CGExpr.cpp revision 3cebc73895daccea85984d8881b5b45c8f8df9c6
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCXXABI.h" 16#include "CGCall.h" 17#include "CGDebugInfo.h" 18#include "CGObjCRuntime.h" 19#include "CGRecordLayout.h" 20#include "CodeGenModule.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/ADT/Hashing.h" 26#include "llvm/IR/DataLayout.h" 27#include "llvm/IR/Intrinsics.h" 28#include "llvm/IR/LLVMContext.h" 29#include "llvm/IR/MDBuilder.h" 30#include "llvm/Support/ConvertUTF.h" 31 32using namespace clang; 33using namespace CodeGen; 34 35//===--------------------------------------------------------------------===// 36// Miscellaneous Helper Methods 37//===--------------------------------------------------------------------===// 38 39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49} 50 51/// CreateTempAlloca - This creates a alloca and inserts it into the entry 52/// block. 53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58} 59 60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65} 66 67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74} 75 76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83} 84 85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86/// expression and compare the result against zero, returning an Int1Ty value. 87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 89 llvm::Value *MemPtr = EmitScalarExpr(E); 90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 91 } 92 93 QualType BoolTy = getContext().BoolTy; 94 if (!E->getType()->isAnyComplexType()) 95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 96 97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 98} 99 100/// EmitIgnoredExpr - Emit code to compute the specified expression, 101/// ignoring the result. 102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 103 if (E->isRValue()) 104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 105 106 // Just emit it as an l-value and drop the result. 107 EmitLValue(E); 108} 109 110/// EmitAnyExpr - Emit code to compute the specified expression which 111/// can have any type. The result is returned as an RValue struct. 112/// If this is an aggregate expression, AggSlot indicates where the 113/// result should be returned. 114RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 115 AggValueSlot aggSlot, 116 bool ignoreResult) { 117 switch (getEvaluationKind(E->getType())) { 118 case TEK_Scalar: 119 return RValue::get(EmitScalarExpr(E, ignoreResult)); 120 case TEK_Complex: 121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 122 case TEK_Aggregate: 123 if (!ignoreResult && aggSlot.isIgnored()) 124 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 125 EmitAggExpr(E, aggSlot); 126 return aggSlot.asRValue(); 127 } 128 llvm_unreachable("bad evaluation kind"); 129} 130 131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 132/// always be accessible even if no aggregate location is provided. 133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 134 AggValueSlot AggSlot = AggValueSlot::ignored(); 135 136 if (hasAggregateEvaluationKind(E->getType())) 137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 138 return EmitAnyExpr(E, AggSlot); 139} 140 141/// EmitAnyExprToMem - Evaluate an expression into a given memory 142/// location. 143void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 144 llvm::Value *Location, 145 Qualifiers Quals, 146 bool IsInit) { 147 // FIXME: This function should take an LValue as an argument. 148 switch (getEvaluationKind(E->getType())) { 149 case TEK_Complex: 150 EmitComplexExprIntoLValue(E, 151 MakeNaturalAlignAddrLValue(Location, E->getType()), 152 /*isInit*/ false); 153 return; 154 155 case TEK_Aggregate: { 156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 158 AggValueSlot::IsDestructed_t(IsInit), 159 AggValueSlot::DoesNotNeedGCBarriers, 160 AggValueSlot::IsAliased_t(!IsInit))); 161 return; 162 } 163 164 case TEK_Scalar: { 165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 166 LValue LV = MakeAddrLValue(Location, E->getType()); 167 EmitStoreThroughLValue(RV, LV); 168 return; 169 } 170 } 171 llvm_unreachable("bad evaluation kind"); 172} 173 174static void 175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 176 const Expr *E, llvm::Value *ReferenceTemporary) { 177 // Objective-C++ ARC: 178 // If we are binding a reference to a temporary that has ownership, we 179 // need to perform retain/release operations on the temporary. 180 // 181 // FIXME: This should be looking at E, not M. 182 if (CGF.getLangOpts().ObjCAutoRefCount && 183 M->getType()->isObjCLifetimeType()) { 184 QualType ObjCARCReferenceLifetimeType = M->getType(); 185 switch (Qualifiers::ObjCLifetime Lifetime = 186 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 187 case Qualifiers::OCL_None: 188 case Qualifiers::OCL_ExplicitNone: 189 // Carry on to normal cleanup handling. 190 break; 191 192 case Qualifiers::OCL_Autoreleasing: 193 // Nothing to do; cleaned up by an autorelease pool. 194 return; 195 196 case Qualifiers::OCL_Strong: 197 case Qualifiers::OCL_Weak: 198 switch (StorageDuration Duration = M->getStorageDuration()) { 199 case SD_Static: 200 // Note: we intentionally do not register a cleanup to release 201 // the object on program termination. 202 return; 203 204 case SD_Thread: 205 // FIXME: We should probably register a cleanup in this case. 206 return; 207 208 case SD_Automatic: 209 case SD_FullExpression: 210 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 211 CodeGenFunction::Destroyer *Destroy; 212 CleanupKind CleanupKind; 213 if (Lifetime == Qualifiers::OCL_Strong) { 214 const ValueDecl *VD = M->getExtendingDecl(); 215 bool Precise = 216 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 217 CleanupKind = CGF.getARCCleanupKind(); 218 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 219 : &CodeGenFunction::destroyARCStrongImprecise; 220 } else { 221 // __weak objects always get EH cleanups; otherwise, exceptions 222 // could cause really nasty crashes instead of mere leaks. 223 CleanupKind = NormalAndEHCleanup; 224 Destroy = &CodeGenFunction::destroyARCWeak; 225 } 226 if (Duration == SD_FullExpression) 227 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 228 ObjCARCReferenceLifetimeType, *Destroy, 229 CleanupKind & EHCleanup); 230 else 231 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 232 ObjCARCReferenceLifetimeType, 233 *Destroy, CleanupKind & EHCleanup); 234 return; 235 236 case SD_Dynamic: 237 llvm_unreachable("temporary cannot have dynamic storage duration"); 238 } 239 llvm_unreachable("unknown storage duration"); 240 } 241 } 242 243 CXXDestructorDecl *ReferenceTemporaryDtor = 0; 244 if (const RecordType *RT = 245 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 246 // Get the destructor for the reference temporary. 247 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 248 if (!ClassDecl->hasTrivialDestructor()) 249 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 250 } 251 252 if (!ReferenceTemporaryDtor) 253 return; 254 255 // Call the destructor for the temporary. 256 switch (M->getStorageDuration()) { 257 case SD_Static: 258 case SD_Thread: { 259 llvm::Constant *CleanupFn; 260 llvm::Constant *CleanupArg; 261 if (E->getType()->isArrayType()) { 262 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 263 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 264 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 265 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 266 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 267 } else { 268 CleanupFn = 269 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 270 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 271 } 272 CGF.CGM.getCXXABI().registerGlobalDtor( 273 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 274 break; 275 } 276 277 case SD_FullExpression: 278 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 279 CodeGenFunction::destroyCXXObject, 280 CGF.getLangOpts().Exceptions); 281 break; 282 283 case SD_Automatic: 284 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 285 ReferenceTemporary, E->getType(), 286 CodeGenFunction::destroyCXXObject, 287 CGF.getLangOpts().Exceptions); 288 break; 289 290 case SD_Dynamic: 291 llvm_unreachable("temporary cannot have dynamic storage duration"); 292 } 293} 294 295static llvm::Value * 296createReferenceTemporary(CodeGenFunction &CGF, 297 const MaterializeTemporaryExpr *M, const Expr *Inner) { 298 switch (M->getStorageDuration()) { 299 case SD_FullExpression: 300 case SD_Automatic: 301 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 302 303 case SD_Thread: 304 case SD_Static: 305 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 306 307 case SD_Dynamic: 308 llvm_unreachable("temporary can't have dynamic storage duration"); 309 } 310 llvm_unreachable("unknown storage duration"); 311} 312 313LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 314 const MaterializeTemporaryExpr *M) { 315 const Expr *E = M->GetTemporaryExpr(); 316 317 if (getLangOpts().ObjCAutoRefCount && 318 M->getType()->isObjCLifetimeType() && 319 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 320 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 321 // FIXME: Fold this into the general case below. 322 llvm::Value *Object = createReferenceTemporary(*this, M, E); 323 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 324 325 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 326 // We should not have emitted the initializer for this temporary as a 327 // constant. 328 assert(!Var->hasInitializer()); 329 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 330 } 331 332 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 333 334 pushTemporaryCleanup(*this, M, E, Object); 335 return RefTempDst; 336 } 337 338 SmallVector<const Expr *, 2> CommaLHSs; 339 SmallVector<SubobjectAdjustment, 2> Adjustments; 340 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 341 342 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 343 EmitIgnoredExpr(CommaLHSs[I]); 344 345 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) { 346 if (opaque->getType()->isRecordType()) { 347 assert(Adjustments.empty()); 348 return EmitOpaqueValueLValue(opaque); 349 } 350 } 351 352 // Create and initialize the reference temporary. 353 llvm::Value *Object = createReferenceTemporary(*this, M, E); 354 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 355 // If the temporary is a global and has a constant initializer, we may 356 // have already initialized it. 357 if (!Var->hasInitializer()) { 358 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 359 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 360 } 361 } else { 362 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 363 } 364 pushTemporaryCleanup(*this, M, E, Object); 365 366 // Perform derived-to-base casts and/or field accesses, to get from the 367 // temporary object we created (and, potentially, for which we extended 368 // the lifetime) to the subobject we're binding the reference to. 369 for (unsigned I = Adjustments.size(); I != 0; --I) { 370 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 371 switch (Adjustment.Kind) { 372 case SubobjectAdjustment::DerivedToBaseAdjustment: 373 Object = 374 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 375 Adjustment.DerivedToBase.BasePath->path_begin(), 376 Adjustment.DerivedToBase.BasePath->path_end(), 377 /*NullCheckValue=*/ false); 378 break; 379 380 case SubobjectAdjustment::FieldAdjustment: { 381 LValue LV = MakeAddrLValue(Object, E->getType()); 382 LV = EmitLValueForField(LV, Adjustment.Field); 383 assert(LV.isSimple() && 384 "materialized temporary field is not a simple lvalue"); 385 Object = LV.getAddress(); 386 break; 387 } 388 389 case SubobjectAdjustment::MemberPointerAdjustment: { 390 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 391 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 392 *this, Object, Ptr, Adjustment.Ptr.MPT); 393 break; 394 } 395 } 396 } 397 398 return MakeAddrLValue(Object, M->getType()); 399} 400 401RValue 402CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 403 // Emit the expression as an lvalue. 404 LValue LV = EmitLValue(E); 405 assert(LV.isSimple()); 406 llvm::Value *Value = LV.getAddress(); 407 408 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 409 // C++11 [dcl.ref]p5 (as amended by core issue 453): 410 // If a glvalue to which a reference is directly bound designates neither 411 // an existing object or function of an appropriate type nor a region of 412 // storage of suitable size and alignment to contain an object of the 413 // reference's type, the behavior is undefined. 414 QualType Ty = E->getType(); 415 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 416 } 417 418 return RValue::get(Value); 419} 420 421 422/// getAccessedFieldNo - Given an encoded value and a result number, return the 423/// input field number being accessed. 424unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 425 const llvm::Constant *Elts) { 426 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 427 ->getZExtValue(); 428} 429 430/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 431static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 432 llvm::Value *High) { 433 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 434 llvm::Value *K47 = Builder.getInt64(47); 435 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 436 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 437 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 438 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 439 return Builder.CreateMul(B1, KMul); 440} 441 442void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 443 llvm::Value *Address, 444 QualType Ty, CharUnits Alignment) { 445 if (!SanitizePerformTypeCheck) 446 return; 447 448 // Don't check pointers outside the default address space. The null check 449 // isn't correct, the object-size check isn't supported by LLVM, and we can't 450 // communicate the addresses to the runtime handler for the vptr check. 451 if (Address->getType()->getPointerAddressSpace()) 452 return; 453 454 llvm::Value *Cond = 0; 455 llvm::BasicBlock *Done = 0; 456 457 if (SanOpts->Null) { 458 // The glvalue must not be an empty glvalue. 459 Cond = Builder.CreateICmpNE( 460 Address, llvm::Constant::getNullValue(Address->getType())); 461 462 if (TCK == TCK_DowncastPointer) { 463 // When performing a pointer downcast, it's OK if the value is null. 464 // Skip the remaining checks in that case. 465 Done = createBasicBlock("null"); 466 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 467 Builder.CreateCondBr(Cond, Rest, Done); 468 EmitBlock(Rest); 469 Cond = 0; 470 } 471 } 472 473 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 474 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 475 476 // The glvalue must refer to a large enough storage region. 