1dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond/*
2dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Licensed to the Apache Software Foundation (ASF) under one or more
3dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * contributor license agreements.  See the NOTICE file distributed with
4dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * this work for additional information regarding copyright ownership.
5dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * The ASF licenses this file to You under the Apache License, Version 2.0
6dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (the "License"); you may not use this file except in compliance with
7dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * the License.  You may obtain a copy of the License at
8dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
9dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *      http://www.apache.org/licenses/LICENSE-2.0
10dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
11dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Unless required by applicable law or agreed to in writing, software
12dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * distributed under the License is distributed on an "AS IS" BASIS,
13dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * See the License for the specific language governing permissions and
15dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * limitations under the License.
16dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond */
17dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
18dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondpackage org.apache.commons.math.ode.nonstiff;
19dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
20dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.linear.Array2DRowRealMatrix;
21dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.DerivativeException;
22dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.FirstOrderDifferentialEquations;
23dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.IntegratorException;
24dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.sampling.NordsieckStepInterpolator;
25dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.sampling.StepHandler;
26dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.util.FastMath;
27dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
28dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
29dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond/**
30dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * This class implements explicit Adams-Bashforth integrators for Ordinary
31dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Differential Equations.
32dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
33dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
34dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * multistep ODE solvers. This implementation is a variation of the classical
35dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * one: it uses adaptive stepsize to implement error control, whereas
36dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * classical implementations are fixed step size. The value of state vector
37dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * at step n+1 is a simple combination of the value at step n and of the
38dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
39dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * steps one wants to use for computing the next value, different formulas
40dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * are available:</p>
41dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
42dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
43dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
44dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
45dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
46dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>...</li>
47dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul>
48dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
49dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>A k-steps Adams-Bashforth method is of order k.</p>
50dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
51dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <h3>Implementation details</h3>
52dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
53dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
54dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
55dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
56dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
57dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
58dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * ...
59dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>k</sub>(n) = h<sup>k</sup>/k! y(k)<sub>n</sub> for k<sup>th</sup> derivative
60dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre></p>
61dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
62dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>The definitions above use the classical representation with several previous first
63dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * derivatives. Lets define
64dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
65dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
66dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
67dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (we omit the k index in the notation for clarity). With these definitions,
68dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Adams-Bashforth methods can be written:
69dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
70dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li>
71dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li>
72dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li>
73dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li>
74dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>...</li>
75dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul></p>
76dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
77dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
78dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
79dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
80dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
81dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
82dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
83dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
84dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (here again we omit the k index in the notation for clarity)
85dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </p>
86dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
87dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
88dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
89dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * for degree k polynomials.
90dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
91dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n)
92dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
93dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * The previous formula can be used with several values for i to compute the transform between
94dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
95dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * and q<sub>n</sub> resulting from the Taylor series formulas above is:
96dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
97dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
98dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
99dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
100dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * with the j (-i)<sup>j-1</sup> terms:
101dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
102dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [  -2   3   -4    5  ... ]
103dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [  -4  12  -32   80  ... ]
104dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   P =  [  -6  27 -108  405  ... ]
105dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [  -8  48 -256 1280  ... ]
106dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [          ...           ]
107dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre></p>
108dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
109dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Using the Nordsieck vector has several advantages:
110dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
111dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
112dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   Taylor series formulas,</li>
113dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>it simplifies step changes that occur when discrete events that truncate
114dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   the step are triggered,</li>
115dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
116dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul></p>
117dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
118dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
119dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
120dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
121dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
122dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
123dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul>
124dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * where A is a rows shifting matrix (the lower left part is an identity matrix):
125dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
126dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 0 0   ...  0 0 | 0 ]
127dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ ---------------+---]
128dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 1 0   ...  0 0 | 0 ]
129dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *    A = [ 0 1   ...  0 0 | 0 ]
130dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [       ...      | 0 ]
131dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 0 0   ...  1 0 | 0 ]
132dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 0 0   ...  0 1 | 0 ]
133dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre></p>
134dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
135dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
136dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * they only depend on k and therefore are precomputed once for all.</p>
137dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
138dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
139dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @since 2.0
140dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond */
141dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondpublic class AdamsBashforthIntegrator extends AdamsIntegrator {
142dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
143dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /** Integrator method name. */
144dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    private static final String METHOD_NAME = "Adams-Bashforth";
145dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
146dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /**
147dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * Build an Adams-Bashforth integrator with the given order and step control parameters.
148dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param nSteps number of steps of the method excluding the one being computed
149dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param minStep minimal step (must be positive even for backward
150dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration), the last step can be smaller than this
151dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param maxStep maximal step (must be positive even for backward
152dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration)
153dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param scalAbsoluteTolerance allowed absolute error
154dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param scalRelativeTolerance allowed relative error
155dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @exception IllegalArgumentException if order is 1 or less
156dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     */
157dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    public AdamsBashforthIntegrator(final int nSteps,
158dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                    final double minStep, final double maxStep,
159dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                    final double scalAbsoluteTolerance,
160dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                    final double scalRelativeTolerance)
161dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throws IllegalArgumentException {
162dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
163dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              scalAbsoluteTolerance, scalRelativeTolerance);
164dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
165dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
166dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /**
167dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * Build an Adams-Bashforth integrator with the given order and step control parameters.
168dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param nSteps number of steps of the method excluding the one being computed
169dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param minStep minimal step (must be positive even for backward
170dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration), the last step can be smaller than this
171dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param maxStep maximal step (must be positive even for backward
172dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration)
173dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param vecAbsoluteTolerance allowed absolute error
174dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param vecRelativeTolerance allowed relative error
175dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @exception IllegalArgumentException if order is 1 or less
176dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     */
177dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    public AdamsBashforthIntegrator(final int nSteps,
178dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                    final double minStep, final double maxStep,
179dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                    final double[] vecAbsoluteTolerance,
180dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                    final double[] vecRelativeTolerance)
181dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throws IllegalArgumentException {
182dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
183dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              vecAbsoluteTolerance, vecRelativeTolerance);
184dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
185dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
186dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /** {@inheritDoc} */
187dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    @Override
188dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    public double integrate(final FirstOrderDifferentialEquations equations,
189dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                            final double t0, final double[] y0,
190dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                            final double t, final double[] y)
191dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throws DerivativeException, IntegratorException {
192dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
193dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final int n = y0.length;
194dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        sanityChecks(equations, t0, y0, t, y);
195dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        setEquations(equations);
196dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        resetEvaluations();
197dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final boolean forward = t > t0;
198dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
199dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // initialize working arrays
200dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        if (y != y0) {
201dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            System.arraycopy(y0, 0, y, 0, n);
202dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
203dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final double[] yDot = new double[n];
204dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
205dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // set up an interpolator sharing the integrator arrays
206dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
207dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.reinitialize(y, forward);
208dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
209dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // set up integration control objects
210dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        for (StepHandler handler : stepHandlers) {
211dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            handler.reset();
212dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
213dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        setStateInitialized(false);
214dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
215dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // compute the initial Nordsieck vector using the configured starter integrator
216dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        start(t0, y, t);
217dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
218dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.storeTime(stepStart);
219dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final int lastRow = nordsieck.getRowDimension() - 1;
220dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
221dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // reuse the step that was chosen by the starter integrator
222dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        double hNew = stepSize;
223dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.rescale(hNew);
224dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
225dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // main integration loop
226dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        isLastStep = false;
227dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        do {
228dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
229dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            double error = 10;
230dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            while (error >= 1.0) {
231dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
232dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                stepSize = hNew;
233dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
234dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // evaluate error using the last term of the Taylor expansion
235dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                error = 0;
236dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                for (int i = 0; i < mainSetDimension; ++i) {
237dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double yScale = FastMath.abs(y[i]);
238dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double tol = (vecAbsoluteTolerance == null) ?
239dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                       (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
240dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                       (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
241dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double ratio  = nordsieck.getEntry(lastRow, i) / tol;
242dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    error += ratio * ratio;
243dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
244dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                error = FastMath.sqrt(error / mainSetDimension);
245dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
246dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (error >= 1.0) {
247dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    // reject the step and attempt to reduce error by stepsize control
248dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double factor = computeStepGrowShrinkFactor(error);
249dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    hNew = filterStep(stepSize * factor, forward, false);
250dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    interpolator.rescale(hNew);
251dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
252dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
253dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
254dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
255dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // predict a first estimate of the state at step end
256dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            final double stepEnd = stepStart + stepSize;
257dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.shift();
258dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.setInterpolatedTime(stepEnd);
259dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            System.arraycopy(interpolator.getInterpolatedState(), 0, y, 0, y0.length);
260dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
261dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // evaluate the derivative
262dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            computeDerivatives(stepEnd, y, yDot);
263dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
264dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // update Nordsieck vector
265dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            final double[] predictedScaled = new double[y0.length];
266dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            for (int j = 0; j < y0.length; ++j) {
267dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                predictedScaled[j] = stepSize * yDot[j];
268dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
269dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
270dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
271dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp);
272dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
273dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // discrete events handling
274dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.storeTime(stepEnd);
275dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            stepStart = acceptStep(interpolator, y, yDot, t);
276dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            scaled    = predictedScaled;
277dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            nordsieck = nordsieckTmp;
278dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.reinitialize(stepEnd, stepSize, scaled, nordsieck);
279dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
280dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            if (!isLastStep) {
281dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
282dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // prepare next step
283dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                interpolator.storeTime(stepStart);
284dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
285dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (resetOccurred) {
286dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    // some events handler has triggered changes that
287dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    // invalidate the derivatives, we need to restart from scratch
288dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    start(stepStart, y, t);
289dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
290dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
291dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
292dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // stepsize control for next step
293dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  factor     = computeStepGrowShrinkFactor(error);
294dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  scaledH    = stepSize * factor;
295dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  nextT      = stepStart + scaledH;
296dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
297dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                hNew = filterStep(scaledH, forward, nextIsLast);
298dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
299dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  filteredNextT      = stepStart + hNew;
300dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
301dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (filteredNextIsLast) {
302dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    hNew = t - stepStart;
303dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
304dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
305dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                interpolator.rescale(hNew);
306dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
307dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
308dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
309dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        } while (!isLastStep);
310dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
311dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final double stopTime = stepStart;
312dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        resetInternalState();
313dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        return stopTime;
314dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
315dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
316dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
317dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond}
318