CGExpr.cpp revision 48620bafe4ba879f96c2d17caefeb79f3fae2eea
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGObjCRuntime.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/DeclObjC.h" 20#include "llvm/Target/TargetData.h" 21using namespace clang; 22using namespace CodeGen; 23 24//===--------------------------------------------------------------------===// 25// Miscellaneous Helper Methods 26//===--------------------------------------------------------------------===// 27 28/// CreateTempAlloca - This creates a alloca and inserts it into the entry 29/// block. 30llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 31 const llvm::Twine &Name) { 32 if (!Builder.isNamePreserving()) 33 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 34 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 35} 36 37/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 38/// expression and compare the result against zero, returning an Int1Ty value. 39llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 40 QualType BoolTy = getContext().BoolTy; 41 if (!E->getType()->isAnyComplexType()) 42 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 43 44 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 45} 46 47/// EmitAnyExpr - Emit code to compute the specified expression which can have 48/// any type. The result is returned as an RValue struct. If this is an 49/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the 50/// result should be returned. 51RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, 52 bool IsAggLocVolatile, bool IgnoreResult, 53 bool IsInitializer) { 54 if (!hasAggregateLLVMType(E->getType())) 55 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 56 else if (E->getType()->isAnyComplexType()) 57 return RValue::getComplex(EmitComplexExpr(E, false, false, 58 IgnoreResult, IgnoreResult)); 59 60 EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer); 61 return RValue::getAggregate(AggLoc, IsAggLocVolatile); 62} 63 64/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 65/// always be accessible even if no aggregate location is provided. 66RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, 67 bool IsAggLocVolatile, 68 bool IsInitializer) { 69 llvm::Value *AggLoc = 0; 70 71 if (hasAggregateLLVMType(E->getType()) && 72 !E->getType()->isAnyComplexType()) 73 AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp"); 74 return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false, 75 IsInitializer); 76} 77 78RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E, 79 QualType DestType, 80 bool IsInitializer) { 81 bool ShouldDestroyTemporaries = false; 82 unsigned OldNumLiveTemporaries = 0; 83 84 if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) { 85 ShouldDestroyTemporaries = TE->shouldDestroyTemporaries(); 86 87 if (ShouldDestroyTemporaries) { 88 // Keep track of the current cleanup stack depth. 89 OldNumLiveTemporaries = LiveTemporaries.size(); 90 } 91 92 E = TE->getSubExpr(); 93 } 94 95 RValue Val; 96 if (E->isLvalue(getContext()) == Expr::LV_Valid) { 97 // Emit the expr as an lvalue. 98 LValue LV = EmitLValue(E); 99 if (LV.isSimple()) 100 return RValue::get(LV.getAddress()); 101 Val = EmitLoadOfLValue(LV, E->getType()); 102 103 if (ShouldDestroyTemporaries) { 104 // Pop temporaries. 105 while (LiveTemporaries.size() > OldNumLiveTemporaries) 106 PopCXXTemporary(); 107 } 108 } else { 109 const CXXRecordDecl *BaseClassDecl = 0; 110 const CXXRecordDecl *DerivedClassDecl = 0; 111 112 if (const CastExpr *CE = 113 dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) { 114 if (CE->getCastKind() == CastExpr::CK_DerivedToBase) { 115 E = CE->getSubExpr(); 116 117 BaseClassDecl = 118 cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl()); 119 DerivedClassDecl = 120 cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 121 } 122 } 123 124 Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false, 125 IsInitializer); 126 127 if (ShouldDestroyTemporaries) { 128 // Pop temporaries. 129 while (LiveTemporaries.size() > OldNumLiveTemporaries) 130 PopCXXTemporary(); 131 } 132 133 if (IsInitializer) { 134 // We might have to destroy the temporary variable. 135 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 136 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 137 if (!ClassDecl->hasTrivialDestructor()) { 138 const CXXDestructorDecl *Dtor = 139 ClassDecl->getDestructor(getContext()); 140 141 CleanupScope scope(*this); 142 EmitCXXDestructorCall(Dtor, Dtor_Complete, Val.getAggregateAddr()); 143 } 144 } 145 } 146 } 147 148 // Check if need to perform the derived-to-base cast. 149 if (BaseClassDecl) { 150 llvm::Value *Derived = Val.getAggregateAddr(); 151 152 llvm::Value *Base = 153 GetAddressCXXOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl, 154 /*NullCheckValue=*/false); 155 return RValue::get(Base); 156 } 157 } 158 159 if (Val.isAggregate()) { 160 Val = RValue::get(Val.getAggregateAddr()); 161 } else { 162 // Create a temporary variable that we can bind the reference to. 163 llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), 164 "reftmp"); 165 if (Val.isScalar()) 166 EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType()); 167 else 168 StoreComplexToAddr(Val.getComplexVal(), Temp, false); 169 Val = RValue::get(Temp); 170 } 171 172 return Val; 173} 174 175 176/// getAccessedFieldNo - Given an encoded value and a result number, return the 177/// input field number being accessed. 178unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 179 const llvm::Constant *Elts) { 180 if (isa<llvm::ConstantAggregateZero>(Elts)) 181 return 0; 182 183 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 184} 185 186 187//===----------------------------------------------------------------------===// 188// LValue Expression Emission 189//===----------------------------------------------------------------------===// 190 191RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 192 if (Ty->isVoidType()) { 193 return RValue::get(0); 194 } else if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 195 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 196 llvm::Value *U = llvm::UndefValue::get(EltTy); 197 return RValue::getComplex(std::make_pair(U, U)); 198 } else if (hasAggregateLLVMType(Ty)) { 199 const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty)); 200 return RValue::getAggregate(llvm::UndefValue::get(LTy)); 201 } else { 202 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 203 } 204} 205 206RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 207 const char *Name) { 208 ErrorUnsupported(E, Name); 209 return GetUndefRValue(E->getType()); 210} 211 212LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 213 const char *Name) { 214 ErrorUnsupported(E, Name); 215 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 216 return LValue::MakeAddr(llvm::UndefValue::get(Ty), 217 MakeQualifiers(E->getType())); 218} 219 220/// EmitLValue - Emit code to compute a designator that specifies the location 221/// of the expression. 