CGExpr.cpp revision 28ad063b279378b19cb0704f977429df366a151e
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Basic/ConvertUTF.h" 25#include "clang/Frontend/CodeGenOptions.h" 26#include "llvm/Intrinsics.h" 27#include "llvm/LLVMContext.h" 28#include "llvm/Support/MDBuilder.h" 29#include "llvm/Target/TargetData.h" 30using namespace clang; 31using namespace CodeGen; 32 33//===--------------------------------------------------------------------===// 34// Miscellaneous Helper Methods 35//===--------------------------------------------------------------------===// 36 37llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 38 unsigned addressSpace = 39 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 40 41 llvm::PointerType *destType = Int8PtrTy; 42 if (addressSpace) 43 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 44 45 if (value->getType() == destType) return value; 46 return Builder.CreateBitCast(value, destType); 47} 48 49/// CreateTempAlloca - This creates a alloca and inserts it into the entry 50/// block. 51llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 52 const Twine &Name) { 53 if (!Builder.isNamePreserving()) 54 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 55 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 56} 57 58void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 59 llvm::Value *Init) { 60 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 61 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 62 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 63} 64 65llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 66 const Twine &Name) { 67 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 68 // FIXME: Should we prefer the preferred type alignment here? 69 CharUnits Align = getContext().getTypeAlignInChars(Ty); 70 Alloc->setAlignment(Align.getQuantity()); 71 return Alloc; 72} 73 74llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 75 const Twine &Name) { 76 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 77 // FIXME: Should we prefer the preferred type alignment here? 78 CharUnits Align = getContext().getTypeAlignInChars(Ty); 79 Alloc->setAlignment(Align.getQuantity()); 80 return Alloc; 81} 82 83/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 84/// expression and compare the result against zero, returning an Int1Ty value. 85llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 86 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 87 llvm::Value *MemPtr = EmitScalarExpr(E); 88 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 89 } 90 91 QualType BoolTy = getContext().BoolTy; 92 if (!E->getType()->isAnyComplexType()) 93 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 94 95 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 96} 97 98/// EmitIgnoredExpr - Emit code to compute the specified expression, 99/// ignoring the result. 100void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 101 if (E->isRValue()) 102 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 103 104 // Just emit it as an l-value and drop the result. 105 EmitLValue(E); 106} 107 108/// EmitAnyExpr - Emit code to compute the specified expression which 109/// can have any type. The result is returned as an RValue struct. 110/// If this is an aggregate expression, AggSlot indicates where the 111/// result should be returned. 112RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 113 bool IgnoreResult) { 114 if (!hasAggregateLLVMType(E->getType())) 115 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 116 else if (E->getType()->isAnyComplexType()) 117 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 118 119 EmitAggExpr(E, AggSlot, IgnoreResult); 120 return AggSlot.asRValue(); 121} 122 123/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 124/// always be accessible even if no aggregate location is provided. 125RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 126 AggValueSlot AggSlot = AggValueSlot::ignored(); 127 128 if (hasAggregateLLVMType(E->getType()) && 129 !E->getType()->isAnyComplexType()) 130 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 131 return EmitAnyExpr(E, AggSlot); 132} 133 134/// EmitAnyExprToMem - Evaluate an expression into a given memory 135/// location. 136void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 137 llvm::Value *Location, 138 Qualifiers Quals, 139 bool IsInit) { 140 // FIXME: This function should take an LValue as an argument. 141 if (E->getType()->isAnyComplexType()) { 142 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 143 } else if (hasAggregateLLVMType(E->getType())) { 144 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 145 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 146 AggValueSlot::IsDestructed_t(IsInit), 147 AggValueSlot::DoesNotNeedGCBarriers, 148 AggValueSlot::IsAliased_t(!IsInit))); 149 } else { 150 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 151 LValue LV = MakeAddrLValue(Location, E->getType()); 152 EmitStoreThroughLValue(RV, LV); 153 } 154} 155 156namespace { 157/// \brief An adjustment to be made to the temporary created when emitting a 158/// reference binding, which accesses a particular subobject of that temporary. 159 struct SubobjectAdjustment { 160 enum { 161 DerivedToBaseAdjustment, 162 FieldAdjustment, 163 MemberPointerAdjustment 164 } Kind; 165 166 union { 167 struct { 168 const CastExpr *BasePath; 169 const CXXRecordDecl *DerivedClass; 170 } DerivedToBase; 171 172 FieldDecl *Field; 173 174 struct { 175 const MemberPointerType *MPT; 176 llvm::Value *Ptr; 177 } Ptr; 178 }; 179 180 SubobjectAdjustment(const CastExpr *BasePath, 181 const CXXRecordDecl *DerivedClass) 182 : Kind(DerivedToBaseAdjustment) { 183 DerivedToBase.BasePath = BasePath; 184 DerivedToBase.DerivedClass = DerivedClass; 185 } 186 187 SubobjectAdjustment(FieldDecl *Field) 188 : Kind(FieldAdjustment) { 189 this->Field = Field; 190 } 191 192 SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr) 193 : Kind(MemberPointerAdjustment) { 194 this->Ptr.MPT = MPT; 195 this->Ptr.Ptr = Ptr; 196 } 197 }; 198} 199 200static llvm::Value * 201CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 202 const NamedDecl *InitializedDecl) { 203 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 204 if (VD->hasGlobalStorage()) { 205 SmallString<256> Name; 206 llvm::raw_svector_ostream Out(Name); 207 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 208 Out.flush(); 209 210 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 211 212 // Create the reference temporary. 213 llvm::GlobalValue *RefTemp = 214 new llvm::GlobalVariable(CGF.CGM.getModule(), 215 RefTempTy, /*isConstant=*/false, 216 llvm::GlobalValue::InternalLinkage, 217 llvm::Constant::getNullValue(RefTempTy), 218 Name.str()); 219 return RefTemp; 220 } 221 } 222 223 return CGF.CreateMemTemp(Type, "ref.tmp"); 224} 225 226static llvm::Value * 227EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 228 llvm::Value *&ReferenceTemporary, 229 const CXXDestructorDecl *&ReferenceTemporaryDtor, 230 QualType &ObjCARCReferenceLifetimeType, 231 const NamedDecl *InitializedDecl) { 232 // Look through single-element init lists that claim to be lvalues. They're 233 // just syntactic wrappers in this case. 234 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 235 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 236 E = ILE->getInit(0); 237 } 238 239 // Look through expressions for materialized temporaries (for now). 240 if (const MaterializeTemporaryExpr *M 241 = dyn_cast<MaterializeTemporaryExpr>(E)) { 242 // Objective-C++ ARC: 243 // If we are binding a reference to a temporary that has ownership, we 244 // need to perform retain/release operations on the temporary. 245 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 246 E->getType()->isObjCLifetimeType() && 247 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 248 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 249 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 250 ObjCARCReferenceLifetimeType = E->getType(); 251 252 E = M->GetTemporaryExpr(); 253 } 254 255 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 256 E = DAE->getExpr(); 257 258 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 259 CGF.enterFullExpression(EWC); 260 CodeGenFunction::RunCleanupsScope Scope(CGF); 261 262 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 263 ReferenceTemporary, 264 ReferenceTemporaryDtor, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 } 268 269 RValue RV; 270 if (E->isGLValue()) { 271 // Emit the expression as an lvalue. 272 LValue LV = CGF.EmitLValue(E); 273 274 if (LV.isSimple()) 275 return LV.getAddress(); 276 277 // We have to load the lvalue. 278 RV = CGF.EmitLoadOfLValue(LV); 279 } else { 280 if (!ObjCARCReferenceLifetimeType.isNull()) { 281 ReferenceTemporary = CreateReferenceTemporary(CGF, 282 ObjCARCReferenceLifetimeType, 283 InitializedDecl); 284 285 286 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 287 ObjCARCReferenceLifetimeType); 288 289 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 290 RefTempDst, false); 291 292 bool ExtendsLifeOfTemporary = false; 293 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 294 if (Var->extendsLifetimeOfTemporary()) 295 ExtendsLifeOfTemporary = true; 296 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 297 ExtendsLifeOfTemporary = true; 298 } 299 300 if (!ExtendsLifeOfTemporary) { 301 // Since the lifetime of this temporary isn't going to be extended, 302 // we need to clean it up ourselves at the end of the full expression. 303 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 304 case Qualifiers::OCL_None: 305 case Qualifiers::OCL_ExplicitNone: 306 case Qualifiers::OCL_Autoreleasing: 307 break; 308 309 case Qualifiers::OCL_Strong: { 310 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 311 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 312 CGF.pushDestroy(cleanupKind, 313 ReferenceTemporary, 314 ObjCARCReferenceLifetimeType, 315 CodeGenFunction::destroyARCStrongImprecise, 316 cleanupKind & EHCleanup); 317 break; 318 } 319 320 case Qualifiers::OCL_Weak: 321 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 322 CGF.pushDestroy(NormalAndEHCleanup, 323 ReferenceTemporary, 324 ObjCARCReferenceLifetimeType, 325 CodeGenFunction::destroyARCWeak, 326 /*useEHCleanupForArray*/ true); 327 break; 328 } 329 330 ObjCARCReferenceLifetimeType = QualType(); 331 } 332 333 return ReferenceTemporary; 334 } 335 336 SmallVector<SubobjectAdjustment, 2> Adjustments; 337 while (true) { 338 E = E->IgnoreParens(); 339 340 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 341 if ((CE->getCastKind() == CK_DerivedToBase || 342 CE->getCastKind() == CK_UncheckedDerivedToBase) && 343 E->getType()->isRecordType()) { 344 E = CE->getSubExpr(); 345 CXXRecordDecl *Derived 346 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 347 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 348 continue; 349 } 350 351 if (CE->getCastKind() == CK_NoOp) { 352 E = CE->getSubExpr(); 353 continue; 354 } 355 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 356 if (!ME->isArrow() && ME->getBase()->isRValue()) { 357 assert(ME->getBase()->getType()->isRecordType()); 358 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 359 E = ME->getBase(); 360 Adjustments.push_back(SubobjectAdjustment(Field)); 361 continue; 362 } 363 } 364 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 365 if (BO->isPtrMemOp()) { 366 assert(BO->getLHS()->isRValue()); 367 E = BO->getLHS(); 368 const MemberPointerType *MPT = 369 BO->getRHS()->getType()->getAs<MemberPointerType>(); 370 llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS()); 371 Adjustments.push_back(SubobjectAdjustment(MPT, Ptr)); 372 } 373 } 374 375 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 376 if (opaque->getType()->isRecordType()) 377 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 378 379 // Nothing changed. 380 break; 381 } 382 383 // Create a reference temporary if necessary. 384 AggValueSlot AggSlot = AggValueSlot::ignored(); 385 if (CGF.hasAggregateLLVMType(E->getType()) && 386 !E->getType()->isAnyComplexType()) { 387 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 388 InitializedDecl); 389 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 390 AggValueSlot::IsDestructed_t isDestructed 391 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 392 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 393 Qualifiers(), isDestructed, 394 AggValueSlot::DoesNotNeedGCBarriers, 395 AggValueSlot::IsNotAliased); 396 } 397 398 if (InitializedDecl) { 399 // Get the destructor for the reference temporary. 400 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 401 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 402 if (!ClassDecl->hasTrivialDestructor()) 403 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 404 } 405 } 406 407 RV = CGF.EmitAnyExpr(E, AggSlot); 408 409 // Check if need to perform derived-to-base casts and/or field accesses, to 410 // get from the temporary object we created (and, potentially, for which we 411 // extended the lifetime) to the subobject we're binding the reference to. 412 if (!Adjustments.empty()) { 413 llvm::Value *Object = RV.getAggregateAddr(); 414 for (unsigned I = Adjustments.size(); I != 0; --I) { 415 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 416 switch (Adjustment.Kind) { 417 case SubobjectAdjustment::DerivedToBaseAdjustment: 418 Object = 419 CGF.GetAddressOfBaseClass(Object, 420 Adjustment.DerivedToBase.DerivedClass, 421 Adjustment.DerivedToBase.BasePath->path_begin(), 422 Adjustment.DerivedToBase.BasePath->path_end(), 423 /*NullCheckValue=*/false); 424 break; 425 426 case SubobjectAdjustment::FieldAdjustment: { 427 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 428 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 429 if (LV.isSimple()) { 430 Object = LV.getAddress(); 431 break; 432 } 433 434 // For non-simple lvalues, we actually have to create a copy of 435 // the object we're binding to. 436 QualType T = Adjustment.Field->getType().getNonReferenceType() 437 .getUnqualifiedType(); 438 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 439 LValue TempLV = CGF.MakeAddrLValue(Object, 440 Adjustment.Field->getType()); 441 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 442 break; 443 } 444 445 case SubobjectAdjustment::MemberPointerAdjustment: { 446 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 447 CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT); 448 break; 449 } 450 } 451 } 452 453 return Object; 454 } 455 } 456 457 if (RV.isAggregate()) 458 return RV.getAggregateAddr(); 459 460 // Create a temporary variable that we can bind the reference to. 461 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 462 InitializedDecl); 463 464 465 unsigned Alignment = 466 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 467 if (RV.isScalar()) 468 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 469 /*Volatile=*/false, Alignment, E->getType()); 470 else 471 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 472 /*Volatile=*/false); 473 return ReferenceTemporary; 474} 475 476RValue 477CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 478 const NamedDecl *InitializedDecl) { 479 llvm::Value *ReferenceTemporary = 0; 480 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 481 QualType ObjCARCReferenceLifetimeType; 482 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 483 ReferenceTemporaryDtor, 484 ObjCARCReferenceLifetimeType, 485 InitializedDecl); 486 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 487 return RValue::get(Value); 488 489 // Make sure to call the destructor for the reference temporary. 