);
381
382  /*
383   * @brief Generate a relative call to the method that will be patched at link time.
384   * @param target_method The MethodReference of the method to be invoked.
385   * @param type How the method will be invoked.
386   * @returns Call instruction
387   */
388  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
389
390  /*
391   * @brief Handle x86 specific literals
392   */
393  void InstallLiteralPools();
394
395  /*
396   * @brief Generate the debug_frame CFI information.
397   * @returns pointer to vector containing CFE information
398   */
399  static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
400
401  /*
402   * @brief Generate the debug_frame FDE information.
403   * @returns pointer to vector containing CFE information
404   */
405  std::vector<uint8_t>* ReturnCallFrameInformation();
406
407 protected:
408  // Casting of RegStorage
409  RegStorage As32BitReg(RegStorage reg) {
410    DCHECK(!reg.IsPair());
411    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
412      if (kFailOnSizeError) {
413        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
414      } else {
415        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
416        return reg;
417      }
418    }
419    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
420                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
421    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
422                             ->GetReg().GetReg(),
423              ret_val.GetReg());
424    return ret_val;
425  }
426
427  RegStorage As64BitReg(RegStorage reg) {
428    DCHECK(!reg.IsPair());
429    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
430      if (kFailOnSizeError) {
431        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
432      } else {
433        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
434        return reg;
435      }
436    }
437    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
438                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
439    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
440                             ->GetReg().GetReg(),
441              ret_val.GetReg());
442    return ret_val;
443  }
444
445  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
446                     int32_t raw_base, int32_t displacement);
447  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
448  void EmitPrefix(const X86EncodingMap* entry,
449                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
450  void EmitOpcode(const X86EncodingMap* entry);
451  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
452                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
453  void EmitDisp(uint8_t base, int32_t disp);
454  void EmitModrmThread(uint8_t reg_or_opcode);
455  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
456  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
457                        int32_t disp);
458  void EmitImm(const X86EncodingMap* entry, int64_t imm);
459  void EmitNullary(const X86EncodingMap* entry);
460  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
461  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
462  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
463  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
464                   int32_t disp);
465  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
466  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
467  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
468                    int32_t raw_index, int scale, int32_t disp);
469  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
470                    int32_t disp, int32_t raw_reg);
471  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
472  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
473                    int32_t raw_disp, int32_t imm);
474  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
475  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
476  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
477  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
478                     int32_t imm);
479  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
480                     int32_t imm);
481  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
482  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
483  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
484  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
485  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
486  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
487  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
488  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
489  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
490  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
491  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
492                      int32_t cc);
493
494  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
495  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
496  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
497  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
498  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
499  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
500                 int32_t raw_index, int scale, int32_t table_or_disp);
501  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
502  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
503  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
504                                int64_t val, ConditionCode ccode);
505  void GenConstWide(RegLocation rl_dest, int64_t value);
506
507  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
508
509  /*
510   * @brief Ensure that a temporary register is byte addressable.
511   * @returns a temporary guarenteed to be byte addressable.
512   */
513  virtual RegStorage AllocateByteRegister();
514
515  /*
516   * @brief Check if a register is byte addressable.
517   * @returns true if a register is byte addressable.
518   */
519  bool IsByteRegister(RegStorage reg);
520
521  /*
522   * @brief generate inline code for fast case of Strng.indexOf.
523   * @param info Call parameters
524   * @param zero_based 'true' if the index into the string is 0.
525   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
526   * generated.
527   */
528  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
529
530  /*
531   * @brief Load 128 bit constant into vector register.
532   * @param bb The basic block in which the MIR is from.
533   * @param mir The MIR whose opcode is kMirConstVector
534   * @note vA is the TypeSize for the register.
535   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
536   */
537  void GenConst128(BasicBlock* bb, MIR* mir);
538
539  /*
540   * @brief MIR to move a vectorized register to another.
541   * @param bb The basic block in which the MIR is from.
542   * @param mir The MIR whose opcode is kMirConstVector.
543   * @note vA: TypeSize
544   * @note vB: destination
545   * @note vC: source
546   */
547  void GenMoveVector(BasicBlock *bb, MIR *mir);
548
549  /*
550   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
551   * @param bb The basic block in which the MIR is from.
552   * @param mir The MIR whose opcode is kMirConstVector.
553   * @note vA: TypeSize
554   * @note vB: destination and source
555   * @note vC: source
556   */
557  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
558
559  /*
560   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
561   * @param bb The basic block in which the MIR is from.
562   * @param mir The MIR whose opcode is kMirConstVector.
563   * @note vA: TypeSize
564   * @note vB: destination and source
565   * @note vC: source
566   */
567  void GenAddVector(BasicBlock *bb, MIR *mir);
568
569  /*
570   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
571   * @param bb The basic block in which the MIR is from.
572   * @param mir The MIR whose opcode is kMirConstVector.
573   * @note vA: TypeSize
574   * @note vB: destination and source
575   * @note vC: source
576   */
577  void GenSubtractVector(BasicBlock *bb, MIR *mir);
578
579  /*
580   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
581   * @param bb The basic block in which the MIR is from.
