Type.cpp revision 04a67a6aa3dfdc92d57f7f8d93ba397348c868a4
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Type.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25bool QualType::isConstant(QualType T, ASTContext &Ctx) {
26  if (T.isConstQualified())
27    return true;
28
29  if (const ArrayType *AT = Ctx.getAsArrayType(T))
30    return AT->getElementType().isConstant(Ctx);
31
32  return false;
33}
34
35void Type::Destroy(ASTContext& C) {
36  this->~Type();
37  C.Deallocate(this);
38}
39
40void VariableArrayType::Destroy(ASTContext& C) {
41  if (SizeExpr)
42    SizeExpr->Destroy(C);
43  this->~VariableArrayType();
44  C.Deallocate(this);
45}
46
47void DependentSizedArrayType::Destroy(ASTContext& C) {
48  // FIXME: Resource contention like in ConstantArrayWithExprType ?
49  // May crash, depending on platform or a particular build.
50  // SizeExpr->Destroy(C);
51  this->~DependentSizedArrayType();
52  C.Deallocate(this);
53}
54
55void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
56                                      ASTContext &Context,
57                                      QualType ET,
58                                      ArraySizeModifier SizeMod,
59                                      unsigned TypeQuals,
60                                      Expr *E) {
61  ID.AddPointer(ET.getAsOpaquePtr());
62  ID.AddInteger(SizeMod);
63  ID.AddInteger(TypeQuals);
64  E->Profile(ID, Context, true);
65}
66
67void
68DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
69                                     ASTContext &Context,
70                                     QualType ElementType, Expr *SizeExpr) {
71  ID.AddPointer(ElementType.getAsOpaquePtr());
72  SizeExpr->Profile(ID, Context, true);
73}
74
75void DependentSizedExtVectorType::Destroy(ASTContext& C) {
76  // FIXME: Deallocate size expression, once we're cloning properly.
77//  if (SizeExpr)
78//    SizeExpr->Destroy(C);
79  this->~DependentSizedExtVectorType();
80  C.Deallocate(this);
81}
82
83/// getArrayElementTypeNoTypeQual - If this is an array type, return the
84/// element type of the array, potentially with type qualifiers missing.
85/// This method should never be used when type qualifiers are meaningful.
86const Type *Type::getArrayElementTypeNoTypeQual() const {
87  // If this is directly an array type, return it.
88  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
89    return ATy->getElementType().getTypePtr();
90
91  // If the canonical form of this type isn't the right kind, reject it.
92  if (!isa<ArrayType>(CanonicalType))
93    return 0;
94
95  // If this is a typedef for an array type, strip the typedef off without
96  // losing all typedef information.
97  return cast<ArrayType>(getUnqualifiedDesugaredType())
98    ->getElementType().getTypePtr();
99}
100
101/// \brief Retrieve the unqualified variant of the given type, removing as
102/// little sugar as possible.
103///
104/// This routine looks through various kinds of sugar to find the
105/// least-desuraged type that is unqualified. For example, given:
106///
107/// \code
108/// typedef int Integer;
109/// typedef const Integer CInteger;
110/// typedef CInteger DifferenceType;
111/// \endcode
112///
113/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
114/// desugar until we hit the type \c Integer, which has no qualifiers on it.
115QualType QualType::getUnqualifiedTypeSlow() const {
116  QualType Cur = *this;
117  while (true) {
118    if (!Cur.hasQualifiers())
119      return Cur;
120
121    const Type *CurTy = Cur.getTypePtr();
122    switch (CurTy->getTypeClass()) {
123#define ABSTRACT_TYPE(Class, Parent)
124#define TYPE(Class, Parent)                                  \
125    case Type::Class: {                                      \
126      const Class##Type *Ty = cast<Class##Type>(CurTy);      \
127      if (!Ty->isSugared())                                  \
128        return Cur.getLocalUnqualifiedType();                \
129      Cur = Ty->desugar();                                   \
130      break;                                                 \
131    }
132#include "clang/AST/TypeNodes.def"
133    }
134  }
135
136  return Cur.getUnqualifiedType();
137}
138
139/// getDesugaredType - Return the specified type with any "sugar" removed from
140/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
141/// the type is already concrete, it returns it unmodified.  This is similar
142/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
143/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
144/// concrete.