490 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 491 if (VD && VD->hasGlobalStorage()) { 492 if (ReferenceTemporaryDtor) { 493 llvm::Constant *DtorFn = 494 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 495 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 496 cast<llvm::Constant>(ReferenceTemporary)); 497 } else { 498 assert(!ObjCARCReferenceLifetimeType.isNull()); 499 // Note: We intentionally do not register a global "destructor" to 500 // release the object. 501 } 502 503 return RValue::get(Value); 504 } 505 506 if (ReferenceTemporaryDtor) 507 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 508 else { 509 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 510 case Qualifiers::OCL_None: 511 llvm_unreachable( 512 "Not a reference temporary that needs to be deallocated"); 513 case Qualifiers::OCL_ExplicitNone: 514 case Qualifiers::OCL_Autoreleasing: 515 // Nothing to do. 516 break; 517 518 case Qualifiers::OCL_Strong: { 519 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 520 CleanupKind cleanupKind = getARCCleanupKind(); 521 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 522 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 523 cleanupKind & EHCleanup); 524 break; 525 } 526 527 case Qualifiers::OCL_Weak: { 528 // __weak objects always get EH cleanups; otherwise, exceptions 529 // could cause really nasty crashes instead of mere leaks. 530 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 531 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 532 break; 533 } 534 } 535 } 536 537 return RValue::get(Value); 538} 539 540 541/// getAccessedFieldNo - Given an encoded value and a result number, return the 542/// input field number being accessed. 543unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 544 const llvm::Constant *Elts) { 545 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 546 ->getZExtValue(); 547} 548 549void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 550 if (!CatchUndefined) 551 return; 552 553 // This needs to be to the standard address space. 554 Address = Builder.CreateBitCast(Address, Int8PtrTy); 555 556 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 557 558 llvm::Value *Min = Builder.getFalse(); 559 llvm::Value *C = Builder.CreateCall2(F, Address, Min); 560 llvm::BasicBlock *Cont = createBasicBlock(); 561 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 562 llvm::ConstantInt::get(IntPtrTy, Size)), 563 Cont, getTrapBB()); 564 EmitBlock(Cont); 565} 566 567 568CodeGenFunction::ComplexPairTy CodeGenFunction:: 569EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 570 bool isInc, bool isPre) { 571 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 572 LV.isVolatileQualified()); 573 574 llvm::Value *NextVal; 575 if (isa<llvm::IntegerType>(InVal.first->getType())) { 576 uint64_t AmountVal = isInc ? 1 : -1; 577 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 578 579 // Add the inc/dec to the real part. 580 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 581 } else { 582 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 583 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 584 if (!isInc) 585 FVal.changeSign(); 586 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 587 588 // Add the inc/dec to the real part. 589 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 590 } 591 592 ComplexPairTy IncVal(NextVal, InVal.second); 593 594 // Store the updated result through the lvalue. 595 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 596 597 // If this is a postinc, return the value read from memory, otherwise use the 598 // updated value. 599 return isPre ? IncVal : InVal; 600} 601 602 603//===----------------------------------------------------------------------===// 604// LValue Expression Emission 605//===----------------------------------------------------------------------===// 606 607RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 608 if (Ty->isVoidType()) 609 return RValue::get(0); 610 611 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 612 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 613 llvm::Value *U = llvm::UndefValue::get(EltTy); 614 return RValue::getComplex(std::make_pair(U, U)); 615 } 616 617 // If this is a use of an undefined aggregate type, the aggregate must have an 618 // identifiable address. Just because the contents of the value are undefined 619 // doesn't mean that the address can't be taken and compared. 620 if (hasAggregateLLVMType(Ty)) { 621 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 622 return RValue::getAggregate(DestPtr); 623 } 624 625 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 626} 627 628RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 629 const char *Name) { 630 ErrorUnsupported(E, Name); 631 return GetUndefRValue(E->getType()); 632} 633 634LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 635 const char *Name) { 636 ErrorUnsupported(E, Name); 637 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 638 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 639} 640 641LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 642 LValue LV = EmitLValue(E); 643 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 644 EmitCheck(LV.getAddress(), 645 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 646 return LV; 647} 648 649/// EmitLValue - Emit code to compute a designator that specifies the location 650/// of the expression. 651/// 652/// This can return one of two things: a simple address or a bitfield reference. 653/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 654/// an LLVM pointer type. 655/// 656/// If this returns a bitfield reference, nothing about the pointee type of the 657/// LLVM value is known: For example, it may not be a pointer to an integer. 658/// 659/// If this returns a normal address, and if the lvalue's C type is fixed size, 660/// this method guarantees that the returned pointer type will point to an LLVM 661/// type of the same size of the lvalue's type. If the lvalue has a variable 662/// length type, this is not possible. 663/// 664LValue CodeGenFunction::EmitLValue(const Expr *E) { 665 switch (E->getStmtClass()) { 666 default: return EmitUnsupportedLValue(E, "l-value expression"); 667 668 case Expr::ObjCPropertyRefExprClass: 669 llvm_unreachable("cannot emit a property reference directly"); 670 671 case Expr::ObjCSelectorExprClass: 672 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 673 case Expr::ObjCIsaExprClass: 674 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 675 case Expr::BinaryOperatorClass: 676 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 677 case Expr::CompoundAssignOperatorClass: 678 if (!E->getType()->isAnyComplexType()) 679 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 680 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 681 case Expr::CallExprClass: 682 case Expr::CXXMemberCallExprClass: 683 case Expr::CXXOperatorCallExprClass: 684 case Expr::UserDefinedLiteralClass: 685 return EmitCallExprLValue(cast<CallExpr>(E)); 686 case Expr::VAArgExprClass: 687 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 688 case Expr::DeclRefExprClass: 689 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 690 case Expr::ParenExprClass: 691 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 692 case Expr::GenericSelectionExprClass: 693 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 694 case Expr::PredefinedExprClass: 695 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 696 case Expr::StringLiteralClass: 697 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 698 case Expr::ObjCEncodeExprClass: 699 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 700 case Expr::PseudoObjectExprClass: 701 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 702 case Expr::InitListExprClass: 703 return EmitInitListLValue(cast<InitListExpr>(E)); 704 case Expr::CXXTemporaryObjectExprClass: 705 case Expr::CXXConstructExprClass: 706 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 707 case Expr::CXXBindTemporaryExprClass: 708 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 709 case Expr::LambdaExprClass: 710 return EmitLambdaLValue(cast<LambdaExpr>(E)); 711 712 case Expr::ExprWithCleanupsClass: { 713 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 714 enterFullExpression(cleanups); 715 RunCleanupsScope Scope(*this); 716 return EmitLValue(cleanups->getSubExpr()); 717 } 718 719 case Expr::CXXScalarValueInitExprClass: 720 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 721 case Expr::CXXDefaultArgExprClass: 722 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 723 case Expr::CXXTypeidExprClass: 724 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 725 726 case Expr::ObjCMessageExprClass: 727 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 728 case Expr::ObjCIvarRefExprClass: 729 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 730 case Expr::StmtExprClass: 731 return EmitStmtExprLValue(cast<StmtExpr>(E)); 732 case Expr::UnaryOperatorClass: 733 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 734 case Expr::ArraySubscriptExprClass: 735 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 736 case Expr::ExtVectorElementExprClass: 737 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 738 case Expr::MemberExprClass: 739 return EmitMemberExpr(cast<MemberExpr>(E)); 740 case Expr::CompoundLiteralExprClass: 741 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 742 case Expr::ConditionalOperatorClass: 743 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 744 case Expr::BinaryConditionalOperatorClass: 745 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 746 case Expr::ChooseExprClass: 747 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 748 case Expr::OpaqueValueExprClass: 749 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 750 case Expr::SubstNonTypeTemplateParmExprClass: 751 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 752 case Expr::ImplicitCastExprClass: 753 case Expr::CStyleCastExprClass: 754 case Expr::CXXFunctionalCastExprClass: 755 case Expr::CXXStaticCastExprClass: 756 case Expr::CXXDynamicCastExprClass: 757 case Expr::CXXReinterpretCastExprClass: 758 case Expr::CXXConstCastExprClass: 759 case Expr::ObjCBridgedCastExprClass: 760 return EmitCastLValue(cast<CastExpr>(E)); 761 762 case Expr::MaterializeTemporaryExprClass: 763 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 764 } 765} 766 767/// Given an object of the given canonical type, can we safely copy a 768/// value out of it based on its initializer? 769static bool isConstantEmittableObjectType(QualType type) { 770 assert(type.isCanonical()); 771 assert(!type->isReferenceType()); 772 773 // Must be const-qualified but non-volatile. 774 Qualifiers qs = type.getLocalQualifiers(); 775 if (!qs.hasConst() || qs.hasVolatile()) return false; 776 777 // Otherwise, all object types satisfy this except C++ classes with 778 // mutable subobjects or non-trivial copy/destroy behavior. 779 if (const RecordType *RT = dyn_cast<RecordType>(type)) 780 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 781 if (RD->hasMutableFields() || !RD->isTrivial()) 782 return false; 783 784 return true; 785} 786 787/// Can we constant-emit a load of a reference to a variable of the 788/// given type? This is different from predicates like 789/// Decl::isUsableInConstantExpressions because we do want it to apply 790/// in situations that don't necessarily satisfy the language's rules 791/// for this (e.g. C++'s ODR-use rules). For example, we want to able 792/// to do this with const float variables even if those variables 793/// aren't marked 'constexpr'. 794enum ConstantEmissionKind { 795 CEK_None, 796 CEK_AsReferenceOnly, 797 CEK_AsValueOrReference, 798 CEK_AsValueOnly 799}; 800static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 801 type = type.getCanonicalType(); 802 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 803 if (isConstantEmittableObjectType(ref->getPointeeType())) 804 return CEK_AsValueOrReference; 805 return CEK_AsReferenceOnly; 806 } 807 if (isConstantEmittableObjectType(type)) 808 return CEK_AsValueOnly; 809 return CEK_None; 810} 811 812/// Try to emit a reference to the given value without producing it as 813/// an l-value. This is actually more than an optimization: we can't 814/// produce an l-value for variables that we never actually captured 815/// in a block or lambda, which means const int variables or constexpr 816/// literals or similar. 817CodeGenFunction::ConstantEmission 818CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 819 ValueDecl *value = refExpr->getDecl(); 820 821 // The value needs to be an enum constant or a constant variable. 822 ConstantEmissionKind CEK; 823 if (isa<ParmVarDecl>(value)) { 824 CEK = CEK_None; 825 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 826 CEK = checkVarTypeForConstantEmission(var->getType()); 827 } else if (isa<EnumConstantDecl>(value)) { 828 CEK = CEK_AsValueOnly; 829 } else { 830 CEK = CEK_None; 831 } 832 if (CEK == CEK_None) return ConstantEmission(); 833 834 Expr::EvalResult result; 835 bool resultIsReference; 836 QualType resultType; 837 838 // It's best to evaluate all the way as an r-value if that's permitted. 839 if (CEK != CEK_AsReferenceOnly && 840 refExpr->EvaluateAsRValue(result, getContext())) { 841 resultIsReference = false; 842 resultType = refExpr->getType(); 843 844 // Otherwise, try to evaluate as an l-value. 845 } else if (CEK != CEK_AsValueOnly && 846 refExpr->EvaluateAsLValue(result, getContext())) { 847 resultIsReference = true; 848 resultType = value->getType(); 849 850 // Failure. 851 } else { 852 return ConstantEmission(); 853 } 854 855 // In any case, if the initializer has side-effects, abandon ship. 856 if (result.HasSideEffects) 857 return ConstantEmission(); 858 859 // Emit as a constant. 860 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 861 862 // Make sure we emit a debug reference to the global variable. 