Type.cpp revision 4d9d157afb35742bc6348defbe45bc6de780ec77
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31  return (*this != Other) &&
32    // CVR qualifiers superset
33    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34    // ObjC GC qualifiers superset
35    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37    // Address space superset.
38    ((getAddressSpace() == Other.getAddressSpace()) ||
39     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40    // Lifetime qualifier superset.
41    ((getObjCLifetime() == Other.getObjCLifetime()) ||
42     (hasObjCLifetime() && !Other.hasObjCLifetime()));
43}
44
45const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
46  const Type* ty = getTypePtr();
47  NamedDecl *ND = NULL;
48  if (ty->isPointerType() || ty->isReferenceType())
49    return ty->getPointeeType().getBaseTypeIdentifier();
50  else if (ty->isRecordType())
51    ND = ty->getAs<RecordType>()->getDecl();
52  else if (ty->isEnumeralType())
53    ND = ty->getAs<EnumType>()->getDecl();
54  else if (ty->getTypeClass() == Type::Typedef)
55    ND = ty->getAs<TypedefType>()->getDecl();
56  else if (ty->isArrayType())
57    return ty->castAsArrayTypeUnsafe()->
58        getElementType().getBaseTypeIdentifier();
59
60  if (ND)
61    return ND->getIdentifier();
62  return NULL;
63}
64
65bool QualType::isConstant(QualType T, ASTContext &Ctx) {
66  if (T.isConstQualified())
67    return true;
68
69  if (const ArrayType *AT = Ctx.getAsArrayType(T))
70    return AT->getElementType().isConstant(Ctx);
71
72  return false;
73}
74
75unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
76                                                 QualType ElementType,
77                                               const llvm::APInt &NumElements) {
78  llvm::APSInt SizeExtended(NumElements, true);
79  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
80  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
81                                              SizeExtended.getBitWidth()) * 2);
82
83  uint64_t ElementSize
84    = Context.getTypeSizeInChars(ElementType).getQuantity();
85  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
86  TotalSize *= SizeExtended;
87
88  return TotalSize.getActiveBits();
89}
90
91unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
92  unsigned Bits = Context.getTypeSize(Context.getSizeType());
93
94  // GCC appears to only allow 63 bits worth of address space when compiling
95  // for 64-bit, so we do the same.
96  if (Bits == 64)
97    --Bits;
98
99  return Bits;
100}
101
102DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
103                                                 QualType et, QualType can,
104                                                 Expr *e, ArraySizeModifier sm,
105                                                 unsigned tq,
106                                                 SourceRange brackets)
107    : ArrayType(DependentSizedArray, et, can, sm, tq,
108                (et->containsUnexpandedParameterPack() ||
109                 (e && e->containsUnexpandedParameterPack()))),
110      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
111{
112}
113
114void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
115                                      const ASTContext &Context,
116                                      QualType ET,
117                                      ArraySizeModifier SizeMod,
118                                      unsigned TypeQuals,
119                                      Expr *E) {
120  ID.AddPointer(ET.getAsOpaquePtr());
121  ID.AddInteger(SizeMod);
122  ID.AddInteger(TypeQuals);
123  E->Profile(ID, Context, true);
124}
125
126DependentSizedExtVectorType::DependentSizedExtVectorType(const
127                                                         ASTContext &Context,
128                                                         QualType ElementType,
129                                                         QualType can,
130                                                         Expr *SizeExpr,
131                                                         SourceLocation loc)
132    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
133           /*InstantiationDependent=*/true,
134           ElementType->isVariablyModifiedType(),
135           (ElementType->containsUnexpandedParameterPack() ||
136            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
137      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
138      loc(loc)
139{
140}
141
142void
143DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
144                                     const ASTContext &Context,
145                                     QualType ElementType, Expr *SizeExpr) {
146  ID.AddPointer(ElementType.getAsOpaquePtr());
147  SizeExpr->Profile(ID, Context, true);
148}
149
150VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
151                       VectorKind vecKind)
152  : Type(Vector, canonType, vecType->isDependentType(),
153         vecType->isInstantiationDependentType(),
154         vecType->isVariablyModifiedType(),
155         vecType->containsUnexpandedParameterPack()),
156    ElementType(vecType)
157{
158  VectorTypeBits.VecKind = vecKind;
159  VectorTypeBits.NumElements = nElements;
160}
161
162VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
163                       QualType canonType, VectorKind vecKind)
164  : Type(tc, canonType, vecType->isDependentType(),
165         vecType->isInstantiationDependentType(),
166         vecType->isVariablyModifiedType(),
167         vecType->containsUnexpandedParameterPack()),
168    ElementType(vecType)
169{
170  VectorTypeBits.VecKind = vecKind;
171  VectorTypeBits.NumElements = nElements;
172}
173
174/// getArrayElementTypeNoTypeQual - If this is an array type, return the
175/// element type of the array, potentially with type qualifiers missing.
176/// This method should never be used when type qualifiers are meaningful.
177const Type *Type::getArrayElementTypeNoTypeQual() const {
178  // If this is directly an array type, return it.
179  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180    return ATy->getElementType().getTypePtr();
181
182  // If the canonical form of this type isn't the right kind, reject it.
183  if (!isa<ArrayType>(CanonicalType))
184    return 0;
185
186  // If this is a typedef for an array type, strip the typedef off without
187  // losing all typedef information.
188  return cast<ArrayType>(getUnqualifiedDesugaredType())
189    ->getElementType().getTypePtr();
190}
191
192/// getDesugaredType - Return the specified type with any "sugar" removed from
193/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
194/// the type is already concrete, it returns it unmodified.  This is similar
195/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
196/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
197/// concrete.
198QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
199  SplitQualType split = getSplitDesugaredType(T);
200  return Context.getQualifiedType(split.first, split.second);
201}
202
203QualType QualType::getSingleStepDesugaredType(const ASTContext &Context) const {
204  QualifierCollector Qs;
205
206  const Type *CurTy = Qs.strip(*this);
207  switch (CurTy->getTypeClass()) {
208#define ABSTRACT_TYPE(Class, Parent)
209#define TYPE(Class, Parent) \
210  case Type::Class: { \
211    const Class##Type *Ty = cast<Class##Type>(CurTy); \
212    if (!Ty->isSugared()) \
213      return *this; \
214    return Context.getQualifiedType(Ty->desugar(), Qs); \
215    break; \
216  }
217#include "clang/AST/TypeNodes.def"
218  }
219
220  return *this;
221}
222
223SplitQualType QualType::getSplitDesugaredType(QualType T) {
224  QualifierCollector Qs;
225
226  QualType Cur = T;
227  while (true) {
228    const Type *CurTy = Qs.strip(Cur);
229    switch (CurTy->getTypeClass()) {
230#define ABSTRACT_TYPE(Class, Parent)
231#define TYPE(Class, Parent) \
232    case Type::Class: { \
233      const Class##Type *Ty = cast<Class##Type>(CurTy); \
234      if (!Ty->isSugared()) \
235        return SplitQualType(Ty, Qs); \
236      Cur = Ty->desugar(); \
237      break; \
238    }
239#include "clang/AST/TypeNodes.def"
240    }
241  }
242}
243
244SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
245  SplitQualType split = type.split();
246
247  // All the qualifiers we've seen so far.
248  Qualifiers quals = split.second;
249
250  // The last type node we saw with any nodes inside it.
251  const Type *lastTypeWithQuals = split.first;
252
253  while (true) {
254    QualType next;
255
256    // Do a single-step desugar, aborting the loop if the type isn't
257    // sugared.
258    switch (split.first->getTypeClass()) {
259#define ABSTRACT_TYPE(Class, Parent)
260#define TYPE(Class, Parent) \
261    case Type::Class: { \
262      const Class##Type *ty = cast<Class##Type>(split.first); \
263      if (!ty->isSugared()) goto done; \
264      next = ty->desugar(); \
265      break; \
266    }
267#include "clang/AST/TypeNodes.def"
268    }
269
270    // Otherwise, split the underlying type.  If that yields qualifiers,
271    // update the information.
272    split = next.split();
273    if (!split.second.empty()) {
274      lastTypeWithQuals = split.first;
275      quals.addConsistentQualifiers(split.second);
276    }
277  }
278
279 done:
280  return SplitQualType(lastTypeWithQuals, quals);
281}
282
283QualType QualType::IgnoreParens(QualType T) {
284  // FIXME: this seems inherently un-qualifiers-safe.
285  while (const ParenType *PT = T->getAs<ParenType>())
286    T = PT->getInnerType();
287  return T;
288}
289
290/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
291/// sugar off the given type.  This should produce an object of the
292/// same dynamic type as the canonical type.
293const Type *Type::getUnqualifiedDesugaredType() const {
294  const Type *Cur = this;
295
296  while (true) {
297    switch (Cur->getTypeClass()) {
298#define ABSTRACT_TYPE(Class, Parent)
299#define TYPE(Class, Parent) \
300    case Class: { \
301      const Class##Type *Ty = cast<Class##Type>(Cur); \
302      if (!Ty->isSugared()) return Cur; \
303      Cur = Ty->desugar().getTypePtr(); \
304      break; \
305    }
306#include "clang/AST/TypeNodes.def"
307    }
308  }
309}
310
311/// isVoidType - Helper method to determine if this is the 'void' type.
