codegen_x86.h revision e39c54ea575ec710d5e84277fcdcc049f8acb3c9
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "dex/quick/mir_to_lir.h"
22#include "x86_lir.h"
23
24#include <map>
25#include <vector>
26
27namespace art {
28
29class X86Mir2Lir : public Mir2Lir {
30 protected:
31  class InToRegStorageMapper {
32   public:
33    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
34    virtual ~InToRegStorageMapper() {}
35  };
36
37  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
38   public:
39    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
40    virtual ~InToRegStorageX86_64Mapper() {}
41    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
42   protected:
43    Mir2Lir* ml_;
44   private:
45    int cur_core_reg_;
46    int cur_fp_reg_;
47  };
48
49  class InToRegStorageMapping {
50   public:
51    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
52    initialized_(false) {}
53    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
54    int GetMaxMappedIn() { return max_mapped_in_; }
55    bool IsThereStackMapped() { return is_there_stack_mapped_; }
56    RegStorage Get(int in_position);
57    bool IsInitialized() { return initialized_; }
58   private:
59    std::map<int, RegStorage> mapping_;
60    int max_mapped_in_;
61    bool is_there_stack_mapped_;
62    bool initialized_;
63  };
64
65  class ExplicitTempRegisterLock {
66  public:
67    ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir, int n_regs, ...);
68    ~ExplicitTempRegisterLock();
69  protected:
70    std::vector<RegStorage> temp_regs_;
71    X86Mir2Lir* const mir_to_lir_;
72  };
73
74 public:
75  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
76
77  // Required for target - codegen helpers.
78  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
79                          RegLocation rl_dest, int lit) OVERRIDE;
80  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
81  LIR* CheckSuspendUsingLoad() OVERRIDE;
82  RegStorage LoadHelper(QuickEntrypointEnum trampoline) OVERRIDE;
83  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
84                    OpSize size, VolatileKind is_volatile) OVERRIDE;
85  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
86                       OpSize size) OVERRIDE;
87  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
88  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
89  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
90                     OpSize size, VolatileKind is_volatile) OVERRIDE;
91  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
92                        OpSize size) OVERRIDE;
93  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) OVERRIDE;
94  void GenImplicitNullCheck(RegStorage reg, int opt_flags) OVERRIDE;
95
96  // Required for target - register utilities.
97  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
98  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
99    if (wide_kind == kWide) {
100      if (cu_->target64) {
101        return As64BitReg(TargetReg32(symbolic_reg));
102      } else {
103        // x86: construct a pair.
104        DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
105               (kFArg0 <= symbolic_reg && symbolic_reg < kFArg3) ||
106               (kRet0 == symbolic_reg));
107        return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
108                                 TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
109      }
110    } else if (wide_kind == kRef && cu_->target64) {
111      return As64BitReg(TargetReg32(symbolic_reg));
112    } else {
113      return TargetReg32(symbolic_reg);
114    }
115  }
116  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
117    return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
118  }
119
120  RegStorage GetArgMappingToPhysicalReg(int arg_num) OVERRIDE;
121
122  RegLocation GetReturnAlt() OVERRIDE;
123  RegLocation GetReturnWideAlt() OVERRIDE;
124  RegLocation LocCReturn() OVERRIDE;
125  RegLocation LocCReturnRef() OVERRIDE;
126  RegLocation LocCReturnDouble() OVERRIDE;
127  RegLocation LocCReturnFloat() OVERRIDE;
128  RegLocation LocCReturnWide() OVERRIDE;
129
130  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
131  void AdjustSpillMask() OVERRIDE;
132  void ClobberCallerSave() OVERRIDE;
133  void FreeCallTemps() OVERRIDE;
134  void LockCallTemps() OVERRIDE;
135
136  void CompilerInitializeRegAlloc() OVERRIDE;
137  int VectorRegisterSize() OVERRIDE;
138  int NumReservableVectorRegisters(bool long_or_fp) OVERRIDE;
139
140  // Required for target - miscellaneous.
