CGExpr.cpp revision 09349145d7e9b2142a9cef94e30eb8b70ce99bdc
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGRecordLayout.h" 19#include "CGObjCRuntime.h" 20#include "clang/AST/ASTContext.h" 21#include "clang/AST/DeclObjC.h" 22#include "llvm/Intrinsics.h" 23#include "clang/Frontend/CodeGenOptions.h" 24#include "llvm/Target/TargetData.h" 25using namespace clang; 26using namespace CodeGen; 27 28//===--------------------------------------------------------------------===// 29// Miscellaneous Helper Methods 30//===--------------------------------------------------------------------===// 31 32/// CreateTempAlloca - This creates a alloca and inserts it into the entry 33/// block. 34llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 35 const llvm::Twine &Name) { 36 if (!Builder.isNamePreserving()) 37 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 38 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 39} 40 41void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 42 llvm::Value *Init) { 43 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 44 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 45 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 46} 47 48llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 49 const llvm::Twine &Name) { 50 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 51 // FIXME: Should we prefer the preferred type alignment here? 52 CharUnits Align = getContext().getTypeAlignInChars(Ty); 53 Alloc->setAlignment(Align.getQuantity()); 54 return Alloc; 55} 56 57llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 58 const llvm::Twine &Name) { 59 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 60 // FIXME: Should we prefer the preferred type alignment here? 61 CharUnits Align = getContext().getTypeAlignInChars(Ty); 62 Alloc->setAlignment(Align.getQuantity()); 63 return Alloc; 64} 65 66/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 67/// expression and compare the result against zero, returning an Int1Ty value. 68llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 69 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 70 llvm::Value *MemPtr = EmitScalarExpr(E); 71 return CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 72 } 73 74 QualType BoolTy = getContext().BoolTy; 75 if (!E->getType()->isAnyComplexType()) 76 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 77 78 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 79} 80 81/// EmitAnyExpr - Emit code to compute the specified expression which can have 82/// any type. The result is returned as an RValue struct. If this is an 83/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the 84/// result should be returned. 85RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, 86 bool IsAggLocVolatile, bool IgnoreResult, 87 bool IsInitializer) { 88 if (!hasAggregateLLVMType(E->getType())) 89 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 90 else if (E->getType()->isAnyComplexType()) 91 return RValue::getComplex(EmitComplexExpr(E, false, false, 92 IgnoreResult, IgnoreResult)); 93 94 EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer); 95 return RValue::getAggregate(AggLoc, IsAggLocVolatile); 96} 97 98/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 99/// always be accessible even if no aggregate location is provided. 100RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, 101 bool IsAggLocVolatile, 102 bool IsInitializer) { 103 llvm::Value *AggLoc = 0; 104 105 if (hasAggregateLLVMType(E->getType()) && 106 !E->getType()->isAnyComplexType()) 107 AggLoc = CreateMemTemp(E->getType(), "agg.tmp"); 108 return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false, 109 IsInitializer); 110} 111 112/// EmitAnyExprToMem - Evaluate an expression into a given memory 113/// location. 114void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 115 llvm::Value *Location, 116 bool IsLocationVolatile, 117 bool IsInit) { 118 if (E->getType()->isComplexType()) 119 EmitComplexExprIntoAddr(E, Location, IsLocationVolatile); 120 else if (hasAggregateLLVMType(E->getType())) 121 EmitAggExpr(E, Location, IsLocationVolatile, /*Ignore*/ false, IsInit); 122 else { 123 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 124 LValue LV = MakeAddrLValue(Location, E->getType()); 125 EmitStoreThroughLValue(RV, LV, E->getType()); 126 } 127} 128 129/// \brief An adjustment to be made to the temporary created when emitting a 130/// reference binding, which accesses a particular subobject of that temporary. 131struct SubobjectAdjustment { 132 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 133 134 union { 135 struct { 136 const CastExpr *BasePath; 137 const CXXRecordDecl *DerivedClass; 138 } DerivedToBase; 139 140 FieldDecl *Field; 141 }; 142 143 SubobjectAdjustment(const CastExpr *BasePath, 144 const CXXRecordDecl *DerivedClass) 145 : Kind(DerivedToBaseAdjustment) 146 { 147 DerivedToBase.BasePath = BasePath; 148 DerivedToBase.DerivedClass = DerivedClass; 149 } 150 151 SubobjectAdjustment(FieldDecl *Field) 152 : Kind(FieldAdjustment) 153 { 154 this->Field = Field; 155 } 156}; 157 158static llvm::Value * 159CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type, 160 const NamedDecl *InitializedDecl) { 161 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 162 if (VD->hasGlobalStorage()) { 163 llvm::SmallString<256> Name; 164 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Name); 165 166 const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 167 168 // Create the reference temporary. 169 llvm::GlobalValue *RefTemp = 170 new llvm::GlobalVariable(CGF.CGM.getModule(), 171 RefTempTy, /*isConstant=*/false, 172 llvm::GlobalValue::InternalLinkage, 173 llvm::Constant::getNullValue(RefTempTy), 174 Name.str()); 175 return RefTemp; 176 } 177 } 178 179 return CGF.CreateMemTemp(Type, "ref.tmp"); 180} 181 182static llvm::Value * 183EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 184 llvm::Value *&ReferenceTemporary, 185 const CXXDestructorDecl *&ReferenceTemporaryDtor, 186 const NamedDecl *InitializedDecl) { 187 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 188 E = DAE->getExpr(); 189 190 if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) { 191 CodeGenFunction::RunCleanupsScope Scope(CGF); 192 193 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), 194 ReferenceTemporary, 195 ReferenceTemporaryDtor, 196 InitializedDecl); 197 } 198 199 RValue RV; 200 if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid) { 201 // Emit the expression as an lvalue. 202 LValue LV = CGF.EmitLValue(E); 203 204 if (LV.isSimple()) 205 return LV.getAddress(); 206 207 // We have to load the lvalue. 208 RV = CGF.EmitLoadOfLValue(LV, E->getType()); 209 } else { 210 QualType ResultTy = E->getType(); 211 212 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments; 213 while (true) { 214 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 215 E = PE->getSubExpr(); 216 continue; 217 } 218 219 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 220 if ((CE->getCastKind() == CK_DerivedToBase || 221 CE->getCastKind() == CK_UncheckedDerivedToBase) && 222 E->getType()->isRecordType()) { 223 E = CE->getSubExpr(); 224 CXXRecordDecl *Derived 225 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 226 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 227 continue; 228 } 229 230 if (CE->getCastKind() == CK_NoOp) { 231 E = CE->getSubExpr(); 232 continue; 233 } 234 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 235 if (ME->getBase()->isLvalue(CGF.getContext()) != Expr::LV_Valid && 236 ME->getBase()->getType()->isRecordType()) { 237 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 238 E = ME->getBase(); 239 Adjustments.push_back(SubobjectAdjustment(Field)); 240 continue; 241 } 242 } 243 } 244 245 // Nothing changed. 246 break; 247 } 248 249 // Create a reference temporary if necessary. 250 if (CGF.hasAggregateLLVMType(E->getType()) && 251 !E->getType()->isAnyComplexType()) 252 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 253 InitializedDecl); 254 255 RV = CGF.EmitAnyExpr(E, ReferenceTemporary, /*IsAggLocVolatile=*/false, 256 /*IgnoreResult=*/false, InitializedDecl); 257 258 if (InitializedDecl) { 259 // Get the destructor for the reference temporary. 