CGExpr.cpp revision 79bfb4b564dc3636aae15aafa6340f9430881121
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/DeclObjC.h" 23#include "llvm/Intrinsics.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/Target/TargetData.h" 26using namespace clang; 27using namespace CodeGen; 28 29//===--------------------------------------------------------------------===// 30// Miscellaneous Helper Methods 31//===--------------------------------------------------------------------===// 32 33llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 34 unsigned addressSpace = 35 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 36 37 const llvm::PointerType *destType = Int8PtrTy; 38 if (addressSpace) 39 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 40 41 if (value->getType() == destType) return value; 42 return Builder.CreateBitCast(value, destType); 43} 44 45/// CreateTempAlloca - This creates a alloca and inserts it into the entry 46/// block. 47llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 48 const llvm::Twine &Name) { 49 if (!Builder.isNamePreserving()) 50 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 51 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 52} 53 54void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 55 llvm::Value *Init) { 56 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 57 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 58 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 59} 60 61llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 62 const llvm::Twine &Name) { 63 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 64 // FIXME: Should we prefer the preferred type alignment here? 65 CharUnits Align = getContext().getTypeAlignInChars(Ty); 66 Alloc->setAlignment(Align.getQuantity()); 67 return Alloc; 68} 69 70llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 71 const llvm::Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77} 78 79/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 80/// expression and compare the result against zero, returning an Int1Ty value. 81llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 82 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 83 llvm::Value *MemPtr = EmitScalarExpr(E); 84 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 85 } 86 87 QualType BoolTy = getContext().BoolTy; 88 if (!E->getType()->isAnyComplexType()) 89 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 90 91 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 92} 93 94/// EmitIgnoredExpr - Emit code to compute the specified expression, 95/// ignoring the result. 96void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 97 if (E->isRValue()) 98 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 99 100 // Just emit it as an l-value and drop the result. 101 EmitLValue(E); 102} 103 104/// EmitAnyExpr - Emit code to compute the specified expression which 105/// can have any type. The result is returned as an RValue struct. 106/// If this is an aggregate expression, AggSlot indicates where the 107/// result should be returned. 108RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 109 bool IgnoreResult) { 110 if (!hasAggregateLLVMType(E->getType())) 111 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 112 else if (E->getType()->isAnyComplexType()) 113 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 114 115 EmitAggExpr(E, AggSlot, IgnoreResult); 116 return AggSlot.asRValue(); 117} 118 119/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 120/// always be accessible even if no aggregate location is provided. 121RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 122 AggValueSlot AggSlot = AggValueSlot::ignored(); 123 124 if (hasAggregateLLVMType(E->getType()) && 125 !E->getType()->isAnyComplexType()) 126 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 127 return EmitAnyExpr(E, AggSlot); 128} 129 130/// EmitAnyExprToMem - Evaluate an expression into a given memory 131/// location. 132void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 133 llvm::Value *Location, 134 bool IsLocationVolatile, 135 bool IsInit) { 136 if (E->getType()->isComplexType()) 137 EmitComplexExprIntoAddr(E, Location, IsLocationVolatile); 138 else if (hasAggregateLLVMType(E->getType())) 139 EmitAggExpr(E, AggValueSlot::forAddr(Location, IsLocationVolatile, IsInit)); 140 else { 141 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 142 LValue LV = MakeAddrLValue(Location, E->getType()); 143 EmitStoreThroughLValue(RV, LV, E->getType()); 144 } 145} 146 147namespace { 148/// \brief An adjustment to be made to the temporary created when emitting a 149/// reference binding, which accesses a particular subobject of that temporary. 150 struct SubobjectAdjustment { 151 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 152 153 union { 154 struct { 155 const CastExpr *BasePath; 156 const CXXRecordDecl *DerivedClass; 157 } DerivedToBase; 158 159 FieldDecl *Field; 160 }; 161 162 SubobjectAdjustment(const CastExpr *BasePath, 163 const CXXRecordDecl *DerivedClass) 164 : Kind(DerivedToBaseAdjustment) { 165 DerivedToBase.BasePath = BasePath; 166 DerivedToBase.DerivedClass = DerivedClass; 167 } 168 169 SubobjectAdjustment(FieldDecl *Field) 170 : Kind(FieldAdjustment) { 171 this->Field = Field; 172 } 173 }; 174} 175 176static llvm::Value * 177CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type, 178 const NamedDecl *InitializedDecl) { 179 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 180 if (VD->hasGlobalStorage()) { 181 llvm::SmallString<256> Name; 182 llvm::raw_svector_ostream Out(Name); 183 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 184 Out.flush(); 185 186 const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 187 188 // Create the reference temporary. 189 llvm::GlobalValue *RefTemp = 190 new llvm::GlobalVariable(CGF.CGM.getModule(), 191 RefTempTy, /*isConstant=*/false, 192 llvm::GlobalValue::InternalLinkage, 193 llvm::Constant::getNullValue(RefTempTy), 194 Name.str()); 195 return RefTemp; 196 } 197 } 198 199 return CGF.CreateMemTemp(Type, "ref.tmp"); 200} 201 202static llvm::Value * 203EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 204 llvm::Value *&ReferenceTemporary, 205 const CXXDestructorDecl *&ReferenceTemporaryDtor, 206 const NamedDecl *InitializedDecl) { 207 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 208 E = DAE->getExpr(); 209 210 if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) { 211 CodeGenFunction::RunCleanupsScope Scope(CGF); 212 213 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), 214 ReferenceTemporary, 215 ReferenceTemporaryDtor, 216 InitializedDecl); 217 } 218 219 RValue RV; 220 if (E->isGLValue()) { 221 // Emit the expression as an lvalue. 