codegen_x86.h revision dd64450b37776f68b9bfc47f8d9a88bc72c95727
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    InToRegStorageX86_64Mapper() : cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide);
40   private:
41    int cur_core_reg_;
42    int cur_fp_reg_;
43  };
44
45  class InToRegStorageMapping {
46   public:
47    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
48    initialized_(false) {}
49    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
50    int GetMaxMappedIn() { return max_mapped_in_; }
51    bool IsThereStackMapped() { return is_there_stack_mapped_; }
52    RegStorage Get(int in_position);
53    bool IsInitialized() { return initialized_; }
54   private:
55    std::map<int, RegStorage> mapping_;
56    int max_mapped_in_;
57    bool is_there_stack_mapped_;
58    bool initialized_;
59  };
60
61 public:
62  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
63
64  // Required for target - codegen helpers.
65  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
66                          RegLocation rl_dest, int lit);
67  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
68  LIR* CheckSuspendUsingLoad() OVERRIDE;
69  RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
70  RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
71  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
72                    OpSize size, VolatileKind is_volatile) OVERRIDE;
73  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
74                       OpSize size) OVERRIDE;
75  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
76                           RegStorage r_dest, OpSize size) OVERRIDE;
77  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
78  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
79  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
80                     OpSize size, VolatileKind is_volatile) OVERRIDE;
81  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
82                        OpSize size) OVERRIDE;
83  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
84                            RegStorage r_src, OpSize size) OVERRIDE;
85  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
86
87  // Required for target - register utilities.
88  RegStorage TargetReg(SpecialTargetRegister reg);
89  RegStorage GetArgMappingToPhysicalReg(int arg_num);
90  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
91  RegLocation GetReturnAlt();
92  RegLocation GetReturnWideAlt();
93  RegLocation LocCReturn();
94  RegLocation LocCReturnRef();
95  RegLocation LocCReturnDouble();
96  RegLocation LocCReturnFloat();
97  RegLocation LocCReturnWide();
98  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
99  void AdjustSpillMask();
100  void ClobberCallerSave();
101  void FreeCallTemps();
102  void LockCallTemps();
103  void MarkPreservedSingle(int v_reg, RegStorage reg);
104  void MarkPreservedDouble(int v_reg, RegStorage reg);
105  void CompilerInitializeRegAlloc();
106
107  // Required for target - miscellaneous.
108  void AssembleLIR();
109  int AssignInsnOffsets();
110  void AssignOffsets();
111  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
112  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
113  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
114                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
115  const char* GetTargetInstFmt(int opcode);
116  const char* GetTargetInstName(int opcode);
117  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
118  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
119  uint64_t GetTargetInstFlags(int opcode);
120  size_t GetInsnSize(LIR* lir) OVERRIDE;
121  bool IsUnconditionalBranch(LIR* lir);
122
123  // Check support for volatile load/store of a given size.
124  bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
125  // Get the register class for load/store of a field.
126  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
127
128  // Required for target - Dalvik-level generators.
129  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
130                         RegLocation rl_src2);
131  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
132                   RegLocation rl_dest, int scale);
133  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
134                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
135  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
136                         RegLocation rl_src1, RegLocation rl_shift);
137  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
138                  RegLocation rl_src2);
139  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
140                  RegLocation rl_src2);
141  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
142                  RegLocation rl_src2);
143  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
144                        RegLocation rl_src2);
145  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
146                       RegLocation rl_src2);
147  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
148  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
149                RegLocation rl_src2);
150  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
151  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
152  bool GenInlinedMinMaxInt(CallInfo* info, bool is_min);
153  bool GenInlinedSqrt(CallInfo* info);
154  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
155  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
156  bool GenInlinedPeek(CallInfo* info, OpSize size);
157  bool GenInlinedPoke(CallInfo* info, OpSize size);
158  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
159  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
160  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
161                 RegLocation rl_src2);
162  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
163                  RegLocation rl_src2);
164  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
165                  RegLocation rl_src2);
166  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
167                     RegLocation rl_src2, bool is_div);
168  // TODO: collapse reg_lo, reg_hi
169  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
170  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
171  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
172  void GenDivZeroCheckWide(RegStorage reg);
173  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
174  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
175  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
176  void GenExitSequence();
177  void GenSpecialExitSequence();
178  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
179  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
180  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
181  void GenSelect(BasicBlock* bb, MIR* mir);
182  bool GenMemBarrier(MemBarrierKind barrier_kind);
183  void GenMoveException(RegLocation rl_dest);
184  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
185                                     int first_bit, int second_bit);
186  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
187  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
188  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
189  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
190  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
191
192  /*
193   * @brief Generate a two address long operation with a constant value
194   * @param rl_dest location of result
195   * @param rl_src constant source operand
196   * @param op Opcode to be generated
197   * @return success or not
198   */
199  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
200  /*
201   * @brief Generate a three address long operation with a constant value
202   * @param rl_dest location of result
203   * @param rl_src1 source operand
204   * @param rl_src2 constant source operand
205   * @param op Opcode to be generated
206   * @return success or not
207   */
208  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
209                      Instruction::Code op);
210
211  /**
212   * @brief Generate a long arithmetic operation.