477 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 478 // to check this. 479 // FIXME: Get object address space 480 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 481 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 482 llvm::Value *Min = Builder.getFalse(); 483 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 484 llvm::Value *LargeEnough = 485 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 486 llvm::ConstantInt::get(IntPtrTy, Size)); 487 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 488 } 489 490 uint64_t AlignVal = 0; 491 492 if (SanOpts->Alignment) { 493 AlignVal = Alignment.getQuantity(); 494 if (!Ty->isIncompleteType() && !AlignVal) 495 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 496 497 // The glvalue must be suitably aligned. 498 if (AlignVal) { 499 llvm::Value *Align = 500 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 501 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 502 llvm::Value *Aligned = 503 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 504 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 505 } 506 } 507 508 if (Cond) { 509 llvm::Constant *StaticData[] = { 510 EmitCheckSourceLocation(Loc), 511 EmitCheckTypeDescriptor(Ty), 512 llvm::ConstantInt::get(SizeTy, AlignVal), 513 llvm::ConstantInt::get(Int8Ty, TCK) 514 }; 515 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 516 } 517 518 // If possible, check that the vptr indicates that there is a subobject of 519 // type Ty at offset zero within this object. 520 // 521 // C++11 [basic.life]p5,6: 522 // [For storage which does not refer to an object within its lifetime] 523 // The program has undefined behavior if: 524 // -- the [pointer or glvalue] is used to access a non-static data member 525 // or call a non-static member function 526 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 527 if (SanOpts->Vptr && 528 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 529 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 530 RD && RD->hasDefinition() && RD->isDynamicClass()) { 531 // Compute a hash of the mangled name of the type. 532 // 533 // FIXME: This is not guaranteed to be deterministic! Move to a 534 // fingerprinting mechanism once LLVM provides one. For the time 535 // being the implementation happens to be deterministic. 536 SmallString<64> MangledName; 537 llvm::raw_svector_ostream Out(MangledName); 538 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 539 Out); 540 llvm::hash_code TypeHash = hash_value(Out.str()); 541 542 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 543 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 544 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 545 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 546 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 547 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 548 549 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 550 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 551 552 // Look the hash up in our cache. 553 const int CacheSize = 128; 554 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 555 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 556 "__ubsan_vptr_type_cache"); 557 llvm::Value *Slot = Builder.CreateAnd(Hash, 558 llvm::ConstantInt::get(IntPtrTy, 559 CacheSize-1)); 560 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 561 llvm::Value *CacheVal = 562 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 563 564 // If the hash isn't in the cache, call a runtime handler to perform the 565 // hard work of checking whether the vptr is for an object of the right 566 // type. This will either fill in the cache and return, or produce a 567 // diagnostic. 568 llvm::Constant *StaticData[] = { 569 EmitCheckSourceLocation(Loc), 570 EmitCheckTypeDescriptor(Ty), 571 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 572 llvm::ConstantInt::get(Int8Ty, TCK) 573 }; 574 llvm::Value *DynamicData[] = { Address, Hash }; 575 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 576 "dynamic_type_cache_miss", StaticData, DynamicData, 577 CRK_AlwaysRecoverable); 578 } 579 580 if (Done) { 581 Builder.CreateBr(Done); 582 EmitBlock(Done); 583 } 584} 585 586/// Determine whether this expression refers to a flexible array member in a 587/// struct. We disable array bounds checks for such members. 588static bool isFlexibleArrayMemberExpr(const Expr *E) { 589 // For compatibility with existing code, we treat arrays of length 0 or 590 // 1 as flexible array members. 591 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 592 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 593 if (CAT->getSize().ugt(1)) 594 return false; 595 } else if (!isa<IncompleteArrayType>(AT)) 596 return false; 597 598 E = E->IgnoreParens(); 599 600 // A flexible array member must be the last member in the class. 601 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 602 // FIXME: If the base type of the member expr is not FD->getParent(), 603 // this should not be treated as a flexible array member access. 604 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 605 RecordDecl::field_iterator FI( 606 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 607 return ++FI == FD->getParent()->field_end(); 608 } 609 } 610 611 return false; 612} 613 614/// If Base is known to point to the start of an array, return the length of 615/// that array. Return 0 if the length cannot be determined. 616static llvm::Value *getArrayIndexingBound( 617 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 618 // For the vector indexing extension, the bound is the number of elements. 619 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 620 IndexedType = Base->getType(); 621 return CGF.Builder.getInt32(VT->getNumElements()); 622 } 623 624 Base = Base->IgnoreParens(); 625 626 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) { 627 if (CE->getCastKind() == CK_ArrayToPointerDecay && 628 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 629 IndexedType = CE->getSubExpr()->getType(); 630 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 631 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 632 return CGF.Builder.getInt(CAT->getSize()); 633 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) 634 return CGF.getVLASize(VAT).first; 635 } 636 } 637 638 return 0; 639} 640 641void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 642 llvm::Value *Index, QualType IndexType, 643 bool Accessed) { 644 assert(SanOpts->ArrayBounds && 645 "should not be called unless adding bounds checks"); 646 647 QualType IndexedType; 648 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 649 if (!Bound) 650 return; 651 652 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 653 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 654 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 655 656 llvm::Constant *StaticData[] = { 657 EmitCheckSourceLocation(E->getExprLoc()), 658 EmitCheckTypeDescriptor(IndexedType), 659 EmitCheckTypeDescriptor(IndexType) 660 }; 661 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 662 : Builder.CreateICmpULE(IndexVal, BoundVal); 663 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 664} 665 666 667CodeGenFunction::ComplexPairTy CodeGenFunction:: 668EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 669 bool isInc, bool isPre) { 670 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 671 672 llvm::Value *NextVal; 673 if (isa<llvm::IntegerType>(InVal.first->getType())) { 674 uint64_t AmountVal = isInc ? 1 : -1; 675 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 676 677 // Add the inc/dec to the real part. 678 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 679 } else { 680 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 681 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 682 if (!isInc) 683 FVal.changeSign(); 684 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 685 686 // Add the inc/dec to the real part. 687 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 688 } 689 690 ComplexPairTy IncVal(NextVal, InVal.second); 691 692 // Store the updated result through the lvalue. 693 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 694 695 // If this is a postinc, return the value read from memory, otherwise use the 696 // updated value. 697 return isPre ? IncVal : InVal; 698} 699 700 701//===----------------------------------------------------------------------===// 702// LValue Expression Emission 703//===----------------------------------------------------------------------===// 704 705RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 706 if (Ty->isVoidType()) 707 return RValue::get(0); 708 709 switch (getEvaluationKind(Ty)) { 710 case TEK_Complex: { 711 llvm::Type *EltTy = 712 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 713 llvm::Value *U = llvm::UndefValue::get(EltTy); 714 return RValue::getComplex(std::make_pair(U, U)); 715 } 716 717 // If this is a use of an undefined aggregate type, the aggregate must have an 718 // identifiable address. Just because the contents of the value are undefined 719 // doesn't mean that the address can't be taken and compared. 720 case TEK_Aggregate: { 721 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 722 return RValue::getAggregate(DestPtr); 723 } 724 725 case TEK_Scalar: 726 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 727 } 728 llvm_unreachable("bad evaluation kind"); 729} 730 731RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 732 const char *Name) { 733 ErrorUnsupported(E, Name); 734 return GetUndefRValue(E->getType()); 735} 736 737LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 738 const char *Name) { 739 ErrorUnsupported(E, Name); 740 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 741 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 742} 743 744LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 745 LValue LV; 746 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E)) 747 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 748 else 749 LV = EmitLValue(E); 750 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 751 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 752 E->getType(), LV.getAlignment()); 753 return LV; 754} 755 756/// EmitLValue - Emit code to compute a designator that specifies the location 757/// of the expression. 758/// 759/// This can return one of two things: a simple address or a bitfield reference. 760/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 761/// an LLVM pointer type. 762/// 763/// If this returns a bitfield reference, nothing about the pointee type of the 764/// LLVM value is known: For example, it may not be a pointer to an integer. 765/// 766/// If this returns a normal address, and if the lvalue's C type is fixed size, 767/// this method guarantees that the returned pointer type will point to an LLVM 768/// type of the same size of the lvalue's type. If the lvalue has a variable 769/// length type, this is not possible. 770/// 771LValue CodeGenFunction::EmitLValue(const Expr *E) { 772 switch (E->getStmtClass()) { 773 default: return EmitUnsupportedLValue(E, "l-value expression"); 774 775 case Expr::ObjCPropertyRefExprClass: 776 llvm_unreachable("cannot emit a property reference directly"); 777 778 case Expr::ObjCSelectorExprClass: 779 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 780 case Expr::ObjCIsaExprClass: 781 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 782 case Expr::BinaryOperatorClass: 783 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 784 case Expr::CompoundAssignOperatorClass: 785 if (!E->getType()->isAnyComplexType()) 786 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 787 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 788 case Expr::CallExprClass: 789 case Expr::CXXMemberCallExprClass: 790 case Expr::CXXOperatorCallExprClass: 791 case Expr::UserDefinedLiteralClass: 792 return EmitCallExprLValue(cast<CallExpr>(E)); 793 case Expr::VAArgExprClass: 794 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 795 case Expr::DeclRefExprClass: 796 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 797 case Expr::ParenExprClass: 798 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 799 case Expr::GenericSelectionExprClass: 800 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 801 case Expr::PredefinedExprClass: 802 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 803 case Expr::StringLiteralClass: 804 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 805 case Expr::ObjCEncodeExprClass: 806 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 807 case Expr::PseudoObjectExprClass: 808 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 809 case Expr::InitListExprClass: 810 return EmitInitListLValue(cast<InitListExpr>(E)); 811 case Expr::CXXTemporaryObjectExprClass: 812 case Expr::CXXConstructExprClass: 813 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 814 case Expr::CXXBindTemporaryExprClass: 815 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 816 case Expr::CXXUuidofExprClass: 817 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 818 case Expr::LambdaExprClass: 819 return EmitLambdaLValue(cast<LambdaExpr>(E)); 820 821 case Expr::ExprWithCleanupsClass: { 822 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 823 enterFullExpression(cleanups); 824 RunCleanupsScope Scope(*this); 825 return EmitLValue(cleanups->getSubExpr()); 826 } 827 828 case Expr::CXXDefaultArgExprClass: 829 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 830 case Expr::CXXDefaultInitExprClass: { 831 CXXDefaultInitExprScope Scope(*this); 832 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 833 } 834 case Expr::CXXTypeidExprClass: 835 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 836 837 case Expr::ObjCMessageExprClass: 838 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 839 case Expr::ObjCIvarRefExprClass: 840 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 841 case Expr::StmtExprClass: 842 return EmitStmtExprLValue(cast<StmtExpr>(E)); 843 case Expr::UnaryOperatorClass: 844 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 845 case Expr::ArraySubscriptExprClass: 846 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 847 case Expr::ExtVectorElementExprClass: 848 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 849 case Expr::MemberExprClass: 850 return EmitMemberExpr(cast<MemberExpr>(E)); 851 case Expr::CompoundLiteralExprClass: 852 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 853 case Expr::ConditionalOperatorClass: 854 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 855 case Expr::BinaryConditionalOperatorClass: 856 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 857 case Expr::ChooseExprClass: 858 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 859 case Expr::OpaqueValueExprClass: 860 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 861 case Expr::SubstNonTypeTemplateParmExprClass: 862 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 863 case Expr::ImplicitCastExprClass: 864 case Expr::CStyleCastExprClass: 865 case Expr::CXXFunctionalCastExprClass: 866 case Expr::CXXStaticCastExprClass: 867 case Expr::CXXDynamicCastExprClass: 868 case Expr::CXXReinterpretCastExprClass: 869 case Expr::CXXConstCastExprClass: 870 case Expr::ObjCBridgedCastExprClass: 871 return EmitCastLValue(cast<CastExpr>(E)); 872 873 case Expr::MaterializeTemporaryExprClass: 874 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 875 } 876} 877 878/// Given an object of the given canonical type, can we safely copy a 879/// value out of it based on its initializer? 