145QualType QualType::getDesugaredType(QualType T) {
146  QualifierCollector Qs;
147
148  QualType Cur = T;
149  while (true) {
150    const Type *CurTy = Qs.strip(Cur);
151    switch (CurTy->getTypeClass()) {
152#define ABSTRACT_TYPE(Class, Parent)
153#define TYPE(Class, Parent) \
154    case Type::Class: { \
155      const Class##Type *Ty = cast<Class##Type>(CurTy); \
156      if (!Ty->isSugared()) \
157        return Qs.apply(Cur); \
158      Cur = Ty->desugar(); \
159      break; \
160    }
161#include "clang/AST/TypeNodes.def"
162    }
163  }
164}
165
166/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
167/// sugar off the given type.  This should produce an object of the
168/// same dynamic type as the canonical type.
169const Type *Type::getUnqualifiedDesugaredType() const {
170  const Type *Cur = this;
171
172  while (true) {
173    switch (Cur->getTypeClass()) {
174#define ABSTRACT_TYPE(Class, Parent)
175#define TYPE(Class, Parent) \
176    case Class: { \
177      const Class##Type *Ty = cast<Class##Type>(Cur); \
178      if (!Ty->isSugared()) return Cur; \
179      Cur = Ty->desugar().getTypePtr(); \
180      break; \
181    }
182#include "clang/AST/TypeNodes.def"
183    }
184  }
185}
186
187/// isVoidType - Helper method to determine if this is the 'void' type.
188bool Type::isVoidType() const {
189  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
190    return BT->getKind() == BuiltinType::Void;
191  return false;
192}
193
194bool Type::isObjectType() const {
195  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
196      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
197    return false;
198  return true;
199}
200
201bool Type::isDerivedType() const {
202  switch (CanonicalType->getTypeClass()) {
203  case Pointer:
204  case VariableArray:
205  case ConstantArray:
206  case IncompleteArray:
207  case FunctionProto:
208  case FunctionNoProto:
209  case LValueReference:
210  case RValueReference:
211  case Record:
212    return true;
213  default:
214    return false;
215  }
216}
217
218bool Type::isClassType() const {
219  if (const RecordType *RT = getAs<RecordType>())
220    return RT->getDecl()->isClass();
221  return false;
222}
223bool Type::isStructureType() const {
224  if (const RecordType *RT = getAs<RecordType>())
225    return RT->getDecl()->isStruct();
226  return false;
227}
228bool Type::isVoidPointerType() const {
229  if (const PointerType *PT = getAs<PointerType>())
230    return PT->getPointeeType()->isVoidType();
231  return false;
232}
233
234bool Type::isUnionType() const {
235  if (const RecordType *RT = getAs<RecordType>())
236    return RT->getDecl()->isUnion();
237  return false;
238}
239
240bool Type::isComplexType() const {
241  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
242    return CT->getElementType()->isFloatingType();
243  return false;
244}
245
246bool Type::isComplexIntegerType() const {
247  // Check for GCC complex integer extension.
248  return getAsComplexIntegerType();
249}
250
251const ComplexType *Type::getAsComplexIntegerType() const {
252  if (const ComplexType *Complex = getAs<ComplexType>())
253    if (Complex->getElementType()->isIntegerType())
254      return Complex;
255  return 0;
256}
257
258QualType Type::getPointeeType() const {
259  if (const PointerType *PT = getAs<PointerType>())
260    return PT->getPointeeType();
261  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
262    return OPT->getPointeeType();
263  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
264    return BPT->getPointeeType();
265  if (const ReferenceType *RT = getAs<ReferenceType>())
266    return RT->getPointeeType();
267  return QualType();
268}
269
270/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
271/// array types and types that contain variable array types in their
272/// declarator
273bool Type::isVariablyModifiedType() const {
274  // A VLA is a variably modified type.
275  if (isVariableArrayType())
276    return true;
277
278  // An array can contain a variably modified type
279  if (const Type *T = getArrayElementTypeNoTypeQual())
280    return T->isVariablyModifiedType();
281
282  // A pointer can point to a variably modified type.
283  // Also, C++ references and member pointers can point to a variably modified
284  // type, where VLAs appear as an extension to C++, and should be treated
285  // correctly.