260 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 261 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 262 if (!ClassDecl->hasTrivialDestructor()) 263 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 264 } 265 } 266 267 // Check if need to perform derived-to-base casts and/or field accesses, to 268 // get from the temporary object we created (and, potentially, for which we 269 // extended the lifetime) to the subobject we're binding the reference to. 270 if (!Adjustments.empty()) { 271 llvm::Value *Object = RV.getAggregateAddr(); 272 for (unsigned I = Adjustments.size(); I != 0; --I) { 273 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 274 switch (Adjustment.Kind) { 275 case SubobjectAdjustment::DerivedToBaseAdjustment: 276 Object = 277 CGF.GetAddressOfBaseClass(Object, 278 Adjustment.DerivedToBase.DerivedClass, 279 Adjustment.DerivedToBase.BasePath->path_begin(), 280 Adjustment.DerivedToBase.BasePath->path_end(), 281 /*NullCheckValue=*/false); 282 break; 283 284 case SubobjectAdjustment::FieldAdjustment: { 285 LValue LV = 286 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 287 if (LV.isSimple()) { 288 Object = LV.getAddress(); 289 break; 290 } 291 292 // For non-simple lvalues, we actually have to create a copy of 293 // the object we're binding to. 294 QualType T = Adjustment.Field->getType().getNonReferenceType() 295 .getUnqualifiedType(); 296 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 297 LValue TempLV = CGF.MakeAddrLValue(Object, 298 Adjustment.Field->getType()); 299 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T); 300 break; 301 } 302 303 } 304 } 305 306 const llvm::Type *ResultPtrTy = CGF.ConvertType(ResultTy)->getPointerTo(); 307 return CGF.Builder.CreateBitCast(Object, ResultPtrTy, "temp"); 308 } 309 } 310 311 if (RV.isAggregate()) 312 return RV.getAggregateAddr(); 313 314 // Create a temporary variable that we can bind the reference to. 315 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 316 InitializedDecl); 317 318 319 unsigned Alignment = 320 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 321 if (RV.isScalar()) 322 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 323 /*Volatile=*/false, Alignment, E->getType()); 324 else 325 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 326 /*Volatile=*/false); 327 return ReferenceTemporary; 328} 329 330RValue 331CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 332 const NamedDecl *InitializedDecl) { 333 llvm::Value *ReferenceTemporary = 0; 334 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 335 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 336 ReferenceTemporaryDtor, 337 InitializedDecl); 338 if (!ReferenceTemporaryDtor) 339 return RValue::get(Value); 340 341 // Make sure to call the destructor for the reference temporary. 342 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 343 if (VD->hasGlobalStorage()) { 344 llvm::Constant *DtorFn = 345 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 346 CGF.EmitCXXGlobalDtorRegistration(DtorFn, 347 cast<llvm::Constant>(ReferenceTemporary)); 348 349 return RValue::get(Value); 350 } 351 } 352 353 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 354 355 return RValue::get(Value); 356} 357 358 359/// getAccessedFieldNo - Given an encoded value and a result number, return the 360/// input field number being accessed. 361unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 362 const llvm::Constant *Elts) { 363 if (isa<llvm::ConstantAggregateZero>(Elts)) 364 return 0; 365 366 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 367} 368 369void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 370 if (!CatchUndefined) 371 return; 372 373 Address = Builder.CreateBitCast(Address, PtrToInt8Ty); 374 375 const llvm::Type *IntPtrT = IntPtrTy; 376 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1); 377 const llvm::IntegerType *Int1Ty = llvm::Type::getInt1Ty(VMContext); 378 379 // In time, people may want to control this and use a 1 here. 380 llvm::Value *Arg = llvm::ConstantInt::get(Int1Ty, 0); 381 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 382 llvm::BasicBlock *Cont = createBasicBlock(); 383 llvm::BasicBlock *Check = createBasicBlock(); 384 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 385 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 386 387 EmitBlock(Check); 388 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 389 llvm::ConstantInt::get(IntPtrTy, Size)), 390 Cont, getTrapBB()); 391 EmitBlock(Cont); 392} 393 394 395CodeGenFunction::ComplexPairTy CodeGenFunction:: 396EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 397 bool isInc, bool isPre) { 398 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 399 LV.isVolatileQualified()); 400 401 llvm::Value *NextVal; 402 if (isa<llvm::IntegerType>(InVal.first->getType())) { 403 uint64_t AmountVal = isInc ? 1 : -1; 404 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 405 406 // Add the inc/dec to the real part. 407 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 408 } else { 409 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 410 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 411 if (!isInc) 412 FVal.changeSign(); 413 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 414 415 // Add the inc/dec to the real part. 416 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 417 } 418 419 ComplexPairTy IncVal(NextVal, InVal.second); 420 421 // Store the updated result through the lvalue. 422 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 423 424 // If this is a postinc, return the value read from memory, otherwise use the 425 // updated value. 426 return isPre ? IncVal : InVal; 427} 428 429 430//===----------------------------------------------------------------------===// 431// LValue Expression Emission 432//===----------------------------------------------------------------------===// 433 434RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 435 if (Ty->isVoidType()) 436 return RValue::get(0); 437 438 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 439 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 440 llvm::Value *U = llvm::UndefValue::get(EltTy); 441 return RValue::getComplex(std::make_pair(U, U)); 442 } 443 444 // If this is a use of an undefined aggregate type, the aggregate must have an 445 // identifiable address. Just because the contents of the value are undefined 446 // doesn't mean that the address can't be taken and compared. 447 if (hasAggregateLLVMType(Ty)) { 448 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 449 return RValue::getAggregate(DestPtr); 450 } 451 452 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 453} 454 455RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 456 const char *Name) { 457 ErrorUnsupported(E, Name); 458 return GetUndefRValue(E->getType()); 459} 460 461LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 462 const char *Name) { 463 ErrorUnsupported(E, Name); 464 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 465 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 466} 467 468LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 469 LValue LV = EmitLValue(E); 470 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 471 EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8); 472 return LV; 473} 474 475/// EmitLValue - Emit code to compute a designator that specifies the location 476/// of the expression. 477/// 478/// This can return one of two things: a simple address or a bitfield reference. 479/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 480/// an LLVM pointer type. 481/// 482/// If this returns a bitfield reference, nothing about the pointee type of the 483/// LLVM value is known: For example, it may not be a pointer to an integer. 484/// 485/// If this returns a normal address, and if the lvalue's C type is fixed size, 486/// this method guarantees that the returned pointer type will point to an LLVM 487/// type of the same size of the lvalue's type. If the lvalue has a variable 488/// length type, this is not possible. 489/// 490LValue CodeGenFunction::EmitLValue(const Expr *E) { 491 switch (E->getStmtClass()) { 492 default: return EmitUnsupportedLValue(E, "l-value expression"); 493 494 case Expr::ObjCSelectorExprClass: 495 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 496 case Expr::ObjCIsaExprClass: 497 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 498 case Expr::BinaryOperatorClass: 499 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 500 case Expr::CompoundAssignOperatorClass: 501 return EmitCompoundAssignOperatorLValue(cast<CompoundAssignOperator>(E)); 502 case Expr::CallExprClass: 503 case Expr::CXXMemberCallExprClass: 504 case Expr::CXXOperatorCallExprClass: 505 return EmitCallExprLValue(cast<CallExpr>(E)); 506 case Expr::VAArgExprClass: 507 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 508 case Expr::DeclRefExprClass: 509 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 510 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 511 case Expr::PredefinedExprClass: 512 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 513 case Expr::StringLiteralClass: 514 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 515 case Expr::ObjCEncodeExprClass: 516 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 517 518 case Expr::BlockDeclRefExprClass: 519 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 520 521 case Expr::CXXTemporaryObjectExprClass: 522 case Expr::CXXConstructExprClass: 523 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 524 case Expr::CXXBindTemporaryExprClass: 525 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 526 case Expr::CXXExprWithTemporariesClass: 527 return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E)); 528 case Expr::CXXScalarValueInitExprClass: 529 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 530 case Expr::CXXDefaultArgExprClass: 531 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 532 case Expr::CXXTypeidExprClass: 533 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 534 535 case Expr::ObjCMessageExprClass: 536 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 537 case Expr::ObjCIvarRefExprClass: 538 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 539 case Expr::ObjCPropertyRefExprClass: 540 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 541 case Expr::ObjCImplicitSetterGetterRefExprClass: 542 return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E)); 