Type.cpp revision f1588660c109610e6a79c786b83b7c9bbd6ed31e
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31  return (*this != Other) &&
32    // CVR qualifiers superset
33    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34    // ObjC GC qualifiers superset
35    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37    // Address space superset.
38    ((getAddressSpace() == Other.getAddressSpace()) ||
39     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40    // Lifetime qualifier superset.
41    ((getObjCLifetime() == Other.getObjCLifetime()) ||
42     (hasObjCLifetime() && !Other.hasObjCLifetime()));
43}
44
45bool QualType::isConstant(QualType T, ASTContext &Ctx) {
46  if (T.isConstQualified())
47    return true;
48
49  if (const ArrayType *AT = Ctx.getAsArrayType(T))
50    return AT->getElementType().isConstant(Ctx);
51
52  return false;
53}
54
55unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
56                                                 QualType ElementType,
57                                               const llvm::APInt &NumElements) {
58  llvm::APSInt SizeExtended(NumElements, true);
59  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
60  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
61                                              SizeExtended.getBitWidth()) * 2);
62
63  uint64_t ElementSize
64    = Context.getTypeSizeInChars(ElementType).getQuantity();
65  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
66  TotalSize *= SizeExtended;
67
68  return TotalSize.getActiveBits();
69}
70
71unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
72  unsigned Bits = Context.getTypeSize(Context.getSizeType());
73
74  // GCC appears to only allow 63 bits worth of address space when compiling
75  // for 64-bit, so we do the same.
76  if (Bits == 64)
77    --Bits;
78
79  return Bits;
80}
81
82DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
83                                                 QualType et, QualType can,
84                                                 Expr *e, ArraySizeModifier sm,
85                                                 unsigned tq,
86                                                 SourceRange brackets)
87    : ArrayType(DependentSizedArray, et, can, sm, tq,
88                (et->containsUnexpandedParameterPack() ||
89                 (e && e->containsUnexpandedParameterPack()))),
90      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
91{
92}
93
94void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
95                                      const ASTContext &Context,
96                                      QualType ET,
97                                      ArraySizeModifier SizeMod,
98                                      unsigned TypeQuals,
99                                      Expr *E) {
100  ID.AddPointer(ET.getAsOpaquePtr());
101  ID.AddInteger(SizeMod);
102  ID.AddInteger(TypeQuals);
103  E->Profile(ID, Context, true);
104}
105
106DependentSizedExtVectorType::DependentSizedExtVectorType(const
107                                                         ASTContext &Context,
108                                                         QualType ElementType,
109                                                         QualType can,
110                                                         Expr *SizeExpr,
111                                                         SourceLocation loc)
112    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
113           /*InstantiationDependent=*/true,
114           ElementType->isVariablyModifiedType(),
115           (ElementType->containsUnexpandedParameterPack() ||
116            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
117      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
118      loc(loc)
119{
120}
121
122void
123DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
124                                     const ASTContext &Context,
125                                     QualType ElementType, Expr *SizeExpr) {
126  ID.AddPointer(ElementType.getAsOpaquePtr());
127  SizeExpr->Profile(ID, Context, true);
128}
129
130VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
131                       VectorKind vecKind)
132  : Type(Vector, canonType, vecType->isDependentType(),
133         vecType->isInstantiationDependentType(),
134         vecType->isVariablyModifiedType(),
135         vecType->containsUnexpandedParameterPack()),
136    ElementType(vecType)
137{
138  VectorTypeBits.VecKind = vecKind;
139  VectorTypeBits.NumElements = nElements;
140}
141
142VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
143                       QualType canonType, VectorKind vecKind)
144  : Type(tc, canonType, vecType->isDependentType(),
145         vecType->isInstantiationDependentType(),
146         vecType->isVariablyModifiedType(),
147         vecType->containsUnexpandedParameterPack()),
148    ElementType(vecType)
149{
150  VectorTypeBits.VecKind = vecKind;
151  VectorTypeBits.NumElements = nElements;
152}
153
154/// getArrayElementTypeNoTypeQual - If this is an array type, return the
155/// element type of the array, potentially with type qualifiers missing.
156/// This method should never be used when type qualifiers are meaningful.
157const Type *Type::getArrayElementTypeNoTypeQual() const {
158  // If this is directly an array type, return it.
159  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
160    return ATy->getElementType().getTypePtr();
161
162  // If the canonical form of this type isn't the right kind, reject it.
163  if (!isa<ArrayType>(CanonicalType))
164    return 0;
165
166  // If this is a typedef for an array type, strip the typedef off without
167  // losing all typedef information.
168  return cast<ArrayType>(getUnqualifiedDesugaredType())
169    ->getElementType().getTypePtr();
170}
171
172/// getDesugaredType - Return the specified type with any "sugar" removed from
173/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
174/// the type is already concrete, it returns it unmodified.  This is similar
175/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
176/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
177/// concrete.
178QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
179  SplitQualType split = getSplitDesugaredType(T);
180  return Context.getQualifiedType(split.first, split.second);
181}
182
183QualType QualType::getSingleStepDesugaredType(const ASTContext &Context) const {
184  QualifierCollector Qs;
185
186  const Type *CurTy = Qs.strip(*this);
187  switch (CurTy->getTypeClass()) {
188#define ABSTRACT_TYPE(Class, Parent)
189#define TYPE(Class, Parent) \
190  case Type::Class: { \
191    const Class##Type *Ty = cast<Class##Type>(CurTy); \
192    if (!Ty->isSugared()) \
193      return *this; \
194    return Context.getQualifiedType(Ty->desugar(), Qs); \
195    break; \
196  }
197#include "clang/AST/TypeNodes.def"
198  }
199
200  return *this;
201}
202
203SplitQualType QualType::getSplitDesugaredType(QualType T) {
204  QualifierCollector Qs;
205
206  QualType Cur = T;
207  while (true) {
208    const Type *CurTy = Qs.strip(Cur);
209    switch (CurTy->getTypeClass()) {
210#define ABSTRACT_TYPE(Class, Parent)
211#define TYPE(Class, Parent) \
212    case Type::Class: { \
213      const Class##Type *Ty = cast<Class##Type>(CurTy); \
214      if (!Ty->isSugared()) \
215        return SplitQualType(Ty, Qs); \
216      Cur = Ty->desugar(); \
217      break; \
218    }
219#include "clang/AST/TypeNodes.def"
220    }
221  }
222}
223
224SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
225  SplitQualType split = type.split();
226
227  // All the qualifiers we've seen so far.
228  Qualifiers quals = split.second;
229
230  // The last type node we saw with any nodes inside it.
231  const Type *lastTypeWithQuals = split.first;
232
233  while (true) {
234    QualType next;
235
236    // Do a single-step desugar, aborting the loop if the type isn't
237    // sugared.
238    switch (split.first->getTypeClass()) {
239#define ABSTRACT_TYPE(Class, Parent)
240#define TYPE(Class, Parent) \
241    case Type::Class: { \
242      const Class##Type *ty = cast<Class##Type>(split.first); \
243      if (!ty->isSugared()) goto done; \
244      next = ty->desugar(); \
245      break; \
246    }
247#include "clang/AST/TypeNodes.def"
248    }
249
250    // Otherwise, split the underlying type.  If that yields qualifiers,
251    // update the information.
252    split = next.split();
253    if (!split.second.empty()) {
254      lastTypeWithQuals = split.first;
255      quals.addConsistentQualifiers(split.second);
256    }
257  }
258
259 done:
260  return SplitQualType(lastTypeWithQuals, quals);
261}
262
263QualType QualType::IgnoreParens(QualType T) {
264  // FIXME: this seems inherently un-qualifiers-safe.
265  while (const ParenType *PT = T->getAs<ParenType>())
266    T = PT->getInnerType();
267  return T;
268}
269
270/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
271/// sugar off the given type.  This should produce an object of the
272/// same dynamic type as the canonical type.
273const Type *Type::getUnqualifiedDesugaredType() const {
274  const Type *Cur = this;
275
276  while (true) {
277    switch (Cur->getTypeClass()) {
278#define ABSTRACT_TYPE(Class, Parent)
279#define TYPE(Class, Parent) \
280    case Class: { \
281      const Class##Type *Ty = cast<Class##Type>(Cur); \
282      if (!Ty->isSugared()) return Cur; \
283      Cur = Ty->desugar().getTypePtr(); \
284      break; \
285    }
286#include "clang/AST/TypeNodes.def"
287    }
288  }
289}
290
291/// isVoidType - Helper method to determine if this is the 'void' type.