286  if (const PointerType *PT = getAs<PointerType>())
287    return PT->getPointeeType()->isVariablyModifiedType();
288  if (const ReferenceType *RT = getAs<ReferenceType>())
289    return RT->getPointeeType()->isVariablyModifiedType();
290  if (const MemberPointerType *PT = getAs<MemberPointerType>())
291    return PT->getPointeeType()->isVariablyModifiedType();
292
293  // A function can return a variably modified type
294  // This one isn't completely obvious, but it follows from the
295  // definition in C99 6.7.5p3. Because of this rule, it's
296  // illegal to declare a function returning a variably modified type.
297  if (const FunctionType *FT = getAs<FunctionType>())
298    return FT->getResultType()->isVariablyModifiedType();
299
300  return false;
301}
302
303const RecordType *Type::getAsStructureType() const {
304  // If this is directly a structure type, return it.
305  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
306    if (RT->getDecl()->isStruct())
307      return RT;
308  }
309
310  // If the canonical form of this type isn't the right kind, reject it.
311  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
312    if (!RT->getDecl()->isStruct())
313      return 0;
314
315    // If this is a typedef for a structure type, strip the typedef off without
316    // losing all typedef information.
317    return cast<RecordType>(getUnqualifiedDesugaredType());
318  }
319  return 0;
320}
321
322const RecordType *Type::getAsUnionType() const {
323  // If this is directly a union type, return it.
324  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
325    if (RT->getDecl()->isUnion())
326      return RT;
327  }
328
329  // If the canonical form of this type isn't the right kind, reject it.
330  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
331    if (!RT->getDecl()->isUnion())
332      return 0;
333
334    // If this is a typedef for a union type, strip the typedef off without
335    // losing all typedef information.
336    return cast<RecordType>(getUnqualifiedDesugaredType());
337  }
338
339  return 0;
340}
341
342ObjCInterfaceType::ObjCInterfaceType(ASTContext &Ctx, QualType Canonical,
343                                     ObjCInterfaceDecl *D,
344                                     ObjCProtocolDecl **Protos, unsigned NumP) :
345  Type(ObjCInterface, Canonical, /*Dependent=*/false),
346  Decl(D), Protocols(0), NumProtocols(NumP)
347{
348  if (NumProtocols) {
349    Protocols = new (Ctx) ObjCProtocolDecl*[NumProtocols];
350    memcpy(Protocols, Protos, NumProtocols * sizeof(*Protocols));
351  }
352}
353
354void ObjCInterfaceType::Destroy(ASTContext& C) {
355  if (Protocols)
356    C.Deallocate(Protocols);
357  this->~ObjCInterfaceType();
358  C.Deallocate(this);
359}
360
361const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
362  // There is no sugar for ObjCInterfaceType's, just return the canonical
363  // type pointer if it is the right class.  There is no typedef information to
364  // return and these cannot be Address-space qualified.
365  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
366    if (OIT->getNumProtocols())
367      return OIT;
368  return 0;
369}
370
371bool Type::isObjCQualifiedInterfaceType() const {
372  return getAsObjCQualifiedInterfaceType() != 0;
373}
374
375ObjCObjectPointerType::ObjCObjectPointerType(ASTContext &Ctx,
376                                             QualType Canonical, QualType T,
377                                             ObjCProtocolDecl **Protos,
378                                             unsigned NumP) :
379  Type(ObjCObjectPointer, Canonical, /*Dependent=*/false),
380  PointeeType(T), Protocols(NULL), NumProtocols(NumP)
381{
382  if (NumProtocols) {
383    Protocols = new (Ctx) ObjCProtocolDecl*[NumProtocols];
384    memcpy(Protocols, Protos, NumProtocols * sizeof(*Protocols));
385  }
386}
387
388void ObjCObjectPointerType::Destroy(ASTContext& C) {
389  if (Protocols)
390    C.Deallocate(Protocols);
391  this->~ObjCObjectPointerType();
392  C.Deallocate(this);
393}
394
395const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
396  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
397  // type pointer if it is the right class.
398  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
399    if (OPT->isObjCQualifiedIdType())
400      return OPT;
401  }
402  return 0;
403}
404
405const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
406  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
407    if (OPT->getInterfaceType())
408      return OPT;
409  }
410  return 0;
411}
412
413const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
414  if (const PointerType *PT = getAs<PointerType>())
415    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
416      return dyn_cast<CXXRecordDecl>(RT->getDecl());
417  return 0;
418}
419
420bool Type::isIntegerType() const {
421  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
422    return BT->getKind() >= BuiltinType::Bool &&
423           BT->getKind() <= BuiltinType::Int128;
424  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
425    // Incomplete enum types are not treated as integer types.