222 LValue LV = CGF.EmitLValue(E); 223 if (LV.isSimple()) 224 return LV.getAddress(); 225 226 // We have to load the lvalue. 227 RV = CGF.EmitLoadOfLValue(LV, E->getType()); 228 } else { 229 QualType ResultTy = E->getType(); 230 231 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments; 232 while (true) { 233 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 234 E = PE->getSubExpr(); 235 continue; 236 } 237 238 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 239 if ((CE->getCastKind() == CK_DerivedToBase || 240 CE->getCastKind() == CK_UncheckedDerivedToBase) && 241 E->getType()->isRecordType()) { 242 E = CE->getSubExpr(); 243 CXXRecordDecl *Derived 244 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 245 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 246 continue; 247 } 248 249 if (CE->getCastKind() == CK_NoOp) { 250 E = CE->getSubExpr(); 251 continue; 252 } 253 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 254 if (!ME->isArrow() && ME->getBase()->isRValue()) { 255 assert(ME->getBase()->getType()->isRecordType()); 256 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 257 E = ME->getBase(); 258 Adjustments.push_back(SubobjectAdjustment(Field)); 259 continue; 260 } 261 } 262 } 263 264 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 265 if (opaque->getType()->isRecordType()) 266 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 267 268 // Nothing changed. 269 break; 270 } 271 272 // Create a reference temporary if necessary. 273 AggValueSlot AggSlot = AggValueSlot::ignored(); 274 if (CGF.hasAggregateLLVMType(E->getType()) && 275 !E->getType()->isAnyComplexType()) { 276 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 277 InitializedDecl); 278 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, false, 279 InitializedDecl != 0); 280 } 281 282 RV = CGF.EmitAnyExpr(E, AggSlot); 283 284 if (InitializedDecl) { 285 // Get the destructor for the reference temporary. 286 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 287 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 288 if (!ClassDecl->hasTrivialDestructor()) 289 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 290 } 291 } 292 293 // Check if need to perform derived-to-base casts and/or field accesses, to 294 // get from the temporary object we created (and, potentially, for which we 295 // extended the lifetime) to the subobject we're binding the reference to. 296 if (!Adjustments.empty()) { 297 llvm::Value *Object = RV.getAggregateAddr(); 298 for (unsigned I = Adjustments.size(); I != 0; --I) { 299 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 300 switch (Adjustment.Kind) { 301 case SubobjectAdjustment::DerivedToBaseAdjustment: 302 Object = 303 CGF.GetAddressOfBaseClass(Object, 304 Adjustment.DerivedToBase.DerivedClass, 305 Adjustment.DerivedToBase.BasePath->path_begin(), 306 Adjustment.DerivedToBase.BasePath->path_end(), 307 /*NullCheckValue=*/false); 308 break; 309 310 case SubobjectAdjustment::FieldAdjustment: { 311 LValue LV = 312 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 313 if (LV.isSimple()) { 314 Object = LV.getAddress(); 315 break; 316 } 317 318 // For non-simple lvalues, we actually have to create a copy of 319 // the object we're binding to. 320 QualType T = Adjustment.Field->getType().getNonReferenceType() 321 .getUnqualifiedType(); 322 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 323 LValue TempLV = CGF.MakeAddrLValue(Object, 324 Adjustment.Field->getType()); 325 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T); 326 break; 327 } 328 329 } 330 } 331 332 const llvm::Type *ResultPtrTy = CGF.ConvertType(ResultTy)->getPointerTo(); 333 return CGF.Builder.CreateBitCast(Object, ResultPtrTy, "temp"); 334 } 335 } 336 337 if (RV.isAggregate()) 338 return RV.getAggregateAddr(); 339 340 // Create a temporary variable that we can bind the reference to. 341 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 342 InitializedDecl); 343 344 345 unsigned Alignment = 346 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 347 if (RV.isScalar()) 348 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 349 /*Volatile=*/false, Alignment, E->getType()); 350 else 351 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 352 /*Volatile=*/false); 353 return ReferenceTemporary; 354} 355 356RValue 357CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 358 const NamedDecl *InitializedDecl) { 359 llvm::Value *ReferenceTemporary = 0; 360 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 361 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 362 ReferenceTemporaryDtor, 363 InitializedDecl); 364 if (!ReferenceTemporaryDtor) 365 return RValue::get(Value); 366 367 // Make sure to call the destructor for the reference temporary. 368 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 369 if (VD->hasGlobalStorage()) { 370 llvm::Constant *DtorFn = 371 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 372 EmitCXXGlobalDtorRegistration(DtorFn, 373 cast<llvm::Constant>(ReferenceTemporary)); 374 375 return RValue::get(Value); 376 } 377 } 378 379 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 380 381 return RValue::get(Value); 382} 383 384 385/// getAccessedFieldNo - Given an encoded value and a result number, return the 386/// input field number being accessed. 387unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 388 const llvm::Constant *Elts) { 389 if (isa<llvm::ConstantAggregateZero>(Elts)) 390 return 0; 391 392 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 393} 394 395void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 396 if (!CatchUndefined) 397 return; 398 399 // This needs to be to the standard address space. 400 Address = Builder.CreateBitCast(Address, Int8PtrTy); 401 402 const llvm::Type *IntPtrT = IntPtrTy; 403 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1); 404 405 // In time, people may want to control this and use a 1 here. 406 llvm::Value *Arg = Builder.getFalse(); 407 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 408 llvm::BasicBlock *Cont = createBasicBlock(); 409 llvm::BasicBlock *Check = createBasicBlock(); 410 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 411 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 412 413 EmitBlock(Check); 414 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 415 llvm::ConstantInt::get(IntPtrTy, Size)), 416 Cont, getTrapBB()); 417 EmitBlock(Cont); 418} 419 420 421CodeGenFunction::ComplexPairTy CodeGenFunction:: 422EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 423 bool isInc, bool isPre) { 424 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 425 LV.isVolatileQualified()); 426 427 llvm::Value *NextVal; 428 if (isa<llvm::IntegerType>(InVal.first->getType())) { 429 uint64_t AmountVal = isInc ? 