1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements.  See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License.  You may obtain a copy of the License at
8 *
9 *      http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package org.apache.commons.math.ode.nonstiff;
19
20import java.util.Arrays;
21
22import org.apache.commons.math.linear.Array2DRowRealMatrix;
23import org.apache.commons.math.linear.RealMatrixPreservingVisitor;
24import org.apache.commons.math.ode.DerivativeException;
25import org.apache.commons.math.ode.FirstOrderDifferentialEquations;
26import org.apache.commons.math.ode.IntegratorException;
27import org.apache.commons.math.ode.sampling.NordsieckStepInterpolator;
28import org.apache.commons.math.ode.sampling.StepHandler;
29import org.apache.commons.math.util.FastMath;
30
31
32/**
33 * This class implements implicit Adams-Moulton integrators for Ordinary
34 * Differential Equations.
35 *
36 * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
37 * multistep ODE solvers. This implementation is a variation of the classical
38 * one: it uses adaptive stepsize to implement error control, whereas
39 * classical implementations are fixed step size. The value of state vector
40 * at step n+1 is a simple combination of the value at step n and of the
41 * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
42 * compute y<sub>n+1</sub>,another method must be used to compute a first
43 * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
44 * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
45 * on the number k of previous steps one wants to use for computing the next
46 * value, different formulas are available for the final estimate:</p>
47 * <ul>
48 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
49 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
50 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
51 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
52 *   <li>...</li>
53 * </ul>
54 *
55 * <p>A k-steps Adams-Moulton method is of order k+1.</p>
56 *
57 * <h3>Implementation details</h3>
58 *
59 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
60 * <pre>
61 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
62 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
63 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
64 * ...
65 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y(k)<sub>n</sub> for k<sup>th</sup> derivative
66 * </pre></p>
67 *
68 * <p>The definitions above use the classical representation with several previous first
69 * derivatives. Lets define
70 * <pre>
71 *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
72 * </pre>
73 * (we omit the k index in the notation for clarity). With these definitions,
74 * Adams-Moulton methods can be written:
75 * <ul>
76 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
77 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
78 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
79 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
80 *   <li>...</li>
81 * </ul></p>
82 *
83 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
84 * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
85 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
86 * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
87 * <pre>
88 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
89 * </pre>
90 * (here again we omit the k index in the notation for clarity)
91 * </p>
92 *
93 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
94 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
95 * for degree k polynomials.
96 * <pre>
97 * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n)
98 * </pre>
99 * The previous formula can be used with several values for i to compute the transform between
100 * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
101 * and q<sub>n</sub> resulting from the Taylor series formulas above is:
102 * <pre>
103 * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
104 * </pre>
105 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
106 * with the j (-i)<sup>j-1</sup> terms:
107 * <pre>
108 *        [  -2   3   -4    5  ... ]
109 *        [  -4  12  -32   80  ... ]
110 *   P =  [  -6  27 -108  405  ... ]
111 *        [  -8  48 -256 1280  ... ]
112 *        [          ...           ]
113 * </pre></p>
114 *
115 * <p>Using the Nordsieck vector has several advantages:
116 * <ul>
117 *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
118 *   Taylor series formulas,</li>
119 *   <li>it simplifies step changes that occur when discrete events that truncate
120 *   the step are triggered,</li>
121 *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
122 * </ul></p>
123 *
124 * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
125 * n as follows:
126 * <ul>
127 *   <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
128 *   <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
129 *   <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
130 * </ul>
131 * where A is a rows shifting matrix (the lower left part is an identity matrix):
132 * <pre>
133 *        [ 0 0   ...  0 0 | 0 ]
134 *        [ ---------------+---]
135 *        [ 1 0   ...  0 0 | 0 ]
136 *    A = [ 0 1   ...  0 0 | 0 ]
137 *        [       ...      | 0 ]
138 *        [ 0 0   ...  1 0 | 0 ]
139 *        [ 0 0   ...  0 1 | 0 ]
140 * </pre>
141 * From this predicted vector, the corrected vector is computed as follows:
142 * <ul>
143 *   <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
144 *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
145 *   <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
146 * </ul>
147 * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
148 * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
149 * represent the corrected states.</p>
150 *
151 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
152 * they only depend on k and therefore are precomputed once for all.</p>
153 *
154 * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
155 * @since 2.0
156 */
157public class AdamsMoultonIntegrator extends AdamsIntegrator {
158
159    /** Integrator method name. */
160    private static final String METHOD_NAME = "Adams-Moulton";
161
162    /**
163     * Build an Adams-Moulton integrator with the given order and error control parameters.