426    // FIXME: In C++, enum types are never integer types.
427    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
428      return true;
429  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
430    return VT->getElementType()->isIntegerType();
431  return false;
432}
433
434bool Type::isIntegralType() const {
435  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
436    return BT->getKind() >= BuiltinType::Bool &&
437    BT->getKind() <= BuiltinType::Int128;
438  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
439    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
440      return true;  // Complete enum types are integral.
441                    // FIXME: In C++, enum types are never integral.
442  return false;
443}
444
445bool Type::isEnumeralType() const {
446  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
447    return TT->getDecl()->isEnum();
448  return false;
449}
450
451bool Type::isBooleanType() const {
452  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
453    return BT->getKind() == BuiltinType::Bool;
454  return false;
455}
456
457bool Type::isCharType() const {
458  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
459    return BT->getKind() == BuiltinType::Char_U ||
460           BT->getKind() == BuiltinType::UChar ||
461           BT->getKind() == BuiltinType::Char_S ||
462           BT->getKind() == BuiltinType::SChar;
463  return false;
464}
465
466bool Type::isWideCharType() const {
467  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
468    return BT->getKind() == BuiltinType::WChar;
469  return false;
470}
471
472/// \brief Determine whether this type is any of the built-in character
473/// types.
474bool Type::isAnyCharacterType() const {
475  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
476    return (BT->getKind() >= BuiltinType::Char_U &&
477            BT->getKind() <= BuiltinType::Char32) ||
478           (BT->getKind() >= BuiltinType::Char_S &&
479            BT->getKind() <= BuiltinType::WChar);
480
481  return false;
482}
483
484/// isSignedIntegerType - Return true if this is an integer type that is
485/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
486/// an enum decl which has a signed representation, or a vector of signed
487/// integer element type.
488bool Type::isSignedIntegerType() const {
489  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
490    return BT->getKind() >= BuiltinType::Char_S &&
491           BT->getKind() <= BuiltinType::Int128;
492  }
493
494  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
495    return ET->getDecl()->getIntegerType()->isSignedIntegerType();
496
497  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
498    return VT->getElementType()->isSignedIntegerType();
499  return false;
500}
501
502/// isUnsignedIntegerType - Return true if this is an integer type that is
503/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
504/// decl which has an unsigned representation, or a vector of unsigned integer
505/// element type.
506bool Type::isUnsignedIntegerType() const {
507  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
508    return BT->getKind() >= BuiltinType::Bool &&
509           BT->getKind() <= BuiltinType::UInt128;
510  }
511
512  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
513    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
514
515  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
516    return VT->getElementType()->isUnsignedIntegerType();
517  return false;
518}
519
520bool Type::isFloatingType() const {
521  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
522    return BT->getKind() >= BuiltinType::Float &&
523           BT->getKind() <= BuiltinType::LongDouble;
524  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
525    return CT->getElementType()->isFloatingType();
526  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
527    return VT->getElementType()->isFloatingType();
528  return false;
529}
530
531bool Type::isRealFloatingType() const {
532  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
533    return BT->isFloatingPoint();
534  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
535    return VT->getElementType()->isRealFloatingType();
536  return false;
537}
538
539bool Type::isRealType() const {
540  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
541    return BT->getKind() >= BuiltinType::Bool &&
542           BT->getKind() <= BuiltinType::LongDouble;
543  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
544    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
545  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
546    return VT->getElementType()->isRealType();
547  return false;
548}
549
550bool Type::isArithmeticType() const {
551  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
552    return BT->getKind() >= BuiltinType::Bool &&
553           BT->getKind() <= BuiltinType::LongDouble;
554  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
555    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
556    // If a body isn't seen by the time we get here, return false.
557    return ET->getDecl()->isDefinition();
558  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
559}
560
561bool Type::isScalarType() const {
562  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
563    return BT->getKind() != BuiltinType::Void;
564  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
565    // Enums are scalar types, but only if they are defined.  Incomplete enums
566    // are not treated as scalar types.
567    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
568      return true;
569    return false;
570  }
571  return isa<PointerType>(CanonicalType) ||
572         isa<BlockPointerType>(CanonicalType) ||
573         isa<MemberPointerType>(CanonicalType) ||
574         isa<ComplexType>(CanonicalType) ||
575         isa<ObjCObjectPointerType>(CanonicalType);
576}
577
578/// \brief Determines whether the type is a C++ aggregate type or C
579/// aggregate or union type.
