CGExpr.cpp revision 292d67bb69e878104d2cdc1a1f72264e4fc2852a
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Basic/ConvertUTF.h" 25#include "clang/Frontend/CodeGenOptions.h" 26#include "llvm/Intrinsics.h" 27#include "llvm/LLVMContext.h" 28#include "llvm/MDBuilder.h" 29#include "llvm/DataLayout.h" 30#include "llvm/ADT/Hashing.h" 31using namespace clang; 32using namespace CodeGen; 33 34//===--------------------------------------------------------------------===// 35// Miscellaneous Helper Methods 36//===--------------------------------------------------------------------===// 37 38llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 39 unsigned addressSpace = 40 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 41 42 llvm::PointerType *destType = Int8PtrTy; 43 if (addressSpace) 44 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 45 46 if (value->getType() == destType) return value; 47 return Builder.CreateBitCast(value, destType); 48} 49 50/// CreateTempAlloca - This creates a alloca and inserts it into the entry 51/// block. 52llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 53 const Twine &Name) { 54 if (!Builder.isNamePreserving()) 55 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 56 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 57} 58 59void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 60 llvm::Value *Init) { 61 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 62 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 63 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 64} 65 66llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 67 const Twine &Name) { 68 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 69 // FIXME: Should we prefer the preferred type alignment here? 70 CharUnits Align = getContext().getTypeAlignInChars(Ty); 71 Alloc->setAlignment(Align.getQuantity()); 72 return Alloc; 73} 74 75llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 76 const Twine &Name) { 77 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 78 // FIXME: Should we prefer the preferred type alignment here? 79 CharUnits Align = getContext().getTypeAlignInChars(Ty); 80 Alloc->setAlignment(Align.getQuantity()); 81 return Alloc; 82} 83 84/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 85/// expression and compare the result against zero, returning an Int1Ty value. 86llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 87 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 88 llvm::Value *MemPtr = EmitScalarExpr(E); 89 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 90 } 91 92 QualType BoolTy = getContext().BoolTy; 93 if (!E->getType()->isAnyComplexType()) 94 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 95 96 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 97} 98 99/// EmitIgnoredExpr - Emit code to compute the specified expression, 100/// ignoring the result. 101void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 102 if (E->isRValue()) 103 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 104 105 // Just emit it as an l-value and drop the result. 106 EmitLValue(E); 107} 108 109/// EmitAnyExpr - Emit code to compute the specified expression which 110/// can have any type. The result is returned as an RValue struct. 111/// If this is an aggregate expression, AggSlot indicates where the 112/// result should be returned. 113RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 114 AggValueSlot aggSlot, 115 bool ignoreResult) { 116 if (!hasAggregateLLVMType(E->getType())) 117 return RValue::get(EmitScalarExpr(E, ignoreResult)); 118 else if (E->getType()->isAnyComplexType()) 119 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 120 121 if (!ignoreResult && aggSlot.isIgnored()) 122 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 123 EmitAggExpr(E, aggSlot); 124 return aggSlot.asRValue(); 125} 126 127/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 128/// always be accessible even if no aggregate location is provided. 129RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 130 AggValueSlot AggSlot = AggValueSlot::ignored(); 131 132 if (hasAggregateLLVMType(E->getType()) && 133 !E->getType()->isAnyComplexType()) 134 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 135 return EmitAnyExpr(E, AggSlot); 136} 137 138/// EmitAnyExprToMem - Evaluate an expression into a given memory 139/// location. 140void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 141 llvm::Value *Location, 142 Qualifiers Quals, 143 bool IsInit) { 144 // FIXME: This function should take an LValue as an argument. 145 if (E->getType()->isAnyComplexType()) { 146 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 147 } else if (hasAggregateLLVMType(E->getType())) { 148 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 149 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 150 AggValueSlot::IsDestructed_t(IsInit), 151 AggValueSlot::DoesNotNeedGCBarriers, 152 AggValueSlot::IsAliased_t(!IsInit))); 153 } else { 154 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 155 LValue LV = MakeAddrLValue(Location, E->getType()); 156 EmitStoreThroughLValue(RV, LV); 157 } 158} 159 160static llvm::Value * 161CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 162 const NamedDecl *InitializedDecl) { 163 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 164 if (VD->hasGlobalStorage()) { 165 SmallString<256> Name; 166 llvm::raw_svector_ostream Out(Name); 167 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 168 Out.flush(); 169 170 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 171 172 // Create the reference temporary. 173 llvm::GlobalValue *RefTemp = 174 new llvm::GlobalVariable(CGF.CGM.getModule(), 175 RefTempTy, /*isConstant=*/false, 176 llvm::GlobalValue::InternalLinkage, 177 llvm::Constant::getNullValue(RefTempTy), 178 Name.str()); 179 return RefTemp; 180 } 181 } 182 183 return CGF.CreateMemTemp(Type, "ref.tmp"); 184} 185 186static llvm::Value * 187EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 188 llvm::Value *&ReferenceTemporary, 189 const CXXDestructorDecl *&ReferenceTemporaryDtor, 190 QualType &ObjCARCReferenceLifetimeType, 191 const NamedDecl *InitializedDecl) { 192 const MaterializeTemporaryExpr *M = NULL; 193 E = E->findMaterializedTemporary(M); 194 // Objective-C++ ARC: 195 // If we are binding a reference to a temporary that has ownership, we 196 // need to perform retain/release operations on the temporary. 197 if (M && CGF.getContext().getLangOpts().ObjCAutoRefCount && 198 M->getType()->isObjCLifetimeType() && 199 (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 200 M->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 201 M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 202 ObjCARCReferenceLifetimeType = M->getType(); 203 204 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 205 CGF.enterFullExpression(EWC); 206 CodeGenFunction::RunCleanupsScope Scope(CGF); 207 208 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 209 ReferenceTemporary, 210 ReferenceTemporaryDtor, 211 ObjCARCReferenceLifetimeType, 212 InitializedDecl); 213 } 214 215 RValue RV; 216 if (E->isGLValue()) { 217 // Emit the expression as an lvalue. 218 LValue LV = CGF.EmitLValue(E); 219 220 if (LV.isSimple()) 221 return LV.getAddress(); 222 223 // We have to load the lvalue. 224 RV = CGF.EmitLoadOfLValue(LV); 225 } else { 226 if (!ObjCARCReferenceLifetimeType.isNull()) { 227 ReferenceTemporary = CreateReferenceTemporary(CGF, 228 ObjCARCReferenceLifetimeType, 229 InitializedDecl); 230 231 232 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 233 ObjCARCReferenceLifetimeType); 234 235 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 236 RefTempDst, false); 237 238 bool ExtendsLifeOfTemporary = false; 239 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 240 if (Var->extendsLifetimeOfTemporary()) 241 ExtendsLifeOfTemporary = true; 242 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 243 ExtendsLifeOfTemporary = true; 244 } 245 246 if (!ExtendsLifeOfTemporary) { 247 // Since the lifetime of this temporary isn't going to be extended, 248 // we need to clean it up ourselves at the end of the full expression. 249 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 250 case Qualifiers::OCL_None: 251 case Qualifiers::OCL_ExplicitNone: 252 case Qualifiers::OCL_Autoreleasing: 253 break; 254 255 case Qualifiers::OCL_Strong: { 256 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 257 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 258 CGF.pushDestroy(cleanupKind, 259 ReferenceTemporary, 260 ObjCARCReferenceLifetimeType, 261 CodeGenFunction::destroyARCStrongImprecise, 262 cleanupKind & EHCleanup); 263 break; 264 } 265 266 case Qualifiers::OCL_Weak: 267 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 268 CGF.pushDestroy(NormalAndEHCleanup, 269 ReferenceTemporary, 270 ObjCARCReferenceLifetimeType, 271 CodeGenFunction::destroyARCWeak, 272 /*useEHCleanupForArray*/ true); 273 break; 274 } 275 276 ObjCARCReferenceLifetimeType = QualType(); 277 } 278 279 return ReferenceTemporary; 280 } 281 282 SmallVector<SubobjectAdjustment, 2> Adjustments; 283 E = E->skipRValueSubobjectAdjustments(Adjustments); 284 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 285 if (opaque->getType()->isRecordType()) 286 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 287 288 // Create a reference temporary if necessary. 289 AggValueSlot AggSlot = AggValueSlot::ignored(); 290 if (CGF.hasAggregateLLVMType(E->getType()) && 291 !E->getType()->isAnyComplexType()) { 292 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 293 InitializedDecl); 294 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 295 AggValueSlot::IsDestructed_t isDestructed 296 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 297 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 298 Qualifiers(), isDestructed, 299 AggValueSlot::DoesNotNeedGCBarriers, 300 AggValueSlot::IsNotAliased); 301 } 302 303 if (InitializedDecl) { 304 // Get the destructor for the reference temporary. 305 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 306 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 307 if (!ClassDecl->hasTrivialDestructor()) 308 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 309 } 310 } 311 312 RV = CGF.EmitAnyExpr(E, AggSlot); 313 314 // Check if need to perform derived-to-base casts and/or field accesses, to 315 // get from the temporary object we created (and, potentially, for which we 316 // extended the lifetime) to the subobject we're binding the reference to. 317 if (!Adjustments.empty()) { 318 llvm::Value *Object = RV.getAggregateAddr(); 319 for (unsigned I = Adjustments.size(); I != 0; --I) { 320 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 321 switch (Adjustment.Kind) { 322 case SubobjectAdjustment::DerivedToBaseAdjustment: 323 Object = 324 CGF.GetAddressOfBaseClass(Object, 325 Adjustment.DerivedToBase.DerivedClass, 326 Adjustment.DerivedToBase.BasePath->path_begin(), 327 Adjustment.DerivedToBase.BasePath->path_end(), 328 /*NullCheckValue=*/false); 329 break; 330 331 case SubobjectAdjustment::FieldAdjustment: { 332 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 333 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 334 if (LV.isSimple()) { 335 Object = LV.getAddress(); 336 break; 337 } 338 339 // For non-simple lvalues, we actually have to create a copy of 340 // the object we're binding to. 341 QualType T = Adjustment.Field->getType().getNonReferenceType() 342 .getUnqualifiedType(); 343 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 344 LValue TempLV = CGF.MakeAddrLValue(Object, 345 Adjustment.Field->getType()); 346 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 347 break; 348 } 349 350 case SubobjectAdjustment::MemberPointerAdjustment: { 351 llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS); 352 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 353 CGF, Object, Ptr, Adjustment.Ptr.MPT); 354 break; 355 } 356 } 357 } 358 359 return Object; 360 } 361 } 362 363 if (RV.isAggregate()) 364 return RV.getAggregateAddr(); 365 366 // Create a temporary variable that we can bind the reference to. 367 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 368 InitializedDecl); 369 370 371 unsigned Alignment = 372 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 373 if (RV.isScalar()) 374 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 375 /*Volatile=*/false, Alignment, E->getType()); 376 else 377 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 378 /*Volatile=*/false); 379 return ReferenceTemporary; 380} 381 382RValue 383CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 384 const NamedDecl *InitializedDecl) { 385 llvm::Value *ReferenceTemporary = 0; 386 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 387 QualType ObjCARCReferenceLifetimeType; 388 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 389 ReferenceTemporaryDtor, 390 ObjCARCReferenceLifetimeType, 391 InitializedDecl); 392 if (CatchUndefined && !E->getType()->isFunctionType()) { 393 // C++11 [dcl.ref]p5 (as amended by core issue 453): 394 // If a glvalue to which a reference is directly bound designates neither 395 // an existing object or function of an appropriate type nor a region of 396 // storage of suitable size and alignment to contain an object of the 397 // reference's type, the behavior is undefined. 398 QualType Ty = E->getType(); 399 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 400 } 401 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 402 return RValue::get(Value); 403 404 // Make sure to call the destructor for the reference temporary. 405 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 406 if (VD && VD->hasGlobalStorage()) { 407 if (ReferenceTemporaryDtor) { 408 llvm::Constant *DtorFn = 409 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 410 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 411 cast<llvm::Constant>(ReferenceTemporary)); 412 } else { 413 assert(!ObjCARCReferenceLifetimeType.isNull()); 414 // Note: We intentionally do not register a global "destructor" to 415 // release the object. 416 } 417 418 return RValue::get(Value); 419 } 420 421 if (ReferenceTemporaryDtor) 422 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 423 else { 424 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 425 case Qualifiers::OCL_None: 426 llvm_unreachable( 427 "Not a reference temporary that needs to be deallocated"); 428 case Qualifiers::OCL_ExplicitNone: 429 case Qualifiers::OCL_Autoreleasing: 430 // Nothing to do. 431 break; 432 433 case Qualifiers::OCL_Strong: { 434 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 435 CleanupKind cleanupKind = getARCCleanupKind(); 436 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 437 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 438 cleanupKind & EHCleanup); 439 break; 440 } 441 442 case Qualifiers::OCL_Weak: { 443 // __weak objects always get EH cleanups; otherwise, exceptions 444 // could cause really nasty crashes instead of mere leaks. 445 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 446 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 447 break; 448 } 449 } 450 } 451 452 return RValue::get(Value); 453} 454 455 456/// getAccessedFieldNo - Given an encoded value and a result number, return the 457/// input field number being accessed. 458unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 459 const llvm::Constant *Elts) { 460 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 461 ->getZExtValue(); 462} 463 464/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 465static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 466 llvm::Value *High) { 467 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 468 llvm::Value *K47 = Builder.getInt64(47); 469 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 470 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 471 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 472 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 473 return Builder.CreateMul(B1, KMul); 474} 475 476void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 477 llvm::Value *Address, 478 QualType Ty, CharUnits Alignment) { 479 if (!CatchUndefined) 480 return; 481 482 // Don't check pointers outside the default address space. The null check 483 // isn't correct, the object-size check isn't supported by LLVM, and we can't 484 // communicate the addresses to the runtime handler for the vptr check. 