543 case Expr::ObjCSuperExprClass: 544 return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E)); 545 546 case Expr::StmtExprClass: 547 return EmitStmtExprLValue(cast<StmtExpr>(E)); 548 case Expr::UnaryOperatorClass: 549 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 550 case Expr::ArraySubscriptExprClass: 551 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 552 case Expr::ExtVectorElementExprClass: 553 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 554 case Expr::MemberExprClass: 555 return EmitMemberExpr(cast<MemberExpr>(E)); 556 case Expr::CompoundLiteralExprClass: 557 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 558 case Expr::ConditionalOperatorClass: 559 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 560 case Expr::ChooseExprClass: 561 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 562 case Expr::ImplicitCastExprClass: 563 case Expr::CStyleCastExprClass: 564 case Expr::CXXFunctionalCastExprClass: 565 case Expr::CXXStaticCastExprClass: 566 case Expr::CXXDynamicCastExprClass: 567 case Expr::CXXReinterpretCastExprClass: 568 case Expr::CXXConstCastExprClass: 569 return EmitCastLValue(cast<CastExpr>(E)); 570 } 571} 572 573llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 574 unsigned Alignment, QualType Ty) { 575 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); 576 if (Volatile) 577 Load->setVolatile(true); 578 if (Alignment) 579 Load->setAlignment(Alignment); 580 581 // Bool can have different representation in memory than in registers. 582 llvm::Value *V = Load; 583 if (Ty->isBooleanType()) 584 if (V->getType() != llvm::Type::getInt1Ty(VMContext)) 585 V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool"); 586 587 return V; 588} 589 590void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 591 bool Volatile, unsigned Alignment, 592 QualType Ty) { 593 594 if (Ty->isBooleanType()) { 595 // Bool can have different representation in memory than in registers. 596 const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 597 Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false); 598 } 599 600 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 601 if (Alignment) 602 Store->setAlignment(Alignment); 603} 604 605/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 606/// method emits the address of the lvalue, then loads the result as an rvalue, 607/// returning the rvalue. 608RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { 609 if (LV.isObjCWeak()) { 610 // load of a __weak object. 611 llvm::Value *AddrWeakObj = LV.getAddress(); 612 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 613 AddrWeakObj)); 614 } 615 616 if (LV.isSimple()) { 617 llvm::Value *Ptr = LV.getAddress(); 618 619 // Functions are l-values that don't require loading. 620 if (ExprType->isFunctionType()) 621 return RValue::get(Ptr); 622 623 // Everything needs a load. 624 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), 625 LV.getAlignment(), ExprType)); 626 627 } 628 629 if (LV.isVectorElt()) { 630 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 631 LV.isVolatileQualified(), "tmp"); 632 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 633 "vecext")); 634 } 635 636 // If this is a reference to a subset of the elements of a vector, either 637 // shuffle the input or extract/insert them as appropriate. 638 if (LV.isExtVectorElt()) 639 return EmitLoadOfExtVectorElementLValue(LV, ExprType); 640 641 if (LV.isBitField()) 642 return EmitLoadOfBitfieldLValue(LV, ExprType); 643 644 if (LV.isPropertyRef()) 645 return EmitLoadOfPropertyRefLValue(LV, ExprType); 646 647 assert(LV.isKVCRef() && "Unknown LValue type!"); 648 return EmitLoadOfKVCRefLValue(LV, ExprType); 649} 650 651RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 652 QualType ExprType) { 653 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 654 655 // Get the output type. 656 const llvm::Type *ResLTy = ConvertType(ExprType); 657 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 658 659 // Compute the result as an OR of all of the individual component accesses. 660 llvm::Value *Res = 0; 661 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 662 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 663 664 // Get the field pointer. 665 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 666 667 // Only offset by the field index if used, so that incoming values are not 668 // required to be structures. 669 if (AI.FieldIndex) 670 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 671 672 // Offset by the byte offset, if used. 673 if (AI.FieldByteOffset) { 674 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 675 Ptr = Builder.CreateBitCast(Ptr, i8PTy); 676 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); 677 } 678 679 // Cast to the access type. 680 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(VMContext, AI.AccessWidth, 681 ExprType.getAddressSpace()); 682 Ptr = Builder.CreateBitCast(Ptr, PTy); 683 684 // Perform the load. 685 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 686 if (AI.AccessAlignment) 687 Load->setAlignment(AI.AccessAlignment); 688 689 // Shift out unused low bits and mask out unused high bits. 690 llvm::Value *Val = Load; 691 if (AI.FieldBitStart) 692 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 693 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 694 AI.TargetBitWidth), 695 "bf.clear"); 696 697 // Extend or truncate to the target size. 698 if (AI.AccessWidth < ResSizeInBits) 699 Val = Builder.CreateZExt(Val, ResLTy); 700 else if (AI.AccessWidth > ResSizeInBits) 701 Val = Builder.CreateTrunc(Val, ResLTy); 702 703 // Shift into place, and OR into the result. 704 if (AI.TargetBitOffset) 705 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 706 Res = Res ? Builder.CreateOr(Res, Val) : Val; 707 } 708 709 // If the bit-field is signed, perform the sign-extension. 710 // 711 // FIXME: This can easily be folded into the load of the high bits, which 712 // could also eliminate the mask of high bits in some situations. 713 if (Info.isSigned()) { 714 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 715 if (ExtraBits) 716 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 717 ExtraBits, "bf.val.sext"); 718 } 719 720 return RValue::get(Res); 721} 722 723RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, 724 QualType ExprType) { 725 return EmitObjCPropertyGet(LV.getPropertyRefExpr()); 726} 727 728RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV, 729 QualType ExprType) { 730 return EmitObjCPropertyGet(LV.getKVCRefExpr()); 731} 732 733// If this is a reference to a subset of the elements of a vector, create an 734// appropriate shufflevector. 735RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, 736 QualType ExprType) { 737 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 738 LV.isVolatileQualified(), "tmp"); 739 740 const llvm::Constant *Elts = LV.getExtVectorElts(); 741 742 // If the result of the expression is a non-vector type, we must be extracting 743 // a single element. Just codegen as an extractelement. 744 const VectorType *ExprVT = ExprType->getAs<VectorType>(); 745 if (!ExprVT) { 746 unsigned InIdx = getAccessedFieldNo(0, Elts); 747 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 748 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 749 } 750 751 // Always use shuffle vector to try to retain the original program structure 752 unsigned NumResultElts = ExprVT->getNumElements(); 753 754 llvm::SmallVector<llvm::Constant*, 4> Mask; 755 for (unsigned i = 0; i != NumResultElts; ++i) { 756 unsigned InIdx = getAccessedFieldNo(i, Elts); 757 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 758 } 759 760 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 761 Vec = Builder.CreateShuffleVector(Vec, 762 llvm::UndefValue::get(Vec->getType()), 763 MaskV, "tmp"); 764 return RValue::get(Vec); 765} 766 767 768 769/// EmitStoreThroughLValue - Store the specified rvalue into the specified 770/// lvalue, where both are guaranteed to the have the same type, and that type 771/// is 'Ty'. 772void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 773 QualType Ty) { 774 if (!Dst.isSimple()) { 775 if (Dst.isVectorElt()) { 776 // Read/modify/write the vector, inserting the new element. 777 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 778 Dst.isVolatileQualified(), "tmp"); 779 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 780 Dst.getVectorIdx(), "vecins"); 781 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 782 return; 783 } 784 785 // If this is an update of extended vector elements, insert them as 786 // appropriate. 787 if (Dst.isExtVectorElt()) 788 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); 789 790 if (Dst.isBitField()) 791 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); 792 793 if (Dst.isPropertyRef()) 794 return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty); 795 796 assert(Dst.isKVCRef() && "Unknown LValue type"); 797 return EmitStoreThroughKVCRefLValue(Src, Dst, Ty); 798 } 799 800 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 801 // load of a __weak object. 802 llvm::Value *LvalueDst = Dst.getAddress(); 803 llvm::Value *src = Src.getScalarVal(); 804 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 805 return; 806 } 807 808 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 809 // load of a __strong object. 