582   * @param mir The MIR whose opcode is kMirConstVector.
583   * @note vA: TypeSize
584   * @note vB: destination and source
585   * @note vC: immediate
586   */
587  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
588
589  /*
590   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
591   * @param bb The basic block in which the MIR is from.
592   * @param mir The MIR whose opcode is kMirConstVector.
593   * @note vA: TypeSize
594   * @note vB: destination and source
595   * @note vC: immediate
596   */
597  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
598
599  /*
600   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
601   * @param bb The basic block in which the MIR is from..
602   * @param mir The MIR whose opcode is kMirConstVector.
603   * @note vA: TypeSize
604   * @note vB: destination and source
605   * @note vC: immediate
606   */
607  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
608
609  /*
610   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
611   * @note vA: TypeSize
612   * @note vB: destination and source
613   * @note vC: source
614   */
615  void GenAndVector(BasicBlock *bb, MIR *mir);
616
617  /*
618   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
619   * @param bb The basic block in which the MIR is from.
620   * @param mir The MIR whose opcode is kMirConstVector.
621   * @note vA: TypeSize
622   * @note vB: destination and source
623   * @note vC: source
624   */
625  void GenOrVector(BasicBlock *bb, MIR *mir);
626
627  /*
628   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
629   * @param bb The basic block in which the MIR is from.
630   * @param mir The MIR whose opcode is kMirConstVector.
631   * @note vA: TypeSize
632   * @note vB: destination and source
633   * @note vC: source
634   */
635  void GenXorVector(BasicBlock *bb, MIR *mir);
636
637  /*
638   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
639   * @param bb The basic block in which the MIR is from.
640   * @param mir The MIR whose opcode is kMirConstVector.
641   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
642   * @note vA: TypeSize
643   * @note vB: destination and source VR (not vector register)
644   * @note vC: source (vector register)
645   */
646  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
647
648  /*
649   * @brief Extract a packed element into a single VR.
650   * @param bb The basic block in which the MIR is from.
651   * @param mir The MIR whose opcode is kMirConstVector.
652   * @note vA: TypeSize
653   * @note vB: destination VR (not vector register)
654   * @note vC: source (vector register)
655   * @note arg[0]: The index to use for extraction from vector register (which packed element).
656   */
657  void GenReduceVector(BasicBlock *bb, MIR *mir);
658
659  /*
660   * @brief Create a vector value, with all TypeSize values equal to vC
661   * @param bb The basic block in which the MIR is from.
662   * @param mir The MIR whose opcode is kMirConstVector.
663   * @note vA: TypeSize.
664   * @note vB: destination vector register.
665   * @note vC: source VR (not vector register).
666   */
667  void GenSetVector(BasicBlock *bb, MIR *mir);
668
669  /*
670   * @brief Generate code for a vector opcode.
671   * @param bb The basic block in which the MIR is from.
672   * @param mir The MIR whose opcode is a non-standard opcode.
673   */
674  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
675
676  /*
677   * @brief Return the correct x86 opcode for the Dex operation
678   * @param op Dex opcode for the operation
679   * @param loc Register location of the operand
680   * @param is_high_op 'true' if this is an operation on the high word
681   * @param value Immediate value for the operation.  Used for byte variants
682   * @returns the correct x86 opcode to perform the operation
683   */
684  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
685
686  /*
687   * @brief Return the correct x86 opcode for the Dex operation
688   * @param op Dex opcode for the operation
689   * @param dest location of the destination.  May be register or memory.
690   * @param rhs Location for the rhs of the operation.  May be in register or memory.
691   * @param is_high_op 'true' if this is an operation on the high word
692   * @returns the correct x86 opcode to perform the operation
693   * @note at most one location may refer to memory
694   */
695  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
696                      bool is_high_op);
697
698  /*
699   * @brief Is this operation a no-op for this opcode and value
700   * @param op Dex opcode for the operation
701   * @param value Immediate value for the operation.
702   * @returns 'true' if the operation will have no effect
703   */
704  bool IsNoOp(Instruction::Code op, int32_t value);
705
706  /**
707   * @brief Calculate magic number and shift for a given divisor
708   * @param divisor divisor number for calculation
709   * @param magic hold calculated magic number
710   * @param shift hold calculated shift
711   */
712  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
713
714  /*
715   * @brief Generate an integer div or rem operation.
716   * @param rl_dest Destination Location.
717   * @param rl_src1 Numerator Location.
718   * @param rl_src2 Divisor Location.
719   * @param is_div 'true' if this is a division, 'false' for a remainder.
720   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
721   */
722  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
723                        bool is_div, bool check_zero);
724
725  /*
726   * @brief Generate an integer div or rem operation by a literal.
727   * @param rl_dest Destination Location.
728   * @param rl_src Numerator Location.
729   * @param lit Divisor.
730   * @param is_div 'true' if this is a division, 'false' for a remainder.
731   */
732  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
733
734  /*
735   * Generate code to implement long shift operations.
736   * @param opcode The DEX opcode to specify the shift type.
737   * @param rl_dest The destination.
738   * @param rl_src The value to be shifted.
739   * @param shift_amount How much to shift.