222/// 223/// This can return one of two things: a simple address or a bitfield reference. 224/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 225/// an LLVM pointer type. 226/// 227/// If this returns a bitfield reference, nothing about the pointee type of the 228/// LLVM value is known: For example, it may not be a pointer to an integer. 229/// 230/// If this returns a normal address, and if the lvalue's C type is fixed size, 231/// this method guarantees that the returned pointer type will point to an LLVM 232/// type of the same size of the lvalue's type. If the lvalue has a variable 233/// length type, this is not possible. 234/// 235LValue CodeGenFunction::EmitLValue(const Expr *E) { 236 switch (E->getStmtClass()) { 237 default: return EmitUnsupportedLValue(E, "l-value expression"); 238 239 case Expr::BinaryOperatorClass: 240 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 241 case Expr::CallExprClass: 242 case Expr::CXXMemberCallExprClass: 243 case Expr::CXXOperatorCallExprClass: 244 return EmitCallExprLValue(cast<CallExpr>(E)); 245 case Expr::VAArgExprClass: 246 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 247 case Expr::DeclRefExprClass: 248 case Expr::QualifiedDeclRefExprClass: 249 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 250 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 251 case Expr::PredefinedExprClass: 252 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 253 case Expr::StringLiteralClass: 254 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 255 case Expr::ObjCEncodeExprClass: 256 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 257 258 case Expr::BlockDeclRefExprClass: 259 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 260 261 case Expr::CXXConditionDeclExprClass: 262 return EmitCXXConditionDeclLValue(cast<CXXConditionDeclExpr>(E)); 263 case Expr::CXXTemporaryObjectExprClass: 264 case Expr::CXXConstructExprClass: 265 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 266 case Expr::CXXBindTemporaryExprClass: 267 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 268 case Expr::CXXExprWithTemporariesClass: 269 return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E)); 270 271 case Expr::ObjCMessageExprClass: 272 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 273 case Expr::ObjCIvarRefExprClass: 274 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 275 case Expr::ObjCPropertyRefExprClass: 276 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 277 case Expr::ObjCImplicitSetterGetterRefExprClass: 278 return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E)); 279 case Expr::ObjCSuperExprClass: 280 return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E)); 281 282 case Expr::StmtExprClass: 283 return EmitStmtExprLValue(cast<StmtExpr>(E)); 284 case Expr::UnaryOperatorClass: 285 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 286 case Expr::ArraySubscriptExprClass: 287 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 288 case Expr::ExtVectorElementExprClass: 289 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 290 case Expr::MemberExprClass: 291 return EmitMemberExpr(cast<MemberExpr>(E)); 292 case Expr::CompoundLiteralExprClass: 293 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 294 case Expr::ConditionalOperatorClass: 295 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 296 case Expr::ChooseExprClass: 297 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 298 case Expr::ImplicitCastExprClass: 299 case Expr::CStyleCastExprClass: 300 case Expr::CXXFunctionalCastExprClass: 301 case Expr::CXXStaticCastExprClass: 302 case Expr::CXXDynamicCastExprClass: 303 case Expr::CXXReinterpretCastExprClass: 304 case Expr::CXXConstCastExprClass: 305 return EmitCastLValue(cast<CastExpr>(E)); 306 case Expr::CXXZeroInitValueExprClass: 307 return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E)); 308 } 309} 310 311llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 312 QualType Ty) { 313 llvm::Value *V = Builder.CreateLoad(Addr, Volatile, "tmp"); 314 315 // Bool can have different representation in memory than in registers. 316 if (Ty->isBooleanType()) 317 if (V->getType() != llvm::Type::getInt1Ty(VMContext)) 318 V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool"); 319 320 return V; 321} 322 323void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 324 bool Volatile, QualType Ty) { 325 326 if (Ty->isBooleanType()) { 327 // Bool can have different representation in memory than in registers. 328 const llvm::Type *SrcTy = Value->getType(); 329 const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 330 if (DstPtr->getElementType() != SrcTy) { 331 const llvm::Type *MemTy = 332 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 333 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 334 } 335 } 336 Builder.CreateStore(Value, Addr, Volatile); 337} 338 339/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 340/// method emits the address of the lvalue, then loads the result as an rvalue, 341/// returning the rvalue. 342RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { 343 if (LV.isObjCWeak()) { 344 // load of a __weak object. 345 llvm::Value *AddrWeakObj = LV.getAddress(); 346 llvm::Value *read_weak = CGM.getObjCRuntime().EmitObjCWeakRead(*this, 347 AddrWeakObj); 348 return RValue::get(read_weak); 349 } 350 351 if (LV.isSimple()) { 352 llvm::Value *Ptr = LV.getAddress(); 353 const llvm::Type *EltTy = 354 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 355 356 // Simple scalar l-value. 357 if (EltTy->isSingleValueType()) 358 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), 359 ExprType)); 360 361 assert(ExprType->isFunctionType() && "Unknown scalar value"); 362 return RValue::get(Ptr); 363 } 364 365 if (LV.isVectorElt()) { 366 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 367 LV.isVolatileQualified(), "tmp"); 368 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 369 "vecext")); 370 } 371 372 // If this is a reference to a subset of the elements of a vector, either 373 // shuffle the input or extract/insert them as appropriate. 374 if (LV.isExtVectorElt()) 375 return EmitLoadOfExtVectorElementLValue(LV, ExprType); 376 377 if (LV.isBitfield()) 378 return EmitLoadOfBitfieldLValue(LV, ExprType); 379 380 if (LV.isPropertyRef()) 381 return EmitLoadOfPropertyRefLValue(LV, ExprType); 382 383 assert(LV.isKVCRef() && "Unknown LValue type!"); 384 return EmitLoadOfKVCRefLValue(LV, ExprType); 385} 386 387RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 388 QualType ExprType) { 389 unsigned StartBit = LV.getBitfieldStartBit(); 390 unsigned BitfieldSize = LV.getBitfieldSize(); 391 llvm::Value *Ptr = LV.getBitfieldAddr(); 392 393 const llvm::Type *EltTy = 394 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 395 unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy); 396 397 // In some cases the bitfield may straddle two memory locations. Currently we 398 // load the entire bitfield, then do the magic to sign-extend it if 399 // necessary. This results in somewhat more code than necessary for the common 400 // case (one load), since two shifts accomplish both the masking and sign 401 // extension. 