CGExpr.cpp revision 08a9ae95ba7e0a87e667f97ccc5bac646df9a705
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/MDBuilder.h" 28#include "llvm/Target/TargetData.h" 29using namespace clang; 30using namespace CodeGen; 31 32//===--------------------------------------------------------------------===// 33// Miscellaneous Helper Methods 34//===--------------------------------------------------------------------===// 35 36llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 37 unsigned addressSpace = 38 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 39 40 llvm::PointerType *destType = Int8PtrTy; 41 if (addressSpace) 42 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 43 44 if (value->getType() == destType) return value; 45 return Builder.CreateBitCast(value, destType); 46} 47 48/// CreateTempAlloca - This creates a alloca and inserts it into the entry 49/// block. 50llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 51 const Twine &Name) { 52 if (!Builder.isNamePreserving()) 53 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 54 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 55} 56 57void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 58 llvm::Value *Init) { 59 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 60 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 61 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 62} 63 64llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 65 const Twine &Name) { 66 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 67 // FIXME: Should we prefer the preferred type alignment here? 68 CharUnits Align = getContext().getTypeAlignInChars(Ty); 69 Alloc->setAlignment(Align.getQuantity()); 70 return Alloc; 71} 72 73llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 74 const Twine &Name) { 75 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 76 // FIXME: Should we prefer the preferred type alignment here? 77 CharUnits Align = getContext().getTypeAlignInChars(Ty); 78 Alloc->setAlignment(Align.getQuantity()); 79 return Alloc; 80} 81 82/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 83/// expression and compare the result against zero, returning an Int1Ty value. 84llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 85 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 86 llvm::Value *MemPtr = EmitScalarExpr(E); 87 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 88 } 89 90 QualType BoolTy = getContext().BoolTy; 91 if (!E->getType()->isAnyComplexType()) 92 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 93 94 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 95} 96 97/// EmitIgnoredExpr - Emit code to compute the specified expression, 98/// ignoring the result. 99void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 100 if (E->isRValue()) 101 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 102 103 // Just emit it as an l-value and drop the result. 104 EmitLValue(E); 105} 106 107/// EmitAnyExpr - Emit code to compute the specified expression which 108/// can have any type. The result is returned as an RValue struct. 109/// If this is an aggregate expression, AggSlot indicates where the 110/// result should be returned. 111RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 112 bool IgnoreResult) { 113 if (!hasAggregateLLVMType(E->getType())) 114 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 115 else if (E->getType()->isAnyComplexType()) 116 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 117 118 EmitAggExpr(E, AggSlot, IgnoreResult); 119 return AggSlot.asRValue(); 120} 121 122/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 123/// always be accessible even if no aggregate location is provided. 124RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 125 AggValueSlot AggSlot = AggValueSlot::ignored(); 126 127 if (hasAggregateLLVMType(E->getType()) && 128 !E->getType()->isAnyComplexType()) 129 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 130 return EmitAnyExpr(E, AggSlot); 131} 132 133/// EmitAnyExprToMem - Evaluate an expression into a given memory 134/// location. 135void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 136 llvm::Value *Location, 137 Qualifiers Quals, 138 bool IsInit) { 139 // FIXME: This function should take an LValue as an argument. 140 if (E->getType()->isAnyComplexType()) { 141 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 142 } else if (hasAggregateLLVMType(E->getType())) { 143 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 144 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 145 AggValueSlot::IsDestructed_t(IsInit), 146 AggValueSlot::DoesNotNeedGCBarriers, 147 AggValueSlot::IsAliased_t(!IsInit))); 148 } else { 149 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 150 LValue LV = MakeAddrLValue(Location, E->getType()); 151 EmitStoreThroughLValue(RV, LV); 152 } 153} 154 155namespace { 156/// \brief An adjustment to be made to the temporary created when emitting a 157/// reference binding, which accesses a particular subobject of that temporary. 158 struct SubobjectAdjustment { 159 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 160 161 union { 162 struct { 163 const CastExpr *BasePath; 164 const CXXRecordDecl *DerivedClass; 165 } DerivedToBase; 166 167 FieldDecl *Field; 168 }; 169 170 SubobjectAdjustment(const CastExpr *BasePath, 171 const CXXRecordDecl *DerivedClass) 172 : Kind(DerivedToBaseAdjustment) { 173 DerivedToBase.BasePath = BasePath; 174 DerivedToBase.DerivedClass = DerivedClass; 175 } 176 177 SubobjectAdjustment(FieldDecl *Field) 178 : Kind(FieldAdjustment) { 179 this->Field = Field; 180 } 181 }; 182} 183 184static llvm::Value * 185CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 186 const NamedDecl *InitializedDecl) { 187 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 188 if (VD->hasGlobalStorage()) { 189 SmallString<256> Name; 190 llvm::raw_svector_ostream Out(Name); 191 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 192 Out.flush(); 193 194 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 195 196 // Create the reference temporary. 197 llvm::GlobalValue *RefTemp = 198 new llvm::GlobalVariable(CGF.CGM.getModule(), 199 RefTempTy, /*isConstant=*/false, 200 llvm::GlobalValue::InternalLinkage, 201 llvm::Constant::getNullValue(RefTempTy), 202 Name.str()); 203 return RefTemp; 204 } 205 } 206 207 return CGF.CreateMemTemp(Type, "ref.tmp"); 208} 209 210static llvm::Value * 211EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 212 llvm::Value *&ReferenceTemporary, 213 const CXXDestructorDecl *&ReferenceTemporaryDtor, 214 QualType &ObjCARCReferenceLifetimeType, 215 const NamedDecl *InitializedDecl) { 216 // Look through single-element init lists that claim to be lvalues. They're 217 // just syntactic wrappers in this case. 218 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 219 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 220 E = ILE->getInit(0); 221 } 222 223 // Look through expressions for materialized temporaries (for now). 224 if (const MaterializeTemporaryExpr *M 225 = dyn_cast<MaterializeTemporaryExpr>(E)) { 226 // Objective-C++ ARC: 227 // If we are binding a reference to a temporary that has ownership, we 228 // need to perform retain/release operations on the temporary. 229 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 230 E->getType()->isObjCLifetimeType() && 231 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 233 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 234 ObjCARCReferenceLifetimeType = E->getType(); 235 236 E = M->GetTemporaryExpr(); 237 } 238 239 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 240 E = DAE->getExpr(); 241 242 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 243 CGF.enterFullExpression(EWC); 244 CodeGenFunction::RunCleanupsScope Scope(CGF); 245 246 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 247 ReferenceTemporary, 248 ReferenceTemporaryDtor, 249 ObjCARCReferenceLifetimeType, 250 InitializedDecl); 251 } 252 253 RValue RV; 254 if (E->isGLValue()) { 255 // Emit the expression as an lvalue. 256 LValue LV = CGF.EmitLValue(E); 257 258 if (LV.isSimple()) 259 return LV.getAddress(); 260 261 // We have to load the lvalue. 262 RV = CGF.EmitLoadOfLValue(LV); 263 } else { 264 if (!ObjCARCReferenceLifetimeType.isNull()) { 265 ReferenceTemporary = CreateReferenceTemporary(CGF, 266 ObjCARCReferenceLifetimeType, 267 InitializedDecl); 268 269 270 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 271 ObjCARCReferenceLifetimeType); 272 273 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 274 RefTempDst, false); 275 276 bool ExtendsLifeOfTemporary = false; 277 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 278 if (Var->extendsLifetimeOfTemporary()) 279 ExtendsLifeOfTemporary = true; 280 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 281 ExtendsLifeOfTemporary = true; 282 } 283 284 if (!ExtendsLifeOfTemporary) { 285 // Since the lifetime of this temporary isn't going to be extended, 286 // we need to clean it up ourselves at the end of the full expression. 287 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 288 case Qualifiers::OCL_None: 289 case Qualifiers::OCL_ExplicitNone: 290 case Qualifiers::OCL_Autoreleasing: 291 break; 292 293 case Qualifiers::OCL_Strong: { 294 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 295 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 296 CGF.pushDestroy(cleanupKind, 297 ReferenceTemporary, 298 ObjCARCReferenceLifetimeType, 299 CodeGenFunction::destroyARCStrongImprecise, 300 cleanupKind & EHCleanup); 301 break; 302 } 303 304 case Qualifiers::OCL_Weak: 305 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 306 CGF.pushDestroy(NormalAndEHCleanup, 307 ReferenceTemporary, 308 ObjCARCReferenceLifetimeType, 309 CodeGenFunction::destroyARCWeak, 310 /*useEHCleanupForArray*/ true); 311 break; 312 } 313 314 ObjCARCReferenceLifetimeType = QualType(); 315 } 316 317 return ReferenceTemporary; 318 } 319 320 SmallVector<SubobjectAdjustment, 2> Adjustments; 321 while (true) { 322 E = E->IgnoreParens(); 323 324 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 325 if ((CE->getCastKind() == CK_DerivedToBase || 326 CE->getCastKind() == CK_UncheckedDerivedToBase) && 327 E->getType()->isRecordType()) { 328 E = CE->getSubExpr(); 329 CXXRecordDecl *Derived 330 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 331 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 332 continue; 333 } 334 335 if (CE->getCastKind() == CK_NoOp) { 336 E = CE->getSubExpr(); 337 continue; 338 } 339 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 340 if (!ME->isArrow() && ME->getBase()->isRValue()) { 341 assert(ME->getBase()->getType()->isRecordType()); 342 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 343 E = ME->getBase(); 344 Adjustments.push_back(SubobjectAdjustment(Field)); 345 continue; 346 } 347 } 348 } 349 350 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 351 if (opaque->getType()->isRecordType()) 352 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 353 354 // Nothing changed. 355 break; 356 } 357 358 // Create a reference temporary if necessary. 359 AggValueSlot AggSlot = AggValueSlot::ignored(); 360 if (CGF.hasAggregateLLVMType(E->getType()) && 361 !E->getType()->isAnyComplexType()) { 362 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 363 InitializedDecl); 364 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 365 AggValueSlot::IsDestructed_t isDestructed 366 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 367 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 368 Qualifiers(), isDestructed, 369 AggValueSlot::DoesNotNeedGCBarriers, 370 AggValueSlot::IsNotAliased); 371 } 372 373 if (InitializedDecl) { 374 // Get the destructor for the reference temporary. 375 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 376 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 377 if (!ClassDecl->hasTrivialDestructor()) 378 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 379 } 380 } 381 382 RV = CGF.EmitAnyExpr(E, AggSlot); 383 384 // Check if need to perform derived-to-base casts and/or field accesses, to 385 // get from the temporary object we created (and, potentially, for which we 386 // extended the lifetime) to the subobject we're binding the reference to. 387 if (!Adjustments.empty()) { 388 llvm::Value *Object = RV.getAggregateAddr(); 389 for (unsigned I = Adjustments.size(); I != 0; --I) { 390 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 391 switch (Adjustment.Kind) { 392 case SubobjectAdjustment::DerivedToBaseAdjustment: 393 Object = 394 CGF.GetAddressOfBaseClass(Object, 395 Adjustment.DerivedToBase.DerivedClass, 396 Adjustment.DerivedToBase.BasePath->path_begin(), 397 Adjustment.DerivedToBase.BasePath->path_end(), 398 /*NullCheckValue=*/false); 399 break; 400 401 case SubobjectAdjustment::FieldAdjustment: { 402 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 403 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 404 if (LV.isSimple()) { 405 Object = LV.getAddress(); 406 break; 407 } 408 409 // For non-simple lvalues, we actually have to create a copy of 410 // the object we're binding to. 411 QualType T = Adjustment.Field->getType().getNonReferenceType() 412 .getUnqualifiedType(); 413 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 414 LValue TempLV = CGF.MakeAddrLValue(Object, 415 Adjustment.Field->getType()); 416 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 417 break; 418 } 419 420 } 421 } 422 423 return Object; 424 } 425 } 426 427 if (RV.isAggregate()) 428 return RV.getAggregateAddr(); 429 430 // Create a temporary variable that we can bind the reference to. 431 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 432 InitializedDecl); 433 434 435 unsigned Alignment = 436 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 437 if (RV.isScalar()) 438 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 439 /*Volatile=*/false, Alignment, E->getType()); 440 else 441 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 442 /*Volatile=*/false); 443 return ReferenceTemporary; 444} 445 446RValue 447CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 448 const NamedDecl *InitializedDecl) { 449 llvm::Value *ReferenceTemporary = 0; 450 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 451 QualType ObjCARCReferenceLifetimeType; 452 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 453 ReferenceTemporaryDtor, 454 ObjCARCReferenceLifetimeType, 455 InitializedDecl); 456 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 457 return RValue::get(Value); 458 459 // Make sure to call the destructor for the reference temporary. 