1dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond/*
2dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Licensed to the Apache Software Foundation (ASF) under one or more
3dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * contributor license agreements.  See the NOTICE file distributed with
4dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * this work for additional information regarding copyright ownership.
5dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * The ASF licenses this file to You under the Apache License, Version 2.0
6dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (the "License"); you may not use this file except in compliance with
7dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * the License.  You may obtain a copy of the License at
8dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
9dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *      http://www.apache.org/licenses/LICENSE-2.0
10dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
11dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Unless required by applicable law or agreed to in writing, software
12dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * distributed under the License is distributed on an "AS IS" BASIS,
13dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * See the License for the specific language governing permissions and
15dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * limitations under the License.
16dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond */
17dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
18dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondpackage org.apache.commons.math.geometry;
19dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
20dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport java.io.Serializable;
21dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
22dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.MathRuntimeException;
23dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.exception.util.LocalizedFormats;
24dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.util.FastMath;
25dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
26dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond/**
27dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * This class implements rotations in a three-dimensional space.
28dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
29dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Rotations can be represented by several different mathematical
30dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * entities (matrices, axe and angle, Cardan or Euler angles,
31dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * quaternions). This class presents an higher level abstraction, more
32dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * user-oriented and hiding this implementation details. Well, for the
33dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * curious, we use quaternions for the internal representation. The
34dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * user can build a rotation from any of these representations, and
35dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * any of these representations can be retrieved from a
36dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <code>Rotation</code> instance (see the various constructors and
37dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * getters). In addition, a rotation can also be built implicitly
38dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * from a set of vectors and their image.</p>
39dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>This implies that this class can be used to convert from one
40dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * representation to another one. For example, converting a rotation
41dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * matrix into a set of Cardan angles from can be done using the
42dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * following single line of code:</p>
43dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
44dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
45dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
46dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
47dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * underlying representation. Once it has been built, and regardless of its
48dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * internal representation, a rotation is an <em>operator</em> which basically
49dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * transforms three dimensional {@link Vector3D vectors} into other three
50dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * dimensional {@link Vector3D vectors}. Depending on the application, the
51dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * meaning of these vectors may vary and the semantics of the rotation also.</p>
52dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>For example in an spacecraft attitude simulation tool, users will often
53dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * consider the vectors are fixed (say the Earth direction for example) and the
54dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * frames change. The rotation transforms the coordinates of the vector in inertial
55dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * frame into the coordinates of the same vector in satellite frame. In this
56dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * case, the rotation implicitly defines the relation between the two frames.</p>
57dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Another example could be a telescope control application, where the rotation
58dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * would transform the sighting direction at rest into the desired observing
59dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * direction when the telescope is pointed towards an object of interest. In this
60dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * case the rotation transforms the direction at rest in a topocentric frame
61dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * into the sighting direction in the same topocentric frame. This implies in this
62dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * case the frame is fixed and the vector moves.</p>
63dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>In many case, both approaches will be combined. In our telescope example,
64dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * we will probably also need to transform the observing direction in the topocentric
65dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * frame into the observing direction in inertial frame taking into account the observatory
66dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * location and the Earth rotation, which would essentially be an application of the
67dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * first approach.</p>
68dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
69dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>These examples show that a rotation is what the user wants it to be. This
70dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * class does not push the user towards one specific definition and hence does not
71dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * provide methods like <code>projectVectorIntoDestinationFrame</code> or
72dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <code>computeTransformedDirection</code>. It provides simpler and more generic
73dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
74dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
75dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
76dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Since a rotation is basically a vectorial operator, several rotations can be
77dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * composed together and the composite operation <code>r = r<sub>1</sub> o
78dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
79dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
80dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * we can consider that in addition to vectors, a rotation can be applied to other
81dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * rotations as well (or to itself). With our previous notations, we would say we
82dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
83dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
84dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
85dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
86dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
87dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Rotations are guaranteed to be immutable objects.</p>
88dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
89dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 févr. 2011) $
90dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @see Vector3D
91dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @see RotationOrder
92dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @since 1.2
93dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond */
94dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
95dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondpublic class Rotation implements Serializable {
96dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
97dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Identity rotation. */
98dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
99dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
100dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Serializable version identifier */
101dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  private static final long serialVersionUID = -2153622329907944313L;
102dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
103dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Scalar coordinate of the quaternion. */
104dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  private final double q0;
105dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
106dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** First coordinate of the vectorial part of the quaternion. */
107dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  private final double q1;
108dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
109dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Second coordinate of the vectorial part of the quaternion. */
110dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  private final double q2;
111dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
112dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Third coordinate of the vectorial part of the quaternion. */
113dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  private final double q3;
114dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
115dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Build a rotation from the quaternion coordinates.
116dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>A rotation can be built from a <em>normalized</em> quaternion,
117dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
118dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
119dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
120dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the constructor can normalize it in a preprocessing step.</p>
121dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Note that some conventions put the scalar part of the quaternion
122dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * as the 4<sup>th</sup> component and the vector part as the first three
123dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * components. This is <em>not</em> our convention. We put the scalar part
124dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * as the first component.</p>
125dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param q0 scalar part of the quaternion
126dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param q1 first coordinate of the vectorial part of the quaternion
127dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param q2 second coordinate of the vectorial part of the quaternion
128dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param q3 third coordinate of the vectorial part of the quaternion
129dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param needsNormalization if true, the coordinates are considered
130dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * not to be normalized, a normalization preprocessing step is performed
131dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * before using them
132dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
133dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation(double q0, double q1, double q2, double q3,
134dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                  boolean needsNormalization) {
135dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
136dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (needsNormalization) {
137dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // normalization preprocessing
138dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
139dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q0 *= inv;
140dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q1 *= inv;
141dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q2 *= inv;
142dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q3 *= inv;
143dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
144dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
145dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    this.q0 = q0;
146dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    this.q1 = q1;
147dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    this.q2 = q2;
148dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    this.q3 = q3;
149dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
150dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
151dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
152dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Build a rotation from an axis and an angle.
153dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>We use the convention that angles are oriented according to
154dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the effect of the rotation on vectors around the axis. That means
155dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * that if (i, j, k) is a direct frame and if we first provide +k as
156dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the axis and &pi;/2 as the angle to this constructor, and then
157dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
158dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * +j.</p>
159dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Another way to represent our convention is to say that a rotation
160dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * of angle &theta; about the unit vector (x, y, z) is the same as the
161dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotation build from quaternion components { cos(-&theta;/2),
162dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
163dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * Note the minus sign on the angle!</p>
164dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>On the one hand this convention is consistent with a vectorial
165dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * perspective (moving vectors in fixed frames), on the other hand it
166dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * is different from conventions with a frame perspective (fixed vectors
167dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * viewed from different frames) like the ones used for example in spacecraft
168dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * attitude community or in the graphics community.</p>
169dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param axis axis around which to rotate
170dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param angle rotation angle.
171dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @exception ArithmeticException if the axis norm is zero
172dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
173dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation(Vector3D axis, double angle) {
174dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
175dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double norm = axis.getNorm();
176dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (norm == 0) {
177dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
178dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
179dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
180dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double halfAngle = -0.5 * angle;
181dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double coeff = FastMath.sin(halfAngle) / norm;
182dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
183dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q0 = FastMath.cos (halfAngle);
184dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q1 = coeff * axis.getX();
185dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q2 = coeff * axis.getY();
186dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q3 = coeff * axis.getZ();
187dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
188dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
189dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
190dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Build a rotation from a 3X3 matrix.
191dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
192dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
193dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * (which are matrices for which m.m<sup>T</sup> = I) with real
194dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * coefficients. The module of the determinant of unit matrices is
195dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * 1, among the orthogonal 3X3 matrices, only the ones having a
196dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * positive determinant (+1) are rotation matrices.</p>
197dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
198dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>When a rotation is defined by a matrix with truncated values
199dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * (typically when it is extracted from a technical sheet where only
200dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * four to five significant digits are available), the matrix is not
201dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * orthogonal anymore. This constructor handles this case
202dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * transparently by using a copy of the given matrix and applying a
203dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * correction to the copy in order to perfect its orthogonality. If
204dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the Frobenius norm of the correction needed is above the given
205dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * threshold, then the matrix is considered to be too far from a
206dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * true rotation matrix and an exception is thrown.<p>
207dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
208dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param m rotation matrix
209dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param threshold convergence threshold for the iterative
210dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * orthogonality correction (convergence is reached when the
211dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * difference between two steps of the Frobenius norm of the
212dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * correction is below this threshold)
213dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
214dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @exception NotARotationMatrixException if the matrix is not a 3X3
215dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * matrix, or if it cannot be transformed into an orthogonal matrix
216dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * with the given threshold, or if the determinant of the resulting
217dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * orthogonal matrix is negative
218dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
219dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
220dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation(double[][] m, double threshold)
221dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    throws NotARotationMatrixException {
222dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
223dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // dimension check
224dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if ((m.length != 3) || (m[0].length != 3) ||
225dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        (m[1].length != 3) || (m[2].length != 3)) {
226dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      throw new NotARotationMatrixException(
227dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
228dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              m.length, m[0].length);
229dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
230dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
231dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // compute a "close" orthogonal matrix
232dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[][] ort = orthogonalizeMatrix(m, threshold);
233dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
234dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // check the sign of the determinant
235dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
236dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                 ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
237dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                 ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
238dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (det < 0.0) {
239dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      throw new NotARotationMatrixException(
240dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
241dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              det);
242dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
243dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
244dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // There are different ways to compute the quaternions elements
245dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // from the matrix. They all involve computing one element from
246dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // the diagonal of the matrix, and computing the three other ones
247dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // using a formula involving a division by the first element,
248dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // which unfortunately can be zero. Since the norm of the
249dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // quaternion is 1, we know at least one element has an absolute
250dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // value greater or equal to 0.5, so it is always possible to
251dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // select the right formula and avoid division by zero and even
252dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // numerical inaccuracy. Checking the elements in turn and using
253dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // the first one greater than 0.45 is safe (this leads to a simple
254dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
255dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double s = ort[0][0] + ort[1][1] + ort[2][2];
256dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (s > -0.19) {
257dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // compute q0 and deduce q1, q2 and q3
258dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q0 = 0.5 * FastMath.sqrt(s + 1.0);
259dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double inv = 0.25 / q0;
260dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q1 = inv * (ort[1][2] - ort[2][1]);
261dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q2 = inv * (ort[2][0] - ort[0][2]);
262dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q3 = inv * (ort[0][1] - ort[1][0]);
263dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else {
264dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      s = ort[0][0] - ort[1][1] - ort[2][2];
265dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if (s > -0.19) {
266dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // compute q1 and deduce q0, q2 and q3
267dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q1 = 0.5 * FastMath.sqrt(s + 1.0);
268dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        double inv = 0.25 / q1;
269dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q0 = inv * (ort[1][2] - ort[2][1]);
270dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q2 = inv * (ort[0][1] + ort[1][0]);
271dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q3 = inv * (ort[0][2] + ort[2][0]);
272dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      } else {
273dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        s = ort[1][1] - ort[0][0] - ort[2][2];
274dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        if (s > -0.19) {
275dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          // compute q2 and deduce q0, q1 and q3
276dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q2 = 0.5 * FastMath.sqrt(s + 1.0);
277dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          double inv = 0.25 / q2;
278dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q0 = inv * (ort[2][0] - ort[0][2]);
279dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q1 = inv * (ort[0][1] + ort[1][0]);
280dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q3 = inv * (ort[2][1] + ort[1][2]);
281dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        } else {
282dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          // compute q3 and deduce q0, q1 and q2
283dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          s = ort[2][2] - ort[0][0] - ort[1][1];
284dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q3 = 0.5 * FastMath.sqrt(s + 1.0);
285dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          double inv = 0.25 / q3;
286dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q0 = inv * (ort[0][1] - ort[1][0]);
287dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q1 = inv * (ort[0][2] + ort[2][0]);
288dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          q2 = inv * (ort[2][1] + ort[1][2]);
289dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
290dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
291dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
292dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
293dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
294dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
295dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Build the rotation that transforms a pair of vector into another pair.
296dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
297dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Except for possible scale factors, if the instance were applied to
298dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
299dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * (v<sub>1</sub>, v<sub>2</sub>).</p>
300dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
301dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
302dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * not the same as the angular separation between v<sub>1</sub> and
303dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
304dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
305dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * v<sub>2</sub>) plane.</p>
306dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
307dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param u1 first vector of the origin pair
308dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param u2 second vector of the origin pair
309dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param v1 desired image of u1 by the rotation
310dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param v2 desired image of u2 by the rotation
311dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @exception IllegalArgumentException if the norm of one of the vectors is zero
312dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
313dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
314dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
315dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // norms computation
316dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u1u1 = Vector3D.dotProduct(u1, u1);
317dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u2u2 = Vector3D.dotProduct(u2, u2);
318dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v1v1 = Vector3D.dotProduct(v1, v1);
319dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v2v2 = Vector3D.dotProduct(v2, v2);
320dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
321dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
322dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
323dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
324dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u1x = u1.getX();
325dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u1y = u1.getY();
326dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u1z = u1.getZ();
327dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
328dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u2x = u2.getX();
329dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u2y = u2.getY();
330dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u2z = u2.getZ();
331dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
332dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // normalize v1 in order to have (v1'|v1') = (u1|u1)
333dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double coeff = FastMath.sqrt (u1u1 / v1v1);
334dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v1x   = coeff * v1.getX();
335dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v1y   = coeff * v1.getY();
336dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v1z   = coeff * v1.getZ();
337dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  v1 = new Vector3D(v1x, v1y, v1z);
338dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
339dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
340dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double u1u2   = Vector3D.dotProduct(u1, u2);
341dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v1v2   = Vector3D.dotProduct(v1, v2);
342dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double coeffU = u1u2 / u1u1;
343dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double coeffV = v1v2 / u1u1;
344dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double beta   = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
345dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double alpha  = coeffU - beta * coeffV;
346dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v2x    = alpha * v1x + beta * v2.getX();
347dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v2y    = alpha * v1y + beta * v2.getY();
348dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double v2z    = alpha * v1z + beta * v2.getZ();
349dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  v2 = new Vector3D(v2x, v2y, v2z);
350dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
351dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // preliminary computation (we use explicit formulation instead
352dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // of relying on the Vector3D class in order to avoid building lots
353dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // of temporary objects)
354dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  Vector3D uRef = u1;
355dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  Vector3D vRef = v1;
356dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double dx1 = v1x - u1.getX();
357dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double dy1 = v1y - u1.getY();
358dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double dz1 = v1z - u1.getZ();
359dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double dx2 = v2x - u2.getX();
360dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double dy2 = v2y - u2.getY();
361dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double dz2 = v2z - u2.getZ();
362dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
363dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                            dz1 * dx2 - dx1 * dz2,
364dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                            dx1 * dy2 - dy1 * dx2);
365dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double c = k.getX() * (u1y * u2z - u1z * u2y) +
366dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond             k.getY() * (u1z * u2x - u1x * u2z) +
367dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond             k.getZ() * (u1x * u2y - u1y * u2x);
368dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
369dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  if (c == 0) {
370dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // the (q1, q2, q3) vector is in the (u1, u2) plane
371dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // we try other vectors
372dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    Vector3D u3 = Vector3D.crossProduct(u1, u2);
373dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    Vector3D v3 = Vector3D.crossProduct(v1, v2);
374dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double u3x  = u3.getX();
375dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double u3y  = u3.getY();
376dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double u3z  = u3.getZ();
377dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double v3x  = v3.getX();
378dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double v3y  = v3.getY();
379dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double v3z  = v3.getZ();
380dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
381dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double dx3 = v3x - u3x;
382dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double dy3 = v3y - u3y;
383dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double dz3 = v3z - u3z;
384dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    k = new Vector3D(dy1 * dz3 - dz1 * dy3,
385dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                     dz1 * dx3 - dx1 * dz3,
386dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                     dx1 * dy3 - dy1 * dx3);
387dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    c = k.getX() * (u1y * u3z - u1z * u3y) +
388dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        k.getY() * (u1z * u3x - u1x * u3z) +
389dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        k.getZ() * (u1x * u3y - u1y * u3x);
390dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
391dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (c == 0) {
392dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // the (q1, q2, q3) vector is aligned with u1:
393dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // we try (u2, u3) and (v2, v3)
394dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      k = new Vector3D(dy2 * dz3 - dz2 * dy3,
395dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                       dz2 * dx3 - dx2 * dz3,
396dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                       dx2 * dy3 - dy2 * dx3);
397dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      c = k.getX() * (u2y * u3z - u2z * u3y) +
398dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          k.getY() * (u2z * u3x - u2x * u3z) +
399dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond          k.getZ() * (u2x * u3y - u2y * u3x);
400dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
401dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if (c == 0) {
402dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // the (q1, q2, q3) vector is aligned with everything
403dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // this is really the identity rotation
404dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q0 = 1.0;
405dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q1 = 0.0;
406dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q2 = 0.0;
407dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        q3 = 0.0;
408dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        return;
409dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
410dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
411dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // we will have to use u2 and v2 to compute the scalar part
412dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      uRef = u2;
413dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      vRef = v2;
414dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
415dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
416dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
417dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
418dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
419dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // compute the vectorial part
420dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  c = FastMath.sqrt(c);
421dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  double inv = 1.0 / (c + c);
422dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  q1 = inv * k.getX();
423dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  q2 = inv * k.getY();
424dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  q3 = inv * k.getZ();
425dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
426dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  // compute the scalar part
427dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
428dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    uRef.getZ() * q1 - uRef.getX() * q3,
429dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    uRef.getX() * q2 - uRef.getY() * q1);
430dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   c = Vector3D.dotProduct(k, k);
431dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  q0 = Vector3D.dotProduct(vRef, k) / (c + c);
432dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
433dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
434dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
435dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Build one of the rotations that transform one vector into another one.
436dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
437dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Except for a possible scale factor, if the instance were
438dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * applied to the vector u it will produce the vector v. There is an
439dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * infinite number of such rotations, this constructor choose the
440dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * one with the smallest associated angle (i.e. the one whose axis
441dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * is orthogonal to the (u, v) plane). If u and v are colinear, an
442dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * arbitrary rotation axis is chosen.</p>
443dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
444dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param u origin vector
445dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param v desired image of u by the rotation
446dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @exception IllegalArgumentException if the norm of one of the vectors is zero
447dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
448dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation(Vector3D u, Vector3D v) {
449dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
450dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double normProduct = u.getNorm() * v.getNorm();
451dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (normProduct == 0) {
452dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
453dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
454dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
455dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double dot = Vector3D.dotProduct(u, v);
456dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
457dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (dot < ((2.0e-15 - 1.0) * normProduct)) {
458dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // special case u = -v: we select a PI angle rotation around
459dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // an arbitrary vector orthogonal to u
460dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D w = u.orthogonal();
461dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q0 = 0.0;
462dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q1 = -w.getX();
463dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q2 = -w.getY();
464dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q3 = -w.getZ();
465dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else {
466dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // general case: (u, v) defines a plane, we select
467dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // the shortest possible rotation: axis orthogonal to this plane
468dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
469dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double coeff = 1.0 / (2.0 * q0 * normProduct);
470dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
471dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
472dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
473dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
474dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
475dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
476dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
477dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Build a rotation from three Cardan or Euler elementary rotations.
478dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
479dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Cardan rotations are three successive rotations around the
480dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * canonical axes X, Y and Z, each axis being used once. There are
481dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
482dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotations are three successive rotations around the canonical
483dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * axes X, Y and Z, the first and last rotations being around the
484dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
485dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
486dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Beware that many people routinely use the term Euler angles even
487dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * for what really are Cardan angles (this confusion is especially
488dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * widespread in the aerospace business where Roll, Pitch and Yaw angles
489dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * are often wrongly tagged as Euler angles).</p>
490dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
491dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param order order of rotations to use
492dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param alpha1 angle of the first elementary rotation
493dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param alpha2 angle of the second elementary rotation
494dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param alpha3 angle of the third elementary rotation
495dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
496dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation(RotationOrder order,
497dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                  double alpha1, double alpha2, double alpha3) {
498dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    Rotation r1 = new Rotation(order.getA1(), alpha1);
499dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    Rotation r2 = new Rotation(order.getA2(), alpha2);
500dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    Rotation r3 = new Rotation(order.getA3(), alpha3);
501dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    Rotation composed = r1.applyTo(r2.applyTo(r3));
502dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q0 = composed.q0;
503dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q1 = composed.q1;
504dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q2 = composed.q2;
505dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    q3 = composed.q3;
506dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
507dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
508dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Revert a rotation.
509dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * Build a rotation which reverse the effect of another
510dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotation. This means that if r(u) = v, then r.revert(v) = u. The
511dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * instance is not changed.
512dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return a new rotation whose effect is the reverse of the effect
513dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * of the instance
514dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
515dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation revert() {
516dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return new Rotation(-q0, q1, q2, q3, false);
517dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
518dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
519dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the scalar coordinate of the quaternion.
520dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return scalar coordinate of the quaternion
521dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
522dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double getQ0() {
523dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return q0;
524dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
525dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
526dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the first coordinate of the vectorial part of the quaternion.
527dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return first coordinate of the vectorial part of the quaternion
528dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
529dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double getQ1() {
530dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return q1;
531dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
532dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
533dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the second coordinate of the vectorial part of the quaternion.
534dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return second coordinate of the vectorial part of the quaternion
535dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
536dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double getQ2() {
537dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return q2;
538dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
539dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
540dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the third coordinate of the vectorial part of the quaternion.
541dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return third coordinate of the vectorial part of the quaternion
542dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
543dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double getQ3() {
544dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return q3;
545dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
546dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
547dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the normalized axis of the rotation.
548dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return normalized axis of the rotation
549dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @see #Rotation(Vector3D, double)
550dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
551dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Vector3D getAxis() {
552dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
553dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (squaredSine == 0) {
554dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new Vector3D(1, 0, 0);
555dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (q0 < 0) {
556dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double inverse = 1 / FastMath.sqrt(squaredSine);
557dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
558dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
559dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double inverse = -1 / FastMath.sqrt(squaredSine);
560dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
561dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
562dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
563dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the angle of the rotation.
564dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return angle of the rotation (between 0 and &pi;)
565dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @see #Rotation(Vector3D, double)
566dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
567dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double getAngle() {
568dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if ((q0 < -0.1) || (q0 > 0.1)) {
569dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
570dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (q0 < 0) {
571dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return 2 * FastMath.acos(-q0);
572dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
573dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return 2 * FastMath.acos(q0);
574dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
575dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
576dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the Cardan or Euler angles corresponding to the instance.
577dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
578dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>The equations show that each rotation can be defined by two
579dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * different values of the Cardan or Euler angles set. For example
580dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * if Cardan angles are used, the rotation defined by the angles
581dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
582dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
583dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
584dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the following arbitrary choices:</p>
585dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <ul>
586dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *   <li>for Cardan angles, the chosen set is the one for which the
587dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *   second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
588dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *   positive),</li>
589dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *   <li>for Euler angles, the chosen set is the one for which the
590dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *   second angle is between 0 and &pi; (i.e its sine is positive).</li>
591dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * </ul>
592dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
593dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Cardan and Euler angle have a very disappointing drawback: all
594dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * of them have singularities. This means that if the instance is
595dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * too close to the singularities corresponding to the given
596dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotation order, it will be impossible to retrieve the angles. For
597dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * Cardan angles, this is often called gimbal lock. There is
598dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <em>nothing</em> to do to prevent this, it is an intrinsic problem
599dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * with Cardan and Euler representation (but not a problem with the
600dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotation itself, which is perfectly well defined). For Cardan
601dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * angles, singularities occur when the second angle is close to
602dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
603dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * second angle is close to 0 or &pi;, this implies that the identity
604dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotation is always singular for Euler angles!</p>
605dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *
606dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param order rotation order to use
607dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return an array of three angles, in the order specified by the set
608dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @exception CardanEulerSingularityException if the rotation is
609dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * singular with respect to the angles set specified
610dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
611dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double[] getAngles(RotationOrder order)
612dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    throws CardanEulerSingularityException {
613dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
614dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    if (order == RotationOrder.XYZ) {
615dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
616dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusK) coordinates are :
617dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
618dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusI) coordinates are :
619dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
620dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
621dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_K);
622dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
623dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if  ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
624dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(true);
625dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
626dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
627dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(-(v1.getY()), v1.getZ()),
628dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.asin(v2.getZ()),
629dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(-(v2.getY()), v2.getX())
630dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
631dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
632dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.XZY) {
633dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
634dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusJ) coordinates are :
635dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
636dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusI) coordinates are :
637dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
638dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
639dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_J);
640dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
641dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
642dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(true);
643dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
644dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
645dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getZ(), v1.getY()),
646dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond       -FastMath.asin(v2.getY()),
647dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getZ(), v2.getX())
648dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
649dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
650dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.YXZ) {
651dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
652dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusK) coordinates are :
653dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
654dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusJ) coordinates are :
655dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
656dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
657dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_K);
658dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
659dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
660dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(true);
661dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
662dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
663dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getX(), v1.getZ()),
664dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond       -FastMath.asin(v2.getZ()),
665dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getX(), v2.getY())
666dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
667dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
668dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.YZX) {
669dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
670dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusI) coordinates are :
671dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
672dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusJ) coordinates are :
673dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
674dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
675dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_I);
676dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
677dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
678dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(true);
679dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
680dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
681dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(-(v1.getZ()), v1.getX()),
682dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.asin(v2.getX()),
683dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(-(v2.getZ()), v2.getY())
684dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
685dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
686dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.ZXY) {
687dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
688dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusJ) coordinates are :
689dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
690dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusK) coordinates are :
691dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
692dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
693dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_J);
694dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
695dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
696dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(true);
697dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
698dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
699dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(-(v1.getX()), v1.getY()),
700dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.asin(v2.getY()),
701dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(-(v2.getX()), v2.getZ())
702dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
703dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
704dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.ZYX) {
705dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
706dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusI) coordinates are :
707dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
708dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusK) coordinates are :
709dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
710dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
711dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_I);
712dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
713dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
714dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(true);
715dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
716dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
717dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getY(), v1.getX()),
718dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond       -FastMath.asin(v2.getX()),
719dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getY(), v2.getZ())
720dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
721dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
722dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.XYX) {
723dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
724dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusI) coordinates are :
725dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
726dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusI) coordinates are :
727dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
728dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have theta in the interval [0 ; PI]
729dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_I);
730dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
731dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
732dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(false);
733dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
734dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
735dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getY(), -v1.getZ()),
736dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.acos(v2.getX()),
737dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getY(), v2.getZ())
738dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
739dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
740dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.XZX) {
741dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
742dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusI) coordinates are :
743dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
744dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusI) coordinates are :
745dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
746dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have psi in the interval [0 ; PI]
747dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_I);
748dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
749dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
750dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(false);
751dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
752dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
753dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getZ(), v1.getY()),
754dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.acos(v2.getX()),
755dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getZ(), -v2.getY())
756dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
757dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
758dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.YXY) {
759dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
760dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusJ) coordinates are :
761dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
762dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusJ) coordinates are :
763dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
764dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have phi in the interval [0 ; PI]
765dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_J);
766dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
767dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
768dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(false);
769dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
770dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
771dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getX(), v1.getZ()),
772dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.acos(v2.getY()),
773dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getX(), -v2.getZ())
774dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
775dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
776dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.YZY) {
777dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
778dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusJ) coordinates are :
779dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
780dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusJ) coordinates are :
781dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
782dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have psi in the interval [0 ; PI]
783dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_J);
784dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
785dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
786dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(false);
787dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
788dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
789dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getZ(), -v1.getX()),
790dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.acos(v2.getY()),
791dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getZ(), v2.getX())
792dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
793dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
794dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else if (order == RotationOrder.ZXZ) {
795dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
796dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusK) coordinates are :
797dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
798dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusK) coordinates are :
799dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
800dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have phi in the interval [0 ; PI]
801dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_K);
802dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
803dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
804dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(false);
805dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
806dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
807dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getX(), -v1.getY()),
808dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.acos(v2.getZ()),
809dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getX(), v2.getY())
810dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
811dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
812dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    } else { // last possibility is ZYZ
813dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
814dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // r (Vector3D.plusK) coordinates are :
815dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      //  cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
816dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // (-r) (Vector3D.plusK) coordinates are :
817dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
818dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // and we can choose to have theta in the interval [0 ; PI]
819dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v1 = applyTo(Vector3D.PLUS_K);
820dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
821dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
822dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throw new CardanEulerSingularityException(false);
823dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      }
824dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return new double[] {
825dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v1.getY(), v1.getX()),
826dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.acos(v2.getZ()),
827dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        FastMath.atan2(v2.getY(), -v2.getX())
828dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      };
829dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
830dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
831dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
832dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
833dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
834dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Get the 3X3 matrix corresponding to the instance
835dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return the matrix corresponding to the instance
836dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
837dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public double[][] getMatrix() {
838dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
839dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // products
840dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q0q0  = q0 * q0;
841dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q0q1  = q0 * q1;
842dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q0q2  = q0 * q2;
843dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q0q3  = q0 * q3;
844dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q1q1  = q1 * q1;
845dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q1q2  = q1 * q2;
846dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q1q3  = q1 * q3;
847dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q2q2  = q2 * q2;
848dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q2q3  = q2 * q3;
849dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double q3q3  = q3 * q3;
850dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
851dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // create the matrix
852dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[][] m = new double[3][];
853dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m[0] = new double[3];
854dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m[1] = new double[3];
855dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m[2] = new double[3];
856dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
857dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
858dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [1][0] = 2.0 * (q1q2 - q0q3);
859dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [2][0] = 2.0 * (q1q3 + q0q2);
860dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
861dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [0][1] = 2.0 * (q1q2 + q0q3);
862dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
863dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [2][1] = 2.0 * (q2q3 - q0q1);
864dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
865dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [0][2] = 2.0 * (q1q3 - q0q2);
866dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [1][2] = 2.0 * (q2q3 + q0q1);
867dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
868dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
869dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return m;
870dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
871dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
872dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
873dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Apply the rotation to a vector.
874dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param u vector to apply the rotation to
875dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return a new vector which is the image of u by the rotation
876dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
877dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Vector3D applyTo(Vector3D u) {
878dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
879dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x = u.getX();
880dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double y = u.getY();
881dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double z = u.getZ();
882dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
883dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double s = q1 * x + q2 * y + q3 * z;
884dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
885dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
886dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
887dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
888dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
889dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
890dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
891dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Apply the inverse of the rotation to a vector.
892dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param u vector to apply the inverse of the rotation to
893dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return a new vector which such that u is its image by the rotation
894dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
895dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Vector3D applyInverseTo(Vector3D u) {
896dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
897dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x = u.getX();
898dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double y = u.getY();
899dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double z = u.getZ();
900dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
901dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double s = q1 * x + q2 * y + q3 * z;
902dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double m0 = -q0;
903dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
904dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
905dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
906dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
907dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
908dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
909dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
910dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Apply the instance to another rotation.
911dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * Applying the instance to a rotation is computing the composition
912dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * in an order compliant with the following rule : let u be any
913dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
914dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
915dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * where comp = applyTo(r).
916dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param r rotation to apply the rotation to
917dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return a new rotation which is the composition of r by the instance
918dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
919dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation applyTo(Rotation r) {
920dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
921dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
922dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
923dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
924dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        false);
925dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
926dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
927dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Apply the inverse of the instance to another rotation.
928dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * Applying the inverse of the instance to a rotation is computing
929dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the composition in an order compliant with the following rule :
930dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
931dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * let w be the inverse image of v by the instance
932dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
933dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * comp = applyInverseTo(r).
934dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param r rotation to apply the rotation to
935dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return a new rotation which is the composition of r by the inverse
936dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * of the instance
937dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
938dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public Rotation applyInverseTo(Rotation r) {
939dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
940dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
941dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
942dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
943dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                        false);
944dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
945dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
946dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Perfect orthogonality on a 3X3 matrix.
947dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param m initial matrix (not exactly orthogonal)
948dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param threshold convergence threshold for the iterative
949dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * orthogonality correction (convergence is reached when the
950dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * difference between two steps of the Frobenius norm of the
951dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * correction is below this threshold)
952dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return an orthogonal matrix close to m
953dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @exception NotARotationMatrixException if the matrix cannot be
954dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * orthogonalized with the given threshold after 10 iterations
955dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
956dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  private double[][] orthogonalizeMatrix(double[][] m, double threshold)
957dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    throws NotARotationMatrixException {
958dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[] m0 = m[0];
959dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[] m1 = m[1];
960dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[] m2 = m[2];
961dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x00 = m0[0];
962dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x01 = m0[1];
963dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x02 = m0[2];
964dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x10 = m1[0];
965dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x11 = m1[1];
966dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x12 = m1[2];
967dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x20 = m2[0];
968dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x21 = m2[1];
969dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double x22 = m2[2];
970dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double fn = 0;
971dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double fn1;
972dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
973dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[][] o = new double[3][3];
974dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[] o0 = o[0];
975dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[] o1 = o[1];
976dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    double[] o2 = o[2];
977dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
978dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
979dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    int i = 0;
980dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    while (++i < 11) {
981dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
982dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // Mt.Xn
983dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
984dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
985dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
986dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
987dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
988dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
989dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
990dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
991dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
992dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
993dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // Xn+1
994dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
995dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
996dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
997dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
998dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
999dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
1000dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
1001dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
1002dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
1003dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1004dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // correction on each elements
1005dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr00 = o0[0] - m0[0];
1006dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr01 = o0[1] - m0[1];
1007dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr02 = o0[2] - m0[2];
1008dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr10 = o1[0] - m1[0];
1009dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr11 = o1[1] - m1[1];
1010dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr12 = o1[2] - m1[2];
1011dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr20 = o2[0] - m2[0];
1012dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr21 = o2[1] - m2[1];
1013dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      double corr22 = o2[2] - m2[2];
1014dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1015dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // Frobenius norm of the correction
1016dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
1017dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
1018dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
1019dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1020dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // convergence test
1021dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      if (FastMath.abs(fn1 - fn) <= threshold)
1022dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        return o;
1023dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1024dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      // prepare next iteration
1025dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x00 = o0[0];
1026dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x01 = o0[1];
1027dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x02 = o0[2];
1028dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x10 = o1[0];
1029dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x11 = o1[1];
1030dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x12 = o1[2];
1031dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x20 = o2[0];
1032dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x21 = o2[1];
1033dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      x22 = o2[2];
1034dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      fn  = fn1;
1035dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1036dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
1037dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1038dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    // the algorithm did not converge after 10 iterations
1039dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    throw new NotARotationMatrixException(
1040dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
1041dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            i - 1);
1042dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
1043dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1044dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  /** Compute the <i>distance</i> between two rotations.
1045dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>The <i>distance</i> is intended here as a way to check if two
1046dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotations are almost similar (i.e. they transform vectors the same way)
1047dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * or very different. It is mathematically defined as the angle of
1048dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * the rotation r that prepended to one of the rotations gives the other
1049dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * one:</p>
1050dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <pre>
1051dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   *        r<sub>1</sub>(r) = r<sub>2</sub>
1052dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * </pre>
1053dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
1054dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * possible upper bound of the angle in radians between r<sub>1</sub>(v)
1055dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
1056dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * reached for some v. The distance is equal to 0 if and only if the two
1057dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * rotations are identical.</p>
1058dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * <p>Comparing two rotations should always be done using this value rather
1059dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * than for example comparing the components of the quaternions. It is much
1060dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * more stable, and has a geometric meaning. Also comparing quaternions
1061dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
1062dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
1063dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * their components are different (they are exact opposites).</p>
1064dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param r1 first rotation
1065dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @param r2 second rotation
1066dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   * @return <i>distance</i> between r1 and r2
1067dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond   */
1068dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  public static double distance(Rotation r1, Rotation r2) {
1069dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond      return r1.applyInverseTo(r2).getAngle();
1070dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond  }
1071dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
1072dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond}
1073