312bool Type::isVoidType() const {
313  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
314    return BT->getKind() == BuiltinType::Void;
315  return false;
316}
317
318bool Type::isDerivedType() const {
319  switch (CanonicalType->getTypeClass()) {
320  case Pointer:
321  case VariableArray:
322  case ConstantArray:
323  case IncompleteArray:
324  case FunctionProto:
325  case FunctionNoProto:
326  case LValueReference:
327  case RValueReference:
328  case Record:
329    return true;
330  default:
331    return false;
332  }
333}
334bool Type::isClassType() const {
335  if (const RecordType *RT = getAs<RecordType>())
336    return RT->getDecl()->isClass();
337  return false;
338}
339bool Type::isStructureType() const {
340  if (const RecordType *RT = getAs<RecordType>())
341    return RT->getDecl()->isStruct();
342  return false;
343}
344bool Type::isStructureOrClassType() const {
345  if (const RecordType *RT = getAs<RecordType>())
346    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
347  return false;
348}
349bool Type::isVoidPointerType() const {
350  if (const PointerType *PT = getAs<PointerType>())
351    return PT->getPointeeType()->isVoidType();
352  return false;
353}
354
355bool Type::isUnionType() const {
356  if (const RecordType *RT = getAs<RecordType>())
357    return RT->getDecl()->isUnion();
358  return false;
359}
360
361bool Type::isComplexType() const {
362  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
363    return CT->getElementType()->isFloatingType();
364  return false;
365}
366
367bool Type::isComplexIntegerType() const {
368  // Check for GCC complex integer extension.
369  return getAsComplexIntegerType();
370}
371
372const ComplexType *Type::getAsComplexIntegerType() const {
373  if (const ComplexType *Complex = getAs<ComplexType>())
374    if (Complex->getElementType()->isIntegerType())
375      return Complex;
376  return 0;
377}
378
379QualType Type::getPointeeType() const {
380  if (const PointerType *PT = getAs<PointerType>())
381    return PT->getPointeeType();
382  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
383    return OPT->getPointeeType();
384  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
385    return BPT->getPointeeType();
386  if (const ReferenceType *RT = getAs<ReferenceType>())
387    return RT->getPointeeType();
388  return QualType();
389}
390
391const RecordType *Type::getAsStructureType() const {
392  // If this is directly a structure type, return it.
393  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
394    if (RT->getDecl()->isStruct())
395      return RT;
396  }
397
398  // If the canonical form of this type isn't the right kind, reject it.
399  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
400    if (!RT->getDecl()->isStruct())
401      return 0;
402
403    // If this is a typedef for a structure type, strip the typedef off without
404    // losing all typedef information.
405    return cast<RecordType>(getUnqualifiedDesugaredType());
406  }
407  return 0;
408}
409
410const RecordType *Type::getAsUnionType() const {
411  // If this is directly a union type, return it.
412  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
413    if (RT->getDecl()->isUnion())
414      return RT;
415  }
416
417  // If the canonical form of this type isn't the right kind, reject it.
418  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
419    if (!RT->getDecl()->isUnion())
420      return 0;
421
422    // If this is a typedef for a union type, strip the typedef off without
423    // losing all typedef information.
424    return cast<RecordType>(getUnqualifiedDesugaredType());
425  }
426
427  return 0;
428}
429
430ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
431                               ObjCProtocolDecl * const *Protocols,
432                               unsigned NumProtocols)
433  : Type(ObjCObject, Canonical, false, false, false, false),
434    BaseType(Base)
435{
436  ObjCObjectTypeBits.NumProtocols = NumProtocols;
437  assert(getNumProtocols() == NumProtocols &&
438         "bitfield overflow in protocol count");
439  if (NumProtocols)
440    memcpy(getProtocolStorage(), Protocols,
441           NumProtocols * sizeof(ObjCProtocolDecl*));
442}
443
444const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
445  // There is no sugar for ObjCObjectType's, just return the canonical
446  // type pointer if it is the right class.  There is no typedef information to
447  // return and these cannot be Address-space qualified.
448  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
449    if (T->getNumProtocols() && T->getInterface())
450      return T;
451  return 0;
452}
453
454bool Type::isObjCQualifiedInterfaceType() const {
455  return getAsObjCQualifiedInterfaceType() != 0;
456}
457
458const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
459  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
460  // type pointer if it is the right class.
461  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
462    if (OPT->isObjCQualifiedIdType())
463      return OPT;
464  }
465  return 0;
466}
467
468const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
469  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
470  // type pointer if it is the right class.
471  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
472    if (OPT->isObjCQualifiedClassType())
473      return OPT;
474  }
475  return 0;
476}
477
478const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
479  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
480    if (OPT->getInterfaceType())
481      return OPT;
482  }
483  return 0;
484}
485
486const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
487  if (const PointerType *PT = getAs<PointerType>())
488    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
489      return dyn_cast<CXXRecordDecl>(RT->getDecl());
490  return 0;
491}
492
493CXXRecordDecl *Type::getAsCXXRecordDecl() const {
494  if (const RecordType *RT = getAs<RecordType>())
495    return dyn_cast<CXXRecordDecl>(RT->getDecl());
496  else if (const InjectedClassNameType *Injected
497                                  = getAs<InjectedClassNameType>())
498    return Injected->getDecl();
499
500  return 0;
501}
502
503namespace {
504  class GetContainedAutoVisitor :
505    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
506  public:
507    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
508    AutoType *Visit(QualType T) {
509      if (T.isNull())
510        return 0;
511      return Visit(T.getTypePtr());
512    }
513
514    // The 'auto' type itself.
515    AutoType *VisitAutoType(const AutoType *AT) {
516      return const_cast<AutoType*>(AT);
517    }
518
519    // Only these types can contain the desired 'auto' type.
520    AutoType *VisitPointerType(const PointerType *T) {
521      return Visit(T->getPointeeType());
522    }
523    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
524      return Visit(T->getPointeeType());
525    }
526    AutoType *VisitReferenceType(const ReferenceType *T) {
527      return Visit(T->getPointeeTypeAsWritten());
528    }
529    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
530      return Visit(T->getPointeeType());
531    }
532    AutoType *VisitArrayType(const ArrayType *T) {
533      return Visit(T->getElementType());
534    }
535    AutoType *VisitDependentSizedExtVectorType(
536      const DependentSizedExtVectorType *T) {
537      return Visit(T->getElementType());
538    }
539    AutoType *VisitVectorType(const VectorType *T) {
540      return Visit(T->getElementType());
541    }
542    AutoType *VisitFunctionType(const FunctionType *T) {
543      return Visit(T->getResultType());
544    }
545    AutoType *VisitParenType(const ParenType *T) {
546      return Visit(T->getInnerType());
547    }
548    AutoType *VisitAttributedType(const AttributedType *T) {
549      return Visit(T->getModifiedType());
550    }
551  };
552}
553
554AutoType *Type::getContainedAutoType() const {
555  return GetContainedAutoVisitor().Visit(this);
556}
557
558bool Type::isIntegerType() const {
559  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
560    return BT->getKind() >= BuiltinType::Bool &&
561           BT->getKind() <= BuiltinType::Int128;
562  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
563    // Incomplete enum types are not treated as integer types.
564    // FIXME: In C++, enum types are never integer types.
565    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
566  return false;
567}
568
569bool Type::hasIntegerRepresentation() const {
570  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
571    return VT->getElementType()->isIntegerType();
572  else
573    return isIntegerType();
574}
575
576/// \brief Determine whether this type is an integral type.
577///
578/// This routine determines whether the given type is an integral type per
579/// C++ [basic.fundamental]p7. Although the C standard does not define the
580/// term "integral type", it has a similar term "integer type", and in C++
581/// the two terms are equivalent. However, C's "integer type" includes
582/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
583/// parameter is used to determine whether we should be following the C or
584/// C++ rules when determining whether this type is an integral/integer type.
585///
586/// For cases where C permits "an integer type" and C++ permits "an integral
587/// type", use this routine.
588///
589/// For cases where C permits "an integer type" and C++ permits "an integral
590/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
591///
592/// \param Ctx The context in which this type occurs.
593///
594/// \returns true if the type is considered an integral type, false otherwise.
595bool Type::isIntegralType(ASTContext &Ctx) const {
596  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
597    return BT->getKind() >= BuiltinType::Bool &&
598    BT->getKind() <= BuiltinType::Int128;
599
600  if (!Ctx.getLangOptions().CPlusPlus)
601    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
602      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
603
604  return false;
605}
606
607bool Type::isIntegralOrEnumerationType() const {
608  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
609    return BT->getKind() >= BuiltinType::Bool &&
610           BT->getKind() <= BuiltinType::Int128;
611
612  // Check for a complete enum type; incomplete enum types are not properly an
613  // enumeration type in the sense required here.