164     * @param nSteps number of steps of the method excluding the one being computed
165     * @param minStep minimal step (must be positive even for backward
166     * integration), the last step can be smaller than this
167     * @param maxStep maximal step (must be positive even for backward
168     * integration)
169     * @param scalAbsoluteTolerance allowed absolute error
170     * @param scalRelativeTolerance allowed relative error
171     * @exception IllegalArgumentException if order is 1 or less
172     */
173    public AdamsMoultonIntegrator(final int nSteps,
174                                  final double minStep, final double maxStep,
175                                  final double scalAbsoluteTolerance,
176                                  final double scalRelativeTolerance)
177        throws IllegalArgumentException {
178        super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
179              scalAbsoluteTolerance, scalRelativeTolerance);
180    }
181
182    /**
183     * Build an Adams-Moulton integrator with the given order and error control parameters.
184     * @param nSteps number of steps of the method excluding the one being computed
185     * @param minStep minimal step (must be positive even for backward
186     * integration), the last step can be smaller than this
187     * @param maxStep maximal step (must be positive even for backward
188     * integration)
189     * @param vecAbsoluteTolerance allowed absolute error
190     * @param vecRelativeTolerance allowed relative error
191     * @exception IllegalArgumentException if order is 1 or less
192     */
193    public AdamsMoultonIntegrator(final int nSteps,
194                                  final double minStep, final double maxStep,
195                                  final double[] vecAbsoluteTolerance,
196                                  final double[] vecRelativeTolerance)
197        throws IllegalArgumentException {
198        super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
199              vecAbsoluteTolerance, vecRelativeTolerance);
200    }
201
202
203    /** {@inheritDoc} */
204    @Override
205    public double integrate(final FirstOrderDifferentialEquations equations,
206                            final double t0, final double[] y0,
207                            final double t, final double[] y)
208        throws DerivativeException, IntegratorException {
209
210        final int n = y0.length;
211        sanityChecks(equations, t0, y0, t, y);
212        setEquations(equations);
213        resetEvaluations();
214        final boolean forward = t > t0;
215
216        // initialize working arrays
217        if (y != y0) {
218            System.arraycopy(y0, 0, y, 0, n);
219        }
220        final double[] yDot = new double[y0.length];
221        final double[] yTmp = new double[y0.length];
222        final double[] predictedScaled = new double[y0.length];
223        Array2DRowRealMatrix nordsieckTmp = null;
224
225        // set up two interpolators sharing the integrator arrays
226        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
227        interpolator.reinitialize(y, forward);
228
229        // set up integration control objects
230        for (StepHandler handler : stepHandlers) {
231            handler.reset();
232        }
233        setStateInitialized(false);
234
235        // compute the initial Nordsieck vector using the configured starter integrator
236        start(t0, y, t);
237        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
238        interpolator.storeTime(stepStart);
239
240        double hNew = stepSize;
241        interpolator.rescale(hNew);
242
243        isLastStep = false;
244        do {
245
246            double error = 10;
247            while (error >= 1.0) {
248
249                stepSize = hNew;
250
251                // predict a first estimate of the state at step end (P in the PECE sequence)
252                final double stepEnd = stepStart + stepSize;
253                interpolator.setInterpolatedTime(stepEnd);
254                System.arraycopy(interpolator.getInterpolatedState(), 0, yTmp, 0, y0.length);
255
256                // evaluate a first estimate of the derivative (first E in the PECE sequence)
257                computeDerivatives(stepEnd, yTmp, yDot);
258
259                // update Nordsieck vector
260                for (int j = 0; j < y0.length; ++j) {
261                    predictedScaled[j] = stepSize * yDot[j];
262                }
263                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
264                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
265
266                // apply correction (C in the PECE sequence)
267                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));
268
269                if (error >= 1.0) {
270                    // reject the step and attempt to reduce error by stepsize control
271                    final double factor = computeStepGrowShrinkFactor(error);
272                    hNew = filterStep(stepSize * factor, forward, false);
273                    interpolator.rescale(hNew);
274                }
275            }
276
277            // evaluate a final estimate of the derivative (second E in the PECE sequence)
278            final double stepEnd = stepStart + stepSize;
279            computeDerivatives(stepEnd, yTmp, yDot);