580///
581/// An aggregate type is an array or a class type (struct, union, or
582/// class) that has no user-declared constructors, no private or
583/// protected non-static data members, no base classes, and no virtual
584/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
585/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
586/// includes union types.
587bool Type::isAggregateType() const {
588  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
589    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
590      return ClassDecl->isAggregate();
591
592    return true;
593  }
594
595  return isa<ArrayType>(CanonicalType);
596}
597
598/// isConstantSizeType - Return true if this is not a variable sized type,
599/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
600/// incomplete types or dependent types.
601bool Type::isConstantSizeType() const {
602  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
603  assert(!isDependentType() && "This doesn't make sense for dependent types");
604  // The VAT must have a size, as it is known to be complete.
605  return !isa<VariableArrayType>(CanonicalType);
606}
607
608/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
609/// - a type that can describe objects, but which lacks information needed to
610/// determine its size.
611bool Type::isIncompleteType() const {
612  switch (CanonicalType->getTypeClass()) {
613  default: return false;
614  case Builtin:
615    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
616    // be completed.
617    return isVoidType();
618  case Record:
619  case Enum:
620    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
621    // forward declaration, but not a full definition (C99 6.2.5p22).
622    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
623  case ConstantArray:
624    // An array is incomplete if its element type is incomplete
625    // (C++ [dcl.array]p1).
626    // We don't handle variable arrays (they're not allowed in C++) or
627    // dependent-sized arrays (dependent types are never treated as incomplete).
628    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
629  case IncompleteArray:
630    // An array of unknown size is an incomplete type (C99 6.2.5p22).
631    return true;
632  case ObjCInterface:
633    // ObjC interfaces are incomplete if they are @class, not @interface.
634    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
635  }
636}
637
638/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
639bool Type::isPODType() const {
640  // The compiler shouldn't query this for incomplete types, but the user might.
641  // We return false for that case.
642  if (isIncompleteType())
643    return false;
644
645  switch (CanonicalType->getTypeClass()) {
646    // Everything not explicitly mentioned is not POD.
647  default: return false;
648  case VariableArray:
649  case ConstantArray:
650    // IncompleteArray is caught by isIncompleteType() above.
651    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
652
653  case Builtin:
654  case Complex:
655  case Pointer:
656  case MemberPointer:
657  case Vector:
658  case ExtVector:
659  case ObjCObjectPointer:
660    return true;
661
662  case Enum:
663    return true;
664
665  case Record:
666    if (CXXRecordDecl *ClassDecl
667          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
668      return ClassDecl->isPOD();
669
670    // C struct/union is POD.
671    return true;
672  }
673}
674
675bool Type::isLiteralType() const {
676  if (isIncompleteType())
677    return false;
678
679  // C++0x [basic.types]p10:
680  //   A type is a literal type if it is:
681  switch (CanonicalType->getTypeClass()) {
682    // We're whitelisting
683  default: return false;
684
685    //   -- a scalar type
686  case Builtin:
687  case Complex:
688  case Pointer:
689  case MemberPointer:
690  case Vector:
691  case ExtVector:
692  case ObjCObjectPointer:
693  case Enum:
694    return true;
695
696    //   -- a class type with ...
697  case Record:
698    // FIXME: Do the tests
699    return false;
700
701    //   -- an array of literal type
702    // Extension: variable arrays cannot be literal types, since they're
703    // runtime-sized.
704  case ConstantArray:
705    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
706  }
707}
708
709bool Type::isPromotableIntegerType() const {
710  if (const BuiltinType *BT = getAs<BuiltinType>())
711    switch (BT->getKind()) {
712    case BuiltinType::Bool:
713    case BuiltinType::Char_S:
714    case BuiltinType::Char_U:
715    case BuiltinType::SChar:
716    case BuiltinType::UChar:
717    case BuiltinType::Short:
718    case BuiltinType::UShort:
719      return true;
720    default:
721      return false;
722    }
723
724  // Enumerated types are promotable to their compatible integer types
725  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
726  if (const EnumType *ET = getAs<EnumType>()){
727    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull())
728      return false;
729
730    const BuiltinType *BT
731      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
732    return BT->getKind() == BuiltinType::Int
733           || BT->getKind() == BuiltinType::UInt;
734  }
735
736  return false;
737}
738
739bool Type::isNullPtrType() const {
740  if (const BuiltinType *BT = getAs<BuiltinType>())
741    return BT->getKind() == BuiltinType::NullPtr;
742  return false;
743}
744
745bool Type::isSpecifierType() const {
746  // Note that this intentionally does not use the canonical type.