485 if (Address->getType()->getPointerAddressSpace()) 486 return; 487 488 llvm::Value *Cond = 0; 489 490 // The glvalue must not be an empty glvalue. 491 Cond = Builder.CreateICmpNE( 492 Address, llvm::Constant::getNullValue(Address->getType())); 493 494 uint64_t AlignVal = Alignment.getQuantity(); 495 496 if (!Ty->isIncompleteType()) { 497 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 498 if (!AlignVal) 499 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 500 501 // The glvalue must refer to a large enough storage region. 502 // FIXME: If -faddress-sanitizer is enabled, insert dynamic instrumentation 503 // to check this. 504 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 505 llvm::Value *Min = Builder.getFalse(); 506 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 507 llvm::Value *LargeEnough = 508 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 509 llvm::ConstantInt::get(IntPtrTy, Size)); 510 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 511 } 512 513 if (AlignVal) { 514 // The glvalue must be suitably aligned. 515 llvm::Value *Align = 516 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 517 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 518 Cond = Builder.CreateAnd(Cond, 519 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0))); 520 } 521 522 if (Cond) { 523 llvm::Constant *StaticData[] = { 524 EmitCheckSourceLocation(Loc), 525 EmitCheckTypeDescriptor(Ty), 526 llvm::ConstantInt::get(SizeTy, AlignVal), 527 llvm::ConstantInt::get(Int8Ty, TCK) 528 }; 529 EmitCheck(Cond, "type_mismatch", StaticData, Address); 530 } 531 532 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 533 if (TCK != TCK_ConstructorCall && 534 RD && RD->hasDefinition() && RD->isDynamicClass()) { 535 // Check that the vptr indicates that there is a subobject of type Ty at 536 // offset zero within this object. 537 // FIXME: Produce a diagnostic if the user tries to combine this check with 538 // -fno-rtti. 539 540 // Compute a hash of the mangled name of the type. 541 // 542 // FIXME: This is not guaranteed to be deterministic! Move to a 543 // fingerprinting mechanism once LLVM provides one. For the time 544 // being the implementation happens to be deterministic. 545 llvm::SmallString<64> MangledName; 546 llvm::raw_svector_ostream Out(MangledName); 547 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 548 Out); 549 llvm::hash_code TypeHash = hash_value(Out.str()); 550 551 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 552 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 553 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 554 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 555 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 556 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 557 558 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 559 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 560 561 // Look the hash up in our cache. 562 const int CacheSize = 128; 563 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 564 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 565 "__ubsan_vptr_type_cache"); 566 llvm::Value *Slot = Builder.CreateAnd(Hash, 567 llvm::ConstantInt::get(IntPtrTy, 568 CacheSize-1)); 569 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 570 llvm::Value *CacheVal = 571 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 572 573 // If the hash isn't in the cache, call a runtime handler to perform the 574 // hard work of checking whether the vptr is for an object of the right 575 // type. This will either fill in the cache and return, or produce a 576 // diagnostic. 577 llvm::Constant *StaticData[] = { 578 EmitCheckSourceLocation(Loc), 579 EmitCheckTypeDescriptor(Ty), 580 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 581 llvm::ConstantInt::get(Int8Ty, TCK) 582 }; 583 llvm::Value *DynamicData[] = { Address, Hash }; 584 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 585 "dynamic_type_cache_miss", StaticData, DynamicData, true); 586 } 587} 588 589 590CodeGenFunction::ComplexPairTy CodeGenFunction:: 591EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 592 bool isInc, bool isPre) { 593 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 594 LV.isVolatileQualified()); 595 596 llvm::Value *NextVal; 597 if (isa<llvm::IntegerType>(InVal.first->getType())) { 598 uint64_t AmountVal = isInc ? 1 : -1; 599 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 600 601 // Add the inc/dec to the real part. 602 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 603 } else { 604 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 605 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 606 if (!isInc) 607 FVal.changeSign(); 608 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 609 610 // Add the inc/dec to the real part. 611 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 612 } 613 614 ComplexPairTy IncVal(NextVal, InVal.second); 615 616 // Store the updated result through the lvalue. 617 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 618 619 // If this is a postinc, return the value read from memory, otherwise use the 620 // updated value. 621 return isPre ? IncVal : InVal; 622} 623 624 625//===----------------------------------------------------------------------===// 626// LValue Expression Emission 627//===----------------------------------------------------------------------===// 628 629RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 630 if (Ty->isVoidType()) 631 return RValue::get(0); 632 633 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 634 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 635 llvm::Value *U = llvm::UndefValue::get(EltTy); 636 return RValue::getComplex(std::make_pair(U, U)); 637 } 638 639 // If this is a use of an undefined aggregate type, the aggregate must have an 640 // identifiable address. Just because the contents of the value are undefined 641 // doesn't mean that the address can't be taken and compared. 642 if (hasAggregateLLVMType(Ty)) { 643 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 644 return RValue::getAggregate(DestPtr); 645 } 646 647 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 648} 649 650RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 651 const char *Name) { 652 ErrorUnsupported(E, Name); 653 return GetUndefRValue(E->getType()); 654} 655 656LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 657 const char *Name) { 658 ErrorUnsupported(E, Name); 659 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 660 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 661} 662 663LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 664 LValue LV = EmitLValue(E); 665 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 666 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 667 E->getType(), LV.getAlignment()); 668 return LV; 669} 670 671/// EmitLValue - Emit code to compute a designator that specifies the location 672/// of the expression. 673/// 674/// This can return one of two things: a simple address or a bitfield reference. 675/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 676/// an LLVM pointer type. 677/// 678/// If this returns a bitfield reference, nothing about the pointee type of the 679/// LLVM value is known: For example, it may not be a pointer to an integer. 680/// 681/// If this returns a normal address, and if the lvalue's C type is fixed size, 682/// this method guarantees that the returned pointer type will point to an LLVM 683/// type of the same size of the lvalue's type. If the lvalue has a variable 684/// length type, this is not possible. 685/// 686LValue CodeGenFunction::EmitLValue(const Expr *E) { 687 switch (E->getStmtClass()) { 688 default: return EmitUnsupportedLValue(E, "l-value expression"); 689 690 case Expr::ObjCPropertyRefExprClass: 691 llvm_unreachable("cannot emit a property reference directly"); 692 693 case Expr::ObjCSelectorExprClass: 694 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 695 case Expr::ObjCIsaExprClass: 696 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 697 case Expr::BinaryOperatorClass: 698 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 699 case Expr::CompoundAssignOperatorClass: 700 if (!E->getType()->isAnyComplexType()) 701 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 702 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 703 case Expr::CallExprClass: 704 case Expr::CXXMemberCallExprClass: 705 case Expr::CXXOperatorCallExprClass: 706 case Expr::UserDefinedLiteralClass: 707 return EmitCallExprLValue(cast<CallExpr>(E)); 708 case Expr::VAArgExprClass: 709 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 710 case Expr::DeclRefExprClass: 711 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 712 case Expr::ParenExprClass: 713 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 714 case Expr::GenericSelectionExprClass: 715 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 716 case Expr::PredefinedExprClass: 717 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 718 case Expr::StringLiteralClass: 719 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 720 case Expr::ObjCEncodeExprClass: 721 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 722 case Expr::PseudoObjectExprClass: 723 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 724 case Expr::InitListExprClass: 725 return EmitInitListLValue(cast<InitListExpr>(E)); 726 case Expr::CXXTemporaryObjectExprClass: 727 case Expr::CXXConstructExprClass: 728 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 729 case Expr::CXXBindTemporaryExprClass: 730 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 731 case Expr::CXXUuidofExprClass: 732 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 733 case Expr::LambdaExprClass: 734 return EmitLambdaLValue(cast<LambdaExpr>(E)); 735 736 case Expr::ExprWithCleanupsClass: { 737 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 738 enterFullExpression(cleanups); 739 RunCleanupsScope Scope(*this); 740 return EmitLValue(cleanups->getSubExpr()); 741 } 742 743 case Expr::CXXScalarValueInitExprClass: 744 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 745 case Expr::CXXDefaultArgExprClass: 746 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 747 case Expr::CXXTypeidExprClass: 748 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 749 750 case Expr::ObjCMessageExprClass: 751 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 752 case Expr::ObjCIvarRefExprClass: 753 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 754 case Expr::StmtExprClass: 755 return EmitStmtExprLValue(cast<StmtExpr>(E)); 756 case Expr::UnaryOperatorClass: 757 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 758 case Expr::ArraySubscriptExprClass: 759 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 760 case Expr::ExtVectorElementExprClass: 761 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 762 case Expr::MemberExprClass: 763 return EmitMemberExpr(cast<MemberExpr>(E)); 764 case Expr::CompoundLiteralExprClass: 765 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 766 case Expr::ConditionalOperatorClass: 767 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 768 case Expr::BinaryConditionalOperatorClass: 769 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 770 case Expr::ChooseExprClass: 771 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 772 case Expr::OpaqueValueExprClass: 773 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 774 case Expr::SubstNonTypeTemplateParmExprClass: 775 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 776 case Expr::ImplicitCastExprClass: 777 case Expr::CStyleCastExprClass: 778 case Expr::CXXFunctionalCastExprClass: 779 case Expr::CXXStaticCastExprClass: 780 case Expr::CXXDynamicCastExprClass: 781 case Expr::CXXReinterpretCastExprClass: 782 case Expr::CXXConstCastExprClass: 783 case Expr::ObjCBridgedCastExprClass: 784 return EmitCastLValue(cast<CastExpr>(E)); 785 786 case Expr::MaterializeTemporaryExprClass: 787 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 788 } 789} 790 791/// Given an object of the given canonical type, can we safely copy a 792/// value out of it based on its initializer? 793static bool isConstantEmittableObjectType(QualType type) { 794 assert(type.isCanonical()); 795 assert(!type->isReferenceType()); 796 797 // Must be const-qualified but non-volatile. 798 Qualifiers qs = type.getLocalQualifiers(); 799 if (!qs.hasConst() || qs.hasVolatile()) return false; 800 801 // Otherwise, all object types satisfy this except C++ classes with 802 // mutable subobjects or non-trivial copy/destroy behavior. 803 if (const RecordType *RT = dyn_cast<RecordType>(type)) 804 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 805 if (RD->hasMutableFields() || !RD->isTrivial()) 806 return false; 807 808 return true; 809} 810 811/// Can we constant-emit a load of a reference to a variable of the 812/// given type? This is different from predicates like 813/// Decl::isUsableInConstantExpressions because we do want it to apply 814/// in situations that don't necessarily satisfy the language's rules 815/// for this (e.g. C++'s ODR-use rules). For example, we want to able 816/// to do this with const float variables even if those variables 817/// aren't marked 'constexpr'. 818enum ConstantEmissionKind { 819 CEK_None, 820 CEK_AsReferenceOnly, 821 CEK_AsValueOrReference, 822 CEK_AsValueOnly 823}; 824static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 825 type = type.getCanonicalType(); 826 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 827 if (isConstantEmittableObjectType(ref->getPointeeType())) 828 return CEK_AsValueOrReference; 829 return CEK_AsReferenceOnly; 830 } 831 if (isConstantEmittableObjectType(type)) 832 return CEK_AsValueOnly; 833 return CEK_None; 834} 835 836/// Try to emit a reference to the given value without producing it as 837/// an l-value. This is actually more than an optimization: we can't 838/// produce an l-value for variables that we never actually captured 839/// in a block or lambda, which means const int variables or constexpr 840/// literals or similar. 841CodeGenFunction::ConstantEmission 842CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 843 ValueDecl *value = refExpr->getDecl(); 844 845 // The value needs to be an enum constant or a constant variable. 846 ConstantEmissionKind CEK; 847 if (isa<ParmVarDecl>(value)) { 848 CEK = CEK_None; 849 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 850 CEK = checkVarTypeForConstantEmission(var->getType()); 851 } else if (isa<EnumConstantDecl>(value)) { 852 CEK = CEK_AsValueOnly; 853 } else { 854 CEK = CEK_None; 855 } 856 if (CEK == CEK_None) return ConstantEmission(); 857 858 Expr::EvalResult result; 859 bool resultIsReference; 860 QualType resultType; 861 862 // It's best to evaluate all the way as an r-value if that's permitted. 863 if (CEK != CEK_AsReferenceOnly && 864 refExpr->EvaluateAsRValue(result, getContext())) { 865 resultIsReference = false; 866 resultType = refExpr->getType(); 867 868 // Otherwise, try to evaluate as an l-value. 869 } else if (CEK != CEK_AsValueOnly && 870 refExpr->EvaluateAsLValue(result, getContext())) { 871 resultIsReference = true; 872 resultType = value->getType(); 873 874 // Failure. 875 } else { 876 return ConstantEmission(); 877 } 878 879 // In any case, if the initializer has side-effects, abandon ship. 880 if (result.HasSideEffects) 881 return ConstantEmission(); 882 883 // Emit as a constant. 884 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 885 886 // Make sure we emit a debug reference to the global variable. 