863 // This should probably fire even for 864 if (isa<VarDecl>(value)) { 865 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 866 EmitDeclRefExprDbgValue(refExpr, C); 867 } else { 868 assert(isa<EnumConstantDecl>(value)); 869 EmitDeclRefExprDbgValue(refExpr, C); 870 } 871 872 // If we emitted a reference constant, we need to dereference that. 873 if (resultIsReference) 874 return ConstantEmission::forReference(C); 875 876 return ConstantEmission::forValue(C); 877} 878 879llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 880 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 881 lvalue.getAlignment().getQuantity(), 882 lvalue.getType(), lvalue.getTBAAInfo()); 883} 884 885static bool hasBooleanRepresentation(QualType Ty) { 886 if (Ty->isBooleanType()) 887 return true; 888 889 if (const EnumType *ET = Ty->getAs<EnumType>()) 890 return ET->getDecl()->getIntegerType()->isBooleanType(); 891 892 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 893 return hasBooleanRepresentation(AT->getValueType()); 894 895 return false; 896} 897 898llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 899 const EnumType *ET = Ty->getAs<EnumType>(); 900 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 901 CGM.getCodeGenOpts().StrictEnums && 902 !ET->getDecl()->isFixed()); 903 bool IsBool = hasBooleanRepresentation(Ty); 904 if (!IsBool && !IsRegularCPlusPlusEnum) 905 return NULL; 906 907 llvm::APInt Min; 908 llvm::APInt End; 909 if (IsBool) { 910 Min = llvm::APInt(8, 0); 911 End = llvm::APInt(8, 2); 912 } else { 913 const EnumDecl *ED = ET->getDecl(); 914 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 915 unsigned Bitwidth = LTy->getScalarSizeInBits(); 916 unsigned NumNegativeBits = ED->getNumNegativeBits(); 917 unsigned NumPositiveBits = ED->getNumPositiveBits(); 918 919 if (NumNegativeBits) { 920 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 921 assert(NumBits <= Bitwidth); 922 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 923 Min = -End; 924 } else { 925 assert(NumPositiveBits <= Bitwidth); 926 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 927 Min = llvm::APInt(Bitwidth, 0); 928 } 929 } 930 931 llvm::MDBuilder MDHelper(getLLVMContext()); 932 return MDHelper.createRange(Min, End); 933} 934 935llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 936 unsigned Alignment, QualType Ty, 937 llvm::MDNode *TBAAInfo) { 938 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 939 if (Volatile) 940 Load->setVolatile(true); 941 if (Alignment) 942 Load->setAlignment(Alignment); 943 if (TBAAInfo) 944 CGM.DecorateInstruction(Load, TBAAInfo); 945 // If this is an atomic type, all normal reads must be atomic 946 if (Ty->isAtomicType()) 947 Load->setAtomic(llvm::SequentiallyConsistent); 948 949 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 950 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 951 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 952 953 return EmitFromMemory(Load, Ty); 954} 955 956llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 957 // Bool has a different representation in memory than in registers. 958 if (hasBooleanRepresentation(Ty)) { 959 // This should really always be an i1, but sometimes it's already 960 // an i8, and it's awkward to track those cases down. 961 if (Value->getType()->isIntegerTy(1)) 962 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 963 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 964 } 965 966 return Value; 967} 968 969llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 970 // Bool has a different representation in memory than in registers. 971 if (hasBooleanRepresentation(Ty)) { 972 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 973 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 974 } 975 976 return Value; 977} 978 979void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 980 bool Volatile, unsigned Alignment, 981 QualType Ty, 982 llvm::MDNode *TBAAInfo, 983 bool isInit) { 984 Value = EmitToMemory(Value, Ty); 985 986 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 987 if (Alignment) 988 Store->setAlignment(Alignment); 989 if (TBAAInfo) 990 CGM.DecorateInstruction(Store, TBAAInfo); 991 if (!isInit && Ty->isAtomicType()) 992 Store->setAtomic(llvm::SequentiallyConsistent); 993} 994 995void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 996 bool isInit) { 997 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 998 lvalue.getAlignment().getQuantity(), lvalue.getType(), 999 lvalue.getTBAAInfo(), isInit); 1000} 1001 1002/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1003/// method emits the address of the lvalue, then loads the result as an rvalue, 1004/// returning the rvalue. 1005RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1006 if (LV.isObjCWeak()) { 1007 // load of a __weak object. 1008 llvm::Value *AddrWeakObj = LV.getAddress(); 1009 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1010 AddrWeakObj)); 1011 } 1012 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 1013 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1014 1015 if (LV.isSimple()) { 1016 assert(!LV.getType()->isFunctionType()); 1017 1018 // Everything needs a load. 1019 return RValue::get(EmitLoadOfScalar(LV)); 1020 } 1021 1022 if (LV.isVectorElt()) { 1023 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1024 LV.isVolatileQualified()); 1025 Load->setAlignment(LV.getAlignment().getQuantity()); 1026 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1027 "vecext")); 1028 } 1029 1030 // If this is a reference to a subset of the elements of a vector, either 1031 // shuffle the input or extract/insert them as appropriate. 1032 if (LV.isExtVectorElt()) 1033 return EmitLoadOfExtVectorElementLValue(LV); 1034 1035 assert(LV.isBitField() && "Unknown LValue type!"); 1036 return EmitLoadOfBitfieldLValue(LV); 1037} 1038 1039RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1040 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1041 1042 // Get the output type. 1043 llvm::Type *ResLTy = ConvertType(LV.getType()); 1044 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1045 1046 // Compute the result as an OR of all of the individual component accesses. 1047 llvm::Value *Res = 0; 1048 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1049 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1050 1051 // Get the field pointer. 1052 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1053 1054 // Only offset by the field index if used, so that incoming values are not 1055 // required to be structures. 1056 if (AI.FieldIndex) 1057 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1058 1059 // Offset by the byte offset, if used. 1060 if (!AI.FieldByteOffset.isZero()) { 1061 Ptr = EmitCastToVoidPtr(Ptr); 1062 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1063 "bf.field.offs"); 1064 } 1065 1066 // Cast to the access type. 1067 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1068 CGM.getContext().getTargetAddressSpace(LV.getType())); 1069 Ptr = Builder.CreateBitCast(Ptr, PTy); 1070 1071 // Perform the load. 1072 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1073 if (!AI.AccessAlignment.isZero()) 1074 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1075 1076 // Shift out unused low bits and mask out unused high bits. 1077 llvm::Value *Val = Load; 1078 if (AI.FieldBitStart) 1079 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1080 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1081 AI.TargetBitWidth), 1082 "bf.clear"); 1083 1084 // Extend or truncate to the target size. 1085 if (AI.AccessWidth < ResSizeInBits) 1086 Val = Builder.CreateZExt(Val, ResLTy); 1087 else if (AI.AccessWidth > ResSizeInBits) 1088 Val = Builder.CreateTrunc(Val, ResLTy); 1089 1090 // Shift into place, and OR into the result. 1091 if (AI.TargetBitOffset) 1092 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1093 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1094 } 1095 1096 // If the bit-field is signed, perform the sign-extension. 1097 // 1098 // FIXME: This can easily be folded into the load of the high bits, which 1099 // could also eliminate the mask of high bits in some situations. 1100 if (Info.isSigned()) { 1101 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1102 if (ExtraBits) 1103 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1104 ExtraBits, "bf.val.sext"); 1105 } 1106 1107 return RValue::get(Res); 1108} 1109 1110// If this is a reference to a subset of the elements of a vector, create an 1111// appropriate shufflevector. 1112RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1113 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1114 LV.isVolatileQualified()); 1115 Load->setAlignment(LV.getAlignment().getQuantity()); 1116 llvm::Value *Vec = Load; 1117 1118 const llvm::Constant *Elts = LV.getExtVectorElts(); 1119 1120 // If the result of the expression is a non-vector type, we must be extracting 1121 // a single element. Just codegen as an extractelement. 1122 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1123 if (!ExprVT) { 1124 unsigned InIdx = getAccessedFieldNo(0, Elts); 1125 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1126 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1127 } 1128 1129 // Always use shuffle vector to try to retain the original program structure 1130 unsigned NumResultElts = ExprVT->getNumElements(); 1131 1132 SmallVector<llvm::Constant*, 4> Mask; 1133 for (unsigned i = 0; i != NumResultElts; ++i) 1134 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1135 1136 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1137 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1138 MaskV); 1139 return RValue::get(Vec); 1140} 1141 1142 1143 1144/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1145/// lvalue, where both are guaranteed to the have the same type, and that type 1146/// is 'Ty'. 1147void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1148 if (!Dst.isSimple()) { 1149 if (Dst.isVectorElt()) { 1150 // Read/modify/write the vector, inserting the new element. 1151 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1152 Dst.isVolatileQualified()); 1153 Load->setAlignment(Dst.getAlignment().getQuantity()); 1154 llvm::Value *Vec = Load; 1155 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1156 Dst.getVectorIdx(), "vecins"); 1157 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1158 Dst.isVolatileQualified()); 1159 Store->setAlignment(Dst.getAlignment().getQuantity()); 1160 return; 1161 } 1162 1163 // If this is an update of extended vector elements, insert them as 1164 // appropriate. 1165 if (Dst.isExtVectorElt()) 1166 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1167 1168 assert(Dst.isBitField() && "Unknown LValue type"); 1169 return EmitStoreThroughBitfieldLValue(Src, Dst); 1170 } 1171 1172 // There's special magic for assigning into an ARC-qualified l-value. 1173 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1174 switch (Lifetime) { 1175 case Qualifiers::OCL_None: 1176 llvm_unreachable("present but none"); 1177 1178 case Qualifiers::OCL_ExplicitNone: 1179 // nothing special 1180 break; 1181 1182 case Qualifiers::OCL_Strong: 1183 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1184 return; 1185 1186 case Qualifiers::OCL_Weak: 1187 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1188 return; 1189 1190 case Qualifiers::OCL_Autoreleasing: 1191 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1192 Src.getScalarVal())); 1193 // fall into the normal path 1194 break; 1195 } 1196 } 1197 1198 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1199 // load of a __weak object. 1200 llvm::Value *LvalueDst = Dst.getAddress(); 1201 llvm::Value *src = Src.getScalarVal(); 1202 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1203 return; 1204 } 1205 1206 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1207 // load of a __strong object. 1208 llvm::Value *LvalueDst = Dst.getAddress(); 1209 llvm::Value *src = Src.getScalarVal(); 1210 if (Dst.isObjCIvar()) { 1211 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1212 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1213 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1214 llvm::Value *dst = RHS; 1215 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1216 llvm::Value *LHS = 1217 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1218 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1219 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1220 BytesBetween); 1221 } else if (Dst.isGlobalObjCRef()) { 1222 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1223 Dst.isThreadLocalRef()); 1224 } 1225 else 1226 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1227 return; 1228 } 1229 1230 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1231 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1232} 1233 1234void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1235 llvm::Value **Result) { 1236 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1237 1238 // Get the output type. 1239 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1240 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1241 1242 // Get the source value, truncated to the width of the bit-field. 1243 llvm::Value *SrcVal = Src.getScalarVal(); 1244 1245 if (hasBooleanRepresentation(Dst.getType())) 1246 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1247 1248 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1249 Info.getSize()), 1250 "bf.value"); 1251 1252 // Return the new value of the bit-field, if requested. 1253 if (Result) { 1254 // Cast back to the proper type for result. 1255 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1256 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1257 "bf.reload.val"); 1258 1259 // Sign extend if necessary. 1260 if (Info.isSigned()) { 1261 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1262 if (ExtraBits) 1263 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1264 ExtraBits, "bf.reload.sext"); 1265 } 1266 1267 *Result = ReloadVal; 1268 } 1269 1270 // Iterate over the components, writing each piece to memory. 1271 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1272 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1273 1274 // Get the field pointer. 1275 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1276 unsigned addressSpace = 1277 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1278 1279 // Only offset by the field index if used, so that incoming values are not 1280 // required to be structures. 1281 if (AI.FieldIndex) 1282 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1283 1284 // Offset by the byte offset, if used. 1285 if (!AI.FieldByteOffset.isZero()) { 1286 Ptr = EmitCastToVoidPtr(Ptr); 1287 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1288 "bf.field.offs"); 1289 } 1290 1291 // Cast to the access type. 1292 llvm::Type *AccessLTy = 1293 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1294 1295 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1296 Ptr = Builder.CreateBitCast(Ptr, PTy); 1297 1298 // Extract the piece of the bit-field value to write in this access, limited 1299 // to the values that are part of this access. 