810 llvm::Value *LvalueDst = Dst.getAddress(); 811 llvm::Value *src = Src.getScalarVal(); 812 if (Dst.isObjCIvar()) { 813 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 814 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 815 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 816 llvm::Value *dst = RHS; 817 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 818 llvm::Value *LHS = 819 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 820 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 821 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 822 BytesBetween); 823 } else if (Dst.isGlobalObjCRef()) { 824 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 825 Dst.isThreadLocalRef()); 826 } 827 else 828 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 829 return; 830 } 831 832 assert(Src.isScalar() && "Can't emit an agg store with this method"); 833 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(), 834 Dst.isVolatileQualified(), Dst.getAlignment(), Ty); 835} 836 837void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 838 QualType Ty, 839 llvm::Value **Result) { 840 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 841 842 // Get the output type. 843 const llvm::Type *ResLTy = ConvertTypeForMem(Ty); 844 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 845 846 // Get the source value, truncated to the width of the bit-field. 847 llvm::Value *SrcVal = Src.getScalarVal(); 848 849 if (Ty->isBooleanType()) 850 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 851 852 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 853 Info.getSize()), 854 "bf.value"); 855 856 // Return the new value of the bit-field, if requested. 857 if (Result) { 858 // Cast back to the proper type for result. 859 const llvm::Type *SrcTy = Src.getScalarVal()->getType(); 860 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 861 "bf.reload.val"); 862 863 // Sign extend if necessary. 864 if (Info.isSigned()) { 865 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 866 if (ExtraBits) 867 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 868 ExtraBits, "bf.reload.sext"); 869 } 870 871 *Result = ReloadVal; 872 } 873 874 // Iterate over the components, writing each piece to memory. 875 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 876 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 877 878 // Get the field pointer. 879 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 880 881 // Only offset by the field index if used, so that incoming values are not 882 // required to be structures. 883 if (AI.FieldIndex) 884 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 885 886 // Offset by the byte offset, if used. 887 if (AI.FieldByteOffset) { 888 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 889 Ptr = Builder.CreateBitCast(Ptr, i8PTy); 890 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); 891 } 892 893 // Cast to the access type. 894 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(VMContext, AI.AccessWidth, 895 Ty.getAddressSpace()); 896 Ptr = Builder.CreateBitCast(Ptr, PTy); 897 898 // Extract the piece of the bit-field value to write in this access, limited 899 // to the values that are part of this access. 900 llvm::Value *Val = SrcVal; 901 if (AI.TargetBitOffset) 902 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 903 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 904 AI.TargetBitWidth)); 905 906 // Extend or truncate to the access size. 907 const llvm::Type *AccessLTy = 908 llvm::Type::getIntNTy(VMContext, AI.AccessWidth); 909 if (ResSizeInBits < AI.AccessWidth) 910 Val = Builder.CreateZExt(Val, AccessLTy); 911 else if (ResSizeInBits > AI.AccessWidth) 912 Val = Builder.CreateTrunc(Val, AccessLTy); 913 914 // Shift into the position in memory. 915 if (AI.FieldBitStart) 916 Val = Builder.CreateShl(Val, AI.FieldBitStart); 917 918 // If necessary, load and OR in bits that are outside of the bit-field. 919 if (AI.TargetBitWidth != AI.AccessWidth) { 920 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 921 if (AI.AccessAlignment) 922 Load->setAlignment(AI.AccessAlignment); 923 924 // Compute the mask for zeroing the bits that are part of the bit-field. 925 llvm::APInt InvMask = 926 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 927 AI.FieldBitStart + AI.TargetBitWidth); 928 929 // Apply the mask and OR in to the value to write. 930 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 931 } 932 933 // Write the value. 934 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 935 Dst.isVolatileQualified()); 936 if (AI.AccessAlignment) 937 Store->setAlignment(AI.AccessAlignment); 938 } 939} 940 941void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, 942 LValue Dst, 943 QualType Ty) { 944 EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src); 945} 946 947void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src, 948 LValue Dst, 949 QualType Ty) { 950 EmitObjCPropertySet(Dst.getKVCRefExpr(), Src); 951} 952 953void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 954 LValue Dst, 955 QualType Ty) { 956 // This access turns into a read/modify/write of the vector. Load the input 957 // value now. 958 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 959 Dst.isVolatileQualified(), "tmp"); 960 const llvm::Constant *Elts = Dst.getExtVectorElts(); 961 962 llvm::Value *SrcVal = Src.getScalarVal(); 963 964 if (const VectorType *VTy = Ty->getAs<VectorType>()) { 965 unsigned NumSrcElts = VTy->getNumElements(); 966 unsigned NumDstElts = 967 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 968 if (NumDstElts == NumSrcElts) { 969 // Use shuffle vector is the src and destination are the same number of 970 // elements and restore the vector mask since it is on the side it will be 971 // stored. 972 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 973 for (unsigned i = 0; i != NumSrcElts; ++i) { 974 unsigned InIdx = getAccessedFieldNo(i, Elts); 975 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 976 } 977 978 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 979 Vec = Builder.CreateShuffleVector(SrcVal, 980 llvm::UndefValue::get(Vec->getType()), 981 MaskV, "tmp"); 982 } else if (NumDstElts > NumSrcElts) { 983 // Extended the source vector to the same length and then shuffle it 984 // into the destination. 985 // FIXME: since we're shuffling with undef, can we just use the indices 986 // into that? This could be simpler. 987 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 988 unsigned i; 989 for (i = 0; i != NumSrcElts; ++i) 990 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 991 for (; i != NumDstElts; ++i) 992 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 993 llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0], 994 ExtMask.size()); 995 llvm::Value *ExtSrcVal = 996 Builder.CreateShuffleVector(SrcVal, 997 llvm::UndefValue::get(SrcVal->getType()), 998 ExtMaskV, "tmp"); 999 // build identity 1000 llvm::SmallVector<llvm::Constant*, 4> Mask; 1001 for (unsigned i = 0; i != NumDstElts; ++i) 1002 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1003 1004 // modify when what gets shuffled in 1005 for (unsigned i = 0; i != NumSrcElts; ++i) { 1006 unsigned Idx = getAccessedFieldNo(i, Elts); 1007 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1008 } 1009 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 1010 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 1011 } else { 1012 // We should never shorten the vector 1013 assert(0 && "unexpected shorten vector length"); 1014 } 1015 } else { 1016 // If the Src is a scalar (not a vector) it must be updating one element. 1017 unsigned InIdx = getAccessedFieldNo(0, Elts); 1018 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1019 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 1020 } 1021 1022 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1023} 1024 1025// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1026// generating write-barries API. It is currently a global, ivar, 1027// or neither. 1028static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1029 LValue &LV) { 1030 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 1031 return; 1032 1033 if (isa<ObjCIvarRefExpr>(E)) { 1034 LV.setObjCIvar(true); 1035 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1036 LV.setBaseIvarExp(Exp->getBase()); 1037 LV.setObjCArray(E->getType()->isArrayType()); 1038 return; 1039 } 1040 1041 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1042 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1043 if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) || 1044 VD->isFileVarDecl()) { 1045 LV.setGlobalObjCRef(true); 1046 LV.setThreadLocalRef(VD->isThreadSpecified()); 1047 } 1048 } 1049 LV.setObjCArray(E->getType()->isArrayType()); 1050 return; 1051 } 1052 1053 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1054 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1055 return; 1056 } 1057 1058 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1059 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1060 if (LV.isObjCIvar()) { 1061 // If cast is to a structure pointer, follow gcc's behavior and make it 1062 // a non-ivar write-barrier. 