213   * @param rl_dest The destination.
214   * @param rl_src1 First operand.
215   * @param rl_src2 Second operand.
216   * @param op The DEX opcode for the operation.
217   * @param is_commutative The sources can be swapped if needed.
218   */
219  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
220                            Instruction::Code op, bool is_commutative);
221
222  /**
223   * @brief Generate a two operand long arithmetic operation.
224   * @param rl_dest The destination.
225   * @param rl_src Second operand.
226   * @param op The DEX opcode for the operation.
227   */
228  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
229
230  /**
231   * @brief Generate a long operation.
232   * @param rl_dest The destination.  Must be in a register
233   * @param rl_src The other operand.  May be in a register or in memory.
234   * @param op The DEX opcode for the operation.
235   */
236  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
237
238  /**
239   * @brief Implement instanceof a final class with x86 specific code.
240   * @param use_declaring_class 'true' if we can use the class itself.
241   * @param type_idx Type index to use if use_declaring_class is 'false'.
242   * @param rl_dest Result to be set to 0 or 1.
243   * @param rl_src Object to be tested.
244   */
245  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
246                          RegLocation rl_src);
247  /*
248   *
249   * @brief Implement Set up instanceof a class with x86 specific code.
250   * @param needs_access_check 'true' if we must check the access.
251   * @param type_known_final 'true' if the type is known to be a final class.
252   * @param type_known_abstract 'true' if the type is known to be an abstract class.
253   * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
254   * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
255   * @param type_idx Type index to use if use_declaring_class is 'false'.
256   * @param rl_dest Result to be set to 0 or 1.
257   * @param rl_src Object to be tested.
258   */
259  void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
260                                  bool type_known_abstract, bool use_declaring_class,
261                                  bool can_assume_type_is_in_dex_cache,
262                                  uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
263
264  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
265                      RegLocation rl_src1, RegLocation rl_shift);
266
267  // Single operation generators.
268  LIR* OpUnconditionalBranch(LIR* target);
269  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
270  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
271  LIR* OpCondBranch(ConditionCode cc, LIR* target);
272  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
273  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
274  LIR* OpIT(ConditionCode cond, const char* guide);
275  void OpEndIT(LIR* it);
276  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
277  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
278  LIR* OpReg(OpKind op, RegStorage r_dest_src);
279  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
280  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
281  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
282  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
283  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
284  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
285  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
286  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
287  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
288  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
289  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
290  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
291  LIR* OpTestSuspend(LIR* target);
292  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
293  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
294  LIR* OpVldm(RegStorage r_base, int count);
295  LIR* OpVstm(RegStorage r_base, int count);
296  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
297  void OpRegCopyWide(RegStorage dest, RegStorage src);
298  void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
299  void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
300
301  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
302  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
303  void SpillCoreRegs();
304  void UnSpillCoreRegs();
305  static const X86EncodingMap EncodingMap[kX86Last];
306  bool InexpensiveConstantInt(int32_t value);
307  bool InexpensiveConstantFloat(int32_t value);
308  bool InexpensiveConstantLong(int64_t value);
309  bool InexpensiveConstantDouble(int64_t value);
310
311  /*
312   * @brief Should try to optimize for two address instructions?