747  switch (getTypeClass()) {
748  case Builtin:
749  case Record:
750  case Enum:
751  case Typedef:
752  case Complex:
753  case TypeOfExpr:
754  case TypeOf:
755  case TemplateTypeParm:
756  case SubstTemplateTypeParm:
757  case TemplateSpecialization:
758  case QualifiedName:
759  case Typename:
760  case ObjCInterface:
761  case ObjCObjectPointer:
762  case Elaborated:
763    return true;
764  default:
765    return false;
766  }
767}
768
769const char *Type::getTypeClassName() const {
770  switch (TC) {
771  default: assert(0 && "Type class not in TypeNodes.def!");
772#define ABSTRACT_TYPE(Derived, Base)
773#define TYPE(Derived, Base) case Derived: return #Derived;
774#include "clang/AST/TypeNodes.def"
775  }
776}
777
778const char *BuiltinType::getName(const LangOptions &LO) const {
779  switch (getKind()) {
780  default: assert(0 && "Unknown builtin type!");
781  case Void:              return "void";
782  case Bool:              return LO.Bool ? "bool" : "_Bool";
783  case Char_S:            return "char";
784  case Char_U:            return "char";
785  case SChar:             return "signed char";
786  case Short:             return "short";
787  case Int:               return "int";
788  case Long:              return "long";
789  case LongLong:          return "long long";
790  case Int128:            return "__int128_t";
791  case UChar:             return "unsigned char";
792  case UShort:            return "unsigned short";
793  case UInt:              return "unsigned int";
794  case ULong:             return "unsigned long";
795  case ULongLong:         return "unsigned long long";
796  case UInt128:           return "__uint128_t";
797  case Float:             return "float";
798  case Double:            return "double";
799  case LongDouble:        return "long double";
800  case WChar:             return "wchar_t";
801  case Char16:            return "char16_t";
802  case Char32:            return "char32_t";
803  case NullPtr:           return "nullptr_t";
804  case Overload:          return "<overloaded function type>";
805  case Dependent:         return "<dependent type>";
806  case UndeducedAuto:     return "auto";
807  case ObjCId:            return "id";
808  case ObjCClass:         return "Class";
809  case ObjCSel:         return "SEL";
810  }
811}
812
813llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
814  switch (CC) {
815  case CC_Default: llvm_unreachable("no name for default cc");
816  default: return "";
817
818  case CC_C: return "cdecl";
819  case CC_X86StdCall: return "stdcall";
820  case CC_X86FastCall: return "fastcall";
821  }
822}
823
824void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
825                                arg_type_iterator ArgTys,
826                                unsigned NumArgs, bool isVariadic,
827                                unsigned TypeQuals, bool hasExceptionSpec,
828                                bool anyExceptionSpec, unsigned NumExceptions,
829                                exception_iterator Exs, bool NoReturn,
830                                CallingConv CallConv) {
831  ID.AddPointer(Result.getAsOpaquePtr());
832  for (unsigned i = 0; i != NumArgs; ++i)
833    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
834  ID.AddInteger(isVariadic);
835  ID.AddInteger(TypeQuals);
836  ID.AddInteger(hasExceptionSpec);
837  if (hasExceptionSpec) {
838    ID.AddInteger(anyExceptionSpec);
839    for (unsigned i = 0; i != NumExceptions; ++i)
840      ID.AddPointer(Exs[i].getAsOpaquePtr());
841  }
842  ID.AddInteger(NoReturn);
843  ID.AddInteger(CallConv);
844}
845
846void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
847  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
848          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
849          getNumExceptions(), exception_begin(), getNoReturnAttr(),
850          getCallConv());
851}
852
853void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
854                                    QualType OIT, ObjCProtocolDecl **protocols,
855                                    unsigned NumProtocols) {
856  ID.AddPointer(OIT.getAsOpaquePtr());
857  for (unsigned i = 0; i != NumProtocols; i++)
858    ID.AddPointer(protocols[i]);
859}
860
861void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
862  if (getNumProtocols())
863    Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
864  else
865    Profile(ID, getPointeeType(), 0, 0);
866}
867
868/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
869/// potentially looking through *all* consequtive typedefs.  This returns the
870/// sum of the type qualifiers, so if you have:
871///   typedef const int A;
872///   typedef volatile A B;
873/// looking through the typedefs for B will give you "const volatile A".