614  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
615    return ET->getDecl()->isComplete();
616
617  return false;
618}
619
620bool Type::isIntegralOrUnscopedEnumerationType() const {
621  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
622    return BT->getKind() >= BuiltinType::Bool &&
623           BT->getKind() <= BuiltinType::Int128;
624
625  // Check for a complete enum type; incomplete enum types are not properly an
626  // enumeration type in the sense required here.
627  // C++0x: However, if the underlying type of the enum is fixed, it is
628  // considered complete.
629  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
630    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
631
632  return false;
633}
634
635
636bool Type::isBooleanType() const {
637  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
638    return BT->getKind() == BuiltinType::Bool;
639  return false;
640}
641
642bool Type::isCharType() const {
643  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
644    return BT->getKind() == BuiltinType::Char_U ||
645           BT->getKind() == BuiltinType::UChar ||
646           BT->getKind() == BuiltinType::Char_S ||
647           BT->getKind() == BuiltinType::SChar;
648  return false;
649}
650
651bool Type::isWideCharType() const {
652  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
653    return BT->getKind() == BuiltinType::WChar_S ||
654           BT->getKind() == BuiltinType::WChar_U;
655  return false;
656}
657
658bool Type::isChar16Type() const {
659  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
660    return BT->getKind() == BuiltinType::Char16;
661  return false;
662}
663
664bool Type::isChar32Type() const {
665  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
666    return BT->getKind() == BuiltinType::Char32;
667  return false;
668}
669
670/// \brief Determine whether this type is any of the built-in character
671/// types.
672bool Type::isAnyCharacterType() const {
673  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
674  if (BT == 0) return false;
675  switch (BT->getKind()) {
676  default: return false;
677  case BuiltinType::Char_U:
678  case BuiltinType::UChar:
679  case BuiltinType::WChar_U:
680  case BuiltinType::Char16:
681  case BuiltinType::Char32:
682  case BuiltinType::Char_S:
683  case BuiltinType::SChar:
684  case BuiltinType::WChar_S:
685    return true;
686  }
687}
688
689/// isSignedIntegerType - Return true if this is an integer type that is
690/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
691/// an enum decl which has a signed representation
692bool Type::isSignedIntegerType() const {
693  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
694    return BT->getKind() >= BuiltinType::Char_S &&
695           BT->getKind() <= BuiltinType::Int128;
696  }
697
698  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
699    // Incomplete enum types are not treated as integer types.
700    // FIXME: In C++, enum types are never integer types.
701    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
702      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
703  }
704
705  return false;
706}
707
708bool Type::isSignedIntegerOrEnumerationType() const {
709  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
710    return BT->getKind() >= BuiltinType::Char_S &&
711    BT->getKind() <= BuiltinType::Int128;
712  }
713
714  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
715    if (ET->getDecl()->isComplete())
716      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
717  }
718
719  return false;
720}
721
722bool Type::hasSignedIntegerRepresentation() const {
723  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
724    return VT->getElementType()->isSignedIntegerType();
725  else
726    return isSignedIntegerType();
727}
728
729/// isUnsignedIntegerType - Return true if this is an integer type that is
730/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
731/// decl which has an unsigned representation
732bool Type::isUnsignedIntegerType() const {
733  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
734    return BT->getKind() >= BuiltinType::Bool &&
735           BT->getKind() <= BuiltinType::UInt128;
736  }
737
738  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
739    // Incomplete enum types are not treated as integer types.
740    // FIXME: In C++, enum types are never integer types.
741    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
742      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
743  }
744
745  return false;
746}
747
748bool Type::isUnsignedIntegerOrEnumerationType() const {
749  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
750    return BT->getKind() >= BuiltinType::Bool &&
751    BT->getKind() <= BuiltinType::UInt128;
752  }
753
754  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
755    if (ET->getDecl()->isComplete())
756      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
757  }
758
759  return false;
760}
761
762bool Type::hasUnsignedIntegerRepresentation() const {
763  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
764    return VT->getElementType()->isUnsignedIntegerType();
765  else
766    return isUnsignedIntegerType();
767}
768
769bool Type::isFloatingType() const {
770  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
771    return BT->getKind() >= BuiltinType::Float &&
772           BT->getKind() <= BuiltinType::LongDouble;
773  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
774    return CT->getElementType()->isFloatingType();
775  return false;
776}
777
778bool Type::hasFloatingRepresentation() const {
779  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
780    return VT->getElementType()->isFloatingType();
781  else
782    return isFloatingType();
783}
784
785bool Type::isRealFloatingType() const {
786  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
787    return BT->isFloatingPoint();
788  return false;
789}
790
791bool Type::isRealType() const {
792  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
793    return BT->getKind() >= BuiltinType::Bool &&
794           BT->getKind() <= BuiltinType::LongDouble;
795  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
796      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
797  return false;
798}
799
800bool Type::isArithmeticType() const {
801  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
802    return BT->getKind() >= BuiltinType::Bool &&
803           BT->getKind() <= BuiltinType::LongDouble;
804  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
805    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
806    // If a body isn't seen by the time we get here, return false.
807    //
808    // C++0x: Enumerations are not arithmetic types. For now, just return
809    // false for scoped enumerations since that will disable any
810    // unwanted implicit conversions.
811    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
812  return isa<ComplexType>(CanonicalType);
813}
814
815bool Type::isScalarType() const {
816  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
817    return BT->getKind() > BuiltinType::Void &&
818           BT->getKind() <= BuiltinType::NullPtr;
819  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
820    // Enums are scalar types, but only if they are defined.  Incomplete enums
821    // are not treated as scalar types.
822    return ET->getDecl()->isComplete();
823  return isa<PointerType>(CanonicalType) ||
824         isa<BlockPointerType>(CanonicalType) ||
825         isa<MemberPointerType>(CanonicalType) ||
826         isa<ComplexType>(CanonicalType) ||
827         isa<ObjCObjectPointerType>(CanonicalType);
828}
829
830Type::ScalarTypeKind Type::getScalarTypeKind() const {
831  assert(isScalarType());
832
833  const Type *T = CanonicalType.getTypePtr();
834  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
835    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
836    if (BT->getKind() == BuiltinType::NullPtr) return STK_Pointer;
837    if (BT->isInteger()) return STK_Integral;
838    if (BT->isFloatingPoint()) return STK_Floating;
839    llvm_unreachable("unknown scalar builtin type");
840  } else if (isa<PointerType>(T) ||
841             isa<BlockPointerType>(T) ||
842             isa<ObjCObjectPointerType>(T)) {
843    return STK_Pointer;
844  } else if (isa<MemberPointerType>(T)) {
845    return STK_MemberPointer;
846  } else if (isa<EnumType>(T)) {
847    assert(cast<EnumType>(T)->getDecl()->isComplete());
848    return STK_Integral;
849  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
850    if (CT->getElementType()->isRealFloatingType())
851      return STK_FloatingComplex;
852    return STK_IntegralComplex;
853  }
854
855  llvm_unreachable("unknown scalar type");
856  return STK_Pointer;
857}
858
859/// \brief Determines whether the type is a C++ aggregate type or C
860/// aggregate or union type.
861///
862/// An aggregate type is an array or a class type (struct, union, or
863/// class) that has no user-declared constructors, no private or
864/// protected non-static data members, no base classes, and no virtual
865/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
866/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
867/// includes union types.
868bool Type::isAggregateType() const {
869  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
870    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
871      return ClassDecl->isAggregate();
872
873    return true;
874  }
875
876  return isa<ArrayType>(CanonicalType);
877}
878
879/// isConstantSizeType - Return true if this is not a variable sized type,
880/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
881/// incomplete types or dependent types.
882bool Type::isConstantSizeType() const {
883  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
884  assert(!isDependentType() && "This doesn't make sense for dependent types");
885  // The VAT must have a size, as it is known to be complete.
886  return !isa<VariableArrayType>(CanonicalType);
887}
888
889/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
890/// - a type that can describe objects, but which lacks information needed to
891/// determine its size.
892bool Type::isIncompleteType() const {
893  switch (CanonicalType->getTypeClass()) {
894  default: return false;
895  case Builtin:
896    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
897    // be completed.
898    return isVoidType();
899  case Enum:
900    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
901    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
902        return false;
903    // Fall through.
904  case Record:
905    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
906    // forward declaration, but not a full definition (C99 6.2.5p22).
907    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
908  case ConstantArray:
909    // An array is incomplete if its element type is incomplete
910    // (C++ [dcl.array]p1).
911    // We don't handle variable arrays (they're not allowed in C++) or
912    // dependent-sized arrays (dependent types are never treated as incomplete).
913    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
914  case IncompleteArray:
915    // An array of unknown size is an incomplete type (C99 6.2.5p22).
916    return true;
917  case ObjCObject:
918    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
919                                                         ->isIncompleteType();
920  case ObjCInterface:
921    // ObjC interfaces are incomplete if they are @class, not @interface.