880static bool isConstantEmittableObjectType(QualType type) { 881 assert(type.isCanonical()); 882 assert(!type->isReferenceType()); 883 884 // Must be const-qualified but non-volatile. 885 Qualifiers qs = type.getLocalQualifiers(); 886 if (!qs.hasConst() || qs.hasVolatile()) return false; 887 888 // Otherwise, all object types satisfy this except C++ classes with 889 // mutable subobjects or non-trivial copy/destroy behavior. 890 if (const RecordType *RT = dyn_cast<RecordType>(type)) 891 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 892 if (RD->hasMutableFields() || !RD->isTrivial()) 893 return false; 894 895 return true; 896} 897 898/// Can we constant-emit a load of a reference to a variable of the 899/// given type? This is different from predicates like 900/// Decl::isUsableInConstantExpressions because we do want it to apply 901/// in situations that don't necessarily satisfy the language's rules 902/// for this (e.g. C++'s ODR-use rules). For example, we want to able 903/// to do this with const float variables even if those variables 904/// aren't marked 'constexpr'. 905enum ConstantEmissionKind { 906 CEK_None, 907 CEK_AsReferenceOnly, 908 CEK_AsValueOrReference, 909 CEK_AsValueOnly 910}; 911static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 912 type = type.getCanonicalType(); 913 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 914 if (isConstantEmittableObjectType(ref->getPointeeType())) 915 return CEK_AsValueOrReference; 916 return CEK_AsReferenceOnly; 917 } 918 if (isConstantEmittableObjectType(type)) 919 return CEK_AsValueOnly; 920 return CEK_None; 921} 922 923/// Try to emit a reference to the given value without producing it as 924/// an l-value. This is actually more than an optimization: we can't 925/// produce an l-value for variables that we never actually captured 926/// in a block or lambda, which means const int variables or constexpr 927/// literals or similar. 928CodeGenFunction::ConstantEmission 929CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 930 ValueDecl *value = refExpr->getDecl(); 931 932 // The value needs to be an enum constant or a constant variable. 933 ConstantEmissionKind CEK; 934 if (isa<ParmVarDecl>(value)) { 935 CEK = CEK_None; 936 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 937 CEK = checkVarTypeForConstantEmission(var->getType()); 938 } else if (isa<EnumConstantDecl>(value)) { 939 CEK = CEK_AsValueOnly; 940 } else { 941 CEK = CEK_None; 942 } 943 if (CEK == CEK_None) return ConstantEmission(); 944 945 Expr::EvalResult result; 946 bool resultIsReference; 947 QualType resultType; 948 949 // It's best to evaluate all the way as an r-value if that's permitted. 950 if (CEK != CEK_AsReferenceOnly && 951 refExpr->EvaluateAsRValue(result, getContext())) { 952 resultIsReference = false; 953 resultType = refExpr->getType(); 954 955 // Otherwise, try to evaluate as an l-value. 956 } else if (CEK != CEK_AsValueOnly && 957 refExpr->EvaluateAsLValue(result, getContext())) { 958 resultIsReference = true; 959 resultType = value->getType(); 960 961 // Failure. 962 } else { 963 return ConstantEmission(); 964 } 965 966 // In any case, if the initializer has side-effects, abandon ship. 967 if (result.HasSideEffects) 968 return ConstantEmission(); 969 970 // Emit as a constant. 971 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 972 973 // Make sure we emit a debug reference to the global variable. 974 // This should probably fire even for 975 if (isa<VarDecl>(value)) { 976 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 977 EmitDeclRefExprDbgValue(refExpr, C); 978 } else { 979 assert(isa<EnumConstantDecl>(value)); 980 EmitDeclRefExprDbgValue(refExpr, C); 981 } 982 983 // If we emitted a reference constant, we need to dereference that. 984 if (resultIsReference) 985 return ConstantEmission::forReference(C); 986 987 return ConstantEmission::forValue(C); 988} 989 990llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 991 SourceLocation Loc) { 992 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 993 lvalue.getAlignment().getQuantity(), 994 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 995 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 996} 997 998static bool hasBooleanRepresentation(QualType Ty) { 999 if (Ty->isBooleanType()) 1000 return true; 1001 1002 if (const EnumType *ET = Ty->getAs<EnumType>()) 1003 return ET->getDecl()->getIntegerType()->isBooleanType(); 1004 1005 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1006 return hasBooleanRepresentation(AT->getValueType()); 1007 1008 return false; 1009} 1010 1011static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1012 llvm::APInt &Min, llvm::APInt &End, 1013 bool StrictEnums) { 1014 const EnumType *ET = Ty->getAs<EnumType>(); 1015 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1016 ET && !ET->getDecl()->isFixed(); 1017 bool IsBool = hasBooleanRepresentation(Ty); 1018 if (!IsBool && !IsRegularCPlusPlusEnum) 1019 return false; 1020 1021 if (IsBool) { 1022 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1023 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1024 } else { 1025 const EnumDecl *ED = ET->getDecl(); 1026 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1027 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1028 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1029 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1030 1031 if (NumNegativeBits) { 1032 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1033 assert(NumBits <= Bitwidth); 1034 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1035 Min = -End; 1036 } else { 1037 assert(NumPositiveBits <= Bitwidth); 1038 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1039 Min = llvm::APInt(Bitwidth, 0); 1040 } 1041 } 1042 return true; 1043} 1044 1045llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1046 llvm::APInt Min, End; 1047 if (!getRangeForType(*this, Ty, Min, End, 1048 CGM.getCodeGenOpts().StrictEnums)) 1049 return 0; 1050 1051 llvm::MDBuilder MDHelper(getLLVMContext()); 1052 return MDHelper.createRange(Min, End); 1053} 1054 1055llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1056 unsigned Alignment, QualType Ty, 1057 SourceLocation Loc, 1058 llvm::MDNode *TBAAInfo, 1059 QualType TBAABaseType, 1060 uint64_t TBAAOffset) { 1061 // For better performance, handle vector loads differently. 1062 if (Ty->isVectorType()) { 1063 llvm::Value *V; 1064 const llvm::Type *EltTy = 1065 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1066 1067 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 1068 1069 // Handle vectors of size 3, like size 4 for better performance. 1070 if (VTy->getNumElements() == 3) { 1071 1072 // Bitcast to vec4 type. 1073 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1074 4); 1075 llvm::PointerType *ptVec4Ty = 1076 llvm::PointerType::get(vec4Ty, 1077 (cast<llvm::PointerType>( 1078 Addr->getType()))->getAddressSpace()); 1079 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1080 "castToVec4"); 1081 // Now load value. 1082 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1083 1084 // Shuffle vector to get vec3. 1085 llvm::Constant *Mask[] = { 1086 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1087 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1088 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1089 }; 1090 1091 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1092 V = Builder.CreateShuffleVector(LoadVal, 1093 llvm::UndefValue::get(vec4Ty), 1094 MaskV, "extractVec"); 1095 return EmitFromMemory(V, Ty); 1096 } 1097 } 1098 1099 // Atomic operations have to be done on integral types. 1100 if (Ty->isAtomicType()) { 1101 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1102 CharUnits::fromQuantity(Alignment), 1103 getContext(), TBAAInfo); 1104 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1105 } 1106 1107 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1108 if (Volatile) 1109 Load->setVolatile(true); 1110 if (Alignment) 1111 Load->setAlignment(Alignment); 1112 if (TBAAInfo) { 1113 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1114 TBAAOffset); 1115 if (TBAAPath) 1116 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1117 } 1118 1119 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1120 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1121 llvm::APInt Min, End; 1122 if (getRangeForType(*this, Ty, Min, End, true)) { 1123 --End; 1124 llvm::Value *Check; 1125 if (!Min) 1126 Check = Builder.CreateICmpULE( 1127 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1128 else { 1129 llvm::Value *Upper = Builder.CreateICmpSLE( 1130 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1131 llvm::Value *Lower = Builder.CreateICmpSGE( 1132 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1133 Check = Builder.CreateAnd(Upper, Lower); 1134 } 1135 llvm::Constant *StaticArgs[] = { 1136 EmitCheckSourceLocation(Loc), 1137 EmitCheckTypeDescriptor(Ty) 1138 }; 1139 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), 1140 CRK_Recoverable); 1141 } 1142 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1143 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1144 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1145 1146 return EmitFromMemory(Load, Ty); 1147} 1148 1149llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1150 // Bool has a different representation in memory than in registers. 1151 if (hasBooleanRepresentation(Ty)) { 1152 // This should really always be an i1, but sometimes it's already 1153 // an i8, and it's awkward to track those cases down. 1154 if (Value->getType()->isIntegerTy(1)) 1155 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1156 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1157 "wrong value rep of bool"); 1158 } 1159 1160 return Value; 1161} 1162 1163llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1164 // Bool has a different representation in memory than in registers. 1165 if (hasBooleanRepresentation(Ty)) { 1166 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1167 "wrong value rep of bool"); 1168 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1169 } 1170 1171 return Value; 1172} 1173 1174void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1175 bool Volatile, unsigned Alignment, 1176 QualType Ty, llvm::MDNode *TBAAInfo, 1177 bool isInit, QualType TBAABaseType, 1178 uint64_t TBAAOffset) { 1179 1180 // Handle vectors differently to get better performance. 1181 if (Ty->isVectorType()) { 1182 llvm::Type *SrcTy = Value->getType(); 1183 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1184 // Handle vec3 special. 1185 if (VecTy->getNumElements() == 3) { 1186 llvm::LLVMContext &VMContext = getLLVMContext(); 1187 1188 // Our source is a vec3, do a shuffle vector to make it a vec4. 1189 SmallVector<llvm::Constant*, 4> Mask; 1190 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1191 0)); 1192 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1193 1)); 1194 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1195 2)); 1196 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1197 1198 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1199 Value = Builder.CreateShuffleVector(Value, 1200 llvm::UndefValue::get(VecTy), 1201 MaskV, "extractVec"); 1202 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1203 } 1204 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1205 if (DstPtr->getElementType() != SrcTy) { 1206 llvm::Type *MemTy = 1207 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1208 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1209 } 1210 } 1211 1212 Value = EmitToMemory(Value, Ty); 1213 1214 if (Ty->isAtomicType()) { 1215 EmitAtomicStore(RValue::get(Value), 1216 LValue::MakeAddr(Addr, Ty, 1217 CharUnits::fromQuantity(Alignment), 1218 getContext(), TBAAInfo), 1219 isInit); 1220 return; 1221 } 1222 1223 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1224 if (Alignment) 1225 Store->setAlignment(Alignment); 1226 if (TBAAInfo) { 1227 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1228 TBAAOffset); 1229 if (TBAAPath) 1230 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1231 } 1232} 1233 1234void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1235 bool isInit) { 1236 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1237 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1238 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1239 lvalue.getTBAAOffset()); 1240} 1241 1242/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1243/// method emits the address of the lvalue, then loads the result as an rvalue, 1244/// returning the rvalue. 1245RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1246 if (LV.isObjCWeak()) { 1247 // load of a __weak object. 1248 llvm::Value *AddrWeakObj = LV.getAddress(); 1249 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1250 AddrWeakObj)); 1251 } 1252 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1253 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1254 Object = EmitObjCConsumeObject(LV.getType(), Object); 1255 return RValue::get(Object); 1256 } 1257 1258 if (LV.isSimple()) { 1259 assert(!LV.getType()->isFunctionType()); 1260 1261 // Everything needs a load. 1262 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1263 } 1264 1265 if (LV.isVectorElt()) { 1266 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1267 LV.isVolatileQualified()); 1268 Load->setAlignment(LV.getAlignment().getQuantity()); 1269 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1270 "vecext")); 1271 } 1272 1273 // If this is a reference to a subset of the elements of a vector, either 1274 // shuffle the input or extract/insert them as appropriate. 