10ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Ceres Solver - A fast non-linear least squares minimizer
20ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Copyright 2012 Google Inc. All rights reserved.
30ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// http://code.google.com/p/ceres-solver/
40ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
50ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Redistribution and use in source and binary forms, with or without
60ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// modification, are permitted provided that the following conditions are met:
70ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
80ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions of source code must retain the above copyright notice,
90ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer.
100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions in binary form must reproduce the above copyright notice,
110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer in the documentation
120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   and/or other materials provided with the distribution.
130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Neither the name of Google Inc. nor the names of its contributors may be
140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   used to endorse or promote products derived from this software without
150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   specific prior written permission.
160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// POSSIBILITY OF SUCH DAMAGE.
280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Author: sameeragarwal@google.com (Sameer Agarwal)
300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_
320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#define CERES_INTERNAL_DOGLEG_STRATEGY_H_
330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/linear_solver.h"
350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/trust_region_strategy.h"
360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace ceres {
380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace internal {
390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Dogleg step computation and trust region sizing strategy based on
410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen
420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// and O. Tingleff. Available to download from
430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// One minor modification is that instead of computing the pure
470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Gauss-Newton step, we compute a regularized version of it. This is
480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// because the Jacobian is often rank-deficient and in such cases
490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// using a direct solver leads to numerical failure.
500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// If SUBSPACE is passed as the type argument to the constructor, the
520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// DoglegStrategy follows the approach by Shultz, Schnabel, Byrd.
530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// This finds the exact optimum over the two-dimensional subspace
540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// spanned by the two Dogleg vectors.
550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongclass DoglegStrategy : public TrustRegionStrategy {
561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling public:
571d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  explicit DoglegStrategy(const TrustRegionStrategy::Options& options);
580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual ~DoglegStrategy() {}
590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // TrustRegionStrategy interface
610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual Summary ComputeStep(const PerSolveOptions& per_solve_options,
620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                              SparseMatrix* jacobian,
630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                              const double* residuals,
640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                              double* step);
650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual void StepAccepted(double step_quality);
660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual void StepRejected(double step_quality);
670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual void StepIsInvalid();
680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual double Radius() const;
700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // These functions are predominantly for testing.
720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector gradient() const { return gradient_; }
730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector gauss_newton_step() const { return gauss_newton_step_; }
740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Matrix subspace_basis() const { return subspace_basis_; }
750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector subspace_g() const { return subspace_g_; }
760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Matrix subspace_B() const { return subspace_B_; }
770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong private:
790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vector2d;
800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  typedef Eigen::Matrix<double, 2, 2, Eigen::DontAlign> Matrix2d;
810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
821d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  LinearSolver::Summary ComputeGaussNewtonStep(
831d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling      const PerSolveOptions& per_solve_options,
841d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling      SparseMatrix* jacobian,
851d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling      const double* residuals);
860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  void ComputeCauchyPoint(SparseMatrix* jacobian);
870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  void ComputeGradient(SparseMatrix* jacobian, const double* residuals);
880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  void ComputeTraditionalDoglegStep(double* step);
890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  bool ComputeSubspaceModel(SparseMatrix* jacobian);
900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  void ComputeSubspaceDoglegStep(double* step);
910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  bool FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const;
930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector MakePolynomialForBoundaryConstrainedProblem() const;
940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector2d ComputeSubspaceStepFromRoot(double lambda) const;
950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  double EvaluateSubspaceModel(const Vector2d& x) const;
960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  LinearSolver* linear_solver_;
980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  double radius_;
990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double max_radius_;
1000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double min_diagonal_;
1020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double max_diagonal_;
1030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // mu is used to scale the diagonal matrix used to make the
1050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Gauss-Newton solve full rank. In each solve, the strategy starts
1060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // out with mu = min_mu, and tries values upto max_mu. If the user
1070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // reports an invalid step, the value of mu_ is increased so that
1080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // the next solve starts with a stronger regularization.
1090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  //
1100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // If a successful step is reported, then the value of mu_ is
1110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // decreased with a lower bound of min_mu_.
1120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  double mu_;
1130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double min_mu_;
1140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double max_mu_;
1150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double mu_increase_factor_;
1160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double increase_threshold_;
1170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double decrease_threshold_;
1180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector diagonal_;  // sqrt(diag(J^T J))
1200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector lm_diagonal_;
1210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector gradient_;
1230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector gauss_newton_step_;
1240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // cauchy_step = alpha * gradient
1260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  double alpha_;
1270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  double dogleg_step_norm_;
1280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // When, ComputeStep is called, reuse_ indicates whether the
1300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Gauss-Newton and Cauchy steps from the last call to ComputeStep
1310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // can be reused or not.
1320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  //
1330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // If the user called StepAccepted, then it is expected that the
1340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // user has recomputed the Jacobian matrix and new Gauss-Newton
1350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // solve is needed and reuse is set to false.
1360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  //
1370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // If the user called StepRejected, then it is expected that the
1380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // user wants to solve the trust region problem with the same matrix
1390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // but a different trust region radius and the Gauss-Newton and
1400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Cauchy steps can be reused to compute the Dogleg, thus reuse is
1410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // set to true.
1420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  //
1430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // If the user called StepIsInvalid, then there was a numerical
1440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // problem with the step computed in the last call to ComputeStep,
1450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // and the regularization used to do the Gauss-Newton solve is
1460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // increased and a new solve should be done when ComputeStep is
1470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // called again, thus reuse is set to false.
1480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  bool reuse_;
1490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // The dogleg type determines how the minimum of the local
1510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // quadratic model is found.
1520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  DoglegType dogleg_type_;
1530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // If the type is SUBSPACE_DOGLEG, the two-dimensional
1550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // model 1/2 x^T B x + g^T x has to be computed and stored.
1560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  bool subspace_is_one_dimensional_;
1570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Matrix subspace_basis_;
1580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector2d subspace_g_;
1590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Matrix2d subspace_B_;
1600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong};
1610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace internal
1630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace ceres
1640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#endif  // CERES_INTERNAL_DOGLEG_STRATEGY_H_
166