922    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
923  }
924}
925
926bool QualType::isPODType(ASTContext &Context) const {
927  // The compiler shouldn't query this for incomplete types, but the user might.
928  // We return false for that case. Except for incomplete arrays of PODs, which
929  // are PODs according to the standard.
930  if (isNull())
931    return 0;
932
933  if ((*this)->isIncompleteArrayType())
934    return Context.getBaseElementType(*this).isPODType(Context);
935
936  if ((*this)->isIncompleteType())
937    return false;
938
939  if (Context.getLangOptions().ObjCAutoRefCount) {
940    switch (getObjCLifetime()) {
941    case Qualifiers::OCL_ExplicitNone:
942      return true;
943
944    case Qualifiers::OCL_Strong:
945    case Qualifiers::OCL_Weak:
946    case Qualifiers::OCL_Autoreleasing:
947      return false;
948
949    case Qualifiers::OCL_None:
950      break;
951    }
952  }
953
954  QualType CanonicalType = getTypePtr()->CanonicalType;
955  switch (CanonicalType->getTypeClass()) {
956    // Everything not explicitly mentioned is not POD.
957  default: return false;
958  case Type::VariableArray:
959  case Type::ConstantArray:
960    // IncompleteArray is handled above.
961    return Context.getBaseElementType(*this).isPODType(Context);
962
963  case Type::ObjCObjectPointer:
964  case Type::BlockPointer:
965  case Type::Builtin:
966  case Type::Complex:
967  case Type::Pointer:
968  case Type::MemberPointer:
969  case Type::Vector:
970  case Type::ExtVector:
971    return true;
972
973  case Type::Enum:
974    return true;
975
976  case Type::Record:
977    if (CXXRecordDecl *ClassDecl
978          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
979      return ClassDecl->isPOD();
980
981    // C struct/union is POD.
982    return true;
983  }
984}
985
986bool QualType::isTrivialType(ASTContext &Context) const {
987  // The compiler shouldn't query this for incomplete types, but the user might.
988  // We return false for that case. Except for incomplete arrays of PODs, which
989  // are PODs according to the standard.
990  if (isNull())
991    return 0;
992
993  if ((*this)->isArrayType())
994    return Context.getBaseElementType(*this).isTrivialType(Context);
995
996  // Return false for incomplete types after skipping any incomplete array
997  // types which are expressly allowed by the standard and thus our API.
998  if ((*this)->isIncompleteType())
999    return false;
1000
1001  if (Context.getLangOptions().ObjCAutoRefCount) {
1002    switch (getObjCLifetime()) {
1003    case Qualifiers::OCL_ExplicitNone:
1004      return true;
1005
1006    case Qualifiers::OCL_Strong:
1007    case Qualifiers::OCL_Weak:
1008    case Qualifiers::OCL_Autoreleasing:
1009      return false;
1010
1011    case Qualifiers::OCL_None:
1012      if ((*this)->isObjCLifetimeType())
1013        return false;
1014      break;
1015    }
1016  }
1017
1018  QualType CanonicalType = getTypePtr()->CanonicalType;
1019  if (CanonicalType->isDependentType())
1020    return false;
1021
1022  // C++0x [basic.types]p9:
1023  //   Scalar types, trivial class types, arrays of such types, and
1024  //   cv-qualified versions of these types are collectively called trivial
1025  //   types.
1026
1027  // As an extension, Clang treats vector types as Scalar types.
1028  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1029    return true;
1030  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1031    if (const CXXRecordDecl *ClassDecl =
1032        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1033      // C++0x [class]p5:
1034      //   A trivial class is a class that has a trivial default constructor
1035      if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1036      //   and is trivially copyable.
1037      if (!ClassDecl->isTriviallyCopyable()) return false;
1038    }
1039
1040    return true;
1041  }
1042
1043  // No other types can match.
1044  return false;
1045}
1046
1047bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1048  if ((*this)->isArrayType())
1049    return Context.getBaseElementType(*this).isTrivialType(Context);
1050
1051  if (Context.getLangOptions().ObjCAutoRefCount) {
1052    switch (getObjCLifetime()) {
1053    case Qualifiers::OCL_ExplicitNone:
1054      return true;
1055
1056    case Qualifiers::OCL_Strong:
1057    case Qualifiers::OCL_Weak:
1058    case Qualifiers::OCL_Autoreleasing:
1059      return false;
1060
1061    case Qualifiers::OCL_None:
1062      if ((*this)->isObjCLifetimeType())
1063        return false;
1064      break;
1065    }
1066  }
1067
1068  // C++0x [basic.types]p9
1069  //   Scalar types, trivially copyable class types, arrays of such types, and
1070  //   cv-qualified versions of these types are collectively called trivial
1071  //   types.
1072
1073  QualType CanonicalType = getCanonicalType();
1074  if (CanonicalType->isDependentType())
1075    return false;
1076
1077  // Return false for incomplete types after skipping any incomplete array types
1078  // which are expressly allowed by the standard and thus our API.
1079  if (CanonicalType->isIncompleteType())
1080    return false;
1081
1082  // As an extension, Clang treats vector types as Scalar types.
1083  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1084    return true;
1085
1086  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1087    if (const CXXRecordDecl *ClassDecl =
1088          dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1089      if (!ClassDecl->isTriviallyCopyable()) return false;
1090    }
1091
1092    return true;
1093  }
1094
1095  // No other types can match.
1096  return false;
1097}
1098
1099
1100
1101bool Type::isLiteralType() const {
1102  if (isDependentType())
1103    return false;
1104
1105  // C++0x [basic.types]p10:
1106  //   A type is a literal type if it is:
1107  //   [...]
1108  //   -- an array of literal type
1109  // Extension: variable arrays cannot be literal types, since they're
1110  // runtime-sized.
1111  if (isVariableArrayType())
1112    return false;
1113  const Type *BaseTy = getBaseElementTypeUnsafe();
1114  assert(BaseTy && "NULL element type");
1115
1116  // Return false for incomplete types after skipping any incomplete array
1117  // types; those are expressly allowed by the standard and thus our API.
1118  if (BaseTy->isIncompleteType())
1119    return false;
1120
1121  // Objective-C lifetime types are not literal types.
1122  if (BaseTy->isObjCRetainableType())
1123    return false;
1124
1125  // C++0x [basic.types]p10:
1126  //   A type is a literal type if it is:
1127  //    -- a scalar type; or
1128  // As an extension, Clang treats vector types as Scalar types.
1129  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1130  //    -- a reference type; or
1131  if (BaseTy->isReferenceType()) return true;
1132  //    -- a class type that has all of the following properties:
1133  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1134    if (const CXXRecordDecl *ClassDecl =
1135        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1136      //    -- a trivial destructor,
1137      if (!ClassDecl->hasTrivialDestructor()) return false;
1138      //    -- every constructor call and full-expression in the
1139      //       brace-or-equal-initializers for non-static data members (if any)
1140      //       is a constant expression,
1141      // FIXME: C++0x: Clang doesn't yet support non-static data member
1142      // declarations with initializers, or constexprs.
1143      //    -- it is an aggregate type or has at least one constexpr
1144      //       constructor or constructor template that is not a copy or move
1145      //       constructor, and
1146      if (!ClassDecl->isAggregate() &&
1147          !ClassDecl->hasConstExprNonCopyMoveConstructor())
1148        return false;
1149      //    -- all non-static data members and base classes of literal types
1150      if (ClassDecl->hasNonLiteralTypeFieldsOrBases()) return false;
1151    }
1152
1153    return true;
1154  }
1155  return false;
1156}
1157
1158bool Type::isStandardLayoutType() const {
1159  if (isDependentType())
1160    return false;
1161
1162  // C++0x [basic.types]p9:
1163  //   Scalar types, standard-layout class types, arrays of such types, and
1164  //   cv-qualified versions of these types are collectively called
1165  //   standard-layout types.
1166  const Type *BaseTy = getBaseElementTypeUnsafe();
1167  assert(BaseTy && "NULL element type");
1168
1169  // Return false for incomplete types after skipping any incomplete array
1170  // types which are expressly allowed by the standard and thus our API.
1171  if (BaseTy->isIncompleteType())
1172    return false;
1173
1174  // As an extension, Clang treats vector types as Scalar types.
1175  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1176  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1177    if (const CXXRecordDecl *ClassDecl =
1178        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1179      if (!ClassDecl->isStandardLayout())
1180        return false;
1181
1182    // Default to 'true' for non-C++ class types.
1183    // FIXME: This is a bit dubious, but plain C structs should trivially meet
1184    // all the requirements of standard layout classes.
1185    return true;
1186  }
1187
1188  // No other types can match.
1189  return false;
1190}
1191
1192// This is effectively the intersection of isTrivialType and
1193// isStandardLayoutType. We implement it dircetly to avoid redundant
1194// conversions from a type to a CXXRecordDecl.