1300 llvm::Value *Val = SrcVal; 1301 if (AI.TargetBitOffset) 1302 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1303 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1304 AI.TargetBitWidth)); 1305 1306 // Extend or truncate to the access size. 1307 if (ResSizeInBits < AI.AccessWidth) 1308 Val = Builder.CreateZExt(Val, AccessLTy); 1309 else if (ResSizeInBits > AI.AccessWidth) 1310 Val = Builder.CreateTrunc(Val, AccessLTy); 1311 1312 // Shift into the position in memory. 1313 if (AI.FieldBitStart) 1314 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1315 1316 // If necessary, load and OR in bits that are outside of the bit-field. 1317 if (AI.TargetBitWidth != AI.AccessWidth) { 1318 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1319 if (!AI.AccessAlignment.isZero()) 1320 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1321 1322 // Compute the mask for zeroing the bits that are part of the bit-field. 1323 llvm::APInt InvMask = 1324 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1325 AI.FieldBitStart + AI.TargetBitWidth); 1326 1327 // Apply the mask and OR in to the value to write. 1328 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1329 } 1330 1331 // Write the value. 1332 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1333 Dst.isVolatileQualified()); 1334 if (!AI.AccessAlignment.isZero()) 1335 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1336 } 1337} 1338 1339void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1340 LValue Dst) { 1341 // This access turns into a read/modify/write of the vector. Load the input 1342 // value now. 1343 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1344 Dst.isVolatileQualified()); 1345 Load->setAlignment(Dst.getAlignment().getQuantity()); 1346 llvm::Value *Vec = Load; 1347 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1348 1349 llvm::Value *SrcVal = Src.getScalarVal(); 1350 1351 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1352 unsigned NumSrcElts = VTy->getNumElements(); 1353 unsigned NumDstElts = 1354 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1355 if (NumDstElts == NumSrcElts) { 1356 // Use shuffle vector is the src and destination are the same number of 1357 // elements and restore the vector mask since it is on the side it will be 1358 // stored. 1359 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1360 for (unsigned i = 0; i != NumSrcElts; ++i) 1361 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1362 1363 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1364 Vec = Builder.CreateShuffleVector(SrcVal, 1365 llvm::UndefValue::get(Vec->getType()), 1366 MaskV); 1367 } else if (NumDstElts > NumSrcElts) { 1368 // Extended the source vector to the same length and then shuffle it 1369 // into the destination. 1370 // FIXME: since we're shuffling with undef, can we just use the indices 1371 // into that? This could be simpler. 1372 SmallVector<llvm::Constant*, 4> ExtMask; 1373 for (unsigned i = 0; i != NumSrcElts; ++i) 1374 ExtMask.push_back(Builder.getInt32(i)); 1375 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1376 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1377 llvm::Value *ExtSrcVal = 1378 Builder.CreateShuffleVector(SrcVal, 1379 llvm::UndefValue::get(SrcVal->getType()), 1380 ExtMaskV); 1381 // build identity 1382 SmallVector<llvm::Constant*, 4> Mask; 1383 for (unsigned i = 0; i != NumDstElts; ++i) 1384 Mask.push_back(Builder.getInt32(i)); 1385 1386 // modify when what gets shuffled in 1387 for (unsigned i = 0; i != NumSrcElts; ++i) 1388 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1389 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1390 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1391 } else { 1392 // We should never shorten the vector 1393 llvm_unreachable("unexpected shorten vector length"); 1394 } 1395 } else { 1396 // If the Src is a scalar (not a vector) it must be updating one element. 1397 unsigned InIdx = getAccessedFieldNo(0, Elts); 1398 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1399 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1400 } 1401 1402 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1403 Dst.isVolatileQualified()); 1404 Store->setAlignment(Dst.getAlignment().getQuantity()); 1405} 1406 1407// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1408// generating write-barries API. It is currently a global, ivar, 1409// or neither. 1410static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1411 LValue &LV, 1412 bool IsMemberAccess=false) { 1413 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1414 return; 1415 1416 if (isa<ObjCIvarRefExpr>(E)) { 1417 QualType ExpTy = E->getType(); 1418 if (IsMemberAccess && ExpTy->isPointerType()) { 1419 // If ivar is a structure pointer, assigning to field of 1420 // this struct follows gcc's behavior and makes it a non-ivar 1421 // writer-barrier conservatively. 1422 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1423 if (ExpTy->isRecordType()) { 1424 LV.setObjCIvar(false); 1425 return; 1426 } 1427 } 1428 LV.setObjCIvar(true); 1429 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1430 LV.setBaseIvarExp(Exp->getBase()); 1431 LV.setObjCArray(E->getType()->isArrayType()); 1432 return; 1433 } 1434 1435 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1436 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1437 if (VD->hasGlobalStorage()) { 1438 LV.setGlobalObjCRef(true); 1439 LV.setThreadLocalRef(VD->isThreadSpecified()); 1440 } 1441 } 1442 LV.setObjCArray(E->getType()->isArrayType()); 1443 return; 1444 } 1445 1446 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1447 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1448 return; 1449 } 1450 1451 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1452 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1453 if (LV.isObjCIvar()) { 1454 // If cast is to a structure pointer, follow gcc's behavior and make it 1455 // a non-ivar write-barrier. 1456 QualType ExpTy = E->getType(); 1457 if (ExpTy->isPointerType()) 1458 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1459 if (ExpTy->isRecordType()) 1460 LV.setObjCIvar(false); 1461 } 1462 return; 1463 } 1464 1465 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1466 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1467 return; 1468 } 1469 1470 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1471 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1472 return; 1473 } 1474 1475 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1476 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1477 return; 1478 } 1479 1480 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1481 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1482 return; 1483 } 1484 1485 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1486 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1487 if (LV.isObjCIvar() && !LV.isObjCArray()) 1488 // Using array syntax to assigning to what an ivar points to is not 1489 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1490 LV.setObjCIvar(false); 1491 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1492 // Using array syntax to assigning to what global points to is not 1493 // same as assigning to the global itself. {id *G;} G[i] = 0; 1494 LV.setGlobalObjCRef(false); 1495 return; 1496 } 1497 1498 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1499 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1500 // We don't know if member is an 'ivar', but this flag is looked at 1501 // only in the context of LV.isObjCIvar(). 1502 LV.setObjCArray(E->getType()->isArrayType()); 1503 return; 1504 } 1505} 1506 1507static llvm::Value * 1508EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1509 llvm::Value *V, llvm::Type *IRType, 1510 StringRef Name = StringRef()) { 1511 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1512 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1513} 1514 1515static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1516 const Expr *E, const VarDecl *VD) { 1517 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1518 "Var decl must have external storage or be a file var decl!"); 1519 1520 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1521 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1522 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1523 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1524 QualType T = E->getType(); 1525 LValue LV; 1526 if (VD->getType()->isReferenceType()) { 1527 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1528 LI->setAlignment(Alignment.getQuantity()); 1529 V = LI; 1530 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1531 } else { 1532 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1533 } 1534 setObjCGCLValueClass(CGF.getContext(), E, LV); 1535 return LV; 1536} 1537 1538static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1539 const Expr *E, const FunctionDecl *FD) { 1540 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1541 if (!FD->hasPrototype()) { 1542 if (const FunctionProtoType *Proto = 1543 FD->getType()->getAs<FunctionProtoType>()) { 1544 // Ugly case: for a K&R-style definition, the type of the definition 1545 // isn't the same as the type of a use. Correct for this with a 1546 // bitcast. 1547 QualType NoProtoType = 1548 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1549 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1550 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1551 } 1552 } 1553 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1554 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1555} 1556 1557LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1558 const NamedDecl *ND = E->getDecl(); 1559 CharUnits Alignment = getContext().getDeclAlign(ND); 1560 QualType T = E->getType(); 1561 1562 // FIXME: We should be able to assert this for FunctionDecls as well! 1563 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1564 // those with a valid source location. 1565 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1566 !E->getLocation().isValid()) && 1567 "Should not use decl without marking it used!"); 1568 1569 if (ND->hasAttr<WeakRefAttr>()) { 1570 const ValueDecl *VD = cast<ValueDecl>(ND); 1571 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1572 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1573 } 1574 1575 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1576 // Check if this is a global variable. 1577 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1578 return EmitGlobalVarDeclLValue(*this, E, VD); 1579 1580 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1581 1582 bool NonGCable = VD->hasLocalStorage() && 1583 !VD->getType()->isReferenceType() && 1584 !isBlockVariable; 1585 1586 llvm::Value *V = LocalDeclMap[VD]; 1587 if (!V && VD->isStaticLocal()) 1588 V = CGM.getStaticLocalDeclAddress(VD); 1589 1590 // Use special handling for lambdas. 1591 if (!V) { 1592 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1593 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1594 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1595 LambdaTagType); 1596 return EmitLValueForField(LambdaLV, FD); 1597 } 1598 1599 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1600 CharUnits alignment = getContext().getDeclAlign(VD); 1601 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1602 E->getType(), alignment); 1603 } 1604 1605 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1606 1607 if (isBlockVariable) 1608 V = BuildBlockByrefAddress(V, VD); 1609 1610 LValue LV; 1611 if (VD->getType()->isReferenceType()) { 1612 llvm::LoadInst *LI = Builder.CreateLoad(V); 1613 LI->setAlignment(Alignment.getQuantity()); 1614 V = LI; 1615 LV = MakeNaturalAlignAddrLValue(V, T); 1616 } else { 1617 LV = MakeAddrLValue(V, T, Alignment); 1618 } 1619 1620 if (NonGCable) { 1621 LV.getQuals().removeObjCGCAttr(); 1622 LV.setNonGC(true); 1623 } 1624 setObjCGCLValueClass(getContext(), E, LV); 1625 return LV; 1626 } 1627 1628 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1629 return EmitFunctionDeclLValue(*this, E, fn); 1630 1631 llvm_unreachable("Unhandled DeclRefExpr"); 1632} 1633 1634LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1635 // __extension__ doesn't affect lvalue-ness. 1636 if (E->getOpcode() == UO_Extension) 1637 return EmitLValue(E->getSubExpr()); 1638 1639 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1640 switch (E->getOpcode()) { 1641 default: llvm_unreachable("Unknown unary operator lvalue!"); 1642 case UO_Deref: { 1643 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1644 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1645 1646 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1647 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1648 1649 // We should not generate __weak write barrier on indirect reference 1650 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1651 // But, we continue to generate __strong write barrier on indirect write 1652 // into a pointer to object. 1653 if (getContext().getLangOpts().ObjC1 && 1654 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1655 LV.isObjCWeak()) 1656 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1657 return LV; 1658 } 1659 case UO_Real: 1660 case UO_Imag: { 1661 LValue LV = EmitLValue(E->getSubExpr()); 1662 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1663 llvm::Value *Addr = LV.getAddress(); 1664 1665 // __real is valid on scalars. This is a faster way of testing that. 1666 // __imag can only produce an rvalue on scalars. 