313   * @return true if we try to avoid generating three operand instructions.
314   */
315  virtual bool GenerateTwoOperandInstructions() const { return true; }
316
317  /*
318   * @brief x86 specific codegen for int operations.
319   * @param opcode Operation to perform.
320   * @param rl_dest Destination for the result.
321   * @param rl_lhs Left hand operand.
322   * @param rl_rhs Right hand operand.
323   */
324  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
325                     RegLocation rl_rhs);
326
327  /*
328   * @brief Dump a RegLocation using printf
329   * @param loc Register location to dump
330   */
331  static void DumpRegLocation(RegLocation loc);
332
333  /*
334   * @brief Load the Method* of a dex method into the register.
335   * @param target_method The MethodReference of the method to be invoked.
336   * @param type How the method will be invoked.
337   * @param register that will contain the code address.
338   * @note register will be passed to TargetReg to get physical register.
339   */
340  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
341                         SpecialTargetRegister symbolic_reg);
342
343  /*
344   * @brief Load the Class* of a Dex Class type into the register.
345   * @param type How the method will be invoked.
346   * @param register that will contain the code address.
347   * @note register will be passed to TargetReg to get physical register.
348   */
349  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
350
351  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
352
353  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
354                           NextCallInsn next_call_insn,
355                           const MethodReference& target_method,
356                           uint32_t vtable_idx,
357                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
358                           bool skip_this);
359
360  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
361                         NextCallInsn next_call_insn,
362                         const MethodReference& target_method,
363                         uint32_t vtable_idx,
364                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
365                         bool skip_this);
366
367  /*
368   * @brief Generate a relative call to the method that will be patched at link time.
369   * @param target_method The MethodReference of the method to be invoked.
370   * @param type How the method will be invoked.
371   * @returns Call instruction
372   */
373  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
374
375  /*
376   * @brief Handle x86 specific literals
377   */
378  void InstallLiteralPools();
379
380  /*
381   * @brief Generate the debug_frame CFI information.
382   * @returns pointer to vector containing CFE information
383   */
384  static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
385
386  /*
387   * @brief Generate the debug_frame FDE information.
388   * @returns pointer to vector containing CFE information
389   */
390  std::vector<uint8_t>* ReturnCallFrameInformation();
391
392 protected:
393  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
394                     int32_t raw_base, int32_t displacement);
395  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
396  void EmitPrefix(const X86EncodingMap* entry,
397                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
398  void EmitOpcode(const X86EncodingMap* entry);
399  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
400                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
401  void EmitDisp(uint8_t base, int32_t disp);
402  void EmitModrmThread(uint8_t reg_or_opcode);
403  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
404  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
405                        int32_t disp);
406  void EmitImm(const X86EncodingMap* entry, int64_t imm);
407  void EmitNullary(const X86EncodingMap* entry);
408  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
409  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
410  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
411  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
412                   int32_t disp);
413  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
414  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
415  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
416                    int32_t raw_index, int scale, int32_t disp);
417  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
418                    int32_t disp, int32_t raw_reg);
419  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
420  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
421                    int32_t raw_disp, int32_t imm);
422  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
423  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
424  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
425  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
426                     int32_t imm);
427  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
428                     int32_t imm);
429  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
430  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
431  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
432  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
433  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
434  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
435  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
436  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
437  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
438  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
439  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
440                      int32_t cc);
441
442  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
443  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
444  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
445  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
446  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
447  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
448                 int32_t raw_index, int scale, int32_t table_or_disp);
449  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
450  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
451  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
452                                int64_t val, ConditionCode ccode);
453  void GenConstWide(RegLocation rl_dest, int64_t value);
454
455  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
456
457  /*
458   * @brief Ensure that a temporary register is byte addressable.
459   * @returns a temporary guarenteed to be byte addressable.
460   */
461  virtual RegStorage AllocateByteRegister();
462
463  /*
464   * @brief Check if a register is byte addressable.