402 unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit); 403 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp"); 404 405 // Shift to proper location. 406 if (StartBit) 407 Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit), 408 "bf.lo"); 409 410 // Mask off unused bits. 411 llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext, 412 llvm::APInt::getLowBitsSet(EltTySize, LowBits)); 413 Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared"); 414 415 // Fetch the high bits if necessary. 416 if (LowBits < BitfieldSize) { 417 unsigned HighBits = BitfieldSize - LowBits; 418 llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get( 419 llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi"); 420 llvm::Value *HighVal = Builder.CreateLoad(HighPtr, 421 LV.isVolatileQualified(), 422 "tmp"); 423 424 // Mask off unused bits. 425 llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext, 426 llvm::APInt::getLowBitsSet(EltTySize, HighBits)); 427 HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared"); 428 429 // Shift to proper location and or in to bitfield value. 430 HighVal = Builder.CreateShl(HighVal, 431 llvm::ConstantInt::get(EltTy, LowBits)); 432 Val = Builder.CreateOr(Val, HighVal, "bf.val"); 433 } 434 435 // Sign extend if necessary. 436 if (LV.isBitfieldSigned()) { 437 llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy, 438 EltTySize - BitfieldSize); 439 Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits), 440 ExtraBits, "bf.val.sext"); 441 } 442 443 // The bitfield type and the normal type differ when the storage sizes differ 444 // (currently just _Bool). 445 Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp"); 446 447 return RValue::get(Val); 448} 449 450RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, 451 QualType ExprType) { 452 return EmitObjCPropertyGet(LV.getPropertyRefExpr()); 453} 454 455RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV, 456 QualType ExprType) { 457 return EmitObjCPropertyGet(LV.getKVCRefExpr()); 458} 459 460// If this is a reference to a subset of the elements of a vector, create an 461// appropriate shufflevector. 462RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, 463 QualType ExprType) { 464 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 465 LV.isVolatileQualified(), "tmp"); 466 467 const llvm::Constant *Elts = LV.getExtVectorElts(); 468 469 // If the result of the expression is a non-vector type, we must be extracting 470 // a single element. Just codegen as an extractelement. 471 const VectorType *ExprVT = ExprType->getAs<VectorType>(); 472 if (!ExprVT) { 473 unsigned InIdx = getAccessedFieldNo(0, Elts); 474 llvm::Value *Elt = llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), InIdx); 476 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 477 } 478 479 // Always use shuffle vector to try to retain the original program structure 480 unsigned NumResultElts = ExprVT->getNumElements(); 481 482 llvm::SmallVector<llvm::Constant*, 4> Mask; 483 for (unsigned i = 0; i != NumResultElts; ++i) { 484 unsigned InIdx = getAccessedFieldNo(i, Elts); 485 Mask.push_back(llvm::ConstantInt::get( 486 llvm::Type::getInt32Ty(VMContext), InIdx)); 487 } 488 489 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 490 Vec = Builder.CreateShuffleVector(Vec, 491 llvm::UndefValue::get(Vec->getType()), 492 MaskV, "tmp"); 493 return RValue::get(Vec); 494} 495 496 497 498/// EmitStoreThroughLValue - Store the specified rvalue into the specified 499/// lvalue, where both are guaranteed to the have the same type, and that type 500/// is 'Ty'. 501void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 502 QualType Ty) { 503 if (!Dst.isSimple()) { 504 if (Dst.isVectorElt()) { 505 // Read/modify/write the vector, inserting the new element. 506 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 507 Dst.isVolatileQualified(), "tmp"); 508 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 509 Dst.getVectorIdx(), "vecins"); 510 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 511 return; 512 } 513 514 // If this is an update of extended vector elements, insert them as 515 // appropriate. 516 if (Dst.isExtVectorElt()) 517 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); 518 519 if (Dst.isBitfield()) 520 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); 521 522 if (Dst.isPropertyRef()) 523 return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty); 524 525 if (Dst.isKVCRef()) 526 return EmitStoreThroughKVCRefLValue(Src, Dst, Ty); 527 528 assert(0 && "Unknown LValue type"); 529 } 530 531 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 532 // load of a __weak object. 533 llvm::Value *LvalueDst = Dst.getAddress(); 534 llvm::Value *src = Src.getScalarVal(); 535 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 536 return; 537 } 538 539 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 540 // load of a __strong object. 541 llvm::Value *LvalueDst = Dst.getAddress(); 542 llvm::Value *src = Src.getScalarVal(); 543 if (Dst.isObjCIvar()) { 544 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 545 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 546 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 547 llvm::Value *dst = RHS; 548 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 549 llvm::Value *LHS = 550 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 551 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 552 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 553 BytesBetween); 554 } 555 else if (Dst.isGlobalObjCRef()) 556 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst); 557 else 558 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 559 return; 560 } 561 562 assert(Src.isScalar() && "Can't emit an agg store with this method"); 563 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(), 564 Dst.isVolatileQualified(), Ty); 565} 566 567void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 568 QualType Ty, 569 llvm::Value **Result) { 570 unsigned StartBit = Dst.getBitfieldStartBit(); 571 unsigned BitfieldSize = Dst.getBitfieldSize(); 572 llvm::Value *Ptr = Dst.getBitfieldAddr(); 573 574 const llvm::Type *EltTy = 575 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 576 unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy); 577 578 // Get the new value, cast to the appropriate type and masked to exactly the 579 // size of the bit-field. 580 llvm::Value *SrcVal = Src.getScalarVal(); 581 llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp"); 582 llvm::Constant *Mask = llvm::ConstantInt::get(VMContext, 583 llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize)); 584 NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value"); 585 586 // Return the new value of the bit-field, if requested. 587 if (Result) { 588 // Cast back to the proper type for result. 