141  void AssembleLIR() OVERRIDE;
142  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
143  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
144                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
145  const char* GetTargetInstFmt(int opcode) OVERRIDE;
146  const char* GetTargetInstName(int opcode) OVERRIDE;
147  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) OVERRIDE;
148  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
149  uint64_t GetTargetInstFlags(int opcode) OVERRIDE;
150  size_t GetInsnSize(LIR* lir) OVERRIDE;
151  bool IsUnconditionalBranch(LIR* lir) OVERRIDE;
152
153  // Get the register class for load/store of a field.
154  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
155
156  // Required for target - Dalvik-level generators.
157  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
158                   RegLocation rl_dest, int scale) OVERRIDE;
159  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
160                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) OVERRIDE;
161
162  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
163                        RegLocation rl_src2) OVERRIDE;
164  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
165                       RegLocation rl_src2) OVERRIDE;
166  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
167                RegLocation rl_src2) OVERRIDE;
168  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
169
170  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) OVERRIDE;
171  bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) OVERRIDE;
172  bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) OVERRIDE;
173  bool GenInlinedReverseBits(CallInfo* info, OpSize size) OVERRIDE;
174  bool GenInlinedSqrt(CallInfo* info) OVERRIDE;
175  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
176  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
177  bool GenInlinedPeek(CallInfo* info, OpSize size) OVERRIDE;
178  bool GenInlinedPoke(CallInfo* info, OpSize size) OVERRIDE;
179  bool GenInlinedCharAt(CallInfo* info) OVERRIDE;
180
181  // Long instructions.
182  void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
183                      RegLocation rl_src2) OVERRIDE;
184  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
185                         RegLocation rl_src2) OVERRIDE;
186  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
187                         RegLocation rl_src1, RegLocation rl_shift) OVERRIDE;
188  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE;
189  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
190  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
191                      RegLocation rl_src1, RegLocation rl_shift) OVERRIDE;
192
193  /*
194   * @brief Generate a two address long operation with a constant value
195   * @param rl_dest location of result
196   * @param rl_src constant source operand
197   * @param op Opcode to be generated
198   * @return success or not
199   */
200  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
201
202  /*
203   * @brief Generate a three address long operation with a constant value
204   * @param rl_dest location of result
205   * @param rl_src1 source operand
206   * @param rl_src2 constant source operand
207   * @param op Opcode to be generated
208   * @return success or not
209   */
210  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
211                      Instruction::Code op);
212  /**
213   * @brief Generate a long arithmetic operation.
214   * @param rl_dest The destination.
215   * @param rl_src1 First operand.
216   * @param rl_src2 Second operand.
217   * @param op The DEX opcode for the operation.
218   * @param is_commutative The sources can be swapped if needed.
219   */
220  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
221                            Instruction::Code op, bool is_commutative);
222
223  /**
224   * @brief Generate a two operand long arithmetic operation.
225   * @param rl_dest The destination.
226   * @param rl_src Second operand.
227   * @param op The DEX opcode for the operation.
228   */
229  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
230
231  /**
232   * @brief Generate a long operation.
233   * @param rl_dest The destination.  Must be in a register
234   * @param rl_src The other operand.  May be in a register or in memory.
235   * @param op The DEX opcode for the operation.
236   */
237  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
238
239
240  // TODO: collapse reg_lo, reg_hi
241  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div)
242      OVERRIDE;
243  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) OVERRIDE;
244  void GenDivZeroCheckWide(RegStorage reg) OVERRIDE;
245  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE;
246  void GenExitSequence() OVERRIDE;
247  void GenSpecialExitSequence() OVERRIDE;
248  void GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
249  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) OVERRIDE;
250  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) OVERRIDE;
251  void GenSelect(BasicBlock* bb, MIR* mir) OVERRIDE;
252  void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
253                        int32_t true_val, int32_t false_val, RegStorage rs_dest,
254                        int dest_reg_class) OVERRIDE;
255  bool GenMemBarrier(MemBarrierKind barrier_kind) OVERRIDE;
256  void GenMoveException(RegLocation rl_dest) OVERRIDE;
257  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
258                                     int first_bit, int second_bit) OVERRIDE;
259  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
260  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
261  void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
262  void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
263
264  /**
265   * @brief Implement instanceof a final class with x86 specific code.