1195bool QualType::isCXX11PODType(ASTContext &Context) const {
1196  const Type *ty = getTypePtr();
1197  if (ty->isDependentType())
1198    return false;
1199
1200  if (Context.getLangOptions().ObjCAutoRefCount) {
1201    switch (getObjCLifetime()) {
1202    case Qualifiers::OCL_ExplicitNone:
1203      return true;
1204
1205    case Qualifiers::OCL_Strong:
1206    case Qualifiers::OCL_Weak:
1207    case Qualifiers::OCL_Autoreleasing:
1208      return false;
1209
1210    case Qualifiers::OCL_None:
1211      if (ty->isObjCLifetimeType())
1212        return false;
1213      break;
1214    }
1215  }
1216
1217  // C++11 [basic.types]p9:
1218  //   Scalar types, POD classes, arrays of such types, and cv-qualified
1219  //   versions of these types are collectively called trivial types.
1220  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1221  assert(BaseTy && "NULL element type");
1222
1223  // Return false for incomplete types after skipping any incomplete array
1224  // types which are expressly allowed by the standard and thus our API.
1225  if (BaseTy->isIncompleteType())
1226    return false;
1227
1228  // As an extension, Clang treats vector types as Scalar types.
1229  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1230  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1231    if (const CXXRecordDecl *ClassDecl =
1232        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1233      // C++11 [class]p10:
1234      //   A POD struct is a non-union class that is both a trivial class [...]
1235      if (!ClassDecl->isTrivial()) return false;
1236
1237      // C++11 [class]p10:
1238      //   A POD struct is a non-union class that is both a trivial class and
1239      //   a standard-layout class [...]
1240      if (!ClassDecl->isStandardLayout()) return false;
1241
1242      // C++11 [class]p10:
1243      //   A POD struct is a non-union class that is both a trivial class and
1244      //   a standard-layout class, and has no non-static data members of type
1245      //   non-POD struct, non-POD union (or array of such types). [...]
1246      //
1247      // We don't directly query the recursive aspect as the requiremets for
1248      // both standard-layout classes and trivial classes apply recursively
1249      // already.
1250    }
1251
1252    return true;
1253  }
1254
1255  // No other types can match.
1256  return false;
1257}
1258
1259bool Type::isPromotableIntegerType() const {
1260  if (const BuiltinType *BT = getAs<BuiltinType>())
1261    switch (BT->getKind()) {
1262    case BuiltinType::Bool:
1263    case BuiltinType::Char_S:
1264    case BuiltinType::Char_U:
1265    case BuiltinType::SChar:
1266    case BuiltinType::UChar:
1267    case BuiltinType::Short:
1268    case BuiltinType::UShort:
1269      return true;
1270    default:
1271      return false;
1272    }
1273
1274  // Enumerated types are promotable to their compatible integer types
1275  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1276  if (const EnumType *ET = getAs<EnumType>()){
1277    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1278        || ET->getDecl()->isScoped())
1279      return false;
1280
1281    const BuiltinType *BT
1282      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
1283    return BT->getKind() == BuiltinType::Int
1284           || BT->getKind() == BuiltinType::UInt;
1285  }
1286
1287  return false;
1288}
1289
1290bool Type::isNullPtrType() const {
1291  if (const BuiltinType *BT = getAs<BuiltinType>())
1292    return BT->getKind() == BuiltinType::NullPtr;
1293  return false;
1294}
1295
1296bool Type::isSpecifierType() const {
1297  // Note that this intentionally does not use the canonical type.
1298  switch (getTypeClass()) {
1299  case Builtin:
1300  case Record:
1301  case Enum:
1302  case Typedef:
1303  case Complex:
1304  case TypeOfExpr:
1305  case TypeOf:
1306  case TemplateTypeParm:
1307  case SubstTemplateTypeParm:
1308  case TemplateSpecialization:
1309  case Elaborated:
1310  case DependentName:
1311  case DependentTemplateSpecialization:
1312  case ObjCInterface:
1313  case ObjCObject:
1314  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1315    return true;
1316  default:
1317    return false;
1318  }
1319}
1320
1321ElaboratedTypeKeyword
1322TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1323  switch (TypeSpec) {
1324  default: return ETK_None;
1325  case TST_typename: return ETK_Typename;
1326  case TST_class: return ETK_Class;
1327  case TST_struct: return ETK_Struct;
1328  case TST_union: return ETK_Union;
1329  case TST_enum: return ETK_Enum;
1330  }
1331}
1332
1333TagTypeKind
1334TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1335  switch(TypeSpec) {
1336  case TST_class: return TTK_Class;
1337  case TST_struct: return TTK_Struct;
1338  case TST_union: return TTK_Union;
1339  case TST_enum: return TTK_Enum;
1340  }
1341
1342  llvm_unreachable("Type specifier is not a tag type kind.");
1343  return TTK_Union;
1344}
1345
1346ElaboratedTypeKeyword
1347TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1348  switch (Kind) {
1349  case TTK_Class: return ETK_Class;
1350  case TTK_Struct: return ETK_Struct;
1351  case TTK_Union: return ETK_Union;
1352  case TTK_Enum: return ETK_Enum;
1353  }
1354  llvm_unreachable("Unknown tag type kind.");
1355}
1356
1357TagTypeKind
1358TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1359  switch (Keyword) {
1360  case ETK_Class: return TTK_Class;
1361  case ETK_Struct: return TTK_Struct;
1362  case ETK_Union: return TTK_Union;
1363  case ETK_Enum: return TTK_Enum;
1364  case ETK_None: // Fall through.
1365  case ETK_Typename:
1366    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1367  }
1368  llvm_unreachable("Unknown elaborated type keyword.");
1369}
1370
1371bool
1372TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1373  switch (Keyword) {
1374  case ETK_None:
1375  case ETK_Typename:
1376    return false;
1377  case ETK_Class:
1378  case ETK_Struct:
1379  case ETK_Union:
1380  case ETK_Enum:
1381    return true;
1382  }
1383  llvm_unreachable("Unknown elaborated type keyword.");
1384}
1385
1386const char*
1387TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1388  switch (Keyword) {
1389  case ETK_None: return "";
1390  case ETK_Typename: return "typename";
1391  case ETK_Class:  return "class";
1392  case ETK_Struct: return "struct";
1393  case ETK_Union:  return "union";
1394  case ETK_Enum:   return "enum";
1395  }
1396
1397  llvm_unreachable("Unknown elaborated type keyword.");
1398  return "";
1399}
1400
1401DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1402                         ElaboratedTypeKeyword Keyword,
1403                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1404                         unsigned NumArgs, const TemplateArgument *Args,
1405                         QualType Canon)
1406  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1407                    /*VariablyModified=*/false,
1408                    NNS && NNS->containsUnexpandedParameterPack()),
1409    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1410  assert((!NNS || NNS->isDependent()) &&
1411         "DependentTemplateSpecializatonType requires dependent qualifier");
1412  for (unsigned I = 0; I != NumArgs; ++I) {
1413    if (Args[I].containsUnexpandedParameterPack())
1414      setContainsUnexpandedParameterPack();
1415
1416    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1417  }
1418}
1419
1420void
1421DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1422                                             const ASTContext &Context,
1423                                             ElaboratedTypeKeyword Keyword,
1424                                             NestedNameSpecifier *Qualifier,
1425                                             const IdentifierInfo *Name,
1426                                             unsigned NumArgs,
1427                                             const TemplateArgument *Args) {
1428  ID.AddInteger(Keyword);
1429  ID.AddPointer(Qualifier);
1430  ID.AddPointer(Name);
1431  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1432    Args[Idx].Profile(ID, Context);
1433}
1434
1435bool Type::isElaboratedTypeSpecifier() const {
1436  ElaboratedTypeKeyword Keyword;
1437  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1438    Keyword = Elab->getKeyword();
1439  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1440    Keyword = DepName->getKeyword();
1441  else if (const DependentTemplateSpecializationType *DepTST =
1442             dyn_cast<DependentTemplateSpecializationType>(this))
1443    Keyword = DepTST->getKeyword();
1444  else
1445    return false;
1446
1447  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1448}
1449
1450const char *Type::getTypeClassName() const {
1451  switch (TypeBits.TC) {
1452#define ABSTRACT_TYPE(Derived, Base)
1453#define TYPE(Derived, Base) case Derived: return #Derived;
1454#include "clang/AST/TypeNodes.def"
1455  }
1456
1457  llvm_unreachable("Invalid type class.");
1458  return 0;
1459}
1460
1461const char *BuiltinType::getName(const LangOptions &LO) const {
1462  switch (getKind()) {
1463  case Void:              return "void";
1464  case Bool:              return LO.Bool ? "bool" : "_Bool";
1465  case Char_S:            return "char";
1466  case Char_U:            return "char";
1467  case SChar:             return "signed char";
1468  case Short:             return "short";
1469  case Int:               return "int";
1470  case Long:              return "long";
1471  case LongLong:          return "long long";
1472  case Int128:            return "__int128_t";
1473  case UChar:             return "unsigned char";
1474  case UShort:            return "unsigned short";
1475  case UInt:              return "unsigned int";
1476  case ULong:             return "unsigned long";
1477  case ULongLong:         return "unsigned long long";
1478  case UInt128:           return "__uint128_t";
1479  case Float:             return "float";
1480  case Double:            return "double";
1481  case LongDouble:        return "long double";
1482  case WChar_S:
1483  case WChar_U:           return "wchar_t";
1484  case Char16:            return "char16_t";
1485  case Char32:            return "char32_t";
1486  case NullPtr:           return "nullptr_t";
1487  case Overload:          return "<overloaded function type>";
1488  case BoundMember:       return "<bound member function type>";
1489  case Dependent:         return "<dependent type>";
1490  case UnknownAny:        return "<unknown type>";
1491  case ObjCId:            return "id";
1492  case ObjCClass:         return "Class";
1493  case ObjCSel:           return "SEL";
1494  }
1495
1496  llvm_unreachable("Invalid builtin type.");
1497  return 0;
1498}
1499
1500QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1501  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1502    return RefType->getPointeeType();
1503
1504  // C++0x [basic.lval]:
1505  //   Class prvalues can have cv-qualified types; non-class prvalues always
1506  //   have cv-unqualified types.