1 : -1; 430 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 431 432 // Add the inc/dec to the real part. 433 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 434 } else { 435 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 436 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 437 if (!isInc) 438 FVal.changeSign(); 439 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 440 441 // Add the inc/dec to the real part. 442 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 443 } 444 445 ComplexPairTy IncVal(NextVal, InVal.second); 446 447 // Store the updated result through the lvalue. 448 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 449 450 // If this is a postinc, return the value read from memory, otherwise use the 451 // updated value. 452 return isPre ? IncVal : InVal; 453} 454 455 456//===----------------------------------------------------------------------===// 457// LValue Expression Emission 458//===----------------------------------------------------------------------===// 459 460RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 461 if (Ty->isVoidType()) 462 return RValue::get(0); 463 464 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 465 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 466 llvm::Value *U = llvm::UndefValue::get(EltTy); 467 return RValue::getComplex(std::make_pair(U, U)); 468 } 469 470 // If this is a use of an undefined aggregate type, the aggregate must have an 471 // identifiable address. Just because the contents of the value are undefined 472 // doesn't mean that the address can't be taken and compared. 473 if (hasAggregateLLVMType(Ty)) { 474 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 475 return RValue::getAggregate(DestPtr); 476 } 477 478 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 479} 480 481RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 482 const char *Name) { 483 ErrorUnsupported(E, Name); 484 return GetUndefRValue(E->getType()); 485} 486 487LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 488 const char *Name) { 489 ErrorUnsupported(E, Name); 490 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 491 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 492} 493 494LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 495 LValue LV = EmitLValue(E); 496 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 497 EmitCheck(LV.getAddress(), 498 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 499 return LV; 500} 501 502/// EmitLValue - Emit code to compute a designator that specifies the location 503/// of the expression. 504/// 505/// This can return one of two things: a simple address or a bitfield reference. 506/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 507/// an LLVM pointer type. 508/// 509/// If this returns a bitfield reference, nothing about the pointee type of the 510/// LLVM value is known: For example, it may not be a pointer to an integer. 511/// 512/// If this returns a normal address, and if the lvalue's C type is fixed size, 513/// this method guarantees that the returned pointer type will point to an LLVM 514/// type of the same size of the lvalue's type. If the lvalue has a variable 515/// length type, this is not possible. 516/// 517LValue CodeGenFunction::EmitLValue(const Expr *E) { 518 switch (E->getStmtClass()) { 519 default: return EmitUnsupportedLValue(E, "l-value expression"); 520 521 case Expr::ObjCSelectorExprClass: 522 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 523 case Expr::ObjCIsaExprClass: 524 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 525 case Expr::BinaryOperatorClass: 526 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 527 case Expr::CompoundAssignOperatorClass: 528 if (!E->getType()->isAnyComplexType()) 529 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 530 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 531 case Expr::CallExprClass: 532 case Expr::CXXMemberCallExprClass: 533 case Expr::CXXOperatorCallExprClass: 534 return EmitCallExprLValue(cast<CallExpr>(E)); 535 case Expr::VAArgExprClass: 536 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 537 case Expr::DeclRefExprClass: 538 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 539 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 540 case Expr::PredefinedExprClass: 541 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 542 case Expr::StringLiteralClass: 543 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 544 case Expr::ObjCEncodeExprClass: 545 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 546 547 case Expr::BlockDeclRefExprClass: 548 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 549 550 case Expr::CXXTemporaryObjectExprClass: 551 case Expr::CXXConstructExprClass: 552 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 553 case Expr::CXXBindTemporaryExprClass: 554 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 555 case Expr::ExprWithCleanupsClass: 556 return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E)); 557 case Expr::CXXScalarValueInitExprClass: 558 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 559 case Expr::CXXDefaultArgExprClass: 560 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 561 case Expr::CXXTypeidExprClass: 562 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 563 564 case Expr::ObjCMessageExprClass: 565 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 566 case Expr::ObjCIvarRefExprClass: 567 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 568 case Expr::ObjCPropertyRefExprClass: 569 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 570 case Expr::StmtExprClass: 571 return EmitStmtExprLValue(cast<StmtExpr>(E)); 572 case Expr::UnaryOperatorClass: 573 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 574 case Expr::ArraySubscriptExprClass: 575 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 576 case Expr::ExtVectorElementExprClass: 577 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 578 case Expr::MemberExprClass: 579 return