1275 if (LV.isExtVectorElt()) 1276 return EmitLoadOfExtVectorElementLValue(LV); 1277 1278 assert(LV.isBitField() && "Unknown LValue type!"); 1279 return EmitLoadOfBitfieldLValue(LV); 1280} 1281 1282RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1283 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1284 1285 // Get the output type. 1286 llvm::Type *ResLTy = ConvertType(LV.getType()); 1287 1288 llvm::Value *Ptr = LV.getBitFieldAddr(); 1289 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1290 "bf.load"); 1291 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1292 1293 if (Info.IsSigned) { 1294 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1295 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1296 if (HighBits) 1297 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1298 if (Info.Offset + HighBits) 1299 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1300 } else { 1301 if (Info.Offset) 1302 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1303 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1304 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1305 Info.Size), 1306 "bf.clear"); 1307 } 1308 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1309 1310 return RValue::get(Val); 1311} 1312 1313// If this is a reference to a subset of the elements of a vector, create an 1314// appropriate shufflevector. 1315RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1316 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1317 LV.isVolatileQualified()); 1318 Load->setAlignment(LV.getAlignment().getQuantity()); 1319 llvm::Value *Vec = Load; 1320 1321 const llvm::Constant *Elts = LV.getExtVectorElts(); 1322 1323 // If the result of the expression is a non-vector type, we must be extracting 1324 // a single element. Just codegen as an extractelement. 1325 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1326 if (!ExprVT) { 1327 unsigned InIdx = getAccessedFieldNo(0, Elts); 1328 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1329 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1330 } 1331 1332 // Always use shuffle vector to try to retain the original program structure 1333 unsigned NumResultElts = ExprVT->getNumElements(); 1334 1335 SmallVector<llvm::Constant*, 4> Mask; 1336 for (unsigned i = 0; i != NumResultElts; ++i) 1337 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1338 1339 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1340 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1341 MaskV); 1342 return RValue::get(Vec); 1343} 1344 1345 1346 1347/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1348/// lvalue, where both are guaranteed to the have the same type, and that type 1349/// is 'Ty'. 1350void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1351 bool isInit) { 1352 if (!Dst.isSimple()) { 1353 if (Dst.isVectorElt()) { 1354 // Read/modify/write the vector, inserting the new element. 1355 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1356 Dst.isVolatileQualified()); 1357 Load->setAlignment(Dst.getAlignment().getQuantity()); 1358 llvm::Value *Vec = Load; 1359 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1360 Dst.getVectorIdx(), "vecins"); 1361 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1362 Dst.isVolatileQualified()); 1363 Store->setAlignment(Dst.getAlignment().getQuantity()); 1364 return; 1365 } 1366 1367 // If this is an update of extended vector elements, insert them as 1368 // appropriate. 1369 if (Dst.isExtVectorElt()) 1370 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1371 1372 assert(Dst.isBitField() && "Unknown LValue type"); 1373 return EmitStoreThroughBitfieldLValue(Src, Dst); 1374 } 1375 1376 // There's special magic for assigning into an ARC-qualified l-value. 1377 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1378 switch (Lifetime) { 1379 case Qualifiers::OCL_None: 1380 llvm_unreachable("present but none"); 1381 1382 case Qualifiers::OCL_ExplicitNone: 1383 // nothing special 1384 break; 1385 1386 case Qualifiers::OCL_Strong: 1387 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1388 return; 1389 1390 case Qualifiers::OCL_Weak: 1391 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1392 return; 1393 1394 case Qualifiers::OCL_Autoreleasing: 1395 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1396 Src.getScalarVal())); 1397 // fall into the normal path 1398 break; 1399 } 1400 } 1401 1402 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1403 // load of a __weak object. 1404 llvm::Value *LvalueDst = Dst.getAddress(); 1405 llvm::Value *src = Src.getScalarVal(); 1406 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1407 return; 1408 } 1409 1410 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1411 // load of a __strong object. 1412 llvm::Value *LvalueDst = Dst.getAddress(); 1413 llvm::Value *src = Src.getScalarVal(); 1414 if (Dst.isObjCIvar()) { 1415 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1416 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1417 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1418 llvm::Value *dst = RHS; 1419 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1420 llvm::Value *LHS = 1421 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1422 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1423 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1424 BytesBetween); 1425 } else if (Dst.isGlobalObjCRef()) { 1426 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1427 Dst.isThreadLocalRef()); 1428 } 1429 else 1430 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1431 return; 1432 } 1433 1434 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1435 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1436} 1437 1438void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1439 llvm::Value **Result) { 1440 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1441 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1442 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1443 1444 // Get the source value, truncated to the width of the bit-field. 1445 llvm::Value *SrcVal = Src.getScalarVal(); 1446 1447 // Cast the source to the storage type and shift it into place. 1448 SrcVal = Builder.CreateIntCast(SrcVal, 1449 Ptr->getType()->getPointerElementType(), 1450 /*IsSigned=*/false); 1451 llvm::Value *MaskedVal = SrcVal; 1452 1453 // See if there are other bits in the bitfield's storage we'll need to load 1454 // and mask together with source before storing. 1455 if (Info.StorageSize != Info.Size) { 1456 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1457 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1458 "bf.load"); 1459 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1460 1461 // Mask the source value as needed. 1462 if (!hasBooleanRepresentation(Dst.getType())) 1463 SrcVal = Builder.CreateAnd(SrcVal, 1464 llvm::APInt::getLowBitsSet(Info.StorageSize, 1465 Info.Size), 1466 "bf.value"); 1467 MaskedVal = SrcVal; 1468 if (Info.Offset) 1469 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1470 1471 // Mask out the original value. 1472 Val = Builder.CreateAnd(Val, 1473 ~llvm::APInt::getBitsSet(Info.StorageSize, 1474 Info.Offset, 1475 Info.Offset + Info.Size), 1476 "bf.clear"); 1477 1478 // Or together the unchanged values and the source value. 1479 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1480 } else { 1481 assert(Info.Offset == 0); 1482 } 1483 1484 // Write the new value back out. 1485 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1486 Dst.isVolatileQualified()); 1487 Store->setAlignment(Info.StorageAlignment); 1488 1489 // Return the new value of the bit-field, if requested. 1490 if (Result) { 1491 llvm::Value *ResultVal = MaskedVal; 1492 1493 // Sign extend the value if needed. 1494 if (Info.IsSigned) { 1495 assert(Info.Size <= Info.StorageSize); 1496 unsigned HighBits = Info.StorageSize - Info.Size; 1497 if (HighBits) { 1498 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1499 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1500 } 1501 } 1502 1503 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1504 "bf.result.cast"); 1505 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1506 } 1507} 1508 1509void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1510 LValue Dst) { 1511 // This access turns into a read/modify/write of the vector. Load the input 1512 // value now. 1513 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1514 Dst.isVolatileQualified()); 1515 Load->setAlignment(Dst.getAlignment().getQuantity()); 1516 llvm::Value *Vec = Load; 1517 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1518 1519 llvm::Value *SrcVal = Src.getScalarVal(); 1520 1521 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1522 unsigned NumSrcElts = VTy->getNumElements(); 1523 unsigned NumDstElts = 1524 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1525 if (NumDstElts == NumSrcElts) { 1526 // Use shuffle vector is the src and destination are the same number of 1527 // elements and restore the vector mask since it is on the side it will be 1528 // stored. 1529 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1530 for (unsigned i = 0; i != NumSrcElts; ++i) 1531 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1532 1533 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1534 Vec = Builder.CreateShuffleVector(SrcVal, 1535 llvm::UndefValue::get(Vec->getType()), 1536 MaskV); 1537 } else if (NumDstElts > NumSrcElts) { 1538 // Extended the source vector to the same length and then shuffle it 1539 // into the destination. 1540 // FIXME: since we're shuffling with undef, can we just use the indices 1541 // into that? This could be simpler. 1542 SmallVector<llvm::Constant*, 4> ExtMask; 1543 for (unsigned i = 0; i != NumSrcElts; ++i) 1544 ExtMask.push_back(Builder.getInt32(i)); 1545 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1546 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1547 llvm::Value *ExtSrcVal = 1548 Builder.CreateShuffleVector(SrcVal, 1549 llvm::UndefValue::get(SrcVal->getType()), 1550 ExtMaskV); 1551 // build identity 1552 SmallVector<llvm::Constant*, 4> Mask; 1553 for (unsigned i = 0; i != NumDstElts; ++i) 1554 Mask.push_back(Builder.getInt32(i)); 1555 1556 // modify when what gets shuffled in 1557 for (unsigned i = 0; i != NumSrcElts; ++i) 1558 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1559 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1560 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1561 } else { 1562 // We should never shorten the vector 1563 llvm_unreachable("unexpected shorten vector length"); 1564 } 1565 } else { 1566 // If the Src is a scalar (not a vector) it must be updating one element. 1567 unsigned InIdx = getAccessedFieldNo(0, Elts); 1568 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1569 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1570 } 1571 1572 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1573 Dst.isVolatileQualified()); 1574 Store->setAlignment(Dst.getAlignment().getQuantity()); 1575} 1576 1577// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1578// generating write-barries API. It is currently a global, ivar, 1579// or neither. 1580static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1581 LValue &LV, 1582 bool IsMemberAccess=false) { 1583 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1584 return; 1585 1586 if (isa<ObjCIvarRefExpr>(E)) { 1587 QualType ExpTy = E->getType(); 1588 if (IsMemberAccess && ExpTy->isPointerType()) { 1589 // If ivar is a structure pointer, assigning to field of 1590 // this struct follows gcc's behavior and makes it a non-ivar 1591 // writer-barrier conservatively. 1592 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1593 if (ExpTy->isRecordType()) { 1594 LV.setObjCIvar(false); 1595 return; 1596 } 1597 } 1598 LV.setObjCIvar(true); 1599 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1600 LV.setBaseIvarExp(Exp->getBase()); 1601 LV.setObjCArray(E->getType()->isArrayType()); 1602 return; 1603 } 1604 1605 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1606 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1607 if (VD->hasGlobalStorage()) { 1608 LV.setGlobalObjCRef(true); 1609 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1610 } 1611 } 1612 LV.setObjCArray(E->getType()->isArrayType()); 1613 return; 1614 } 1615 1616 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1617 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1618 return; 1619 } 1620 1621 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1622 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1623 if (LV.isObjCIvar()) { 1624 // If cast is to a structure pointer, follow gcc's behavior and make it 1625 // a non-ivar write-barrier. 1626 QualType ExpTy = E->getType(); 1627 if (ExpTy->isPointerType()) 1628 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1629 if (ExpTy->isRecordType()) 1630 LV.setObjCIvar(false); 1631 } 1632 return; 1633 } 1634 1635 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1636 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1637 return; 1638 } 1639 1640 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1641 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1642 return; 1643 } 1644 1645 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1646 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1647 return; 1648 } 1649 1650 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1651 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1652 return; 1653 } 1654 1655 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1656 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1657 if (LV.isObjCIvar() && !LV.isObjCArray()) 1658 // Using array syntax to assigning to what an ivar points to is not 1659 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1660 LV.setObjCIvar(false); 1661 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1662 // Using array syntax to assigning to what global points to is not 1663 // same as assigning to the global itself. {id *G;} G[i] = 0; 1664 LV.setGlobalObjCRef(false); 1665 return; 1666 } 1667 1668 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1669 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1670 // We don't know if member is an 'ivar', but this flag is looked at 1671 // only in the context of LV.isObjCIvar(). 