1063 QualType ExpTy = E->getType(); 1064 if (ExpTy->isPointerType()) 1065 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1066 if (ExpTy->isRecordType()) 1067 LV.setObjCIvar(false); 1068 } 1069 return; 1070 } 1071 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1072 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1073 return; 1074 } 1075 1076 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1077 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1078 return; 1079 } 1080 1081 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1082 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1083 if (LV.isObjCIvar() && !LV.isObjCArray()) 1084 // Using array syntax to assigning to what an ivar points to is not 1085 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1086 LV.setObjCIvar(false); 1087 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1088 // Using array syntax to assigning to what global points to is not 1089 // same as assigning to the global itself. {id *G;} G[i] = 0; 1090 LV.setGlobalObjCRef(false); 1091 return; 1092 } 1093 1094 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1095 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1096 // We don't know if member is an 'ivar', but this flag is looked at 1097 // only in the context of LV.isObjCIvar(). 1098 LV.setObjCArray(E->getType()->isArrayType()); 1099 return; 1100 } 1101} 1102 1103static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1104 const Expr *E, const VarDecl *VD) { 1105 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1106 "Var decl must have external storage or be a file var decl!"); 1107 1108 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1109 if (VD->getType()->isReferenceType()) 1110 V = CGF.Builder.CreateLoad(V, "tmp"); 1111 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); 1112 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1113 setObjCGCLValueClass(CGF.getContext(), E, LV); 1114 return LV; 1115} 1116 1117static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1118 const Expr *E, const FunctionDecl *FD) { 1119 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1120 if (!FD->hasPrototype()) { 1121 if (const FunctionProtoType *Proto = 1122 FD->getType()->getAs<FunctionProtoType>()) { 1123 // Ugly case: for a K&R-style definition, the type of the definition 1124 // isn't the same as the type of a use. Correct for this with a 1125 // bitcast. 1126 QualType NoProtoType = 1127 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1128 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1129 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); 1130 } 1131 } 1132 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); 1133 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1134} 1135 1136LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1137 const NamedDecl *ND = E->getDecl(); 1138 unsigned Alignment = CGF.getContext().getDeclAlign(ND).getQuantity(); 1139 1140 if (ND->hasAttr<WeakRefAttr>()) { 1141 const ValueDecl *VD = cast<ValueDecl>(ND); 1142 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1143 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1144 } 1145 1146 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1147 1148 // Check if this is a global variable. 1149 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1150 return EmitGlobalVarDeclLValue(*this, E, VD); 1151 1152 bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>(); 1153 1154 llvm::Value *V = LocalDeclMap[VD]; 1155 if (!V && VD->isStaticLocal()) 1156 V = CGM.getStaticLocalDeclAddress(VD); 1157 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1158 1159 if (VD->hasAttr<BlocksAttr>()) { 1160 V = Builder.CreateStructGEP(V, 1, "forwarding"); 1161 V = Builder.CreateLoad(V); 1162 V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD), 1163 VD->getNameAsString()); 1164 } 1165 if (VD->getType()->isReferenceType()) 1166 V = Builder.CreateLoad(V, "tmp"); 1167 1168 LValue LV = MakeAddrLValue(V, E->getType(), Alignment); 1169 if (NonGCable) { 1170 LV.getQuals().removeObjCGCAttr(); 1171 LV.setNonGC(true); 1172 } 1173 setObjCGCLValueClass(getContext(), E, LV); 1174 return LV; 1175 } 1176 1177 // If we're emitting an instance method as an independent lvalue, 1178 // we're actually emitting a member pointer. 1179 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 1180 if (MD->isInstance()) { 1181 llvm::Value *V = CGM.getCXXABI().EmitMemberPointer(MD); 1182 return MakeAddrLValue(V, MD->getType(), Alignment); 1183 } 1184 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1185 return EmitFunctionDeclLValue(*this, E, FD); 1186 1187 // If we're emitting a field as an independent lvalue, we're 1188 // actually emitting a member pointer. 1189 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ND)) { 1190 llvm::Value *V = CGM.getCXXABI().EmitMemberPointer(FD); 1191 return MakeAddrLValue(V, FD->getType(), Alignment); 1192 } 1193 1194 assert(false && "Unhandled DeclRefExpr"); 1195 1196 // an invalid LValue, but the assert will 1197 // ensure that this point is never reached. 1198 return LValue(); 1199} 1200 1201LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1202 unsigned Alignment = 1203 CGF.getContext().getDeclAlign(E->getDecl()).getQuantity(); 1204 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1205} 1206 1207LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1208 // __extension__ doesn't affect lvalue-ness. 1209 if (E->getOpcode() == UO_Extension) 1210 return EmitLValue(E->getSubExpr()); 1211 1212 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1213 switch (E->getOpcode()) { 1214 default: assert(0 && "Unknown unary operator lvalue!"); 1215 case UO_Deref: { 1216 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1217 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1218 1219 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1220 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1221 1222 // We should not generate __weak write barrier on indirect reference 1223 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1224 // But, we continue to generate __strong write barrier on indirect write 1225 // into a pointer to object. 1226 if (getContext().getLangOptions().ObjC1 && 1227 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 1228 LV.isObjCWeak()) 1229 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1230 return LV; 1231 } 1232 case UO_Real: 1233 case UO_Imag: { 1234 LValue LV = EmitLValue(E->getSubExpr()); 1235 unsigned Idx = E->getOpcode() == UO_Imag; 1236 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1237 Idx, "idx"), 1238 ExprTy); 1239 } 1240 case UO_PreInc: 1241 case UO_PreDec: { 1242 LValue LV = EmitLValue(E->getSubExpr()); 1243 bool isInc = E->getOpcode() == UO_PreInc; 1244 1245 if (E->getType()->isAnyComplexType()) 1246 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1247 else 1248 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1249 return LV; 1250 } 1251 } 1252} 1253 1254LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1255 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1256 E->getType()); 1257} 1258 1259LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1260 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1261 E->getType()); 1262} 1263 1264 1265LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1266 switch (E->getIdentType()) { 1267 default: 1268 return EmitUnsupportedLValue(E, "predefined expression"); 1269 1270 case PredefinedExpr::Func: 1271 case PredefinedExpr::Function: 1272 case PredefinedExpr::PrettyFunction: { 1273 unsigned Type = E->getIdentType(); 1274 std::string GlobalVarName; 1275 1276 switch (Type) { 1277 default: assert(0 && "Invalid type"); 1278 case PredefinedExpr::Func: 1279 GlobalVarName = "__func__."; 1280 break; 1281 case PredefinedExpr::Function: 1282 GlobalVarName = "__FUNCTION__."; 1283 break; 1284 case PredefinedExpr::PrettyFunction: 1285 GlobalVarName = "__PRETTY_FUNCTION__."; 1286 break; 1287 } 1288 1289 llvm::StringRef FnName = CurFn->getName(); 1290 if (FnName.startswith("\01")) 1291 FnName = FnName.substr(1); 1292 GlobalVarName += FnName; 1293 1294 const Decl *CurDecl = CurCodeDecl; 1295 if (CurDecl == 0) 1296 CurDecl = getContext().getTranslationUnitDecl(); 1297 1298 std::string FunctionName = 1299 PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl); 1300 1301 llvm::Constant *C = 1302 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1303 return MakeAddrLValue(C, E->getType()); 1304 } 1305 } 1306} 1307 1308llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1309 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1310 1311 // If we are not optimzing, don't collapse all calls to trap in the function 1312 // to the same call, that way, in the debugger they can see which operation 1313 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1314 // to just one per function to save on codesize. 1315 if (GCO.OptimizationLevel && TrapBB) 1316 return TrapBB; 1317 1318 llvm::BasicBlock *Cont = 0; 1319 if (HaveInsertPoint()) { 1320 Cont = createBasicBlock("cont"); 1321 EmitBranch(Cont); 1322 } 1323 TrapBB = createBasicBlock("trap"); 1324 EmitBlock(TrapBB); 1325 1326 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0); 1327 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1328 TrapCall->setDoesNotReturn(); 1329 TrapCall->setDoesNotThrow(); 1330 Builder.CreateUnreachable(); 1331 1332 if (Cont) 1333 EmitBlock(Cont); 1334 return TrapBB; 1335} 1336 1337/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1338/// array to pointer, return the array subexpression. 