292bool Type::isVoidType() const {
293  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
294    return BT->getKind() == BuiltinType::Void;
295  return false;
296}
297
298bool Type::isDerivedType() const {
299  switch (CanonicalType->getTypeClass()) {
300  case Pointer:
301  case VariableArray:
302  case ConstantArray:
303  case IncompleteArray:
304  case FunctionProto:
305  case FunctionNoProto:
306  case LValueReference:
307  case RValueReference:
308  case Record:
309    return true;
310  default:
311    return false;
312  }
313}
314bool Type::isClassType() const {
315  if (const RecordType *RT = getAs<RecordType>())
316    return RT->getDecl()->isClass();
317  return false;
318}
319bool Type::isStructureType() const {
320  if (const RecordType *RT = getAs<RecordType>())
321    return RT->getDecl()->isStruct();
322  return false;
323}
324bool Type::isStructureOrClassType() const {
325  if (const RecordType *RT = getAs<RecordType>())
326    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
327  return false;
328}
329bool Type::isVoidPointerType() const {
330  if (const PointerType *PT = getAs<PointerType>())
331    return PT->getPointeeType()->isVoidType();
332  return false;
333}
334
335bool Type::isUnionType() const {
336  if (const RecordType *RT = getAs<RecordType>())
337    return RT->getDecl()->isUnion();
338  return false;
339}
340
341bool Type::isComplexType() const {
342  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
343    return CT->getElementType()->isFloatingType();
344  return false;
345}
346
347bool Type::isComplexIntegerType() const {
348  // Check for GCC complex integer extension.
349  return getAsComplexIntegerType();
350}
351
352const ComplexType *Type::getAsComplexIntegerType() const {
353  if (const ComplexType *Complex = getAs<ComplexType>())
354    if (Complex->getElementType()->isIntegerType())
355      return Complex;
356  return 0;
357}
358
359QualType Type::getPointeeType() const {
360  if (const PointerType *PT = getAs<PointerType>())
361    return PT->getPointeeType();
362  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
363    return OPT->getPointeeType();
364  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
365    return BPT->getPointeeType();
366  if (const ReferenceType *RT = getAs<ReferenceType>())
367    return RT->getPointeeType();
368  return QualType();
369}
370
371const RecordType *Type::getAsStructureType() const {
372  // If this is directly a structure type, return it.
373  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
374    if (RT->getDecl()->isStruct())
375      return RT;
376  }
377
378  // If the canonical form of this type isn't the right kind, reject it.
379  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
380    if (!RT->getDecl()->isStruct())
381      return 0;
382
383    // If this is a typedef for a structure type, strip the typedef off without
384    // losing all typedef information.
385    return cast<RecordType>(getUnqualifiedDesugaredType());
386  }
387  return 0;
388}
389
390const RecordType *Type::getAsUnionType() const {
391  // If this is directly a union type, return it.
392  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
393    if (RT->getDecl()->isUnion())
394      return RT;
395  }
396
397  // If the canonical form of this type isn't the right kind, reject it.
398  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
399    if (!RT->getDecl()->isUnion())
400      return 0;
401
402    // If this is a typedef for a union type, strip the typedef off without
403    // losing all typedef information.
404    return cast<RecordType>(getUnqualifiedDesugaredType());
405  }
406
407  return 0;
408}
409
410ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
411                               ObjCProtocolDecl * const *Protocols,
412                               unsigned NumProtocols)
413  : Type(ObjCObject, Canonical, false, false, false, false),
414    BaseType(Base)
415{
416  ObjCObjectTypeBits.NumProtocols = NumProtocols;
417  assert(getNumProtocols() == NumProtocols &&
418         "bitfield overflow in protocol count");
419  if (NumProtocols)
420    memcpy(getProtocolStorage(), Protocols,
421           NumProtocols * sizeof(ObjCProtocolDecl*));
422}
423
424const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
425  // There is no sugar for ObjCObjectType's, just return the canonical
426  // type pointer if it is the right class.  There is no typedef information to
427  // return and these cannot be Address-space qualified.
428  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
429    if (T->getNumProtocols() && T->getInterface())
430      return T;
431  return 0;
432}
433
434bool Type::isObjCQualifiedInterfaceType() const {
435  return getAsObjCQualifiedInterfaceType() != 0;
436}
437
438const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
439  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
440  // type pointer if it is the right class.
441  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
442    if (OPT->isObjCQualifiedIdType())
443      return OPT;
444  }
445  return 0;
446}
447
448const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
449  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
450  // type pointer if it is the right class.
451  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
452    if (OPT->isObjCQualifiedClassType())
453      return OPT;
454  }
455  return 0;
456}
457
458const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
459  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
460    if (OPT->getInterfaceType())
461      return OPT;
462  }
463  return 0;
464}
465
466const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
467  if (const PointerType *PT = getAs<PointerType>())
468    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
469      return dyn_cast<CXXRecordDecl>(RT->getDecl());
470  return 0;
471}
472
473CXXRecordDecl *Type::getAsCXXRecordDecl() const {
474  if (const RecordType *RT = getAs<RecordType>())
475    return dyn_cast<CXXRecordDecl>(RT->getDecl());
476  else if (const InjectedClassNameType *Injected
477                                  = getAs<InjectedClassNameType>())
478    return Injected->getDecl();
479
480  return 0;
481}
482
483namespace {
484  class GetContainedAutoVisitor :
485    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
486  public:
487    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
488    AutoType *Visit(QualType T) {
489      if (T.isNull())
490        return 0;
491      return Visit(T.getTypePtr());
492    }
493
494    // The 'auto' type itself.
495    AutoType *VisitAutoType(const AutoType *AT) {
496      return const_cast<AutoType*>(AT);
497    }
498
499    // Only these types can contain the desired 'auto' type.
500    AutoType *VisitPointerType(const PointerType *T) {
501      return Visit(T->getPointeeType());
502    }
503    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
504      return Visit(T->getPointeeType());
505    }
506    AutoType *VisitReferenceType(const ReferenceType *T) {
507      return Visit(T->getPointeeTypeAsWritten());
508    }
509    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
510      return Visit(T->getPointeeType());
511    }
512    AutoType *VisitArrayType(const ArrayType *T) {
513      return Visit(T->getElementType());
514    }
515    AutoType *VisitDependentSizedExtVectorType(
516      const DependentSizedExtVectorType *T) {
517      return Visit(T->getElementType());
518    }
519    AutoType *VisitVectorType(const VectorType *T) {
520      return Visit(T->getElementType());
521    }
522    AutoType *VisitFunctionType(const FunctionType *T) {
523      return Visit(T->getResultType());
524    }
525    AutoType *VisitParenType(const ParenType *T) {
526      return Visit(T->getInnerType());
527    }
528    AutoType *VisitAttributedType(const AttributedType *T) {
529      return Visit(T->getModifiedType());
530    }
531  };
532}
533
534AutoType *Type::getContainedAutoType() const {
535  return GetContainedAutoVisitor().Visit(this);
536}
537
538bool Type::isIntegerType() const {
539  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
540    return BT->getKind() >= BuiltinType::Bool &&
541           BT->getKind() <= BuiltinType::Int128;
542  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
543    // Incomplete enum types are not treated as integer types.
544    // FIXME: In C++, enum types are never integer types.
545    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
546  return false;
547}
548
549bool Type::hasIntegerRepresentation() const {
550  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
551    return VT->getElementType()->isIntegerType();
552  else
553    return isIntegerType();
554}
555
556/// \brief Determine whether this type is an integral type.
557///
558/// This routine determines whether the given type is an integral type per
559/// C++ [basic.fundamental]p7. Although the C standard does not define the
560/// term "integral type", it has a similar term "integer type", and in C++
561/// the two terms are equivalent. However, C's "integer type" includes
562/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
563/// parameter is used to determine whether we should be following the C or
564/// C++ rules when determining whether this type is an integral/integer type.
565///
566/// For cases where C permits "an integer type" and C++ permits "an integral
567/// type", use this routine.
568///
569/// For cases where C permits "an integer type" and C++ permits "an integral
570/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
571///
572/// \param Ctx The context in which this type occurs.
573///
574/// \returns true if the type is considered an integral type, false otherwise.
575bool Type::isIntegralType(ASTContext &Ctx) const {
576  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
577    return BT->getKind() >= BuiltinType::Bool &&
578    BT->getKind() <= BuiltinType::Int128;
579
580  if (!Ctx.getLangOptions().CPlusPlus)
581    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
582      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
583
584  return false;
585}
586
587bool Type::isIntegralOrEnumerationType() const {
588  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
589    return BT->getKind() >= BuiltinType::Bool &&
590           BT->getKind() <= BuiltinType::Int128;
591
592  // Check for a complete enum type; incomplete enum types are not properly an
593  // enumeration type in the sense required here.
594  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
595    return ET->getDecl()->isComplete();
596
597  return false;
598}
599
600bool Type::isIntegralOrUnscopedEnumerationType() const {
601  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
602    return BT->getKind() >= BuiltinType::Bool &&
603           BT->getKind() <= BuiltinType::Int128;
604
605  // Check for a complete enum type; incomplete enum types are not properly an
606  // enumeration type in the sense required here.