1672 LV.setObjCArray(E->getType()->isArrayType()); 1673 return; 1674 } 1675} 1676 1677static llvm::Value * 1678EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1679 llvm::Value *V, llvm::Type *IRType, 1680 StringRef Name = StringRef()) { 1681 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1682 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1683} 1684 1685static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1686 const Expr *E, const VarDecl *VD) { 1687 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1688 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1689 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1690 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1691 QualType T = E->getType(); 1692 LValue LV; 1693 if (VD->getType()->isReferenceType()) { 1694 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1695 LI->setAlignment(Alignment.getQuantity()); 1696 V = LI; 1697 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1698 } else { 1699 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1700 } 1701 setObjCGCLValueClass(CGF.getContext(), E, LV); 1702 return LV; 1703} 1704 1705static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1706 const Expr *E, const FunctionDecl *FD) { 1707 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1708 if (!FD->hasPrototype()) { 1709 if (const FunctionProtoType *Proto = 1710 FD->getType()->getAs<FunctionProtoType>()) { 1711 // Ugly case: for a K&R-style definition, the type of the definition 1712 // isn't the same as the type of a use. Correct for this with a 1713 // bitcast. 1714 QualType NoProtoType = 1715 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1716 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1717 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1718 } 1719 } 1720 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1721 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1722} 1723 1724static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1725 llvm::Value *ThisValue) { 1726 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1727 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1728 return CGF.EmitLValueForField(LV, FD); 1729} 1730 1731LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1732 const NamedDecl *ND = E->getDecl(); 1733 CharUnits Alignment = getContext().getDeclAlign(ND); 1734 QualType T = E->getType(); 1735 1736 // A DeclRefExpr for a reference initialized by a constant expression can 1737 // appear without being odr-used. Directly emit the constant initializer. 1738 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1739 const Expr *Init = VD->getAnyInitializer(VD); 1740 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1741 VD->isUsableInConstantExpressions(getContext()) && 1742 VD->checkInitIsICE()) { 1743 llvm::Constant *Val = 1744 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1745 assert(Val && "failed to emit reference constant expression"); 1746 // FIXME: Eventually we will want to emit vector element references. 1747 return MakeAddrLValue(Val, T, Alignment); 1748 } 1749 } 1750 1751 // FIXME: We should be able to assert this for FunctionDecls as well! 1752 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1753 // those with a valid source location. 1754 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1755 !E->getLocation().isValid()) && 1756 "Should not use decl without marking it used!"); 1757 1758 if (ND->hasAttr<WeakRefAttr>()) { 1759 const ValueDecl *VD = cast<ValueDecl>(ND); 1760 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1761 return MakeAddrLValue(Aliasee, T, Alignment); 1762 } 1763 1764 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1765 // Check if this is a global variable. 1766 if (VD->hasLinkage() || VD->isStaticDataMember()) { 1767 // If it's thread_local, emit a call to its wrapper function instead. 1768 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1769 return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E); 1770 return EmitGlobalVarDeclLValue(*this, E, VD); 1771 } 1772 1773 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1774 1775 llvm::Value *V = LocalDeclMap.lookup(VD); 1776 if (!V && VD->isStaticLocal()) 1777 V = CGM.getStaticLocalDeclAddress(VD); 1778 1779 // Use special handling for lambdas. 1780 if (!V) { 1781 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1782 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1783 } else if (CapturedStmtInfo) { 1784 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1785 return EmitCapturedFieldLValue(*this, FD, 1786 CapturedStmtInfo->getContextValue()); 1787 } 1788 1789 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1790 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1791 T, Alignment); 1792 } 1793 1794 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1795 1796 if (isBlockVariable) 1797 V = BuildBlockByrefAddress(V, VD); 1798 1799 LValue LV; 1800 if (VD->getType()->isReferenceType()) { 1801 llvm::LoadInst *LI = Builder.CreateLoad(V); 1802 LI->setAlignment(Alignment.getQuantity()); 1803 V = LI; 1804 LV = MakeNaturalAlignAddrLValue(V, T); 1805 } else { 1806 LV = MakeAddrLValue(V, T, Alignment); 1807 } 1808 1809 bool isLocalStorage = VD->hasLocalStorage(); 1810 1811 bool NonGCable = isLocalStorage && 1812 !VD->getType()->isReferenceType() && 1813 !isBlockVariable; 1814 if (NonGCable) { 1815 LV.getQuals().removeObjCGCAttr(); 1816 LV.setNonGC(true); 1817 } 1818 1819 bool isImpreciseLifetime = 1820 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1821 if (isImpreciseLifetime) 1822 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1823 setObjCGCLValueClass(getContext(), E, LV); 1824 return LV; 1825 } 1826 1827 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1828 return EmitFunctionDeclLValue(*this, E, FD); 1829 1830 llvm_unreachable("Unhandled DeclRefExpr"); 1831} 1832 1833LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1834 // __extension__ doesn't affect lvalue-ness. 1835 if (E->getOpcode() == UO_Extension) 1836 return EmitLValue(E->getSubExpr()); 1837 1838 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1839 switch (E->getOpcode()) { 1840 default: llvm_unreachable("Unknown unary operator lvalue!"); 1841 case UO_Deref: { 1842 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1843 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1844 1845 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1846 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1847 1848 // We should not generate __weak write barrier on indirect reference 1849 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1850 // But, we continue to generate __strong write barrier on indirect write 1851 // into a pointer to object. 1852 if (getLangOpts().ObjC1 && 1853 getLangOpts().getGC() != LangOptions::NonGC && 1854 LV.isObjCWeak()) 1855 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1856 return LV; 1857 } 1858 case UO_Real: 1859 case UO_Imag: { 1860 LValue LV = EmitLValue(E->getSubExpr()); 1861 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1862 llvm::Value *Addr = LV.getAddress(); 1863 1864 // __real is valid on scalars. This is a faster way of testing that. 1865 // __imag can only produce an rvalue on scalars. 1866 if (E->getOpcode() == UO_Real && 1867 !cast<llvm::PointerType>(Addr->getType()) 1868 ->getElementType()->isStructTy()) { 1869 assert(E->getSubExpr()->getType()->isArithmeticType()); 1870 return LV; 1871 } 1872 1873 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1874 1875 unsigned Idx = E->getOpcode() == UO_Imag; 1876 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1877 Idx, "idx"), 1878 ExprTy); 1879 } 1880 case UO_PreInc: 1881 case UO_PreDec: { 1882 LValue LV = EmitLValue(E->getSubExpr()); 1883 bool isInc = E->getOpcode() == UO_PreInc; 1884 1885 if (E->getType()->isAnyComplexType()) 1886 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1887 else 1888 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1889 return LV; 1890 } 1891 } 1892} 1893 1894LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1895 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1896 E->getType()); 1897} 1898 1899LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1900 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1901 E->getType()); 1902} 1903 1904static llvm::Constant* 1905GetAddrOfConstantWideString(StringRef Str, 1906 const char *GlobalName, 1907 ASTContext &Context, 1908 QualType Ty, SourceLocation Loc, 1909 CodeGenModule &CGM) { 1910 1911 StringLiteral *SL = StringLiteral::Create(Context, 1912 Str, 1913 StringLiteral::Wide, 1914 /*Pascal = */false, 1915 Ty, Loc); 1916 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1917 llvm::GlobalVariable *GV = 1918 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1919 !CGM.getLangOpts().WritableStrings, 1920 llvm::GlobalValue::PrivateLinkage, 1921 C, GlobalName); 1922 const unsigned WideAlignment = 1923 Context.getTypeAlignInChars(Ty).getQuantity(); 1924 GV->setAlignment(WideAlignment); 1925 return GV; 1926} 1927 1928static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1929 SmallString<32>& Target) { 1930 Target.resize(CharByteWidth * (Source.size() + 1)); 1931 char *ResultPtr = &Target[0]; 1932 const UTF8 *ErrorPtr; 1933 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1934 (void)success; 1935 assert(success); 1936 Target.resize(ResultPtr - &Target[0]); 1937} 1938 1939LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1940 switch (E->getIdentType()) { 1941 default: 1942 return EmitUnsupportedLValue(E, "predefined expression"); 1943 1944 case PredefinedExpr::Func: 1945 case PredefinedExpr::Function: 1946 case PredefinedExpr::LFunction: 1947 case PredefinedExpr::PrettyFunction: { 1948 PredefinedExpr::IdentType IdentType = E->getIdentType(); 1949 std::string GlobalVarName; 1950 1951 switch (IdentType) { 1952 default: llvm_unreachable("Invalid type"); 1953 case PredefinedExpr::Func: 1954 GlobalVarName = "__func__."; 1955 break; 1956 case PredefinedExpr::Function: 1957 GlobalVarName = "__FUNCTION__."; 1958 break; 1959 case PredefinedExpr::LFunction: 1960 GlobalVarName = "L__FUNCTION__."; 1961 break; 1962 case PredefinedExpr::PrettyFunction: 1963 GlobalVarName = "__PRETTY_FUNCTION__."; 1964 break; 1965 } 1966 1967 StringRef FnName = CurFn->getName(); 1968 if (FnName.startswith("\01")) 1969 FnName = FnName.substr(1); 1970 GlobalVarName += FnName; 1971 1972 // If this is outside of a function use the top level decl. 1973 const Decl *CurDecl = CurCodeDecl; 1974 if (CurDecl == 0 || isa<VarDecl>(CurDecl)) 1975 CurDecl = getContext().getTranslationUnitDecl(); 1976 1977 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1978 std::string FunctionName; 1979 if (isa<BlockDecl>(CurDecl)) { 1980 // Blocks use the mangled function name. 1981 // FIXME: ComputeName should handle blocks. 1982 FunctionName = FnName.str(); 1983 } else if (isa<CapturedDecl>(CurDecl)) { 1984 // For a captured statement, the function name is its enclosing 1985 // function name not the one compiler generated. 1986 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 1987 } else { 1988 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 1989 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 == 1990 FunctionName.size() && 1991 "Computed __func__ length differs from type!"); 1992 } 1993 1994 llvm::Constant *C; 1995 if (ElemType->isWideCharType()) { 1996 SmallString<32> RawChars; 1997 ConvertUTF8ToWideString( 1998 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1999 FunctionName, RawChars); 2000 C = GetAddrOfConstantWideString(RawChars, 2001 GlobalVarName.c_str(), 2002 getContext(), 2003 E->getType(), 2004 E->getLocation(), 2005 CGM); 2006 } else { 2007 C = CGM.GetAddrOfConstantCString(FunctionName, 2008 GlobalVarName.c_str(), 2009 1); 2010 } 2011 return MakeAddrLValue(C, E->getType()); 2012 } 2013 } 2014} 2015 2016/// Emit a type description suitable for use by a runtime sanitizer library. The 2017/// format of a type descriptor is 2018/// 2019/// \code 2020/// { i16 TypeKind, i16 TypeInfo } 2021/// \endcode 2022/// 2023/// followed by an array of i8 containing the type name. TypeKind is 0 for an 2024/// integer, 1 for a floating point value, and -1 for anything else. 2025llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2026 // FIXME: Only emit each type's descriptor once. 2027 uint16_t TypeKind = -1; 2028 uint16_t TypeInfo = 0; 2029 2030 if (T->isIntegerType()) { 2031 TypeKind = 0; 2032 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2033 (T->isSignedIntegerType() ? 1 : 0); 2034 } else if (T->isFloatingType()) { 2035 TypeKind = 1; 2036 TypeInfo = getContext().getTypeSize(T); 2037 } 2038 2039 // Format the type name as if for a diagnostic, including quotes and 2040 // optionally an 'aka'. 2041 SmallString<32> Buffer; 2042 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2043 (intptr_t)T.getAsOpaquePtr(), 2044 0, 0, 0, 0, 0, 0, Buffer, 2045 ArrayRef<intptr_t>()); 2046 2047 llvm::Constant *Components[] = { 2048 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2049 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2050 }; 2051 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2052 2053 llvm::GlobalVariable *GV = 2054 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 2055 /*isConstant=*/true, 2056 llvm::GlobalVariable::PrivateLinkage, 2057 Descriptor); 2058 GV->setUnnamedAddr(true); 2059 return GV; 2060} 2061 2062llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2063 llvm::Type *TargetTy = IntPtrTy; 2064 2065 // Floating-point types which fit into intptr_t are bitcast to integers 2066 // and then passed directly (after zero-extension, if necessary). 2067 if (V->getType()->isFloatingPointTy()) { 2068 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2069 if (Bits <= TargetTy->getIntegerBitWidth()) 2070 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2071 Bits)); 2072 } 2073 2074 // Integers which fit in intptr_t are zero-extended and passed directly. 2075 if (V->getType()->isIntegerTy() && 2076 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2077 return Builder.CreateZExt(V, TargetTy); 2078 2079 // Pointers are passed directly, everything else is passed by address. 2080 if (!V->getType()->isPointerTy()) { 2081 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2082 Builder.CreateStore(V, Ptr); 2083 V = Ptr; 2084 } 2085 return Builder.CreatePtrToInt(V, TargetTy); 2086} 2087 2088/// \brief Emit a representation of a SourceLocation for passing to a handler 2089/// in a sanitizer runtime library. The format for this data is: 2090/// \code 2091/// struct SourceLocation { 2092/// const char *Filename; 2093/// int32_t Line, Column; 2094/// }; 2095/// \endcode 2096/// For an invalid SourceLocation, the Filename pointer is null. 2097llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2098 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2099 2100 llvm::Constant *Data[] = { 2101 // FIXME: Only emit each file name once. 2102 PLoc.isValid() ? cast<llvm::Constant>( 2103 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2104 : llvm::Constant::getNullValue(Int8PtrTy), 2105 Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0), 2106 Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0) 2107 }; 2108 2109 return llvm::ConstantStruct::getAnon(Data); 2110} 2111 2112void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2113 ArrayRef<llvm::Constant *> StaticArgs, 2114 ArrayRef<llvm::Value *> DynamicArgs, 2115 CheckRecoverableKind RecoverKind) { 2116 assert(SanOpts != &SanitizerOptions::Disabled); 2117 2118 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2119 assert (RecoverKind != CRK_AlwaysRecoverable && 2120 "Runtime call required for AlwaysRecoverable kind!"); 2121 return EmitTrapCheck(Checked); 2122 } 2123 2124 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2125 2126 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2127 2128 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2129 2130 // Give hint that we very much don't expect to execute the handler 2131 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2132 llvm::MDBuilder MDHelper(getLLVMContext()); 2133 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2134 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2135 2136 EmitBlock(Handler); 2137 2138 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2139 llvm::GlobalValue *InfoPtr = 2140 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2141 llvm::GlobalVariable::PrivateLinkage, Info); 2142 InfoPtr->setUnnamedAddr(true); 2143 2144 SmallVector<llvm::Value *, 4> Args; 2145 SmallVector<llvm::Type *, 4> ArgTypes; 2146 Args.reserve(DynamicArgs.size() + 1); 2147 ArgTypes.reserve(DynamicArgs.size() + 1); 2148 2149 // Handler functions take an i8* pointing to the (handler-specific) static 2150 // information block, followed by a sequence of intptr_t arguments 2151 // representing operand values. 