460 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 461 if (VD && VD->hasGlobalStorage()) { 462 if (ReferenceTemporaryDtor) { 463 llvm::Constant *DtorFn = 464 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 465 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 466 cast<llvm::Constant>(ReferenceTemporary)); 467 } else { 468 assert(!ObjCARCReferenceLifetimeType.isNull()); 469 // Note: We intentionally do not register a global "destructor" to 470 // release the object. 471 } 472 473 return RValue::get(Value); 474 } 475 476 if (ReferenceTemporaryDtor) 477 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 478 else { 479 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 480 case Qualifiers::OCL_None: 481 llvm_unreachable( 482 "Not a reference temporary that needs to be deallocated"); 483 case Qualifiers::OCL_ExplicitNone: 484 case Qualifiers::OCL_Autoreleasing: 485 // Nothing to do. 486 break; 487 488 case Qualifiers::OCL_Strong: { 489 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 490 CleanupKind cleanupKind = getARCCleanupKind(); 491 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 492 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 493 cleanupKind & EHCleanup); 494 break; 495 } 496 497 case Qualifiers::OCL_Weak: { 498 // __weak objects always get EH cleanups; otherwise, exceptions 499 // could cause really nasty crashes instead of mere leaks. 500 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 501 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 502 break; 503 } 504 } 505 } 506 507 return RValue::get(Value); 508} 509 510 511/// getAccessedFieldNo - Given an encoded value and a result number, return the 512/// input field number being accessed. 513unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 514 const llvm::Constant *Elts) { 515 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 516 ->getZExtValue(); 517} 518 519void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 520 if (BoundsChecking <= 0) 521 return; 522 523 // This needs to be to the standard address space. 524 Address = Builder.CreateBitCast(Address, Int8PtrTy); 525 526 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 527 528 llvm::Value *Min = Builder.getFalse(); 529 llvm::Value *Runtime = Builder.getInt32(BoundsChecking); 530 llvm::Value *C = Builder.CreateCall3(F, Address, Min, Runtime); 531 llvm::BasicBlock *Cont = createBasicBlock(); 532 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 533 llvm::ConstantInt::get(IntPtrTy, Size)), 534 Cont, getTrapBB()); 535 EmitBlock(Cont); 536} 537 538 539CodeGenFunction::ComplexPairTy CodeGenFunction:: 540EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 541 bool isInc, bool isPre) { 542 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 543 LV.isVolatileQualified()); 544 545 llvm::Value *NextVal; 546 if (isa<llvm::IntegerType>(InVal.first->getType())) { 547 uint64_t AmountVal = isInc ? 1 : -1; 548 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 549 550 // Add the inc/dec to the real part. 551 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 552 } else { 553 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 554 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 555 if (!isInc) 556 FVal.changeSign(); 557 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 558 559 // Add the inc/dec to the real part. 560 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 561 } 562 563 ComplexPairTy IncVal(NextVal, InVal.second); 564 565 // Store the updated result through the lvalue. 566 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 567 568 // If this is a postinc, return the value read from memory, otherwise use the 569 // updated value. 570 return isPre ? IncVal : InVal; 571} 572 573 574//===----------------------------------------------------------------------===// 575// LValue Expression Emission 576//===----------------------------------------------------------------------===// 577 578RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 579 if (Ty->isVoidType()) 580 return RValue::get(0); 581 582 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 583 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 584 llvm::Value *U = llvm::UndefValue::get(EltTy); 585 return RValue::getComplex(std::make_pair(U, U)); 586 } 587 588 // If this is a use of an undefined aggregate type, the aggregate must have an 589 // identifiable address. Just because the contents of the value are undefined 590 // doesn't mean that the address can't be taken and compared. 591 if (hasAggregateLLVMType(Ty)) { 592 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 593 return RValue::getAggregate(DestPtr); 594 } 595 596 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 597} 598 599RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 600 const char *Name) { 601 ErrorUnsupported(E, Name); 602 return GetUndefRValue(E->getType()); 603} 604 605LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 606 const char *Name) { 607 ErrorUnsupported(E, Name); 608 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 609 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 610} 611 612LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 613 LValue LV = EmitLValue(E); 614 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 615 EmitCheck(LV.getAddress(), 616 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 617 return LV; 618} 619 620/// EmitLValue - Emit code to compute a designator that specifies the location 621/// of the expression. 622/// 623/// This can return one of two things: a simple address or a bitfield reference. 624/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 625/// an LLVM pointer type. 626/// 627/// If this returns a bitfield reference, nothing about the pointee type of the 628/// LLVM value is known: For example, it may not be a pointer to an integer. 629/// 630/// If this returns a normal address, and if the lvalue's C type is fixed size, 631/// this method guarantees that the returned pointer type will point to an LLVM 632/// type of the same size of the lvalue's type. If the lvalue has a variable 633/// length type, this is not possible. 634/// 635LValue CodeGenFunction::EmitLValue(const Expr *E) { 636 switch (E->getStmtClass()) { 637 default: return EmitUnsupportedLValue(E, "l-value expression"); 638 639 case Expr::ObjCPropertyRefExprClass: 640 llvm_unreachable("cannot emit a property reference directly"); 641 642 case Expr::ObjCSelectorExprClass: 643 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 644 case Expr::ObjCIsaExprClass: 645 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 646 case Expr::BinaryOperatorClass: 647 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 648 case Expr::CompoundAssignOperatorClass: 649 if (!E->getType()->isAnyComplexType()) 650 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 651 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 652 case Expr::CallExprClass: 653 case Expr::CXXMemberCallExprClass: 654 case Expr::CXXOperatorCallExprClass: 655 case Expr::UserDefinedLiteralClass: 656 return EmitCallExprLValue(cast<CallExpr>(E)); 657 case Expr::VAArgExprClass: 658 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 659 case Expr::DeclRefExprClass: 660 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 661 case Expr::ParenExprClass: 662 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 663 case Expr::GenericSelectionExprClass: 664 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 665 case Expr::PredefinedExprClass: 666 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 667 case Expr::StringLiteralClass: 668 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 669 case Expr::ObjCEncodeExprClass: 670 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 671 case Expr::PseudoObjectExprClass: 672 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 673 case Expr::InitListExprClass: 674 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 675 "Only single-element init list can be lvalue."); 676 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 677 678 case Expr::CXXTemporaryObjectExprClass: 679 case Expr::CXXConstructExprClass: 680 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 681 case Expr::CXXBindTemporaryExprClass: 682 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 683 case Expr::LambdaExprClass: 684 return EmitLambdaLValue(cast<LambdaExpr>(E)); 685 686 case Expr::ExprWithCleanupsClass: { 687 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 688 enterFullExpression(cleanups); 689 RunCleanupsScope Scope(*this); 690 return EmitLValue(cleanups->getSubExpr()); 691 } 692 693 case Expr::CXXScalarValueInitExprClass: 694 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 695 case Expr::CXXDefaultArgExprClass: 696 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 697 case Expr::CXXTypeidExprClass: 698 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 699 700 case Expr::ObjCMessageExprClass: 701 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 702 case Expr::ObjCIvarRefExprClass: 703 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 704 case Expr::StmtExprClass: 705 return EmitStmtExprLValue(cast<StmtExpr>(E)); 706 case Expr::UnaryOperatorClass: 707 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 708 case Expr::ArraySubscriptExprClass: 709 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 710 case Expr::ExtVectorElementExprClass: 711 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 712 case Expr::MemberExprClass: 713 return EmitMemberExpr(cast<MemberExpr>(E)); 714 case Expr::CompoundLiteralExprClass: 715 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 716 case Expr::ConditionalOperatorClass: 717 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 718 case Expr::BinaryConditionalOperatorClass: 719 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 720 case Expr::ChooseExprClass: 721 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 722 case Expr::OpaqueValueExprClass: 723 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 724 case Expr::SubstNonTypeTemplateParmExprClass: 725 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 726 case Expr::ImplicitCastExprClass: 727 case Expr::CStyleCastExprClass: 728 case Expr::CXXFunctionalCastExprClass: 729 case Expr::CXXStaticCastExprClass: 730 case Expr::CXXDynamicCastExprClass: 731 case Expr::CXXReinterpretCastExprClass: 732 case Expr::CXXConstCastExprClass: 733 case Expr::ObjCBridgedCastExprClass: 734 return EmitCastLValue(cast<CastExpr>(E)); 735 736 case Expr::MaterializeTemporaryExprClass: 737 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 738 } 739} 740 741/// Given an object of the given canonical type, can we safely copy a 742/// value out of it based on its initializer? 743static bool isConstantEmittableObjectType(QualType type) { 744 assert(type.isCanonical()); 745 assert(!type->isReferenceType()); 746 747 // Must be const-qualified but non-volatile. 748 Qualifiers qs = type.getLocalQualifiers(); 749 if (!qs.hasConst() || qs.hasVolatile()) return false; 750 751 // Otherwise, all object types satisfy this except C++ classes with 752 // mutable subobjects or non-trivial copy/destroy behavior. 753 if (const RecordType *RT = dyn_cast<RecordType>(type)) 754 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 755 if (RD->hasMutableFields() || !RD->isTrivial()) 756 return false; 757 758 return true; 759} 760 761/// Can we constant-emit a load of a reference to a variable of the 762/// given type? This is different from predicates like 763/// Decl::isUsableInConstantExpressions because we do want it to apply 764/// in situations that don't necessarily satisfy the language's rules 765/// for this (e.g. C++'s ODR-use rules). For example, we want to able 766/// to do this with const float variables even if those variables 767/// aren't marked 'constexpr'. 768enum ConstantEmissionKind { 769 CEK_None, 770 CEK_AsReferenceOnly, 771 CEK_AsValueOrReference, 772 CEK_AsValueOnly 773}; 774static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 775 type = type.getCanonicalType(); 776 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 777 if (isConstantEmittableObjectType(ref->getPointeeType())) 778 return CEK_AsValueOrReference; 779 return CEK_AsReferenceOnly; 780 } 781 if (isConstantEmittableObjectType(type)) 782 return CEK_AsValueOnly; 783 return CEK_None; 784} 785 786/// Try to emit a reference to the given value without producing it as 787/// an l-value. This is actually more than an optimization: we can't 788/// produce an l-value for variables that we never actually captured 789/// in a block or lambda, which means const int variables or constexpr 790/// literals or similar. 791CodeGenFunction::ConstantEmission 792CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 793 ValueDecl *value = refExpr->getDecl(); 794 795 // The value needs to be an enum constant or a constant variable. 796 ConstantEmissionKind CEK; 797 if (isa<ParmVarDecl>(value)) { 798 CEK = CEK_None; 799 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 800 CEK = checkVarTypeForConstantEmission(var->getType()); 801 } else if (isa<EnumConstantDecl>(value)) { 802 CEK = CEK_AsValueOnly; 803 } else { 804 CEK = CEK_None; 805 } 806 if (CEK == CEK_None) return ConstantEmission(); 807 808 Expr::EvalResult result; 809 bool resultIsReference; 810 QualType resultType; 811 812 // It's best to evaluate all the way as an r-value if that's permitted. 813 if (CEK != CEK_AsReferenceOnly && 814 refExpr->EvaluateAsRValue(result, getContext())) { 815 resultIsReference = false; 816 resultType = refExpr->getType(); 817 818 // Otherwise, try to evaluate as an l-value. 819 } else if (CEK != CEK_AsValueOnly && 820 refExpr->EvaluateAsLValue(result, getContext())) { 821 resultIsReference = true; 822 resultType = value->getType(); 823 824 // Failure. 825 } else { 826 return ConstantEmission(); 827 } 828 829 // In any case, if the initializer has side-effects, abandon ship. 830 if (result.HasSideEffects) 831 return ConstantEmission(); 832 833 // Emit as a constant. 834 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 835 836 // Make sure we emit a debug reference to the global variable. 