1667 if (E->getOpcode() == UO_Real && 1668 !cast<llvm::PointerType>(Addr->getType()) 1669 ->getElementType()->isStructTy()) { 1670 assert(E->getSubExpr()->getType()->isArithmeticType()); 1671 return LV; 1672 } 1673 1674 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1675 1676 unsigned Idx = E->getOpcode() == UO_Imag; 1677 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1678 Idx, "idx"), 1679 ExprTy); 1680 } 1681 case UO_PreInc: 1682 case UO_PreDec: { 1683 LValue LV = EmitLValue(E->getSubExpr()); 1684 bool isInc = E->getOpcode() == UO_PreInc; 1685 1686 if (E->getType()->isAnyComplexType()) 1687 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1688 else 1689 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1690 return LV; 1691 } 1692 } 1693} 1694 1695LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1696 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1697 E->getType()); 1698} 1699 1700LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1701 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1702 E->getType()); 1703} 1704 1705static llvm::Constant* 1706GetAddrOfConstantWideString(StringRef Str, 1707 const char *GlobalName, 1708 ASTContext &Context, 1709 QualType Ty, SourceLocation Loc, 1710 CodeGenModule &CGM) { 1711 1712 StringLiteral *SL = StringLiteral::Create(Context, 1713 Str, 1714 StringLiteral::Wide, 1715 /*Pascal = */false, 1716 Ty, Loc); 1717 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1718 llvm::GlobalVariable *GV = 1719 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1720 !CGM.getLangOpts().WritableStrings, 1721 llvm::GlobalValue::PrivateLinkage, 1722 C, GlobalName); 1723 const unsigned WideAlignment = 1724 Context.getTypeAlignInChars(Ty).getQuantity(); 1725 GV->setAlignment(WideAlignment); 1726 return GV; 1727} 1728 1729// FIXME: Mostly copied from StringLiteralParser::CopyStringFragment 1730static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1731 SmallString<32>& Target) { 1732 Target.resize(CharByteWidth * (Source.size() + 1)); 1733 char* ResultPtr = &Target[0]; 1734 1735 assert(CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4); 1736 ConversionResult result = conversionOK; 1737 // Copy the character span over. 1738 if (CharByteWidth == 1) { 1739 if (!isLegalUTF8String(reinterpret_cast<const UTF8*>(&*Source.begin()), 1740 reinterpret_cast<const UTF8*>(&*Source.end()))) 1741 result = sourceIllegal; 1742 memcpy(ResultPtr, Source.data(), Source.size()); 1743 ResultPtr += Source.size(); 1744 } else if (CharByteWidth == 2) { 1745 UTF8 const *sourceStart = (UTF8 const *)Source.data(); 1746 // FIXME: Make the type of the result buffer correct instead of 1747 // using reinterpret_cast. 1748 UTF16 *targetStart = reinterpret_cast<UTF16*>(ResultPtr); 1749 ConversionFlags flags = strictConversion; 1750 result = ConvertUTF8toUTF16( 1751 &sourceStart,sourceStart + Source.size(), 1752 &targetStart,targetStart + 2*Source.size(),flags); 1753 if (result==conversionOK) 1754 ResultPtr = reinterpret_cast<char*>(targetStart); 1755 } else if (CharByteWidth == 4) { 1756 UTF8 const *sourceStart = (UTF8 const *)Source.data(); 1757 // FIXME: Make the type of the result buffer correct instead of 1758 // using reinterpret_cast. 1759 UTF32 *targetStart = reinterpret_cast<UTF32*>(ResultPtr); 1760 ConversionFlags flags = strictConversion; 1761 result = ConvertUTF8toUTF32( 1762 &sourceStart,sourceStart + Source.size(), 1763 &targetStart,targetStart + 4*Source.size(),flags); 1764 if (result==conversionOK) 1765 ResultPtr = reinterpret_cast<char*>(targetStart); 1766 } 1767 assert((result != targetExhausted) 1768 && "ConvertUTF8toUTFXX exhausted target buffer"); 1769 assert(result == conversionOK); 1770 Target.resize(ResultPtr - &Target[0]); 1771} 1772 1773LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1774 switch (E->getIdentType()) { 1775 default: 1776 return EmitUnsupportedLValue(E, "predefined expression"); 1777 1778 case PredefinedExpr::Func: 1779 case PredefinedExpr::Function: 1780 case PredefinedExpr::LFunction: 1781 case PredefinedExpr::PrettyFunction: { 1782 unsigned IdentType = E->getIdentType(); 1783 std::string GlobalVarName; 1784 1785 switch (IdentType) { 1786 default: llvm_unreachable("Invalid type"); 1787 case PredefinedExpr::Func: 1788 GlobalVarName = "__func__."; 1789 break; 1790 case PredefinedExpr::Function: 1791 GlobalVarName = "__FUNCTION__."; 1792 break; 1793 case PredefinedExpr::LFunction: 1794 GlobalVarName = "L__FUNCTION__."; 1795 break; 1796 case PredefinedExpr::PrettyFunction: 1797 GlobalVarName = "__PRETTY_FUNCTION__."; 1798 break; 1799 } 1800 1801 StringRef FnName = CurFn->getName(); 1802 if (FnName.startswith("\01")) 1803 FnName = FnName.substr(1); 1804 GlobalVarName += FnName; 1805 1806 const Decl *CurDecl = CurCodeDecl; 1807 if (CurDecl == 0) 1808 CurDecl = getContext().getTranslationUnitDecl(); 1809 1810 std::string FunctionName = 1811 (isa<BlockDecl>(CurDecl) 1812 ? FnName.str() 1813 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1814 CurDecl)); 1815 1816 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1817 llvm::Constant *C; 1818 if (ElemType->isWideCharType()) { 1819 SmallString<32> RawChars; 1820 ConvertUTF8ToWideString( 1821 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1822 FunctionName, RawChars); 1823 C = GetAddrOfConstantWideString(RawChars, 1824 GlobalVarName.c_str(), 1825 getContext(), 1826 E->getType(), 1827 E->getLocation(), 1828 CGM); 1829 } else { 1830 C = CGM.GetAddrOfConstantCString(FunctionName, 1831 GlobalVarName.c_str(), 1832 1); 1833 } 1834 return MakeAddrLValue(C, E->getType()); 1835 } 1836 } 1837} 1838 1839llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1840 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1841 1842 // If we are not optimzing, don't collapse all calls to trap in the function 1843 // to the same call, that way, in the debugger they can see which operation 1844 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1845 // to just one per function to save on codesize. 1846 if (GCO.OptimizationLevel && TrapBB) 1847 return TrapBB; 1848 1849 llvm::BasicBlock *Cont = 0; 1850 if (HaveInsertPoint()) { 1851 Cont = createBasicBlock("cont"); 1852 EmitBranch(Cont); 1853 } 1854 TrapBB = createBasicBlock("trap"); 1855 EmitBlock(TrapBB); 1856 1857 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1858 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1859 TrapCall->setDoesNotReturn(); 1860 TrapCall->setDoesNotThrow(); 1861 Builder.CreateUnreachable(); 1862 1863 if (Cont) 1864 EmitBlock(Cont); 1865 return TrapBB; 1866} 1867 1868/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1869/// array to pointer, return the array subexpression. 1870static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1871 // If this isn't just an array->pointer decay, bail out. 1872 const CastExpr *CE = dyn_cast<CastExpr>(E); 1873 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1874 return 0; 1875 1876 // If this is a decay from variable width array, bail out. 1877 const Expr *SubExpr = CE->getSubExpr(); 1878 if (SubExpr->getType()->isVariableArrayType()) 1879 return 0; 1880 1881 return SubExpr; 1882} 1883 1884LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1885 // The index must always be an integer, which is not an aggregate. Emit it. 1886 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1887 QualType IdxTy = E->getIdx()->getType(); 1888 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1889 1890 // If the base is a vector type, then we are forming a vector element lvalue 1891 // with this subscript. 1892 if (E->getBase()->getType()->isVectorType()) { 1893 // Emit the vector as an lvalue to get its address. 1894 LValue LHS = EmitLValue(E->getBase()); 1895 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1896 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1897 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1898 E->getBase()->getType(), LHS.getAlignment()); 1899 } 1900 1901 // Extend or truncate the index type to 32 or 64-bits. 1902 if (Idx->getType() != IntPtrTy) 1903 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1904 1905 // We know that the pointer points to a type of the correct size, unless the 1906 // size is a VLA or Objective-C interface. 1907 llvm::Value *Address = 0; 1908 CharUnits ArrayAlignment; 1909 if (const VariableArrayType *vla = 1910 getContext().getAsVariableArrayType(E->getType())) { 1911 // The base must be a pointer, which is not an aggregate. Emit 1912 // it. It needs to be emitted first in case it's what captures 1913 // the VLA bounds. 1914 Address = EmitScalarExpr(E->getBase()); 1915 1916 // The element count here is the total number of non-VLA elements. 1917 llvm::Value *numElements = getVLASize(vla).first; 1918 1919 // Effectively, the multiply by the VLA size is part of the GEP. 1920 // GEP indexes are signed, and scaling an index isn't permitted to 1921 // signed-overflow, so we use the same semantics for our explicit 1922 // multiply. We suppress this if overflow is not undefined behavior. 1923 if (getLangOpts().isSignedOverflowDefined()) { 1924 Idx = Builder.CreateMul(Idx, numElements); 1925 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1926 } else { 1927 Idx = Builder.CreateNSWMul(Idx, numElements); 1928 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1929 } 1930 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1931 // Indexing over an interface, as in "NSString *P; P[4];" 1932 llvm::Value *InterfaceSize = 1933 llvm::ConstantInt::get(Idx->getType(), 1934 getContext().getTypeSizeInChars(OIT).getQuantity()); 1935 1936 Idx = Builder.CreateMul(Idx, InterfaceSize); 1937 1938 // The base must be a pointer, which is not an aggregate. Emit it. 1939 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1940 Address = EmitCastToVoidPtr(Base); 1941 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1942 Address = Builder.CreateBitCast(Address, Base->getType()); 1943 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1944 // If this is A[i] where A is an array, the frontend will have decayed the 1945 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1946 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1947 // "gep x, i" here. Emit one "gep A, 0, i". 1948 assert(Array->getType()->isArrayType() && 1949 "Array to pointer decay must have array source type!"); 1950 LValue ArrayLV = EmitLValue(Array); 1951 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1952 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1953 llvm::Value *Args[] = { Zero, Idx }; 1954 1955 // Propagate the alignment from the array itself to the result. 1956 ArrayAlignment = ArrayLV.getAlignment(); 1957 1958 if (getContext().getLangOpts().isSignedOverflowDefined()) 1959 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1960 else 1961 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1962 } else { 1963 // The base must be a pointer, which is not an aggregate. Emit it. 1964 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1965 if (getContext().getLangOpts().isSignedOverflowDefined()) 1966 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1967 else 1968 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1969 } 1970 1971 QualType T = E->getBase()->getType()->getPointeeType(); 1972 assert(!T.isNull() && 1973 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1974 1975 1976 // Limit the alignment to that of the result type. 1977 LValue LV; 1978 if (!ArrayAlignment.isZero()) { 1979 CharUnits Align = getContext().getTypeAlignInChars(T); 1980 ArrayAlignment = std::min(Align, ArrayAlignment); 1981 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1982 } else { 1983 LV = MakeNaturalAlignAddrLValue(Address, T); 1984 } 1985 1986 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1987 1988 if (getContext().getLangOpts().ObjC1 && 1989 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1990 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1991 setObjCGCLValueClass(getContext(), E, LV); 1992 } 1993 return LV; 1994} 1995 1996static 1997llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1998 SmallVector<unsigned, 4> &Elts) { 1999 SmallVector<llvm::Constant*, 4> CElts; 2000 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2001 CElts.push_back(Builder.getInt32(Elts[i])); 2002 2003 return llvm::ConstantVector::get(CElts); 2004} 2005 2006LValue CodeGenFunction:: 2007EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2008 // Emit the base vector as an l-value. 2009 LValue Base; 2010 2011 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2012 if (E->isArrow()) { 2013 // If it is a pointer to a vector, emit the address and form an lvalue with 2014 // it. 2015 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2016 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2017 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2018 Base.getQuals().removeObjCGCAttr(); 2019 } else if (E->getBase()->isGLValue()) { 2020 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2021 // emit the base as an lvalue. 2022 assert(E->getBase()->getType()->isVectorType()); 2023 Base = EmitLValue(E->getBase()); 2024 } else { 2025 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2026 assert(E->getBase()->getType()->isVectorType() && 2027 "Result must be a vector"); 2028 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2029 2030 // Store the vector to memory (because LValue wants an address). 2031 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2032 Builder.CreateStore(Vec, VecMem); 2033 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2034 } 2035 2036 QualType type = 2037 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2038 2039 // Encode the element access list into a vector of unsigned indices. 2040 SmallVector<unsigned, 4> Indices; 2041 E->getEncodedElementAccess(Indices); 2042 2043 if (Base.isSimple()) { 2044 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2045 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2046 Base.getAlignment()); 2047 } 2048 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2049 2050 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2051 SmallVector<llvm::Constant *, 4> CElts; 2052 2053 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2054 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2055 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2056 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2057 Base.getAlignment()); 2058} 2059 2060LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2061 Expr *BaseExpr = E->getBase(); 2062 2063 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2064 LValue BaseLV; 2065 if (E->isArrow()) 2066 BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr), 2067 BaseExpr->getType()->getPointeeType()); 2068 else 2069 BaseLV = EmitLValue(BaseExpr); 2070 2071 NamedDecl *ND = E->getMemberDecl(); 2072 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2073 LValue LV = EmitLValueForField(BaseLV, Field); 2074 setObjCGCLValueClass(getContext(), E, LV); 2075 return LV; 2076 } 2077 2078 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2079 return EmitGlobalVarDeclLValue(*this, E, VD); 2080 2081 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2082 return EmitFunctionDeclLValue(*this, E, FD); 2083 2084 llvm_unreachable("Unhandled member declaration!"); 2085} 2086 2087LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 2088 const FieldDecl *Field, 2089 unsigned CVRQualifiers) { 2090 const CGRecordLayout &RL = 2091 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2092 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 2093 return LValue::MakeBitfield(BaseValue, Info, 2094 Field->getType().withCVRQualifiers(CVRQualifiers)); 2095} 2096 2097/// EmitLValueForAnonRecordField - Given that the field is a member of 2098/// an anonymous struct or union buried inside a record, and given 2099/// that the base value is a pointer to the enclosing record, derive 2100/// an lvalue for the ultimate field. 