EmitMemberExpr(cast<MemberExpr>(E)); 580 case Expr::CompoundLiteralExprClass: 581 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 582 case Expr::ConditionalOperatorClass: 583 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 584 case Expr::BinaryConditionalOperatorClass: 585 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 586 case Expr::ChooseExprClass: 587 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 588 case Expr::OpaqueValueExprClass: 589 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 590 case Expr::ImplicitCastExprClass: 591 case Expr::CStyleCastExprClass: 592 case Expr::CXXFunctionalCastExprClass: 593 case Expr::CXXStaticCastExprClass: 594 case Expr::CXXDynamicCastExprClass: 595 case Expr::CXXReinterpretCastExprClass: 596 case Expr::CXXConstCastExprClass: 597 return EmitCastLValue(cast<CastExpr>(E)); 598 } 599} 600 601llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 602 unsigned Alignment, QualType Ty, 603 llvm::MDNode *TBAAInfo) { 604 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); 605 if (Volatile) 606 Load->setVolatile(true); 607 if (Alignment) 608 Load->setAlignment(Alignment); 609 if (TBAAInfo) 610 CGM.DecorateInstruction(Load, TBAAInfo); 611 612 return EmitFromMemory(Load, Ty); 613} 614 615static bool isBooleanUnderlyingType(QualType Ty) { 616 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 617 return ET->getDecl()->getIntegerType()->isBooleanType(); 618 return false; 619} 620 621llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 622 // Bool has a different representation in memory than in registers. 623 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 624 // This should really always be an i1, but sometimes it's already 625 // an i8, and it's awkward to track those cases down. 626 if (Value->getType()->isIntegerTy(1)) 627 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 628 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 629 } 630 631 return Value; 632} 633 634llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 635 // Bool has a different representation in memory than in registers. 636 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 637 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 638 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 639 } 640 641 return Value; 642} 643 644void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 645 bool Volatile, unsigned Alignment, 646 QualType Ty, 647 llvm::MDNode *TBAAInfo) { 648 Value = EmitToMemory(Value, Ty); 649 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 650 if (Alignment) 651 Store->setAlignment(Alignment); 652 if (TBAAInfo) 653 CGM.DecorateInstruction(Store, TBAAInfo); 654} 655 656/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 657/// method emits the address of the lvalue, then loads the result as an rvalue, 658/// returning the rvalue. 659RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { 660 if (LV.isObjCWeak()) { 661 // load of a __weak object. 662 llvm::Value *AddrWeakObj = LV.getAddress(); 663 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 664 AddrWeakObj)); 665 } 666 667 if (LV.isSimple()) { 668 llvm::Value *Ptr = LV.getAddress(); 669 670 // Functions are l-values that don't require loading. 671 if (ExprType->isFunctionType()) 672 return RValue::get(Ptr); 673 674 // Everything needs a load. 675 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), 676 LV.getAlignment(), ExprType, 677 LV.getTBAAInfo())); 678 679 } 680 681 if (LV.isVectorElt()) { 682 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 683 LV.isVolatileQualified(), "tmp"); 684 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 685 "vecext")); 686 } 687 688 // If this is a reference to a subset of the elements of a vector, either 689 // shuffle the input or extract/insert them as appropriate. 690 if (LV.isExtVectorElt()) 691 return EmitLoadOfExtVectorElementLValue(LV, ExprType); 692 693 if (LV.isBitField()) 694 return EmitLoadOfBitfieldLValue(LV, ExprType); 695 696 assert(LV.isPropertyRef() && "Unknown LValue type!"); 697 return EmitLoadOfPropertyRefLValue(LV); 698} 699 700RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 701 QualType ExprType) { 702 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 703 704 // Get the output type. 705 const llvm::Type *ResLTy = ConvertType(ExprType); 706 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 707 708 // Compute the result as an OR of all of the individual component accesses. 709 llvm::Value *Res = 0; 710 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 711 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 712 713 // Get the field pointer. 714 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 715 716 // Only offset by the field index if used, so that incoming values are not 717 // required to be structures. 718 if (AI.FieldIndex) 719 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 720 721 // Offset by the byte offset, if used. 722 if (AI.FieldByteOffset) { 723 Ptr = EmitCastToVoidPtr(Ptr); 724 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); 725 } 726 727 // Cast to the access type. 728 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 729 AI.AccessWidth, 730 ExprType.getAddressSpace()); 731 Ptr = Builder.CreateBitCast(Ptr, PTy); 732 733 // Perform the load. 734 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 735 if (AI.AccessAlignment) 736 Load->setAlignment(AI.AccessAlignment); 737 738 // Shift out unused low bits and mask out unused high bits. 739 llvm::Value *Val = Load; 740 if (AI.FieldBitStart) 741 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 742 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 743 AI.TargetBitWidth), 744 "bf.clear"); 745 746 // Extend or truncate to the target size. 747 if (AI.AccessWidth < ResSizeInBits) 748 Val = Builder.CreateZExt(Val, ResLTy); 749 else if (AI.AccessWidth > ResSizeInBits) 750 Val = Builder.CreateTrunc(Val, ResLTy); 751 752 // Shift into place, and OR into the result. 753 if (AI.TargetBitOffset) 754 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 755 Res = Res ? Builder.CreateOr(Res, Val) : Val; 756 } 757 758 // If the bit-field is signed, perform the sign-extension. 759 // 760 // FIXME: This can easily be folded into the load of the high bits, which 761 // could also eliminate the mask of high bits in some situations. 