266   * @param use_declaring_class 'true' if we can use the class itself.
267   * @param type_idx Type index to use if use_declaring_class is 'false'.
268   * @param rl_dest Result to be set to 0 or 1.
269   * @param rl_src Object to be tested.
270   */
271  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
272                          RegLocation rl_src) OVERRIDE;
273
274  // Single operation generators.
275  LIR* OpUnconditionalBranch(LIR* target) OVERRIDE;
276  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) OVERRIDE;
277  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) OVERRIDE;
278  LIR* OpCondBranch(ConditionCode cc, LIR* target) OVERRIDE;
279  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) OVERRIDE;
280  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE;
281  LIR* OpIT(ConditionCode cond, const char* guide) OVERRIDE;
282  void OpEndIT(LIR* it) OVERRIDE;
283  LIR* OpMem(OpKind op, RegStorage r_base, int disp) OVERRIDE;
284  LIR* OpPcRelLoad(RegStorage reg, LIR* target) OVERRIDE;
285  LIR* OpReg(OpKind op, RegStorage r_dest_src) OVERRIDE;
286  void OpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE;
287  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) OVERRIDE;
288  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) OVERRIDE;
289  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) OVERRIDE;
290  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) OVERRIDE;
291  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) OVERRIDE;
292  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) OVERRIDE;
293  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) OVERRIDE;
294  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) OVERRIDE;
295  LIR* OpTestSuspend(LIR* target) OVERRIDE;
296  LIR* OpVldm(RegStorage r_base, int count) OVERRIDE;
297  LIR* OpVstm(RegStorage r_base, int count) OVERRIDE;
298  void OpRegCopyWide(RegStorage dest, RegStorage src) OVERRIDE;
299  bool GenInlinedCurrentThread(CallInfo* info) OVERRIDE;
300
301  bool InexpensiveConstantInt(int32_t value) OVERRIDE;
302  bool InexpensiveConstantFloat(int32_t value) OVERRIDE;
303  bool InexpensiveConstantLong(int64_t value) OVERRIDE;
304  bool InexpensiveConstantDouble(int64_t value) OVERRIDE;
305
306  /*
307   * @brief Should try to optimize for two address instructions?
308   * @return true if we try to avoid generating three operand instructions.
309   */
310  virtual bool GenerateTwoOperandInstructions() const { return true; }
311
312  /*
313   * @brief x86 specific codegen for int operations.
314   * @param opcode Operation to perform.
315   * @param rl_dest Destination for the result.
316   * @param rl_lhs Left hand operand.
317   * @param rl_rhs Right hand operand.
318   */
319  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
320                     RegLocation rl_rhs) OVERRIDE;
321
322  /*
323   * @brief Load the Method* of a dex method into the register.
324   * @param target_method The MethodReference of the method to be invoked.
325   * @param type How the method will be invoked.
326   * @param register that will contain the code address.
327   * @note register will be passed to TargetReg to get physical register.
328   */
329  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
330                         SpecialTargetRegister symbolic_reg) OVERRIDE;
331
332  /*
333   * @brief Load the Class* of a Dex Class type into the register.
334   * @param dex DexFile that contains the class type.
335   * @param type How the method will be invoked.
336   * @param register that will contain the code address.
337   * @note register will be passed to TargetReg to get physical register.
338   */
339  void LoadClassType(const DexFile& dex_file, uint32_t type_idx,
340                     SpecialTargetRegister symbolic_reg) OVERRIDE;
341
342  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE;
343
344  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
345                           NextCallInsn next_call_insn,
346                           const MethodReference& target_method,
347                           uint32_t vtable_idx,
348                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
349                           bool skip_this) OVERRIDE;
350
351  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
352                         NextCallInsn next_call_insn,
353                         const MethodReference& target_method,
354                         uint32_t vtable_idx,
355                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
356                         bool skip_this) OVERRIDE;
357
358  /*
359   * @brief Generate a relative call to the method that will be patched at link time.