837 // This should probably fire even for 838 if (isa<VarDecl>(value)) { 839 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 840 EmitDeclRefExprDbgValue(refExpr, C); 841 } else { 842 assert(isa<EnumConstantDecl>(value)); 843 EmitDeclRefExprDbgValue(refExpr, C); 844 } 845 846 // If we emitted a reference constant, we need to dereference that. 847 if (resultIsReference) 848 return ConstantEmission::forReference(C); 849 850 return ConstantEmission::forValue(C); 851} 852 853llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 854 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 855 lvalue.getAlignment().getQuantity(), 856 lvalue.getType(), lvalue.getTBAAInfo()); 857} 858 859static bool hasBooleanRepresentation(QualType Ty) { 860 if (Ty->isBooleanType()) 861 return true; 862 863 if (const EnumType *ET = Ty->getAs<EnumType>()) 864 return ET->getDecl()->getIntegerType()->isBooleanType(); 865 866 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 867 return hasBooleanRepresentation(AT->getValueType()); 868 869 return false; 870} 871 872llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 873 const EnumType *ET = Ty->getAs<EnumType>(); 874 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 875 CGM.getCodeGenOpts().StrictEnums && 876 !ET->getDecl()->isFixed()); 877 bool IsBool = hasBooleanRepresentation(Ty); 878 if (!IsBool && !IsRegularCPlusPlusEnum) 879 return NULL; 880 881 llvm::APInt Min; 882 llvm::APInt End; 883 if (IsBool) { 884 Min = llvm::APInt(8, 0); 885 End = llvm::APInt(8, 2); 886 } else { 887 const EnumDecl *ED = ET->getDecl(); 888 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 889 unsigned Bitwidth = LTy->getScalarSizeInBits(); 890 unsigned NumNegativeBits = ED->getNumNegativeBits(); 891 unsigned NumPositiveBits = ED->getNumPositiveBits(); 892 893 if (NumNegativeBits) { 894 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 895 assert(NumBits <= Bitwidth); 896 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 897 Min = -End; 898 } else { 899 assert(NumPositiveBits <= Bitwidth); 900 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 901 Min = llvm::APInt(Bitwidth, 0); 902 } 903 } 904 905 llvm::MDBuilder MDHelper(getLLVMContext()); 906 return MDHelper.createRange(Min, End); 907} 908 909llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 910 unsigned Alignment, QualType Ty, 911 llvm::MDNode *TBAAInfo) { 912 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 913 if (Volatile) 914 Load->setVolatile(true); 915 if (Alignment) 916 Load->setAlignment(Alignment); 917 if (TBAAInfo) 918 CGM.DecorateInstruction(Load, TBAAInfo); 919 // If this is an atomic type, all normal reads must be atomic 920 if (Ty->isAtomicType()) 921 Load->setAtomic(llvm::SequentiallyConsistent); 922 923 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 924 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 925 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 926 927 return EmitFromMemory(Load, Ty); 928} 929 930llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 931 // Bool has a different representation in memory than in registers. 932 if (hasBooleanRepresentation(Ty)) { 933 // This should really always be an i1, but sometimes it's already 934 // an i8, and it's awkward to track those cases down. 935 if (Value->getType()->isIntegerTy(1)) 936 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 937 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 938 } 939 940 return Value; 941} 942 943llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 944 // Bool has a different representation in memory than in registers. 945 if (hasBooleanRepresentation(Ty)) { 946 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 947 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 948 } 949 950 return Value; 951} 952 953void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 954 bool Volatile, unsigned Alignment, 955 QualType Ty, 956 llvm::MDNode *TBAAInfo, 957 bool isInit) { 958 Value = EmitToMemory(Value, Ty); 959 960 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 961 if (Alignment) 962 Store->setAlignment(Alignment); 963 if (TBAAInfo) 964 CGM.DecorateInstruction(Store, TBAAInfo); 965 if (!isInit && Ty->isAtomicType()) 966 Store->setAtomic(llvm::SequentiallyConsistent); 967} 968 969void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 970 bool isInit) { 971 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 972 lvalue.getAlignment().getQuantity(), lvalue.getType(), 973 lvalue.getTBAAInfo(), isInit); 974} 975 976/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 977/// method emits the address of the lvalue, then loads the result as an rvalue, 978/// returning the rvalue. 979RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 980 if (LV.isObjCWeak()) { 981 // load of a __weak object. 982 llvm::Value *AddrWeakObj = LV.getAddress(); 983 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 984 AddrWeakObj)); 985 } 986 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 987 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 988 989 if (LV.isSimple()) { 990 assert(!LV.getType()->isFunctionType()); 991 992 // Everything needs a load. 993 return RValue::get(EmitLoadOfScalar(LV)); 994 } 995 996 if (LV.isVectorElt()) { 997 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 998 LV.isVolatileQualified()); 999 Load->setAlignment(LV.getAlignment().getQuantity()); 1000 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1001 "vecext")); 1002 } 1003 1004 // If this is a reference to a subset of the elements of a vector, either 1005 // shuffle the input or extract/insert them as appropriate. 1006 if (LV.isExtVectorElt()) 1007 return EmitLoadOfExtVectorElementLValue(LV); 1008 1009 assert(LV.isBitField() && "Unknown LValue type!"); 1010 return EmitLoadOfBitfieldLValue(LV); 1011} 1012 1013RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1014 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1015 1016 // Get the output type. 1017 llvm::Type *ResLTy = ConvertType(LV.getType()); 1018 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1019 1020 // Compute the result as an OR of all of the individual component accesses. 1021 llvm::Value *Res = 0; 1022 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1023 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1024 1025 // Get the field pointer. 1026 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1027 1028 // Only offset by the field index if used, so that incoming values are not 1029 // required to be structures. 1030 if (AI.FieldIndex) 1031 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1032 1033 // Offset by the byte offset, if used. 1034 if (!AI.FieldByteOffset.isZero()) { 1035 Ptr = EmitCastToVoidPtr(Ptr); 1036 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1037 "bf.field.offs"); 1038 } 1039 1040 // Cast to the access type. 1041 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1042 CGM.getContext().getTargetAddressSpace(LV.getType())); 1043 Ptr = Builder.CreateBitCast(Ptr, PTy); 1044 1045 // Perform the load. 1046 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1047 if (!AI.AccessAlignment.isZero()) 1048 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1049 1050 // Shift out unused low bits and mask out unused high bits. 1051 llvm::Value *Val = Load; 1052 if (AI.FieldBitStart) 1053 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1054 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1055 AI.TargetBitWidth), 1056 "bf.clear"); 1057 1058 // Extend or truncate to the target size. 1059 if (AI.AccessWidth < ResSizeInBits) 1060 Val = Builder.CreateZExt(Val, ResLTy); 1061 else if (AI.AccessWidth > ResSizeInBits) 1062 Val = Builder.CreateTrunc(Val, ResLTy); 1063 1064 // Shift into place, and OR into the result. 1065 if (AI.TargetBitOffset) 1066 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1067 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1068 } 1069 1070 // If the bit-field is signed, perform the sign-extension. 1071 // 1072 // FIXME: This can easily be folded into the load of the high bits, which 1073 // could also eliminate the mask of high bits in some situations. 1074 if (Info.isSigned()) { 1075 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1076 if (ExtraBits) 1077 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1078 ExtraBits, "bf.val.sext"); 1079 } 1080 1081 return RValue::get(Res); 1082} 1083 1084// If this is a reference to a subset of the elements of a vector, create an 1085// appropriate shufflevector. 1086RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1087 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1088 LV.isVolatileQualified()); 1089 Load->setAlignment(LV.getAlignment().getQuantity()); 1090 llvm::Value *Vec = Load; 1091 1092 const llvm::Constant *Elts = LV.getExtVectorElts(); 1093 1094 // If the result of the expression is a non-vector type, we must be extracting 1095 // a single element. Just codegen as an extractelement. 1096 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1097 if (!ExprVT) { 1098 unsigned InIdx = getAccessedFieldNo(0, Elts); 1099 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1100 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1101 } 1102 1103 // Always use shuffle vector to try to retain the original program structure 1104 unsigned NumResultElts = ExprVT->getNumElements(); 1105 1106 SmallVector<llvm::Constant*, 4> Mask; 1107 for (unsigned i = 0; i != NumResultElts; ++i) 1108 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1109 1110 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1111 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1112 MaskV); 1113 return RValue::get(Vec); 1114} 1115 1116 1117 1118/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1119/// lvalue, where both are guaranteed to the have the same type, and that type 1120/// is 'Ty'. 1121void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1122 if (!Dst.isSimple()) { 1123 if (Dst.isVectorElt()) { 1124 // Read/modify/write the vector, inserting the new element. 1125 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1126 Dst.isVolatileQualified()); 1127 Load->setAlignment(Dst.getAlignment().getQuantity()); 1128 llvm::Value *Vec = Load; 1129 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1130 Dst.getVectorIdx(), "vecins"); 1131 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1132 Dst.isVolatileQualified()); 1133 Store->setAlignment(Dst.getAlignment().getQuantity()); 1134 return; 1135 } 1136 1137 // If this is an update of extended vector elements, insert them as 1138 // appropriate. 1139 if (Dst.isExtVectorElt()) 1140 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1141 1142 assert(Dst.isBitField() && "Unknown LValue type"); 1143 return EmitStoreThroughBitfieldLValue(Src, Dst); 1144 } 1145 1146 // There's special magic for assigning into an ARC-qualified l-value. 1147 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1148 switch (Lifetime) { 1149 case Qualifiers::OCL_None: 1150 llvm_unreachable("present but none"); 1151 1152 case Qualifiers::OCL_ExplicitNone: 1153 // nothing special 1154 break; 1155 1156 case Qualifiers::OCL_Strong: 1157 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1158 return; 1159 1160 case Qualifiers::OCL_Weak: 1161 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1162 return; 1163 1164 case Qualifiers::OCL_Autoreleasing: 1165 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1166 Src.getScalarVal())); 1167 // fall into the normal path 1168 break; 1169 } 1170 } 1171 1172 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1173 // load of a __weak object. 1174 llvm::Value *LvalueDst = Dst.getAddress(); 1175 llvm::Value *src = Src.getScalarVal(); 1176 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1177 return; 1178 } 1179 1180 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1181 // load of a __strong object. 1182 llvm::Value *LvalueDst = Dst.getAddress(); 1183 llvm::Value *src = Src.getScalarVal(); 1184 if (Dst.isObjCIvar()) { 1185 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1186 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1187 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1188 llvm::Value *dst = RHS; 1189 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1190 llvm::Value *LHS = 1191 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1192 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1193 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1194 BytesBetween); 1195 } else if (Dst.isGlobalObjCRef()) { 1196 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1197 Dst.isThreadLocalRef()); 1198 } 1199 else 1200 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1201 return; 1202 } 1203 1204 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1205 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1206} 1207 1208void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1209 llvm::Value **Result) { 1210 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1211 1212 // Get the output type. 1213 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1214 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1215 1216 // Get the source value, truncated to the width of the bit-field. 1217 llvm::Value *SrcVal = Src.getScalarVal(); 1218 1219 if (hasBooleanRepresentation(Dst.getType())) 1220 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1221 1222 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1223 Info.getSize()), 1224 "bf.value"); 1225 1226 // Return the new value of the bit-field, if requested. 1227 if (Result) { 1228 // Cast back to the proper type for result. 1229 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1230 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1231 "bf.reload.val"); 1232 1233 // Sign extend if necessary. 1234 if (Info.isSigned()) { 1235 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1236 if (ExtraBits) 1237 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1238 ExtraBits, "bf.reload.sext"); 1239 } 1240 1241 *Result = ReloadVal; 1242 } 1243 1244 // Iterate over the components, writing each piece to memory. 1245 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1246 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1247 1248 // Get the field pointer. 