762 if (Info.isSigned()) { 763 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 764 if (ExtraBits) 765 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 766 ExtraBits, "bf.val.sext"); 767 } 768 769 return RValue::get(Res); 770} 771 772// If this is a reference to a subset of the elements of a vector, create an 773// appropriate shufflevector. 774RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, 775 QualType ExprType) { 776 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 777 LV.isVolatileQualified(), "tmp"); 778 779 const llvm::Constant *Elts = LV.getExtVectorElts(); 780 781 // If the result of the expression is a non-vector type, we must be extracting 782 // a single element. Just codegen as an extractelement. 783 const VectorType *ExprVT = ExprType->getAs<VectorType>(); 784 if (!ExprVT) { 785 unsigned InIdx = getAccessedFieldNo(0, Elts); 786 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 787 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 788 } 789 790 // Always use shuffle vector to try to retain the original program structure 791 unsigned NumResultElts = ExprVT->getNumElements(); 792 793 llvm::SmallVector<llvm::Constant*, 4> Mask; 794 for (unsigned i = 0; i != NumResultElts; ++i) { 795 unsigned InIdx = getAccessedFieldNo(i, Elts); 796 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 797 } 798 799 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 800 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 801 MaskV, "tmp"); 802 return RValue::get(Vec); 803} 804 805 806 807/// EmitStoreThroughLValue - Store the specified rvalue into the specified 808/// lvalue, where both are guaranteed to the have the same type, and that type 809/// is 'Ty'. 810void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 811 QualType Ty) { 812 if (!Dst.isSimple()) { 813 if (Dst.isVectorElt()) { 814 // Read/modify/write the vector, inserting the new element. 815 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 816 Dst.isVolatileQualified(), "tmp"); 817 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 818 Dst.getVectorIdx(), "vecins"); 819 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 820 return; 821 } 822 823 // If this is an update of extended vector elements, insert them as 824 // appropriate. 825 if (Dst.isExtVectorElt()) 826 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); 827 828 if (Dst.isBitField()) 829 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); 830 831 assert(Dst.isPropertyRef() && "Unknown LValue type"); 832 return EmitStoreThroughPropertyRefLValue(Src, Dst); 833 } 834 835 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 836 // load of a __weak object. 837 llvm::Value *LvalueDst = Dst.getAddress(); 838 llvm::Value *src = Src.getScalarVal(); 839 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 840 return; 841 } 842 843 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 844 // load of a __strong object. 845 llvm::Value *LvalueDst = Dst.getAddress(); 846 llvm::Value *src = Src.getScalarVal(); 847 if (Dst.isObjCIvar()) { 848 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 849 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 850 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 851 llvm::Value *dst = RHS; 852 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 853 llvm::Value *LHS = 854 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 855 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 856 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 857 BytesBetween); 858 } else if (Dst.isGlobalObjCRef()) { 859 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 860 Dst.isThreadLocalRef()); 861 } 862 else 863 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 864 return; 865 } 866 867 assert(Src.isScalar() && "Can't emit an agg store with this method"); 868 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(), 869 Dst.isVolatileQualified(), Dst.getAlignment(), Ty, 870 Dst.getTBAAInfo()); 871} 872 873void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 874 QualType Ty, 875 llvm::Value **Result) { 876 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 877 878 // Get the output type. 879 const llvm::Type *ResLTy = ConvertTypeForMem(Ty); 880 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 881 882 // Get the source value, truncated to the width of the bit-field. 883 llvm::Value *SrcVal = Src.getScalarVal(); 884 885 if (Ty->isBooleanType()) 886 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 887 888 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 889 Info.getSize()), 890 "bf.value"); 891 892 // Return the new value of the bit-field, if requested. 893 if (Result) { 894 // Cast back to the proper type for result. 895 const llvm::Type *SrcTy = Src.getScalarVal()->getType(); 896 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 897 "bf.reload.val"); 898 899 // Sign extend if necessary. 900 if (Info.isSigned()) { 901 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 902 if (ExtraBits) 903 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 904 ExtraBits, "bf.reload.sext"); 905 } 906 907 *Result = ReloadVal; 908 } 909 910 // Iterate over the components, writing each piece to memory. 911 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 912 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 913 914 // Get the field pointer. 915 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 916 unsigned addressSpace = 917 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 918 919 // Only offset by the field index if used, so that incoming values are not 920 // required to be structures. 921 if (AI.FieldIndex) 922 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 923 924 // Offset by the byte offset, if used. 925 if (AI.FieldByteOffset) { 926 Ptr = EmitCastToVoidPtr(Ptr); 927 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); 928 } 929 930 // Cast to the access type. 931 const llvm::Type *AccessLTy = 932 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 933 934 const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 935 Ptr = Builder.CreateBitCast(Ptr, PTy); 936 937 // Extract the piece of the bit-field value to write in this access, limited 938 // to the values that are part of this access. 939 llvm::Value *Val = SrcVal; 940 if (AI.TargetBitOffset) 941 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 942 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 943 AI.TargetBitWidth)); 944 945 // Extend or truncate to the access size. 946 if (ResSizeInBits < AI.AccessWidth) 947 Val = Builder.CreateZExt(Val, AccessLTy); 948 else if (ResSizeInBits > AI.AccessWidth) 949 Val = Builder.CreateTrunc(Val, AccessLTy); 950 951 // Shift into the position in memory. 