589 const llvm::Type *SrcTy = SrcVal->getType(); 590 llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false, 591 "bf.reload.val"); 592 593 // Sign extend if necessary. 594 if (Dst.isBitfieldSigned()) { 595 unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy); 596 llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy, 597 SrcTySize - BitfieldSize); 598 SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits), 599 ExtraBits, "bf.reload.sext"); 600 } 601 602 *Result = SrcTrunc; 603 } 604 605 // In some cases the bitfield may straddle two memory locations. Emit the low 606 // part first and check to see if the high needs to be done. 607 unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit); 608 llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 609 "bf.prev.low"); 610 611 // Compute the mask for zero-ing the low part of this bitfield. 612 llvm::Constant *InvMask = 613 llvm::ConstantInt::get(VMContext, 614 ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits)); 615 616 // Compute the new low part as 617 // LowVal = (LowVal & InvMask) | (NewVal << StartBit), 618 // with the shift of NewVal implicitly stripping the high bits. 619 llvm::Value *NewLowVal = 620 Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit), 621 "bf.value.lo"); 622 LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared"); 623 LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo"); 624 625 // Write back. 626 Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified()); 627 628 // If the low part doesn't cover the bitfield emit a high part. 629 if (LowBits < BitfieldSize) { 630 unsigned HighBits = BitfieldSize - LowBits; 631 llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get( 632 llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi"); 633 llvm::Value *HighVal = Builder.CreateLoad(HighPtr, 634 Dst.isVolatileQualified(), 635 "bf.prev.hi"); 636 637 // Compute the mask for zero-ing the high part of this bitfield. 638 llvm::Constant *InvMask = 639 llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize, 640 HighBits)); 641 642 // Compute the new high part as 643 // HighVal = (HighVal & InvMask) | (NewVal lshr LowBits), 644 // where the high bits of NewVal have already been cleared and the 645 // shift stripping the low bits. 646 llvm::Value *NewHighVal = 647 Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits), 648 "bf.value.high"); 649 HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared"); 650 HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi"); 651 652 // Write back. 653 Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified()); 654 } 655} 656 657void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, 658 LValue Dst, 659 QualType Ty) { 660 EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src); 661} 662 663void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src, 664 LValue Dst, 665 QualType Ty) { 666 EmitObjCPropertySet(Dst.getKVCRefExpr(), Src); 667} 668 669void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 670 LValue Dst, 671 QualType Ty) { 672 // This access turns into a read/modify/write of the vector. Load the input 673 // value now. 674 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 675 Dst.isVolatileQualified(), "tmp"); 676 const llvm::Constant *Elts = Dst.getExtVectorElts(); 677 678 llvm::Value *SrcVal = Src.getScalarVal(); 679 680 if (const VectorType *VTy = Ty->getAs<VectorType>()) { 681 unsigned NumSrcElts = VTy->getNumElements(); 682 unsigned NumDstElts = 683 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 684 if (NumDstElts == NumSrcElts) { 685 // Use shuffle vector is the src and destination are the same number of 686 // elements and restore the vector mask since it is on the side it will be 687 // stored. 688 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 689 for (unsigned i = 0; i != NumSrcElts; ++i) { 690 unsigned InIdx = getAccessedFieldNo(i, Elts); 691 Mask[InIdx] = llvm::ConstantInt::get( 692 llvm::Type::getInt32Ty(VMContext), i); 693 } 694 695 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 696 Vec = Builder.CreateShuffleVector(SrcVal, 697 llvm::UndefValue::get(Vec->getType()), 698 MaskV, "tmp"); 699 } else if (NumDstElts > NumSrcElts) { 700 // Extended the source vector to the same length and then shuffle it 701 // into the destination. 702 // FIXME: since we're shuffling with undef, can we just use the indices 703 // into that? This could be simpler. 704 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 705 unsigned i; 706 for (i = 0; i != NumSrcElts; ++i) 707 ExtMask.push_back(llvm::ConstantInt::get( 708 llvm::Type::getInt32Ty(VMContext), i)); 709 for (; i != NumDstElts; ++i) 710 ExtMask.push_back(llvm::UndefValue::get( 711 llvm::Type::getInt32Ty(VMContext))); 712 llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0], 713 ExtMask.size()); 714 llvm::Value *ExtSrcVal = 715 Builder.CreateShuffleVector(SrcVal, 716 llvm::UndefValue::get(SrcVal->getType()), 717 ExtMaskV, "tmp"); 718 // build identity 719 llvm::SmallVector<llvm::Constant*, 4> Mask; 720 for (unsigned i = 0; i != NumDstElts; ++i) { 721 Mask.push_back(llvm::ConstantInt::get( 722 llvm::Type::getInt32Ty(VMContext), i)); 723 } 724 // modify when what gets shuffled in 725 for (unsigned i = 0; i != NumSrcElts; ++i) { 726 unsigned Idx = getAccessedFieldNo(i, Elts); 727 Mask[Idx] = llvm::ConstantInt::get( 728 llvm::Type::getInt32Ty(VMContext), i+NumDstElts); 729 } 730 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 731 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 732 } else { 733 // We should never shorten the vector 734 assert(0 && "unexpected shorten vector length"); 735 } 736 } else { 737 // If the Src is a scalar (not a vector) it must be updating one element. 738 unsigned InIdx = getAccessedFieldNo(0, Elts); 739 llvm::Value *Elt = llvm::ConstantInt::get( 740 llvm::Type::getInt32Ty(VMContext), InIdx); 741 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 742 } 743 744 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 745} 746 747// setObjCGCLValueClass - sets class of he lvalue for the purpose of 748// generating write-barries API. It is currently a global, ivar, 749// or neither. 750static 751void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, LValue &LV) { 752 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 753 return; 754 755 if (isa<ObjCIvarRefExpr>(E)) { 756 LV.SetObjCIvar(LV, true); 757 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 758 LV.setBaseIvarExp(Exp->getBase()); 759 LV.SetObjCArray(LV, E->getType()->isArrayType()); 760 return; 761 } 762 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 763 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 764 if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) || 765 VD->isFileVarDecl()) 766 LV.SetGlobalObjCRef(LV, true); 767 } 768 LV.SetObjCArray(LV, E->getType()->isArrayType()); 769 } 770 else if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) 771 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 772 else if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 773 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 774 if (LV.isObjCIvar()) { 775 // If cast is to a structure pointer, follow gcc's behavior and make it 776 // a non-ivar write-barrier. 