1249 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1250 unsigned addressSpace = 1251 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1252 1253 // Only offset by the field index if used, so that incoming values are not 1254 // required to be structures. 1255 if (AI.FieldIndex) 1256 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1257 1258 // Offset by the byte offset, if used. 1259 if (!AI.FieldByteOffset.isZero()) { 1260 Ptr = EmitCastToVoidPtr(Ptr); 1261 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1262 "bf.field.offs"); 1263 } 1264 1265 // Cast to the access type. 1266 llvm::Type *AccessLTy = 1267 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1268 1269 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1270 Ptr = Builder.CreateBitCast(Ptr, PTy); 1271 1272 // Extract the piece of the bit-field value to write in this access, limited 1273 // to the values that are part of this access. 1274 llvm::Value *Val = SrcVal; 1275 if (AI.TargetBitOffset) 1276 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1277 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1278 AI.TargetBitWidth)); 1279 1280 // Extend or truncate to the access size. 1281 if (ResSizeInBits < AI.AccessWidth) 1282 Val = Builder.CreateZExt(Val, AccessLTy); 1283 else if (ResSizeInBits > AI.AccessWidth) 1284 Val = Builder.CreateTrunc(Val, AccessLTy); 1285 1286 // Shift into the position in memory. 1287 if (AI.FieldBitStart) 1288 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1289 1290 // If necessary, load and OR in bits that are outside of the bit-field. 1291 if (AI.TargetBitWidth != AI.AccessWidth) { 1292 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1293 if (!AI.AccessAlignment.isZero()) 1294 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1295 1296 // Compute the mask for zeroing the bits that are part of the bit-field. 1297 llvm::APInt InvMask = 1298 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1299 AI.FieldBitStart + AI.TargetBitWidth); 1300 1301 // Apply the mask and OR in to the value to write. 1302 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1303 } 1304 1305 // Write the value. 1306 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1307 Dst.isVolatileQualified()); 1308 if (!AI.AccessAlignment.isZero()) 1309 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1310 } 1311} 1312 1313void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1314 LValue Dst) { 1315 // This access turns into a read/modify/write of the vector. Load the input 1316 // value now. 1317 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1318 Dst.isVolatileQualified()); 1319 Load->setAlignment(Dst.getAlignment().getQuantity()); 1320 llvm::Value *Vec = Load; 1321 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1322 1323 llvm::Value *SrcVal = Src.getScalarVal(); 1324 1325 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1326 unsigned NumSrcElts = VTy->getNumElements(); 1327 unsigned NumDstElts = 1328 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1329 if (NumDstElts == NumSrcElts) { 1330 // Use shuffle vector is the src and destination are the same number of 1331 // elements and restore the vector mask since it is on the side it will be 1332 // stored. 1333 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1334 for (unsigned i = 0; i != NumSrcElts; ++i) 1335 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1336 1337 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1338 Vec = Builder.CreateShuffleVector(SrcVal, 1339 llvm::UndefValue::get(Vec->getType()), 1340 MaskV); 1341 } else if (NumDstElts > NumSrcElts) { 1342 // Extended the source vector to the same length and then shuffle it 1343 // into the destination. 1344 // FIXME: since we're shuffling with undef, can we just use the indices 1345 // into that? This could be simpler. 1346 SmallVector<llvm::Constant*, 4> ExtMask; 1347 for (unsigned i = 0; i != NumSrcElts; ++i) 1348 ExtMask.push_back(Builder.getInt32(i)); 1349 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1350 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1351 llvm::Value *ExtSrcVal = 1352 Builder.CreateShuffleVector(SrcVal, 1353 llvm::UndefValue::get(SrcVal->getType()), 1354 ExtMaskV); 1355 // build identity 1356 SmallVector<llvm::Constant*, 4> Mask; 1357 for (unsigned i = 0; i != NumDstElts; ++i) 1358 Mask.push_back(Builder.getInt32(i)); 1359 1360 // modify when what gets shuffled in 1361 for (unsigned i = 0; i != NumSrcElts; ++i) 1362 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1363 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1364 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1365 } else { 1366 // We should never shorten the vector 1367 llvm_unreachable("unexpected shorten vector length"); 1368 } 1369 } else { 1370 // If the Src is a scalar (not a vector) it must be updating one element. 1371 unsigned InIdx = getAccessedFieldNo(0, Elts); 1372 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1373 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1374 } 1375 1376 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1377 Dst.isVolatileQualified()); 1378 Store->setAlignment(Dst.getAlignment().getQuantity()); 1379} 1380 1381// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1382// generating write-barries API. It is currently a global, ivar, 1383// or neither. 1384static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1385 LValue &LV, 1386 bool IsMemberAccess=false) { 1387 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1388 return; 1389 1390 if (isa<ObjCIvarRefExpr>(E)) { 1391 QualType ExpTy = E->getType(); 1392 if (IsMemberAccess && ExpTy->isPointerType()) { 1393 // If ivar is a structure pointer, assigning to field of 1394 // this struct follows gcc's behavior and makes it a non-ivar 1395 // writer-barrier conservatively. 1396 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1397 if (ExpTy->isRecordType()) { 1398 LV.setObjCIvar(false); 1399 return; 1400 } 1401 } 1402 LV.setObjCIvar(true); 1403 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1404 LV.setBaseIvarExp(Exp->getBase()); 1405 LV.setObjCArray(E->getType()->isArrayType()); 1406 return; 1407 } 1408 1409 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1410 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1411 if (VD->hasGlobalStorage()) { 1412 LV.setGlobalObjCRef(true); 1413 LV.setThreadLocalRef(VD->isThreadSpecified()); 1414 } 1415 } 1416 LV.setObjCArray(E->getType()->isArrayType()); 1417 return; 1418 } 1419 1420 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1421 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1422 return; 1423 } 1424 1425 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1426 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1427 if (LV.isObjCIvar()) { 1428 // If cast is to a structure pointer, follow gcc's behavior and make it 1429 // a non-ivar write-barrier. 1430 QualType ExpTy = E->getType(); 1431 if (ExpTy->isPointerType()) 1432 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1433 if (ExpTy->isRecordType()) 1434 LV.setObjCIvar(false); 1435 } 1436 return; 1437 } 1438 1439 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1440 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1441 return; 1442 } 1443 1444 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1445 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1446 return; 1447 } 1448 1449 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1450 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1451 return; 1452 } 1453 1454 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1455 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1456 return; 1457 } 1458 1459 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1460 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1461 if (LV.isObjCIvar() && !LV.isObjCArray()) 1462 // Using array syntax to assigning to what an ivar points to is not 1463 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1464 LV.setObjCIvar(false); 1465 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1466 // Using array syntax to assigning to what global points to is not 1467 // same as assigning to the global itself. {id *G;} G[i] = 0; 1468 LV.setGlobalObjCRef(false); 1469 return; 1470 } 1471 1472 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1473 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1474 // We don't know if member is an 'ivar', but this flag is looked at 1475 // only in the context of LV.isObjCIvar(). 1476 LV.setObjCArray(E->getType()->isArrayType()); 1477 return; 1478 } 1479} 1480 1481static llvm::Value * 1482EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1483 llvm::Value *V, llvm::Type *IRType, 1484 StringRef Name = StringRef()) { 1485 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1486 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1487} 1488 1489static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1490 const Expr *E, const VarDecl *VD) { 1491 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1492 "Var decl must have external storage or be a file var decl!"); 1493 1494 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1495 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1496 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1497 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1498 QualType T = E->getType(); 1499 LValue LV; 1500 if (VD->getType()->isReferenceType()) { 1501 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1502 LI->setAlignment(Alignment.getQuantity()); 1503 V = LI; 1504 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1505 } else { 1506 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1507 } 1508 setObjCGCLValueClass(CGF.getContext(), E, LV); 1509 return LV; 1510} 1511 1512static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1513 const Expr *E, const FunctionDecl *FD) { 1514 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1515 if (!FD->hasPrototype()) { 1516 if (const FunctionProtoType *Proto = 1517 FD->getType()->getAs<FunctionProtoType>()) { 1518 // Ugly case: for a K&R-style definition, the type of the definition 1519 // isn't the same as the type of a use. Correct for this with a 1520 // bitcast. 1521 QualType NoProtoType = 1522 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1523 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1524 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1525 } 1526 } 1527 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1528 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1529} 1530 1531LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1532 const NamedDecl *ND = E->getDecl(); 1533 CharUnits Alignment = getContext().getDeclAlign(ND); 1534 QualType T = E->getType(); 1535 1536 // FIXME: We should be able to assert this for FunctionDecls as well! 1537 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1538 // those with a valid source location. 1539 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1540 !E->getLocation().isValid()) && 1541 "Should not use decl without marking it used!"); 1542 1543 if (ND->hasAttr<WeakRefAttr>()) { 1544 const ValueDecl *VD = cast<ValueDecl>(ND); 1545 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1546 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1547 } 1548 1549 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1550 // Check if this is a global variable. 1551 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1552 return EmitGlobalVarDeclLValue(*this, E, VD); 1553 1554 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1555 1556 bool NonGCable = VD->hasLocalStorage() && 1557 !VD->getType()->isReferenceType() && 1558 !isBlockVariable; 1559 1560 llvm::Value *V = LocalDeclMap[VD]; 1561 if (!V && VD->isStaticLocal()) 1562 V = CGM.getStaticLocalDeclAddress(VD); 1563 1564 // Use special handling for lambdas. 1565 if (!V) { 1566 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1567 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1568 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1569 LambdaTagType); 1570 return EmitLValueForField(LambdaLV, FD); 1571 } 1572 1573 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1574 CharUnits alignment = getContext().getDeclAlign(VD); 1575 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1576 E->getType(), alignment); 1577 } 1578 1579 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1580 1581 if (isBlockVariable) 1582 V = BuildBlockByrefAddress(V, VD); 1583 1584 LValue LV; 1585 if (VD->getType()->isReferenceType()) { 1586 llvm::LoadInst *LI = Builder.CreateLoad(V); 1587 LI->setAlignment(Alignment.getQuantity()); 1588 V = LI; 1589 LV = MakeNaturalAlignAddrLValue(V, T); 1590 } else { 1591 LV = MakeAddrLValue(V, T, Alignment); 1592 } 1593 1594 if (NonGCable) { 1595 LV.getQuals().removeObjCGCAttr(); 1596 LV.setNonGC(true); 1597 } 1598 setObjCGCLValueClass(getContext(), E, LV); 1599 return LV; 1600 } 1601 1602 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1603 return EmitFunctionDeclLValue(*this, E, fn); 1604 1605 llvm_unreachable("Unhandled DeclRefExpr"); 1606} 1607 1608LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1609 // __extension__ doesn't affect lvalue-ness. 1610 if (E->getOpcode() == UO_Extension) 1611 return EmitLValue(E->getSubExpr()); 1612 1613 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1614 switch (E->getOpcode()) { 1615 default: llvm_unreachable("Unknown unary operator lvalue!"); 1616 case UO_Deref: { 1617 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1618 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1619 1620 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1621 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1622 1623 // We should not generate __weak write barrier on indirect reference 1624 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1625 // But, we continue to generate __strong write barrier on indirect write 1626 // into a pointer to object. 1627 if (getContext().getLangOpts().ObjC1 && 1628 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1629 LV.isObjCWeak()) 1630 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1631 return LV; 1632 } 1633 case UO_Real: 1634 case UO_Imag: { 1635 LValue LV = EmitLValue(E->getSubExpr()); 1636 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1637 llvm::Value *Addr = LV.getAddress(); 1638 1639 // __real is valid on scalars. This is a faster way of testing that. 1640 // __imag can only produce an rvalue on scalars. 