360   * @param target_method The MethodReference of the method to be invoked.
361   * @param type How the method will be invoked.
362   * @returns Call instruction
363   */
364  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
365
366  /*
367   * @brief Handle x86 specific literals
368   */
369  void InstallLiteralPools() OVERRIDE;
370
371  /*
372   * @brief Generate the debug_frame FDE information.
373   * @returns pointer to vector containing CFE information
374   */
375  std::vector<uint8_t>* ReturnFrameDescriptionEntry() OVERRIDE;
376
377  LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) OVERRIDE;
378
379 protected:
380  RegStorage TargetReg32(SpecialTargetRegister reg);
381  // Casting of RegStorage
382  RegStorage As32BitReg(RegStorage reg) {
383    DCHECK(!reg.IsPair());
384    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
385      if (kFailOnSizeError) {
386        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
387      } else {
388        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
389        return reg;
390      }
391    }
392    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
393                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
394    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
395                             ->GetReg().GetReg(),
396              ret_val.GetReg());
397    return ret_val;
398  }
399
400  RegStorage As64BitReg(RegStorage reg) {
401    DCHECK(!reg.IsPair());
402    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
403      if (kFailOnSizeError) {
404        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
405      } else {
406        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
407        return reg;
408      }
409    }
410    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
411                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
412    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
413                             ->GetReg().GetReg(),
414              ret_val.GetReg());
415    return ret_val;
416  }
417
418  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
419                           RegStorage r_dest, OpSize size);
420  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
421                            RegStorage r_src, OpSize size, int opt_flags = 0);
422
423  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
424
425  int AssignInsnOffsets();
426  void AssignOffsets();
427  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
428
429  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
430                     int32_t raw_base, int32_t displacement);
431  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
432  void EmitPrefix(const X86EncodingMap* entry,
433                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
434  void EmitOpcode(const X86EncodingMap* entry);
435  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
436                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
437  void EmitDisp(uint8_t base, int32_t disp);
438  void EmitModrmThread(uint8_t reg_or_opcode);
439  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
440  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
441                        int32_t disp);
442  void EmitImm(const X86EncodingMap* entry, int64_t imm);
443  void EmitNullary(const X86EncodingMap* entry);
444  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
445  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
446  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
447  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
448                   int32_t disp);
449  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
450  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
451  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
452                    int32_t raw_index, int scale, int32_t disp);
453  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
454                    int32_t disp, int32_t raw_reg);
455  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
456  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
457                    int32_t raw_disp, int32_t imm);
458  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
459  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
460  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
461  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
462                     int32_t imm);
463  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
464                     int32_t imm);
465  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
466  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
467  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
468  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
469  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
470  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
471  void EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
472                         int32_t raw_cl);
473  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
474  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
475  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
476  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
477  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
478                      int32_t cc);
479
480  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
481  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
482  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
483  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
484  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
485  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
486                 int32_t raw_index, int scale, int32_t table_or_disp);
487  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
488  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
489  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
490                                int64_t val, ConditionCode ccode);
491  void GenConstWide(RegLocation rl_dest, int64_t value);
492  void GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2);
493  void GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2);
494  void GenShiftByteVector(BasicBlock *bb, MIR *mir);
495  void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3,
496                             uint32_t m4);
497  void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2,
498                          uint32_t m3, uint32_t m4);
499  void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
500  virtual void LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src, OpSize opsize,
501                                  int op_mov);
502
503  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
504
505  /*
506   * @brief Ensure that a temporary register is byte addressable.
507   * @returns a temporary guarenteed to be byte addressable.