887 // This should probably fire even for 888 if (isa<VarDecl>(value)) { 889 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 890 EmitDeclRefExprDbgValue(refExpr, C); 891 } else { 892 assert(isa<EnumConstantDecl>(value)); 893 EmitDeclRefExprDbgValue(refExpr, C); 894 } 895 896 // If we emitted a reference constant, we need to dereference that. 897 if (resultIsReference) 898 return ConstantEmission::forReference(C); 899 900 return ConstantEmission::forValue(C); 901} 902 903llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 904 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 905 lvalue.getAlignment().getQuantity(), 906 lvalue.getType(), lvalue.getTBAAInfo()); 907} 908 909static bool hasBooleanRepresentation(QualType Ty) { 910 if (Ty->isBooleanType()) 911 return true; 912 913 if (const EnumType *ET = Ty->getAs<EnumType>()) 914 return ET->getDecl()->getIntegerType()->isBooleanType(); 915 916 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 917 return hasBooleanRepresentation(AT->getValueType()); 918 919 return false; 920} 921 922llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 923 const EnumType *ET = Ty->getAs<EnumType>(); 924 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 925 CGM.getCodeGenOpts().StrictEnums && 926 !ET->getDecl()->isFixed()); 927 bool IsBool = hasBooleanRepresentation(Ty); 928 if (!IsBool && !IsRegularCPlusPlusEnum) 929 return NULL; 930 931 llvm::APInt Min; 932 llvm::APInt End; 933 if (IsBool) { 934 Min = llvm::APInt(8, 0); 935 End = llvm::APInt(8, 2); 936 } else { 937 const EnumDecl *ED = ET->getDecl(); 938 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 939 unsigned Bitwidth = LTy->getScalarSizeInBits(); 940 unsigned NumNegativeBits = ED->getNumNegativeBits(); 941 unsigned NumPositiveBits = ED->getNumPositiveBits(); 942 943 if (NumNegativeBits) { 944 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 945 assert(NumBits <= Bitwidth); 946 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 947 Min = -End; 948 } else { 949 assert(NumPositiveBits <= Bitwidth); 950 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 951 Min = llvm::APInt(Bitwidth, 0); 952 } 953 } 954 955 llvm::MDBuilder MDHelper(getLLVMContext()); 956 return MDHelper.createRange(Min, End); 957} 958 959llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 960 unsigned Alignment, QualType Ty, 961 llvm::MDNode *TBAAInfo) { 962 963 // For better performance, handle vector loads differently. 964 if (Ty->isVectorType()) { 965 llvm::Value *V; 966 const llvm::Type *EltTy = 967 cast<llvm::PointerType>(Addr->getType())->getElementType(); 968 969 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 970 971 // Handle vectors of size 3, like size 4 for better performance. 972 if (VTy->getNumElements() == 3) { 973 974 // Bitcast to vec4 type. 975 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 976 4); 977 llvm::PointerType *ptVec4Ty = 978 llvm::PointerType::get(vec4Ty, 979 (cast<llvm::PointerType>( 980 Addr->getType()))->getAddressSpace()); 981 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 982 "castToVec4"); 983 // Now load value. 984 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 985 986 // Shuffle vector to get vec3. 987 llvm::SmallVector<llvm::Constant*, 3> Mask; 988 Mask.push_back(llvm::ConstantInt::get( 989 llvm::Type::getInt32Ty(getLLVMContext()), 990 0)); 991 Mask.push_back(llvm::ConstantInt::get( 992 llvm::Type::getInt32Ty(getLLVMContext()), 993 1)); 994 Mask.push_back(llvm::ConstantInt::get( 995 llvm::Type::getInt32Ty(getLLVMContext()), 996 2)); 997 998 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 999 V = Builder.CreateShuffleVector(LoadVal, 1000 llvm::UndefValue::get(vec4Ty), 1001 MaskV, "extractVec"); 1002 return EmitFromMemory(V, Ty); 1003 } 1004 } 1005 1006 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1007 if (Volatile) 1008 Load->setVolatile(true); 1009 if (Alignment) 1010 Load->setAlignment(Alignment); 1011 if (TBAAInfo) 1012 CGM.DecorateInstruction(Load, TBAAInfo); 1013 // If this is an atomic type, all normal reads must be atomic 1014 if (Ty->isAtomicType()) 1015 Load->setAtomic(llvm::SequentiallyConsistent); 1016 1017 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1018 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1019 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1020 1021 return EmitFromMemory(Load, Ty); 1022} 1023 1024llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1025 // Bool has a different representation in memory than in registers. 1026 if (hasBooleanRepresentation(Ty)) { 1027 // This should really always be an i1, but sometimes it's already 1028 // an i8, and it's awkward to track those cases down. 1029 if (Value->getType()->isIntegerTy(1)) 1030 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 1031 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 1032 } 1033 1034 return Value; 1035} 1036 1037llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1038 // Bool has a different representation in memory than in registers. 1039 if (hasBooleanRepresentation(Ty)) { 1040 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 1041 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1042 } 1043 1044 return Value; 1045} 1046 1047void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1048 bool Volatile, unsigned Alignment, 1049 QualType Ty, 1050 llvm::MDNode *TBAAInfo, 1051 bool isInit) { 1052 1053 // Handle vectors differently to get better performance. 1054 if (Ty->isVectorType()) { 1055 llvm::Type *SrcTy = Value->getType(); 1056 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1057 // Handle vec3 special. 1058 if (VecTy->getNumElements() == 3) { 1059 llvm::LLVMContext &VMContext = getLLVMContext(); 1060 1061 // Our source is a vec3, do a shuffle vector to make it a vec4. 1062 llvm::SmallVector<llvm::Constant*, 4> Mask; 1063 Mask.push_back(llvm::ConstantInt::get( 1064 llvm::Type::getInt32Ty(VMContext), 1065 0)); 1066 Mask.push_back(llvm::ConstantInt::get( 1067 llvm::Type::getInt32Ty(VMContext), 1068 1)); 1069 Mask.push_back(llvm::ConstantInt::get( 1070 llvm::Type::getInt32Ty(VMContext), 1071 2)); 1072 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1073 1074 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1075 Value = Builder.CreateShuffleVector(Value, 1076 llvm::UndefValue::get(VecTy), 1077 MaskV, "extractVec"); 1078 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1079 } 1080 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1081 if (DstPtr->getElementType() != SrcTy) { 1082 llvm::Type *MemTy = 1083 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1084 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1085 } 1086 } 1087 1088 Value = EmitToMemory(Value, Ty); 1089 1090 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1091 if (Alignment) 1092 Store->setAlignment(Alignment); 1093 if (TBAAInfo) 1094 CGM.DecorateInstruction(Store, TBAAInfo); 1095 if (!isInit && Ty->isAtomicType()) 1096 Store->setAtomic(llvm::SequentiallyConsistent); 1097} 1098 1099void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1100 bool isInit) { 1101 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1102 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1103 lvalue.getTBAAInfo(), isInit); 1104} 1105 1106/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1107/// method emits the address of the lvalue, then loads the result as an rvalue, 1108/// returning the rvalue. 1109RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1110 if (LV.isObjCWeak()) { 1111 // load of a __weak object. 1112 llvm::Value *AddrWeakObj = LV.getAddress(); 1113 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1114 AddrWeakObj)); 1115 } 1116 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 1117 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1118 1119 if (LV.isSimple()) { 1120 assert(!LV.getType()->isFunctionType()); 1121 1122 // Everything needs a load. 1123 return RValue::get(EmitLoadOfScalar(LV)); 1124 } 1125 1126 if (LV.isVectorElt()) { 1127 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1128 LV.isVolatileQualified()); 1129 Load->setAlignment(LV.getAlignment().getQuantity()); 1130 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1131 "vecext")); 1132 } 1133 1134 // If this is a reference to a subset of the elements of a vector, either 1135 // shuffle the input or extract/insert them as appropriate. 1136 if (LV.isExtVectorElt()) 1137 return EmitLoadOfExtVectorElementLValue(LV); 1138 1139 assert(LV.isBitField() && "Unknown LValue type!"); 1140 return EmitLoadOfBitfieldLValue(LV); 1141} 1142 1143RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1144 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1145 1146 // Get the output type. 1147 llvm::Type *ResLTy = ConvertType(LV.getType()); 1148 unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy); 1149 1150 // Compute the result as an OR of all of the individual component accesses. 1151 llvm::Value *Res = 0; 1152 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1153 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1154 CharUnits AccessAlignment = AI.AccessAlignment; 1155 if (!LV.getAlignment().isZero()) 1156 AccessAlignment = std::min(AccessAlignment, LV.getAlignment()); 1157 1158 // Get the field pointer. 1159 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1160 1161 // Only offset by the field index if used, so that incoming values are not 1162 // required to be structures. 1163 if (AI.FieldIndex) 1164 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1165 1166 // Offset by the byte offset, if used. 1167 if (!AI.FieldByteOffset.isZero()) { 1168 Ptr = EmitCastToVoidPtr(Ptr); 1169 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1170 "bf.field.offs"); 1171 } 1172 1173 // Cast to the access type. 1174 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1175 CGM.getContext().getTargetAddressSpace(LV.getType())); 1176 Ptr = Builder.CreateBitCast(Ptr, PTy); 1177 1178 // Perform the load. 1179 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1180 Load->setAlignment(AccessAlignment.getQuantity()); 1181 1182 // Shift out unused low bits and mask out unused high bits. 1183 llvm::Value *Val = Load; 1184 if (AI.FieldBitStart) 1185 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1186 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1187 AI.TargetBitWidth), 1188 "bf.clear"); 1189 1190 // Extend or truncate to the target size. 1191 if (AI.AccessWidth < ResSizeInBits) 1192 Val = Builder.CreateZExt(Val, ResLTy); 1193 else if (AI.AccessWidth > ResSizeInBits) 1194 Val = Builder.CreateTrunc(Val, ResLTy); 1195 1196 // Shift into place, and OR into the result. 1197 if (AI.TargetBitOffset) 1198 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1199 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1200 } 1201 1202 // If the bit-field is signed, perform the sign-extension. 1203 // 1204 // FIXME: This can easily be folded into the load of the high bits, which 1205 // could also eliminate the mask of high bits in some situations. 1206 if (Info.isSigned()) { 1207 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1208 if (ExtraBits) 1209 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1210 ExtraBits, "bf.val.sext"); 1211 } 1212 1213 return RValue::get(Res); 1214} 1215 1216// If this is a reference to a subset of the elements of a vector, create an 1217// appropriate shufflevector. 1218RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1219 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1220 LV.isVolatileQualified()); 1221 Load->setAlignment(LV.getAlignment().getQuantity()); 1222 llvm::Value *Vec = Load; 1223 1224 const llvm::Constant *Elts = LV.getExtVectorElts(); 1225 1226 // If the result of the expression is a non-vector type, we must be extracting 1227 // a single element. Just codegen as an extractelement. 1228 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1229 if (!ExprVT) { 1230 unsigned InIdx = getAccessedFieldNo(0, Elts); 1231 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1232 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1233 } 1234 1235 // Always use shuffle vector to try to retain the original program structure 1236 unsigned NumResultElts = ExprVT->getNumElements(); 1237 1238 SmallVector<llvm::Constant*, 4> Mask; 1239 for (unsigned i = 0; i != NumResultElts; ++i) 1240 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1241 1242 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1243 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1244 MaskV); 1245 return RValue::get(Vec); 1246} 1247 1248 1249 1250/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1251/// lvalue, where both are guaranteed to the have the same type, and that type 1252/// is 'Ty'. 1253void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1254 if (!Dst.isSimple()) { 1255 if (Dst.isVectorElt()) { 1256 // Read/modify/write the vector, inserting the new element. 1257 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1258 Dst.isVolatileQualified()); 1259 Load->setAlignment(Dst.getAlignment().getQuantity()); 1260 llvm::Value *Vec = Load; 1261 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1262 Dst.getVectorIdx(), "vecins"); 1263 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1264 Dst.isVolatileQualified()); 1265 Store->setAlignment(Dst.getAlignment().getQuantity()); 1266 return; 1267 } 1268 1269 // If this is an update of extended vector elements, insert them as 1270 // appropriate. 1271 if (Dst.isExtVectorElt()) 1272 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1273 1274 assert(Dst.isBitField() && "Unknown LValue type"); 1275 return EmitStoreThroughBitfieldLValue(Src, Dst); 1276 } 1277 1278 // There's special magic for assigning into an ARC-qualified l-value. 1279 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1280 switch (Lifetime) { 1281 case Qualifiers::OCL_None: 1282 llvm_unreachable("present but none"); 1283 1284 case Qualifiers::OCL_ExplicitNone: 1285 // nothing special 1286 break; 1287 1288 case Qualifiers::OCL_Strong: 1289 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1290 return; 1291 1292 case Qualifiers::OCL_Weak: 1293 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1294 return; 1295 1296 case Qualifiers::OCL_Autoreleasing: 1297 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1298 Src.getScalarVal())); 1299 // fall into the normal path 1300 break; 1301 } 1302 } 1303 1304 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1305 // load of a __weak object. 1306 llvm::Value *LvalueDst = Dst.getAddress(); 1307 llvm::Value *src = Src.getScalarVal(); 1308 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1309 return; 1310 } 1311 1312 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1313 // load of a __strong object. 1314 llvm::Value *LvalueDst = Dst.getAddress(); 1315 llvm::Value *src = Src.getScalarVal(); 1316 if (Dst.isObjCIvar()) { 1317 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1318 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1319 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1320 llvm::Value *dst = RHS; 1321 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1322 llvm::Value *LHS = 1323 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1324 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1325 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1326 BytesBetween); 1327 } else if (Dst.isGlobalObjCRef()) { 1328 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1329 Dst.isThreadLocalRef()); 1330 } 1331 else 1332 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1333 return; 1334 } 1335 1336 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1337 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1338} 1339 1340void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1341 llvm::Value **Result) { 1342 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1343 1344 // Get the output type. 1345 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1346 unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy); 1347 1348 // Get the source value, truncated to the width of the bit-field. 1349 llvm::Value *SrcVal = Src.getScalarVal(); 1350 1351 if (hasBooleanRepresentation(Dst.getType())) 1352 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1353 1354 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1355 Info.getSize()), 1356 "bf.value"); 1357 1358 // Return the new value of the bit-field, if requested. 