1641 if (E->getOpcode() == UO_Real && 1642 !cast<llvm::PointerType>(Addr->getType()) 1643 ->getElementType()->isStructTy()) { 1644 assert(E->getSubExpr()->getType()->isArithmeticType()); 1645 return LV; 1646 } 1647 1648 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1649 1650 unsigned Idx = E->getOpcode() == UO_Imag; 1651 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1652 Idx, "idx"), 1653 ExprTy); 1654 } 1655 case UO_PreInc: 1656 case UO_PreDec: { 1657 LValue LV = EmitLValue(E->getSubExpr()); 1658 bool isInc = E->getOpcode() == UO_PreInc; 1659 1660 if (E->getType()->isAnyComplexType()) 1661 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1662 else 1663 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1664 return LV; 1665 } 1666 } 1667} 1668 1669LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1670 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1671 E->getType()); 1672} 1673 1674LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1675 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1676 E->getType()); 1677} 1678 1679 1680LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1681 switch (E->getIdentType()) { 1682 default: 1683 return EmitUnsupportedLValue(E, "predefined expression"); 1684 1685 case PredefinedExpr::Func: 1686 case PredefinedExpr::Function: 1687 case PredefinedExpr::PrettyFunction: { 1688 unsigned Type = E->getIdentType(); 1689 std::string GlobalVarName; 1690 1691 switch (Type) { 1692 default: llvm_unreachable("Invalid type"); 1693 case PredefinedExpr::Func: 1694 GlobalVarName = "__func__."; 1695 break; 1696 case PredefinedExpr::Function: 1697 GlobalVarName = "__FUNCTION__."; 1698 break; 1699 case PredefinedExpr::PrettyFunction: 1700 GlobalVarName = "__PRETTY_FUNCTION__."; 1701 break; 1702 } 1703 1704 StringRef FnName = CurFn->getName(); 1705 if (FnName.startswith("\01")) 1706 FnName = FnName.substr(1); 1707 GlobalVarName += FnName; 1708 1709 const Decl *CurDecl = CurCodeDecl; 1710 if (CurDecl == 0) 1711 CurDecl = getContext().getTranslationUnitDecl(); 1712 1713 std::string FunctionName = 1714 (isa<BlockDecl>(CurDecl) 1715 ? FnName.str() 1716 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1717 1718 llvm::Constant *C = 1719 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1720 return MakeAddrLValue(C, E->getType()); 1721 } 1722 } 1723} 1724 1725llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1726 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1727 1728 // If we are not optimzing, don't collapse all calls to trap in the function 1729 // to the same call, that way, in the debugger they can see which operation 1730 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1731 // to just one per function to save on codesize. 1732 if (GCO.OptimizationLevel && TrapBB) 1733 return TrapBB; 1734 1735 llvm::BasicBlock *Cont = 0; 1736 if (HaveInsertPoint()) { 1737 Cont = createBasicBlock("cont"); 1738 EmitBranch(Cont); 1739 } 1740 TrapBB = createBasicBlock("trap"); 1741 EmitBlock(TrapBB); 1742 1743 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1744 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1745 TrapCall->setDoesNotReturn(); 1746 TrapCall->setDoesNotThrow(); 1747 Builder.CreateUnreachable(); 1748 1749 if (Cont) 1750 EmitBlock(Cont); 1751 return TrapBB; 1752} 1753 1754/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1755/// array to pointer, return the array subexpression. 1756static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1757 // If this isn't just an array->pointer decay, bail out. 1758 const CastExpr *CE = dyn_cast<CastExpr>(E); 1759 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1760 return 0; 1761 1762 // If this is a decay from variable width array, bail out. 1763 const Expr *SubExpr = CE->getSubExpr(); 1764 if (SubExpr->getType()->isVariableArrayType()) 1765 return 0; 1766 1767 return SubExpr; 1768} 1769 1770LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1771 // The index must always be an integer, which is not an aggregate. Emit it. 1772 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1773 QualType IdxTy = E->getIdx()->getType(); 1774 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1775 1776 // If the base is a vector type, then we are forming a vector element lvalue 1777 // with this subscript. 1778 if (E->getBase()->getType()->isVectorType()) { 1779 // Emit the vector as an lvalue to get its address. 1780 LValue LHS = EmitLValue(E->getBase()); 1781 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1782 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1783 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1784 E->getBase()->getType(), LHS.getAlignment()); 1785 } 1786 1787 // Extend or truncate the index type to 32 or 64-bits. 1788 if (Idx->getType() != IntPtrTy) 1789 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1790 1791 // We know that the pointer points to a type of the correct size, unless the 1792 // size is a VLA or Objective-C interface. 1793 llvm::Value *Address = 0; 1794 CharUnits ArrayAlignment; 1795 if (const VariableArrayType *vla = 1796 getContext().getAsVariableArrayType(E->getType())) { 1797 // The base must be a pointer, which is not an aggregate. Emit 1798 // it. It needs to be emitted first in case it's what captures 1799 // the VLA bounds. 1800 Address = EmitScalarExpr(E->getBase()); 1801 1802 // The element count here is the total number of non-VLA elements. 1803 llvm::Value *numElements = getVLASize(vla).first; 1804 1805 // Effectively, the multiply by the VLA size is part of the GEP. 1806 // GEP indexes are signed, and scaling an index isn't permitted to 1807 // signed-overflow, so we use the same semantics for our explicit 1808 // multiply. We suppress this if overflow is not undefined behavior. 1809 if (getLangOpts().isSignedOverflowDefined()) { 1810 Idx = Builder.CreateMul(Idx, numElements); 1811 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1812 } else { 1813 Idx = Builder.CreateNSWMul(Idx, numElements); 1814 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1815 } 1816 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1817 // Indexing over an interface, as in "NSString *P; P[4];" 1818 llvm::Value *InterfaceSize = 1819 llvm::ConstantInt::get(Idx->getType(), 1820 getContext().getTypeSizeInChars(OIT).getQuantity()); 1821 1822 Idx = Builder.CreateMul(Idx, InterfaceSize); 1823 1824 // The base must be a pointer, which is not an aggregate. Emit it. 1825 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1826 Address = EmitCastToVoidPtr(Base); 1827 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1828 Address = Builder.CreateBitCast(Address, Base->getType()); 1829 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1830 // If this is A[i] where A is an array, the frontend will have decayed the 1831 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1832 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1833 // "gep x, i" here. Emit one "gep A, 0, i". 1834 assert(Array->getType()->isArrayType() && 1835 "Array to pointer decay must have array source type!"); 1836 LValue ArrayLV = EmitLValue(Array); 1837 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1838 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1839 llvm::Value *Args[] = { Zero, Idx }; 1840 1841 // Propagate the alignment from the array itself to the result. 1842 ArrayAlignment = ArrayLV.getAlignment(); 1843 1844 if (getContext().getLangOpts().isSignedOverflowDefined()) 1845 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1846 else 1847 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1848 } else { 1849 // The base must be a pointer, which is not an aggregate. Emit it. 1850 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1851 if (getContext().getLangOpts().isSignedOverflowDefined()) 1852 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1853 else 1854 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1855 } 1856 1857 QualType T = E->getBase()->getType()->getPointeeType(); 1858 assert(!T.isNull() && 1859 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1860 1861 1862 // Limit the alignment to that of the result type. 1863 LValue LV; 1864 if (!ArrayAlignment.isZero()) { 1865 CharUnits Align = getContext().getTypeAlignInChars(T); 1866 ArrayAlignment = std::min(Align, ArrayAlignment); 1867 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1868 } else { 1869 LV = MakeNaturalAlignAddrLValue(Address, T); 1870 } 1871 1872 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1873 1874 if (getContext().getLangOpts().ObjC1 && 1875 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1876 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1877 setObjCGCLValueClass(getContext(), E, LV); 1878 } 1879 return LV; 1880} 1881 1882static 1883llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1884 SmallVector<unsigned, 4> &Elts) { 1885 SmallVector<llvm::Constant*, 4> CElts; 1886 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1887 CElts.push_back(Builder.getInt32(Elts[i])); 1888 1889 return llvm::ConstantVector::get(CElts); 1890} 1891 1892LValue CodeGenFunction:: 1893EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1894 // Emit the base vector as an l-value. 1895 LValue Base; 1896 1897 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1898 if (E->isArrow()) { 1899 // If it is a pointer to a vector, emit the address and form an lvalue with 1900 // it. 1901 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1902 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1903 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1904 Base.getQuals().removeObjCGCAttr(); 1905 } else if (E->getBase()->isGLValue()) { 1906 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1907 // emit the base as an lvalue. 1908 assert(E->getBase()->getType()->isVectorType()); 1909 Base = EmitLValue(E->getBase()); 1910 } else { 1911 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1912 assert(E->getBase()->getType()->isVectorType() && 1913 "Result must be a vector"); 1914 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1915 1916 // Store the vector to memory (because LValue wants an address). 1917 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1918 Builder.CreateStore(Vec, VecMem); 1919 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1920 } 1921 1922 QualType type = 1923 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1924 1925 // Encode the element access list into a vector of unsigned indices. 1926 SmallVector<unsigned, 4> Indices; 1927 E->getEncodedElementAccess(Indices); 1928 1929 if (Base.isSimple()) { 1930 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1931 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 1932 Base.getAlignment()); 1933 } 1934 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1935 1936 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1937 SmallVector<llvm::Constant *, 4> CElts; 1938 1939 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1940 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1941 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1942 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 1943 Base.getAlignment()); 1944} 1945 1946LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1947 Expr *BaseExpr = E->getBase(); 1948 1949 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1950 LValue BaseLV; 1951 if (E->isArrow()) 1952 BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr), 1953 BaseExpr->getType()->getPointeeType()); 1954 else 1955 BaseLV = EmitLValue(BaseExpr); 1956 1957 NamedDecl *ND = E->getMemberDecl(); 1958 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1959 LValue LV = EmitLValueForField(BaseLV, Field); 1960 setObjCGCLValueClass(getContext(), E, LV); 1961 return LV; 1962 } 1963 1964 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1965 return EmitGlobalVarDeclLValue(*this, E, VD); 1966 1967 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1968 return EmitFunctionDeclLValue(*this, E, FD); 1969 1970 llvm_unreachable("Unhandled member declaration!"); 1971} 1972 1973LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1974 const FieldDecl *Field, 1975 unsigned CVRQualifiers) { 1976 const CGRecordLayout &RL = 1977 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1978 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1979 return LValue::MakeBitfield(BaseValue, Info, 1980 Field->getType().withCVRQualifiers(CVRQualifiers)); 1981} 1982 1983/// EmitLValueForAnonRecordField - Given that the field is a member of 1984/// an anonymous struct or union buried inside a record, and given 1985/// that the base value is a pointer to the enclosing record, derive 1986/// an lvalue for the ultimate field. 1987LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1988 const IndirectFieldDecl *Field, 1989 unsigned CVRQualifiers) { 1990 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1991 IEnd = Field->chain_end(); 1992 while (true) { 1993 QualType RecordTy = 1994 getContext().getTypeDeclType(cast<FieldDecl>(*I)->getParent()); 1995 LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy), 1996 cast<FieldDecl>(*I)); 1997 if (++I == IEnd) return LV; 1998 1999 assert(LV.isSimple()); 2000 BaseValue = LV.getAddress(); 2001 CVRQualifiers |= LV.getVRQualifiers(); 2002 } 2003} 2004 2005LValue CodeGenFunction::EmitLValueForField(LValue base, 2006 const FieldDecl *field) { 2007 if (field->isBitField()) 2008 return EmitLValueForBitfield(base.getAddress(), field, 2009 base.getVRQualifiers()); 2010 2011 const RecordDecl *rec = field->getParent(); 2012 QualType type = field->getType(); 2013 CharUnits alignment = getContext().getDeclAlign(field); 2014 2015 // FIXME: It should be impossible to have an LValue without alignment for a 2016 // complete type. 2017 if (!base.getAlignment().isZero()) 2018 alignment = std::min(alignment, base.getAlignment()); 2019 2020 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2021 2022 llvm::Value *addr = base.getAddress(); 2023 unsigned cvr = base.getVRQualifiers(); 2024 if (rec->isUnion()) { 2025 // For unions, there is no pointer adjustment. 2026 assert(!type->isReferenceType() && "union has reference member"); 2027 } else { 2028 // For structs, we GEP to the field that the record layout suggests. 