2152 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2153 ArgTypes.push_back(Int8PtrTy); 2154 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2155 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2156 ArgTypes.push_back(IntPtrTy); 2157 } 2158 2159 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2160 ((RecoverKind == CRK_Recoverable) && 2161 CGM.getCodeGenOpts().SanitizeRecover); 2162 2163 llvm::FunctionType *FnType = 2164 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2165 llvm::AttrBuilder B; 2166 if (!Recover) { 2167 B.addAttribute(llvm::Attribute::NoReturn) 2168 .addAttribute(llvm::Attribute::NoUnwind); 2169 } 2170 B.addAttribute(llvm::Attribute::UWTable); 2171 2172 // Checks that have two variants use a suffix to differentiate them 2173 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2174 !CGM.getCodeGenOpts().SanitizeRecover; 2175 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2176 (NeedsAbortSuffix? "_abort" : "")).str(); 2177 llvm::Value *Fn = 2178 CGM.CreateRuntimeFunction(FnType, FunctionName, 2179 llvm::AttributeSet::get(getLLVMContext(), 2180 llvm::AttributeSet::FunctionIndex, 2181 B)); 2182 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2183 if (Recover) { 2184 Builder.CreateBr(Cont); 2185 } else { 2186 HandlerCall->setDoesNotReturn(); 2187 Builder.CreateUnreachable(); 2188 } 2189 2190 EmitBlock(Cont); 2191} 2192 2193void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2194 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2195 2196 // If we're optimizing, collapse all calls to trap down to just one per 2197 // function to save on code size. 2198 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2199 TrapBB = createBasicBlock("trap"); 2200 Builder.CreateCondBr(Checked, Cont, TrapBB); 2201 EmitBlock(TrapBB); 2202 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2203 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2204 TrapCall->setDoesNotReturn(); 2205 TrapCall->setDoesNotThrow(); 2206 Builder.CreateUnreachable(); 2207 } else { 2208 Builder.CreateCondBr(Checked, Cont, TrapBB); 2209 } 2210 2211 EmitBlock(Cont); 2212} 2213 2214/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2215/// array to pointer, return the array subexpression. 2216static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2217 // If this isn't just an array->pointer decay, bail out. 2218 const CastExpr *CE = dyn_cast<CastExpr>(E); 2219 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2220 return 0; 2221 2222 // If this is a decay from variable width array, bail out. 2223 const Expr *SubExpr = CE->getSubExpr(); 2224 if (SubExpr->getType()->isVariableArrayType()) 2225 return 0; 2226 2227 return SubExpr; 2228} 2229 2230LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2231 bool Accessed) { 2232 // The index must always be an integer, which is not an aggregate. Emit it. 2233 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2234 QualType IdxTy = E->getIdx()->getType(); 2235 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2236 2237 if (SanOpts->ArrayBounds) 2238 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2239 2240 // If the base is a vector type, then we are forming a vector element lvalue 2241 // with this subscript. 2242 if (E->getBase()->getType()->isVectorType()) { 2243 // Emit the vector as an lvalue to get its address. 2244 LValue LHS = EmitLValue(E->getBase()); 2245 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2246 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2247 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2248 E->getBase()->getType(), LHS.getAlignment()); 2249 } 2250 2251 // Extend or truncate the index type to 32 or 64-bits. 2252 if (Idx->getType() != IntPtrTy) 2253 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2254 2255 // We know that the pointer points to a type of the correct size, unless the 2256 // size is a VLA or Objective-C interface. 2257 llvm::Value *Address = 0; 2258 CharUnits ArrayAlignment; 2259 if (const VariableArrayType *vla = 2260 getContext().getAsVariableArrayType(E->getType())) { 2261 // The base must be a pointer, which is not an aggregate. Emit 2262 // it. It needs to be emitted first in case it's what captures 2263 // the VLA bounds. 2264 Address = EmitScalarExpr(E->getBase()); 2265 2266 // The element count here is the total number of non-VLA elements. 2267 llvm::Value *numElements = getVLASize(vla).first; 2268 2269 // Effectively, the multiply by the VLA size is part of the GEP. 2270 // GEP indexes are signed, and scaling an index isn't permitted to 2271 // signed-overflow, so we use the same semantics for our explicit 2272 // multiply. We suppress this if overflow is not undefined behavior. 2273 if (getLangOpts().isSignedOverflowDefined()) { 2274 Idx = Builder.CreateMul(Idx, numElements); 2275 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2276 } else { 2277 Idx = Builder.CreateNSWMul(Idx, numElements); 2278 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2279 } 2280 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2281 // Indexing over an interface, as in "NSString *P; P[4];" 2282 llvm::Value *InterfaceSize = 2283 llvm::ConstantInt::get(Idx->getType(), 2284 getContext().getTypeSizeInChars(OIT).getQuantity()); 2285 2286 Idx = Builder.CreateMul(Idx, InterfaceSize); 2287 2288 // The base must be a pointer, which is not an aggregate. Emit it. 2289 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2290 Address = EmitCastToVoidPtr(Base); 2291 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2292 Address = Builder.CreateBitCast(Address, Base->getType()); 2293 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2294 // If this is A[i] where A is an array, the frontend will have decayed the 2295 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2296 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2297 // "gep x, i" here. Emit one "gep A, 0, i". 2298 assert(Array->getType()->isArrayType() && 2299 "Array to pointer decay must have array source type!"); 2300 LValue ArrayLV; 2301 // For simple multidimensional array indexing, set the 'accessed' flag for 2302 // better bounds-checking of the base expression. 2303 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2304 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2305 else 2306 ArrayLV = EmitLValue(Array); 2307 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2308 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2309 llvm::Value *Args[] = { Zero, Idx }; 2310 2311 // Propagate the alignment from the array itself to the result. 2312 ArrayAlignment = ArrayLV.getAlignment(); 2313 2314 if (getLangOpts().isSignedOverflowDefined()) 2315 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2316 else 2317 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2318 } else { 2319 // The base must be a pointer, which is not an aggregate. Emit it. 2320 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2321 if (getLangOpts().isSignedOverflowDefined()) 2322 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2323 else 2324 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2325 } 2326 2327 QualType T = E->getBase()->getType()->getPointeeType(); 2328 assert(!T.isNull() && 2329 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2330 2331 2332 // Limit the alignment to that of the result type. 2333 LValue LV; 2334 if (!ArrayAlignment.isZero()) { 2335 CharUnits Align = getContext().getTypeAlignInChars(T); 2336 ArrayAlignment = std::min(Align, ArrayAlignment); 2337 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2338 } else { 2339 LV = MakeNaturalAlignAddrLValue(Address, T); 2340 } 2341 2342 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2343 2344 if (getLangOpts().ObjC1 && 2345 getLangOpts().getGC() != LangOptions::NonGC) { 2346 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2347 setObjCGCLValueClass(getContext(), E, LV); 2348 } 2349 return LV; 2350} 2351 2352static 2353llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2354 SmallVectorImpl<unsigned> &Elts) { 2355 SmallVector<llvm::Constant*, 4> CElts; 2356 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2357 CElts.push_back(Builder.getInt32(Elts[i])); 2358 2359 return llvm::ConstantVector::get(CElts); 2360} 2361 2362LValue CodeGenFunction:: 2363EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2364 // Emit the base vector as an l-value. 2365 LValue Base; 2366 2367 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2368 if (E->isArrow()) { 2369 // If it is a pointer to a vector, emit the address and form an lvalue with 2370 // it. 2371 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2372 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2373 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2374 Base.getQuals().removeObjCGCAttr(); 2375 } else if (E->getBase()->isGLValue()) { 2376 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2377 // emit the base as an lvalue. 2378 assert(E->getBase()->getType()->isVectorType()); 2379 Base = EmitLValue(E->getBase()); 2380 } else { 2381 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2382 assert(E->getBase()->getType()->isVectorType() && 2383 "Result must be a vector"); 2384 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2385 2386 // Store the vector to memory (because LValue wants an address). 2387 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2388 Builder.CreateStore(Vec, VecMem); 2389 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2390 } 2391 2392 QualType type = 2393 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2394 2395 // Encode the element access list into a vector of unsigned indices. 2396 SmallVector<unsigned, 4> Indices; 2397 E->getEncodedElementAccess(Indices); 2398 2399 if (Base.isSimple()) { 2400 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2401 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2402 Base.getAlignment()); 2403 } 2404 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2405 2406 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2407 SmallVector<llvm::Constant *, 4> CElts; 2408 2409 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2410 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2411 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2412 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2413 Base.getAlignment()); 2414} 2415 2416LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2417 Expr *BaseExpr = E->getBase(); 2418 2419 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2420 LValue BaseLV; 2421 if (E->isArrow()) { 2422 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2423 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2424 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2425 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2426 } else 2427 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2428 2429 NamedDecl *ND = E->getMemberDecl(); 2430 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2431 LValue LV = EmitLValueForField(BaseLV, Field); 2432 setObjCGCLValueClass(getContext(), E, LV); 2433 return LV; 2434 } 2435 2436 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2437 return EmitGlobalVarDeclLValue(*this, E, VD); 2438 2439 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2440 return EmitFunctionDeclLValue(*this, E, FD); 2441 2442 llvm_unreachable("Unhandled member declaration!"); 2443} 2444 2445/// Given that we are currently emitting a lambda, emit an l-value for 2446/// one of its members. 2447LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2448 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2449 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2450 QualType LambdaTagType = 2451 getContext().getTagDeclType(Field->getParent()); 2452 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2453 return EmitLValueForField(LambdaLV, Field); 2454} 2455 2456LValue CodeGenFunction::EmitLValueForField(LValue base, 2457 const FieldDecl *field) { 2458 if (field->isBitField()) { 2459 const CGRecordLayout &RL = 2460 CGM.getTypes().getCGRecordLayout(field->getParent()); 2461 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2462 llvm::Value *Addr = base.getAddress(); 2463 unsigned Idx = RL.getLLVMFieldNo(field); 2464 if (Idx != 0) 2465 // For structs, we GEP to the field that the record layout suggests. 2466 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2467 // Get the access type. 2468 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2469 getLLVMContext(), Info.StorageSize, 2470 CGM.getContext().getTargetAddressSpace(base.getType())); 2471 if (Addr->getType() != PtrTy) 2472 Addr = Builder.CreateBitCast(Addr, PtrTy); 2473 2474 QualType fieldType = 2475 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2476 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2477 } 2478 2479 const RecordDecl *rec = field->getParent(); 2480 QualType type = field->getType(); 2481 CharUnits alignment = getContext().getDeclAlign(field); 2482 2483 // FIXME: It should be impossible to have an LValue without alignment for a 2484 // complete type. 2485 if (!base.getAlignment().isZero()) 2486 alignment = std::min(alignment, base.getAlignment()); 2487 2488 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2489 2490 llvm::Value *addr = base.getAddress(); 2491 unsigned cvr = base.getVRQualifiers(); 2492 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2493 if (rec->isUnion()) { 2494 // For unions, there is no pointer adjustment. 