1507  //
1508  // See also C99 6.3.2.1p2.
1509  if (!Context.getLangOptions().CPlusPlus ||
1510      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1511    return getUnqualifiedType();
1512
1513  return *this;
1514}
1515
1516StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1517  switch (CC) {
1518  case CC_Default:
1519    llvm_unreachable("no name for default cc");
1520    return "";
1521
1522  case CC_C: return "cdecl";
1523  case CC_X86StdCall: return "stdcall";
1524  case CC_X86FastCall: return "fastcall";
1525  case CC_X86ThisCall: return "thiscall";
1526  case CC_X86Pascal: return "pascal";
1527  case CC_AAPCS: return "aapcs";
1528  case CC_AAPCS_VFP: return "aapcs-vfp";
1529  }
1530
1531  llvm_unreachable("Invalid calling convention.");
1532  return "";
1533}
1534
1535FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1536                                     unsigned numArgs, QualType canonical,
1537                                     const ExtProtoInfo &epi)
1538  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1539                 epi.RefQualifier, canonical,
1540                 result->isDependentType(),
1541                 result->isInstantiationDependentType(),
1542                 result->isVariablyModifiedType(),
1543                 result->containsUnexpandedParameterPack(),
1544                 epi.ExtInfo),
1545    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1546    ExceptionSpecType(epi.ExceptionSpecType),
1547    HasAnyConsumedArgs(epi.ConsumedArguments != 0)
1548{
1549  // Fill in the trailing argument array.
1550  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1551  for (unsigned i = 0; i != numArgs; ++i) {
1552    if (args[i]->isDependentType())
1553      setDependent();
1554    else if (args[i]->isInstantiationDependentType())
1555      setInstantiationDependent();
1556
1557    if (args[i]->containsUnexpandedParameterPack())
1558      setContainsUnexpandedParameterPack();
1559
1560    argSlot[i] = args[i];
1561  }
1562
1563  if (getExceptionSpecType() == EST_Dynamic) {
1564    // Fill in the exception array.
1565    QualType *exnSlot = argSlot + numArgs;
1566    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1567      if (epi.Exceptions[i]->isDependentType())
1568        setDependent();
1569      else if (epi.Exceptions[i]->isInstantiationDependentType())
1570        setInstantiationDependent();
1571
1572      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1573        setContainsUnexpandedParameterPack();
1574
1575      exnSlot[i] = epi.Exceptions[i];
1576    }
1577  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1578    // Store the noexcept expression and context.
1579    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1580    *noexSlot = epi.NoexceptExpr;
1581
1582    if (epi.NoexceptExpr) {
1583      if (epi.NoexceptExpr->isValueDependent()
1584          || epi.NoexceptExpr->isTypeDependent())
1585        setDependent();
1586      else if (epi.NoexceptExpr->isInstantiationDependent())
1587        setInstantiationDependent();
1588    }
1589  }
1590
1591  if (epi.ConsumedArguments) {
1592    bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1593    for (unsigned i = 0; i != numArgs; ++i)
1594      consumedArgs[i] = epi.ConsumedArguments[i];
1595  }
1596}
1597
1598FunctionProtoType::NoexceptResult
1599FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1600  ExceptionSpecificationType est = getExceptionSpecType();
1601  if (est == EST_BasicNoexcept)
1602    return NR_Nothrow;
1603
1604  if (est != EST_ComputedNoexcept)
1605    return NR_NoNoexcept;
1606
1607  Expr *noexceptExpr = getNoexceptExpr();
1608  if (!noexceptExpr)
1609    return NR_BadNoexcept;
1610  if (noexceptExpr->isValueDependent())
1611    return NR_Dependent;
1612
1613  llvm::APSInt value;
1614  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1615                                                   /*evaluated*/false);
1616  (void)isICE;
1617  assert(isICE && "AST should not contain bad noexcept expressions.");
1618
1619  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1620}
1621
1622bool FunctionProtoType::isTemplateVariadic() const {
1623  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1624    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1625      return true;
1626
1627  return false;
1628}
1629
1630void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1631                                const QualType *ArgTys, unsigned NumArgs,
1632                                const ExtProtoInfo &epi,
1633                                const ASTContext &Context) {
1634
1635  // We have to be careful not to get ambiguous profile encodings.
1636  // Note that valid type pointers are never ambiguous with anything else.
1637  //
1638  // The encoding grammar begins:
1639  //      type type* bool int bool
1640  // If that final bool is true, then there is a section for the EH spec:
1641  //      bool type*
1642  // This is followed by an optional "consumed argument" section of the
1643  // same length as the first type sequence:
1644  //      bool*
1645  // Finally, we have the ext info:
1646  //      int
1647  //
1648  // There is no ambiguity between the consumed arguments and an empty EH
1649  // spec because of the leading 'bool' which unambiguously indicates
1650  // whether the following bool is the EH spec or part of the arguments.
1651
1652  ID.AddPointer(Result.getAsOpaquePtr());
1653  for (unsigned i = 0; i != NumArgs; ++i)
1654    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1655  // This method is relatively performance sensitive, so as a performance
1656  // shortcut, use one AddInteger call instead of four for the next four
1657  // fields.
1658  assert(!(unsigned(epi.Variadic) & ~1) &&
1659         !(unsigned(epi.TypeQuals) & ~255) &&
1660         !(unsigned(epi.RefQualifier) & ~3) &&
1661         !(unsigned(epi.ExceptionSpecType) & ~7) &&
1662         "Values larger than expected.");
1663  ID.AddInteger(unsigned(epi.Variadic) +
1664                (epi.TypeQuals << 1) +
1665                (epi.RefQualifier << 9) +
1666                (epi.ExceptionSpecType << 11));
1667  if (epi.ExceptionSpecType == EST_Dynamic) {
1668    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1669      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1670  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1671    epi.NoexceptExpr->Profile(ID, Context, false);
1672  }
1673  if (epi.ConsumedArguments) {
1674    for (unsigned i = 0; i != NumArgs; ++i)
1675      ID.AddBoolean(epi.ConsumedArguments[i]);
1676  }
1677  epi.ExtInfo.Profile(ID);
1678}
1679
1680void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1681                                const ASTContext &Ctx) {
1682  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1683          Ctx);
1684}
1685
1686QualType TypedefType::desugar() const {
1687  return getDecl()->getUnderlyingType();
1688}
1689
1690TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1691  : Type(TypeOfExpr, can, E->isTypeDependent(),
1692         E->isInstantiationDependent(),
1693         E->getType()->isVariablyModifiedType(),
1694         E->containsUnexpandedParameterPack()),
1695    TOExpr(E) {
1696}
1697
1698bool TypeOfExprType::isSugared() const {
1699  return !TOExpr->isTypeDependent();
1700}
1701
1702QualType TypeOfExprType::desugar() const {
1703  if (isSugared())
1704    return getUnderlyingExpr()->getType();
1705
1706  return QualType(this, 0);
1707}
1708
1709void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1710                                      const ASTContext &Context, Expr *E) {
1711  E->Profile(ID, Context, true);
1712}
1713
1714DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1715  : Type(Decltype, can, E->isTypeDependent(),
1716         E->isInstantiationDependent(),
1717         E->getType()->isVariablyModifiedType(),
1718         E->containsUnexpandedParameterPack()),
1719    E(E),
1720  UnderlyingType(underlyingType) {
1721}
1722
1723bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1724
1725QualType DecltypeType::desugar() const {
1726  if (isSugared())
1727    return getUnderlyingType();
1728
1729  return QualType(this, 0);
1730}
1731
1732DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1733  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1734
1735void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1736                                    const ASTContext &Context, Expr *E) {
1737  E->Profile(ID, Context, true);
1738}
1739
1740TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1741  : Type(TC, can, D->isDependentType(),
1742         /*InstantiationDependent=*/D->isDependentType(),
1743         /*VariablyModified=*/false,
1744         /*ContainsUnexpandedParameterPack=*/false),
1745    decl(const_cast<TagDecl*>(D)) {}
1746
1747static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1748  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1749                                E = decl->redecls_end();
1750       I != E; ++I) {
1751    if (I->isDefinition() || I->isBeingDefined())
1752      return *I;
1753  }
1754  // If there's no definition (not even in progress), return what we have.