1339static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1340 // If this isn't just an array->pointer decay, bail out. 1341 const CastExpr *CE = dyn_cast<CastExpr>(E); 1342 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1343 return 0; 1344 1345 // If this is a decay from variable width array, bail out. 1346 const Expr *SubExpr = CE->getSubExpr(); 1347 if (SubExpr->getType()->isVariableArrayType()) 1348 return 0; 1349 1350 return SubExpr; 1351} 1352 1353LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1354 // The index must always be an integer, which is not an aggregate. Emit it. 1355 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1356 QualType IdxTy = E->getIdx()->getType(); 1357 bool IdxSigned = IdxTy->isSignedIntegerType(); 1358 1359 // If the base is a vector type, then we are forming a vector element lvalue 1360 // with this subscript. 1361 if (E->getBase()->getType()->isVectorType()) { 1362 // Emit the vector as an lvalue to get its address. 1363 LValue LHS = EmitLValue(E->getBase()); 1364 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1365 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vidx"); 1366 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1367 E->getBase()->getType().getCVRQualifiers()); 1368 } 1369 1370 // Extend or truncate the index type to 32 or 64-bits. 1371 if (!Idx->getType()->isIntegerTy(LLVMPointerWidth)) 1372 Idx = Builder.CreateIntCast(Idx, IntPtrTy, 1373 IdxSigned, "idxprom"); 1374 1375 // FIXME: As llvm implements the object size checking, this can come out. 1376 if (CatchUndefined) { 1377 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1378 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1379 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1380 if (const ConstantArrayType *CAT 1381 = getContext().getAsConstantArrayType(DRE->getType())) { 1382 llvm::APInt Size = CAT->getSize(); 1383 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1384 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1385 llvm::ConstantInt::get(Idx->getType(), Size)), 1386 Cont, getTrapBB()); 1387 EmitBlock(Cont); 1388 } 1389 } 1390 } 1391 } 1392 } 1393 1394 // We know that the pointer points to a type of the correct size, unless the 1395 // size is a VLA or Objective-C interface. 1396 llvm::Value *Address = 0; 1397 if (const VariableArrayType *VAT = 1398 getContext().getAsVariableArrayType(E->getType())) { 1399 llvm::Value *VLASize = GetVLASize(VAT); 1400 1401 Idx = Builder.CreateMul(Idx, VLASize); 1402 1403 QualType BaseType = getContext().getBaseElementType(VAT); 1404 1405 CharUnits BaseTypeSize = getContext().getTypeSizeInChars(BaseType); 1406 Idx = Builder.CreateUDiv(Idx, 1407 llvm::ConstantInt::get(Idx->getType(), 1408 BaseTypeSize.getQuantity())); 1409 1410 // The base must be a pointer, which is not an aggregate. Emit it. 1411 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1412 1413 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1414 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1415 // Indexing over an interface, as in "NSString *P; P[4];" 1416 llvm::Value *InterfaceSize = 1417 llvm::ConstantInt::get(Idx->getType(), 1418 getContext().getTypeSizeInChars(OIT).getQuantity()); 1419 1420 Idx = Builder.CreateMul(Idx, InterfaceSize); 1421 1422 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 1423 1424 // The base must be a pointer, which is not an aggregate. Emit it. 1425 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1426 Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy), 1427 Idx, "arrayidx"); 1428 Address = Builder.CreateBitCast(Address, Base->getType()); 1429 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1430 // If this is A[i] where A is an array, the frontend will have decayed the 1431 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1432 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1433 // "gep x, i" here. Emit one "gep A, 0, i". 1434 assert(Array->getType()->isArrayType() && 1435 "Array to pointer decay must have array source type!"); 1436 llvm::Value *ArrayPtr = EmitLValue(Array).getAddress(); 1437 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1438 llvm::Value *Args[] = { Zero, Idx }; 1439 1440 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1441 } else { 1442 // The base must be a pointer, which is not an aggregate. Emit it. 1443 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1444 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1445 } 1446 1447 QualType T = E->getBase()->getType()->getPointeeType(); 1448 assert(!T.isNull() && 1449 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1450 1451 LValue LV = MakeAddrLValue(Address, T); 1452 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1453 1454 if (getContext().getLangOptions().ObjC1 && 1455 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1456 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1457 setObjCGCLValueClass(getContext(), E, LV); 1458 } 1459 return LV; 1460} 1461 1462static 1463llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1464 llvm::SmallVector<unsigned, 4> &Elts) { 1465 llvm::SmallVector<llvm::Constant*, 4> CElts; 1466 1467 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1468 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1469 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1470 1471 return llvm::ConstantVector::get(&CElts[0], CElts.size()); 1472} 1473 1474LValue CodeGenFunction:: 1475EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1476 // Emit the base vector as an l-value. 1477 LValue Base; 1478 1479 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1480 if (E->isArrow()) { 1481 // If it is a pointer to a vector, emit the address and form an lvalue with 1482 // it. 1483 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1484 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1485 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1486 Base.getQuals().removeObjCGCAttr(); 1487 } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) { 1488 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1489 // emit the base as an lvalue. 1490 assert(E->getBase()->getType()->isVectorType()); 1491 Base = EmitLValue(E->getBase()); 1492 } else { 1493 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1494 assert(E->getBase()->getType()->getAs<VectorType>() && 1495 "Result must be a vector"); 1496 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1497 1498 // Store the vector to memory (because LValue wants an address). 1499 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1500 Builder.CreateStore(Vec, VecMem); 1501 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1502 } 1503 1504 // Encode the element access list into a vector of unsigned indices. 1505 llvm::SmallVector<unsigned, 4> Indices; 1506 E->getEncodedElementAccess(Indices); 1507 1508 if (Base.isSimple()) { 1509 llvm::Constant *CV = GenerateConstantVector(VMContext, Indices); 1510 return LValue::MakeExtVectorElt(Base.getAddress(), CV, 1511 Base.getVRQualifiers()); 1512 } 1513 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1514 1515 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1516 llvm::SmallVector<llvm::Constant *, 4> CElts; 1517 1518 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1519 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1520 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1521 else 1522 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1523 } 1524 llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size()); 1525 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, 1526 Base.getVRQualifiers()); 1527} 1528 1529LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1530 bool isNonGC = false; 1531 Expr *BaseExpr = E->getBase(); 1532 llvm::Value *BaseValue = NULL; 1533 Qualifiers BaseQuals; 1534 1535 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1536 if (E->isArrow()) { 1537 BaseValue = EmitScalarExpr(BaseExpr); 1538 const PointerType *PTy = 1539 BaseExpr->getType()->getAs<PointerType>(); 1540 BaseQuals = PTy->getPointeeType().getQualifiers(); 1541 } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) || 1542 isa<ObjCImplicitSetterGetterRefExpr>( 1543 BaseExpr->IgnoreParens())) { 1544 RValue RV = EmitObjCPropertyGet(BaseExpr); 1545 BaseValue = RV.getAggregateAddr(); 1546 BaseQuals = BaseExpr->getType().getQualifiers(); 1547 } else { 1548 LValue BaseLV = EmitLValue(BaseExpr); 1549 if (BaseLV.isNonGC()) 1550 isNonGC = true; 1551 // FIXME: this isn't right for bitfields. 1552 BaseValue = BaseLV.getAddress(); 1553 QualType BaseTy = BaseExpr->getType(); 1554 BaseQuals = BaseTy.getQualifiers(); 1555 } 1556 1557 NamedDecl *ND = E->getMemberDecl(); 1558 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1559 LValue LV = EmitLValueForField(BaseValue, Field, 1560 BaseQuals.getCVRQualifiers()); 1561 LV.setNonGC(isNonGC); 1562 setObjCGCLValueClass(getContext(), E, LV); 1563 return LV; 1564 } 1565 1566 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1567 return EmitGlobalVarDeclLValue(*this, E, VD); 1568 1569 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1570 return EmitFunctionDeclLValue(*this, E, FD); 1571 1572 assert(false && "Unhandled member declaration!"); 1573 return LValue(); 1574} 1575 1576LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1577 const FieldDecl *Field, 1578 unsigned CVRQualifiers) { 1579 const CGRecordLayout &RL = 1580 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1581 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1582 return LValue::MakeBitfield(BaseValue, Info, 1583 Field->getType().getCVRQualifiers()|CVRQualifiers); 1584} 1585 1586/// EmitLValueForAnonRecordField - Given that the field is a member of 1587/// an anonymous struct or union buried inside a record, and given 1588/// that the base value is a pointer to the enclosing record, derive 1589/// an lvalue for the ultimate field. 