2029 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2030 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2031 2032 // If this is a reference field, load the reference right now. 2033 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2034 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2035 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2036 load->setAlignment(alignment.getQuantity()); 2037 2038 if (CGM.shouldUseTBAA()) { 2039 llvm::MDNode *tbaa; 2040 if (mayAlias) 2041 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2042 else 2043 tbaa = CGM.getTBAAInfo(type); 2044 CGM.DecorateInstruction(load, tbaa); 2045 } 2046 2047 addr = load; 2048 mayAlias = false; 2049 type = refType->getPointeeType(); 2050 if (type->isIncompleteType()) 2051 alignment = CharUnits(); 2052 else 2053 alignment = getContext().getTypeAlignInChars(type); 2054 cvr = 0; // qualifiers don't recursively apply to referencee 2055 } 2056 } 2057 2058 // Make sure that the address is pointing to the right type. This is critical 2059 // for both unions and structs. A union needs a bitcast, a struct element 2060 // will need a bitcast if the LLVM type laid out doesn't match the desired 2061 // type. 2062 addr = EmitBitCastOfLValueToProperType(*this, addr, 2063 CGM.getTypes().ConvertTypeForMem(type), 2064 field->getName()); 2065 2066 if (field->hasAttr<AnnotateAttr>()) 2067 addr = EmitFieldAnnotations(field, addr); 2068 2069 LValue LV = MakeAddrLValue(addr, type, alignment); 2070 LV.getQuals().addCVRQualifiers(cvr); 2071 2072 // __weak attribute on a field is ignored. 2073 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2074 LV.getQuals().removeObjCGCAttr(); 2075 2076 // Fields of may_alias structs act like 'char' for TBAA purposes. 2077 // FIXME: this should get propagated down through anonymous structs 2078 // and unions. 2079 if (mayAlias && LV.getTBAAInfo()) 2080 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2081 2082 return LV; 2083} 2084 2085LValue 2086CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2087 const FieldDecl *Field) { 2088 QualType FieldType = Field->getType(); 2089 2090 if (!FieldType->isReferenceType()) 2091 return EmitLValueForField(Base, Field); 2092 2093 const CGRecordLayout &RL = 2094 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2095 unsigned idx = RL.getLLVMFieldNo(Field); 2096 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2097 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2098 2099 // Make sure that the address is pointing to the right type. This is critical 2100 // for both unions and structs. A union needs a bitcast, a struct element 2101 // will need a bitcast if the LLVM type laid out doesn't match the desired 2102 // type. 2103 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2104 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2105 2106 CharUnits Alignment = getContext().getDeclAlign(Field); 2107 2108 // FIXME: It should be impossible to have an LValue without alignment for a 2109 // complete type. 2110 if (!Base.getAlignment().isZero()) 2111 Alignment = std::min(Alignment, Base.getAlignment()); 2112 2113 return MakeAddrLValue(V, FieldType, Alignment); 2114} 2115 2116LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2117 if (E->isFileScope()) { 2118 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2119 return MakeAddrLValue(GlobalPtr, E->getType()); 2120 } 2121 2122 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2123 const Expr *InitExpr = E->getInitializer(); 2124 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2125 2126 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2127 /*Init*/ true); 2128 2129 return Result; 2130} 2131 2132LValue CodeGenFunction:: 2133EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2134 if (!expr->isGLValue()) { 2135 // ?: here should be an aggregate. 2136 assert((hasAggregateLLVMType(expr->getType()) && 2137 !expr->getType()->isAnyComplexType()) && 2138 "Unexpected conditional operator!"); 2139 return EmitAggExprToLValue(expr); 2140 } 2141 2142 OpaqueValueMapping binding(*this, expr); 2143 2144 const Expr *condExpr = expr->getCond(); 2145 bool CondExprBool; 2146 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2147 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2148 if (!CondExprBool) std::swap(live, dead); 2149 2150 if (!ContainsLabel(dead)) 2151 return EmitLValue(live); 2152 } 2153 2154 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2155 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2156 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2157 2158 ConditionalEvaluation eval(*this); 2159 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2160 2161 // Any temporaries created here are conditional. 2162 EmitBlock(lhsBlock); 2163 eval.begin(*this); 2164 LValue lhs = EmitLValue(expr->getTrueExpr()); 2165 eval.end(*this); 2166 2167 if (!lhs.isSimple()) 2168 return EmitUnsupportedLValue(expr, "conditional operator"); 2169 2170 lhsBlock = Builder.GetInsertBlock(); 2171 Builder.CreateBr(contBlock); 2172 2173 // Any temporaries created here are conditional. 2174 EmitBlock(rhsBlock); 2175 eval.begin(*this); 2176 LValue rhs = EmitLValue(expr->getFalseExpr()); 2177 eval.end(*this); 2178 if (!rhs.isSimple()) 2179 return EmitUnsupportedLValue(expr, "conditional operator"); 2180 rhsBlock = Builder.GetInsertBlock(); 2181 2182 EmitBlock(contBlock); 2183 2184 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2185 "cond-lvalue"); 2186 phi->addIncoming(lhs.getAddress(), lhsBlock); 2187 phi->addIncoming(rhs.getAddress(), rhsBlock); 2188 return MakeAddrLValue(phi, expr->getType()); 2189} 2190 2191/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2192/// If the cast is a dynamic_cast, we can have the usual lvalue result, 2193/// otherwise if a cast is needed by the code generator in an lvalue context, 2194/// then it must mean that we need the address of an aggregate in order to 2195/// access one of its fields. This can happen for all the reasons that casts 2196/// are permitted with aggregate result, including noop aggregate casts, and 2197/// cast from scalar to union. 2198LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2199 switch (E->getCastKind()) { 2200 case CK_ToVoid: 2201 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2202 2203 case CK_Dependent: 2204 llvm_unreachable("dependent cast kind in IR gen!"); 2205 2206 // These two casts are currently treated as no-ops, although they could 2207 // potentially be real operations depending on the target's ABI. 2208 case CK_NonAtomicToAtomic: 2209 case CK_AtomicToNonAtomic: 2210 2211 case CK_NoOp: 2212 case CK_LValueToRValue: 2213 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2214 || E->getType()->isRecordType()) 2215 return EmitLValue(E->getSubExpr()); 2216 // Fall through to synthesize a temporary. 2217 2218 case CK_BitCast: 2219 case CK_ArrayToPointerDecay: 2220 case CK_FunctionToPointerDecay: 2221 case CK_NullToMemberPointer: 2222 case CK_NullToPointer: 2223 case CK_IntegralToPointer: 2224 case CK_PointerToIntegral: 2225 case CK_PointerToBoolean: 2226 case CK_VectorSplat: 2227 case CK_IntegralCast: 2228 case CK_IntegralToBoolean: 2229 case CK_IntegralToFloating: 2230 case CK_FloatingToIntegral: 2231 case CK_FloatingToBoolean: 2232 case CK_FloatingCast: 2233 case CK_FloatingRealToComplex: 2234 case CK_FloatingComplexToReal: 2235 case CK_FloatingComplexToBoolean: 2236 case CK_FloatingComplexCast: 2237 case CK_FloatingComplexToIntegralComplex: 2238 case CK_IntegralRealToComplex: 2239 case CK_IntegralComplexToReal: 2240 case CK_IntegralComplexToBoolean: 2241 case CK_IntegralComplexCast: 2242 case CK_IntegralComplexToFloatingComplex: 2243 case CK_DerivedToBaseMemberPointer: 2244 case CK_BaseToDerivedMemberPointer: 2245 case CK_MemberPointerToBoolean: 2246 case CK_ReinterpretMemberPointer: 2247 case CK_AnyPointerToBlockPointerCast: 2248 case CK_ARCProduceObject: 2249 case CK_ARCConsumeObject: 2250 case CK_ARCReclaimReturnedObject: 2251 case CK_ARCExtendBlockObject: 2252 case CK_CopyAndAutoreleaseBlockObject: { 2253 // These casts only produce lvalues when we're binding a reference to a 2254 // temporary realized from a (converted) pure rvalue. Emit the expression 2255 // as a value, copy it into a temporary, and return an lvalue referring to 2256 // that temporary. 2257 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2258 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2259 return MakeAddrLValue(V, E->getType()); 2260 } 2261 2262 case CK_Dynamic: { 2263 LValue LV = EmitLValue(E->getSubExpr()); 2264 llvm::Value *V = LV.getAddress(); 2265 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2266 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2267 } 2268 2269 case CK_ConstructorConversion: 2270 case CK_UserDefinedConversion: 2271 case CK_CPointerToObjCPointerCast: 2272 case CK_BlockPointerToObjCPointerCast: 2273 return EmitLValue(E->getSubExpr()); 2274 2275 case CK_UncheckedDerivedToBase: 2276 case CK_DerivedToBase: { 2277 const RecordType *DerivedClassTy = 2278 E->getSubExpr()->getType()->getAs<RecordType>(); 2279 CXXRecordDecl *DerivedClassDecl = 2280 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2281 2282 LValue LV = EmitLValue(E->getSubExpr()); 2283 llvm::Value *This = LV.getAddress(); 2284 2285 // Perform the derived-to-base conversion 2286 llvm::Value *Base = 2287 GetAddressOfBaseClass(This, DerivedClassDecl, 2288 E->path_begin(), E->path_end(), 2289 /*NullCheckValue=*/false); 2290 2291 return MakeAddrLValue(Base, E->getType()); 2292 } 2293 case CK_ToUnion: 2294 return EmitAggExprToLValue(E); 2295 case CK_BaseToDerived: { 2296 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2297 CXXRecordDecl *DerivedClassDecl = 2298 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2299 2300 LValue LV = EmitLValue(E->getSubExpr()); 2301 2302 // Perform the base-to-derived conversion 2303 llvm::Value *Derived = 2304 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2305 E->path_begin(), E->path_end(), 2306 /*NullCheckValue=*/false); 2307 2308 return MakeAddrLValue(Derived, E->getType()); 2309 } 2310 case CK_LValueBitCast: { 2311 // This must be a reinterpret_cast (or c-style equivalent). 2312 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2313 2314 LValue LV = EmitLValue(E->getSubExpr()); 2315 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2316 ConvertType(CE->getTypeAsWritten())); 2317 return MakeAddrLValue(V, E->getType()); 2318 } 2319 case CK_ObjCObjectLValueCast: { 2320 LValue LV = EmitLValue(E->getSubExpr()); 2321 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2322 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2323 ConvertType(ToType)); 2324 return MakeAddrLValue(V, E->getType()); 2325 } 2326 } 2327 2328 llvm_unreachable("Unhandled lvalue cast kind?"); 2329} 2330 2331LValue CodeGenFunction::EmitNullInitializationLValue( 2332 const CXXScalarValueInitExpr *E) { 2333 QualType Ty = E->getType(); 2334 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2335 EmitNullInitialization(LV.getAddress(), Ty); 2336 return LV; 2337} 2338 2339LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2340 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2341 return getOpaqueLValueMapping(e); 2342} 2343 2344LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2345 const MaterializeTemporaryExpr *E) { 2346 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2347 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2348} 2349 2350RValue CodeGenFunction::EmitRValueForField(LValue LV, 2351 const FieldDecl *FD) { 2352 QualType FT = FD->getType(); 2353 LValue FieldLV = EmitLValueForField(LV, FD); 2354 if (FT->isAnyComplexType()) 2355 return RValue::getComplex( 2356 LoadComplexFromAddr(FieldLV.getAddress(), 2357 FieldLV.isVolatileQualified())); 2358 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2359 return FieldLV.asAggregateRValue(); 2360 2361 return EmitLoadOfLValue(FieldLV); 2362} 2363 2364//===--------------------------------------------------------------------===// 2365// Expression Emission 2366//===--------------------------------------------------------------------===// 2367 2368RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2369 ReturnValueSlot ReturnValue) { 2370 if (CGDebugInfo *DI = getDebugInfo()) 2371 DI->EmitLocation(Builder, E->getLocStart()); 2372 2373 // Builtins never have block type. 2374 if (E->getCallee()->getType()->isBlockPointerType()) 2375 return EmitBlockCallExpr(E, ReturnValue); 2376 2377 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2378 return EmitCXXMemberCallExpr(CE, ReturnValue); 2379 2380 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2381 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2382 2383 const Decl *TargetDecl = E->getCalleeDecl(); 2384 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2385 if (unsigned builtinID = FD->getBuiltinID()) 2386 return EmitBuiltinExpr(FD, builtinID, E); 2387 } 2388 2389 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2390 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2391 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2392 2393 if (const CXXPseudoDestructorExpr *PseudoDtor 2394 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2395 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2396 if (getContext().getLangOpts().ObjCAutoRefCount && 2397 DestroyedType->isObjCLifetimeType() && 2398 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2399 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2400 // Automatic Reference Counting: 2401 // If the pseudo-expression names a retainable object with weak or 2402 // strong lifetime, the object shall be released. 2403 Expr *BaseExpr = PseudoDtor->getBase(); 2404 llvm::Value *BaseValue = NULL; 2405 Qualifiers BaseQuals; 2406 2407 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2408 if (PseudoDtor->isArrow()) { 2409 BaseValue = EmitScalarExpr(BaseExpr); 2410 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2411 BaseQuals = PTy->getPointeeType().getQualifiers(); 2412 } else { 2413 LValue BaseLV = EmitLValue(BaseExpr); 2414 BaseValue = BaseLV.getAddress(); 2415 QualType BaseTy = BaseExpr->getType(); 2416 BaseQuals = BaseTy.getQualifiers(); 2417 } 2418 2419 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2420 case Qualifiers::OCL_None: 2421 case Qualifiers::OCL_ExplicitNone: 2422 case Qualifiers::OCL_Autoreleasing: 2423 break; 2424 2425 case Qualifiers::OCL_Strong: 2426 EmitARCRelease(Builder.CreateLoad(BaseValue, 2427 PseudoDtor->getDestroyedType().isVolatileQualified()), 2428 /*precise*/ true); 2429 break; 2430 2431 case Qualifiers::OCL_Weak: 2432 EmitARCDestroyWeak(BaseValue); 2433 break; 2434 } 2435 } else { 2436 // C++ [expr.pseudo]p1: 2437 // The result shall only be used as the operand for the function call 2438 // operator (), and the result of such a call has type void. The only 2439 // effect is the evaluation of the postfix-expression before the dot or 2440 // arrow. 