607  // C++0x: However, if the underlying type of the enum is fixed, it is
608  // considered complete.
609  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
610    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
611
612  return false;
613}
614
615
616bool Type::isBooleanType() const {
617  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
618    return BT->getKind() == BuiltinType::Bool;
619  return false;
620}
621
622bool Type::isCharType() const {
623  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
624    return BT->getKind() == BuiltinType::Char_U ||
625           BT->getKind() == BuiltinType::UChar ||
626           BT->getKind() == BuiltinType::Char_S ||
627           BT->getKind() == BuiltinType::SChar;
628  return false;
629}
630
631bool Type::isWideCharType() const {
632  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
633    return BT->getKind() == BuiltinType::WChar_S ||
634           BT->getKind() == BuiltinType::WChar_U;
635  return false;
636}
637
638/// \brief Determine whether this type is any of the built-in character
639/// types.
640bool Type::isAnyCharacterType() const {
641  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
642  if (BT == 0) return false;
643  switch (BT->getKind()) {
644  default: return false;
645  case BuiltinType::Char_U:
646  case BuiltinType::UChar:
647  case BuiltinType::WChar_U:
648  case BuiltinType::Char16:
649  case BuiltinType::Char32:
650  case BuiltinType::Char_S:
651  case BuiltinType::SChar:
652  case BuiltinType::WChar_S:
653    return true;
654  }
655}
656
657/// isSignedIntegerType - Return true if this is an integer type that is
658/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
659/// an enum decl which has a signed representation
660bool Type::isSignedIntegerType() const {
661  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
662    return BT->getKind() >= BuiltinType::Char_S &&
663           BT->getKind() <= BuiltinType::Int128;
664  }
665
666  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
667    // Incomplete enum types are not treated as integer types.
668    // FIXME: In C++, enum types are never integer types.
669    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
670      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
671  }
672
673  return false;
674}
675
676bool Type::isSignedIntegerOrEnumerationType() const {
677  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
678    return BT->getKind() >= BuiltinType::Char_S &&
679    BT->getKind() <= BuiltinType::Int128;
680  }
681
682  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
683    if (ET->getDecl()->isComplete())
684      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
685  }
686
687  return false;
688}
689
690bool Type::hasSignedIntegerRepresentation() const {
691  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
692    return VT->getElementType()->isSignedIntegerType();
693  else
694    return isSignedIntegerType();
695}
696
697/// isUnsignedIntegerType - Return true if this is an integer type that is
698/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
699/// decl which has an unsigned representation
700bool Type::isUnsignedIntegerType() const {
701  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
702    return BT->getKind() >= BuiltinType::Bool &&
703           BT->getKind() <= BuiltinType::UInt128;
704  }
705
706  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
707    // Incomplete enum types are not treated as integer types.
708    // FIXME: In C++, enum types are never integer types.
709    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
710      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
711  }
712
713  return false;
714}
715
716bool Type::isUnsignedIntegerOrEnumerationType() const {
717  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
718    return BT->getKind() >= BuiltinType::Bool &&
719    BT->getKind() <= BuiltinType::UInt128;
720  }
721
722  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
723    if (ET->getDecl()->isComplete())
724      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
725  }
726
727  return false;
728}
729
730bool Type::hasUnsignedIntegerRepresentation() const {
731  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
732    return VT->getElementType()->isUnsignedIntegerType();
733  else
734    return isUnsignedIntegerType();
735}
736
737bool Type::isFloatingType() const {
738  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
739    return BT->getKind() >= BuiltinType::Float &&
740           BT->getKind() <= BuiltinType::LongDouble;
741  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
742    return CT->getElementType()->isFloatingType();
743  return false;
744}
745
746bool Type::hasFloatingRepresentation() const {
747  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
748    return VT->getElementType()->isFloatingType();
749  else
750    return isFloatingType();
751}
752
753bool Type::isRealFloatingType() const {
754  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
755    return BT->isFloatingPoint();
756  return false;
757}
758
759bool Type::isRealType() const {
760  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
761    return BT->getKind() >= BuiltinType::Bool &&
762           BT->getKind() <= BuiltinType::LongDouble;
763  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
764      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
765  return false;
766}
767
768bool Type::isArithmeticType() const {
769  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
770    return BT->getKind() >= BuiltinType::Bool &&
771           BT->getKind() <= BuiltinType::LongDouble;
772  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
773    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
774    // If a body isn't seen by the time we get here, return false.
775    //
776    // C++0x: Enumerations are not arithmetic types. For now, just return
777    // false for scoped enumerations since that will disable any
778    // unwanted implicit conversions.
779    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
780  return isa<ComplexType>(CanonicalType);
781}
782
783bool Type::isScalarType() const {
784  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
785    return BT->getKind() > BuiltinType::Void &&
786           BT->getKind() <= BuiltinType::NullPtr;
787  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
788    // Enums are scalar types, but only if they are defined.  Incomplete enums
789    // are not treated as scalar types.
790    return ET->getDecl()->isComplete();
791  return isa<PointerType>(CanonicalType) ||
792         isa<BlockPointerType>(CanonicalType) ||
793         isa<MemberPointerType>(CanonicalType) ||
794         isa<ComplexType>(CanonicalType) ||
795         isa<ObjCObjectPointerType>(CanonicalType);
796}
797
798Type::ScalarTypeKind Type::getScalarTypeKind() const {
799  assert(isScalarType());
800
801  const Type *T = CanonicalType.getTypePtr();
802  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
803    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
804    if (BT->getKind() == BuiltinType::NullPtr) return STK_Pointer;
805    if (BT->isInteger()) return STK_Integral;
806    if (BT->isFloatingPoint()) return STK_Floating;
807    llvm_unreachable("unknown scalar builtin type");
808  } else if (isa<PointerType>(T) ||
809             isa<BlockPointerType>(T) ||
810             isa<ObjCObjectPointerType>(T)) {
811    return STK_Pointer;
812  } else if (isa<MemberPointerType>(T)) {
813    return STK_MemberPointer;
814  } else if (isa<EnumType>(T)) {
815    assert(cast<EnumType>(T)->getDecl()->isComplete());
816    return STK_Integral;
817  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
818    if (CT->getElementType()->isRealFloatingType())
819      return STK_FloatingComplex;
820    return STK_IntegralComplex;
821  }
822
823  llvm_unreachable("unknown scalar type");
824  return STK_Pointer;
825}
826
827/// \brief Determines whether the type is a C++ aggregate type or C
828/// aggregate or union type.
829///
830/// An aggregate type is an array or a class type (struct, union, or
831/// class) that has no user-declared constructors, no private or
832/// protected non-static data members, no base classes, and no virtual
833/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
834/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
835/// includes union types.
836bool Type::isAggregateType() const {
837  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
838    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
839      return ClassDecl->isAggregate();
840
841    return true;
842  }
843
844  return isa<ArrayType>(CanonicalType);
845}
846
847/// isConstantSizeType - Return true if this is not a variable sized type,
848/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
849/// incomplete types or dependent types.
850bool Type::isConstantSizeType() const {
851  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
852  assert(!isDependentType() && "This doesn't make sense for dependent types");
853  // The VAT must have a size, as it is known to be complete.
854  return !isa<VariableArrayType>(CanonicalType);
855}
856
857/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
858/// - a type that can describe objects, but which lacks information needed to
859/// determine its size.
860bool Type::isIncompleteType() const {
861  switch (CanonicalType->getTypeClass()) {
862  default: return false;
863  case Builtin:
864    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
865    // be completed.
866    return isVoidType();
867  case Enum:
868    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
869    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
870        return false;
871    // Fall through.
872  case Record:
873    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
874    // forward declaration, but not a full definition (C99 6.2.5p22).
875    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
876  case ConstantArray:
877    // An array is incomplete if its element type is incomplete
878    // (C++ [dcl.array]p1).
879    // We don't handle variable arrays (they're not allowed in C++) or
880    // dependent-sized arrays (dependent types are never treated as incomplete).
881    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
882  case IncompleteArray:
883    // An array of unknown size is an incomplete type (C99 6.2.5p22).
884    return true;
885  case ObjCObject:
886    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
887                                                         ->isIncompleteType();
888  case ObjCInterface:
889    // ObjC interfaces are incomplete if they are @class, not @interface.
890    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
891  }
892}
893
894bool QualType::isPODType(ASTContext &Context) const {
895  // The compiler shouldn't query this for incomplete types, but the user might.
896  // We return false for that case. Except for incomplete arrays of PODs, which
897  // are PODs according to the standard.