777 QualType ExpTy = E->getType(); 778 if (ExpTy->isPointerType()) 779 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 780 if (ExpTy->isRecordType()) 781 LV.SetObjCIvar(LV, false); 782 } 783 } 784 else if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) 785 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 786 else if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) 787 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 788 else if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 789 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 790 if (LV.isObjCIvar() && !LV.isObjCArray()) 791 // Using array syntax to assigning to what an ivar points to is not 792 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 793 LV.SetObjCIvar(LV, false); 794 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 795 // Using array syntax to assigning to what global points to is not 796 // same as assigning to the global itself. {id *G;} G[i] = 0; 797 LV.SetGlobalObjCRef(LV, false); 798 } 799 else if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 800 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 801 // We don't know if member is an 'ivar', but this flag is looked at 802 // only in the context of LV.isObjCIvar(). 803 LV.SetObjCArray(LV, E->getType()->isArrayType()); 804 } 805} 806 807LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 808 const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); 809 810 if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) || 811 isa<ImplicitParamDecl>(VD))) { 812 LValue LV; 813 bool NonGCable = VD->hasLocalStorage() && 814 !VD->hasAttr<BlocksAttr>(); 815 if (VD->hasExternalStorage()) { 816 llvm::Value *V = CGM.GetAddrOfGlobalVar(VD); 817 if (VD->getType()->isReferenceType()) 818 V = Builder.CreateLoad(V, "tmp"); 819 LV = LValue::MakeAddr(V, MakeQualifiers(E->getType())); 820 } else { 821 llvm::Value *V = LocalDeclMap[VD]; 822 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 823 824 Qualifiers Quals = MakeQualifiers(E->getType()); 825 // local variables do not get their gc attribute set. 826 // local static? 827 if (NonGCable) Quals.removeObjCGCAttr(); 828 829 if (VD->hasAttr<BlocksAttr>()) { 830 V = Builder.CreateStructGEP(V, 1, "forwarding"); 831 V = Builder.CreateLoad(V, false); 832 V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD), 833 VD->getNameAsString()); 834 } 835 if (VD->getType()->isReferenceType()) 836 V = Builder.CreateLoad(V, "tmp"); 837 LV = LValue::MakeAddr(V, Quals); 838 } 839 LValue::SetObjCNonGC(LV, NonGCable); 840 setObjCGCLValueClass(getContext(), E, LV); 841 return LV; 842 } else if (VD && VD->isFileVarDecl()) { 843 llvm::Value *V = CGM.GetAddrOfGlobalVar(VD); 844 if (VD->getType()->isReferenceType()) 845 V = Builder.CreateLoad(V, "tmp"); 846 LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType())); 847 setObjCGCLValueClass(getContext(), E, LV); 848 return LV; 849 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) { 850 llvm::Value* V = CGM.GetAddrOfFunction(FD); 851 if (!FD->hasPrototype()) { 852 if (const FunctionProtoType *Proto = 853 FD->getType()->getAs<FunctionProtoType>()) { 854 // Ugly case: for a K&R-style definition, the type of the definition 855 // isn't the same as the type of a use. Correct for this with a 856 // bitcast. 857 QualType NoProtoType = 858 getContext().getFunctionNoProtoType(Proto->getResultType()); 859 NoProtoType = getContext().getPointerType(NoProtoType); 860 V = Builder.CreateBitCast(V, ConvertType(NoProtoType), "tmp"); 861 } 862 } 863 return LValue::MakeAddr(V, MakeQualifiers(E->getType())); 864 } else if (const ImplicitParamDecl *IPD = 865 dyn_cast<ImplicitParamDecl>(E->getDecl())) { 866 llvm::Value *V = LocalDeclMap[IPD]; 867 assert(V && "BlockVarDecl not entered in LocalDeclMap?"); 868 return LValue::MakeAddr(V, MakeQualifiers(E->getType())); 869 } 870 assert(0 && "Unimp declref"); 871 //an invalid LValue, but the assert will 872 //ensure that this point is never reached. 873 return LValue(); 874} 875 876LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 877 return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType())); 878} 879 880LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 881 // __extension__ doesn't affect lvalue-ness. 882 if (E->getOpcode() == UnaryOperator::Extension) 883 return EmitLValue(E->getSubExpr()); 884 885 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 886 switch (E->getOpcode()) { 887 default: assert(0 && "Unknown unary operator lvalue!"); 888 case UnaryOperator::Deref: 889 { 890 QualType T = E->getSubExpr()->getType()->getPointeeType(); 891 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 892 893 Qualifiers Quals = MakeQualifiers(T); 894 Quals.setAddressSpace(ExprTy.getAddressSpace()); 895 896 LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals); 897 // We should not generate __weak write barrier on indirect reference 898 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 899 // But, we continue to generate __strong write barrier on indirect write 900 // into a pointer to object. 901 if (getContext().getLangOptions().ObjC1 && 902 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 903 LV.isObjCWeak()) 904 LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext())); 905 return LV; 906 } 907 case UnaryOperator::Real: 908 case UnaryOperator::Imag: 909 LValue LV = EmitLValue(E->getSubExpr()); 910 unsigned Idx = E->getOpcode() == UnaryOperator::Imag; 911 return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(), 912 Idx, "idx"), 913 MakeQualifiers(ExprTy)); 914 } 915} 916 917LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 918 return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E), 919 Qualifiers()); 920} 921 922LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 923 return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E), 924 Qualifiers()); 925} 926 927 928LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) { 929 std::string GlobalVarName; 930 931 switch (Type) { 932 default: 933 assert(0 && "Invalid type"); 934 case PredefinedExpr::Func: 935 GlobalVarName = "__func__."; 936 break; 937 case PredefinedExpr::Function: 938 GlobalVarName = "__FUNCTION__."; 939 break; 940 case PredefinedExpr::PrettyFunction: 941 GlobalVarName = "__PRETTY_FUNCTION__."; 942 break; 943 } 944 945 llvm::StringRef FnName = CurFn->getName(); 946 if (FnName.startswith("\01")) 947 FnName = FnName.substr(1); 948 GlobalVarName += FnName; 949 950 std::string FunctionName = 951 PredefinedExpr::ComputeName(getContext(), (PredefinedExpr::IdentType)Type, 952 CurCodeDecl); 953 954 llvm::Constant *C = 955 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 956 return LValue::MakeAddr(C, Qualifiers()); 957} 958 959LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 960 switch (E->getIdentType()) { 961 default: 962 return EmitUnsupportedLValue(E, "predefined expression"); 963 case PredefinedExpr::Func: 964 case PredefinedExpr::Function: 965 case PredefinedExpr::PrettyFunction: 966 return EmitPredefinedFunctionName(E->getIdentType()); 967 } 968} 969 970LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 971 // The index must always be an integer, which is not an aggregate. Emit it. 972 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 973 QualType IdxTy = E->getIdx()->getType(); 974 bool IdxSigned = IdxTy->isSignedIntegerType(); 975 976 // If the base is a vector type, then we are forming a vector element lvalue 977 // with this subscript. 