1359 if (Result) { 1360 // Cast back to the proper type for result. 1361 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1362 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1363 "bf.reload.val"); 1364 1365 // Sign extend if necessary. 1366 if (Info.isSigned()) { 1367 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1368 if (ExtraBits) 1369 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1370 ExtraBits, "bf.reload.sext"); 1371 } 1372 1373 *Result = ReloadVal; 1374 } 1375 1376 // Iterate over the components, writing each piece to memory. 1377 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1378 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1379 CharUnits AccessAlignment = AI.AccessAlignment; 1380 if (!Dst.getAlignment().isZero()) 1381 AccessAlignment = std::min(AccessAlignment, Dst.getAlignment()); 1382 1383 // Get the field pointer. 1384 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1385 unsigned addressSpace = 1386 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1387 1388 // Only offset by the field index if used, so that incoming values are not 1389 // required to be structures. 1390 if (AI.FieldIndex) 1391 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1392 1393 // Offset by the byte offset, if used. 1394 if (!AI.FieldByteOffset.isZero()) { 1395 Ptr = EmitCastToVoidPtr(Ptr); 1396 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1397 "bf.field.offs"); 1398 } 1399 1400 // Cast to the access type. 1401 llvm::Type *AccessLTy = 1402 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1403 1404 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1405 Ptr = Builder.CreateBitCast(Ptr, PTy); 1406 1407 // Extract the piece of the bit-field value to write in this access, limited 1408 // to the values that are part of this access. 1409 llvm::Value *Val = SrcVal; 1410 if (AI.TargetBitOffset) 1411 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1412 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1413 AI.TargetBitWidth)); 1414 1415 // Extend or truncate to the access size. 1416 if (ResSizeInBits < AI.AccessWidth) 1417 Val = Builder.CreateZExt(Val, AccessLTy); 1418 else if (ResSizeInBits > AI.AccessWidth) 1419 Val = Builder.CreateTrunc(Val, AccessLTy); 1420 1421 // Shift into the position in memory. 1422 if (AI.FieldBitStart) 1423 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1424 1425 // If necessary, load and OR in bits that are outside of the bit-field. 1426 if (AI.TargetBitWidth != AI.AccessWidth) { 1427 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1428 Load->setAlignment(AccessAlignment.getQuantity()); 1429 1430 // Compute the mask for zeroing the bits that are part of the bit-field. 1431 llvm::APInt InvMask = 1432 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1433 AI.FieldBitStart + AI.TargetBitWidth); 1434 1435 // Apply the mask and OR in to the value to write. 1436 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1437 } 1438 1439 // Write the value. 1440 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1441 Dst.isVolatileQualified()); 1442 Store->setAlignment(AccessAlignment.getQuantity()); 1443 } 1444} 1445 1446void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1447 LValue Dst) { 1448 // This access turns into a read/modify/write of the vector. Load the input 1449 // value now. 1450 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1451 Dst.isVolatileQualified()); 1452 Load->setAlignment(Dst.getAlignment().getQuantity()); 1453 llvm::Value *Vec = Load; 1454 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1455 1456 llvm::Value *SrcVal = Src.getScalarVal(); 1457 1458 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1459 unsigned NumSrcElts = VTy->getNumElements(); 1460 unsigned NumDstElts = 1461 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1462 if (NumDstElts == NumSrcElts) { 1463 // Use shuffle vector is the src and destination are the same number of 1464 // elements and restore the vector mask since it is on the side it will be 1465 // stored. 1466 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1467 for (unsigned i = 0; i != NumSrcElts; ++i) 1468 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1469 1470 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1471 Vec = Builder.CreateShuffleVector(SrcVal, 1472 llvm::UndefValue::get(Vec->getType()), 1473 MaskV); 1474 } else if (NumDstElts > NumSrcElts) { 1475 // Extended the source vector to the same length and then shuffle it 1476 // into the destination. 1477 // FIXME: since we're shuffling with undef, can we just use the indices 1478 // into that? This could be simpler. 1479 SmallVector<llvm::Constant*, 4> ExtMask; 1480 for (unsigned i = 0; i != NumSrcElts; ++i) 1481 ExtMask.push_back(Builder.getInt32(i)); 1482 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1483 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1484 llvm::Value *ExtSrcVal = 1485 Builder.CreateShuffleVector(SrcVal, 1486 llvm::UndefValue::get(SrcVal->getType()), 1487 ExtMaskV); 1488 // build identity 1489 SmallVector<llvm::Constant*, 4> Mask; 1490 for (unsigned i = 0; i != NumDstElts; ++i) 1491 Mask.push_back(Builder.getInt32(i)); 1492 1493 // modify when what gets shuffled in 1494 for (unsigned i = 0; i != NumSrcElts; ++i) 1495 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1496 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1497 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1498 } else { 1499 // We should never shorten the vector 1500 llvm_unreachable("unexpected shorten vector length"); 1501 } 1502 } else { 1503 // If the Src is a scalar (not a vector) it must be updating one element. 1504 unsigned InIdx = getAccessedFieldNo(0, Elts); 1505 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1506 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1507 } 1508 1509 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1510 Dst.isVolatileQualified()); 1511 Store->setAlignment(Dst.getAlignment().getQuantity()); 1512} 1513 1514// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1515// generating write-barries API. It is currently a global, ivar, 1516// or neither. 1517static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1518 LValue &LV, 1519 bool IsMemberAccess=false) { 1520 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1521 return; 1522 1523 if (isa<ObjCIvarRefExpr>(E)) { 1524 QualType ExpTy = E->getType(); 1525 if (IsMemberAccess && ExpTy->isPointerType()) { 1526 // If ivar is a structure pointer, assigning to field of 1527 // this struct follows gcc's behavior and makes it a non-ivar 1528 // writer-barrier conservatively. 1529 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1530 if (ExpTy->isRecordType()) { 1531 LV.setObjCIvar(false); 1532 return; 1533 } 1534 } 1535 LV.setObjCIvar(true); 1536 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1537 LV.setBaseIvarExp(Exp->getBase()); 1538 LV.setObjCArray(E->getType()->isArrayType()); 1539 return; 1540 } 1541 1542 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1543 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1544 if (VD->hasGlobalStorage()) { 1545 LV.setGlobalObjCRef(true); 1546 LV.setThreadLocalRef(VD->isThreadSpecified()); 1547 } 1548 } 1549 LV.setObjCArray(E->getType()->isArrayType()); 1550 return; 1551 } 1552 1553 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1554 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1555 return; 1556 } 1557 1558 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1559 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1560 if (LV.isObjCIvar()) { 1561 // If cast is to a structure pointer, follow gcc's behavior and make it 1562 // a non-ivar write-barrier. 1563 QualType ExpTy = E->getType(); 1564 if (ExpTy->isPointerType()) 1565 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1566 if (ExpTy->isRecordType()) 1567 LV.setObjCIvar(false); 1568 } 1569 return; 1570 } 1571 1572 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1573 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1574 return; 1575 } 1576 1577 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1578 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1579 return; 1580 } 1581 1582 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1583 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1584 return; 1585 } 1586 1587 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1588 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1589 return; 1590 } 1591 1592 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1593 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1594 if (LV.isObjCIvar() && !LV.isObjCArray()) 1595 // Using array syntax to assigning to what an ivar points to is not 1596 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1597 LV.setObjCIvar(false); 1598 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1599 // Using array syntax to assigning to what global points to is not 1600 // same as assigning to the global itself. {id *G;} G[i] = 0; 1601 LV.setGlobalObjCRef(false); 1602 return; 1603 } 1604 1605 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1606 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1607 // We don't know if member is an 'ivar', but this flag is looked at 1608 // only in the context of LV.isObjCIvar(). 1609 LV.setObjCArray(E->getType()->isArrayType()); 1610 return; 1611 } 1612} 1613 1614static llvm::Value * 1615EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1616 llvm::Value *V, llvm::Type *IRType, 1617 StringRef Name = StringRef()) { 1618 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1619 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1620} 1621 1622static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1623 const Expr *E, const VarDecl *VD) { 1624 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1625 "Var decl must have external storage or be a file var decl!"); 1626 1627 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1628 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1629 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1630 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1631 QualType T = E->getType(); 1632 LValue LV; 1633 if (VD->getType()->isReferenceType()) { 1634 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1635 LI->setAlignment(Alignment.getQuantity()); 1636 V = LI; 1637 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1638 } else { 1639 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1640 } 1641 setObjCGCLValueClass(CGF.getContext(), E, LV); 1642 return LV; 1643} 1644 1645static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1646 const Expr *E, const FunctionDecl *FD) { 1647 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1648 if (!FD->hasPrototype()) { 1649 if (const FunctionProtoType *Proto = 1650 FD->getType()->getAs<FunctionProtoType>()) { 1651 // Ugly case: for a K&R-style definition, the type of the definition 1652 // isn't the same as the type of a use. Correct for this with a 1653 // bitcast. 1654 QualType NoProtoType = 1655 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1656 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1657 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1658 } 1659 } 1660 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1661 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1662} 1663 1664LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1665 const NamedDecl *ND = E->getDecl(); 1666 CharUnits Alignment = getContext().getDeclAlign(ND); 1667 QualType T = E->getType(); 1668 1669 // A DeclRefExpr for a reference initialized by a constant expression can 1670 // appear without being odr-used. Directly emit the constant initializer. 1671 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1672 const Expr *Init = VD->getAnyInitializer(VD); 1673 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1674 VD->isUsableInConstantExpressions(getContext()) && 1675 VD->checkInitIsICE()) { 1676 llvm::Constant *Val = 1677 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1678 assert(Val && "failed to emit reference constant expression"); 1679 // FIXME: Eventually we will want to emit vector element references. 1680 return MakeAddrLValue(Val, T, Alignment); 1681 } 1682 } 1683 1684 // FIXME: We should be able to assert this for FunctionDecls as well! 1685 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1686 // those with a valid source location. 1687 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1688 !E->getLocation().isValid()) && 1689 "Should not use decl without marking it used!"); 1690 1691 if (ND->hasAttr<WeakRefAttr>()) { 1692 const ValueDecl *VD = cast<ValueDecl>(ND); 1693 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1694 return MakeAddrLValue(Aliasee, T, Alignment); 1695 } 1696 1697 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1698 // Check if this is a global variable. 1699 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1700 return EmitGlobalVarDeclLValue(*this, E, VD); 1701 1702 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1703 1704 bool NonGCable = VD->hasLocalStorage() && 1705 !VD->getType()->isReferenceType() && 1706 !isBlockVariable; 1707 1708 llvm::Value *V = LocalDeclMap[VD]; 1709 if (!V && VD->isStaticLocal()) 1710 V = CGM.getStaticLocalDeclAddress(VD); 1711 1712 // Use special handling for lambdas. 1713 if (!V) { 1714 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1715 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1716 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1717 LambdaTagType); 1718 return EmitLValueForField(LambdaLV, FD); 1719 } 1720 1721 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1722 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1723 T, Alignment); 1724 } 1725 1726 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1727 1728 if (isBlockVariable) 1729 V = BuildBlockByrefAddress(V, VD); 1730 1731 LValue LV; 1732 if (VD->getType()->isReferenceType()) { 1733 llvm::LoadInst *LI = Builder.CreateLoad(V); 1734 LI->setAlignment(Alignment.getQuantity()); 1735 V = LI; 1736 LV = MakeNaturalAlignAddrLValue(V, T); 1737 } else { 1738 LV = MakeAddrLValue(V, T, Alignment); 1739 } 1740 1741 if (NonGCable) { 1742 LV.getQuals().removeObjCGCAttr(); 1743 LV.setNonGC(true); 1744 } 1745 setObjCGCLValueClass(getContext(), E, LV); 1746 return LV; 1747 } 1748 1749 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1750 return EmitFunctionDeclLValue(*this, E, fn); 1751 1752 llvm_unreachable("Unhandled DeclRefExpr"); 1753} 1754 1755LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1756 // __extension__ doesn't affect lvalue-ness. 1757 if (E->getOpcode() == UO_Extension) 1758 return EmitLValue(E->getSubExpr()); 1759 1760 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1761 switch (E->getOpcode()) { 1762 default: llvm_unreachable("Unknown unary operator lvalue!"); 1763 case UO_Deref: { 1764 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1765 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1766 1767 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1768 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1769 1770 // We should not generate __weak write barrier on indirect reference 1771 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1772 // But, we continue to generate __strong write barrier on indirect write 1773 // into a pointer to object. 1774 if (getContext().getLangOpts().ObjC1 && 1775 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1776 LV.isObjCWeak()) 1777 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1778 return LV; 1779 } 1780 case UO_Real: 1781 case UO_Imag: { 1782 LValue LV = EmitLValue(E->getSubExpr()); 1783 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1784 llvm::Value *Addr = LV.getAddress(); 1785 1786 // __real is valid on scalars. This is a faster way of testing that. 1787 // __imag can only produce an rvalue on scalars. 