740   * @returns the RegLocation of the result.
741   */
742  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
743                                RegLocation rl_src, int shift_amount);
744  /*
745   * Generate an imul of a register by a constant or a better sequence.
746   * @param dest Destination Register.
747   * @param src Source Register.
748   * @param val Constant multiplier.
749   */
750  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
751
752  /*
753   * Generate an imul of a memory location by a constant or a better sequence.
754   * @param dest Destination Register.
755   * @param sreg Symbolic register.
756   * @param displacement Displacement on stack of Symbolic Register.
757   * @param val Constant multiplier.
758   */
759  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
760
761  /*
762   * @brief Compare memory to immediate, and branch if condition true.
763   * @param cond The condition code that when true will branch to the target.
764   * @param temp_reg A temporary register that can be used if compare memory is not
765   * supported by the architecture.
766   * @param base_reg The register holding the base address.
767   * @param offset The offset from the base.
768   * @param check_value The immediate to compare to.
769   */
770  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
771                         int offset, int check_value, LIR* target);
772
773  /*
774   * Can this operation be using core registers without temporaries?
775   * @param rl_lhs Left hand operand.
776   * @param rl_rhs Right hand operand.
777   * @returns 'true' if the operation can proceed without needing temporary regs.
778   */
779  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
780
781  /**
782   * @brief Generates inline code for conversion of long to FP by using x87/
783   * @param rl_dest The destination of the FP.
784   * @param rl_src The source of the long.
785   * @param is_double 'true' if dealing with double, 'false' for float.
786   */
787  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
788
789  /*
790   * @brief Perform MIR analysis before compiling method.
791   * @note Invokes Mir2LiR::Materialize after analysis.
792   */
793  void Materialize();
794
795  /*
796   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
797   * without regard to data type.  In practice, this can result in UpdateLoc returning a
798   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
799   * which can inexpensively move data between core and float registers, this can often be a win.
800   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
801   * take a register class argument - and will return an in-register location record only if
802   * the value is live in a temp register of the correct class.  Additionally, if the value is in
803   * a temp register of the wrong register class, it will be clobbered.
804   */
805  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
806  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
807
808  /*
809   * @brief Analyze MIR before generating code, to prepare for the code generation.
810   */
811  void AnalyzeMIR();
812
813  /*
814   * @brief Analyze one basic block.
815   * @param bb Basic block to analyze.
816   */
817  void AnalyzeBB(BasicBlock * bb);
818
819  /*
820   * @brief Analyze one extended MIR instruction
821   * @param opcode MIR instruction opcode.
822   * @param bb Basic block containing instruction.
823   * @param mir Extended instruction to analyze.
824   */
825  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
826
827  /*
828   * @brief Analyze one MIR instruction
829   * @param opcode MIR instruction opcode.
830   * @param bb Basic block containing instruction.
831   * @param mir Instruction to analyze.
832   */
833  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
834
835  /*
836   * @brief Analyze one MIR float/double instruction
837   * @param opcode MIR instruction opcode.
838   * @param bb Basic block containing instruction.
839   * @param mir Instruction to analyze.
840   */
841  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
842
843  /*
844   * @brief Analyze one use of a double operand.
845   * @param rl_use Double RegLocation for the operand.
846   */
847  void AnalyzeDoubleUse(RegLocation rl_use);
848
849  /*
850   * @brief Analyze one invoke-static MIR instruction
851   * @param opcode MIR instruction opcode.
852   * @param bb Basic block containing instruction.
853   * @param mir Instruction to analyze.
854   */
855  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
856
857  // Information derived from analysis of MIR
858
859  // The compiler temporary for the code address of the method.
860  CompilerTemp *base_of_code_;
861
862  // Have we decided to compute a ptr to code and store in temporary VR?
863  bool store_method_addr_;
864
865  // Have we used the stored method address?
866  bool store_method_addr_used_;
867
868  // Instructions to remove if we didn't use the stored method address.
869  LIR* setup_method_address_[2];
870
871  // Instructions needing patching with Method* values.
872  GrowableArray<LIR*> method_address_insns_;
873
874  // Instructions needing patching with Class Type* values.
875  GrowableArray<LIR*> class_type_address_insns_;
876
877  // Instructions needing patching with PC relative code addresses.
878  GrowableArray<LIR*> call_method_insns_;
879
880  // Prologue decrement of stack pointer.
881  LIR* stack_decrement_;
882
883  // Epilogue increment of stack pointer.
884  LIR* stack_increment_;
885
886  // The list of const vector literals.
887  LIR *const_vectors_;
888
889  /*
890   * @brief Search for a matching vector literal
891   * @param mir A kMirOpConst128b MIR instruction to match.
892   * @returns pointer to matching LIR constant, or nullptr if not found.
893   */
894  LIR *ScanVectorLiteral(MIR *mir);
895
896  /*
897   * @brief Add a constant vector literal
898   * @param mir A kMirOpConst128b MIR instruction to match.
899   */
900  LIR *AddVectorLiteral(MIR *mir);
901
902  InToRegStorageMapping in_to_reg_storage_mapping_;
903};
904
905}  // namespace art
906
907#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
908