898  if (isNull())
899    return 0;
900
901  if ((*this)->isIncompleteArrayType())
902    return Context.getBaseElementType(*this).isPODType(Context);
903
904  if ((*this)->isIncompleteType())
905    return false;
906
907  if (Context.getLangOptions().ObjCAutoRefCount) {
908    switch (getObjCLifetime()) {
909    case Qualifiers::OCL_ExplicitNone:
910      return true;
911
912    case Qualifiers::OCL_Strong:
913    case Qualifiers::OCL_Weak:
914    case Qualifiers::OCL_Autoreleasing:
915      return false;
916
917    case Qualifiers::OCL_None:
918      if ((*this)->isObjCLifetimeType())
919        return false;
920      break;
921    }
922  }
923
924  QualType CanonicalType = getTypePtr()->CanonicalType;
925  switch (CanonicalType->getTypeClass()) {
926    // Everything not explicitly mentioned is not POD.
927  default: return false;
928  case Type::VariableArray:
929  case Type::ConstantArray:
930    // IncompleteArray is handled above.
931    return Context.getBaseElementType(*this).isPODType(Context);
932
933  case Type::ObjCObjectPointer:
934  case Type::BlockPointer:
935  case Type::Builtin:
936  case Type::Complex:
937  case Type::Pointer:
938  case Type::MemberPointer:
939  case Type::Vector:
940  case Type::ExtVector:
941    return true;
942
943  case Type::Enum:
944    return true;
945
946  case Type::Record:
947    if (CXXRecordDecl *ClassDecl
948          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
949      return ClassDecl->isPOD();
950
951    // C struct/union is POD.
952    return true;
953  }
954}
955
956bool QualType::isTrivialType(ASTContext &Context) const {
957  // The compiler shouldn't query this for incomplete types, but the user might.
958  // We return false for that case. Except for incomplete arrays of PODs, which
959  // are PODs according to the standard.
960  if (isNull())
961    return 0;
962
963  if ((*this)->isArrayType())
964    return Context.getBaseElementType(*this).isTrivialType(Context);
965
966  // Return false for incomplete types after skipping any incomplete array
967  // types which are expressly allowed by the standard and thus our API.
968  if ((*this)->isIncompleteType())
969    return false;
970
971  if (Context.getLangOptions().ObjCAutoRefCount) {
972    switch (getObjCLifetime()) {
973    case Qualifiers::OCL_ExplicitNone:
974      return true;
975
976    case Qualifiers::OCL_Strong:
977    case Qualifiers::OCL_Weak:
978    case Qualifiers::OCL_Autoreleasing:
979      return false;
980
981    case Qualifiers::OCL_None:
982      if ((*this)->isObjCLifetimeType())
983        return false;
984      break;
985    }
986  }
987
988  QualType CanonicalType = getTypePtr()->CanonicalType;
989  if (CanonicalType->isDependentType())
990    return false;
991
992  // C++0x [basic.types]p9:
993  //   Scalar types, trivial class types, arrays of such types, and
994  //   cv-qualified versions of these types are collectively called trivial
995  //   types.
996
997  // As an extension, Clang treats vector types as Scalar types.
998  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
999    return true;
1000  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1001    if (const CXXRecordDecl *ClassDecl =
1002        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1003      // C++0x [class]p5:
1004      //   A trivial class is a class that has a trivial default constructor
1005      if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1006      //   and is trivially copyable.
1007      if (!ClassDecl->isTriviallyCopyable()) return false;
1008    }
1009
1010    return true;
1011  }
1012
1013  // No other types can match.
1014  return false;
1015}
1016
1017bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1018  if ((*this)->isArrayType())
1019    return Context.getBaseElementType(*this).isTrivialType(Context);
1020
1021  if (Context.getLangOptions().ObjCAutoRefCount) {
1022    switch (getObjCLifetime()) {
1023    case Qualifiers::OCL_ExplicitNone:
1024      return true;
1025
1026    case Qualifiers::OCL_Strong:
1027    case Qualifiers::OCL_Weak:
1028    case Qualifiers::OCL_Autoreleasing:
1029      return false;
1030
1031    case Qualifiers::OCL_None:
1032      if ((*this)->isObjCLifetimeType())
1033        return false;
1034      break;
1035    }
1036  }
1037
1038  // C++0x [basic.types]p9
1039  //   Scalar types, trivially copyable class types, arrays of such types, and
1040  //   cv-qualified versions of these types are collectively called trivial
1041  //   types.
1042
1043  QualType CanonicalType = getCanonicalType();
1044  if (CanonicalType->isDependentType())
1045    return false;
1046
1047  // Return false for incomplete types after skipping any incomplete array types
1048  // which are expressly allowed by the standard and thus our API.
1049  if (CanonicalType->isIncompleteType())
1050    return false;
1051
1052  // As an extension, Clang treats vector types as Scalar types.
1053  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1054    return true;
1055
1056  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1057    if (const CXXRecordDecl *ClassDecl =
1058          dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1059      if (!ClassDecl->isTriviallyCopyable()) return false;
1060    }
1061
1062    return true;
1063  }
1064
1065  // No other types can match.
1066  return false;
1067}
1068
1069
1070
1071bool Type::isLiteralType() const {
1072  if (isDependentType())
1073    return false;
1074
1075  // C++0x [basic.types]p10:
1076  //   A type is a literal type if it is:
1077  //   [...]
1078  //   -- an array of literal type
1079  // Extension: variable arrays cannot be literal types, since they're
1080  // runtime-sized.
1081  if (isVariableArrayType())
1082    return false;
1083  const Type *BaseTy = getBaseElementTypeUnsafe();
1084  assert(BaseTy && "NULL element type");
1085
1086  // Return false for incomplete types after skipping any incomplete array
1087  // types; those are expressly allowed by the standard and thus our API.
1088  if (BaseTy->isIncompleteType())
1089    return false;
1090
1091  // Objective-C lifetime types are not literal types.
1092  if (BaseTy->isObjCRetainableType())
1093    return false;
1094
1095  // C++0x [basic.types]p10:
1096  //   A type is a literal type if it is:
1097  //    -- a scalar type; or
1098  // As an extension, Clang treats vector types as Scalar types.
1099  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1100  //    -- a reference type; or
1101  if (BaseTy->isReferenceType()) return true;
1102  //    -- a class type that has all of the following properties:
1103  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1104    if (const CXXRecordDecl *ClassDecl =
1105        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1106      //    -- a trivial destructor,
1107      if (!ClassDecl->hasTrivialDestructor()) return false;
1108      //    -- every constructor call and full-expression in the
1109      //       brace-or-equal-initializers for non-static data members (if any)
1110      //       is a constant expression,
1111      // FIXME: C++0x: Clang doesn't yet support non-static data member
1112      // declarations with initializers, or constexprs.
1113      //    -- it is an aggregate type or has at least one constexpr
1114      //       constructor or constructor template that is not a copy or move
1115      //       constructor, and
1116      if (!ClassDecl->isAggregate() &&
1117          !ClassDecl->hasConstExprNonCopyMoveConstructor())
1118        return false;
1119      //    -- all non-static data members and base classes of literal types
1120      if (ClassDecl->hasNonLiteralTypeFieldsOrBases()) return false;
1121    }
1122
1123    return true;
1124  }
1125  return false;
1126}
1127
1128bool Type::isStandardLayoutType() const {
1129  if (isDependentType())
1130    return false;
1131
1132  // C++0x [basic.types]p9:
1133  //   Scalar types, standard-layout class types, arrays of such types, and
1134  //   cv-qualified versions of these types are collectively called
1135  //   standard-layout types.
1136  const Type *BaseTy = getBaseElementTypeUnsafe();
1137  assert(BaseTy && "NULL element type");
1138
1139  // Return false for incomplete types after skipping any incomplete array
1140  // types which are expressly allowed by the standard and thus our API.
1141  if (BaseTy->isIncompleteType())
1142    return false;
1143
1144  // As an extension, Clang treats vector types as Scalar types.
1145  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1146  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1147    if (const CXXRecordDecl *ClassDecl =
1148        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1149      if (!ClassDecl->isStandardLayout())
1150        return false;
1151
1152    // Default to 'true' for non-C++ class types.
1153    // FIXME: This is a bit dubious, but plain C structs should trivially meet
1154    // all the requirements of standard layout classes.
1155    return true;
1156  }
1157
1158  // No other types can match.
1159  return false;
1160}
1161
1162// This is effectively the intersection of isTrivialType and
1163// isStandardLayoutType. We implement it dircetly to avoid redundant
1164// conversions from a type to a CXXRecordDecl.
1165bool QualType::isCXX11PODType(ASTContext &Context) const {
1166  const Type *ty = getTypePtr();
1167  if (ty->isDependentType())
1168    return false;
1169
1170  if (Context.getLangOptions().ObjCAutoRefCount) {
1171    switch (getObjCLifetime()) {
1172    case Qualifiers::OCL_ExplicitNone:
1173      return true;
1174
1175    case Qualifiers::OCL_Strong:
1176    case Qualifiers::OCL_Weak:
1177    case Qualifiers::OCL_Autoreleasing:
1178      return false;
1179
1180    case Qualifiers::OCL_None:
1181      if (ty->isObjCLifetimeType())
1182        return false;
1183      break;
1184    }
1185  }
1186
1187  // C++11 [basic.types]p9:
1188  //   Scalar types, POD classes, arrays of such types, and cv-qualified
1189  //   versions of these types are collectively called trivial types.