978 if (E->getBase()->getType()->isVectorType()) { 979 // Emit the vector as an lvalue to get its address. 980 LValue LHS = EmitLValue(E->getBase()); 981 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 982 Idx = Builder.CreateIntCast(Idx, 983 llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx"); 984 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 985 E->getBase()->getType().getCVRQualifiers()); 986 } 987 988 // The base must be a pointer, which is not an aggregate. Emit it. 989 llvm::Value *Base = EmitScalarExpr(E->getBase()); 990 991 // Extend or truncate the index type to 32 or 64-bits. 992 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); 993 if (IdxBitwidth != LLVMPointerWidth) 994 Idx = Builder.CreateIntCast(Idx, 995 llvm::IntegerType::get(VMContext, LLVMPointerWidth), 996 IdxSigned, "idxprom"); 997 998 // We know that the pointer points to a type of the correct size, unless the 999 // size is a VLA or Objective-C interface. 1000 llvm::Value *Address = 0; 1001 if (const VariableArrayType *VAT = 1002 getContext().getAsVariableArrayType(E->getType())) { 1003 llvm::Value *VLASize = GetVLASize(VAT); 1004 1005 Idx = Builder.CreateMul(Idx, VLASize); 1006 1007 QualType BaseType = getContext().getBaseElementType(VAT); 1008 1009 uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8; 1010 Idx = Builder.CreateUDiv(Idx, 1011 llvm::ConstantInt::get(Idx->getType(), 1012 BaseTypeSize)); 1013 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1014 } else if (const ObjCInterfaceType *OIT = 1015 dyn_cast<ObjCInterfaceType>(E->getType())) { 1016 llvm::Value *InterfaceSize = 1017 llvm::ConstantInt::get(Idx->getType(), 1018 getContext().getTypeSize(OIT) / 8); 1019 1020 Idx = Builder.CreateMul(Idx, InterfaceSize); 1021 1022 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 1023 Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy), 1024 Idx, "arrayidx"); 1025 Address = Builder.CreateBitCast(Address, Base->getType()); 1026 } else { 1027 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1028 } 1029 1030 QualType T = E->getBase()->getType()->getPointeeType(); 1031 assert(!T.isNull() && 1032 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1033 1034 Qualifiers Quals = MakeQualifiers(T); 1035 Quals.setAddressSpace(E->getBase()->getType().getAddressSpace()); 1036 1037 LValue LV = LValue::MakeAddr(Address, Quals); 1038 if (getContext().getLangOptions().ObjC1 && 1039 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1040 LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext())); 1041 setObjCGCLValueClass(getContext(), E, LV); 1042 } 1043 return LV; 1044} 1045 1046static 1047llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1048 llvm::SmallVector<unsigned, 4> &Elts) { 1049 llvm::SmallVector<llvm::Constant *, 4> CElts; 1050 1051 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1052 CElts.push_back(llvm::ConstantInt::get( 1053 llvm::Type::getInt32Ty(VMContext), Elts[i])); 1054 1055 return llvm::ConstantVector::get(&CElts[0], CElts.size()); 1056} 1057 1058LValue CodeGenFunction:: 1059EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1060 // Emit the base vector as an l-value. 1061 LValue Base; 1062 1063 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1064 if (!E->isArrow()) { 1065 assert(E->getBase()->getType()->isVectorType()); 1066 Base = EmitLValue(E->getBase()); 1067 } else { 1068 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1069 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1070 Qualifiers Quals = MakeQualifiers(PT->getPointeeType()); 1071 Quals.removeObjCGCAttr(); 1072 Base = LValue::MakeAddr(Ptr, Quals); 1073 } 1074 1075 // Encode the element access list into a vector of unsigned indices. 1076 llvm::SmallVector<unsigned, 4> Indices; 1077 E->getEncodedElementAccess(Indices); 1078 1079 if (Base.isSimple()) { 1080 llvm::Constant *CV = GenerateConstantVector(VMContext, Indices); 1081 return LValue::MakeExtVectorElt(Base.getAddress(), CV, 1082 Base.getVRQualifiers()); 1083 } 1084 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1085 1086 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1087 llvm::SmallVector<llvm::Constant *, 4> CElts; 1088 1089 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1090 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1091 CElts.push_back(llvm::ConstantInt::get( 1092 llvm::Type::getInt32Ty(VMContext), 0)); 1093 else 1094 CElts.push_back(BaseElts->getOperand(Indices[i])); 1095 } 1096 llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size()); 1097 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, 1098 Base.getVRQualifiers()); 1099} 1100 1101LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1102 bool isUnion = false; 1103 bool isNonGC = false; 1104 Expr *BaseExpr = E->getBase(); 1105 llvm::Value *BaseValue = NULL; 1106 Qualifiers BaseQuals; 1107 1108 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1109 if (E->isArrow()) { 1110 BaseValue = EmitScalarExpr(BaseExpr); 1111 const PointerType *PTy = 1112 BaseExpr->getType()->getAs<PointerType>(); 1113 if (PTy->getPointeeType()->isUnionType()) 1114 isUnion = true; 1115 BaseQuals = PTy->getPointeeType().getQualifiers(); 1116 } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) || 1117 isa<ObjCImplicitSetterGetterRefExpr>( 1118 BaseExpr->IgnoreParens())) { 1119 RValue RV = EmitObjCPropertyGet(BaseExpr); 1120 BaseValue = RV.getAggregateAddr(); 1121 if (BaseExpr->getType()->isUnionType()) 1122 isUnion = true; 1123 BaseQuals = BaseExpr->getType().getQualifiers(); 1124 } else { 1125 LValue BaseLV = EmitLValue(BaseExpr); 1126 if (BaseLV.isNonGC()) 1127 isNonGC = true; 1128 // FIXME: this isn't right for bitfields. 1129 BaseValue = BaseLV.getAddress(); 1130 QualType BaseTy = BaseExpr->getType(); 1131 if (BaseTy->isUnionType()) 1132 isUnion = true; 1133 BaseQuals = BaseTy.getQualifiers(); 1134 } 1135 1136 FieldDecl *Field = dyn_cast<FieldDecl>(E->getMemberDecl()); 1137 // FIXME: Handle non-field member expressions 1138 assert(Field && "No code generation for non-field member references"); 1139 LValue MemExpLV = EmitLValueForField(BaseValue, Field, isUnion, 1140 BaseQuals.getCVRQualifiers()); 1141 LValue::SetObjCNonGC(MemExpLV, isNonGC); 1142 setObjCGCLValueClass(getContext(), E, MemExpLV); 1143 return MemExpLV; 1144} 1145 1146LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue, 1147 FieldDecl* Field, 1148 unsigned CVRQualifiers) { 1149 CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field); 1150 1151 // FIXME: CodeGenTypes should expose a method to get the appropriate type for 1152 // FieldTy (the appropriate type is ABI-dependent). 