1755  return decl;
1756}
1757
1758UnaryTransformType::UnaryTransformType(QualType BaseType,
1759                                       QualType UnderlyingType,
1760                                       UTTKind UKind,
1761                                       QualType CanonicalType)
1762  : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1763         UnderlyingType->isInstantiationDependentType(),
1764         UnderlyingType->isVariablyModifiedType(),
1765         BaseType->containsUnexpandedParameterPack())
1766  , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1767{}
1768
1769TagDecl *TagType::getDecl() const {
1770  return getInterestingTagDecl(decl);
1771}
1772
1773bool TagType::isBeingDefined() const {
1774  return getDecl()->isBeingDefined();
1775}
1776
1777CXXRecordDecl *InjectedClassNameType::getDecl() const {
1778  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1779}
1780
1781bool RecordType::classof(const TagType *TT) {
1782  return isa<RecordDecl>(TT->getDecl());
1783}
1784
1785bool EnumType::classof(const TagType *TT) {
1786  return isa<EnumDecl>(TT->getDecl());
1787}
1788
1789IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1790  return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1791}
1792
1793SubstTemplateTypeParmPackType::
1794SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1795                              QualType Canon,
1796                              const TemplateArgument &ArgPack)
1797  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1798    Replaced(Param),
1799    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1800{
1801}
1802
1803TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1804  return TemplateArgument(Arguments, NumArguments);
1805}
1806
1807void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1808  Profile(ID, getReplacedParameter(), getArgumentPack());
1809}
1810
1811void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1812                                           const TemplateTypeParmType *Replaced,
1813                                            const TemplateArgument &ArgPack) {
1814  ID.AddPointer(Replaced);
1815  ID.AddInteger(ArgPack.pack_size());
1816  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1817                                    PEnd = ArgPack.pack_end();
1818       P != PEnd; ++P)
1819    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1820}
1821
1822bool TemplateSpecializationType::
1823anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1824                              bool &InstantiationDependent) {
1825  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1826                                       InstantiationDependent);
1827}
1828
1829bool TemplateSpecializationType::
1830anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1831                              bool &InstantiationDependent) {
1832  for (unsigned i = 0; i != N; ++i) {
1833    if (Args[i].getArgument().isDependent()) {
1834      InstantiationDependent = true;
1835      return true;
1836    }
1837
1838    if (Args[i].getArgument().isInstantiationDependent())
1839      InstantiationDependent = true;
1840  }
1841  return false;
1842}
1843
1844bool TemplateSpecializationType::
1845anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1846                              bool &InstantiationDependent) {
1847  for (unsigned i = 0; i != N; ++i) {
1848    if (Args[i].isDependent()) {
1849      InstantiationDependent = true;
1850      return true;
1851    }
1852
1853    if (Args[i].isInstantiationDependent())
1854      InstantiationDependent = true;
1855  }
1856  return false;
1857}
1858
1859TemplateSpecializationType::
1860TemplateSpecializationType(TemplateName T,
1861                           const TemplateArgument *Args, unsigned NumArgs,
1862                           QualType Canon, QualType AliasedType)
1863  : Type(TemplateSpecialization,
1864         Canon.isNull()? QualType(this, 0) : Canon,
1865         Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1866         Canon.isNull()? T.isDependent()
1867                       : Canon->isInstantiationDependentType(),
1868         false, T.containsUnexpandedParameterPack()),
1869    Template(T), NumArgs(NumArgs) {
1870  assert(!T.getAsDependentTemplateName() &&
1871         "Use DependentTemplateSpecializationType for dependent template-name");
1872  assert((T.getKind() == TemplateName::Template ||
1873          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1874          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1875         "Unexpected template name for TemplateSpecializationType");
1876  bool InstantiationDependent;
1877  (void)InstantiationDependent;
1878  assert((!Canon.isNull() ||
1879          T.isDependent() ||
1880          anyDependentTemplateArguments(Args, NumArgs,
1881                                        InstantiationDependent)) &&
1882         "No canonical type for non-dependent class template specialization");
1883
1884  TemplateArgument *TemplateArgs
1885    = reinterpret_cast<TemplateArgument *>(this + 1);
1886  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1887    // Update dependent and variably-modified bits.
1888    // If the canonical type exists and is non-dependent, the template
1889    // specialization type can be non-dependent even if one of the type
1890    // arguments is. Given:
1891    //   template<typename T> using U = int;
1892    // U<T> is always non-dependent, irrespective of the type T.
1893    if (Canon.isNull() && Args[Arg].isDependent())
1894      setDependent();
1895    else if (Args[Arg].isInstantiationDependent())
1896      setInstantiationDependent();
1897
1898    if (Args[Arg].getKind() == TemplateArgument::Type &&
1899        Args[Arg].getAsType()->isVariablyModifiedType())
1900      setVariablyModified();
1901    if (Args[Arg].containsUnexpandedParameterPack())
1902      setContainsUnexpandedParameterPack();
1903
1904    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1905  }
1906
1907  // Store the aliased type if this is a type alias template specialization.
1908  bool IsTypeAlias = !AliasedType.isNull();
1909  assert(IsTypeAlias == isTypeAlias() &&
1910         "allocated wrong size for type alias");
1911  if (IsTypeAlias) {
1912    TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1913    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1914  }
1915}
1916
1917void
1918TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1919                                    TemplateName T,
1920                                    const TemplateArgument *Args,
1921                                    unsigned NumArgs,
1922                                    const ASTContext &Context) {
1923  T.Profile(ID);
1924  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1925    Args[Idx].Profile(ID, Context);
1926}
1927
1928bool TemplateSpecializationType::isTypeAlias() const {
1929  TemplateDecl *D = Template.getAsTemplateDecl();
1930  return D && isa<TypeAliasTemplateDecl>(D);
1931}
1932
1933QualType
1934QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1935  if (!hasNonFastQualifiers())
1936    return QT.withFastQualifiers(getFastQualifiers());
1937
1938  return Context.getQualifiedType(QT, *this);
1939}
1940
1941QualType
1942QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1943  if (!hasNonFastQualifiers())
1944    return QualType(T, getFastQualifiers());
1945
1946  return Context.getQualifiedType(T, *this);
1947}
1948
1949void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1950                                 QualType BaseType,
1951                                 ObjCProtocolDecl * const *Protocols,
1952                                 unsigned NumProtocols) {
1953  ID.AddPointer(BaseType.getAsOpaquePtr());
1954  for (unsigned i = 0; i != NumProtocols; i++)
1955    ID.AddPointer(Protocols[i]);
1956}
1957
1958void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1959  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1960}
1961
1962namespace {
1963
1964/// \brief The cached properties of a type.
1965class CachedProperties {
1966  char linkage;
1967  char visibility;
1968  bool local;
1969
1970public:
1971  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1972    : linkage(linkage), visibility(visibility), local(local) {}
1973
1974  Linkage getLinkage() const { return (Linkage) linkage; }
1975  Visibility getVisibility() const { return (Visibility) visibility; }
1976  bool hasLocalOrUnnamedType() const { return local; }
1977
1978  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1979    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1980                            minVisibility(L.getVisibility(), R.getVisibility()),
1981                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1982  }
1983};
1984}
1985
1986static CachedProperties computeCachedProperties(const Type *T);
1987
1988namespace clang {
1989/// The type-property cache.  This is templated so as to be
1990/// instantiated at an internal type to prevent unnecessary symbol
1991/// leakage.
1992template <class Private> class TypePropertyCache {
1993public:
1994  static CachedProperties get(QualType T) {
1995    return get(T.getTypePtr());
1996  }
1997
1998  static CachedProperties get(const Type *T) {
1999    ensure(T);
2000    return CachedProperties(T->TypeBits.getLinkage(),
2001                            T->TypeBits.getVisibility(),
2002                            T->TypeBits.hasLocalOrUnnamedType());
2003  }
2004
2005  static void ensure(const Type *T) {
2006    // If the cache is valid, we're okay.
2007    if (T->TypeBits.isCacheValid()) return;
2008
2009    // If this type is non-canonical, ask its canonical type for the
2010    // relevant information.
2011    if (!T->isCanonicalUnqualified()) {
2012      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
2013      ensure(CT);
2014      T->TypeBits.CacheValidAndVisibility =
2015        CT->TypeBits.CacheValidAndVisibility;
2016      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
2017      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
2018      return;
2019    }
2020
2021    // Compute the cached properties and then set the cache.