2495 assert(!type->isReferenceType() && "union has reference member"); 2496 // TODO: handle path-aware TBAA for union. 2497 TBAAPath = false; 2498 } else { 2499 // For structs, we GEP to the field that the record layout suggests. 2500 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2501 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2502 2503 // If this is a reference field, load the reference right now. 2504 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2505 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2506 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2507 load->setAlignment(alignment.getQuantity()); 2508 2509 // Loading the reference will disable path-aware TBAA. 2510 TBAAPath = false; 2511 if (CGM.shouldUseTBAA()) { 2512 llvm::MDNode *tbaa; 2513 if (mayAlias) 2514 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2515 else 2516 tbaa = CGM.getTBAAInfo(type); 2517 if (tbaa) 2518 CGM.DecorateInstruction(load, tbaa); 2519 } 2520 2521 addr = load; 2522 mayAlias = false; 2523 type = refType->getPointeeType(); 2524 if (type->isIncompleteType()) 2525 alignment = CharUnits(); 2526 else 2527 alignment = getContext().getTypeAlignInChars(type); 2528 cvr = 0; // qualifiers don't recursively apply to referencee 2529 } 2530 } 2531 2532 // Make sure that the address is pointing to the right type. This is critical 2533 // for both unions and structs. A union needs a bitcast, a struct element 2534 // will need a bitcast if the LLVM type laid out doesn't match the desired 2535 // type. 2536 addr = EmitBitCastOfLValueToProperType(*this, addr, 2537 CGM.getTypes().ConvertTypeForMem(type), 2538 field->getName()); 2539 2540 if (field->hasAttr<AnnotateAttr>()) 2541 addr = EmitFieldAnnotations(field, addr); 2542 2543 LValue LV = MakeAddrLValue(addr, type, alignment); 2544 LV.getQuals().addCVRQualifiers(cvr); 2545 if (TBAAPath) { 2546 const ASTRecordLayout &Layout = 2547 getContext().getASTRecordLayout(field->getParent()); 2548 // Set the base type to be the base type of the base LValue and 2549 // update offset to be relative to the base type. 2550 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2551 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2552 Layout.getFieldOffset(field->getFieldIndex()) / 2553 getContext().getCharWidth()); 2554 } 2555 2556 // __weak attribute on a field is ignored. 2557 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2558 LV.getQuals().removeObjCGCAttr(); 2559 2560 // Fields of may_alias structs act like 'char' for TBAA purposes. 2561 // FIXME: this should get propagated down through anonymous structs 2562 // and unions. 2563 if (mayAlias && LV.getTBAAInfo()) 2564 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2565 2566 return LV; 2567} 2568 2569LValue 2570CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2571 const FieldDecl *Field) { 2572 QualType FieldType = Field->getType(); 2573 2574 if (!FieldType->isReferenceType()) 2575 return EmitLValueForField(Base, Field); 2576 2577 const CGRecordLayout &RL = 2578 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2579 unsigned idx = RL.getLLVMFieldNo(Field); 2580 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2581 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2582 2583 // Make sure that the address is pointing to the right type. This is critical 2584 // for both unions and structs. A union needs a bitcast, a struct element 2585 // will need a bitcast if the LLVM type laid out doesn't match the desired 2586 // type. 2587 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2588 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2589 2590 CharUnits Alignment = getContext().getDeclAlign(Field); 2591 2592 // FIXME: It should be impossible to have an LValue without alignment for a 2593 // complete type. 2594 if (!Base.getAlignment().isZero()) 2595 Alignment = std::min(Alignment, Base.getAlignment()); 2596 2597 return MakeAddrLValue(V, FieldType, Alignment); 2598} 2599 2600LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2601 if (E->isFileScope()) { 2602 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2603 return MakeAddrLValue(GlobalPtr, E->getType()); 2604 } 2605 if (E->getType()->isVariablyModifiedType()) 2606 // make sure to emit the VLA size. 2607 EmitVariablyModifiedType(E->getType()); 2608 2609 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2610 const Expr *InitExpr = E->getInitializer(); 2611 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2612 2613 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2614 /*Init*/ true); 2615 2616 return Result; 2617} 2618 2619LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2620 if (!E->isGLValue()) 2621 // Initializing an aggregate temporary in C++11: T{...}. 2622 return EmitAggExprToLValue(E); 2623 2624 // An lvalue initializer list must be initializing a reference. 2625 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2626 return EmitLValue(E->getInit(0)); 2627} 2628 2629LValue CodeGenFunction:: 2630EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2631 if (!expr->isGLValue()) { 2632 // ?: here should be an aggregate. 2633 assert(hasAggregateEvaluationKind(expr->getType()) && 2634 "Unexpected conditional operator!"); 2635 return EmitAggExprToLValue(expr); 2636 } 2637 2638 OpaqueValueMapping binding(*this, expr); 2639 2640 const Expr *condExpr = expr->getCond(); 2641 bool CondExprBool; 2642 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2643 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2644 if (!CondExprBool) std::swap(live, dead); 2645 2646 if (!ContainsLabel(dead)) 2647 return EmitLValue(live); 2648 } 2649 2650 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2651 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2652 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2653 2654 ConditionalEvaluation eval(*this); 2655 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2656 2657 // Any temporaries created here are conditional. 2658 EmitBlock(lhsBlock); 2659 eval.begin(*this); 2660 LValue lhs = EmitLValue(expr->getTrueExpr()); 2661 eval.end(*this); 2662 2663 if (!lhs.isSimple()) 2664 return EmitUnsupportedLValue(expr, "conditional operator"); 2665 2666 lhsBlock = Builder.GetInsertBlock(); 2667 Builder.CreateBr(contBlock); 2668 2669 // Any temporaries created here are conditional. 2670 EmitBlock(rhsBlock); 2671 eval.begin(*this); 2672 LValue rhs = EmitLValue(expr->getFalseExpr()); 2673 eval.end(*this); 2674 if (!rhs.isSimple()) 2675 return EmitUnsupportedLValue(expr, "conditional operator"); 2676 rhsBlock = Builder.GetInsertBlock(); 2677 2678 EmitBlock(contBlock); 2679 2680 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2681 "cond-lvalue"); 2682 phi->addIncoming(lhs.getAddress(), lhsBlock); 2683 phi->addIncoming(rhs.getAddress(), rhsBlock); 2684 return MakeAddrLValue(phi, expr->getType()); 2685} 2686 2687/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2688/// type. If the cast is to a reference, we can have the usual lvalue result, 2689/// otherwise if a cast is needed by the code generator in an lvalue context, 2690/// then it must mean that we need the address of an aggregate in order to 2691/// access one of its members. This can happen for all the reasons that casts 2692/// are permitted with aggregate result, including noop aggregate casts, and 2693/// cast from scalar to union. 2694LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2695 switch (E->getCastKind()) { 2696 case CK_ToVoid: 2697 case CK_BitCast: 2698 case CK_ArrayToPointerDecay: 2699 case CK_FunctionToPointerDecay: 2700 case CK_NullToMemberPointer: 2701 case CK_NullToPointer: 2702 case CK_IntegralToPointer: 2703 case CK_PointerToIntegral: 2704 case CK_PointerToBoolean: 2705 case CK_VectorSplat: 2706 case CK_IntegralCast: 2707 case CK_IntegralToBoolean: 2708 case CK_IntegralToFloating: 2709 case CK_FloatingToIntegral: 2710 case CK_FloatingToBoolean: 2711 case CK_FloatingCast: 2712 case CK_FloatingRealToComplex: 2713 case CK_FloatingComplexToReal: 2714 case CK_FloatingComplexToBoolean: 2715 case CK_FloatingComplexCast: 2716 case CK_FloatingComplexToIntegralComplex: 2717 case CK_IntegralRealToComplex: 2718 case CK_IntegralComplexToReal: 2719 case CK_IntegralComplexToBoolean: 2720 case CK_IntegralComplexCast: 2721 case CK_IntegralComplexToFloatingComplex: 2722 case CK_DerivedToBaseMemberPointer: 2723 case CK_BaseToDerivedMemberPointer: 2724 case CK_MemberPointerToBoolean: 2725 case CK_ReinterpretMemberPointer: 2726 case CK_AnyPointerToBlockPointerCast: 2727 case CK_ARCProduceObject: 2728 case CK_ARCConsumeObject: 2729 case CK_ARCReclaimReturnedObject: 2730 case CK_ARCExtendBlockObject: 2731 case CK_CopyAndAutoreleaseBlockObject: 2732 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2733 2734 case CK_Dependent: 2735 llvm_unreachable("dependent cast kind in IR gen!"); 2736 2737 case CK_BuiltinFnToFnPtr: 2738 llvm_unreachable("builtin functions are handled elsewhere"); 2739 2740 // These are never l-values; just use the aggregate emission code. 2741 case CK_NonAtomicToAtomic: 2742 case CK_AtomicToNonAtomic: 2743 return EmitAggExprToLValue(E); 2744 2745 case CK_Dynamic: { 2746 LValue LV = EmitLValue(E->getSubExpr()); 2747 llvm::Value *V = LV.getAddress(); 2748 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2749 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2750 } 2751 2752 case CK_ConstructorConversion: 2753 case CK_UserDefinedConversion: 2754 case CK_CPointerToObjCPointerCast: 2755 case CK_BlockPointerToObjCPointerCast: 2756 case CK_NoOp: 2757 case CK_LValueToRValue: 2758 return EmitLValue(E->getSubExpr()); 2759 2760 case CK_UncheckedDerivedToBase: 2761 case CK_DerivedToBase: { 2762 const RecordType *DerivedClassTy = 2763 E->getSubExpr()->getType()->getAs<RecordType>(); 2764 CXXRecordDecl *DerivedClassDecl = 2765 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2766 2767 LValue LV = EmitLValue(E->getSubExpr()); 2768 llvm::Value *This = LV.getAddress(); 2769 2770 // Perform the derived-to-base conversion 2771 llvm::Value *Base = 2772 GetAddressOfBaseClass(This, DerivedClassDecl, 2773 E->path_begin(), E->path_end(), 2774 /*NullCheckValue=*/false); 2775 2776 return MakeAddrLValue(Base, E->getType()); 2777 } 2778 case CK_ToUnion: 2779 return EmitAggExprToLValue(E); 2780 case CK_BaseToDerived: { 2781 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2782 CXXRecordDecl *DerivedClassDecl = 2783 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2784 2785 LValue LV = EmitLValue(E->getSubExpr()); 2786 2787 // Perform the base-to-derived conversion 2788 llvm::Value *Derived = 2789 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2790 E->path_begin(), E->path_end(), 2791 /*NullCheckValue=*/false); 2792 2793 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2794 // performed and the object is not of the derived type. 2795 if (SanitizePerformTypeCheck) 2796 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2797 Derived, E->getType()); 2798 2799 return MakeAddrLValue(Derived, E->getType()); 2800 } 2801 case CK_LValueBitCast: { 2802 // This must be a reinterpret_cast (or c-style equivalent). 2803 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2804 2805 LValue LV = EmitLValue(E->getSubExpr()); 2806 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2807 ConvertType(CE->getTypeAsWritten())); 2808 return MakeAddrLValue(V, E->getType()); 2809 } 2810 case CK_ObjCObjectLValueCast: { 2811 LValue LV = EmitLValue(E->getSubExpr()); 2812 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2813 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2814 ConvertType(ToType)); 2815 return MakeAddrLValue(V, E->getType()); 2816 } 2817 case CK_ZeroToOCLEvent: 2818 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2819 } 2820 2821 llvm_unreachable("Unhandled lvalue cast kind?"); 2822} 2823 2824LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2825 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2826 return getOpaqueLValueMapping(e); 2827} 2828 2829RValue CodeGenFunction::EmitRValueForField(LValue LV, 2830 const FieldDecl *FD, 2831 SourceLocation Loc) { 2832 QualType FT = FD->getType(); 2833 LValue FieldLV = EmitLValueForField(LV, FD); 2834 switch (getEvaluationKind(FT)) { 2835 case TEK_Complex: 2836 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 2837 case TEK_Aggregate: 2838 return FieldLV.asAggregateRValue(); 2839 case TEK_Scalar: 2840 return EmitLoadOfLValue(FieldLV, Loc); 2841 } 2842 llvm_unreachable("bad evaluation kind"); 2843} 2844 2845//===--------------------------------------------------------------------===// 2846// Expression Emission 2847//===--------------------------------------------------------------------===// 2848 2849RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2850 ReturnValueSlot ReturnValue) { 2851 if (CGDebugInfo *DI = getDebugInfo()) { 2852 SourceLocation Loc = E->getLocStart(); 2853 // Force column info to be generated so we can differentiate 2854 // multiple call sites on the same line in the debug info. 2855 const FunctionDecl* Callee = E->getDirectCallee(); 2856 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2857 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2858 } 2859 2860 // Builtins never have block type. 2861 if (E->getCallee()->getType()->isBlockPointerType()) 2862 return EmitBlockCallExpr(E, ReturnValue); 2863 2864 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2865 return EmitCXXMemberCallExpr(CE, ReturnValue); 2866 2867 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2868 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2869 2870 const Decl *TargetDecl = E->getCalleeDecl(); 2871 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2872 if (unsigned builtinID = FD->getBuiltinID()) 2873 return EmitBuiltinExpr(FD, builtinID, E); 2874 } 2875 2876 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2877 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2878 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2879 2880 if (const CXXPseudoDestructorExpr *PseudoDtor 2881 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2882 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2883 if (getLangOpts().ObjCAutoRefCount && 2884 DestroyedType->isObjCLifetimeType() && 2885 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2886 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2887 // Automatic Reference Counting: 2888 // If the pseudo-expression names a retainable object with weak or 2889 // strong lifetime, the object shall be released. 