1590LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1591 const FieldDecl *Field, 1592 unsigned CVRQualifiers) { 1593 llvm::SmallVector<const FieldDecl *, 8> Path; 1594 Path.push_back(Field); 1595 1596 while (Field->getParent()->isAnonymousStructOrUnion()) { 1597 const ValueDecl *VD = Field->getParent()->getAnonymousStructOrUnionObject(); 1598 if (!isa<FieldDecl>(VD)) break; 1599 Field = cast<FieldDecl>(VD); 1600 Path.push_back(Field); 1601 } 1602 1603 llvm::SmallVectorImpl<const FieldDecl*>::reverse_iterator 1604 I = Path.rbegin(), E = Path.rend(); 1605 while (true) { 1606 LValue LV = EmitLValueForField(BaseValue, *I, CVRQualifiers); 1607 if (++I == E) return LV; 1608 1609 assert(LV.isSimple()); 1610 BaseValue = LV.getAddress(); 1611 CVRQualifiers |= LV.getVRQualifiers(); 1612 } 1613} 1614 1615LValue CodeGenFunction::EmitLValueForField(llvm::Value *BaseValue, 1616 const FieldDecl *Field, 1617 unsigned CVRQualifiers) { 1618 if (Field->isBitField()) 1619 return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers); 1620 1621 const CGRecordLayout &RL = 1622 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1623 unsigned idx = RL.getLLVMFieldNo(Field); 1624 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1625 1626 // Match union field type. 1627 if (Field->getParent()->isUnion()) { 1628 const llvm::Type *FieldTy = 1629 CGM.getTypes().ConvertTypeForMem(Field->getType()); 1630 const llvm::PointerType *BaseTy = 1631 cast<llvm::PointerType>(BaseValue->getType()); 1632 unsigned AS = BaseTy->getAddressSpace(); 1633 V = Builder.CreateBitCast(V, 1634 llvm::PointerType::get(FieldTy, AS), 1635 "tmp"); 1636 } 1637 if (Field->getType()->isReferenceType()) 1638 V = Builder.CreateLoad(V, "tmp"); 1639 1640 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1641 LValue LV = MakeAddrLValue(V, Field->getType(), Alignment); 1642 LV.getQuals().addCVRQualifiers(CVRQualifiers); 1643 1644 // __weak attribute on a field is ignored. 1645 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1646 LV.getQuals().removeObjCGCAttr(); 1647 1648 return LV; 1649} 1650 1651LValue 1652CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1653 const FieldDecl *Field, 1654 unsigned CVRQualifiers) { 1655 QualType FieldType = Field->getType(); 1656 1657 if (!FieldType->isReferenceType()) 1658 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1659 1660 const CGRecordLayout &RL = 1661 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1662 unsigned idx = RL.getLLVMFieldNo(Field); 1663 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1664 1665 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1666 1667 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1668 return MakeAddrLValue(V, FieldType, Alignment); 1669} 1670 1671LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1672 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1673 const Expr *InitExpr = E->getInitializer(); 1674 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1675 1676 EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false); 1677 1678 return Result; 1679} 1680 1681LValue 1682CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator *E) { 1683 if (E->isLvalue(getContext()) == Expr::LV_Valid) { 1684 if (int Cond = ConstantFoldsToSimpleInteger(E->getCond())) { 1685 Expr *Live = Cond == 1 ? E->getLHS() : E->getRHS(); 1686 if (Live) 1687 return EmitLValue(Live); 1688 } 1689 1690 if (!E->getLHS()) 1691 return EmitUnsupportedLValue(E, "conditional operator with missing LHS"); 1692 1693 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1694 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1695 llvm::BasicBlock *ContBlock = createBasicBlock("cond.end"); 1696 1697 EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 1698 1699 // Any temporaries created here are conditional. 1700 BeginConditionalBranch(); 1701 EmitBlock(LHSBlock); 1702 LValue LHS = EmitLValue(E->getLHS()); 1703 EndConditionalBranch(); 1704 1705 if (!LHS.isSimple()) 1706 return EmitUnsupportedLValue(E, "conditional operator"); 1707 1708 // FIXME: We shouldn't need an alloca for this. 1709 llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp"); 1710 Builder.CreateStore(LHS.getAddress(), Temp); 1711 EmitBranch(ContBlock); 1712 1713 // Any temporaries created here are conditional. 1714 BeginConditionalBranch(); 1715 EmitBlock(RHSBlock); 1716 LValue RHS = EmitLValue(E->getRHS()); 1717 EndConditionalBranch(); 1718 if (!RHS.isSimple()) 1719 return EmitUnsupportedLValue(E, "conditional operator"); 1720 1721 Builder.CreateStore(RHS.getAddress(), Temp); 1722 EmitBranch(ContBlock); 1723 1724 EmitBlock(ContBlock); 1725 1726 Temp = Builder.CreateLoad(Temp, "lv"); 1727 return MakeAddrLValue(Temp, E->getType()); 1728 } 1729 1730 // ?: here should be an aggregate. 1731 assert((hasAggregateLLVMType(E->getType()) && 1732 !E->getType()->isAnyComplexType()) && 1733 "Unexpected conditional operator!"); 1734 1735 return EmitAggExprToLValue(E); 1736} 1737 1738/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1739/// If the cast is a dynamic_cast, we can have the usual lvalue result, 1740/// otherwise if a cast is needed by the code generator in an lvalue context, 1741/// then it must mean that we need the address of an aggregate in order to 1742/// access one of its fields. This can happen for all the reasons that casts 1743/// are permitted with aggregate result, including noop aggregate casts, and 1744/// cast from scalar to union. 1745LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1746 switch (E->getCastKind()) { 1747 case CK_ToVoid: 1748 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1749 1750 case CK_NoOp: 1751 if (E->getSubExpr()->Classify(getContext()).getKind() 1752 != Expr::Classification::CL_PRValue) { 1753 LValue LV = EmitLValue(E->getSubExpr()); 1754 if (LV.isPropertyRef() || LV.isKVCRef()) { 1755 QualType QT = E->getSubExpr()->getType(); 1756 RValue RV = 1757 LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT) 1758 : EmitLoadOfKVCRefLValue(LV, QT); 1759 assert(!RV.isScalar() && "EmitCastLValue-scalar cast of property ref"); 1760 llvm::Value *V = RV.getAggregateAddr(); 1761 return MakeAddrLValue(V, QT); 1762 } 1763 return LV; 1764 } 1765 // Fall through to synthesize a temporary. 1766 1767 case CK_Unknown: 1768 case CK_BitCast: 1769 case CK_ArrayToPointerDecay: 1770 case CK_FunctionToPointerDecay: 1771 case CK_NullToMemberPointer: 1772 case CK_IntegralToPointer: 1773 case CK_PointerToIntegral: 1774 case CK_VectorSplat: 1775 case CK_IntegralCast: 1776 case CK_IntegralToFloating: 1777 case CK_FloatingToIntegral: 1778 case CK_FloatingCast: 1779 case CK_DerivedToBaseMemberPointer: 1780 case CK_BaseToDerivedMemberPointer: 1781 case CK_MemberPointerToBoolean: 1782 case CK_AnyPointerToBlockPointerCast: { 1783 // These casts only produce lvalues when we're binding a reference to a 1784 // temporary realized from a (converted) pure rvalue. Emit the expression 1785 // as a value, copy it into a temporary, and return an lvalue referring to 1786 // that temporary. 1787 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 1788 EmitAnyExprToMem(E, V, false, false); 1789 return MakeAddrLValue(V, E->getType()); 1790 } 1791 1792 case CK_Dynamic: { 1793 LValue LV = EmitLValue(E->getSubExpr()); 1794 llvm::Value *V = LV.getAddress(); 1795 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 1796 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 1797 } 1798 1799 case CK_ConstructorConversion: 1800 case CK_UserDefinedConversion: 1801 case CK_AnyPointerToObjCPointerCast: 1802 return EmitLValue(E->getSubExpr()); 1803 1804 case CK_UncheckedDerivedToBase: 1805 case CK_DerivedToBase: { 1806 const RecordType *DerivedClassTy = 1807 E->getSubExpr()->getType()->getAs<RecordType>(); 1808 CXXRecordDecl *DerivedClassDecl = 1809 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1810 1811 LValue LV = EmitLValue(E->getSubExpr()); 1812 llvm::Value *This; 1813 if (LV.isPropertyRef() || LV.isKVCRef()) { 1814 QualType QT = E->getSubExpr()->getType(); 1815 RValue RV = 1816 LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT) 1817 : EmitLoadOfKVCRefLValue(LV, QT); 1818 assert (!RV.isScalar() && "EmitCastLValue"); 1819 This = RV.getAggregateAddr(); 1820 } 1821 else 1822 This = LV.getAddress(); 1823 1824 // Perform the derived-to-base conversion 1825 llvm::Value *Base = 1826 GetAddressOfBaseClass(This, DerivedClassDecl, 1827 E->path_begin(), E->path_end(), 1828 /*NullCheckValue=*/false); 1829 1830 return MakeAddrLValue(Base, E->getType()); 1831 } 1832 case CK_ToUnion: 1833 return EmitAggExprToLValue(E); 1834 case CK_BaseToDerived: { 1835 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 1836 CXXRecordDecl *DerivedClassDecl = 1837 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1838 1839 LValue LV = EmitLValue(E->getSubExpr()); 1840 1841 // Perform the base-to-derived conversion 1842 llvm::Value *Derived = 1843 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 1844 E->path_begin(), E->path_end(), 1845 /*NullCheckValue=*/false); 1846 1847 return MakeAddrLValue(Derived, E->getType()); 1848 } 1849 case CK_LValueBitCast: { 1850 // This must be a reinterpret_cast (or c-style equivalent). 