2022    CachedProperties Result = computeCachedProperties(T);
2023    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
2024    assert(T->TypeBits.isCacheValid() &&
2025           T->TypeBits.getVisibility() == Result.getVisibility());
2026    T->TypeBits.CachedLinkage = Result.getLinkage();
2027    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
2028  }
2029};
2030}
2031
2032// Instantiate the friend template at a private class.  In a
2033// reasonable implementation, these symbols will be internal.
2034// It is terrible that this is the best way to accomplish this.
2035namespace { class Private {}; }
2036typedef TypePropertyCache<Private> Cache;
2037
2038static CachedProperties computeCachedProperties(const Type *T) {
2039  switch (T->getTypeClass()) {
2040#define TYPE(Class,Base)
2041#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2042#include "clang/AST/TypeNodes.def"
2043    llvm_unreachable("didn't expect a non-canonical type here");
2044
2045#define TYPE(Class,Base)
2046#define DEPENDENT_TYPE(Class,Base) case Type::Class:
2047#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2048#include "clang/AST/TypeNodes.def"
2049    // Treat instantiation-dependent types as external.
2050    assert(T->isInstantiationDependentType());
2051    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2052
2053  case Type::Builtin:
2054    // C++ [basic.link]p8:
2055    //   A type is said to have linkage if and only if:
2056    //     - it is a fundamental type (3.9.1); or
2057    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2058
2059  case Type::Record:
2060  case Type::Enum: {
2061    const TagDecl *Tag = cast<TagType>(T)->getDecl();
2062
2063    // C++ [basic.link]p8:
2064    //     - it is a class or enumeration type that is named (or has a name
2065    //       for linkage purposes (7.1.3)) and the name has linkage; or
2066    //     -  it is a specialization of a class template (14); or
2067    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2068    bool IsLocalOrUnnamed =
2069      Tag->getDeclContext()->isFunctionOrMethod() ||
2070      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2071    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
2072  }
2073
2074    // C++ [basic.link]p8:
2075    //   - it is a compound type (3.9.2) other than a class or enumeration,
2076    //     compounded exclusively from types that have linkage; or
2077  case Type::Complex:
2078    return Cache::get(cast<ComplexType>(T)->getElementType());
2079  case Type::Pointer:
2080    return Cache::get(cast<PointerType>(T)->getPointeeType());
2081  case Type::BlockPointer:
2082    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2083  case Type::LValueReference:
2084  case Type::RValueReference:
2085    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2086  case Type::MemberPointer: {
2087    const MemberPointerType *MPT = cast<MemberPointerType>(T);
2088    return merge(Cache::get(MPT->getClass()),
2089                 Cache::get(MPT->getPointeeType()));
2090  }
2091  case Type::ConstantArray:
2092  case Type::IncompleteArray:
2093  case Type::VariableArray:
2094    return Cache::get(cast<ArrayType>(T)->getElementType());
2095  case Type::Vector:
2096  case Type::ExtVector:
2097    return Cache::get(cast<VectorType>(T)->getElementType());
2098  case Type::FunctionNoProto:
2099    return Cache::get(cast<FunctionType>(T)->getResultType());
2100  case Type::FunctionProto: {
2101    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2102    CachedProperties result = Cache::get(FPT->getResultType());
2103    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2104           ae = FPT->arg_type_end(); ai != ae; ++ai)
2105      result = merge(result, Cache::get(*ai));
2106    return result;
2107  }
2108  case Type::ObjCInterface: {
2109    NamedDecl::LinkageInfo LV =
2110      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2111    return CachedProperties(LV.linkage(), LV.visibility(), false);
2112  }
2113  case Type::ObjCObject:
2114    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2115  case Type::ObjCObjectPointer:
2116    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2117  }
2118
2119  llvm_unreachable("unhandled type class");
2120
2121  // C++ [basic.link]p8:
2122  //   Names not covered by these rules have no linkage.
2123  return CachedProperties(NoLinkage, DefaultVisibility, false);
2124}
2125
2126/// \brief Determine the linkage of this type.
2127Linkage Type::getLinkage() const {
2128  Cache::ensure(this);
2129  return TypeBits.getLinkage();
2130}
2131
2132/// \brief Determine the linkage of this type.
2133Visibility Type::getVisibility() const {
2134  Cache::ensure(this);
2135  return TypeBits.getVisibility();
2136}
2137
2138bool Type::hasUnnamedOrLocalType() const {
2139  Cache::ensure(this);
2140  return TypeBits.hasLocalOrUnnamedType();
2141}
2142
2143std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2144  Cache::ensure(this);
2145  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2146}
2147
2148void Type::ClearLinkageCache() {
2149  TypeBits.CacheValidAndVisibility = 0;
2150  if (QualType(this, 0) != CanonicalType)
2151    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2152}
2153
2154Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2155  if (isObjCARCImplicitlyUnretainedType())
2156    return Qualifiers::OCL_ExplicitNone;
2157  return Qualifiers::OCL_Strong;
2158}
2159
2160bool Type::isObjCARCImplicitlyUnretainedType() const {
2161  assert(isObjCLifetimeType() &&
2162         "cannot query implicit lifetime for non-inferrable type");
2163
2164  const Type *canon = getCanonicalTypeInternal().getTypePtr();
2165
2166  // Walk down to the base type.  We don't care about qualifiers for this.
2167  while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2168    canon = array->getElementType().getTypePtr();
2169
2170  if (const ObjCObjectPointerType *opt
2171        = dyn_cast<ObjCObjectPointerType>(canon)) {
2172    // Class and Class<Protocol> don't require retension.
2173    if (opt->getObjectType()->isObjCClass())
2174      return true;
2175  }
2176
2177  return false;
2178}
2179
2180bool Type::isObjCNSObjectType() const {
2181  if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2182    return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2183  return false;
2184}
2185bool Type::isObjCRetainableType() const {
2186  return isObjCObjectPointerType() ||
2187         isBlockPointerType() ||
2188         isObjCNSObjectType();
2189}
2190bool Type::isObjCIndirectLifetimeType() const {
2191  if (isObjCLifetimeType())
2192    return true;
2193  if (const PointerType *OPT = getAs<PointerType>())
2194    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2195  if (const ReferenceType *Ref = getAs<ReferenceType>())
2196    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2197  if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2198    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2199  return false;
2200}
2201
2202/// Returns true if objects of this type have lifetime semantics under
2203/// ARC.
2204bool Type::isObjCLifetimeType() const {
2205  const Type *type = this;
2206  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2207    type = array->getElementType().getTypePtr();
2208  return type->isObjCRetainableType();
2209}
2210
2211/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2212/// which is either an Objective-C object pointer type or an
2213bool Type::isObjCARCBridgableType() const {
2214  return isObjCObjectPointerType() || isBlockPointerType();
2215}
2216
2217/// \brief Determine whether the given type T is a "bridgeable" C type.
2218bool Type::isCARCBridgableType() const {
2219  const PointerType *Pointer = getAs<PointerType>();
2220  if (!Pointer)
2221    return false;
2222
2223  QualType Pointee = Pointer->getPointeeType();
2224  return Pointee->isVoidType() || Pointee->isRecordType();
2225}
2226
2227bool Type::hasSizedVLAType() const {
2228  if (!isVariablyModifiedType()) return false;
2229
2230  if (const PointerType *ptr = getAs<PointerType>())
2231    return ptr->getPointeeType()->hasSizedVLAType();
2232  if (const ReferenceType *ref = getAs<ReferenceType>())
2233    return ref->getPointeeType()->hasSizedVLAType();
2234  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2235    if (isa<VariableArrayType>(arr) &&
2236        cast<VariableArrayType>(arr)->getSizeExpr())
2237      return true;
2238
2239    return arr->getElementType()->hasSizedVLAType();
2240  }
2241
2242  return false;
2243}
2244
2245QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2246  switch (type.getObjCLifetime()) {
2247  case Qualifiers::OCL_None:
2248  case Qualifiers::OCL_ExplicitNone:
2249  case Qualifiers::OCL_Autoreleasing:
2250    break;
2251
2252  case Qualifiers::OCL_Strong:
2253    return DK_objc_strong_lifetime;
2254  case Qualifiers::OCL_Weak:
2255    return DK_objc_weak_lifetime;
2256  }
2257
2258  /// Currently, the only destruction kind we recognize is C++ objects
2259  /// with non-trivial destructors.
2260  const CXXRecordDecl *record =
2261    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2262  if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2263    return DK_cxx_destructor;
2264
2265  return DK_none;
2266}
2267
2268bool QualType::hasTrivialCopyAssignment(ASTContext &Context) const {
2269  switch (getObjCLifetime()) {
2270  case Qualifiers::OCL_None:
2271    break;
2272
2273  case Qualifiers::OCL_ExplicitNone:
2274    return true;
2275
2276  case Qualifiers::OCL_Autoreleasing:
2277  case Qualifiers::OCL_Strong:
2278  case Qualifiers::OCL_Weak:
2279    return !Context.getLangOptions().ObjCAutoRefCount;
2280  }
2281
2282  if (const CXXRecordDecl *Record
2283            = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2284    return Record->hasTrivialCopyAssignment();
2285
2286  return true;
2287}
2288