1190  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1191  assert(BaseTy && "NULL element type");
1192
1193  // Return false for incomplete types after skipping any incomplete array
1194  // types which are expressly allowed by the standard and thus our API.
1195  if (BaseTy->isIncompleteType())
1196    return false;
1197
1198  // As an extension, Clang treats vector types as Scalar types.
1199  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1200  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1201    if (const CXXRecordDecl *ClassDecl =
1202        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1203      // C++11 [class]p10:
1204      //   A POD struct is a non-union class that is both a trivial class [...]
1205      if (!ClassDecl->isTrivial()) return false;
1206
1207      // C++11 [class]p10:
1208      //   A POD struct is a non-union class that is both a trivial class and
1209      //   a standard-layout class [...]
1210      if (!ClassDecl->isStandardLayout()) return false;
1211
1212      // C++11 [class]p10:
1213      //   A POD struct is a non-union class that is both a trivial class and
1214      //   a standard-layout class, and has no non-static data members of type
1215      //   non-POD struct, non-POD union (or array of such types). [...]
1216      //
1217      // We don't directly query the recursive aspect as the requiremets for
1218      // both standard-layout classes and trivial classes apply recursively
1219      // already.
1220    }
1221
1222    return true;
1223  }
1224
1225  // No other types can match.
1226  return false;
1227}
1228
1229bool Type::isPromotableIntegerType() const {
1230  if (const BuiltinType *BT = getAs<BuiltinType>())
1231    switch (BT->getKind()) {
1232    case BuiltinType::Bool:
1233    case BuiltinType::Char_S:
1234    case BuiltinType::Char_U:
1235    case BuiltinType::SChar:
1236    case BuiltinType::UChar:
1237    case BuiltinType::Short:
1238    case BuiltinType::UShort:
1239      return true;
1240    default:
1241      return false;
1242    }
1243
1244  // Enumerated types are promotable to their compatible integer types
1245  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1246  if (const EnumType *ET = getAs<EnumType>()){
1247    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1248        || ET->getDecl()->isScoped())
1249      return false;
1250
1251    const BuiltinType *BT
1252      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
1253    return BT->getKind() == BuiltinType::Int
1254           || BT->getKind() == BuiltinType::UInt;
1255  }
1256
1257  return false;
1258}
1259
1260bool Type::isNullPtrType() const {
1261  if (const BuiltinType *BT = getAs<BuiltinType>())
1262    return BT->getKind() == BuiltinType::NullPtr;
1263  return false;
1264}
1265
1266bool Type::isSpecifierType() const {
1267  // Note that this intentionally does not use the canonical type.
1268  switch (getTypeClass()) {
1269  case Builtin:
1270  case Record:
1271  case Enum:
1272  case Typedef:
1273  case Complex:
1274  case TypeOfExpr:
1275  case TypeOf:
1276  case TemplateTypeParm:
1277  case SubstTemplateTypeParm:
1278  case TemplateSpecialization:
1279  case Elaborated:
1280  case DependentName:
1281  case DependentTemplateSpecialization:
1282  case ObjCInterface:
1283  case ObjCObject:
1284  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1285    return true;
1286  default:
1287    return false;
1288  }
1289}
1290
1291ElaboratedTypeKeyword
1292TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1293  switch (TypeSpec) {
1294  default: return ETK_None;
1295  case TST_typename: return ETK_Typename;
1296  case TST_class: return ETK_Class;
1297  case TST_struct: return ETK_Struct;
1298  case TST_union: return ETK_Union;
1299  case TST_enum: return ETK_Enum;
1300  }
1301}
1302
1303TagTypeKind
1304TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1305  switch(TypeSpec) {
1306  case TST_class: return TTK_Class;
1307  case TST_struct: return TTK_Struct;
1308  case TST_union: return TTK_Union;
1309  case TST_enum: return TTK_Enum;
1310  }
1311
1312  llvm_unreachable("Type specifier is not a tag type kind.");
1313  return TTK_Union;
1314}
1315
1316ElaboratedTypeKeyword
1317TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1318  switch (Kind) {
1319  case TTK_Class: return ETK_Class;
1320  case TTK_Struct: return ETK_Struct;
1321  case TTK_Union: return ETK_Union;
1322  case TTK_Enum: return ETK_Enum;
1323  }
1324  llvm_unreachable("Unknown tag type kind.");
1325}
1326
1327TagTypeKind
1328TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1329  switch (Keyword) {
1330  case ETK_Class: return TTK_Class;
1331  case ETK_Struct: return TTK_Struct;
1332  case ETK_Union: return TTK_Union;
1333  case ETK_Enum: return TTK_Enum;
1334  case ETK_None: // Fall through.
1335  case ETK_Typename:
1336    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1337  }
1338  llvm_unreachable("Unknown elaborated type keyword.");
1339}
1340
1341bool
1342TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1343  switch (Keyword) {
1344  case ETK_None:
1345  case ETK_Typename:
1346    return false;
1347  case ETK_Class:
1348  case ETK_Struct:
1349  case ETK_Union:
1350  case ETK_Enum:
1351    return true;
1352  }
1353  llvm_unreachable("Unknown elaborated type keyword.");
1354}
1355
1356const char*
1357TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1358  switch (Keyword) {
1359  case ETK_None: return "";
1360  case ETK_Typename: return "typename";
1361  case ETK_Class:  return "class";
1362  case ETK_Struct: return "struct";
1363  case ETK_Union:  return "union";
1364  case ETK_Enum:   return "enum";
1365  }
1366
1367  llvm_unreachable("Unknown elaborated type keyword.");
1368  return "";
1369}
1370
1371DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1372                         ElaboratedTypeKeyword Keyword,
1373                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1374                         unsigned NumArgs, const TemplateArgument *Args,
1375                         QualType Canon)
1376  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1377                    /*VariablyModified=*/false,
1378                    NNS && NNS->containsUnexpandedParameterPack()),
1379    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1380  assert((!NNS || NNS->isDependent()) &&
1381         "DependentTemplateSpecializatonType requires dependent qualifier");
1382  for (unsigned I = 0; I != NumArgs; ++I) {
1383    if (Args[I].containsUnexpandedParameterPack())
1384      setContainsUnexpandedParameterPack();
1385
1386    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1387  }
1388}
1389
1390void
1391DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1392                                             const ASTContext &Context,
1393                                             ElaboratedTypeKeyword Keyword,
1394                                             NestedNameSpecifier *Qualifier,
1395                                             const IdentifierInfo *Name,
1396                                             unsigned NumArgs,
1397                                             const TemplateArgument *Args) {
1398  ID.AddInteger(Keyword);
1399  ID.AddPointer(Qualifier);
1400  ID.AddPointer(Name);
1401  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1402    Args[Idx].Profile(ID, Context);
1403}
1404
1405bool Type::isElaboratedTypeSpecifier() const {
1406  ElaboratedTypeKeyword Keyword;
1407  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1408    Keyword = Elab->getKeyword();
1409  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1410    Keyword = DepName->getKeyword();
1411  else if (const DependentTemplateSpecializationType *DepTST =
1412             dyn_cast<DependentTemplateSpecializationType>(this))
1413    Keyword = DepTST->getKeyword();
1414  else
1415    return false;
1416
1417  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1418}
1419
1420const char *Type::getTypeClassName() const {
1421  switch (TypeBits.TC) {
1422#define ABSTRACT_TYPE(Derived, Base)
1423#define TYPE(Derived, Base) case Derived: return #Derived;
1424#include "clang/AST/TypeNodes.def"
1425  }
1426
1427  llvm_unreachable("Invalid type class.");
1428  return 0;
1429}
1430
1431const char *BuiltinType::getName(const LangOptions &LO) const {
1432  switch (getKind()) {
1433  case Void:              return "void";
1434  case Bool:              return LO.Bool ? "bool" : "_Bool";
1435  case Char_S:            return "char";
1436  case Char_U:            return "char";
1437  case SChar:             return "signed char";
1438  case Short:             return "short";
1439  case Int:               return "int";
1440  case Long:              return "long";
1441  case LongLong:          return "long long";
1442  case Int128:            return "__int128_t";
1443  case UChar:             return "unsigned char";
1444  case UShort:            return "unsigned short";
1445  case UInt:              return "unsigned int";
1446  case ULong:             return "unsigned long";
1447  case ULongLong:         return "unsigned long long";
1448  case UInt128:           return "__uint128_t";
1449  case Float:             return "float";
1450  case Double:            return "double";
1451  case LongDouble:        return "long double";
1452  case WChar_S:
1453  case WChar_U:           return "wchar_t";
1454  case Char16:            return "char16_t";
1455  case Char32:            return "char32_t";
1456  case NullPtr:           return "nullptr_t";
1457  case Overload:          return "<overloaded function type>";
1458  case BoundMember:       return "<bound member function type>";
1459  case Dependent:         return "<dependent type>";
1460  case UnknownAny:        return "<unknown type>";
1461  case ObjCId:            return "id";
1462  case ObjCClass:         return "Class";
1463  case ObjCSel:           return "SEL";
1464  }
1465
1466  llvm_unreachable("Invalid builtin type.");
1467  return 0;
1468}
1469
1470QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1471  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1472    return RefType->getPointeeType();
1473
1474  // C++0x [basic.lval]:
1475  //   Class prvalues can have cv-qualified types; non-class prvalues always
1476  //   have cv-unqualified types.