952 if (AI.FieldBitStart) 953 Val = Builder.CreateShl(Val, AI.FieldBitStart); 954 955 // If necessary, load and OR in bits that are outside of the bit-field. 956 if (AI.TargetBitWidth != AI.AccessWidth) { 957 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 958 if (AI.AccessAlignment) 959 Load->setAlignment(AI.AccessAlignment); 960 961 // Compute the mask for zeroing the bits that are part of the bit-field. 962 llvm::APInt InvMask = 963 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 964 AI.FieldBitStart + AI.TargetBitWidth); 965 966 // Apply the mask and OR in to the value to write. 967 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 968 } 969 970 // Write the value. 971 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 972 Dst.isVolatileQualified()); 973 if (AI.AccessAlignment) 974 Store->setAlignment(AI.AccessAlignment); 975 } 976} 977 978void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 979 LValue Dst, 980 QualType Ty) { 981 // This access turns into a read/modify/write of the vector. Load the input 982 // value now. 983 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 984 Dst.isVolatileQualified(), "tmp"); 985 const llvm::Constant *Elts = Dst.getExtVectorElts(); 986 987 llvm::Value *SrcVal = Src.getScalarVal(); 988 989 if (const VectorType *VTy = Ty->getAs<VectorType>()) { 990 unsigned NumSrcElts = VTy->getNumElements(); 991 unsigned NumDstElts = 992 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 993 if (NumDstElts == NumSrcElts) { 994 // Use shuffle vector is the src and destination are the same number of 995 // elements and restore the vector mask since it is on the side it will be 996 // stored. 997 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 998 for (unsigned i = 0; i != NumSrcElts; ++i) { 999 unsigned InIdx = getAccessedFieldNo(i, Elts); 1000 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 1001 } 1002 1003 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1004 Vec = Builder.CreateShuffleVector(SrcVal, 1005 llvm::UndefValue::get(Vec->getType()), 1006 MaskV, "tmp"); 1007 } else if (NumDstElts > NumSrcElts) { 1008 // Extended the source vector to the same length and then shuffle it 1009 // into the destination. 1010 // FIXME: since we're shuffling with undef, can we just use the indices 1011 // into that? This could be simpler. 1012 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 1013 unsigned i; 1014 for (i = 0; i != NumSrcElts; ++i) 1015 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1016 for (; i != NumDstElts; ++i) 1017 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 1018 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1019 llvm::Value *ExtSrcVal = 1020 Builder.CreateShuffleVector(SrcVal, 1021 llvm::UndefValue::get(SrcVal->getType()), 1022 ExtMaskV, "tmp"); 1023 // build identity 1024 llvm::SmallVector<llvm::Constant*, 4> Mask; 1025 for (unsigned i = 0; i != NumDstElts; ++i) 1026 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1027 1028 // modify when what gets shuffled in 1029 for (unsigned i = 0; i != NumSrcElts; ++i) { 1030 unsigned Idx = getAccessedFieldNo(i, Elts); 1031 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1032 } 1033 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1034 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 1035 } else { 1036 // We should never shorten the vector 1037 assert(0 && "unexpected shorten vector length"); 1038 } 1039 } else { 1040 // If the Src is a scalar (not a vector) it must be updating one element. 1041 unsigned InIdx = getAccessedFieldNo(0, Elts); 1042 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1043 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 1044 } 1045 1046 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1047} 1048 1049// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1050// generating write-barries API. It is currently a global, ivar, 1051// or neither. 1052static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1053 LValue &LV) { 1054 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 1055 return; 1056 1057 if (isa<ObjCIvarRefExpr>(E)) { 1058 LV.setObjCIvar(true); 1059 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1060 LV.setBaseIvarExp(Exp->getBase()); 1061 LV.setObjCArray(E->getType()->isArrayType()); 1062 return; 1063 } 1064 1065 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1066 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1067 if (VD->hasGlobalStorage()) { 1068 LV.setGlobalObjCRef(true); 1069 LV.setThreadLocalRef(VD->isThreadSpecified()); 1070 } 1071 } 1072 LV.setObjCArray(E->getType()->isArrayType()); 1073 return; 1074 } 1075 1076 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1077 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1078 return; 1079 } 1080 1081 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1082 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1083 if (LV.isObjCIvar()) { 1084 // If cast is to a structure pointer, follow gcc's behavior and make it 1085 // a non-ivar write-barrier. 1086 QualType ExpTy = E->getType(); 1087 if (ExpTy->isPointerType()) 1088 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1089 if (ExpTy->isRecordType()) 1090 LV.setObjCIvar(false); 1091 } 1092 return; 1093 } 1094 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1095 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1096 return; 1097 } 1098 1099 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1100 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1101 return; 1102 } 1103 1104 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1105 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1106 if (LV.isObjCIvar() && !LV.isObjCArray()) 1107 // Using array syntax to assigning to what an ivar points to is not 1108 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1109 LV.setObjCIvar(false); 1110 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1111 // Using array syntax to assigning to what global points to is not 1112 // same as assigning to the global itself. {id *G;} G[i] = 0; 1113 LV.setGlobalObjCRef(false); 1114 return; 1115 } 1116 1117 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1118 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1119 // We don't know if member is an 'ivar', but this flag is looked at 1120 // only in the context of LV.isObjCIvar(). 