2101LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 2102 const IndirectFieldDecl *Field, 2103 unsigned CVRQualifiers) { 2104 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 2105 IEnd = Field->chain_end(); 2106 while (true) { 2107 QualType RecordTy = 2108 getContext().getTypeDeclType(cast<FieldDecl>(*I)->getParent()); 2109 LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy), 2110 cast<FieldDecl>(*I)); 2111 if (++I == IEnd) return LV; 2112 2113 assert(LV.isSimple()); 2114 BaseValue = LV.getAddress(); 2115 CVRQualifiers |= LV.getVRQualifiers(); 2116 } 2117} 2118 2119LValue CodeGenFunction::EmitLValueForField(LValue base, 2120 const FieldDecl *field) { 2121 if (field->isBitField()) 2122 return EmitLValueForBitfield(base.getAddress(), field, 2123 base.getVRQualifiers()); 2124 2125 const RecordDecl *rec = field->getParent(); 2126 QualType type = field->getType(); 2127 CharUnits alignment = getContext().getDeclAlign(field); 2128 2129 // FIXME: It should be impossible to have an LValue without alignment for a 2130 // complete type. 2131 if (!base.getAlignment().isZero()) 2132 alignment = std::min(alignment, base.getAlignment()); 2133 2134 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2135 2136 llvm::Value *addr = base.getAddress(); 2137 unsigned cvr = base.getVRQualifiers(); 2138 if (rec->isUnion()) { 2139 // For unions, there is no pointer adjustment. 2140 assert(!type->isReferenceType() && "union has reference member"); 2141 } else { 2142 // For structs, we GEP to the field that the record layout suggests. 2143 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2144 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2145 2146 // If this is a reference field, load the reference right now. 2147 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2148 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2149 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2150 load->setAlignment(alignment.getQuantity()); 2151 2152 if (CGM.shouldUseTBAA()) { 2153 llvm::MDNode *tbaa; 2154 if (mayAlias) 2155 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2156 else 2157 tbaa = CGM.getTBAAInfo(type); 2158 CGM.DecorateInstruction(load, tbaa); 2159 } 2160 2161 addr = load; 2162 mayAlias = false; 2163 type = refType->getPointeeType(); 2164 if (type->isIncompleteType()) 2165 alignment = CharUnits(); 2166 else 2167 alignment = getContext().getTypeAlignInChars(type); 2168 cvr = 0; // qualifiers don't recursively apply to referencee 2169 } 2170 } 2171 2172 // Make sure that the address is pointing to the right type. This is critical 2173 // for both unions and structs. A union needs a bitcast, a struct element 2174 // will need a bitcast if the LLVM type laid out doesn't match the desired 2175 // type. 2176 addr = EmitBitCastOfLValueToProperType(*this, addr, 2177 CGM.getTypes().ConvertTypeForMem(type), 2178 field->getName()); 2179 2180 if (field->hasAttr<AnnotateAttr>()) 2181 addr = EmitFieldAnnotations(field, addr); 2182 2183 LValue LV = MakeAddrLValue(addr, type, alignment); 2184 LV.getQuals().addCVRQualifiers(cvr); 2185 2186 // __weak attribute on a field is ignored. 2187 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2188 LV.getQuals().removeObjCGCAttr(); 2189 2190 // Fields of may_alias structs act like 'char' for TBAA purposes. 2191 // FIXME: this should get propagated down through anonymous structs 2192 // and unions. 2193 if (mayAlias && LV.getTBAAInfo()) 2194 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2195 2196 return LV; 2197} 2198 2199LValue 2200CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2201 const FieldDecl *Field) { 2202 QualType FieldType = Field->getType(); 2203 2204 if (!FieldType->isReferenceType()) 2205 return EmitLValueForField(Base, Field); 2206 2207 const CGRecordLayout &RL = 2208 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2209 unsigned idx = RL.getLLVMFieldNo(Field); 2210 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2211 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2212 2213 // Make sure that the address is pointing to the right type. This is critical 2214 // for both unions and structs. A union needs a bitcast, a struct element 2215 // will need a bitcast if the LLVM type laid out doesn't match the desired 2216 // type. 2217 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2218 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2219 2220 CharUnits Alignment = getContext().getDeclAlign(Field); 2221 2222 // FIXME: It should be impossible to have an LValue without alignment for a 2223 // complete type. 2224 if (!Base.getAlignment().isZero()) 2225 Alignment = std::min(Alignment, Base.getAlignment()); 2226 2227 return MakeAddrLValue(V, FieldType, Alignment); 2228} 2229 2230LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2231 if (E->isFileScope()) { 2232 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2233 return MakeAddrLValue(GlobalPtr, E->getType()); 2234 } 2235 if (E->getType()->isVariablyModifiedType()) 2236 // make sure to emit the VLA size. 2237 EmitVariablyModifiedType(E->getType()); 2238 2239 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2240 const Expr *InitExpr = E->getInitializer(); 2241 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2242 2243 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2244 /*Init*/ true); 2245 2246 return Result; 2247} 2248 2249LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2250 if (!E->isGLValue()) 2251 // Initializing an aggregate temporary in C++11: T{...}. 2252 return EmitAggExprToLValue(E); 2253 2254 // An lvalue initializer list must be initializing a reference. 2255 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2256 return EmitLValue(E->getInit(0)); 2257} 2258 2259LValue CodeGenFunction:: 2260EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2261 if (!expr->isGLValue()) { 2262 // ?: here should be an aggregate. 2263 assert((hasAggregateLLVMType(expr->getType()) && 2264 !expr->getType()->isAnyComplexType()) && 2265 "Unexpected conditional operator!"); 2266 return EmitAggExprToLValue(expr); 2267 } 2268 2269 OpaqueValueMapping binding(*this, expr); 2270 2271 const Expr *condExpr = expr->getCond(); 2272 bool CondExprBool; 2273 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2274 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2275 if (!CondExprBool) std::swap(live, dead); 2276 2277 if (!ContainsLabel(dead)) 2278 return EmitLValue(live); 2279 } 2280 2281 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2282 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2283 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2284 2285 ConditionalEvaluation eval(*this); 2286 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2287 2288 // Any temporaries created here are conditional. 2289 EmitBlock(lhsBlock); 2290 eval.begin(*this); 2291 LValue lhs = EmitLValue(expr->getTrueExpr()); 2292 eval.end(*this); 2293 2294 if (!lhs.isSimple()) 2295 return EmitUnsupportedLValue(expr, "conditional operator"); 2296 2297 lhsBlock = Builder.GetInsertBlock(); 2298 Builder.CreateBr(contBlock); 2299 2300 // Any temporaries created here are conditional. 2301 EmitBlock(rhsBlock); 2302 eval.begin(*this); 2303 LValue rhs = EmitLValue(expr->getFalseExpr()); 2304 eval.end(*this); 2305 if (!rhs.isSimple()) 2306 return EmitUnsupportedLValue(expr, "conditional operator"); 2307 rhsBlock = Builder.GetInsertBlock(); 2308 2309 EmitBlock(contBlock); 2310 2311 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2312 "cond-lvalue"); 2313 phi->addIncoming(lhs.getAddress(), lhsBlock); 2314 phi->addIncoming(rhs.getAddress(), rhsBlock); 2315 return MakeAddrLValue(phi, expr->getType()); 2316} 2317 2318/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2319/// type. If the cast is to a reference, we can have the usual lvalue result, 2320/// otherwise if a cast is needed by the code generator in an lvalue context, 2321/// then it must mean that we need the address of an aggregate in order to 2322/// access one of its members. This can happen for all the reasons that casts 2323/// are permitted with aggregate result, including noop aggregate casts, and 2324/// cast from scalar to union. 2325LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2326 switch (E->getCastKind()) { 2327 case CK_ToVoid: 2328 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2329 2330 case CK_Dependent: 2331 llvm_unreachable("dependent cast kind in IR gen!"); 2332 2333 // These two casts are currently treated as no-ops, although they could 2334 // potentially be real operations depending on the target's ABI. 2335 case CK_NonAtomicToAtomic: 2336 case CK_AtomicToNonAtomic: 2337 2338 case CK_NoOp: 2339 case CK_LValueToRValue: 2340 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2341 || E->getType()->isRecordType()) 2342 return EmitLValue(E->getSubExpr()); 2343 // Fall through to synthesize a temporary. 2344 2345 case CK_BitCast: 2346 case CK_ArrayToPointerDecay: 2347 case CK_FunctionToPointerDecay: 2348 case CK_NullToMemberPointer: 2349 case CK_NullToPointer: 2350 case CK_IntegralToPointer: 2351 case CK_PointerToIntegral: 2352 case CK_PointerToBoolean: 2353 case CK_VectorSplat: 2354 case CK_IntegralCast: 2355 case CK_IntegralToBoolean: 2356 case CK_IntegralToFloating: 2357 case CK_FloatingToIntegral: 2358 case CK_FloatingToBoolean: 2359 case CK_FloatingCast: 2360 case CK_FloatingRealToComplex: 2361 case CK_FloatingComplexToReal: 2362 case CK_FloatingComplexToBoolean: 2363 case CK_FloatingComplexCast: 2364 case CK_FloatingComplexToIntegralComplex: 2365 case CK_IntegralRealToComplex: 2366 case CK_IntegralComplexToReal: 2367 case CK_IntegralComplexToBoolean: 2368 case CK_IntegralComplexCast: 2369 case CK_IntegralComplexToFloatingComplex: 2370 case CK_DerivedToBaseMemberPointer: 2371 case CK_BaseToDerivedMemberPointer: 2372 case CK_MemberPointerToBoolean: 2373 case CK_ReinterpretMemberPointer: 2374 case CK_AnyPointerToBlockPointerCast: 2375 case CK_ARCProduceObject: 2376 case CK_ARCConsumeObject: 2377 case CK_ARCReclaimReturnedObject: 2378 case CK_ARCExtendBlockObject: 2379 case CK_CopyAndAutoreleaseBlockObject: { 2380 // These casts only produce lvalues when we're binding a reference to a 2381 // temporary realized from a (converted) pure rvalue. Emit the expression 2382 // as a value, copy it into a temporary, and return an lvalue referring to 2383 // that temporary. 2384 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2385 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2386 return MakeAddrLValue(V, E->getType()); 2387 } 2388 2389 case CK_Dynamic: { 2390 LValue LV = EmitLValue(E->getSubExpr()); 2391 llvm::Value *V = LV.getAddress(); 2392 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2393 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2394 } 2395 2396 case CK_ConstructorConversion: 2397 case CK_UserDefinedConversion: 2398 case CK_CPointerToObjCPointerCast: 2399 case CK_BlockPointerToObjCPointerCast: 2400 return EmitLValue(E->getSubExpr()); 2401 2402 case CK_UncheckedDerivedToBase: 2403 case CK_DerivedToBase: { 2404 const RecordType *DerivedClassTy = 2405 E->getSubExpr()->getType()->getAs<RecordType>(); 2406 CXXRecordDecl *DerivedClassDecl = 2407 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2408 2409 LValue LV = EmitLValue(E->getSubExpr()); 2410 llvm::Value *This = LV.getAddress(); 2411 2412 // Perform the derived-to-base conversion 2413 llvm::Value *Base = 2414 GetAddressOfBaseClass(This, DerivedClassDecl, 2415 E->path_begin(), E->path_end(), 2416 /*NullCheckValue=*/false); 2417 2418 return MakeAddrLValue(Base, E->getType()); 2419 } 2420 case CK_ToUnion: 2421 return EmitAggExprToLValue(E); 2422 case CK_BaseToDerived: { 2423 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2424 CXXRecordDecl *DerivedClassDecl = 2425 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2426 2427 LValue LV = EmitLValue(E->getSubExpr()); 2428 2429 // Perform the base-to-derived conversion 2430 llvm::Value *Derived = 2431 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2432 E->path_begin(), E->path_end(), 2433 /*NullCheckValue=*/false); 2434 2435 return MakeAddrLValue(Derived, E->getType()); 2436 } 2437 case CK_LValueBitCast: { 2438 // This must be a reinterpret_cast (or c-style equivalent). 2439 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2440 2441 LValue LV = EmitLValue(E->getSubExpr()); 2442 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2443 ConvertType(CE->getTypeAsWritten())); 2444 return MakeAddrLValue(V, E->getType()); 2445 } 2446 case CK_ObjCObjectLValueCast: { 2447 LValue LV = EmitLValue(E->getSubExpr()); 2448 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2449 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2450 ConvertType(ToType)); 2451 return MakeAddrLValue(V, E->getType()); 2452 } 2453 } 2454 2455 llvm_unreachable("Unhandled lvalue cast kind?"); 2456} 2457 2458LValue CodeGenFunction::EmitNullInitializationLValue( 2459 const CXXScalarValueInitExpr *E) { 2460 QualType Ty = E->getType(); 2461 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2462 EmitNullInitialization(LV.getAddress(), Ty); 2463 return LV; 2464} 2465 2466LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2467 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2468 return getOpaqueLValueMapping(e); 2469} 2470 2471LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2472 const MaterializeTemporaryExpr *E) { 2473 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2474 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2475} 2476 2477RValue CodeGenFunction::EmitRValueForField(LValue LV, 2478 const FieldDecl *FD) { 2479 QualType FT = FD->getType(); 2480 LValue FieldLV = EmitLValueForField(LV, FD); 2481 if (FT->isAnyComplexType()) 2482 return RValue::getComplex( 2483 LoadComplexFromAddr(FieldLV.getAddress(), 2484 FieldLV.isVolatileQualified())); 2485 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2486 return FieldLV.asAggregateRValue(); 2487 2488 return EmitLoadOfLValue(FieldLV); 2489} 2490 2491//===--------------------------------------------------------------------===// 2492// Expression Emission 2493//===--------------------------------------------------------------------===// 2494 2495RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2496 ReturnValueSlot ReturnValue) { 2497 if (CGDebugInfo *DI = getDebugInfo()) 2498 DI->EmitLocation(Builder, E->getLocStart()); 2499 2500 // Builtins never have block type. 2501 if (E->getCallee()->getType()->isBlockPointerType()) 2502 return EmitBlockCallExpr(E, ReturnValue); 2503 2504 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2505 return EmitCXXMemberCallExpr(CE, ReturnValue); 2506 2507 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2508 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2509 2510 const Decl *TargetDecl = E->getCalleeDecl(); 2511 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2512 if (unsigned builtinID = FD->getBuiltinID()) 2513 return EmitBuiltinExpr(FD, builtinID, E); 2514 } 2515 2516 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2517 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2518 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2519 2520 if (const CXXPseudoDestructorExpr *PseudoDtor 2521 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2522 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2523 if (getContext().getLangOpts().ObjCAutoRefCount && 2524 DestroyedType->isObjCLifetimeType() && 2525 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2526 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2527 // Automatic Reference Counting: 2528 // If the pseudo-expression names a retainable object with weak or 2529 // strong lifetime, the object shall be released. 