1477  //
1478  // See also C99 6.3.2.1p2.
1479  if (!Context.getLangOptions().CPlusPlus ||
1480      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1481    return getUnqualifiedType();
1482
1483  return *this;
1484}
1485
1486llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1487  switch (CC) {
1488  case CC_Default:
1489    llvm_unreachable("no name for default cc");
1490    return "";
1491
1492  case CC_C: return "cdecl";
1493  case CC_X86StdCall: return "stdcall";
1494  case CC_X86FastCall: return "fastcall";
1495  case CC_X86ThisCall: return "thiscall";
1496  case CC_X86Pascal: return "pascal";
1497  case CC_AAPCS: return "aapcs";
1498  case CC_AAPCS_VFP: return "aapcs-vfp";
1499  }
1500
1501  llvm_unreachable("Invalid calling convention.");
1502  return "";
1503}
1504
1505FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1506                                     unsigned numArgs, QualType canonical,
1507                                     const ExtProtoInfo &epi)
1508  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1509                 epi.RefQualifier, canonical,
1510                 result->isDependentType(),
1511                 result->isInstantiationDependentType(),
1512                 result->isVariablyModifiedType(),
1513                 result->containsUnexpandedParameterPack(),
1514                 epi.ExtInfo),
1515    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1516    ExceptionSpecType(epi.ExceptionSpecType),
1517    HasAnyConsumedArgs(epi.ConsumedArguments != 0)
1518{
1519  // Fill in the trailing argument array.
1520  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1521  for (unsigned i = 0; i != numArgs; ++i) {
1522    if (args[i]->isDependentType())
1523      setDependent();
1524    else if (args[i]->isInstantiationDependentType())
1525      setInstantiationDependent();
1526
1527    if (args[i]->containsUnexpandedParameterPack())
1528      setContainsUnexpandedParameterPack();
1529
1530    argSlot[i] = args[i];
1531  }
1532
1533  if (getExceptionSpecType() == EST_Dynamic) {
1534    // Fill in the exception array.
1535    QualType *exnSlot = argSlot + numArgs;
1536    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1537      if (epi.Exceptions[i]->isDependentType())
1538        setDependent();
1539      else if (epi.Exceptions[i]->isInstantiationDependentType())
1540        setInstantiationDependent();
1541
1542      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1543        setContainsUnexpandedParameterPack();
1544
1545      exnSlot[i] = epi.Exceptions[i];
1546    }
1547  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1548    // Store the noexcept expression and context.
1549    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1550    *noexSlot = epi.NoexceptExpr;
1551
1552    if (epi.NoexceptExpr) {
1553      if (epi.NoexceptExpr->isValueDependent()
1554          || epi.NoexceptExpr->isTypeDependent())
1555        setDependent();
1556      else if (epi.NoexceptExpr->isInstantiationDependent())
1557        setInstantiationDependent();
1558    }
1559  }
1560
1561  if (epi.ConsumedArguments) {
1562    bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1563    for (unsigned i = 0; i != numArgs; ++i)
1564      consumedArgs[i] = epi.ConsumedArguments[i];
1565  }
1566}
1567
1568FunctionProtoType::NoexceptResult
1569FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1570  ExceptionSpecificationType est = getExceptionSpecType();
1571  if (est == EST_BasicNoexcept)
1572    return NR_Nothrow;
1573
1574  if (est != EST_ComputedNoexcept)
1575    return NR_NoNoexcept;
1576
1577  Expr *noexceptExpr = getNoexceptExpr();
1578  if (!noexceptExpr)
1579    return NR_BadNoexcept;
1580  if (noexceptExpr->isValueDependent())
1581    return NR_Dependent;
1582
1583  llvm::APSInt value;
1584  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1585                                                   /*evaluated*/false);
1586  (void)isICE;
1587  assert(isICE && "AST should not contain bad noexcept expressions.");
1588
1589  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1590}
1591
1592bool FunctionProtoType::isTemplateVariadic() const {
1593  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1594    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1595      return true;
1596
1597  return false;
1598}
1599
1600void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1601                                const QualType *ArgTys, unsigned NumArgs,
1602                                const ExtProtoInfo &epi,
1603                                const ASTContext &Context) {
1604
1605  // We have to be careful not to get ambiguous profile encodings.
1606  // Note that valid type pointers are never ambiguous with anything else.
1607  //
1608  // The encoding grammar begins:
1609  //      type type* bool int bool
1610  // If that final bool is true, then there is a section for the EH spec:
1611  //      bool type*
1612  // This is followed by an optional "consumed argument" section of the
1613  // same length as the first type sequence:
1614  //      bool*
1615  // Finally, we have the ext info:
1616  //      int
1617  //
1618  // There is no ambiguity between the consumed arguments and an empty EH
1619  // spec because of the leading 'bool' which unambiguously indicates
1620  // whether the following bool is the EH spec or part of the arguments.
1621
1622  ID.AddPointer(Result.getAsOpaquePtr());
1623  for (unsigned i = 0; i != NumArgs; ++i)
1624    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1625  // This method is relatively performance sensitive, so as a performance
1626  // shortcut, use one AddInteger call instead of four for the next four
1627  // fields.
1628  assert(!(unsigned(epi.Variadic) & ~1) &&
1629         !(unsigned(epi.TypeQuals) & ~255) &&
1630         !(unsigned(epi.RefQualifier) & ~3) &&
1631         !(unsigned(epi.ExceptionSpecType) & ~7) &&
1632         "Values larger than expected.");
1633  ID.AddInteger(unsigned(epi.Variadic) +
1634                (epi.TypeQuals << 1) +
1635                (epi.RefQualifier << 9) +
1636                (epi.ExceptionSpecType << 11));
1637  if (epi.ExceptionSpecType == EST_Dynamic) {
1638    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1639      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1640  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1641    epi.NoexceptExpr->Profile(ID, Context, false);
1642  }
1643  if (epi.ConsumedArguments) {
1644    for (unsigned i = 0; i != NumArgs; ++i)
1645      ID.AddBoolean(epi.ConsumedArguments[i]);
1646  }
1647  epi.ExtInfo.Profile(ID);
1648}
1649
1650void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1651                                const ASTContext &Ctx) {
1652  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1653          Ctx);
1654}
1655
1656QualType TypedefType::desugar() const {
1657  return getDecl()->getUnderlyingType();
1658}
1659
1660TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1661  : Type(TypeOfExpr, can, E->isTypeDependent(),
1662         E->isInstantiationDependent(),
1663         E->getType()->isVariablyModifiedType(),
1664         E->containsUnexpandedParameterPack()),
1665    TOExpr(E) {
1666}
1667
1668bool TypeOfExprType::isSugared() const {
1669  return !TOExpr->isTypeDependent();
1670}
1671
1672QualType TypeOfExprType::desugar() const {
1673  if (isSugared())
1674    return getUnderlyingExpr()->getType();
1675
1676  return QualType(this, 0);
1677}
1678
1679void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1680                                      const ASTContext &Context, Expr *E) {
1681  E->Profile(ID, Context, true);
1682}
1683
1684DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1685  : Type(Decltype, can, E->isTypeDependent(),
1686         E->isInstantiationDependent(),
1687         E->getType()->isVariablyModifiedType(),
1688         E->containsUnexpandedParameterPack()),
1689    E(E),
1690  UnderlyingType(underlyingType) {
1691}
1692
1693bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1694
1695QualType DecltypeType::desugar() const {
1696  if (isSugared())
1697    return getUnderlyingType();
1698
1699  return QualType(this, 0);
1700}
1701
1702DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1703  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1704
1705void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1706                                    const ASTContext &Context, Expr *E) {
1707  E->Profile(ID, Context, true);
1708}
1709
1710TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1711  : Type(TC, can, D->isDependentType(),
1712         /*InstantiationDependent=*/D->isDependentType(),
1713         /*VariablyModified=*/false,
1714         /*ContainsUnexpandedParameterPack=*/false),
1715    decl(const_cast<TagDecl*>(D)) {}
1716
1717static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1718  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1719                                E = decl->redecls_end();
1720       I != E; ++I) {
1721    if (I->isDefinition() || I->isBeingDefined())
1722      return *I;
1723  }
1724  // If there's no definition (not even in progress), return what we have.