280
281            // update Nordsieck vector
282            final double[] correctedScaled = new double[y0.length];
283            for (int j = 0; j < y0.length; ++j) {
284                correctedScaled[j] = stepSize * yDot[j];
285            }
286            updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, nordsieckTmp);
287
288            // discrete events handling
289            System.arraycopy(yTmp, 0, y, 0, n);
290            interpolator.reinitialize(stepEnd, stepSize, correctedScaled, nordsieckTmp);
291            interpolator.storeTime(stepStart);
292            interpolator.shift();
293            interpolator.storeTime(stepEnd);
294            stepStart = acceptStep(interpolator, y, yDot, t);
295            scaled    = correctedScaled;
296            nordsieck = nordsieckTmp;
297
298            if (!isLastStep) {
299
300                // prepare next step
301                interpolator.storeTime(stepStart);
302
303                if (resetOccurred) {
304                    // some events handler has triggered changes that
305                    // invalidate the derivatives, we need to restart from scratch
306                    start(stepStart, y, t);
307                    interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
308
309                }
310
311                // stepsize control for next step
312                final double  factor     = computeStepGrowShrinkFactor(error);
313                final double  scaledH    = stepSize * factor;
314                final double  nextT      = stepStart + scaledH;
315                final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
316                hNew = filterStep(scaledH, forward, nextIsLast);
317
318                final double  filteredNextT      = stepStart + hNew;
319                final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
320                if (filteredNextIsLast) {
321                    hNew = t - stepStart;
322                }
323
324                interpolator.rescale(hNew);
325            }
326
327        } while (!isLastStep);
328
329        final double stopTime  = stepStart;
330        stepStart = Double.NaN;
331        stepSize  = Double.NaN;
332        return stopTime;
333
334    }
335
336    /** Corrector for current state in Adams-Moulton method.
337     * <p>
338     * This visitor implements the Taylor series formula:
339     * <pre>
340     * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub>
341     * </pre>
342     * </p>
343     */
344    private class Corrector implements RealMatrixPreservingVisitor {
345
346        /** Previous state. */
347        private final double[] previous;
348
349        /** Current scaled first derivative. */
350        private final double[] scaled;
351
352        /** Current state before correction. */
353        private final double[] before;
354
355        /** Current state after correction. */
356        private final double[] after;
357
358        /** Simple constructor.
359         * @param previous previous state
360         * @param scaled current scaled first derivative
361         * @param state state to correct (will be overwritten after visit)
362         */
363        public Corrector(final double[] previous, final double[] scaled, final double[] state) {
364            this.previous = previous;
365            this.scaled   = scaled;
366            this.after    = state;
367            this.before   = state.clone();
368        }
369
370        /** {@inheritDoc} */
371        public void start(int rows, int columns,
372                          int startRow, int endRow, int startColumn, int endColumn) {
373            Arrays.fill(after, 0.0);
374        }
375
376        /** {@inheritDoc} */
377        public void visit(int row, int column, double value) {
378            if ((row & 0x1) == 0) {
379                after[column] -= value;
380            } else {
381                after[column] += value;
382            }
383        }
384
385        /**
386         * End visiting the Nordsieck vector.
387         * <p>The correction is used to control stepsize. So its amplitude is
388         * considered to be an error, which must be normalized according to
389         * error control settings. If the normalized value is greater than 1,
390         * the correction was too large and the step must be rejected.</p>
391         * @return the normalized correction, if greater than 1, the step
392         * must be rejected
393         */
394        public double end() {
395
396            double error = 0;
397            for (int i = 0; i < after.length; ++i) {
398                after[i] += previous[i] + scaled[i];
399                if (i < mainSetDimension) {
400                    final double yScale = FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i]));
401                    final double tol = (vecAbsoluteTolerance == null) ?
402                                       (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
403                                       (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
404                    final double ratio  = (after[i] - before[i]) / tol;
405                    error += ratio * ratio;
406                }
407            }
408
409            return FastMath.sqrt(error / mainSetDimension);
410
411        }
412    }
413
414}
415