1788 if (E->getOpcode() == UO_Real && 1789 !cast<llvm::PointerType>(Addr->getType()) 1790 ->getElementType()->isStructTy()) { 1791 assert(E->getSubExpr()->getType()->isArithmeticType()); 1792 return LV; 1793 } 1794 1795 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1796 1797 unsigned Idx = E->getOpcode() == UO_Imag; 1798 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1799 Idx, "idx"), 1800 ExprTy); 1801 } 1802 case UO_PreInc: 1803 case UO_PreDec: { 1804 LValue LV = EmitLValue(E->getSubExpr()); 1805 bool isInc = E->getOpcode() == UO_PreInc; 1806 1807 if (E->getType()->isAnyComplexType()) 1808 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1809 else 1810 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1811 return LV; 1812 } 1813 } 1814} 1815 1816LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1817 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1818 E->getType()); 1819} 1820 1821LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1822 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1823 E->getType()); 1824} 1825 1826static llvm::Constant* 1827GetAddrOfConstantWideString(StringRef Str, 1828 const char *GlobalName, 1829 ASTContext &Context, 1830 QualType Ty, SourceLocation Loc, 1831 CodeGenModule &CGM) { 1832 1833 StringLiteral *SL = StringLiteral::Create(Context, 1834 Str, 1835 StringLiteral::Wide, 1836 /*Pascal = */false, 1837 Ty, Loc); 1838 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1839 llvm::GlobalVariable *GV = 1840 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1841 !CGM.getLangOpts().WritableStrings, 1842 llvm::GlobalValue::PrivateLinkage, 1843 C, GlobalName); 1844 const unsigned WideAlignment = 1845 Context.getTypeAlignInChars(Ty).getQuantity(); 1846 GV->setAlignment(WideAlignment); 1847 return GV; 1848} 1849 1850static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1851 SmallString<32>& Target) { 1852 Target.resize(CharByteWidth * (Source.size() + 1)); 1853 char *ResultPtr = &Target[0]; 1854 const UTF8 *ErrorPtr; 1855 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1856 (void)success; 1857 assert(success); 1858 Target.resize(ResultPtr - &Target[0]); 1859} 1860 1861LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1862 switch (E->getIdentType()) { 1863 default: 1864 return EmitUnsupportedLValue(E, "predefined expression"); 1865 1866 case PredefinedExpr::Func: 1867 case PredefinedExpr::Function: 1868 case PredefinedExpr::LFunction: 1869 case PredefinedExpr::PrettyFunction: { 1870 unsigned IdentType = E->getIdentType(); 1871 std::string GlobalVarName; 1872 1873 switch (IdentType) { 1874 default: llvm_unreachable("Invalid type"); 1875 case PredefinedExpr::Func: 1876 GlobalVarName = "__func__."; 1877 break; 1878 case PredefinedExpr::Function: 1879 GlobalVarName = "__FUNCTION__."; 1880 break; 1881 case PredefinedExpr::LFunction: 1882 GlobalVarName = "L__FUNCTION__."; 1883 break; 1884 case PredefinedExpr::PrettyFunction: 1885 GlobalVarName = "__PRETTY_FUNCTION__."; 1886 break; 1887 } 1888 1889 StringRef FnName = CurFn->getName(); 1890 if (FnName.startswith("\01")) 1891 FnName = FnName.substr(1); 1892 GlobalVarName += FnName; 1893 1894 const Decl *CurDecl = CurCodeDecl; 1895 if (CurDecl == 0) 1896 CurDecl = getContext().getTranslationUnitDecl(); 1897 1898 std::string FunctionName = 1899 (isa<BlockDecl>(CurDecl) 1900 ? FnName.str() 1901 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1902 CurDecl)); 1903 1904 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1905 llvm::Constant *C; 1906 if (ElemType->isWideCharType()) { 1907 SmallString<32> RawChars; 1908 ConvertUTF8ToWideString( 1909 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1910 FunctionName, RawChars); 1911 C = GetAddrOfConstantWideString(RawChars, 1912 GlobalVarName.c_str(), 1913 getContext(), 1914 E->getType(), 1915 E->getLocation(), 1916 CGM); 1917 } else { 1918 C = CGM.GetAddrOfConstantCString(FunctionName, 1919 GlobalVarName.c_str(), 1920 1); 1921 } 1922 return MakeAddrLValue(C, E->getType()); 1923 } 1924 } 1925} 1926 1927/// Emit a type description suitable for use by a runtime sanitizer library. The 1928/// format of a type descriptor is 1929/// 1930/// \code 1931/// { i16 TypeKind, i16 TypeInfo } 1932/// \endcode 1933/// 1934/// followed by an array of i8 containing the type name. TypeKind is 0 for an 1935/// integer, 1 for a floating point value, and -1 for anything else. 1936llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 1937 // FIXME: Only emit each type's descriptor once. 1938 uint16_t TypeKind = -1; 1939 uint16_t TypeInfo = 0; 1940 1941 if (T->isIntegerType()) { 1942 TypeKind = 0; 1943 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 1944 T->isSignedIntegerType(); 1945 } else if (T->isFloatingType()) { 1946 TypeKind = 1; 1947 TypeInfo = getContext().getTypeSize(T); 1948 } 1949 1950 // Format the type name as if for a diagnostic, including quotes and 1951 // optionally an 'aka'. 1952 llvm::SmallString<32> Buffer; 1953 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 1954 (intptr_t)T.getAsOpaquePtr(), 1955 0, 0, 0, 0, 0, 0, Buffer, 1956 ArrayRef<intptr_t>()); 1957 1958 llvm::Constant *Components[] = { 1959 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 1960 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 1961 }; 1962 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 1963 1964 llvm::GlobalVariable *GV = 1965 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 1966 /*isConstant=*/true, 1967 llvm::GlobalVariable::PrivateLinkage, 1968 Descriptor); 1969 GV->setUnnamedAddr(true); 1970 return GV; 1971} 1972 1973llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 1974 llvm::Type *TargetTy = IntPtrTy; 1975 1976 // Integers which fit in intptr_t are zero-extended and passed directly. 1977 if (V->getType()->isIntegerTy() && 1978 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 1979 return Builder.CreateZExt(V, TargetTy); 1980 1981 // Pointers are passed directly, everything else is passed by address. 1982 if (!V->getType()->isPointerTy()) { 1983 llvm::Value *Ptr = Builder.CreateAlloca(V->getType()); 1984 Builder.CreateStore(V, Ptr); 1985 V = Ptr; 1986 } 1987 return Builder.CreatePtrToInt(V, TargetTy); 1988} 1989 1990/// \brief Emit a representation of a SourceLocation for passing to a handler 1991/// in a sanitizer runtime library. The format for this data is: 1992/// \code 1993/// struct SourceLocation { 1994/// const char *Filename; 1995/// int32_t Line, Column; 1996/// }; 1997/// \endcode 1998/// For an invalid SourceLocation, the Filename pointer is null. 1999llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2000 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2001 2002 llvm::Constant *Data[] = { 2003 // FIXME: Only emit each file name once. 2004 PLoc.isValid() ? cast<llvm::Constant>( 2005 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2006 : llvm::Constant::getNullValue(Int8PtrTy), 2007 Builder.getInt32(PLoc.getLine()), 2008 Builder.getInt32(PLoc.getColumn()) 2009 }; 2010 2011 return llvm::ConstantStruct::getAnon(Data); 2012} 2013 2014void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2015 llvm::ArrayRef<llvm::Constant *> StaticArgs, 2016 llvm::ArrayRef<llvm::Value *> DynamicArgs, 2017 bool Recoverable) { 2018 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2019 2020 // If -fcatch-undefined-behavior is not enabled, just emit a trap. This 2021 // happens when using -ftrapv. 2022 // FIXME: Should -ftrapv require the ubsan runtime library? 2023 if (!CatchUndefined) { 2024 // If we're optimizing, collapse all calls to trap down to just one per 2025 // function to save on code size. 2026 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2027 TrapBB = createBasicBlock("trap"); 2028 Builder.CreateCondBr(Checked, Cont, TrapBB); 2029 EmitBlock(TrapBB); 2030 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2031 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2032 TrapCall->setDoesNotReturn(); 2033 TrapCall->setDoesNotThrow(); 2034 Builder.CreateUnreachable(); 2035 } else { 2036 Builder.CreateCondBr(Checked, Cont, TrapBB); 2037 } 2038 2039 EmitBlock(Cont); 2040 return; 2041 } 2042 2043 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2044 Builder.CreateCondBr(Checked, Cont, Handler); 2045 EmitBlock(Handler); 2046 2047 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2048 llvm::GlobalValue *InfoPtr = 2049 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true, 2050 llvm::GlobalVariable::PrivateLinkage, Info); 2051 InfoPtr->setUnnamedAddr(true); 2052 2053 llvm::SmallVector<llvm::Value *, 4> Args; 2054 llvm::SmallVector<llvm::Type *, 4> ArgTypes; 2055 Args.reserve(DynamicArgs.size() + 1); 2056 ArgTypes.reserve(DynamicArgs.size() + 1); 2057 2058 // Handler functions take an i8* pointing to the (handler-specific) static 2059 // information block, followed by a sequence of intptr_t arguments 2060 // representing operand values. 2061 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2062 ArgTypes.push_back(Int8PtrTy); 2063 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2064 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2065 ArgTypes.push_back(IntPtrTy); 2066 } 2067 2068 llvm::FunctionType *FnType = 2069 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2070 llvm::AttrBuilder B; 2071 if (!Recoverable) { 2072 B.addAttribute(llvm::Attributes::NoReturn) 2073 .addAttribute(llvm::Attributes::NoUnwind); 2074 } 2075 B.addAttribute(llvm::Attributes::UWTable); 2076 llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType, 2077 ("__ubsan_handle_" + CheckName).str(), 2078 llvm::Attributes::get(getLLVMContext(), 2079 B)); 2080 llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args); 2081 if (Recoverable) { 2082 Builder.CreateBr(Cont); 2083 } else { 2084 HandlerCall->setDoesNotReturn(); 2085 HandlerCall->setDoesNotThrow(); 2086 Builder.CreateUnreachable(); 2087 } 2088 2089 EmitBlock(Cont); 2090} 2091 2092/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2093/// array to pointer, return the array subexpression. 2094static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2095 // If this isn't just an array->pointer decay, bail out. 2096 const CastExpr *CE = dyn_cast<CastExpr>(E); 2097 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2098 return 0; 2099 2100 // If this is a decay from variable width array, bail out. 2101 const Expr *SubExpr = CE->getSubExpr(); 2102 if (SubExpr->getType()->isVariableArrayType()) 2103 return 0; 2104 2105 return SubExpr; 2106} 2107 2108LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 2109 // The index must always be an integer, which is not an aggregate. Emit it. 2110 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2111 QualType IdxTy = E->getIdx()->getType(); 2112 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2113 2114 // If the base is a vector type, then we are forming a vector element lvalue 2115 // with this subscript. 2116 if (E->getBase()->getType()->isVectorType()) { 2117 // Emit the vector as an lvalue to get its address. 2118 LValue LHS = EmitLValue(E->getBase()); 2119 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2120 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2121 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2122 E->getBase()->getType(), LHS.getAlignment()); 2123 } 2124 2125 // Extend or truncate the index type to 32 or 64-bits. 2126 if (Idx->getType() != IntPtrTy) 2127 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2128 2129 // We know that the pointer points to a type of the correct size, unless the 2130 // size is a VLA or Objective-C interface. 2131 llvm::Value *Address = 0; 2132 CharUnits ArrayAlignment; 2133 if (const VariableArrayType *vla = 2134 getContext().getAsVariableArrayType(E->getType())) { 2135 // The base must be a pointer, which is not an aggregate. Emit 2136 // it. It needs to be emitted first in case it's what captures 2137 // the VLA bounds. 2138 Address = EmitScalarExpr(E->getBase()); 2139 2140 // The element count here is the total number of non-VLA elements. 2141 llvm::Value *numElements = getVLASize(vla).first; 2142 2143 // Effectively, the multiply by the VLA size is part of the GEP. 2144 // GEP indexes are signed, and scaling an index isn't permitted to 2145 // signed-overflow, so we use the same semantics for our explicit 2146 // multiply. We suppress this if overflow is not undefined behavior. 2147 if (getLangOpts().isSignedOverflowDefined()) { 2148 Idx = Builder.CreateMul(Idx, numElements); 2149 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2150 } else { 2151 Idx = Builder.CreateNSWMul(Idx, numElements); 2152 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2153 } 2154 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2155 // Indexing over an interface, as in "NSString *P; P[4];" 2156 llvm::Value *InterfaceSize = 2157 llvm::ConstantInt::get(Idx->getType(), 2158 getContext().getTypeSizeInChars(OIT).getQuantity()); 2159 2160 Idx = Builder.CreateMul(Idx, InterfaceSize); 2161 2162 // The base must be a pointer, which is not an aggregate. Emit it. 2163 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2164 Address = EmitCastToVoidPtr(Base); 2165 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2166 Address = Builder.CreateBitCast(Address, Base->getType()); 2167 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2168 // If this is A[i] where A is an array, the frontend will have decayed the 2169 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2170 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2171 // "gep x, i" here. Emit one "gep A, 0, i". 2172 assert(Array->getType()->isArrayType() && 2173 "Array to pointer decay must have array source type!"); 2174 LValue ArrayLV = EmitLValue(Array); 2175 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2176 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2177 llvm::Value *Args[] = { Zero, Idx }; 2178 2179 // Propagate the alignment from the array itself to the result. 2180 ArrayAlignment = ArrayLV.getAlignment(); 2181 2182 if (getContext().getLangOpts().isSignedOverflowDefined()) 2183 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2184 else 2185 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2186 } else { 2187 // The base must be a pointer, which is not an aggregate. Emit it. 2188 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2189 if (getContext().getLangOpts().isSignedOverflowDefined()) 2190 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2191 else 2192 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2193 } 2194 2195 QualType T = E->getBase()->getType()->getPointeeType(); 2196 assert(!T.isNull() && 2197 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2198 2199 2200 // Limit the alignment to that of the result type. 2201 LValue LV; 2202 if (!ArrayAlignment.isZero()) { 2203 CharUnits Align = getContext().getTypeAlignInChars(T); 2204 ArrayAlignment = std::min(Align, ArrayAlignment); 2205 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2206 } else { 2207 LV = MakeNaturalAlignAddrLValue(Address, T); 2208 } 2209 2210 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2211 2212 if (getContext().getLangOpts().ObjC1 && 2213 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 2214 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2215 setObjCGCLValueClass(getContext(), E, LV); 2216 } 2217 return LV; 2218} 2219 2220static 2221llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2222 SmallVector<unsigned, 4> &Elts) { 2223 SmallVector<llvm::Constant*, 4> CElts; 2224 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2225 CElts.push_back(Builder.getInt32(Elts[i])); 2226 2227 return llvm::ConstantVector::get(CElts); 2228} 2229 2230LValue CodeGenFunction:: 2231EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2232 // Emit the base vector as an l-value. 2233 LValue Base; 2234 2235 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2236 if (E->isArrow()) { 2237 // If it is a pointer to a vector, emit the address and form an lvalue with 2238 // it. 2239 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2240 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2241 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2242 Base.getQuals().removeObjCGCAttr(); 2243 } else if (E->getBase()->isGLValue()) { 2244 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2245 // emit the base as an lvalue. 