1121 LV.setObjCArray(E->getType()->isArrayType()); 1122 return; 1123 } 1124} 1125 1126static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1127 const Expr *E, const VarDecl *VD) { 1128 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1129 "Var decl must have external storage or be a file var decl!"); 1130 1131 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1132 if (VD->getType()->isReferenceType()) 1133 V = CGF.Builder.CreateLoad(V, "tmp"); 1134 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); 1135 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1136 setObjCGCLValueClass(CGF.getContext(), E, LV); 1137 return LV; 1138} 1139 1140static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1141 const Expr *E, const FunctionDecl *FD) { 1142 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1143 if (!FD->hasPrototype()) { 1144 if (const FunctionProtoType *Proto = 1145 FD->getType()->getAs<FunctionProtoType>()) { 1146 // Ugly case: for a K&R-style definition, the type of the definition 1147 // isn't the same as the type of a use. Correct for this with a 1148 // bitcast. 1149 QualType NoProtoType = 1150 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1151 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1152 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); 1153 } 1154 } 1155 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); 1156 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1157} 1158 1159LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1160 const NamedDecl *ND = E->getDecl(); 1161 unsigned Alignment = getContext().getDeclAlign(ND).getQuantity(); 1162 1163 if (ND->hasAttr<WeakRefAttr>()) { 1164 const ValueDecl *VD = cast<ValueDecl>(ND); 1165 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1166 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1167 } 1168 1169 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1170 1171 // Check if this is a global variable. 1172 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1173 return EmitGlobalVarDeclLValue(*this, E, VD); 1174 1175 bool NonGCable = VD->hasLocalStorage() && 1176 !VD->getType()->isReferenceType() && 1177 !VD->hasAttr<BlocksAttr>(); 1178 1179 llvm::Value *V = LocalDeclMap[VD]; 1180 if (!V && VD->isStaticLocal()) 1181 V = CGM.getStaticLocalDeclAddress(VD); 1182 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1183 1184 if (VD->hasAttr<BlocksAttr>()) 1185 V = BuildBlockByrefAddress(V, VD); 1186 1187 if (VD->getType()->isReferenceType()) 1188 V = Builder.CreateLoad(V, "tmp"); 1189 1190 LValue LV = MakeAddrLValue(V, E->getType(), Alignment); 1191 if (NonGCable) { 1192 LV.getQuals().removeObjCGCAttr(); 1193 LV.setNonGC(true); 1194 } 1195 setObjCGCLValueClass(getContext(), E, LV); 1196 return LV; 1197 } 1198 1199 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1200 return EmitFunctionDeclLValue(*this, E, fn); 1201 1202 assert(false && "Unhandled DeclRefExpr"); 1203 1204 // an invalid LValue, but the assert will 1205 // ensure that this point is never reached. 1206 return LValue(); 1207} 1208 1209LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1210 unsigned Alignment = 1211 getContext().getDeclAlign(E->getDecl()).getQuantity(); 1212 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1213} 1214 1215LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1216 // __extension__ doesn't affect lvalue-ness. 1217 if (E->getOpcode() == UO_Extension) 1218 return EmitLValue(E->getSubExpr()); 1219 1220 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1221 switch (E->getOpcode()) { 1222 default: assert(0 && "Unknown unary operator lvalue!"); 1223 case UO_Deref: { 1224 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1225 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1226 1227 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1228 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1229 1230 // We should not generate __weak write barrier on indirect reference 1231 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1232 // But, we continue to generate __strong write barrier on indirect write 1233 // into a pointer to object. 1234 if (getContext().getLangOptions().ObjC1 && 1235 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 1236 LV.isObjCWeak()) 1237 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1238 return LV; 1239 } 1240 case UO_Real: 1241 case UO_Imag: { 1242 LValue LV = EmitLValue(E->getSubExpr()); 1243 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1244 llvm::Value *Addr = LV.getAddress(); 1245 1246 // real and imag are valid on scalars. This is a faster way of 1247 // testing that. 1248 if (!cast<llvm::PointerType>(Addr->getType()) 1249 ->getElementType()->isStructTy()) { 1250 assert(E->getSubExpr()->getType()->isArithmeticType()); 1251 return LV; 1252 } 1253 1254 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1255 1256 unsigned Idx = E->getOpcode() == UO_Imag; 1257 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1258 Idx, "idx"), 1259 ExprTy); 1260 } 1261 case UO_PreInc: 1262 case UO_PreDec: { 1263 LValue LV = EmitLValue(E->getSubExpr()); 1264 bool isInc = E->getOpcode() == UO_PreInc; 1265 1266 if (E->getType()->isAnyComplexType()) 1267 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1268 else 1269 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1270 return LV; 1271 } 1272 } 1273} 1274 1275LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1276 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1277 E->getType()); 1278} 1279 1280LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1281 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1282 E->getType()); 1283} 1284 1285 1286LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1287 switch (E->getIdentType()) { 1288 default: 1289 return EmitUnsupportedLValue(E, "predefined expression"); 1290 1291 case PredefinedExpr::Func: 1292 case PredefinedExpr::Function: 1293 case PredefinedExpr::PrettyFunction: { 1294 unsigned Type = E->getIdentType(); 1295 std::string GlobalVarName; 1296 1297 switch (Type) { 1298 default: assert(0 && "Invalid type"); 1299 case PredefinedExpr::Func: 1300 GlobalVarName = "__func__."; 1301 break; 1302 case PredefinedExpr::Function: 1303 GlobalVarName = "__FUNCTION__."; 1304 break; 1305 case PredefinedExpr::PrettyFunction: 1306 GlobalVarName = "__PRETTY_FUNCTION__."; 1307 break; 1308 } 1309 1310 llvm::StringRef FnName = CurFn->getName(); 1311 if (FnName.startswith("\01")) 1312 FnName = FnName.substr(1); 1313 GlobalVarName += FnName; 1314 1315 const Decl *CurDecl = CurCodeDecl; 1316 if (CurDecl == 0) 1317 CurDecl = getContext().getTranslationUnitDecl(); 1318 1319 std::string FunctionName = 1320 (isa<BlockDecl>(CurDecl) 1321 ? FnName.str() 1322 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1323 1324 llvm::Constant *C = 1325 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1326 return MakeAddrLValue(C, E->getType()); 1327 } 1328 } 1329} 1330 1331llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1332 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1333 1334 // If we are not optimzing, don't collapse all calls to trap in the function 1335 // to the same call, that way, in the debugger they can see which operation 1336 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1337 // to just one per function to save on codesize. 