508   */
509  virtual RegStorage AllocateByteRegister();
510
511  /*
512   * @brief Use a wide temporary as a 128-bit register
513   * @returns a 128-bit temporary register.
514   */
515  virtual RegStorage Get128BitRegister(RegStorage reg);
516
517  /*
518   * @brief Check if a register is byte addressable.
519   * @returns true if a register is byte addressable.
520   */
521  bool IsByteRegister(RegStorage reg);
522
523  void GenDivRemLongLit(RegLocation rl_dest, RegLocation rl_src, int64_t imm, bool is_div);
524
525  bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
526
527  /*
528   * @brief generate inline code for fast case of Strng.indexOf.
529   * @param info Call parameters
530   * @param zero_based 'true' if the index into the string is 0.
531   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
532   * generated.
533   */
534  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
535
536  /**
537   * @brief Used to reserve a range of vector registers.
538   * @see kMirOpReserveVectorRegisters
539   * @param mir The extended MIR for reservation.
540   */
541  void ReserveVectorRegisters(MIR* mir);
542
543  /**
544   * @brief Used to return a range of vector registers.
545   * @see kMirOpReturnVectorRegisters
546   * @param mir The extended MIR for returning vector regs.
547   */
548  void ReturnVectorRegisters(MIR* mir);
549
550  /*
551   * @brief Load 128 bit constant into vector register.
552   * @param bb The basic block in which the MIR is from.
553   * @param mir The MIR whose opcode is kMirConstVector
554   * @note vA is the TypeSize for the register.
555   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
556   */
557  void GenConst128(BasicBlock* bb, MIR* mir);
558
559  /*
560   * @brief MIR to move a vectorized register to another.
561   * @param bb The basic block in which the MIR is from.
562   * @param mir The MIR whose opcode is kMirConstVector.
563   * @note vA: TypeSize
564   * @note vB: destination
565   * @note vC: source
566   */
567  void GenMoveVector(BasicBlock *bb, MIR *mir);
568
569  /*
570   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know
571   * the type of the vector.
572   * @param bb The basic block in which the MIR is from.
573   * @param mir The MIR whose opcode is kMirConstVector.
574   * @note vA: TypeSize
575   * @note vB: destination and source
576   * @note vC: source
577   */
578  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
579
580  /*
581   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the
582   * type of the vector.
583   * @param bb The basic block in which the MIR is from.
584   * @param mir The MIR whose opcode is kMirConstVector.
585   * @note vA: TypeSize
586   * @note vB: destination and source
587   * @note vC: source
588   */
589  void GenAddVector(BasicBlock *bb, MIR *mir);
590
591  /*
592   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the
593   * type of the vector.
594   * @param bb The basic block in which the MIR is from.
595   * @param mir The MIR whose opcode is kMirConstVector.
596   * @note vA: TypeSize
597   * @note vB: destination and source
598   * @note vC: source
599   */
600  void GenSubtractVector(BasicBlock *bb, MIR *mir);
601
602  /*
603   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the
604   * type of the vector.
605   * @param bb The basic block in which the MIR is from.
606   * @param mir The MIR whose opcode is kMirConstVector.
607   * @note vA: TypeSize
608   * @note vB: destination and source
609   * @note vC: immediate
610   */
611  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
612
613  /*
614   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to
615   * know the type of the vector.
616   * @param bb The basic block in which the MIR is from.
617   * @param mir The MIR whose opcode is kMirConstVector.
618   * @note vA: TypeSize
619   * @note vB: destination and source
620   * @note vC: immediate
621   */
622  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
623
624  /*
625   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA
626   * to know the type of the vector.
627   * @param bb The basic block in which the MIR is from..
628   * @param mir The MIR whose opcode is kMirConstVector.
629   * @note vA: TypeSize
630   * @note vB: destination and source
631   * @note vC: immediate
632   */
633  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
634
635  /*
636   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the
637   * type of the vector.
638   * @note vA: TypeSize
639   * @note vB: destination and source
640   * @note vC: source
641   */
642  void GenAndVector(BasicBlock *bb, MIR *mir);
643
644  /*
645   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the
646   * type of the vector.