874///
875QualType TypedefType::LookThroughTypedefs() const {
876  // Usually, there is only a single level of typedefs, be fast in that case.
877  QualType FirstType = getDecl()->getUnderlyingType();
878  if (!isa<TypedefType>(FirstType))
879    return FirstType;
880
881  // Otherwise, do the fully general loop.
882  QualifierCollector Qs;
883
884  QualType CurType;
885  const TypedefType *TDT = this;
886  do {
887    CurType = TDT->getDecl()->getUnderlyingType();
888    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
889  } while (TDT);
890
891  return Qs.apply(CurType);
892}
893
894QualType TypedefType::desugar() const {
895  return getDecl()->getUnderlyingType();
896}
897
898TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
899  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
900}
901
902QualType TypeOfExprType::desugar() const {
903  return getUnderlyingExpr()->getType();
904}
905
906void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
907                                      ASTContext &Context, Expr *E) {
908  E->Profile(ID, Context, true);
909}
910
911DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
912  : Type(Decltype, can, E->isTypeDependent()), E(E),
913  UnderlyingType(underlyingType) {
914}
915
916DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
917  : DecltypeType(E, Context.DependentTy), Context(Context) { }
918
919void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
920                                    ASTContext &Context, Expr *E) {
921  E->Profile(ID, Context, true);
922}
923
924TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
925  : Type(TC, can, D->isDependentType()), decl(D, 0) {}
926
927bool RecordType::classof(const TagType *TT) {
928  return isa<RecordDecl>(TT->getDecl());
929}
930
931bool EnumType::classof(const TagType *TT) {
932  return isa<EnumDecl>(TT->getDecl());
933}
934
935static bool isDependent(const TemplateArgument &Arg) {
936  switch (Arg.getKind()) {
937  case TemplateArgument::Null:
938    assert(false && "Should not have a NULL template argument");
939    return false;
940
941  case TemplateArgument::Type:
942    return Arg.getAsType()->isDependentType();
943
944  case TemplateArgument::Template:
945    return Arg.getAsTemplate().isDependent();
946
947  case TemplateArgument::Declaration:
948  case TemplateArgument::Integral:
949    // Never dependent
950    return false;
951
952  case TemplateArgument::Expression:
953    return (Arg.getAsExpr()->isTypeDependent() ||
954            Arg.getAsExpr()->isValueDependent());
955
956  case TemplateArgument::Pack:
957    assert(0 && "FIXME: Implement!");
958    return false;
959  }
960
961  return false;
962}
963
964bool TemplateSpecializationType::
965anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
966  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
967}
968
969bool TemplateSpecializationType::
970anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
971  for (unsigned i = 0; i != N; ++i)
972    if (isDependent(Args[i].getArgument()))
973      return true;
974  return false;
975}
976
977bool TemplateSpecializationType::
978anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
979  for (unsigned i = 0; i != N; ++i)
980    if (isDependent(Args[i]))
981      return true;
982  return false;
983}
984
985TemplateSpecializationType::
986TemplateSpecializationType(ASTContext &Context, TemplateName T,
987                           const TemplateArgument *Args,
988                           unsigned NumArgs, QualType Canon)
989  : Type(TemplateSpecialization,
990         Canon.isNull()? QualType(this, 0) : Canon,
991         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
992    Context(Context),
993    Template(T), NumArgs(NumArgs) {
994  assert((!Canon.isNull() ||
995          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
996         "No canonical type for non-dependent class template specialization");
997
998  TemplateArgument *TemplateArgs
999    = reinterpret_cast<TemplateArgument *>(this + 1);
1000  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
1001    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1002}
1003
1004void TemplateSpecializationType::Destroy(ASTContext& C) {
1005  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1006    // FIXME: Not all expressions get cloned, so we can't yet perform
1007    // this destruction.