2890 Expr *BaseExpr = PseudoDtor->getBase(); 2891 llvm::Value *BaseValue = NULL; 2892 Qualifiers BaseQuals; 2893 2894 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2895 if (PseudoDtor->isArrow()) { 2896 BaseValue = EmitScalarExpr(BaseExpr); 2897 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2898 BaseQuals = PTy->getPointeeType().getQualifiers(); 2899 } else { 2900 LValue BaseLV = EmitLValue(BaseExpr); 2901 BaseValue = BaseLV.getAddress(); 2902 QualType BaseTy = BaseExpr->getType(); 2903 BaseQuals = BaseTy.getQualifiers(); 2904 } 2905 2906 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2907 case Qualifiers::OCL_None: 2908 case Qualifiers::OCL_ExplicitNone: 2909 case Qualifiers::OCL_Autoreleasing: 2910 break; 2911 2912 case Qualifiers::OCL_Strong: 2913 EmitARCRelease(Builder.CreateLoad(BaseValue, 2914 PseudoDtor->getDestroyedType().isVolatileQualified()), 2915 ARCPreciseLifetime); 2916 break; 2917 2918 case Qualifiers::OCL_Weak: 2919 EmitARCDestroyWeak(BaseValue); 2920 break; 2921 } 2922 } else { 2923 // C++ [expr.pseudo]p1: 2924 // The result shall only be used as the operand for the function call 2925 // operator (), and the result of such a call has type void. The only 2926 // effect is the evaluation of the postfix-expression before the dot or 2927 // arrow. 2928 EmitScalarExpr(E->getCallee()); 2929 } 2930 2931 return RValue::get(0); 2932 } 2933 2934 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2935 return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(), 2936 ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); 2937} 2938 2939LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2940 // Comma expressions just emit their LHS then their RHS as an l-value. 2941 if (E->getOpcode() == BO_Comma) { 2942 EmitIgnoredExpr(E->getLHS()); 2943 EnsureInsertPoint(); 2944 return EmitLValue(E->getRHS()); 2945 } 2946 2947 if (E->getOpcode() == BO_PtrMemD || 2948 E->getOpcode() == BO_PtrMemI) 2949 return EmitPointerToDataMemberBinaryExpr(E); 2950 2951 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2952 2953 // Note that in all of these cases, __block variables need the RHS 2954 // evaluated first just in case the variable gets moved by the RHS. 2955 2956 switch (getEvaluationKind(E->getType())) { 2957 case TEK_Scalar: { 2958 switch (E->getLHS()->getType().getObjCLifetime()) { 2959 case Qualifiers::OCL_Strong: 2960 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2961 2962 case Qualifiers::OCL_Autoreleasing: 2963 return EmitARCStoreAutoreleasing(E).first; 2964 2965 // No reason to do any of these differently. 2966 case Qualifiers::OCL_None: 2967 case Qualifiers::OCL_ExplicitNone: 2968 case Qualifiers::OCL_Weak: 2969 break; 2970 } 2971 2972 RValue RV = EmitAnyExpr(E->getRHS()); 2973 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2974 EmitStoreThroughLValue(RV, LV); 2975 return LV; 2976 } 2977 2978 case TEK_Complex: 2979 return EmitComplexAssignmentLValue(E); 2980 2981 case TEK_Aggregate: 2982 return EmitAggExprToLValue(E); 2983 } 2984 llvm_unreachable("bad evaluation kind"); 2985} 2986 2987LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2988 RValue RV = EmitCallExpr(E); 2989 2990 if (!RV.isScalar()) 2991 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2992 2993 assert(E->getCallReturnType()->isReferenceType() && 2994 "Can't have a scalar return unless the return type is a " 2995 "reference type!"); 2996 2997 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2998} 2999 3000LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3001 // FIXME: This shouldn't require another copy. 3002 return EmitAggExprToLValue(E); 3003} 3004 3005LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3006 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3007 && "binding l-value to type which needs a temporary"); 3008 AggValueSlot Slot = CreateAggTemp(E->getType()); 3009 EmitCXXConstructExpr(E, Slot); 3010 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3011} 3012 3013LValue 3014CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3015 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3016} 3017 3018llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3019 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3020 ConvertType(E->getType())->getPointerTo()); 3021} 3022 3023LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3024 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3025} 3026 3027LValue 3028CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3029 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3030 Slot.setExternallyDestructed(); 3031 EmitAggExpr(E->getSubExpr(), Slot); 3032 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3033 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3034} 3035 3036LValue 3037CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3038 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3039 EmitLambdaExpr(E, Slot); 3040 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3041} 3042 3043LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3044 RValue RV = EmitObjCMessageExpr(E); 3045 3046 if (!RV.isScalar()) 3047 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3048 3049 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 3050 "Can't have a scalar return unless the return type is a " 3051 "reference type!"); 3052 3053 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3054} 3055 3056LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3057 llvm::Value *V = 3058 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3059 return MakeAddrLValue(V, E->getType()); 3060} 3061 3062llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3063 const ObjCIvarDecl *Ivar) { 3064 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3065} 3066 3067LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3068 llvm::Value *BaseValue, 3069 const ObjCIvarDecl *Ivar, 3070 unsigned CVRQualifiers) { 3071 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3072 Ivar, CVRQualifiers); 3073} 3074 3075LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3076 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3077 llvm::Value *BaseValue = 0; 3078 const Expr *BaseExpr = E->getBase(); 3079 Qualifiers BaseQuals; 3080 QualType ObjectTy; 3081 if (E->isArrow()) { 3082 BaseValue = EmitScalarExpr(BaseExpr); 3083 ObjectTy = BaseExpr->getType()->getPointeeType(); 3084 BaseQuals = ObjectTy.getQualifiers(); 3085 } else { 3086 LValue BaseLV = EmitLValue(BaseExpr); 3087 // FIXME: this isn't right for bitfields. 3088 BaseValue = BaseLV.getAddress(); 3089 ObjectTy = BaseExpr->getType(); 3090 BaseQuals = ObjectTy.getQualifiers(); 3091 } 3092 3093 LValue LV = 3094 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3095 BaseQuals.getCVRQualifiers()); 3096 setObjCGCLValueClass(getContext(), E, LV); 3097 return LV; 3098} 3099 3100LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3101 // Can only get l-value for message expression returning aggregate type 3102 RValue RV = EmitAnyExprToTemp(E); 3103 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3104} 3105 3106RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3107 SourceLocation CallLoc, 3108 ReturnValueSlot ReturnValue, 3109 CallExpr::const_arg_iterator ArgBeg, 3110 CallExpr::const_arg_iterator ArgEnd, 3111 const Decl *TargetDecl) { 3112 // Get the actual function type. The callee type will always be a pointer to 3113 // function type or a block pointer type. 3114 assert(CalleeType->isFunctionPointerType() && 3115 "Call must have function pointer type!"); 3116 3117 CalleeType = getContext().getCanonicalType(CalleeType); 3118 3119 const FunctionType *FnType 3120 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3121 3122 // Force column info to differentiate multiple inlined call sites on 3123 // the same line, analoguous to EmitCallExpr. 3124 bool ForceColumnInfo = false; 3125 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3126 ForceColumnInfo = FD->isInlineSpecified(); 3127 3128 if (getLangOpts().CPlusPlus && SanOpts->Function && 3129 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3130 if (llvm::Constant *PrefixSig = 3131 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3132 llvm::Constant *FTRTTIConst = 3133 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3134 llvm::Type *PrefixStructTyElems[] = { 3135 PrefixSig->getType(), 3136 FTRTTIConst->getType() 3137 }; 3138 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3139 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3140 3141 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3142 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3143 llvm::Value *CalleeSigPtr = 3144 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3145 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3146 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3147 3148 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3149 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3150 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3151 3152 EmitBlock(TypeCheck); 3153 llvm::Value *CalleeRTTIPtr = 3154 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3155 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3156 llvm::Value *CalleeRTTIMatch = 3157 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3158 llvm::Constant *StaticData[] = { 3159 EmitCheckSourceLocation(CallLoc), 3160 EmitCheckTypeDescriptor(CalleeType) 3161 }; 3162 EmitCheck(CalleeRTTIMatch, 3163 "function_type_mismatch", 3164 StaticData, 3165 Callee, 3166 CRK_Recoverable); 3167 3168 Builder.CreateBr(Cont); 3169 EmitBlock(Cont); 3170 } 3171 } 3172 3173 CallArgList Args; 3174 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3175 ForceColumnInfo); 3176 3177 const CGFunctionInfo &FnInfo = 3178 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3179 3180 // C99 6.5.2.2p6: 3181 // If the expression that denotes the called function has a type 3182 // that does not include a prototype, [the default argument 3183 // promotions are performed]. If the number of arguments does not 3184 // equal the number of parameters, the behavior is undefined. If 3185 // the function is defined with a type that includes a prototype, 3186 // and either the prototype ends with an ellipsis (, ...) or the 3187 // types of the arguments after promotion are not compatible with 3188 // the types of the parameters, the behavior is undefined. If the 3189 // function is defined with a type that does not include a 3190 // prototype, and the types of the arguments after promotion are 3191 // not compatible with those of the parameters after promotion, 3192 // the behavior is undefined [except in some trivial cases]. 3193 // That is, in the general case, we should assume that a call 3194 // through an unprototyped function type works like a *non-variadic* 3195 // call. The way we make this work is to cast to the exact type 3196 // of the promoted arguments. 3197 if (isa<FunctionNoProtoType>(FnType)) { 3198 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3199 CalleeTy = CalleeTy->getPointerTo(); 3200 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3201 } 3202 3203 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3204} 3205 3206LValue CodeGenFunction:: 3207EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3208 llvm::Value *BaseV; 3209 if (E->getOpcode() == BO_PtrMemI) 3210 BaseV = EmitScalarExpr(E->getLHS()); 3211 else 3212 BaseV = EmitLValue(E->getLHS()).getAddress(); 3213 3214 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3215 3216 const MemberPointerType *MPT 3217 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3218 3219 llvm::Value *AddV = 3220 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3221 3222 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3223} 3224 3225/// Given the address of a temporary variable, produce an r-value of 3226/// its type. 3227RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3228 QualType type, 3229 SourceLocation loc) { 3230 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3231 switch (getEvaluationKind(type)) { 3232 case TEK_Complex: 3233 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3234 case TEK_Aggregate: 3235 return lvalue.asAggregateRValue(); 3236 case TEK_Scalar: 3237 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3238 } 3239 llvm_unreachable("bad evaluation kind"); 3240} 3241 3242void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3243 assert(Val->getType()->isFPOrFPVectorTy()); 3244 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3245 return; 3246 3247 llvm::MDBuilder MDHelper(getLLVMContext()); 3248 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3249 3250 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3251} 3252 3253namespace { 3254 struct LValueOrRValue { 3255 LValue LV; 3256 RValue RV; 3257 }; 3258} 3259 3260static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3261 const PseudoObjectExpr *E, 3262 bool forLValue, 3263 AggValueSlot slot) { 3264 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3265 3266 // Find the result expression, if any. 3267 const Expr *resultExpr = E->getResultExpr(); 3268 LValueOrRValue result; 3269 3270 for (PseudoObjectExpr::const_semantics_iterator 3271 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3272 const Expr *semantic = *i; 3273 3274 // If this semantic expression is an opaque value, bind it 3275 // to the result of its source expression. 3276 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3277 3278 // If this is the result expression, we may need to evaluate 3279 // directly into the slot. 3280 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3281 OVMA opaqueData; 3282 if (ov == resultExpr && ov->isRValue() && !forLValue && 3283 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3284 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3285 3286 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3287 opaqueData = OVMA::bind(CGF, ov, LV); 3288 result.RV = slot.asRValue(); 3289 3290 // Otherwise, emit as normal. 3291 } else { 3292 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3293 3294 // If this is the result, also evaluate the result now. 3295 if (ov == resultExpr) { 3296 if (forLValue) 3297 result.LV = CGF.EmitLValue(ov); 3298 else 3299 result.RV = CGF.EmitAnyExpr(ov, slot); 3300 } 3301 } 3302 3303 opaques.push_back(opaqueData); 3304 3305 // Otherwise, if the expression is the result, evaluate it 3306 // and remember the result. 3307 } else if (semantic == resultExpr) { 3308 if (forLValue) 3309 result.LV = CGF.EmitLValue(semantic); 3310 else 3311 result.RV = CGF.EmitAnyExpr(semantic, slot); 3312 3313 // Otherwise, evaluate the expression in an ignored context. 3314 } else { 3315 CGF.EmitIgnoredExpr(semantic); 3316 } 3317 } 3318 3319 // Unbind all the opaques now. 3320 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3321 opaques[i].unbind(CGF); 3322 3323 return result; 3324} 3325 3326RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3327 AggValueSlot slot) { 3328 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3329} 3330 3331LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3332 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3333} 3334