2530 Expr *BaseExpr = PseudoDtor->getBase(); 2531 llvm::Value *BaseValue = NULL; 2532 Qualifiers BaseQuals; 2533 2534 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2535 if (PseudoDtor->isArrow()) { 2536 BaseValue = EmitScalarExpr(BaseExpr); 2537 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2538 BaseQuals = PTy->getPointeeType().getQualifiers(); 2539 } else { 2540 LValue BaseLV = EmitLValue(BaseExpr); 2541 BaseValue = BaseLV.getAddress(); 2542 QualType BaseTy = BaseExpr->getType(); 2543 BaseQuals = BaseTy.getQualifiers(); 2544 } 2545 2546 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2547 case Qualifiers::OCL_None: 2548 case Qualifiers::OCL_ExplicitNone: 2549 case Qualifiers::OCL_Autoreleasing: 2550 break; 2551 2552 case Qualifiers::OCL_Strong: 2553 EmitARCRelease(Builder.CreateLoad(BaseValue, 2554 PseudoDtor->getDestroyedType().isVolatileQualified()), 2555 /*precise*/ true); 2556 break; 2557 2558 case Qualifiers::OCL_Weak: 2559 EmitARCDestroyWeak(BaseValue); 2560 break; 2561 } 2562 } else { 2563 // C++ [expr.pseudo]p1: 2564 // The result shall only be used as the operand for the function call 2565 // operator (), and the result of such a call has type void. The only 2566 // effect is the evaluation of the postfix-expression before the dot or 2567 // arrow. 2568 EmitScalarExpr(E->getCallee()); 2569 } 2570 2571 return RValue::get(0); 2572 } 2573 2574 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2575 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2576 E->arg_begin(), E->arg_end(), TargetDecl); 2577} 2578 2579LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2580 // Comma expressions just emit their LHS then their RHS as an l-value. 2581 if (E->getOpcode() == BO_Comma) { 2582 EmitIgnoredExpr(E->getLHS()); 2583 EnsureInsertPoint(); 2584 return EmitLValue(E->getRHS()); 2585 } 2586 2587 if (E->getOpcode() == BO_PtrMemD || 2588 E->getOpcode() == BO_PtrMemI) 2589 return EmitPointerToDataMemberBinaryExpr(E); 2590 2591 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2592 2593 // Note that in all of these cases, __block variables need the RHS 2594 // evaluated first just in case the variable gets moved by the RHS. 2595 2596 if (!hasAggregateLLVMType(E->getType())) { 2597 switch (E->getLHS()->getType().getObjCLifetime()) { 2598 case Qualifiers::OCL_Strong: 2599 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2600 2601 case Qualifiers::OCL_Autoreleasing: 2602 return EmitARCStoreAutoreleasing(E).first; 2603 2604 // No reason to do any of these differently. 2605 case Qualifiers::OCL_None: 2606 case Qualifiers::OCL_ExplicitNone: 2607 case Qualifiers::OCL_Weak: 2608 break; 2609 } 2610 2611 RValue RV = EmitAnyExpr(E->getRHS()); 2612 LValue LV = EmitLValue(E->getLHS()); 2613 EmitStoreThroughLValue(RV, LV); 2614 return LV; 2615 } 2616 2617 if (E->getType()->isAnyComplexType()) 2618 return EmitComplexAssignmentLValue(E); 2619 2620 return EmitAggExprToLValue(E); 2621} 2622 2623LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2624 RValue RV = EmitCallExpr(E); 2625 2626 if (!RV.isScalar()) 2627 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2628 2629 assert(E->getCallReturnType()->isReferenceType() && 2630 "Can't have a scalar return unless the return type is a " 2631 "reference type!"); 2632 2633 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2634} 2635 2636LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2637 // FIXME: This shouldn't require another copy. 2638 return EmitAggExprToLValue(E); 2639} 2640 2641LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2642 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2643 && "binding l-value to type which needs a temporary"); 2644 AggValueSlot Slot = CreateAggTemp(E->getType()); 2645 EmitCXXConstructExpr(E, Slot); 2646 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2647} 2648 2649LValue 2650CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2651 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2652} 2653 2654LValue 2655CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2656 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2657 Slot.setExternallyDestructed(); 2658 EmitAggExpr(E->getSubExpr(), Slot); 2659 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2660 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2661} 2662 2663LValue 2664CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2665 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2666 EmitLambdaExpr(E, Slot); 2667 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2668} 2669 2670LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2671 RValue RV = EmitObjCMessageExpr(E); 2672 2673 if (!RV.isScalar()) 2674 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2675 2676 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2677 "Can't have a scalar return unless the return type is a " 2678 "reference type!"); 2679 2680 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2681} 2682 2683LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2684 llvm::Value *V = 2685 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2686 return MakeAddrLValue(V, E->getType()); 2687} 2688 2689llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2690 const ObjCIvarDecl *Ivar) { 2691 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2692} 2693 2694LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2695 llvm::Value *BaseValue, 2696 const ObjCIvarDecl *Ivar, 2697 unsigned CVRQualifiers) { 2698 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2699 Ivar, CVRQualifiers); 2700} 2701 2702LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2703 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2704 llvm::Value *BaseValue = 0; 2705 const Expr *BaseExpr = E->getBase(); 2706 Qualifiers BaseQuals; 2707 QualType ObjectTy; 2708 if (E->isArrow()) { 2709 BaseValue = EmitScalarExpr(BaseExpr); 2710 ObjectTy = BaseExpr->getType()->getPointeeType(); 2711 BaseQuals = ObjectTy.getQualifiers(); 2712 } else { 2713 LValue BaseLV = EmitLValue(BaseExpr); 2714 // FIXME: this isn't right for bitfields. 2715 BaseValue = BaseLV.getAddress(); 2716 ObjectTy = BaseExpr->getType(); 2717 BaseQuals = ObjectTy.getQualifiers(); 2718 } 2719 2720 LValue LV = 2721 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2722 BaseQuals.getCVRQualifiers()); 2723 setObjCGCLValueClass(getContext(), E, LV); 2724 return LV; 2725} 2726 2727LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2728 // Can only get l-value for message expression returning aggregate type 2729 RValue RV = EmitAnyExprToTemp(E); 2730 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2731} 2732 2733RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2734 ReturnValueSlot ReturnValue, 2735 CallExpr::const_arg_iterator ArgBeg, 2736 CallExpr::const_arg_iterator ArgEnd, 2737 const Decl *TargetDecl) { 2738 // Get the actual function type. The callee type will always be a pointer to 2739 // function type or a block pointer type. 2740 assert(CalleeType->isFunctionPointerType() && 2741 "Call must have function pointer type!"); 2742 2743 CalleeType = getContext().getCanonicalType(CalleeType); 2744 2745 const FunctionType *FnType 2746 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2747 2748 CallArgList Args; 2749 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2750 2751 const CGFunctionInfo &FnInfo = 2752 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2753 2754 // C99 6.5.2.2p6: 2755 // If the expression that denotes the called function has a type 2756 // that does not include a prototype, [the default argument 2757 // promotions are performed]. If the number of arguments does not 2758 // equal the number of parameters, the behavior is undefined. If 2759 // the function is defined with a type that includes a prototype, 2760 // and either the prototype ends with an ellipsis (, ...) or the 2761 // types of the arguments after promotion are not compatible with 2762 // the types of the parameters, the behavior is undefined. If the 2763 // function is defined with a type that does not include a 2764 // prototype, and the types of the arguments after promotion are 2765 // not compatible with those of the parameters after promotion, 2766 // the behavior is undefined [except in some trivial cases]. 2767 // That is, in the general case, we should assume that a call 2768 // through an unprototyped function type works like a *non-variadic* 2769 // call. The way we make this work is to cast to the exact type 2770 // of the promoted arguments. 2771 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2772 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2773 CalleeTy = CalleeTy->getPointerTo(); 2774 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2775 } 2776 2777 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2778} 2779 2780LValue CodeGenFunction:: 2781EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2782 llvm::Value *BaseV; 2783 if (E->getOpcode() == BO_PtrMemI) 2784 BaseV = EmitScalarExpr(E->getLHS()); 2785 else 2786 BaseV = EmitLValue(E->getLHS()).getAddress(); 2787 2788 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2789 2790 const MemberPointerType *MPT 2791 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2792 2793 llvm::Value *AddV = 2794 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2795 2796 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2797} 2798 2799static void 2800EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2801 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2802 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2803 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2804 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 2805 2806 switch (E->getOp()) { 2807 case AtomicExpr::AO__c11_atomic_init: 2808 llvm_unreachable("Already handled!"); 2809 2810 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2811 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2812 case AtomicExpr::AO__atomic_compare_exchange: 2813 case AtomicExpr::AO__atomic_compare_exchange_n: { 2814 // Note that cmpxchg only supports specifying one ordering and 2815 // doesn't support weak cmpxchg, at least at the moment. 2816 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2817 LoadVal1->setAlignment(Align); 2818 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2819 LoadVal2->setAlignment(Align); 2820 llvm::AtomicCmpXchgInst *CXI = 2821 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2822 CXI->setVolatile(E->isVolatile()); 2823 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2824 StoreVal1->setAlignment(Align); 2825 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2826 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2827 return; 2828 } 2829 2830 case AtomicExpr::AO__c11_atomic_load: 2831 case AtomicExpr::AO__atomic_load_n: 2832 case AtomicExpr::AO__atomic_load: { 2833 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2834 Load->setAtomic(Order); 2835 Load->setAlignment(Size); 2836 Load->setVolatile(E->isVolatile()); 2837 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2838 StoreDest->setAlignment(Align); 2839 return; 2840 } 2841 2842 case AtomicExpr::AO__c11_atomic_store: 2843 case AtomicExpr::AO__atomic_store: 2844 case AtomicExpr::AO__atomic_store_n: { 2845 assert(!Dest && "Store does not return a value"); 2846 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2847 LoadVal1->setAlignment(Align); 2848 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2849 Store->setAtomic(Order); 2850 Store->setAlignment(Size); 2851 Store->setVolatile(E->isVolatile()); 2852 return; 2853 } 2854 2855 case AtomicExpr::AO__c11_atomic_exchange: 2856 case AtomicExpr::AO__atomic_exchange_n: 2857 case AtomicExpr::AO__atomic_exchange: 2858 Op = llvm::AtomicRMWInst::Xchg; 2859 break; 2860 2861 case AtomicExpr::AO__atomic_add_fetch: 2862 PostOp = llvm::Instruction::Add; 2863 // Fall through. 2864 case AtomicExpr::AO__c11_atomic_fetch_add: 2865 case AtomicExpr::AO__atomic_fetch_add: 2866 Op = llvm::AtomicRMWInst::Add; 2867 break; 2868 2869 case AtomicExpr::AO__atomic_sub_fetch: 2870 PostOp = llvm::Instruction::Sub; 2871 // Fall through. 2872 case AtomicExpr::AO__c11_atomic_fetch_sub: 2873 case AtomicExpr::AO__atomic_fetch_sub: 2874 Op = llvm::AtomicRMWInst::Sub; 2875 break; 2876 2877 case AtomicExpr::AO__atomic_and_fetch: 2878 PostOp = llvm::Instruction::And; 2879 // Fall through. 2880 case AtomicExpr::AO__c11_atomic_fetch_and: 2881 case AtomicExpr::AO__atomic_fetch_and: 2882 Op = llvm::AtomicRMWInst::And; 2883 break; 2884 2885 case AtomicExpr::AO__atomic_or_fetch: 2886 PostOp = llvm::Instruction::Or; 2887 // Fall through. 2888 case AtomicExpr::AO__c11_atomic_fetch_or: 2889 case AtomicExpr::AO__atomic_fetch_or: 2890 Op = llvm::AtomicRMWInst::Or; 2891 break; 2892 2893 case AtomicExpr::AO__atomic_xor_fetch: 2894 PostOp = llvm::Instruction::Xor; 2895 // Fall through. 2896 case AtomicExpr::AO__c11_atomic_fetch_xor: 2897 case AtomicExpr::AO__atomic_fetch_xor: 2898 Op = llvm::AtomicRMWInst::Xor; 2899 break; 2900 2901 case AtomicExpr::AO__atomic_nand_fetch: 2902 PostOp = llvm::Instruction::And; 2903 // Fall through. 2904 case AtomicExpr::AO__atomic_fetch_nand: 2905 Op = llvm::AtomicRMWInst::Nand; 2906 break; 2907 } 2908 2909 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2910 LoadVal1->setAlignment(Align); 2911 llvm::AtomicRMWInst *RMWI = 2912 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2913 RMWI->setVolatile(E->isVolatile()); 2914 2915 // For __atomic_*_fetch operations, perform the operation again to 2916 // determine the value which was written. 2917 llvm::Value *Result = RMWI; 2918 if (PostOp) 2919 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 2920 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 2921 Result = CGF.Builder.CreateNot(Result); 2922 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 2923 StoreDest->setAlignment(Align); 2924} 2925 2926// This function emits any expression (scalar, complex, or aggregate) 2927// into a temporary alloca. 