1153 const llvm::Type *FieldTy = 1154 CGM.getTypes().ConvertTypeForMem(Field->getType()); 1155 const llvm::PointerType *BaseTy = 1156 cast<llvm::PointerType>(BaseValue->getType()); 1157 unsigned AS = BaseTy->getAddressSpace(); 1158 BaseValue = Builder.CreateBitCast(BaseValue, 1159 llvm::PointerType::get(FieldTy, AS), 1160 "tmp"); 1161 1162 llvm::Value *Idx = 1163 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo); 1164 llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp"); 1165 1166 return LValue::MakeBitfield(V, Info.Start, Info.Size, 1167 Field->getType()->isSignedIntegerType(), 1168 Field->getType().getCVRQualifiers()|CVRQualifiers); 1169} 1170 1171LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue, 1172 FieldDecl* Field, 1173 bool isUnion, 1174 unsigned CVRQualifiers) { 1175 if (Field->isBitField()) 1176 return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers); 1177 1178 unsigned idx = CGM.getTypes().getLLVMFieldNo(Field); 1179 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1180 1181 // Match union field type. 1182 if (isUnion) { 1183 const llvm::Type *FieldTy = 1184 CGM.getTypes().ConvertTypeForMem(Field->getType()); 1185 const llvm::PointerType * BaseTy = 1186 cast<llvm::PointerType>(BaseValue->getType()); 1187 unsigned AS = BaseTy->getAddressSpace(); 1188 V = Builder.CreateBitCast(V, 1189 llvm::PointerType::get(FieldTy, AS), 1190 "tmp"); 1191 } 1192 if (Field->getType()->isReferenceType()) 1193 V = Builder.CreateLoad(V, "tmp"); 1194 1195 Qualifiers Quals = MakeQualifiers(Field->getType()); 1196 Quals.addCVRQualifiers(CVRQualifiers); 1197 // __weak attribute on a field is ignored. 1198 if (Quals.getObjCGCAttr() == Qualifiers::Weak) 1199 Quals.removeObjCGCAttr(); 1200 1201 return LValue::MakeAddr(V, Quals); 1202} 1203 1204LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){ 1205 const llvm::Type *LTy = ConvertType(E->getType()); 1206 llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral"); 1207 1208 const Expr* InitExpr = E->getInitializer(); 1209 LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType())); 1210 1211 if (E->getType()->isComplexType()) { 1212 EmitComplexExprIntoAddr(InitExpr, DeclPtr, false); 1213 } else if (hasAggregateLLVMType(E->getType())) { 1214 EmitAnyExpr(InitExpr, DeclPtr, false); 1215 } else { 1216 EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType()); 1217 } 1218 1219 return Result; 1220} 1221 1222LValue 1223CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) { 1224 if (E->isLvalue(getContext()) == Expr::LV_Valid) { 1225 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1226 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1227 llvm::BasicBlock *ContBlock = createBasicBlock("cond.end"); 1228 1229 llvm::Value *Cond = EvaluateExprAsBool(E->getCond()); 1230 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 1231 1232 EmitBlock(LHSBlock); 1233 1234 LValue LHS = EmitLValue(E->getLHS()); 1235 if (!LHS.isSimple()) 1236 return EmitUnsupportedLValue(E, "conditional operator"); 1237 1238 llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(), 1239 "condtmp"); 1240 1241 Builder.CreateStore(LHS.getAddress(), Temp); 1242 EmitBranch(ContBlock); 1243 1244 EmitBlock(RHSBlock); 1245 LValue RHS = EmitLValue(E->getRHS()); 1246 if (!RHS.isSimple()) 1247 return EmitUnsupportedLValue(E, "conditional operator"); 1248 1249 Builder.CreateStore(RHS.getAddress(), Temp); 1250 EmitBranch(ContBlock); 1251 1252 EmitBlock(ContBlock); 1253 1254 Temp = Builder.CreateLoad(Temp, "lv"); 1255 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1256 } 1257 1258 // ?: here should be an aggregate. 1259 assert((hasAggregateLLVMType(E->getType()) && 1260 !E->getType()->isAnyComplexType()) && 1261 "Unexpected conditional operator!"); 1262 1263 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1264 EmitAggExpr(E, Temp, false); 1265 1266 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1267} 1268 1269/// EmitCastLValue - Casts are never lvalues. If a cast is needed by the code 1270/// generator in an lvalue context, then it must mean that we need the address 1271/// of an aggregate in order to access one of its fields. This can happen for 1272/// all the reasons that casts are permitted with aggregate result, including 1273/// noop aggregate casts, and cast from scalar to union. 1274LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1275 switch (E->getCastKind()) { 1276 default: 1277 // If this is an lvalue cast, treat it as a no-op. 1278 // FIXME: We shouldn't need to check for this explicitly! 1279 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 1280 if (ICE->isLvalueCast()) 1281 return EmitLValue(E->getSubExpr()); 1282 1283 assert(0 && "Unhandled cast!"); 1284 1285 case CastExpr::CK_NoOp: 1286 case CastExpr::CK_ConstructorConversion: 1287 case CastExpr::CK_UserDefinedConversion: 1288 return EmitLValue(E->getSubExpr()); 1289 1290 case CastExpr::CK_DerivedToBase: { 1291 const RecordType *DerivedClassTy = 1292 E->getSubExpr()->getType()->getAs<RecordType>(); 1293 CXXRecordDecl *DerivedClassDecl = 1294 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1295 1296 const RecordType *BaseClassTy = E->getType()->getAs<RecordType>(); 1297 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl()); 1298 1299 LValue LV = EmitLValue(E->getSubExpr()); 1300 1301 // Perform the derived-to-base conversion 1302 llvm::Value *Base = 1303 GetAddressCXXOfBaseClass(LV.getAddress(), DerivedClassDecl, 1304 BaseClassDecl, /*NullCheckValue=*/false); 1305 1306 return LValue::MakeAddr(Base, MakeQualifiers(E->getType())); 1307 } 1308 1309 case CastExpr::CK_ToUnion: { 1310 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1311 EmitAnyExpr(E->getSubExpr(), Temp, false); 1312 1313 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1314 } 1315 } 1316} 1317 1318LValue CodeGenFunction::EmitNullInitializationLValue( 1319 const CXXZeroInitValueExpr *E) { 1320 QualType Ty = E->getType(); 1321 const llvm::Type *LTy = ConvertTypeForMem(Ty); 1322 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 1323 unsigned Align = getContext().getTypeAlign(Ty)/8; 1324 Alloc->setAlignment(Align); 1325 LValue lvalue = LValue::MakeAddr(Alloc, Qualifiers()); 1326 EmitMemSetToZero(lvalue.getAddress(), Ty); 1327 return lvalue; 1328} 1329 1330//===--------------------------------------------------------------------===// 1331// Expression Emission 1332//===--------------------------------------------------------------------===// 1333 1334 1335RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) { 1336 // Builtins never have block type. 1337 if (E->getCallee()->getType()->isBlockPointerType()) 1338 return EmitBlockCallExpr(E); 1339 1340 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 1341 return EmitCXXMemberCallExpr(CE); 1342 1343 const Decl *TargetDecl = 0; 1344 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 1345 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 1346 TargetDecl = DRE->getDecl(); 1347 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 1348 if (unsigned builtinID = FD->getBuiltinID()) 1349 return EmitBuiltinExpr(FD, builtinID, E); 1350 } 1351 } 1352 1353 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 1354 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 1355 return EmitCXXOperatorMemberCallExpr(CE, MD); 1356 1357 if (isa<CXXPseudoDestructorExpr>(E->getCallee())) { 1358 // C++ [expr.pseudo]p1: 1359 // The result shall only be used as the operand for the function call 1360 // operator (), and the result of such a call has type void. The only 1361 // effect is the evaluation of the postfix-expression before the dot or 1362 // arrow. 