1851 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 1852 1853 LValue LV = EmitLValue(E->getSubExpr()); 1854 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1855 ConvertType(CE->getTypeAsWritten())); 1856 return MakeAddrLValue(V, E->getType()); 1857 } 1858 case CK_ObjCObjectLValueCast: { 1859 LValue LV = EmitLValue(E->getSubExpr()); 1860 QualType ToType = getContext().getLValueReferenceType(E->getType()); 1861 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1862 ConvertType(ToType)); 1863 return MakeAddrLValue(V, E->getType()); 1864 } 1865 } 1866 1867 llvm_unreachable("Unhandled lvalue cast kind?"); 1868} 1869 1870LValue CodeGenFunction::EmitNullInitializationLValue( 1871 const CXXScalarValueInitExpr *E) { 1872 QualType Ty = E->getType(); 1873 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 1874 EmitNullInitialization(LV.getAddress(), Ty); 1875 return LV; 1876} 1877 1878//===--------------------------------------------------------------------===// 1879// Expression Emission 1880//===--------------------------------------------------------------------===// 1881 1882 1883RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 1884 ReturnValueSlot ReturnValue) { 1885 // Builtins never have block type. 1886 if (E->getCallee()->getType()->isBlockPointerType()) 1887 return EmitBlockCallExpr(E, ReturnValue); 1888 1889 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 1890 return EmitCXXMemberCallExpr(CE, ReturnValue); 1891 1892 const Decl *TargetDecl = 0; 1893 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 1894 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 1895 TargetDecl = DRE->getDecl(); 1896 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 1897 if (unsigned builtinID = FD->getBuiltinID()) 1898 return EmitBuiltinExpr(FD, builtinID, E); 1899 } 1900 } 1901 1902 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 1903 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 1904 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 1905 1906 if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 1907 // C++ [expr.pseudo]p1: 1908 // The result shall only be used as the operand for the function call 1909 // operator (), and the result of such a call has type void. The only 1910 // effect is the evaluation of the postfix-expression before the dot or 1911 // arrow. 1912 EmitScalarExpr(E->getCallee()); 1913 return RValue::get(0); 1914 } 1915 1916 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 1917 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 1918 E->arg_begin(), E->arg_end(), TargetDecl); 1919} 1920 1921LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 1922 // Comma expressions just emit their LHS then their RHS as an l-value. 1923 if (E->getOpcode() == BO_Comma) { 1924 EmitAnyExpr(E->getLHS()); 1925 EnsureInsertPoint(); 1926 return EmitLValue(E->getRHS()); 1927 } 1928 1929 if (E->getOpcode() == BO_PtrMemD || 1930 E->getOpcode() == BO_PtrMemI) 1931 return EmitPointerToDataMemberBinaryExpr(E); 1932 1933 // Can only get l-value for binary operator expressions which are a 1934 // simple assignment of aggregate type. 1935 if (E->getOpcode() != BO_Assign) 1936 return EmitUnsupportedLValue(E, "binary l-value expression"); 1937 1938 if (!hasAggregateLLVMType(E->getType())) { 1939 // Emit the LHS as an l-value. 1940 LValue LV = EmitLValue(E->getLHS()); 1941 // Store the value through the l-value. 1942 EmitStoreThroughLValue(EmitAnyExpr(E->getRHS()), LV, E->getType()); 1943 return LV; 1944 } 1945 1946 return EmitAggExprToLValue(E); 1947} 1948 1949LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 1950 RValue RV = EmitCallExpr(E); 1951 1952 if (!RV.isScalar()) 1953 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1954 1955 assert(E->getCallReturnType()->isReferenceType() && 1956 "Can't have a scalar return unless the return type is a " 1957 "reference type!"); 1958 1959 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 1960} 1961 1962LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 1963 // FIXME: This shouldn't require another copy. 1964 return EmitAggExprToLValue(E); 1965} 1966 1967LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 1968 llvm::Value *Temp = CreateMemTemp(E->getType(), "tmp"); 1969 EmitCXXConstructExpr(Temp, E); 1970 return MakeAddrLValue(Temp, E->getType()); 1971} 1972 1973LValue 1974CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 1975 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 1976} 1977 1978LValue 1979CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 1980 LValue LV = EmitLValue(E->getSubExpr()); 1981 EmitCXXTemporary(E->getTemporary(), LV.getAddress()); 1982 return LV; 1983} 1984 1985LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 1986 RValue RV = EmitObjCMessageExpr(E); 1987 1988 if (!RV.isScalar()) 1989 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1990 1991 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 1992 "Can't have a scalar return unless the return type is a " 1993 "reference type!"); 1994 1995 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 1996} 1997 1998LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 1999 llvm::Value *V = 2000 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2001 return MakeAddrLValue(V, E->getType()); 2002} 2003 2004llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2005 const ObjCIvarDecl *Ivar) { 2006 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2007} 2008 2009LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2010 llvm::Value *BaseValue, 2011 const ObjCIvarDecl *Ivar, 2012 unsigned CVRQualifiers) { 2013 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2014 Ivar, CVRQualifiers); 2015} 2016 2017LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2018 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2019 llvm::Value *BaseValue = 0; 2020 const Expr *BaseExpr = E->getBase(); 2021 Qualifiers BaseQuals; 2022 QualType ObjectTy; 2023 if (E->isArrow()) { 2024 BaseValue = EmitScalarExpr(BaseExpr); 2025 ObjectTy = BaseExpr->getType()->getPointeeType(); 2026 BaseQuals = ObjectTy.getQualifiers(); 2027 } else { 2028 LValue BaseLV = EmitLValue(BaseExpr); 2029 // FIXME: this isn't right for bitfields. 2030 BaseValue = BaseLV.getAddress(); 2031 ObjectTy = BaseExpr->getType(); 2032 BaseQuals = ObjectTy.getQualifiers(); 2033 } 2034 2035 LValue LV = 2036 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2037 BaseQuals.getCVRQualifiers()); 2038 setObjCGCLValueClass(getContext(), E, LV); 2039 return LV; 2040} 2041 2042LValue 2043CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { 2044 // This is a special l-value that just issues sends when we load or store 2045 // through it. 2046 return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers()); 2047} 2048 2049LValue CodeGenFunction::EmitObjCKVCRefLValue( 2050 const ObjCImplicitSetterGetterRefExpr *E) { 2051 // This is a special l-value that just issues sends when we load or store 2052 // through it. 2053 return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers()); 2054} 2055 2056LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) { 2057 return EmitUnsupportedLValue(E, "use of super"); 2058} 2059 2060LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2061 // Can only get l-value for message expression returning aggregate type 2062 RValue RV = EmitAnyExprToTemp(E); 2063 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2064} 2065 2066RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2067 ReturnValueSlot ReturnValue, 2068 CallExpr::const_arg_iterator ArgBeg, 2069 CallExpr::const_arg_iterator ArgEnd, 2070 const Decl *TargetDecl) { 2071 // Get the actual function type. The callee type will always be a pointer to 2072 // function type or a block pointer type. 2073 assert(CalleeType->isFunctionPointerType() && 2074 "Call must have function pointer type!"); 2075 2076 CalleeType = getContext().getCanonicalType(CalleeType); 2077 2078 const FunctionType *FnType 2079 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2080 QualType ResultType = FnType->getResultType(); 2081 2082 CallArgList Args; 2083 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2084 2085 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), 2086 Callee, ReturnValue, Args, TargetDecl); 2087} 2088 2089LValue CodeGenFunction:: 2090EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2091 llvm::Value *BaseV; 2092 if (E->getOpcode() == BO_PtrMemI) 2093 BaseV = EmitScalarExpr(E->getLHS()); 2094 else 2095 BaseV = EmitLValue(E->getLHS()).getAddress(); 2096 2097 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2098 2099 const MemberPointerType *MPT 2100 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2101 2102 llvm::Value *AddV = 2103 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2104 2105 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2106} 2107 2108