465   * @returns true if a register is byte addressable.
466   */
467  bool IsByteRegister(RegStorage reg);
468
469  /*
470   * @brief generate inline code for fast case of Strng.indexOf.
471   * @param info Call parameters
472   * @param zero_based 'true' if the index into the string is 0.
473   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
474   * generated.
475   */
476  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
477
478  /*
479   * @brief Load 128 bit constant into vector register.
480   * @param bb The basic block in which the MIR is from.
481   * @param mir The MIR whose opcode is kMirConstVector
482   * @note vA is the TypeSize for the register.
483   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
484   */
485  void GenConst128(BasicBlock* bb, MIR* mir);
486
487  /*
488   * @brief MIR to move a vectorized register to another.
489   * @param bb The basic block in which the MIR is from.
490   * @param mir The MIR whose opcode is kMirConstVector.
491   * @note vA: TypeSize
492   * @note vB: destination
493   * @note vC: source
494   */
495  void GenMoveVector(BasicBlock *bb, MIR *mir);
496
497  /*
498   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
499   * @param bb The basic block in which the MIR is from.
500   * @param mir The MIR whose opcode is kMirConstVector.
501   * @note vA: TypeSize
502   * @note vB: destination and source
503   * @note vC: source
504   */
505  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
506
507  /*
508   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
509   * @param bb The basic block in which the MIR is from.
510   * @param mir The MIR whose opcode is kMirConstVector.
511   * @note vA: TypeSize
512   * @note vB: destination and source
513   * @note vC: source
514   */
515  void GenAddVector(BasicBlock *bb, MIR *mir);
516
517  /*
518   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
519   * @param bb The basic block in which the MIR is from.
520   * @param mir The MIR whose opcode is kMirConstVector.
521   * @note vA: TypeSize
522   * @note vB: destination and source
523   * @note vC: source
524   */
525  void GenSubtractVector(BasicBlock *bb, MIR *mir);
526
527  /*
528   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
529   * @param bb The basic block in which the MIR is from.
530   * @param mir The MIR whose opcode is kMirConstVector.
531   * @note vA: TypeSize
532   * @note vB: destination and source
533   * @note vC: immediate
534   */
535  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
536
537  /*
538   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
539   * @param bb The basic block in which the MIR is from.
540   * @param mir The MIR whose opcode is kMirConstVector.
541   * @note vA: TypeSize
542   * @note vB: destination and source
543   * @note vC: immediate
544   */
545  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
546
547  /*
548   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
549   * @param bb The basic block in which the MIR is from..
550   * @param mir The MIR whose opcode is kMirConstVector.
551   * @note vA: TypeSize
552   * @note vB: destination and source
553   * @note vC: immediate
554   */
555  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
556
557  /*
558   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
559   * @note vA: TypeSize
560   * @note vB: destination and source
561   * @note vC: source
562   */
563  void GenAndVector(BasicBlock *bb, MIR *mir);
564
565  /*
566   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
567   * @param bb The basic block in which the MIR is from.
568   * @param mir The MIR whose opcode is kMirConstVector.
569   * @note vA: TypeSize
570   * @note vB: destination and source
571   * @note vC: source
572   */
573  void GenOrVector(BasicBlock *bb, MIR *mir);
574
575  /*
576   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
577   * @param bb The basic block in which the MIR is from.
578   * @param mir The MIR whose opcode is kMirConstVector.
579   * @note vA: TypeSize
580   * @note vB: destination and source
581   * @note vC: source
582   */
583  void GenXorVector(BasicBlock *bb, MIR *mir);
584
585  /*
586   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
587   * @param bb The basic block in which the MIR is from.
588   * @param mir The MIR whose opcode is kMirConstVector.
589   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
590   * @note vA: TypeSize
591   * @note vB: destination and source VR (not vector register)
592   * @note vC: source (vector register)
593   */
594  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
595
596  /*
597   * @brief Extract a packed element into a single VR.
598   * @param bb The basic block in which the MIR is from.
599   * @param mir The MIR whose opcode is kMirConstVector.