1008    //    if (Expr *E = getArg(Arg).getAsExpr())
1009    //      E->Destroy(C);
1010  }
1011}
1012
1013TemplateSpecializationType::iterator
1014TemplateSpecializationType::end() const {
1015  return begin() + getNumArgs();
1016}
1017
1018const TemplateArgument &
1019TemplateSpecializationType::getArg(unsigned Idx) const {
1020  assert(Idx < getNumArgs() && "Template argument out of range");
1021  return getArgs()[Idx];
1022}
1023
1024void
1025TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1026                                    TemplateName T,
1027                                    const TemplateArgument *Args,
1028                                    unsigned NumArgs,
1029                                    ASTContext &Context) {
1030  T.Profile(ID);
1031  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1032    Args[Idx].Profile(ID, Context);
1033}
1034
1035QualType QualifierCollector::apply(QualType QT) const {
1036  if (!hasNonFastQualifiers())
1037    return QT.withFastQualifiers(getFastQualifiers());
1038
1039  assert(Context && "extended qualifiers but no context!");
1040  return Context->getQualifiedType(QT, *this);
1041}
1042
1043QualType QualifierCollector::apply(const Type *T) const {
1044  if (!hasNonFastQualifiers())
1045    return QualType(T, getFastQualifiers());
1046
1047  assert(Context && "extended qualifiers but no context!");
1048  return Context->getQualifiedType(T, *this);
1049}
1050
1051void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
1052                                         const ObjCInterfaceDecl *Decl,
1053                                         ObjCProtocolDecl **protocols,
1054                                         unsigned NumProtocols) {
1055  ID.AddPointer(Decl);
1056  for (unsigned i = 0; i != NumProtocols; i++)
1057    ID.AddPointer(protocols[i]);
1058}
1059
1060void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
1061  if (getNumProtocols())
1062    Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
1063  else
1064    Profile(ID, getDecl(), 0, 0);
1065}
1066
1067Linkage Type::getLinkage() const {
1068  // C++ [basic.link]p8:
1069  //   Names not covered by these rules have no linkage.
1070  if (this != CanonicalType.getTypePtr())
1071    return CanonicalType->getLinkage();
1072
1073  return NoLinkage;
1074}
1075
1076Linkage BuiltinType::getLinkage() const {
1077  // C++ [basic.link]p8:
1078  //   A type is said to have linkage if and only if:
1079  //     - it is a fundamental type (3.9.1); or
1080  return ExternalLinkage;
1081}
1082
1083Linkage TagType::getLinkage() const {
1084  // C++ [basic.link]p8:
1085  //     - it is a class or enumeration type that is named (or has a name for
1086  //       linkage purposes (7.1.3)) and the name has linkage; or
1087  //     -  it is a specialization of a class template (14); or
1088  return getDecl()->getLinkage();
1089}
1090
1091// C++ [basic.link]p8:
1092//   - it is a compound type (3.9.2) other than a class or enumeration,
1093//     compounded exclusively from types that have linkage; or
1094Linkage ComplexType::getLinkage() const {
1095  return ElementType->getLinkage();
1096}
1097
1098Linkage PointerType::getLinkage() const {
1099  return PointeeType->getLinkage();
1100}
1101
1102Linkage BlockPointerType::getLinkage() const {
1103  return PointeeType->getLinkage();
1104}
1105
1106Linkage ReferenceType::getLinkage() const {
1107  return PointeeType->getLinkage();
1108}
1109
1110Linkage MemberPointerType::getLinkage() const {
1111  return minLinkage(Class->getLinkage(), PointeeType->getLinkage());
1112}
1113
1114Linkage ArrayType::getLinkage() const {
1115  return ElementType->getLinkage();
1116}
1117
1118Linkage VectorType::getLinkage() const {
1119  return ElementType->getLinkage();
1120}
1121
1122Linkage FunctionNoProtoType::getLinkage() const {
1123  return getResultType()->getLinkage();
1124}
1125
1126Linkage FunctionProtoType::getLinkage() const {
1127  Linkage L = getResultType()->getLinkage();
1128  for (arg_type_iterator A = arg_type_begin(), AEnd = arg_type_end();
1129       A != AEnd; ++A)
1130    L = minLinkage(L, (*A)->getLinkage());
1131
1132  return L;
1133}
1134
1135Linkage ObjCInterfaceType::getLinkage() const {
1136  return ExternalLinkage;
1137}
1138
1139Linkage ObjCObjectPointerType::getLinkage() const {
1140  return ExternalLinkage;
1141}
1142