647   * @param bb The basic block in which the MIR is from.
648   * @param mir The MIR whose opcode is kMirConstVector.
649   * @note vA: TypeSize
650   * @note vB: destination and source
651   * @note vC: source
652   */
653  void GenOrVector(BasicBlock *bb, MIR *mir);
654
655  /*
656   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the
657   * type of the vector.
658   * @param bb The basic block in which the MIR is from.
659   * @param mir The MIR whose opcode is kMirConstVector.
660   * @note vA: TypeSize
661   * @note vB: destination and source
662   * @note vC: source
663   */
664  void GenXorVector(BasicBlock *bb, MIR *mir);
665
666  /*
667   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
668   * @param bb The basic block in which the MIR is from.
669   * @param mir The MIR whose opcode is kMirConstVector.
670   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
671   * @note vA: TypeSize
672   * @note vB: destination and source VR (not vector register)
673   * @note vC: source (vector register)
674   */
675  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
676
677  /*
678   * @brief Extract a packed element into a single VR.
679   * @param bb The basic block in which the MIR is from.
680   * @param mir The MIR whose opcode is kMirConstVector.
681   * @note vA: TypeSize
682   * @note vB: destination VR (not vector register)
683   * @note vC: source (vector register)
684   * @note arg[0]: The index to use for extraction from vector register (which packed element).
685   */
686  void GenReduceVector(BasicBlock *bb, MIR *mir);
687
688  /*
689   * @brief Create a vector value, with all TypeSize values equal to vC
690   * @param bb The basic block in which the MIR is from.
691   * @param mir The MIR whose opcode is kMirConstVector.
692   * @note vA: TypeSize.
693   * @note vB: destination vector register.
694   * @note vC: source VR (not vector register).
695   */
696  void GenSetVector(BasicBlock *bb, MIR *mir);
697
698  /**
699   * @brief Used to generate code for kMirOpPackedArrayGet.
700   * @param bb The basic block of MIR.
701   * @param mir The mir whose opcode is kMirOpPackedArrayGet.
702   */
703  void GenPackedArrayGet(BasicBlock *bb, MIR *mir);
704
705  /**
706   * @brief Used to generate code for kMirOpPackedArrayPut.
707   * @param bb The basic block of MIR.
708   * @param mir The mir whose opcode is kMirOpPackedArrayPut.
709   */
710  void GenPackedArrayPut(BasicBlock *bb, MIR *mir);
711
712  /*
713   * @brief Generate code for a vector opcode.
714   * @param bb The basic block in which the MIR is from.
715   * @param mir The MIR whose opcode is a non-standard opcode.
716   */
717  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
718
719  /*
720   * @brief Return the correct x86 opcode for the Dex operation
721   * @param op Dex opcode for the operation
722   * @param loc Register location of the operand
723   * @param is_high_op 'true' if this is an operation on the high word
724   * @param value Immediate value for the operation.  Used for byte variants
725   * @returns the correct x86 opcode to perform the operation
726   */
727  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
728
729  /*
730   * @brief Return the correct x86 opcode for the Dex operation
731   * @param op Dex opcode for the operation
732   * @param dest location of the destination.  May be register or memory.
733   * @param rhs Location for the rhs of the operation.  May be in register or memory.
734   * @param is_high_op 'true' if this is an operation on the high word
735   * @returns the correct x86 opcode to perform the operation
736   * @note at most one location may refer to memory
737   */
738  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
739                      bool is_high_op);
740
741  /*
742   * @brief Is this operation a no-op for this opcode and value
743   * @param op Dex opcode for the operation
744   * @param value Immediate value for the operation.
745   * @returns 'true' if the operation will have no effect
746   */
747  bool IsNoOp(Instruction::Code op, int32_t value);
748
749  /**
750   * @brief Calculate magic number and shift for a given divisor
751   * @param divisor divisor number for calculation
752   * @param magic hold calculated magic number
753   * @param shift hold calculated shift
754   * @param is_long 'true' if divisor is jlong, 'false' for jint.