600   * @note vA: TypeSize
601   * @note vB: destination VR (not vector register)
602   * @note vC: source (vector register)
603   * @note arg[0]: The index to use for extraction from vector register (which packed element).
604   */
605  void GenReduceVector(BasicBlock *bb, MIR *mir);
606
607  /*
608   * @brief Create a vector value, with all TypeSize values equal to vC
609   * @param bb The basic block in which the MIR is from.
610   * @param mir The MIR whose opcode is kMirConstVector.
611   * @note vA: TypeSize.
612   * @note vB: destination vector register.
613   * @note vC: source VR (not vector register).
614   */
615  void GenSetVector(BasicBlock *bb, MIR *mir);
616
617  /*
618   * @brief Generate code for a vector opcode.
619   * @param bb The basic block in which the MIR is from.
620   * @param mir The MIR whose opcode is a non-standard opcode.
621   */
622  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
623
624  /*
625   * @brief Return the correct x86 opcode for the Dex operation
626   * @param op Dex opcode for the operation
627   * @param loc Register location of the operand
628   * @param is_high_op 'true' if this is an operation on the high word
629   * @param value Immediate value for the operation.  Used for byte variants
630   * @returns the correct x86 opcode to perform the operation
631   */
632  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
633
634  /*
635   * @brief Return the correct x86 opcode for the Dex operation
636   * @param op Dex opcode for the operation
637   * @param dest location of the destination.  May be register or memory.
638   * @param rhs Location for the rhs of the operation.  May be in register or memory.
639   * @param is_high_op 'true' if this is an operation on the high word
640   * @returns the correct x86 opcode to perform the operation
641   * @note at most one location may refer to memory
642   */
643  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
644                      bool is_high_op);
645
646  /*
647   * @brief Is this operation a no-op for this opcode and value
648   * @param op Dex opcode for the operation
649   * @param value Immediate value for the operation.
650   * @returns 'true' if the operation will have no effect
651   */
652  bool IsNoOp(Instruction::Code op, int32_t value);
653
654  /**
655   * @brief Calculate magic number and shift for a given divisor
656   * @param divisor divisor number for calculation
657   * @param magic hold calculated magic number
658   * @param shift hold calculated shift
659   */
660  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
661
662  /*
663   * @brief Generate an integer div or rem operation.
664   * @param rl_dest Destination Location.
665   * @param rl_src1 Numerator Location.
666   * @param rl_src2 Divisor Location.
667   * @param is_div 'true' if this is a division, 'false' for a remainder.
668   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
669   */
670  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
671                        bool is_div, bool check_zero);
672
673  /*
674   * @brief Generate an integer div or rem operation by a literal.
675   * @param rl_dest Destination Location.
676   * @param rl_src Numerator Location.
677   * @param lit Divisor.
678   * @param is_div 'true' if this is a division, 'false' for a remainder.
679   */
680  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
681
682  /*
683   * Generate code to implement long shift operations.
684   * @param opcode The DEX opcode to specify the shift type.
685   * @param rl_dest The destination.
686   * @param rl_src The value to be shifted.
687   * @param shift_amount How much to shift.
688   * @returns the RegLocation of the result.
689   */
690  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
691                                RegLocation rl_src, int shift_amount);
692  /*
693   * Generate an imul of a register by a constant or a better sequence.
694   * @param dest Destination Register.
695   * @param src Source Register.
696   * @param val Constant multiplier.
697   */
698  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
699
700  /*
701   * Generate an imul of a memory location by a constant or a better sequence.
702   * @param dest Destination Register.
703   * @param sreg Symbolic register.
704   * @param displacement Displacement on stack of Symbolic Register.
705   * @param val Constant multiplier.
706   */
707  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
708
709  /*
710   * @brief Compare memory to immediate, and branch if condition true.
711   * @param cond The condition code that when true will branch to the target.
712   * @param temp_reg A temporary register that can be used if compare memory is not
713   * supported by the architecture.
714   * @param base_reg The register holding the base address.
715   * @param offset The offset from the base.
716   * @param check_value The immediate to compare to.
717   */
718  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
719                         int offset, int check_value, LIR* target);
720
721  /*
722   * Can this operation be using core registers without temporaries?