2246 assert(E->getBase()->getType()->isVectorType()); 2247 Base = EmitLValue(E->getBase()); 2248 } else { 2249 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2250 assert(E->getBase()->getType()->isVectorType() && 2251 "Result must be a vector"); 2252 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2253 2254 // Store the vector to memory (because LValue wants an address). 2255 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2256 Builder.CreateStore(Vec, VecMem); 2257 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2258 } 2259 2260 QualType type = 2261 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2262 2263 // Encode the element access list into a vector of unsigned indices. 2264 SmallVector<unsigned, 4> Indices; 2265 E->getEncodedElementAccess(Indices); 2266 2267 if (Base.isSimple()) { 2268 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2269 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2270 Base.getAlignment()); 2271 } 2272 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2273 2274 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2275 SmallVector<llvm::Constant *, 4> CElts; 2276 2277 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2278 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2279 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2280 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2281 Base.getAlignment()); 2282} 2283 2284LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2285 Expr *BaseExpr = E->getBase(); 2286 2287 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2288 LValue BaseLV; 2289 if (E->isArrow()) { 2290 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2291 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2292 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2293 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2294 } else 2295 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2296 2297 NamedDecl *ND = E->getMemberDecl(); 2298 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2299 LValue LV = EmitLValueForField(BaseLV, Field); 2300 setObjCGCLValueClass(getContext(), E, LV); 2301 return LV; 2302 } 2303 2304 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2305 return EmitGlobalVarDeclLValue(*this, E, VD); 2306 2307 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2308 return EmitFunctionDeclLValue(*this, E, FD); 2309 2310 llvm_unreachable("Unhandled member declaration!"); 2311} 2312 2313LValue CodeGenFunction::EmitLValueForField(LValue base, 2314 const FieldDecl *field) { 2315 if (field->isBitField()) { 2316 const CGRecordLayout &RL = 2317 CGM.getTypes().getCGRecordLayout(field->getParent()); 2318 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2319 QualType fieldType = 2320 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2321 return LValue::MakeBitfield(base.getAddress(), Info, fieldType, 2322 base.getAlignment()); 2323 } 2324 2325 const RecordDecl *rec = field->getParent(); 2326 QualType type = field->getType(); 2327 CharUnits alignment = getContext().getDeclAlign(field); 2328 2329 // FIXME: It should be impossible to have an LValue without alignment for a 2330 // complete type. 2331 if (!base.getAlignment().isZero()) 2332 alignment = std::min(alignment, base.getAlignment()); 2333 2334 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2335 2336 llvm::Value *addr = base.getAddress(); 2337 unsigned cvr = base.getVRQualifiers(); 2338 if (rec->isUnion()) { 2339 // For unions, there is no pointer adjustment. 2340 assert(!type->isReferenceType() && "union has reference member"); 2341 } else { 2342 // For structs, we GEP to the field that the record layout suggests. 2343 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2344 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2345 2346 // If this is a reference field, load the reference right now. 2347 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2348 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2349 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2350 load->setAlignment(alignment.getQuantity()); 2351 2352 if (CGM.shouldUseTBAA()) { 2353 llvm::MDNode *tbaa; 2354 if (mayAlias) 2355 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2356 else 2357 tbaa = CGM.getTBAAInfo(type); 2358 CGM.DecorateInstruction(load, tbaa); 2359 } 2360 2361 addr = load; 2362 mayAlias = false; 2363 type = refType->getPointeeType(); 2364 if (type->isIncompleteType()) 2365 alignment = CharUnits(); 2366 else 2367 alignment = getContext().getTypeAlignInChars(type); 2368 cvr = 0; // qualifiers don't recursively apply to referencee 2369 } 2370 } 2371 2372 // Make sure that the address is pointing to the right type. This is critical 2373 // for both unions and structs. A union needs a bitcast, a struct element 2374 // will need a bitcast if the LLVM type laid out doesn't match the desired 2375 // type. 2376 addr = EmitBitCastOfLValueToProperType(*this, addr, 2377 CGM.getTypes().ConvertTypeForMem(type), 2378 field->getName()); 2379 2380 if (field->hasAttr<AnnotateAttr>()) 2381 addr = EmitFieldAnnotations(field, addr); 2382 2383 LValue LV = MakeAddrLValue(addr, type, alignment); 2384 LV.getQuals().addCVRQualifiers(cvr); 2385 2386 // __weak attribute on a field is ignored. 2387 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2388 LV.getQuals().removeObjCGCAttr(); 2389 2390 // Fields of may_alias structs act like 'char' for TBAA purposes. 2391 // FIXME: this should get propagated down through anonymous structs 2392 // and unions. 2393 if (mayAlias && LV.getTBAAInfo()) 2394 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2395 2396 return LV; 2397} 2398 2399LValue 2400CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2401 const FieldDecl *Field) { 2402 QualType FieldType = Field->getType(); 2403 2404 if (!FieldType->isReferenceType()) 2405 return EmitLValueForField(Base, Field); 2406 2407 const CGRecordLayout &RL = 2408 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2409 unsigned idx = RL.getLLVMFieldNo(Field); 2410 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2411 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2412 2413 // Make sure that the address is pointing to the right type. This is critical 2414 // for both unions and structs. A union needs a bitcast, a struct element 2415 // will need a bitcast if the LLVM type laid out doesn't match the desired 2416 // type. 2417 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2418 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2419 2420 CharUnits Alignment = getContext().getDeclAlign(Field); 2421 2422 // FIXME: It should be impossible to have an LValue without alignment for a 2423 // complete type. 2424 if (!Base.getAlignment().isZero()) 2425 Alignment = std::min(Alignment, Base.getAlignment()); 2426 2427 return MakeAddrLValue(V, FieldType, Alignment); 2428} 2429 2430LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2431 if (E->isFileScope()) { 2432 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2433 return MakeAddrLValue(GlobalPtr, E->getType()); 2434 } 2435 if (E->getType()->isVariablyModifiedType()) 2436 // make sure to emit the VLA size. 2437 EmitVariablyModifiedType(E->getType()); 2438 2439 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2440 const Expr *InitExpr = E->getInitializer(); 2441 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2442 2443 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2444 /*Init*/ true); 2445 2446 return Result; 2447} 2448 2449LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2450 if (!E->isGLValue()) 2451 // Initializing an aggregate temporary in C++11: T{...}. 2452 return EmitAggExprToLValue(E); 2453 2454 // An lvalue initializer list must be initializing a reference. 2455 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2456 return EmitLValue(E->getInit(0)); 2457} 2458 2459LValue CodeGenFunction:: 2460EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2461 if (!expr->isGLValue()) { 2462 // ?: here should be an aggregate. 2463 assert((hasAggregateLLVMType(expr->getType()) && 2464 !expr->getType()->isAnyComplexType()) && 2465 "Unexpected conditional operator!"); 2466 return EmitAggExprToLValue(expr); 2467 } 2468 2469 OpaqueValueMapping binding(*this, expr); 2470 2471 const Expr *condExpr = expr->getCond(); 2472 bool CondExprBool; 2473 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2474 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2475 if (!CondExprBool) std::swap(live, dead); 2476 2477 if (!ContainsLabel(dead)) 2478 return EmitLValue(live); 2479 } 2480 2481 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2482 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2483 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2484 2485 ConditionalEvaluation eval(*this); 2486 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2487 2488 // Any temporaries created here are conditional. 2489 EmitBlock(lhsBlock); 2490 eval.begin(*this); 2491 LValue lhs = EmitLValue(expr->getTrueExpr()); 2492 eval.end(*this); 2493 2494 if (!lhs.isSimple()) 2495 return EmitUnsupportedLValue(expr, "conditional operator"); 2496 2497 lhsBlock = Builder.GetInsertBlock(); 2498 Builder.CreateBr(contBlock); 2499 2500 // Any temporaries created here are conditional. 2501 EmitBlock(rhsBlock); 2502 eval.begin(*this); 2503 LValue rhs = EmitLValue(expr->getFalseExpr()); 2504 eval.end(*this); 2505 if (!rhs.isSimple()) 2506 return EmitUnsupportedLValue(expr, "conditional operator"); 2507 rhsBlock = Builder.GetInsertBlock(); 2508 2509 EmitBlock(contBlock); 2510 2511 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2512 "cond-lvalue"); 2513 phi->addIncoming(lhs.getAddress(), lhsBlock); 2514 phi->addIncoming(rhs.getAddress(), rhsBlock); 2515 return MakeAddrLValue(phi, expr->getType()); 2516} 2517 2518/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2519/// type. If the cast is to a reference, we can have the usual lvalue result, 2520/// otherwise if a cast is needed by the code generator in an lvalue context, 2521/// then it must mean that we need the address of an aggregate in order to 2522/// access one of its members. This can happen for all the reasons that casts 2523/// are permitted with aggregate result, including noop aggregate casts, and 2524/// cast from scalar to union. 2525LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2526 switch (E->getCastKind()) { 2527 case CK_ToVoid: 2528 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2529 2530 case CK_Dependent: 2531 llvm_unreachable("dependent cast kind in IR gen!"); 2532 2533 case CK_BuiltinFnToFnPtr: 2534 llvm_unreachable("builtin functions are handled elsewhere"); 2535 2536 // These two casts are currently treated as no-ops, although they could 2537 // potentially be real operations depending on the target's ABI. 2538 case CK_NonAtomicToAtomic: 2539 case CK_AtomicToNonAtomic: 2540 2541 case CK_NoOp: 2542 case CK_LValueToRValue: 2543 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2544 || E->getType()->isRecordType()) 2545 return EmitLValue(E->getSubExpr()); 2546 // Fall through to synthesize a temporary. 2547 2548 case CK_BitCast: 2549 case CK_ArrayToPointerDecay: 2550 case CK_FunctionToPointerDecay: 2551 case CK_NullToMemberPointer: 2552 case CK_NullToPointer: 2553 case CK_IntegralToPointer: 2554 case CK_PointerToIntegral: 2555 case CK_PointerToBoolean: 2556 case CK_VectorSplat: 2557 case CK_IntegralCast: 2558 case CK_IntegralToBoolean: 2559 case CK_IntegralToFloating: 2560 case CK_FloatingToIntegral: 2561 case CK_FloatingToBoolean: 2562 case CK_FloatingCast: 2563 case CK_FloatingRealToComplex: 2564 case CK_FloatingComplexToReal: 2565 case CK_FloatingComplexToBoolean: 2566 case CK_FloatingComplexCast: 2567 case CK_FloatingComplexToIntegralComplex: 2568 case CK_IntegralRealToComplex: 2569 case CK_IntegralComplexToReal: 2570 case CK_IntegralComplexToBoolean: 2571 case CK_IntegralComplexCast: 2572 case CK_IntegralComplexToFloatingComplex: 2573 case CK_DerivedToBaseMemberPointer: 2574 case CK_BaseToDerivedMemberPointer: 2575 case CK_MemberPointerToBoolean: 2576 case CK_ReinterpretMemberPointer: 2577 case CK_AnyPointerToBlockPointerCast: 2578 case CK_ARCProduceObject: 2579 case CK_ARCConsumeObject: 2580 case CK_ARCReclaimReturnedObject: 2581 case CK_ARCExtendBlockObject: 2582 case CK_CopyAndAutoreleaseBlockObject: { 2583 // These casts only produce lvalues when we're binding a reference to a 2584 // temporary realized from a (converted) pure rvalue. Emit the expression 2585 // as a value, copy it into a temporary, and return an lvalue referring to 2586 // that temporary. 2587 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2588 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2589 return MakeAddrLValue(V, E->getType()); 2590 } 2591 2592 case CK_Dynamic: { 2593 LValue LV = EmitLValue(E->getSubExpr()); 2594 llvm::Value *V = LV.getAddress(); 2595 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2596 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2597 } 2598 2599 case CK_ConstructorConversion: 2600 case CK_UserDefinedConversion: 2601 case CK_CPointerToObjCPointerCast: 2602 case CK_BlockPointerToObjCPointerCast: 2603 return EmitLValue(E->getSubExpr()); 2604 2605 case CK_UncheckedDerivedToBase: 2606 case CK_DerivedToBase: { 2607 const RecordType *DerivedClassTy = 2608 E->getSubExpr()->getType()->getAs<RecordType>(); 2609 CXXRecordDecl *DerivedClassDecl = 2610 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2611 2612 LValue LV = EmitLValue(E->getSubExpr()); 2613 llvm::Value *This = LV.getAddress(); 2614 2615 // Perform the derived-to-base conversion 2616 llvm::Value *Base = 2617 GetAddressOfBaseClass(This, DerivedClassDecl, 2618 E->path_begin(), E->path_end(), 2619 /*NullCheckValue=*/false); 2620 2621 return MakeAddrLValue(Base, E->getType()); 2622 } 2623 case CK_ToUnion: 2624 return EmitAggExprToLValue(E); 2625 case CK_BaseToDerived: { 2626 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2627 CXXRecordDecl *DerivedClassDecl = 2628 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2629 2630 LValue LV = EmitLValue(E->getSubExpr()); 2631 2632 // Perform the base-to-derived conversion 2633 llvm::Value *Derived = 2634 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2635 E->path_begin(), E->path_end(), 2636 /*NullCheckValue=*/false); 2637 2638 return MakeAddrLValue(Derived, E->getType()); 2639 } 2640 case CK_LValueBitCast: { 2641 // This must be a reinterpret_cast (or c-style equivalent). 