2441 EmitScalarExpr(E->getCallee()); 2442 } 2443 2444 return RValue::get(0); 2445 } 2446 2447 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2448 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2449 E->arg_begin(), E->arg_end(), TargetDecl); 2450} 2451 2452LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2453 // Comma expressions just emit their LHS then their RHS as an l-value. 2454 if (E->getOpcode() == BO_Comma) { 2455 EmitIgnoredExpr(E->getLHS()); 2456 EnsureInsertPoint(); 2457 return EmitLValue(E->getRHS()); 2458 } 2459 2460 if (E->getOpcode() == BO_PtrMemD || 2461 E->getOpcode() == BO_PtrMemI) 2462 return EmitPointerToDataMemberBinaryExpr(E); 2463 2464 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2465 2466 // Note that in all of these cases, __block variables need the RHS 2467 // evaluated first just in case the variable gets moved by the RHS. 2468 2469 if (!hasAggregateLLVMType(E->getType())) { 2470 switch (E->getLHS()->getType().getObjCLifetime()) { 2471 case Qualifiers::OCL_Strong: 2472 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2473 2474 case Qualifiers::OCL_Autoreleasing: 2475 return EmitARCStoreAutoreleasing(E).first; 2476 2477 // No reason to do any of these differently. 2478 case Qualifiers::OCL_None: 2479 case Qualifiers::OCL_ExplicitNone: 2480 case Qualifiers::OCL_Weak: 2481 break; 2482 } 2483 2484 RValue RV = EmitAnyExpr(E->getRHS()); 2485 LValue LV = EmitLValue(E->getLHS()); 2486 EmitStoreThroughLValue(RV, LV); 2487 return LV; 2488 } 2489 2490 if (E->getType()->isAnyComplexType()) 2491 return EmitComplexAssignmentLValue(E); 2492 2493 return EmitAggExprToLValue(E); 2494} 2495 2496LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2497 RValue RV = EmitCallExpr(E); 2498 2499 if (!RV.isScalar()) 2500 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2501 2502 assert(E->getCallReturnType()->isReferenceType() && 2503 "Can't have a scalar return unless the return type is a " 2504 "reference type!"); 2505 2506 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2507} 2508 2509LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2510 // FIXME: This shouldn't require another copy. 2511 return EmitAggExprToLValue(E); 2512} 2513 2514LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2515 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2516 && "binding l-value to type which needs a temporary"); 2517 AggValueSlot Slot = CreateAggTemp(E->getType()); 2518 EmitCXXConstructExpr(E, Slot); 2519 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2520} 2521 2522LValue 2523CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2524 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2525} 2526 2527LValue 2528CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2529 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2530 Slot.setExternallyDestructed(); 2531 EmitAggExpr(E->getSubExpr(), Slot); 2532 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2533 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2534} 2535 2536LValue 2537CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2538 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2539 EmitLambdaExpr(E, Slot); 2540 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2541} 2542 2543LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2544 RValue RV = EmitObjCMessageExpr(E); 2545 2546 if (!RV.isScalar()) 2547 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2548 2549 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2550 "Can't have a scalar return unless the return type is a " 2551 "reference type!"); 2552 2553 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2554} 2555 2556LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2557 llvm::Value *V = 2558 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2559 return MakeAddrLValue(V, E->getType()); 2560} 2561 2562llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2563 const ObjCIvarDecl *Ivar) { 2564 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2565} 2566 2567LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2568 llvm::Value *BaseValue, 2569 const ObjCIvarDecl *Ivar, 2570 unsigned CVRQualifiers) { 2571 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2572 Ivar, CVRQualifiers); 2573} 2574 2575LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2576 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2577 llvm::Value *BaseValue = 0; 2578 const Expr *BaseExpr = E->getBase(); 2579 Qualifiers BaseQuals; 2580 QualType ObjectTy; 2581 if (E->isArrow()) { 2582 BaseValue = EmitScalarExpr(BaseExpr); 2583 ObjectTy = BaseExpr->getType()->getPointeeType(); 2584 BaseQuals = ObjectTy.getQualifiers(); 2585 } else { 2586 LValue BaseLV = EmitLValue(BaseExpr); 2587 // FIXME: this isn't right for bitfields. 2588 BaseValue = BaseLV.getAddress(); 2589 ObjectTy = BaseExpr->getType(); 2590 BaseQuals = ObjectTy.getQualifiers(); 2591 } 2592 2593 LValue LV = 2594 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2595 BaseQuals.getCVRQualifiers()); 2596 setObjCGCLValueClass(getContext(), E, LV); 2597 return LV; 2598} 2599 2600LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2601 // Can only get l-value for message expression returning aggregate type 2602 RValue RV = EmitAnyExprToTemp(E); 2603 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2604} 2605 2606RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2607 ReturnValueSlot ReturnValue, 2608 CallExpr::const_arg_iterator ArgBeg, 2609 CallExpr::const_arg_iterator ArgEnd, 2610 const Decl *TargetDecl) { 2611 // Get the actual function type. The callee type will always be a pointer to 2612 // function type or a block pointer type. 2613 assert(CalleeType->isFunctionPointerType() && 2614 "Call must have function pointer type!"); 2615 2616 CalleeType = getContext().getCanonicalType(CalleeType); 2617 2618 const FunctionType *FnType 2619 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2620 2621 CallArgList Args; 2622 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2623 2624 const CGFunctionInfo &FnInfo = 2625 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2626 2627 // C99 6.5.2.2p6: 2628 // If the expression that denotes the called function has a type 2629 // that does not include a prototype, [the default argument 2630 // promotions are performed]. If the number of arguments does not 2631 // equal the number of parameters, the behavior is undefined. If 2632 // the function is defined with a type that includes a prototype, 2633 // and either the prototype ends with an ellipsis (, ...) or the 2634 // types of the arguments after promotion are not compatible with 2635 // the types of the parameters, the behavior is undefined. If the 2636 // function is defined with a type that does not include a 2637 // prototype, and the types of the arguments after promotion are 2638 // not compatible with those of the parameters after promotion, 2639 // the behavior is undefined [except in some trivial cases]. 2640 // That is, in the general case, we should assume that a call 2641 // through an unprototyped function type works like a *non-variadic* 2642 // call. The way we make this work is to cast to the exact type 2643 // of the promoted arguments. 2644 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2645 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2646 CalleeTy = CalleeTy->getPointerTo(); 2647 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2648 } 2649 2650 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2651} 2652 2653LValue CodeGenFunction:: 2654EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2655 llvm::Value *BaseV; 2656 if (E->getOpcode() == BO_PtrMemI) 2657 BaseV = EmitScalarExpr(E->getLHS()); 2658 else 2659 BaseV = EmitLValue(E->getLHS()).getAddress(); 2660 2661 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2662 2663 const MemberPointerType *MPT 2664 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2665 2666 llvm::Value *AddV = 2667 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2668 2669 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2670} 2671 2672static void 2673EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2674 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2675 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2676 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2677 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 2678 2679 switch (E->getOp()) { 2680 case AtomicExpr::AO__c11_atomic_init: 2681 llvm_unreachable("Already handled!"); 2682 2683 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2684 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2685 case AtomicExpr::AO__atomic_compare_exchange: 2686 case AtomicExpr::AO__atomic_compare_exchange_n: { 2687 // Note that cmpxchg only supports specifying one ordering and 2688 // doesn't support weak cmpxchg, at least at the moment. 2689 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2690 LoadVal1->setAlignment(Align); 2691 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2692 LoadVal2->setAlignment(Align); 2693 llvm::AtomicCmpXchgInst *CXI = 2694 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2695 CXI->setVolatile(E->isVolatile()); 2696 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2697 StoreVal1->setAlignment(Align); 2698 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2699 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2700 return; 2701 } 2702 2703 case AtomicExpr::AO__c11_atomic_load: 2704 case AtomicExpr::AO__atomic_load_n: 2705 case AtomicExpr::AO__atomic_load: { 2706 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2707 Load->setAtomic(Order); 2708 Load->setAlignment(Size); 2709 Load->setVolatile(E->isVolatile()); 2710 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2711 StoreDest->setAlignment(Align); 2712 return; 2713 } 2714 2715 case AtomicExpr::AO__c11_atomic_store: 2716 case AtomicExpr::AO__atomic_store: 2717 case AtomicExpr::AO__atomic_store_n: { 2718 assert(!Dest && "Store does not return a value"); 2719 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2720 LoadVal1->setAlignment(Align); 2721 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2722 Store->setAtomic(Order); 2723 Store->setAlignment(Size); 2724 Store->setVolatile(E->isVolatile()); 2725 return; 2726 } 2727 2728 case AtomicExpr::AO__c11_atomic_exchange: 2729 case AtomicExpr::AO__atomic_exchange_n: 2730 case AtomicExpr::AO__atomic_exchange: 2731 Op = llvm::AtomicRMWInst::Xchg; 2732 break; 2733 2734 case AtomicExpr::AO__atomic_add_fetch: 2735 PostOp = llvm::Instruction::Add; 2736 // Fall through. 2737 case AtomicExpr::AO__c11_atomic_fetch_add: 2738 case AtomicExpr::AO__atomic_fetch_add: 2739 Op = llvm::AtomicRMWInst::Add; 2740 break; 2741 2742 case AtomicExpr::AO__atomic_sub_fetch: 2743 PostOp = llvm::Instruction::Sub; 2744 // Fall through. 2745 case AtomicExpr::AO__c11_atomic_fetch_sub: 2746 case AtomicExpr::AO__atomic_fetch_sub: 2747 Op = llvm::AtomicRMWInst::Sub; 2748 break; 2749 2750 case AtomicExpr::AO__atomic_and_fetch: 2751 PostOp = llvm::Instruction::And; 2752 // Fall through. 2753 case AtomicExpr::AO__c11_atomic_fetch_and: 2754 case AtomicExpr::AO__atomic_fetch_and: 2755 Op = llvm::AtomicRMWInst::And; 2756 break; 2757 2758 case AtomicExpr::AO__atomic_or_fetch: 2759 PostOp = llvm::Instruction::Or; 2760 // Fall through. 2761 case AtomicExpr::AO__c11_atomic_fetch_or: 2762 case AtomicExpr::AO__atomic_fetch_or: 2763 Op = llvm::AtomicRMWInst::Or; 2764 break; 2765 2766 case AtomicExpr::AO__atomic_xor_fetch: 2767 PostOp = llvm::Instruction::Xor; 2768 // Fall through. 2769 case AtomicExpr::AO__c11_atomic_fetch_xor: 2770 case AtomicExpr::AO__atomic_fetch_xor: 2771 Op = llvm::AtomicRMWInst::Xor; 2772 break; 2773 2774 case AtomicExpr::AO__atomic_nand_fetch: 2775 PostOp = llvm::Instruction::And; 2776 // Fall through. 2777 case AtomicExpr::AO__atomic_fetch_nand: 2778 Op = llvm::AtomicRMWInst::Nand; 2779 break; 2780 } 2781 2782 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2783 LoadVal1->setAlignment(Align); 2784 llvm::AtomicRMWInst *RMWI = 2785 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2786 RMWI->setVolatile(E->isVolatile()); 2787 2788 // For __atomic_*_fetch operations, perform the operation again to 2789 // determine the value which was written. 2790 llvm::Value *Result = RMWI; 2791 if (PostOp) 2792 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 2793 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 2794 Result = CGF.Builder.CreateNot(Result); 2795 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 2796 StoreDest->setAlignment(Align); 2797} 2798 2799// This function emits any expression (scalar, complex, or aggregate) 2800// into a temporary alloca. 