2928static llvm::Value * 2929EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2930 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2931 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2932 /*Init*/ true); 2933 return DeclPtr; 2934} 2935 2936static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2937 llvm::Value *Dest) { 2938 if (Ty->isAnyComplexType()) 2939 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2940 if (CGF.hasAggregateLLVMType(Ty)) 2941 return RValue::getAggregate(Dest); 2942 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2943} 2944 2945RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2946 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2947 QualType MemTy = AtomicTy; 2948 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 2949 MemTy = AT->getValueType(); 2950 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2951 uint64_t Size = sizeChars.getQuantity(); 2952 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2953 unsigned Align = alignChars.getQuantity(); 2954 unsigned MaxInlineWidth = 2955 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2956 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2957 2958 2959 2960 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2961 Ptr = EmitScalarExpr(E->getPtr()); 2962 2963 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 2964 assert(!Dest && "Init does not return a value"); 2965 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 2966 QualType PointeeType 2967 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 2968 EmitScalarInit(EmitScalarExpr(E->getVal1()), 2969 LValue::MakeAddr(Ptr, PointeeType, alignChars, 2970 getContext())); 2971 } else if (E->getType()->isAnyComplexType()) { 2972 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 2973 } else { 2974 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 2975 AtomicTy.getQualifiers(), 2976 AggValueSlot::IsNotDestructed, 2977 AggValueSlot::DoesNotNeedGCBarriers, 2978 AggValueSlot::IsNotAliased); 2979 EmitAggExpr(E->getVal1(), Slot); 2980 } 2981 return RValue::get(0); 2982 } 2983 2984 Order = EmitScalarExpr(E->getOrder()); 2985 2986 switch (E->getOp()) { 2987 case AtomicExpr::AO__c11_atomic_init: 2988 llvm_unreachable("Already handled!"); 2989 2990 case AtomicExpr::AO__c11_atomic_load: 2991 case AtomicExpr::AO__atomic_load_n: 2992 break; 2993 2994 case AtomicExpr::AO__atomic_load: 2995 Dest = EmitScalarExpr(E->getVal1()); 2996 break; 2997 2998 case AtomicExpr::AO__atomic_store: 2999 Val1 = EmitScalarExpr(E->getVal1()); 3000 break; 3001 3002 case AtomicExpr::AO__atomic_exchange: 3003 Val1 = EmitScalarExpr(E->getVal1()); 3004 Dest = EmitScalarExpr(E->getVal2()); 3005 break; 3006 3007 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3008 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3009 case AtomicExpr::AO__atomic_compare_exchange_n: 3010 case AtomicExpr::AO__atomic_compare_exchange: 3011 Val1 = EmitScalarExpr(E->getVal1()); 3012 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 3013 Val2 = EmitScalarExpr(E->getVal2()); 3014 else 3015 Val2 = EmitValToTemp(*this, E->getVal2()); 3016 OrderFail = EmitScalarExpr(E->getOrderFail()); 3017 // Evaluate and discard the 'weak' argument. 3018 if (E->getNumSubExprs() == 6) 3019 EmitScalarExpr(E->getWeak()); 3020 break; 3021 3022 case AtomicExpr::AO__c11_atomic_fetch_add: 3023 case AtomicExpr::AO__c11_atomic_fetch_sub: 3024 if (MemTy->isPointerType()) { 3025 // For pointer arithmetic, we're required to do a bit of math: 3026 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 3027 // ... but only for the C11 builtins. The GNU builtins expect the 3028 // user to multiply by sizeof(T). 3029 QualType Val1Ty = E->getVal1()->getType(); 3030 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 3031 CharUnits PointeeIncAmt = 3032 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 3033 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 3034 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 3035 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 3036 break; 3037 } 3038 // Fall through. 3039 case AtomicExpr::AO__atomic_fetch_add: 3040 case AtomicExpr::AO__atomic_fetch_sub: 3041 case AtomicExpr::AO__atomic_add_fetch: 3042 case AtomicExpr::AO__atomic_sub_fetch: 3043 case AtomicExpr::AO__c11_atomic_store: 3044 case AtomicExpr::AO__c11_atomic_exchange: 3045 case AtomicExpr::AO__atomic_store_n: 3046 case AtomicExpr::AO__atomic_exchange_n: 3047 case AtomicExpr::AO__c11_atomic_fetch_and: 3048 case AtomicExpr::AO__c11_atomic_fetch_or: 3049 case AtomicExpr::AO__c11_atomic_fetch_xor: 3050 case AtomicExpr::AO__atomic_fetch_and: 3051 case AtomicExpr::AO__atomic_fetch_or: 3052 case AtomicExpr::AO__atomic_fetch_xor: 3053 case AtomicExpr::AO__atomic_fetch_nand: 3054 case AtomicExpr::AO__atomic_and_fetch: 3055 case AtomicExpr::AO__atomic_or_fetch: 3056 case AtomicExpr::AO__atomic_xor_fetch: 3057 case AtomicExpr::AO__atomic_nand_fetch: 3058 Val1 = EmitValToTemp(*this, E->getVal1()); 3059 break; 3060 } 3061 3062 if (!E->getType()->isVoidType() && !Dest) 3063 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 3064 3065 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 3066 if (UseLibcall) { 3067 3068 llvm::SmallVector<QualType, 5> Params; 3069 CallArgList Args; 3070 // Size is always the first parameter 3071 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 3072 getContext().getSizeType()); 3073 // Atomic address is always the second parameter 3074 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 3075 getContext().VoidPtrTy); 3076 3077 const char* LibCallName; 3078 QualType RetTy = getContext().VoidTy; 3079 switch (E->getOp()) { 3080 // There is only one libcall for compare an exchange, because there is no 3081 // optimisation benefit possible from a libcall version of a weak compare 3082 // and exchange. 3083 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 3084 // void *desired, int success, int failure) 3085 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3086 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3087 case AtomicExpr::AO__atomic_compare_exchange: 3088 case AtomicExpr::AO__atomic_compare_exchange_n: 3089 LibCallName = "__atomic_compare_exchange"; 3090 RetTy = getContext().BoolTy; 3091 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3092 getContext().VoidPtrTy); 3093 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 3094 getContext().VoidPtrTy); 3095 Args.add(RValue::get(Order), 3096 getContext().IntTy); 3097 Order = OrderFail; 3098 break; 3099 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 3100 // int order) 3101 case AtomicExpr::AO__c11_atomic_exchange: 3102 case AtomicExpr::AO__atomic_exchange_n: 3103 case AtomicExpr::AO__atomic_exchange: 3104 LibCallName = "__atomic_exchange"; 3105 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3106 getContext().VoidPtrTy); 3107 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3108 getContext().VoidPtrTy); 3109 break; 3110 // void __atomic_store(size_t size, void *mem, void *val, int order) 3111 case AtomicExpr::AO__c11_atomic_store: 3112 case AtomicExpr::AO__atomic_store: 3113 case AtomicExpr::AO__atomic_store_n: 3114 LibCallName = "__atomic_store"; 3115 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3116 getContext().VoidPtrTy); 3117 break; 3118 // void __atomic_load(size_t size, void *mem, void *return, int order) 3119 case AtomicExpr::AO__c11_atomic_load: 3120 case AtomicExpr::AO__atomic_load: 3121 case AtomicExpr::AO__atomic_load_n: 3122 LibCallName = "__atomic_load"; 3123 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3124 getContext().VoidPtrTy); 3125 break; 3126#if 0 3127 // These are only defined for 1-16 byte integers. It is not clear what 3128 // their semantics would be on anything else... 3129 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3130 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3131 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3132 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3133 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3134#endif 3135 default: return EmitUnsupportedRValue(E, "atomic library call"); 3136 } 3137 // order is always the last parameter 3138 Args.add(RValue::get(Order), 3139 getContext().IntTy); 3140 3141 const CGFunctionInfo &FuncInfo = 3142 CGM.getTypes().arrangeFunctionCall(RetTy, Args, 3143 FunctionType::ExtInfo(), RequiredArgs::All); 3144 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3145 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3146 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3147 if (E->isCmpXChg()) 3148 return Res; 3149 if (E->getType()->isVoidType()) 3150 return RValue::get(0); 3151 return ConvertTempToRValue(*this, E->getType(), Dest); 3152 } 3153 3154 llvm::Type *IPtrTy = 3155 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3156 llvm::Value *OrigDest = Dest; 3157 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3158 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3159 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3160 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3161 3162 if (isa<llvm::ConstantInt>(Order)) { 3163 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3164 switch (ord) { 3165 case 0: // memory_order_relaxed 3166 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3167 llvm::Monotonic); 3168 break; 3169 case 1: // memory_order_consume 3170 case 2: // memory_order_acquire 3171 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3172 llvm::Acquire); 3173 break; 3174 case 3: // memory_order_release 3175 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3176 llvm::Release); 3177 break; 3178 case 4: // memory_order_acq_rel 3179 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3180 llvm::AcquireRelease); 3181 break; 3182 case 5: // memory_order_seq_cst 3183 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3184 llvm::SequentiallyConsistent); 3185 break; 3186 default: // invalid order 3187 // We should not ever get here normally, but it's hard to 3188 // enforce that in general. 3189 break; 3190 } 3191 if (E->getType()->isVoidType()) 3192 return RValue::get(0); 3193 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3194 } 3195 3196 // Long case, when Order isn't obviously constant. 3197 3198 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3199 E->getOp() == AtomicExpr::AO__atomic_store || 3200 E->getOp() == AtomicExpr::AO__atomic_store_n; 3201 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3202 E->getOp() == AtomicExpr::AO__atomic_load || 3203 E->getOp() == AtomicExpr::AO__atomic_load_n; 3204 3205 // Create all the relevant BB's 3206 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3207 *AcqRelBB = 0, *SeqCstBB = 0; 3208 MonotonicBB = createBasicBlock("monotonic", CurFn); 3209 if (!IsStore) 3210 AcquireBB = createBasicBlock("acquire", CurFn); 3211 if (!IsLoad) 3212 ReleaseBB = createBasicBlock("release", CurFn); 3213 if (!IsLoad && !IsStore) 3214 AcqRelBB = createBasicBlock("acqrel", CurFn); 3215 SeqCstBB = createBasicBlock("seqcst", CurFn); 3216 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3217 3218 // Create the switch for the split 3219 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3220 // doesn't matter unless someone is crazy enough to use something that 3221 // doesn't fold to a constant for the ordering. 3222 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3223 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3224 3225 // Emit all the different atomics 3226 Builder.SetInsertPoint(MonotonicBB); 3227 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3228 llvm::Monotonic); 3229 Builder.CreateBr(ContBB); 3230 if (!IsStore) { 3231 Builder.SetInsertPoint(AcquireBB); 3232 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3233 llvm::Acquire); 3234 Builder.CreateBr(ContBB); 3235 SI->addCase(Builder.getInt32(1), AcquireBB); 3236 SI->addCase(Builder.getInt32(2), AcquireBB); 3237 } 3238 if (!IsLoad) { 3239 Builder.SetInsertPoint(ReleaseBB); 3240 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3241 llvm::Release); 3242 Builder.CreateBr(ContBB); 3243 SI->addCase(Builder.getInt32(3), ReleaseBB); 3244 } 3245 if (!IsLoad && !IsStore) { 3246 Builder.SetInsertPoint(AcqRelBB); 3247 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3248 llvm::AcquireRelease); 3249 Builder.CreateBr(ContBB); 3250 SI->addCase(Builder.getInt32(4), AcqRelBB); 3251 } 3252 Builder.SetInsertPoint(SeqCstBB); 3253 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3254 llvm::SequentiallyConsistent); 3255 Builder.CreateBr(ContBB); 3256 SI->addCase(Builder.getInt32(5), SeqCstBB); 3257 3258 // Cleanup and return 3259 Builder.SetInsertPoint(ContBB); 3260 if (E->getType()->isVoidType()) 3261 return RValue::get(0); 3262 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3263} 3264 3265void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3266 assert(Val->getType()->isFPOrFPVectorTy()); 3267 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3268 return; 3269 3270 llvm::MDBuilder MDHelper(getLLVMContext()); 3271 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3272 3273 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3274} 3275 3276namespace { 3277 struct LValueOrRValue { 3278 LValue LV; 3279 RValue RV; 3280 }; 3281} 3282 3283static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3284 const PseudoObjectExpr *E, 3285 bool forLValue, 3286 AggValueSlot slot) { 3287 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3288 3289 // Find the result expression, if any. 3290 const Expr *resultExpr = E->getResultExpr(); 3291 LValueOrRValue result; 3292 3293 for (PseudoObjectExpr::const_semantics_iterator 3294 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3295 const Expr *semantic = *i; 3296 3297 // If this semantic expression is an opaque value, bind it 3298 // to the result of its source expression. 3299 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3300 3301 // If this is the result expression, we may need to evaluate 3302 // directly into the slot. 3303 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3304 OVMA opaqueData; 3305 if (ov == resultExpr && ov->isRValue() && !forLValue && 3306 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3307 !ov->getType()->isAnyComplexType()) { 3308 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3309 3310 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3311 opaqueData = OVMA::bind(CGF, ov, LV); 3312 result.RV = slot.asRValue(); 3313 3314 // Otherwise, emit as normal. 3315 } else { 3316 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3317 3318 // If this is the result, also evaluate the result now. 3319 if (ov == resultExpr) { 3320 if (forLValue) 3321 result.LV = CGF.EmitLValue(ov); 3322 else 3323 result.RV = CGF.EmitAnyExpr(ov, slot); 3324 } 3325 } 3326 3327 opaques.push_back(opaqueData); 3328 3329 // Otherwise, if the expression is the result, evaluate it 3330 // and remember the result. 3331 } else if (semantic == resultExpr) { 3332 if (forLValue) 3333 result.LV = CGF.EmitLValue(semantic); 3334 else 3335 result.RV = CGF.EmitAnyExpr(semantic, slot); 3336 3337 // Otherwise, evaluate the expression in an ignored context. 3338 } else { 3339 CGF.EmitIgnoredExpr(semantic); 3340 } 3341 } 3342 3343 // Unbind all the opaques now. 3344 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3345 opaques[i].unbind(CGF); 3346 3347 return result; 3348} 3349 3350RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3351 AggValueSlot slot) { 3352 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3353} 3354 3355LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3356 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3357} 3358