1725  return decl;
1726}
1727
1728UnaryTransformType::UnaryTransformType(QualType BaseType,
1729                                       QualType UnderlyingType,
1730                                       UTTKind UKind,
1731                                       QualType CanonicalType)
1732  : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1733         UnderlyingType->isInstantiationDependentType(),
1734         UnderlyingType->isVariablyModifiedType(),
1735         BaseType->containsUnexpandedParameterPack())
1736  , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1737{}
1738
1739TagDecl *TagType::getDecl() const {
1740  return getInterestingTagDecl(decl);
1741}
1742
1743bool TagType::isBeingDefined() const {
1744  return getDecl()->isBeingDefined();
1745}
1746
1747CXXRecordDecl *InjectedClassNameType::getDecl() const {
1748  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1749}
1750
1751bool RecordType::classof(const TagType *TT) {
1752  return isa<RecordDecl>(TT->getDecl());
1753}
1754
1755bool EnumType::classof(const TagType *TT) {
1756  return isa<EnumDecl>(TT->getDecl());
1757}
1758
1759IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1760  return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1761}
1762
1763SubstTemplateTypeParmPackType::
1764SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1765                              QualType Canon,
1766                              const TemplateArgument &ArgPack)
1767  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1768    Replaced(Param),
1769    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1770{
1771}
1772
1773TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1774  return TemplateArgument(Arguments, NumArguments);
1775}
1776
1777void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1778  Profile(ID, getReplacedParameter(), getArgumentPack());
1779}
1780
1781void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1782                                           const TemplateTypeParmType *Replaced,
1783                                            const TemplateArgument &ArgPack) {
1784  ID.AddPointer(Replaced);
1785  ID.AddInteger(ArgPack.pack_size());
1786  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1787                                    PEnd = ArgPack.pack_end();
1788       P != PEnd; ++P)
1789    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1790}
1791
1792bool TemplateSpecializationType::
1793anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1794                              bool &InstantiationDependent) {
1795  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1796                                       InstantiationDependent);
1797}
1798
1799bool TemplateSpecializationType::
1800anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1801                              bool &InstantiationDependent) {
1802  for (unsigned i = 0; i != N; ++i) {
1803    if (Args[i].getArgument().isDependent()) {
1804      InstantiationDependent = true;
1805      return true;
1806    }
1807
1808    if (Args[i].getArgument().isInstantiationDependent())
1809      InstantiationDependent = true;
1810  }
1811  return false;
1812}
1813
1814bool TemplateSpecializationType::
1815anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1816                              bool &InstantiationDependent) {
1817  for (unsigned i = 0; i != N; ++i) {
1818    if (Args[i].isDependent()) {
1819      InstantiationDependent = true;
1820      return true;
1821    }
1822
1823    if (Args[i].isInstantiationDependent())
1824      InstantiationDependent = true;
1825  }
1826  return false;
1827}
1828
1829TemplateSpecializationType::
1830TemplateSpecializationType(TemplateName T,
1831                           const TemplateArgument *Args, unsigned NumArgs,
1832                           QualType Canon, QualType AliasedType)
1833  : Type(TemplateSpecialization,
1834         Canon.isNull()? QualType(this, 0) : Canon,
1835         Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1836         Canon.isNull()? T.isDependent()
1837                       : Canon->isInstantiationDependentType(),
1838         false, T.containsUnexpandedParameterPack()),
1839    Template(T), NumArgs(NumArgs) {
1840  assert(!T.getAsDependentTemplateName() &&
1841         "Use DependentTemplateSpecializationType for dependent template-name");
1842  assert((T.getKind() == TemplateName::Template ||
1843          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1844          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1845         "Unexpected template name for TemplateSpecializationType");
1846  bool InstantiationDependent;
1847  (void)InstantiationDependent;
1848  assert((!Canon.isNull() ||
1849          T.isDependent() ||
1850          anyDependentTemplateArguments(Args, NumArgs,
1851                                        InstantiationDependent)) &&
1852         "No canonical type for non-dependent class template specialization");
1853
1854  TemplateArgument *TemplateArgs
1855    = reinterpret_cast<TemplateArgument *>(this + 1);
1856  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1857    // Update dependent and variably-modified bits.
1858    // If the canonical type exists and is non-dependent, the template
1859    // specialization type can be non-dependent even if one of the type
1860    // arguments is. Given:
1861    //   template<typename T> using U = int;
1862    // U<T> is always non-dependent, irrespective of the type T.
1863    if (Canon.isNull() && Args[Arg].isDependent())
1864      setDependent();
1865    else if (Args[Arg].isInstantiationDependent())
1866      setInstantiationDependent();
1867
1868    if (Args[Arg].getKind() == TemplateArgument::Type &&
1869        Args[Arg].getAsType()->isVariablyModifiedType())
1870      setVariablyModified();
1871    if (Args[Arg].containsUnexpandedParameterPack())
1872      setContainsUnexpandedParameterPack();
1873
1874    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1875  }
1876
1877  // Store the aliased type if this is a type alias template specialization.
1878  bool IsTypeAlias = !AliasedType.isNull();
1879  assert(IsTypeAlias == isTypeAlias() &&
1880         "allocated wrong size for type alias");
1881  if (IsTypeAlias) {
1882    TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1883    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1884  }
1885}
1886
1887void
1888TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1889                                    TemplateName T,
1890                                    const TemplateArgument *Args,
1891                                    unsigned NumArgs,
1892                                    const ASTContext &Context) {
1893  T.Profile(ID);
1894  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1895    Args[Idx].Profile(ID, Context);
1896}
1897
1898bool TemplateSpecializationType::isTypeAlias() const {
1899  TemplateDecl *D = Template.getAsTemplateDecl();
1900  return D && isa<TypeAliasTemplateDecl>(D);
1901}
1902
1903QualType
1904QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1905  if (!hasNonFastQualifiers())
1906    return QT.withFastQualifiers(getFastQualifiers());
1907
1908  return Context.getQualifiedType(QT, *this);
1909}
1910
1911QualType
1912QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1913  if (!hasNonFastQualifiers())
1914    return QualType(T, getFastQualifiers());
1915
1916  return Context.getQualifiedType(T, *this);
1917}
1918
1919void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1920                                 QualType BaseType,
1921                                 ObjCProtocolDecl * const *Protocols,
1922                                 unsigned NumProtocols) {
1923  ID.AddPointer(BaseType.getAsOpaquePtr());
1924  for (unsigned i = 0; i != NumProtocols; i++)
1925    ID.AddPointer(Protocols[i]);
1926}
1927
1928void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1929  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1930}
1931
1932namespace {
1933
1934/// \brief The cached properties of a type.
1935class CachedProperties {
1936  char linkage;
1937  char visibility;
1938  bool local;
1939
1940public:
1941  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1942    : linkage(linkage), visibility(visibility), local(local) {}
1943
1944  Linkage getLinkage() const { return (Linkage) linkage; }
1945  Visibility getVisibility() const { return (Visibility) visibility; }
1946  bool hasLocalOrUnnamedType() const { return local; }
1947
1948  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1949    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1950                            minVisibility(L.getVisibility(), R.getVisibility()),
1951                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1952  }
1953};
1954}
1955
1956static CachedProperties computeCachedProperties(const Type *T);
1957
1958namespace clang {
1959/// The type-property cache.  This is templated so as to be
1960/// instantiated at an internal type to prevent unnecessary symbol
1961/// leakage.
1962template <class Private> class TypePropertyCache {
1963public:
1964  static CachedProperties get(QualType T) {
1965    return get(T.getTypePtr());
1966  }
1967
1968  static CachedProperties get(const Type *T) {
1969    ensure(T);
1970    return CachedProperties(T->TypeBits.getLinkage(),
1971                            T->TypeBits.getVisibility(),
1972                            T->TypeBits.hasLocalOrUnnamedType());
1973  }
1974
1975  static void ensure(const Type *T) {
1976    // If the cache is valid, we're okay.
1977    if (T->TypeBits.isCacheValid()) return;
1978
1979    // If this type is non-canonical, ask its canonical type for the
1980    // relevant information.
1981    if (!T->isCanonicalUnqualified()) {
1982      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
1983      ensure(CT);
1984      T->TypeBits.CacheValidAndVisibility =
1985        CT->TypeBits.CacheValidAndVisibility;
1986      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
1987      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
1988      return;
1989    }
1990
1991    // Compute the cached properties and then set the cache.
1992    CachedProperties Result = computeCachedProperties(T);
1993    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
1994    assert(T->TypeBits.isCacheValid() &&
1995           T->TypeBits.getVisibility() == Result.getVisibility());
1996    T->TypeBits.CachedLinkage = Result.getLinkage();
1997    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
1998  }
1999};
2000}
2001
2002// Instantiate the friend template at a private class.  In a
2003// reasonable implementation, these symbols will be internal.