2801static llvm::Value * 2802EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2803 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2804 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2805 /*Init*/ true); 2806 return DeclPtr; 2807} 2808 2809static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2810 llvm::Value *Dest) { 2811 if (Ty->isAnyComplexType()) 2812 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2813 if (CGF.hasAggregateLLVMType(Ty)) 2814 return RValue::getAggregate(Dest); 2815 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2816} 2817 2818RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2819 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2820 QualType MemTy = AtomicTy; 2821 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 2822 MemTy = AT->getValueType(); 2823 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2824 uint64_t Size = sizeChars.getQuantity(); 2825 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2826 unsigned Align = alignChars.getQuantity(); 2827 unsigned MaxInlineWidth = 2828 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2829 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2830 2831 2832 2833 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2834 Ptr = EmitScalarExpr(E->getPtr()); 2835 2836 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 2837 assert(!Dest && "Init does not return a value"); 2838 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 2839 QualType PointeeType 2840 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 2841 EmitScalarInit(EmitScalarExpr(E->getVal1()), 2842 LValue::MakeAddr(Ptr, PointeeType, alignChars, 2843 getContext())); 2844 } else if (E->getType()->isAnyComplexType()) { 2845 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 2846 } else { 2847 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 2848 AtomicTy.getQualifiers(), 2849 AggValueSlot::IsNotDestructed, 2850 AggValueSlot::DoesNotNeedGCBarriers, 2851 AggValueSlot::IsNotAliased); 2852 EmitAggExpr(E->getVal1(), Slot); 2853 } 2854 return RValue::get(0); 2855 } 2856 2857 Order = EmitScalarExpr(E->getOrder()); 2858 2859 switch (E->getOp()) { 2860 case AtomicExpr::AO__c11_atomic_init: 2861 llvm_unreachable("Already handled!"); 2862 2863 case AtomicExpr::AO__c11_atomic_load: 2864 case AtomicExpr::AO__atomic_load_n: 2865 break; 2866 2867 case AtomicExpr::AO__atomic_load: 2868 Dest = EmitScalarExpr(E->getVal1()); 2869 break; 2870 2871 case AtomicExpr::AO__atomic_store: 2872 Val1 = EmitScalarExpr(E->getVal1()); 2873 break; 2874 2875 case AtomicExpr::AO__atomic_exchange: 2876 Val1 = EmitScalarExpr(E->getVal1()); 2877 Dest = EmitScalarExpr(E->getVal2()); 2878 break; 2879 2880 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2881 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2882 case AtomicExpr::AO__atomic_compare_exchange_n: 2883 case AtomicExpr::AO__atomic_compare_exchange: 2884 Val1 = EmitScalarExpr(E->getVal1()); 2885 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 2886 Val2 = EmitScalarExpr(E->getVal2()); 2887 else 2888 Val2 = EmitValToTemp(*this, E->getVal2()); 2889 OrderFail = EmitScalarExpr(E->getOrderFail()); 2890 // Evaluate and discard the 'weak' argument. 2891 if (E->getNumSubExprs() == 6) 2892 EmitScalarExpr(E->getWeak()); 2893 break; 2894 2895 case AtomicExpr::AO__c11_atomic_fetch_add: 2896 case AtomicExpr::AO__c11_atomic_fetch_sub: 2897 if (MemTy->isPointerType()) { 2898 // For pointer arithmetic, we're required to do a bit of math: 2899 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 2900 // ... but only for the C11 builtins. The GNU builtins expect the 2901 // user to multiply by sizeof(T). 2902 QualType Val1Ty = E->getVal1()->getType(); 2903 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2904 CharUnits PointeeIncAmt = 2905 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2906 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2907 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2908 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2909 break; 2910 } 2911 // Fall through. 2912 case AtomicExpr::AO__atomic_fetch_add: 2913 case AtomicExpr::AO__atomic_fetch_sub: 2914 case AtomicExpr::AO__atomic_add_fetch: 2915 case AtomicExpr::AO__atomic_sub_fetch: 2916 case AtomicExpr::AO__c11_atomic_store: 2917 case AtomicExpr::AO__c11_atomic_exchange: 2918 case AtomicExpr::AO__atomic_store_n: 2919 case AtomicExpr::AO__atomic_exchange_n: 2920 case AtomicExpr::AO__c11_atomic_fetch_and: 2921 case AtomicExpr::AO__c11_atomic_fetch_or: 2922 case AtomicExpr::AO__c11_atomic_fetch_xor: 2923 case AtomicExpr::AO__atomic_fetch_and: 2924 case AtomicExpr::AO__atomic_fetch_or: 2925 case AtomicExpr::AO__atomic_fetch_xor: 2926 case AtomicExpr::AO__atomic_fetch_nand: 2927 case AtomicExpr::AO__atomic_and_fetch: 2928 case AtomicExpr::AO__atomic_or_fetch: 2929 case AtomicExpr::AO__atomic_xor_fetch: 2930 case AtomicExpr::AO__atomic_nand_fetch: 2931 Val1 = EmitValToTemp(*this, E->getVal1()); 2932 break; 2933 } 2934 2935 if (!E->getType()->isVoidType() && !Dest) 2936 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2937 2938 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2939 if (UseLibcall) { 2940 2941 llvm::SmallVector<QualType, 5> Params; 2942 CallArgList Args; 2943 // Size is always the first parameter 2944 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2945 getContext().getSizeType()); 2946 // Atomic address is always the second parameter 2947 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2948 getContext().VoidPtrTy); 2949 2950 const char* LibCallName; 2951 QualType RetTy = getContext().VoidTy; 2952 switch (E->getOp()) { 2953 // There is only one libcall for compare an exchange, because there is no 2954 // optimisation benefit possible from a libcall version of a weak compare 2955 // and exchange. 2956 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 2957 // void *desired, int success, int failure) 2958 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2959 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2960 case AtomicExpr::AO__atomic_compare_exchange: 2961 case AtomicExpr::AO__atomic_compare_exchange_n: 2962 LibCallName = "__atomic_compare_exchange"; 2963 RetTy = getContext().BoolTy; 2964 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2965 getContext().VoidPtrTy); 2966 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2967 getContext().VoidPtrTy); 2968 Args.add(RValue::get(Order), 2969 getContext().IntTy); 2970 Order = OrderFail; 2971 break; 2972 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 2973 // int order) 2974 case AtomicExpr::AO__c11_atomic_exchange: 2975 case AtomicExpr::AO__atomic_exchange_n: 2976 case AtomicExpr::AO__atomic_exchange: 2977 LibCallName = "__atomic_exchange"; 2978 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2979 getContext().VoidPtrTy); 2980 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2981 getContext().VoidPtrTy); 2982 break; 2983 // void __atomic_store(size_t size, void *mem, void *val, int order) 2984 case AtomicExpr::AO__c11_atomic_store: 2985 case AtomicExpr::AO__atomic_store: 2986 case AtomicExpr::AO__atomic_store_n: 2987 LibCallName = "__atomic_store"; 2988 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2989 getContext().VoidPtrTy); 2990 break; 2991 // void __atomic_load(size_t size, void *mem, void *return, int order) 2992 case AtomicExpr::AO__c11_atomic_load: 2993 case AtomicExpr::AO__atomic_load: 2994 case AtomicExpr::AO__atomic_load_n: 2995 LibCallName = "__atomic_load"; 2996 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2997 getContext().VoidPtrTy); 2998 break; 2999#if 0 3000 // These are only defined for 1-16 byte integers. It is not clear what 3001 // their semantics would be on anything else... 3002 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3003 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3004 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3005 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3006 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3007#endif 3008 default: return EmitUnsupportedRValue(E, "atomic library call"); 3009 } 3010 // order is always the last parameter 3011 Args.add(RValue::get(Order), 3012 getContext().IntTy); 3013 3014 const CGFunctionInfo &FuncInfo = 3015 CGM.getTypes().arrangeFunctionCall(RetTy, Args, 3016 FunctionType::ExtInfo(), RequiredArgs::All); 3017 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3018 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3019 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3020 if (E->isCmpXChg()) 3021 return Res; 3022 if (E->getType()->isVoidType()) 3023 return RValue::get(0); 3024 return ConvertTempToRValue(*this, E->getType(), Dest); 3025 } 3026 3027 llvm::Type *IPtrTy = 3028 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3029 llvm::Value *OrigDest = Dest; 3030 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3031 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3032 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3033 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3034 3035 if (isa<llvm::ConstantInt>(Order)) { 3036 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3037 switch (ord) { 3038 case 0: // memory_order_relaxed 3039 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3040 llvm::Monotonic); 3041 break; 3042 case 1: // memory_order_consume 3043 case 2: // memory_order_acquire 3044 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3045 llvm::Acquire); 3046 break; 3047 case 3: // memory_order_release 3048 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3049 llvm::Release); 3050 break; 3051 case 4: // memory_order_acq_rel 3052 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3053 llvm::AcquireRelease); 3054 break; 3055 case 5: // memory_order_seq_cst 3056 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3057 llvm::SequentiallyConsistent); 3058 break; 3059 default: // invalid order 3060 // We should not ever get here normally, but it's hard to 3061 // enforce that in general. 3062 break; 3063 } 3064 if (E->getType()->isVoidType()) 3065 return RValue::get(0); 3066 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3067 } 3068 3069 // Long case, when Order isn't obviously constant. 3070 3071 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3072 E->getOp() == AtomicExpr::AO__atomic_store || 3073 E->getOp() == AtomicExpr::AO__atomic_store_n; 3074 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3075 E->getOp() == AtomicExpr::AO__atomic_load || 3076 E->getOp() == AtomicExpr::AO__atomic_load_n; 3077 3078 // Create all the relevant BB's 3079 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3080 *AcqRelBB = 0, *SeqCstBB = 0; 3081 MonotonicBB = createBasicBlock("monotonic", CurFn); 3082 if (!IsStore) 3083 AcquireBB = createBasicBlock("acquire", CurFn); 3084 if (!IsLoad) 3085 ReleaseBB = createBasicBlock("release", CurFn); 3086 if (!IsLoad && !IsStore) 3087 AcqRelBB = createBasicBlock("acqrel", CurFn); 3088 SeqCstBB = createBasicBlock("seqcst", CurFn); 3089 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3090 3091 // Create the switch for the split 3092 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3093 // doesn't matter unless someone is crazy enough to use something that 3094 // doesn't fold to a constant for the ordering. 3095 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3096 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3097 3098 // Emit all the different atomics 3099 Builder.SetInsertPoint(MonotonicBB); 3100 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3101 llvm::Monotonic); 3102 Builder.CreateBr(ContBB); 3103 if (!IsStore) { 3104 Builder.SetInsertPoint(AcquireBB); 3105 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3106 llvm::Acquire); 3107 Builder.CreateBr(ContBB); 3108 SI->addCase(Builder.getInt32(1), AcquireBB); 3109 SI->addCase(Builder.getInt32(2), AcquireBB); 3110 } 3111 if (!IsLoad) { 3112 Builder.SetInsertPoint(ReleaseBB); 3113 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3114 llvm::Release); 3115 Builder.CreateBr(ContBB); 3116 SI->addCase(Builder.getInt32(3), ReleaseBB); 3117 } 3118 if (!IsLoad && !IsStore) { 3119 Builder.SetInsertPoint(AcqRelBB); 3120 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3121 llvm::AcquireRelease); 3122 Builder.CreateBr(ContBB); 3123 SI->addCase(Builder.getInt32(4), AcqRelBB); 3124 } 3125 Builder.SetInsertPoint(SeqCstBB); 3126 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3127 llvm::SequentiallyConsistent); 3128 Builder.CreateBr(ContBB); 3129 SI->addCase(Builder.getInt32(5), SeqCstBB); 3130 3131 // Cleanup and return 3132 Builder.SetInsertPoint(ContBB); 3133 if (E->getType()->isVoidType()) 3134 return RValue::get(0); 3135 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3136} 3137 3138void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3139 assert(Val->getType()->isFPOrFPVectorTy()); 3140 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3141 return; 3142 3143 llvm::MDBuilder MDHelper(getLLVMContext()); 3144 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3145 3146 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3147} 3148 3149namespace { 3150 struct LValueOrRValue { 3151 LValue LV; 3152 RValue RV; 3153 }; 3154} 3155 3156static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3157 const PseudoObjectExpr *E, 3158 bool forLValue, 3159 AggValueSlot slot) { 3160 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3161 3162 // Find the result expression, if any. 3163 const Expr *resultExpr = E->getResultExpr(); 3164 LValueOrRValue result; 3165 3166 for (PseudoObjectExpr::const_semantics_iterator 3167 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3168 const Expr *semantic = *i; 3169 3170 // If this semantic expression is an opaque value, bind it 3171 // to the result of its source expression. 3172 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3173 3174 // If this is the result expression, we may need to evaluate 3175 // directly into the slot. 3176 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3177 OVMA opaqueData; 3178 if (ov == resultExpr && ov->isRValue() && !forLValue && 3179 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3180 !ov->getType()->isAnyComplexType()) { 3181 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3182 3183 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3184 opaqueData = OVMA::bind(CGF, ov, LV); 3185 result.RV = slot.asRValue(); 3186 3187 // Otherwise, emit as normal. 3188 } else { 3189 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3190 3191 // If this is the result, also evaluate the result now. 3192 if (ov == resultExpr) { 3193 if (forLValue) 3194 result.LV = CGF.EmitLValue(ov); 3195 else 3196 result.RV = CGF.EmitAnyExpr(ov, slot); 3197 } 3198 } 3199 3200 opaques.push_back(opaqueData); 3201 3202 // Otherwise, if the expression is the result, evaluate it 3203 // and remember the result. 3204 } else if (semantic == resultExpr) { 3205 if (forLValue) 3206 result.LV = CGF.EmitLValue(semantic); 3207 else 3208 result.RV = CGF.EmitAnyExpr(semantic, slot); 3209 3210 // Otherwise, evaluate the expression in an ignored context. 3211 } else { 3212 CGF.EmitIgnoredExpr(semantic); 3213 } 3214 } 3215 3216 // Unbind all the opaques now. 3217 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3218 opaques[i].unbind(CGF); 3219 3220 return result; 3221} 3222 3223RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3224 AggValueSlot slot) { 3225 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3226} 3227 3228LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3229 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3230} 3231