723   * @param rl_lhs Left hand operand.
724   * @param rl_rhs Right hand operand.
725   * @returns 'true' if the operation can proceed without needing temporary regs.
726   */
727  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
728
729  /**
730   * @brief Generates inline code for conversion of long to FP by using x87/
731   * @param rl_dest The destination of the FP.
732   * @param rl_src The source of the long.
733   * @param is_double 'true' if dealing with double, 'false' for float.
734   */
735  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
736
737  /*
738   * @brief Perform MIR analysis before compiling method.
739   * @note Invokes Mir2LiR::Materialize after analysis.
740   */
741  void Materialize();
742
743  /*
744   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
745   * without regard to data type.  In practice, this can result in UpdateLoc returning a
746   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
747   * which can inexpensively move data between core and float registers, this can often be a win.
748   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
749   * take a register class argument - and will return an in-register location record only if
750   * the value is live in a temp register of the correct class.  Additionally, if the value is in
751   * a temp register of the wrong register class, it will be clobbered.
752   */
753  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
754  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
755
756  /*
757   * @brief Analyze MIR before generating code, to prepare for the code generation.
758   */
759  void AnalyzeMIR();
760
761  /*
762   * @brief Analyze one basic block.
763   * @param bb Basic block to analyze.
764   */
765  void AnalyzeBB(BasicBlock * bb);
766
767  /*
768   * @brief Analyze one extended MIR instruction
769   * @param opcode MIR instruction opcode.
770   * @param bb Basic block containing instruction.
771   * @param mir Extended instruction to analyze.
772   */
773  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
774
775  /*
776   * @brief Analyze one MIR instruction
777   * @param opcode MIR instruction opcode.
778   * @param bb Basic block containing instruction.
779   * @param mir Instruction to analyze.
780   */
781  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
782
783  /*
784   * @brief Analyze one MIR float/double instruction
785   * @param opcode MIR instruction opcode.
786   * @param bb Basic block containing instruction.
787   * @param mir Instruction to analyze.
788   */
789  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
790
791  /*
792   * @brief Analyze one use of a double operand.
793   * @param rl_use Double RegLocation for the operand.
794   */
795  void AnalyzeDoubleUse(RegLocation rl_use);
796
797  /*
798   * @brief Analyze one invoke-static MIR instruction
799   * @param opcode MIR instruction opcode.
800   * @param bb Basic block containing instruction.
801   * @param mir Instruction to analyze.
802   */
803  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
804
805  // Information derived from analysis of MIR
806
807  // The compiler temporary for the code address of the method.
808  CompilerTemp *base_of_code_;
809
810  // Have we decided to compute a ptr to code and store in temporary VR?
811  bool store_method_addr_;
812
813  // Have we used the stored method address?
814  bool store_method_addr_used_;
815
816  // Instructions to remove if we didn't use the stored method address.
817  LIR* setup_method_address_[2];
818
819  // Instructions needing patching with Method* values.
820  GrowableArray<LIR*> method_address_insns_;
821
822  // Instructions needing patching with Class Type* values.
823  GrowableArray<LIR*> class_type_address_insns_;
824
825  // Instructions needing patching with PC relative code addresses.
826  GrowableArray<LIR*> call_method_insns_;
827
828  // Prologue decrement of stack pointer.
829  LIR* stack_decrement_;
830
831  // Epilogue increment of stack pointer.
832  LIR* stack_increment_;
833
834  // The list of const vector literals.
835  LIR *const_vectors_;
836
837  /*
838   * @brief Search for a matching vector literal
839   * @param mir A kMirOpConst128b MIR instruction to match.
840   * @returns pointer to matching LIR constant, or nullptr if not found.
841   */
842  LIR *ScanVectorLiteral(MIR *mir);
843
844  /*
845   * @brief Add a constant vector literal
846   * @param mir A kMirOpConst128b MIR instruction to match.
847   */
848  LIR *AddVectorLiteral(MIR *mir);
849
850  InToRegStorageMapping in_to_reg_storage_mapping_;
851};
852
853}  // namespace art
854
855#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
856