2004// It is terrible that this is the best way to accomplish this.
2005namespace { class Private {}; }
2006typedef TypePropertyCache<Private> Cache;
2007
2008static CachedProperties computeCachedProperties(const Type *T) {
2009  switch (T->getTypeClass()) {
2010#define TYPE(Class,Base)
2011#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2012#include "clang/AST/TypeNodes.def"
2013    llvm_unreachable("didn't expect a non-canonical type here");
2014
2015#define TYPE(Class,Base)
2016#define DEPENDENT_TYPE(Class,Base) case Type::Class:
2017#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2018#include "clang/AST/TypeNodes.def"
2019    // Treat instantiation-dependent types as external.
2020    assert(T->isInstantiationDependentType());
2021    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2022
2023  case Type::Builtin:
2024    // C++ [basic.link]p8:
2025    //   A type is said to have linkage if and only if:
2026    //     - it is a fundamental type (3.9.1); or
2027    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2028
2029  case Type::Record:
2030  case Type::Enum: {
2031    const TagDecl *Tag = cast<TagType>(T)->getDecl();
2032
2033    // C++ [basic.link]p8:
2034    //     - it is a class or enumeration type that is named (or has a name
2035    //       for linkage purposes (7.1.3)) and the name has linkage; or
2036    //     -  it is a specialization of a class template (14); or
2037    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2038    bool IsLocalOrUnnamed =
2039      Tag->getDeclContext()->isFunctionOrMethod() ||
2040      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2041    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
2042  }
2043
2044    // C++ [basic.link]p8:
2045    //   - it is a compound type (3.9.2) other than a class or enumeration,
2046    //     compounded exclusively from types that have linkage; or
2047  case Type::Complex:
2048    return Cache::get(cast<ComplexType>(T)->getElementType());
2049  case Type::Pointer:
2050    return Cache::get(cast<PointerType>(T)->getPointeeType());
2051  case Type::BlockPointer:
2052    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2053  case Type::LValueReference:
2054  case Type::RValueReference:
2055    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2056  case Type::MemberPointer: {
2057    const MemberPointerType *MPT = cast<MemberPointerType>(T);
2058    return merge(Cache::get(MPT->getClass()),
2059                 Cache::get(MPT->getPointeeType()));
2060  }
2061  case Type::ConstantArray:
2062  case Type::IncompleteArray:
2063  case Type::VariableArray:
2064    return Cache::get(cast<ArrayType>(T)->getElementType());
2065  case Type::Vector:
2066  case Type::ExtVector:
2067    return Cache::get(cast<VectorType>(T)->getElementType());
2068  case Type::FunctionNoProto:
2069    return Cache::get(cast<FunctionType>(T)->getResultType());
2070  case Type::FunctionProto: {
2071    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2072    CachedProperties result = Cache::get(FPT->getResultType());
2073    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2074           ae = FPT->arg_type_end(); ai != ae; ++ai)
2075      result = merge(result, Cache::get(*ai));
2076    return result;
2077  }
2078  case Type::ObjCInterface: {
2079    NamedDecl::LinkageInfo LV =
2080      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2081    return CachedProperties(LV.linkage(), LV.visibility(), false);
2082  }
2083  case Type::ObjCObject:
2084    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2085  case Type::ObjCObjectPointer:
2086    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2087  }
2088
2089  llvm_unreachable("unhandled type class");
2090
2091  // C++ [basic.link]p8:
2092  //   Names not covered by these rules have no linkage.
2093  return CachedProperties(NoLinkage, DefaultVisibility, false);
2094}
2095
2096/// \brief Determine the linkage of this type.
2097Linkage Type::getLinkage() const {
2098  Cache::ensure(this);
2099  return TypeBits.getLinkage();
2100}
2101
2102/// \brief Determine the linkage of this type.
2103Visibility Type::getVisibility() const {
2104  Cache::ensure(this);
2105  return TypeBits.getVisibility();
2106}
2107
2108bool Type::hasUnnamedOrLocalType() const {
2109  Cache::ensure(this);
2110  return TypeBits.hasLocalOrUnnamedType();
2111}
2112
2113std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2114  Cache::ensure(this);
2115  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2116}
2117
2118void Type::ClearLinkageCache() {
2119  TypeBits.CacheValidAndVisibility = 0;
2120  if (QualType(this, 0) != CanonicalType)
2121    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2122}
2123
2124Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2125  if (isObjCARCImplicitlyUnretainedType())
2126    return Qualifiers::OCL_ExplicitNone;
2127  return Qualifiers::OCL_Strong;
2128}
2129
2130bool Type::isObjCARCImplicitlyUnretainedType() const {
2131  assert(isObjCLifetimeType() &&
2132         "cannot query implicit lifetime for non-inferrable type");
2133
2134  const Type *canon = getCanonicalTypeInternal().getTypePtr();
2135
2136  // Walk down to the base type.  We don't care about qualifiers for this.
2137  while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2138    canon = array->getElementType().getTypePtr();
2139
2140  if (const ObjCObjectPointerType *opt
2141        = dyn_cast<ObjCObjectPointerType>(canon)) {
2142    // Class and Class<Protocol> don't require retension.
2143    if (opt->getObjectType()->isObjCClass())
2144      return true;
2145  }
2146
2147  return false;
2148}
2149
2150bool Type::isObjCNSObjectType() const {
2151  if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2152    return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2153  return false;
2154}
2155bool Type::isObjCRetainableType() const {
2156  return isObjCObjectPointerType() ||
2157         isBlockPointerType() ||
2158         isObjCNSObjectType();
2159}
2160bool Type::isObjCIndirectLifetimeType() const {
2161  if (isObjCLifetimeType())
2162    return true;
2163  if (const PointerType *OPT = getAs<PointerType>())
2164    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2165  if (const ReferenceType *Ref = getAs<ReferenceType>())
2166    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2167  if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2168    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2169  return false;
2170}
2171
2172/// Returns true if objects of this type have lifetime semantics under
2173/// ARC.
2174bool Type::isObjCLifetimeType() const {
2175  const Type *type = this;
2176  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2177    type = array->getElementType().getTypePtr();
2178  return type->isObjCRetainableType();
2179}
2180
2181/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2182/// which is either an Objective-C object pointer type or an
2183bool Type::isObjCARCBridgableType() const {
2184  return isObjCObjectPointerType() || isBlockPointerType();
2185}
2186
2187/// \brief Determine whether the given type T is a "bridgeable" C type.
2188bool Type::isCARCBridgableType() const {
2189  const PointerType *Pointer = getAs<PointerType>();
2190  if (!Pointer)
2191    return false;
2192
2193  QualType Pointee = Pointer->getPointeeType();
2194  return Pointee->isVoidType() || Pointee->isRecordType();
2195}
2196
2197bool Type::hasSizedVLAType() const {
2198  if (!isVariablyModifiedType()) return false;
2199
2200  if (const PointerType *ptr = getAs<PointerType>())
2201    return ptr->getPointeeType()->hasSizedVLAType();
2202  if (const ReferenceType *ref = getAs<ReferenceType>())
2203    return ref->getPointeeType()->hasSizedVLAType();
2204  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2205    if (isa<VariableArrayType>(arr) &&
2206        cast<VariableArrayType>(arr)->getSizeExpr())
2207      return true;
2208
2209    return arr->getElementType()->hasSizedVLAType();
2210  }
2211
2212  return false;
2213}
2214
2215QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2216  switch (type.getObjCLifetime()) {
2217  case Qualifiers::OCL_None:
2218  case Qualifiers::OCL_ExplicitNone:
2219  case Qualifiers::OCL_Autoreleasing:
2220    break;
2221
2222  case Qualifiers::OCL_Strong:
2223    return DK_objc_strong_lifetime;
2224  case Qualifiers::OCL_Weak:
2225    return DK_objc_weak_lifetime;
2226  }
2227
2228  /// Currently, the only destruction kind we recognize is C++ objects
2229  /// with non-trivial destructors.
2230  const CXXRecordDecl *record =
2231    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2232  if (record && !record->hasTrivialDestructor())
2233    return DK_cxx_destructor;
2234
2235  return DK_none;
2236}
2237
2238bool QualType::hasTrivialCopyAssignment(ASTContext &Context) const {
2239  switch (getObjCLifetime()) {
2240  case Qualifiers::OCL_None:
2241    break;
2242
2243  case Qualifiers::OCL_ExplicitNone:
2244    return true;
2245
2246  case Qualifiers::OCL_Autoreleasing:
2247  case Qualifiers::OCL_Strong:
2248  case Qualifiers::OCL_Weak:
2249    return !Context.getLangOptions().ObjCAutoRefCount;
2250  }
2251
2252  if (const CXXRecordDecl *Record
2253            = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2254    return Record->hasTrivialCopyAssignment();
2255
2256  return true;
2257}
2258