1363 EmitScalarExpr(E->getCallee()); 1364 return RValue::get(0); 1365 } 1366 1367 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 1368 return EmitCall(Callee, E->getCallee()->getType(), 1369 E->arg_begin(), E->arg_end(), TargetDecl); 1370} 1371 1372LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 1373 // Comma expressions just emit their LHS then their RHS as an l-value. 1374 if (E->getOpcode() == BinaryOperator::Comma) { 1375 EmitAnyExpr(E->getLHS()); 1376 return EmitLValue(E->getRHS()); 1377 } 1378 1379 // Can only get l-value for binary operator expressions which are a 1380 // simple assignment of aggregate type. 1381 if (E->getOpcode() != BinaryOperator::Assign) 1382 return EmitUnsupportedLValue(E, "binary l-value expression"); 1383 1384 if (!hasAggregateLLVMType(E->getType())) { 1385 // Emit the LHS as an l-value. 1386 LValue LV = EmitLValue(E->getLHS()); 1387 1388 llvm::Value *RHS = EmitScalarExpr(E->getRHS()); 1389 EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(), 1390 E->getType()); 1391 return LV; 1392 } 1393 1394 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1395 EmitAggExpr(E, Temp, false); 1396 // FIXME: Are these qualifiers correct? 1397 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1398} 1399 1400LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 1401 RValue RV = EmitCallExpr(E); 1402 1403 if (RV.isScalar()) { 1404 assert(E->getCallReturnType()->isReferenceType() && 1405 "Can't have a scalar return unless the return type is a " 1406 "reference type!"); 1407 1408 return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType())); 1409 } 1410 1411 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType())); 1412} 1413 1414LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 1415 // FIXME: This shouldn't require another copy. 1416 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1417 EmitAggExpr(E, Temp, false); 1418 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1419} 1420 1421LValue 1422CodeGenFunction::EmitCXXConditionDeclLValue(const CXXConditionDeclExpr *E) { 1423 EmitLocalBlockVarDecl(*E->getVarDecl()); 1424 return EmitDeclRefLValue(E); 1425} 1426 1427LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 1428 llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp"); 1429 EmitCXXConstructExpr(Temp, E); 1430 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1431} 1432 1433LValue 1434CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 1435 LValue LV = EmitLValue(E->getSubExpr()); 1436 1437 PushCXXTemporary(E->getTemporary(), LV.getAddress()); 1438 1439 return LV; 1440} 1441 1442LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 1443 // Can only get l-value for message expression returning aggregate type 1444 RValue RV = EmitObjCMessageExpr(E); 1445 // FIXME: can this be volatile? 1446 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType())); 1447} 1448 1449llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 1450 const ObjCIvarDecl *Ivar) { 1451 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 1452} 1453 1454LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 1455 llvm::Value *BaseValue, 1456 const ObjCIvarDecl *Ivar, 1457 unsigned CVRQualifiers) { 1458 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 1459 Ivar, CVRQualifiers); 1460} 1461 1462LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 1463 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 1464 llvm::Value *BaseValue = 0; 1465 const Expr *BaseExpr = E->getBase(); 1466 Qualifiers BaseQuals; 1467 QualType ObjectTy; 1468 if (E->isArrow()) { 1469 BaseValue = EmitScalarExpr(BaseExpr); 1470 ObjectTy = BaseExpr->getType()->getPointeeType(); 1471 BaseQuals = ObjectTy.getQualifiers(); 1472 } else { 1473 LValue BaseLV = EmitLValue(BaseExpr); 1474 // FIXME: this isn't right for bitfields. 1475 BaseValue = BaseLV.getAddress(); 1476 ObjectTy = BaseExpr->getType(); 1477 BaseQuals = ObjectTy.getQualifiers(); 1478 } 1479 1480 LValue LV = 1481 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 1482 BaseQuals.getCVRQualifiers()); 1483 setObjCGCLValueClass(getContext(), E, LV); 1484 return LV; 1485} 1486 1487LValue 1488CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { 1489 // This is a special l-value that just issues sends when we load or store 1490 // through it. 1491 return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers()); 1492} 1493 1494LValue 1495CodeGenFunction::EmitObjCKVCRefLValue( 1496 const ObjCImplicitSetterGetterRefExpr *E) { 1497 // This is a special l-value that just issues sends when we load or store 1498 // through it. 1499 return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers()); 1500} 1501 1502LValue 1503CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) { 1504 return EmitUnsupportedLValue(E, "use of super"); 1505} 1506 1507LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 1508 1509 // Can only get l-value for message expression returning aggregate type 1510 RValue RV = EmitAnyExprToTemp(E); 1511 // FIXME: can this be volatile? 1512 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType())); 1513} 1514 1515 1516RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType, 1517 CallExpr::const_arg_iterator ArgBeg, 1518 CallExpr::const_arg_iterator ArgEnd, 1519 const Decl *TargetDecl) { 1520 // Get the actual function type. The callee type will always be a pointer to 1521 // function type or a block pointer type. 1522 assert(CalleeType->isFunctionPointerType() && 1523 "Call must have function pointer type!"); 1524 1525 QualType FnType = CalleeType->getAs<PointerType>()->getPointeeType(); 1526 QualType ResultType = FnType->getAs<FunctionType>()->getResultType(); 1527 1528 CallArgList Args; 1529 EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), ArgBeg, ArgEnd); 1530 1531 // FIXME: We should not need to do this, it should be part of the function 1532 // type. 1533 unsigned CallingConvention = 0; 1534 if (const llvm::Function *F = 1535 dyn_cast<llvm::Function>(Callee->stripPointerCasts())) 1536 CallingConvention = F->getCallingConv(); 1537 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, 1538 CallingConvention), 1539 Callee, Args, TargetDecl); 1540} 1541