755   */
756  void CalculateMagicAndShift(int64_t divisor, int64_t& magic, int& shift, bool is_long);
757
758  /*
759   * @brief Generate an integer div or rem operation.
760   * @param rl_dest Destination Location.
761   * @param rl_src1 Numerator Location.
762   * @param rl_src2 Divisor Location.
763   * @param is_div 'true' if this is a division, 'false' for a remainder.
764   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
765   */
766  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
767                        bool is_div, bool check_zero);
768
769  /*
770   * @brief Generate an integer div or rem operation by a literal.
771   * @param rl_dest Destination Location.
772   * @param rl_src Numerator Location.
773   * @param lit Divisor.
774   * @param is_div 'true' if this is a division, 'false' for a remainder.
775   */
776  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
777
778  /*
779   * Generate code to implement long shift operations.
780   * @param opcode The DEX opcode to specify the shift type.
781   * @param rl_dest The destination.
782   * @param rl_src The value to be shifted.
783   * @param shift_amount How much to shift.
784   * @returns the RegLocation of the result.
785   */
786  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
787                                RegLocation rl_src, int shift_amount);
788  /*
789   * Generate an imul of a register by a constant or a better sequence.
790   * @param dest Destination Register.
791   * @param src Source Register.
792   * @param val Constant multiplier.
793   */
794  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
795
796  /*
797   * Generate an imul of a memory location by a constant or a better sequence.
798   * @param dest Destination Register.
799   * @param sreg Symbolic register.
800   * @param displacement Displacement on stack of Symbolic Register.
801   * @param val Constant multiplier.
802   */
803  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
804
805  /*
806   * @brief Compare memory to immediate, and branch if condition true.
807   * @param cond The condition code that when true will branch to the target.
808   * @param temp_reg A temporary register that can be used if compare memory is not
809   * supported by the architecture.
810   * @param base_reg The register holding the base address.
811   * @param offset The offset from the base.
812   * @param check_value The immediate to compare to.
813   * @param target branch target (or nullptr)
814   * @param compare output for getting LIR for comparison (or nullptr)
815   */
816  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
817                         int offset, int check_value, LIR* target, LIR** compare);
818
819  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
820
821  /*
822   * Can this operation be using core registers without temporaries?
823   * @param rl_lhs Left hand operand.
824   * @param rl_rhs Right hand operand.
825   * @returns 'true' if the operation can proceed without needing temporary regs.
826   */
827  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
828
829  /**
830   * @brief Generates inline code for conversion of long to FP by using x87/
831   * @param rl_dest The destination of the FP.
832   * @param rl_src The source of the long.
833   * @param is_double 'true' if dealing with double, 'false' for float.
834   */
835  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
836
837  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
838  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
839
840  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
841  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
842  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
843  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset);
844  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset);
845  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
846  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
847  void OpTlsCmp(ThreadOffset<4> offset, int val);
848  void OpTlsCmp(ThreadOffset<8> offset, int val);
849
850  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
851
852  // Try to do a long multiplication where rl_src2 is a constant. This simplified setup might fail,
853  // in which case false will be returned.
854  bool GenMulLongConst(RegLocation rl_dest, RegLocation rl_src1, int64_t val);
855  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
856                  RegLocation rl_src2);
857  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
858  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
859  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
860                     RegLocation rl_src2, bool is_div);
861
862  void SpillCoreRegs();
863  void UnSpillCoreRegs();
864  void UnSpillFPRegs();
865  void SpillFPRegs();
866
867  /*
868   * @brief Perform MIR analysis before compiling method.
869   * @note Invokes Mir2LiR::Materialize after analysis.
870   */
871  void Materialize();
872
873  /*
874   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
875   * without regard to data type.  In practice, this can result in UpdateLoc returning a
876   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
877   * which can inexpensively move data between core and float registers, this can often be a win.