2642 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2643 2644 LValue LV = EmitLValue(E->getSubExpr()); 2645 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2646 ConvertType(CE->getTypeAsWritten())); 2647 return MakeAddrLValue(V, E->getType()); 2648 } 2649 case CK_ObjCObjectLValueCast: { 2650 LValue LV = EmitLValue(E->getSubExpr()); 2651 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2652 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2653 ConvertType(ToType)); 2654 return MakeAddrLValue(V, E->getType()); 2655 } 2656 } 2657 2658 llvm_unreachable("Unhandled lvalue cast kind?"); 2659} 2660 2661LValue CodeGenFunction::EmitNullInitializationLValue( 2662 const CXXScalarValueInitExpr *E) { 2663 QualType Ty = E->getType(); 2664 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2665 EmitNullInitialization(LV.getAddress(), Ty); 2666 return LV; 2667} 2668 2669LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2670 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2671 return getOpaqueLValueMapping(e); 2672} 2673 2674LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2675 const MaterializeTemporaryExpr *E) { 2676 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2677 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2678} 2679 2680RValue CodeGenFunction::EmitRValueForField(LValue LV, 2681 const FieldDecl *FD) { 2682 QualType FT = FD->getType(); 2683 LValue FieldLV = EmitLValueForField(LV, FD); 2684 if (FT->isAnyComplexType()) 2685 return RValue::getComplex( 2686 LoadComplexFromAddr(FieldLV.getAddress(), 2687 FieldLV.isVolatileQualified())); 2688 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2689 return FieldLV.asAggregateRValue(); 2690 2691 return EmitLoadOfLValue(FieldLV); 2692} 2693 2694//===--------------------------------------------------------------------===// 2695// Expression Emission 2696//===--------------------------------------------------------------------===// 2697 2698RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2699 ReturnValueSlot ReturnValue) { 2700 if (CGDebugInfo *DI = getDebugInfo()) 2701 DI->EmitLocation(Builder, E->getLocStart()); 2702 2703 // Builtins never have block type. 2704 if (E->getCallee()->getType()->isBlockPointerType()) 2705 return EmitBlockCallExpr(E, ReturnValue); 2706 2707 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2708 return EmitCXXMemberCallExpr(CE, ReturnValue); 2709 2710 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2711 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2712 2713 const Decl *TargetDecl = E->getCalleeDecl(); 2714 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2715 if (unsigned builtinID = FD->getBuiltinID()) 2716 return EmitBuiltinExpr(FD, builtinID, E); 2717 } 2718 2719 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2720 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2721 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2722 2723 if (const CXXPseudoDestructorExpr *PseudoDtor 2724 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2725 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2726 if (getContext().getLangOpts().ObjCAutoRefCount && 2727 DestroyedType->isObjCLifetimeType() && 2728 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2729 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2730 // Automatic Reference Counting: 2731 // If the pseudo-expression names a retainable object with weak or 2732 // strong lifetime, the object shall be released. 2733 Expr *BaseExpr = PseudoDtor->getBase(); 2734 llvm::Value *BaseValue = NULL; 2735 Qualifiers BaseQuals; 2736 2737 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2738 if (PseudoDtor->isArrow()) { 2739 BaseValue = EmitScalarExpr(BaseExpr); 2740 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2741 BaseQuals = PTy->getPointeeType().getQualifiers(); 2742 } else { 2743 LValue BaseLV = EmitLValue(BaseExpr); 2744 BaseValue = BaseLV.getAddress(); 2745 QualType BaseTy = BaseExpr->getType(); 2746 BaseQuals = BaseTy.getQualifiers(); 2747 } 2748 2749 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2750 case Qualifiers::OCL_None: 2751 case Qualifiers::OCL_ExplicitNone: 2752 case Qualifiers::OCL_Autoreleasing: 2753 break; 2754 2755 case Qualifiers::OCL_Strong: 2756 EmitARCRelease(Builder.CreateLoad(BaseValue, 2757 PseudoDtor->getDestroyedType().isVolatileQualified()), 2758 /*precise*/ true); 2759 break; 2760 2761 case Qualifiers::OCL_Weak: 2762 EmitARCDestroyWeak(BaseValue); 2763 break; 2764 } 2765 } else { 2766 // C++ [expr.pseudo]p1: 2767 // The result shall only be used as the operand for the function call 2768 // operator (), and the result of such a call has type void. The only 2769 // effect is the evaluation of the postfix-expression before the dot or 2770 // arrow. 2771 EmitScalarExpr(E->getCallee()); 2772 } 2773 2774 return RValue::get(0); 2775 } 2776 2777 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2778 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2779 E->arg_begin(), E->arg_end(), TargetDecl); 2780} 2781 2782LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2783 // Comma expressions just emit their LHS then their RHS as an l-value. 2784 if (E->getOpcode() == BO_Comma) { 2785 EmitIgnoredExpr(E->getLHS()); 2786 EnsureInsertPoint(); 2787 return EmitLValue(E->getRHS()); 2788 } 2789 2790 if (E->getOpcode() == BO_PtrMemD || 2791 E->getOpcode() == BO_PtrMemI) 2792 return EmitPointerToDataMemberBinaryExpr(E); 2793 2794 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2795 2796 // Note that in all of these cases, __block variables need the RHS 2797 // evaluated first just in case the variable gets moved by the RHS. 2798 2799 if (!hasAggregateLLVMType(E->getType())) { 2800 switch (E->getLHS()->getType().getObjCLifetime()) { 2801 case Qualifiers::OCL_Strong: 2802 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2803 2804 case Qualifiers::OCL_Autoreleasing: 2805 return EmitARCStoreAutoreleasing(E).first; 2806 2807 // No reason to do any of these differently. 2808 case Qualifiers::OCL_None: 2809 case Qualifiers::OCL_ExplicitNone: 2810 case Qualifiers::OCL_Weak: 2811 break; 2812 } 2813 2814 RValue RV = EmitAnyExpr(E->getRHS()); 2815 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2816 EmitStoreThroughLValue(RV, LV); 2817 return LV; 2818 } 2819 2820 if (E->getType()->isAnyComplexType()) 2821 return EmitComplexAssignmentLValue(E); 2822 2823 return EmitAggExprToLValue(E); 2824} 2825 2826LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2827 RValue RV = EmitCallExpr(E); 2828 2829 if (!RV.isScalar()) 2830 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2831 2832 assert(E->getCallReturnType()->isReferenceType() && 2833 "Can't have a scalar return unless the return type is a " 2834 "reference type!"); 2835 2836 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2837} 2838 2839LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2840 // FIXME: This shouldn't require another copy. 2841 return EmitAggExprToLValue(E); 2842} 2843 2844LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2845 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2846 && "binding l-value to type which needs a temporary"); 2847 AggValueSlot Slot = CreateAggTemp(E->getType()); 2848 EmitCXXConstructExpr(E, Slot); 2849 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2850} 2851 2852LValue 2853CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2854 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2855} 2856 2857llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 2858 return CGM.GetAddrOfUuidDescriptor(E); 2859} 2860 2861LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 2862 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 2863} 2864 2865LValue 2866CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2867 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2868 Slot.setExternallyDestructed(); 2869 EmitAggExpr(E->getSubExpr(), Slot); 2870 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2871 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2872} 2873 2874LValue 2875CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2876 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2877 EmitLambdaExpr(E, Slot); 2878 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2879} 2880 2881LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2882 RValue RV = EmitObjCMessageExpr(E); 2883 2884 if (!RV.isScalar()) 2885 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2886 2887 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2888 "Can't have a scalar return unless the return type is a " 2889 "reference type!"); 2890 2891 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2892} 2893 2894LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2895 llvm::Value *V = 2896 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2897 return MakeAddrLValue(V, E->getType()); 2898} 2899 2900llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2901 const ObjCIvarDecl *Ivar) { 2902 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2903} 2904 2905LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2906 llvm::Value *BaseValue, 2907 const ObjCIvarDecl *Ivar, 2908 unsigned CVRQualifiers) { 2909 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2910 Ivar, CVRQualifiers); 2911} 2912 2913LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2914 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2915 llvm::Value *BaseValue = 0; 2916 const Expr *BaseExpr = E->getBase(); 2917 Qualifiers BaseQuals; 2918 QualType ObjectTy; 2919 if (E->isArrow()) { 2920 BaseValue = EmitScalarExpr(BaseExpr); 2921 ObjectTy = BaseExpr->getType()->getPointeeType(); 2922 BaseQuals = ObjectTy.getQualifiers(); 2923 } else { 2924 LValue BaseLV = EmitLValue(BaseExpr); 2925 // FIXME: this isn't right for bitfields. 2926 BaseValue = BaseLV.getAddress(); 2927 ObjectTy = BaseExpr->getType(); 2928 BaseQuals = ObjectTy.getQualifiers(); 2929 } 2930 2931 LValue LV = 2932 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2933 BaseQuals.getCVRQualifiers()); 2934 setObjCGCLValueClass(getContext(), E, LV); 2935 return LV; 2936} 2937 2938LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2939 // Can only get l-value for message expression returning aggregate type 2940 RValue RV = EmitAnyExprToTemp(E); 2941 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2942} 2943 2944RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2945 ReturnValueSlot ReturnValue, 2946 CallExpr::const_arg_iterator ArgBeg, 2947 CallExpr::const_arg_iterator ArgEnd, 2948 const Decl *TargetDecl) { 2949 // Get the actual function type. The callee type will always be a pointer to 2950 // function type or a block pointer type. 2951 assert(CalleeType->isFunctionPointerType() && 2952 "Call must have function pointer type!"); 2953 2954 CalleeType = getContext().getCanonicalType(CalleeType); 2955 2956 const FunctionType *FnType 2957 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2958 2959 CallArgList Args; 2960 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2961 2962 const CGFunctionInfo &FnInfo = 2963 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 2964 2965 // C99 6.5.2.2p6: 2966 // If the expression that denotes the called function has a type 2967 // that does not include a prototype, [the default argument 2968 // promotions are performed]. If the number of arguments does not 2969 // equal the number of parameters, the behavior is undefined. If 2970 // the function is defined with a type that includes a prototype, 2971 // and either the prototype ends with an ellipsis (, ...) or the 2972 // types of the arguments after promotion are not compatible with 2973 // the types of the parameters, the behavior is undefined. If the 2974 // function is defined with a type that does not include a 2975 // prototype, and the types of the arguments after promotion are 2976 // not compatible with those of the parameters after promotion, 2977 // the behavior is undefined [except in some trivial cases]. 2978 // That is, in the general case, we should assume that a call 2979 // through an unprototyped function type works like a *non-variadic* 2980 // call. The way we make this work is to cast to the exact type 2981 // of the promoted arguments. 2982 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2983 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2984 CalleeTy = CalleeTy->getPointerTo(); 2985 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2986 } 2987 2988 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2989} 2990 2991LValue CodeGenFunction:: 2992EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2993 llvm::Value *BaseV; 2994 if (E->getOpcode() == BO_PtrMemI) 2995 BaseV = EmitScalarExpr(E->getLHS()); 2996 else 2997 BaseV = EmitLValue(E->getLHS()).getAddress(); 2998 2999 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3000 3001 const MemberPointerType *MPT 3002 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3003 3004 llvm::Value *AddV = 3005 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3006 3007 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3008} 3009 3010static void 3011EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 3012 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 3013 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 3014 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 3015 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 3016 3017 switch (E->getOp()) { 3018 case AtomicExpr::AO__c11_atomic_init: 3019 llvm_unreachable("Already handled!"); 3020 3021 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3022 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3023 case AtomicExpr::AO__atomic_compare_exchange: 3024 case AtomicExpr::AO__atomic_compare_exchange_n: { 3025 // Note that cmpxchg only supports specifying one ordering and 3026 // doesn't support weak cmpxchg, at least at the moment. 3027 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3028 LoadVal1->setAlignment(Align); 3029 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 3030 LoadVal2->setAlignment(Align); 3031 llvm::AtomicCmpXchgInst *CXI = 3032 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 3033 CXI->setVolatile(E->isVolatile()); 3034 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 3035 StoreVal1->setAlignment(Align); 3036 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 3037 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 3038 return; 3039 } 3040 3041 case AtomicExpr::AO__c11_atomic_load: 3042 case AtomicExpr::AO__atomic_load_n: 3043 case AtomicExpr::AO__atomic_load: { 3044 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 3045 Load->setAtomic(Order); 3046 Load->setAlignment(Size); 3047 Load->setVolatile(E->isVolatile()); 3048 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 3049 StoreDest->setAlignment(Align); 3050 return; 3051 } 3052 3053 case AtomicExpr::AO__c11_atomic_store: 3054 case AtomicExpr::AO__atomic_store: 3055 case AtomicExpr::AO__atomic_store_n: { 3056 assert(!Dest && "Store does not return a value"); 3057 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3058 LoadVal1->setAlignment(Align); 3059 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 3060 Store->setAtomic(Order); 3061 Store->setAlignment(Size); 3062 Store->setVolatile(E->isVolatile()); 3063 return; 3064 } 3065 3066 case AtomicExpr::AO__c11_atomic_exchange: 3067 case AtomicExpr::AO__atomic_exchange_n: 3068 case AtomicExpr::AO__atomic_exchange: 3069 Op = llvm::AtomicRMWInst::Xchg; 3070 break; 3071 3072 case AtomicExpr::AO__atomic_add_fetch: 3073 PostOp = llvm::Instruction::Add; 3074 // Fall through. 3075 case AtomicExpr::AO__c11_atomic_fetch_add: 3076 case AtomicExpr::AO__atomic_fetch_add: 3077 Op = llvm::AtomicRMWInst::Add; 3078 break; 3079 3080 case AtomicExpr::AO__atomic_sub_fetch: 3081 PostOp = llvm::Instruction::Sub; 3082 // Fall through. 3083 case AtomicExpr::AO__c11_atomic_fetch_sub: 3084 case AtomicExpr::AO__atomic_fetch_sub: 3085 Op = llvm::AtomicRMWInst::Sub; 3086 break; 3087 3088 case AtomicExpr::AO__atomic_and_fetch: 3089 PostOp = llvm::Instruction::And; 3090 // Fall through. 3091 case AtomicExpr::AO__c11_atomic_fetch_and: 3092 case AtomicExpr::AO__atomic_fetch_and: 3093 Op = llvm::AtomicRMWInst::And; 3094 break; 3095 3096 case AtomicExpr::AO__atomic_or_fetch: 3097 PostOp = llvm::Instruction::Or; 3098 // Fall through. 3099 case AtomicExpr::AO__c11_atomic_fetch_or: 3100 case AtomicExpr::AO__atomic_fetch_or: 3101 Op = llvm::AtomicRMWInst::Or; 3102 break; 3103 3104 case AtomicExpr::AO__atomic_xor_fetch: 3105 PostOp = llvm::Instruction::Xor; 3106 // Fall through. 3107 case AtomicExpr::AO__c11_atomic_fetch_xor: 3108 case AtomicExpr::AO__atomic_fetch_xor: 3109 Op = llvm::AtomicRMWInst::Xor; 3110 break; 3111 3112 case AtomicExpr::AO__atomic_nand_fetch: 3113 PostOp = llvm::Instruction::And; 3114 // Fall through. 3115 case AtomicExpr::AO__atomic_fetch_nand: 3116 Op = llvm::AtomicRMWInst::Nand; 3117 break; 3118 } 3119 3120 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3121 LoadVal1->setAlignment(Align); 3122 llvm::AtomicRMWInst *RMWI = 3123 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 3124 RMWI->setVolatile(E->isVolatile()); 3125 3126 // For __atomic_*_fetch operations, perform the operation again to 3127 // determine the value which was written. 3128 llvm::Value *Result = RMWI; 3129 if (PostOp) 3130 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 3131 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 3132 Result = CGF.Builder.CreateNot(Result); 3133 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 3134 StoreDest->setAlignment(Align); 3135} 3136 3137// This function emits any expression (scalar, complex, or aggregate) 3138// into a temporary alloca. 