878   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
879   * take a register class argument - and will return an in-register location record only if
880   * the value is live in a temp register of the correct class.  Additionally, if the value is in
881   * a temp register of the wrong register class, it will be clobbered.
882   */
883  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
884  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
885
886  /*
887   * @brief Analyze MIR before generating code, to prepare for the code generation.
888   */
889  void AnalyzeMIR();
890
891  /*
892   * @brief Analyze one basic block.
893   * @param bb Basic block to analyze.
894   */
895  void AnalyzeBB(BasicBlock * bb);
896
897  /*
898   * @brief Analyze one extended MIR instruction
899   * @param opcode MIR instruction opcode.
900   * @param bb Basic block containing instruction.
901   * @param mir Extended instruction to analyze.
902   */
903  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
904
905  /*
906   * @brief Analyze one MIR instruction
907   * @param opcode MIR instruction opcode.
908   * @param bb Basic block containing instruction.
909   * @param mir Instruction to analyze.
910   */
911  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
912
913  /*
914   * @brief Analyze one MIR float/double instruction
915   * @param opcode MIR instruction opcode.
916   * @param bb Basic block containing instruction.
917   * @param mir Instruction to analyze.
918   */
919  virtual void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
920
921  /*
922   * @brief Analyze one use of a double operand.
923   * @param rl_use Double RegLocation for the operand.
924   */
925  void AnalyzeDoubleUse(RegLocation rl_use);
926
927  /*
928   * @brief Analyze one invoke-static MIR instruction
929   * @param opcode MIR instruction opcode.
930   * @param bb Basic block containing instruction.
931   * @param mir Instruction to analyze.
932   */
933  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
934
935  // Information derived from analysis of MIR
936
937  // The compiler temporary for the code address of the method.
938  CompilerTemp *base_of_code_;
939
940  // Have we decided to compute a ptr to code and store in temporary VR?
941  bool store_method_addr_;
942
943  // Have we used the stored method address?
944  bool store_method_addr_used_;
945
946  // Instructions to remove if we didn't use the stored method address.
947  LIR* setup_method_address_[2];
948
949  // Instructions needing patching with Method* values.
950  ArenaVector<LIR*> method_address_insns_;
951
952  // Instructions needing patching with Class Type* values.
953  ArenaVector<LIR*> class_type_address_insns_;
954
955  // Instructions needing patching with PC relative code addresses.
956  ArenaVector<LIR*> call_method_insns_;
957
958  // Prologue decrement of stack pointer.
959  LIR* stack_decrement_;
960
961  // Epilogue increment of stack pointer.
962  LIR* stack_increment_;
963
964  // The list of const vector literals.
965  LIR* const_vectors_;
966
967  /*
968   * @brief Search for a matching vector literal
969   * @param constants An array of size 4 which contains all of 32-bit constants.
970   * @returns pointer to matching LIR constant, or nullptr if not found.
971   */
972  LIR* ScanVectorLiteral(int32_t* constants);
973
974  /*
975   * @brief Add a constant vector literal
976   * @param constants An array of size 4 which contains all of 32-bit constants.
977   */
978  LIR* AddVectorLiteral(int32_t* constants);
979
980  InToRegStorageMapping in_to_reg_storage_mapping_;
981
982  bool WideGPRsAreAliases() OVERRIDE {
983    return cu_->target64;  // On 64b, we have 64b GPRs.
984  }
985  bool WideFPRsAreAliases() OVERRIDE {
986    return true;  // xmm registers have 64b views even on x86.
987  }
988
989  /*
990   * @brief Dump a RegLocation using printf
991   * @param loc Register location to dump
992   */
993  static void DumpRegLocation(RegLocation loc);
994
995  static const X86EncodingMap EncodingMap[kX86Last];
996
997 private:
998  void SwapBits(RegStorage result_reg, int shift, int32_t value);
999  void SwapBits64(RegStorage result_reg, int shift, int64_t value);
1000};
1001
1002}  // namespace art
1003
1004#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
1005