3139static llvm::Value * 3140EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 3141 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 3142 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 3143 /*Init*/ true); 3144 return DeclPtr; 3145} 3146 3147static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 3148 llvm::Value *Dest) { 3149 if (Ty->isAnyComplexType()) 3150 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 3151 if (CGF.hasAggregateLLVMType(Ty)) 3152 return RValue::getAggregate(Dest); 3153 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 3154} 3155 3156RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 3157 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 3158 QualType MemTy = AtomicTy; 3159 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 3160 MemTy = AT->getValueType(); 3161 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 3162 uint64_t Size = sizeChars.getQuantity(); 3163 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 3164 unsigned Align = alignChars.getQuantity(); 3165 unsigned MaxInlineWidth = 3166 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 3167 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 3168 3169 3170 3171 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 3172 Ptr = EmitScalarExpr(E->getPtr()); 3173 3174 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 3175 assert(!Dest && "Init does not return a value"); 3176 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 3177 QualType PointeeType 3178 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 3179 EmitScalarInit(EmitScalarExpr(E->getVal1()), 3180 LValue::MakeAddr(Ptr, PointeeType, alignChars, 3181 getContext())); 3182 } else if (E->getType()->isAnyComplexType()) { 3183 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 3184 } else { 3185 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 3186 AtomicTy.getQualifiers(), 3187 AggValueSlot::IsNotDestructed, 3188 AggValueSlot::DoesNotNeedGCBarriers, 3189 AggValueSlot::IsNotAliased); 3190 EmitAggExpr(E->getVal1(), Slot); 3191 } 3192 return RValue::get(0); 3193 } 3194 3195 Order = EmitScalarExpr(E->getOrder()); 3196 3197 switch (E->getOp()) { 3198 case AtomicExpr::AO__c11_atomic_init: 3199 llvm_unreachable("Already handled!"); 3200 3201 case AtomicExpr::AO__c11_atomic_load: 3202 case AtomicExpr::AO__atomic_load_n: 3203 break; 3204 3205 case AtomicExpr::AO__atomic_load: 3206 Dest = EmitScalarExpr(E->getVal1()); 3207 break; 3208 3209 case AtomicExpr::AO__atomic_store: 3210 Val1 = EmitScalarExpr(E->getVal1()); 3211 break; 3212 3213 case AtomicExpr::AO__atomic_exchange: 3214 Val1 = EmitScalarExpr(E->getVal1()); 3215 Dest = EmitScalarExpr(E->getVal2()); 3216 break; 3217 3218 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3219 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3220 case AtomicExpr::AO__atomic_compare_exchange_n: 3221 case AtomicExpr::AO__atomic_compare_exchange: 3222 Val1 = EmitScalarExpr(E->getVal1()); 3223 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 3224 Val2 = EmitScalarExpr(E->getVal2()); 3225 else 3226 Val2 = EmitValToTemp(*this, E->getVal2()); 3227 OrderFail = EmitScalarExpr(E->getOrderFail()); 3228 // Evaluate and discard the 'weak' argument. 3229 if (E->getNumSubExprs() == 6) 3230 EmitScalarExpr(E->getWeak()); 3231 break; 3232 3233 case AtomicExpr::AO__c11_atomic_fetch_add: 3234 case AtomicExpr::AO__c11_atomic_fetch_sub: 3235 if (MemTy->isPointerType()) { 3236 // For pointer arithmetic, we're required to do a bit of math: 3237 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 3238 // ... but only for the C11 builtins. The GNU builtins expect the 3239 // user to multiply by sizeof(T). 3240 QualType Val1Ty = E->getVal1()->getType(); 3241 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 3242 CharUnits PointeeIncAmt = 3243 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 3244 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 3245 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 3246 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 3247 break; 3248 } 3249 // Fall through. 3250 case AtomicExpr::AO__atomic_fetch_add: 3251 case AtomicExpr::AO__atomic_fetch_sub: 3252 case AtomicExpr::AO__atomic_add_fetch: 3253 case AtomicExpr::AO__atomic_sub_fetch: 3254 case AtomicExpr::AO__c11_atomic_store: 3255 case AtomicExpr::AO__c11_atomic_exchange: 3256 case AtomicExpr::AO__atomic_store_n: 3257 case AtomicExpr::AO__atomic_exchange_n: 3258 case AtomicExpr::AO__c11_atomic_fetch_and: 3259 case AtomicExpr::AO__c11_atomic_fetch_or: 3260 case AtomicExpr::AO__c11_atomic_fetch_xor: 3261 case AtomicExpr::AO__atomic_fetch_and: 3262 case AtomicExpr::AO__atomic_fetch_or: 3263 case AtomicExpr::AO__atomic_fetch_xor: 3264 case AtomicExpr::AO__atomic_fetch_nand: 3265 case AtomicExpr::AO__atomic_and_fetch: 3266 case AtomicExpr::AO__atomic_or_fetch: 3267 case AtomicExpr::AO__atomic_xor_fetch: 3268 case AtomicExpr::AO__atomic_nand_fetch: 3269 Val1 = EmitValToTemp(*this, E->getVal1()); 3270 break; 3271 } 3272 3273 if (!E->getType()->isVoidType() && !Dest) 3274 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 3275 3276 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 3277 if (UseLibcall) { 3278 3279 llvm::SmallVector<QualType, 5> Params; 3280 CallArgList Args; 3281 // Size is always the first parameter 3282 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 3283 getContext().getSizeType()); 3284 // Atomic address is always the second parameter 3285 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 3286 getContext().VoidPtrTy); 3287 3288 const char* LibCallName; 3289 QualType RetTy = getContext().VoidTy; 3290 switch (E->getOp()) { 3291 // There is only one libcall for compare an exchange, because there is no 3292 // optimisation benefit possible from a libcall version of a weak compare 3293 // and exchange. 3294 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 3295 // void *desired, int success, int failure) 3296 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3297 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3298 case AtomicExpr::AO__atomic_compare_exchange: 3299 case AtomicExpr::AO__atomic_compare_exchange_n: 3300 LibCallName = "__atomic_compare_exchange"; 3301 RetTy = getContext().BoolTy; 3302 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3303 getContext().VoidPtrTy); 3304 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 3305 getContext().VoidPtrTy); 3306 Args.add(RValue::get(Order), 3307 getContext().IntTy); 3308 Order = OrderFail; 3309 break; 3310 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 3311 // int order) 3312 case AtomicExpr::AO__c11_atomic_exchange: 3313 case AtomicExpr::AO__atomic_exchange_n: 3314 case AtomicExpr::AO__atomic_exchange: 3315 LibCallName = "__atomic_exchange"; 3316 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3317 getContext().VoidPtrTy); 3318 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3319 getContext().VoidPtrTy); 3320 break; 3321 // void __atomic_store(size_t size, void *mem, void *val, int order) 3322 case AtomicExpr::AO__c11_atomic_store: 3323 case AtomicExpr::AO__atomic_store: 3324 case AtomicExpr::AO__atomic_store_n: 3325 LibCallName = "__atomic_store"; 3326 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3327 getContext().VoidPtrTy); 3328 break; 3329 // void __atomic_load(size_t size, void *mem, void *return, int order) 3330 case AtomicExpr::AO__c11_atomic_load: 3331 case AtomicExpr::AO__atomic_load: 3332 case AtomicExpr::AO__atomic_load_n: 3333 LibCallName = "__atomic_load"; 3334 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3335 getContext().VoidPtrTy); 3336 break; 3337#if 0 3338 // These are only defined for 1-16 byte integers. It is not clear what 3339 // their semantics would be on anything else... 3340 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3341 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3342 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3343 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3344 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3345#endif 3346 default: return EmitUnsupportedRValue(E, "atomic library call"); 3347 } 3348 // order is always the last parameter 3349 Args.add(RValue::get(Order), 3350 getContext().IntTy); 3351 3352 const CGFunctionInfo &FuncInfo = 3353 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, 3354 FunctionType::ExtInfo(), RequiredArgs::All); 3355 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3356 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3357 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3358 if (E->isCmpXChg()) 3359 return Res; 3360 if (E->getType()->isVoidType()) 3361 return RValue::get(0); 3362 return ConvertTempToRValue(*this, E->getType(), Dest); 3363 } 3364 3365 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3366 E->getOp() == AtomicExpr::AO__atomic_store || 3367 E->getOp() == AtomicExpr::AO__atomic_store_n; 3368 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3369 E->getOp() == AtomicExpr::AO__atomic_load || 3370 E->getOp() == AtomicExpr::AO__atomic_load_n; 3371 3372 llvm::Type *IPtrTy = 3373 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3374 llvm::Value *OrigDest = Dest; 3375 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3376 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3377 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3378 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3379 3380 if (isa<llvm::ConstantInt>(Order)) { 3381 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3382 switch (ord) { 3383 case 0: // memory_order_relaxed 3384 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3385 llvm::Monotonic); 3386 break; 3387 case 1: // memory_order_consume 3388 case 2: // memory_order_acquire 3389 if (IsStore) 3390 break; // Avoid crashing on code with undefined behavior 3391 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3392 llvm::Acquire); 3393 break; 3394 case 3: // memory_order_release 3395 if (IsLoad) 3396 break; // Avoid crashing on code with undefined behavior 3397 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3398 llvm::Release); 3399 break; 3400 case 4: // memory_order_acq_rel 3401 if (IsLoad || IsStore) 3402 break; // Avoid crashing on code with undefined behavior 3403 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3404 llvm::AcquireRelease); 3405 break; 3406 case 5: // memory_order_seq_cst 3407 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3408 llvm::SequentiallyConsistent); 3409 break; 3410 default: // invalid order 3411 // We should not ever get here normally, but it's hard to 3412 // enforce that in general. 3413 break; 3414 } 3415 if (E->getType()->isVoidType()) 3416 return RValue::get(0); 3417 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3418 } 3419 3420 // Long case, when Order isn't obviously constant. 3421 3422 // Create all the relevant BB's 3423 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3424 *AcqRelBB = 0, *SeqCstBB = 0; 3425 MonotonicBB = createBasicBlock("monotonic", CurFn); 3426 if (!IsStore) 3427 AcquireBB = createBasicBlock("acquire", CurFn); 3428 if (!IsLoad) 3429 ReleaseBB = createBasicBlock("release", CurFn); 3430 if (!IsLoad && !IsStore) 3431 AcqRelBB = createBasicBlock("acqrel", CurFn); 3432 SeqCstBB = createBasicBlock("seqcst", CurFn); 3433 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3434 3435 // Create the switch for the split 3436 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3437 // doesn't matter unless someone is crazy enough to use something that 3438 // doesn't fold to a constant for the ordering. 3439 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3440 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3441 3442 // Emit all the different atomics 3443 Builder.SetInsertPoint(MonotonicBB); 3444 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3445 llvm::Monotonic); 3446 Builder.CreateBr(ContBB); 3447 if (!IsStore) { 3448 Builder.SetInsertPoint(AcquireBB); 3449 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3450 llvm::Acquire); 3451 Builder.CreateBr(ContBB); 3452 SI->addCase(Builder.getInt32(1), AcquireBB); 3453 SI->addCase(Builder.getInt32(2), AcquireBB); 3454 } 3455 if (!IsLoad) { 3456 Builder.SetInsertPoint(ReleaseBB); 3457 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3458 llvm::Release); 3459 Builder.CreateBr(ContBB); 3460 SI->addCase(Builder.getInt32(3), ReleaseBB); 3461 } 3462 if (!IsLoad && !IsStore) { 3463 Builder.SetInsertPoint(AcqRelBB); 3464 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3465 llvm::AcquireRelease); 3466 Builder.CreateBr(ContBB); 3467 SI->addCase(Builder.getInt32(4), AcqRelBB); 3468 } 3469 Builder.SetInsertPoint(SeqCstBB); 3470 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3471 llvm::SequentiallyConsistent); 3472 Builder.CreateBr(ContBB); 3473 SI->addCase(Builder.getInt32(5), SeqCstBB); 3474 3475 // Cleanup and return 3476 Builder.SetInsertPoint(ContBB); 3477 if (E->getType()->isVoidType()) 3478 return RValue::get(0); 3479 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3480} 3481 3482void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3483 assert(Val->getType()->isFPOrFPVectorTy()); 3484 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3485 return; 3486 3487 llvm::MDBuilder MDHelper(getLLVMContext()); 3488 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3489 3490 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3491} 3492 3493namespace { 3494 struct LValueOrRValue { 3495 LValue LV; 3496 RValue RV; 3497 }; 3498} 3499 3500static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3501 const PseudoObjectExpr *E, 3502 bool forLValue, 3503 AggValueSlot slot) { 3504 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3505 3506 // Find the result expression, if any. 3507 const Expr *resultExpr = E->getResultExpr(); 3508 LValueOrRValue result; 3509 3510 for (PseudoObjectExpr::const_semantics_iterator 3511 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3512 const Expr *semantic = *i; 3513 3514 // If this semantic expression is an opaque value, bind it 3515 // to the result of its source expression. 3516 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3517 3518 // If this is the result expression, we may need to evaluate 3519 // directly into the slot. 3520 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3521 OVMA opaqueData; 3522 if (ov == resultExpr && ov->isRValue() && !forLValue && 3523 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3524 !ov->getType()->isAnyComplexType()) { 3525 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3526 3527 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3528 opaqueData = OVMA::bind(CGF, ov, LV); 3529 result.RV = slot.asRValue(); 3530 3531 // Otherwise, emit as normal. 3532 } else { 3533 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3534 3535 // If this is the result, also evaluate the result now. 3536 if (ov == resultExpr) { 3537 if (forLValue) 3538 result.LV = CGF.EmitLValue(ov); 3539 else 3540 result.RV = CGF.EmitAnyExpr(ov, slot); 3541 } 3542 } 3543 3544 opaques.push_back(opaqueData); 3545 3546 // Otherwise, if the expression is the result, evaluate it 3547 // and remember the result. 3548 } else if (semantic == resultExpr) { 3549 if (forLValue) 3550 result.LV = CGF.EmitLValue(semantic); 3551 else 3552 result.RV = CGF.EmitAnyExpr(semantic, slot); 3553 3554 // Otherwise, evaluate the expression in an ignored context. 3555 } else { 3556 CGF.EmitIgnoredExpr(semantic); 3557 } 3558 } 3559 3560 // Unbind all the opaques now. 3561 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3562 opaques[i].unbind(CGF); 3563 3564 return result; 3565} 3566 3567RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3568 AggValueSlot slot) { 3569 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3570} 3571 3572LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3573 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3574} 3575