1338 if (GCO.OptimizationLevel && TrapBB) 1339 return TrapBB; 1340 1341 llvm::BasicBlock *Cont = 0; 1342 if (HaveInsertPoint()) { 1343 Cont = createBasicBlock("cont"); 1344 EmitBranch(Cont); 1345 } 1346 TrapBB = createBasicBlock("trap"); 1347 EmitBlock(TrapBB); 1348 1349 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0); 1350 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1351 TrapCall->setDoesNotReturn(); 1352 TrapCall->setDoesNotThrow(); 1353 Builder.CreateUnreachable(); 1354 1355 if (Cont) 1356 EmitBlock(Cont); 1357 return TrapBB; 1358} 1359 1360/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1361/// array to pointer, return the array subexpression. 1362static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1363 // If this isn't just an array->pointer decay, bail out. 1364 const CastExpr *CE = dyn_cast<CastExpr>(E); 1365 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1366 return 0; 1367 1368 // If this is a decay from variable width array, bail out. 1369 const Expr *SubExpr = CE->getSubExpr(); 1370 if (SubExpr->getType()->isVariableArrayType()) 1371 return 0; 1372 1373 return SubExpr; 1374} 1375 1376LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1377 // The index must always be an integer, which is not an aggregate. Emit it. 1378 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1379 QualType IdxTy = E->getIdx()->getType(); 1380 bool IdxSigned = IdxTy->isSignedIntegerType(); 1381 1382 // If the base is a vector type, then we are forming a vector element lvalue 1383 // with this subscript. 1384 if (E->getBase()->getType()->isVectorType()) { 1385 // Emit the vector as an lvalue to get its address. 1386 LValue LHS = EmitLValue(E->getBase()); 1387 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1388 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1389 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1390 E->getBase()->getType().getCVRQualifiers()); 1391 } 1392 1393 // Extend or truncate the index type to 32 or 64-bits. 1394 if (Idx->getType() != IntPtrTy) 1395 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1396 1397 // FIXME: As llvm implements the object size checking, this can come out. 1398 if (CatchUndefined) { 1399 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1400 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1401 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1402 if (const ConstantArrayType *CAT 1403 = getContext().getAsConstantArrayType(DRE->getType())) { 1404 llvm::APInt Size = CAT->getSize(); 1405 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1406 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1407 llvm::ConstantInt::get(Idx->getType(), Size)), 1408 Cont, getTrapBB()); 1409 EmitBlock(Cont); 1410 } 1411 } 1412 } 1413 } 1414 } 1415 1416 // We know that the pointer points to a type of the correct size, unless the 1417 // size is a VLA or Objective-C interface. 1418 llvm::Value *Address = 0; 1419 if (const VariableArrayType *VAT = 1420 getContext().getAsVariableArrayType(E->getType())) { 1421 llvm::Value *VLASize = GetVLASize(VAT); 1422 1423 Idx = Builder.CreateMul(Idx, VLASize); 1424 1425 // The base must be a pointer, which is not an aggregate. Emit it. 1426 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1427 1428 Address = EmitCastToVoidPtr(Base); 1429 if (getContext().getLangOptions().isSignedOverflowDefined()) 1430 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1431 else 1432 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1433 Address = Builder.CreateBitCast(Address, Base->getType()); 1434 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1435 // Indexing over an interface, as in "NSString *P; P[4];" 1436 llvm::Value *InterfaceSize = 1437 llvm::ConstantInt::get(Idx->getType(), 1438 getContext().getTypeSizeInChars(OIT).getQuantity()); 1439 1440 Idx = Builder.CreateMul(Idx, InterfaceSize); 1441 1442 // The base must be a pointer, which is not an aggregate. Emit it. 1443 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1444 Address = EmitCastToVoidPtr(Base); 1445 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1446 Address = Builder.CreateBitCast(Address, Base->getType()); 1447 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1448 // If this is A[i] where A is an array, the frontend will have decayed the 1449 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1450 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1451 // "gep x, i" here. Emit one "gep A, 0, i". 1452 assert(Array->getType()->isArrayType() && 1453 "Array to pointer decay must have array source type!"); 1454 llvm::Value *ArrayPtr = EmitLValue(Array).getAddress(); 1455 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1456 llvm::Value *Args[] = { Zero, Idx }; 1457 1458 if (getContext().getLangOptions().isSignedOverflowDefined()) 1459 Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1460 else 1461 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1462 } else { 1463 // The base must be a pointer, which is not an aggregate. Emit it. 1464 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1465 if (getContext().getLangOptions().isSignedOverflowDefined()) 1466 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1467 else 1468 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1469 } 1470 1471 QualType T = E->getBase()->getType()->getPointeeType(); 1472 assert(!T.isNull() && 1473 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1474 1475 LValue LV = MakeAddrLValue(Address, T); 1476 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1477 1478 if (getContext().getLangOptions().ObjC1 && 1479 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1480 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1481 setObjCGCLValueClass(getContext(), E, LV); 1482 } 1483 return LV; 1484} 1485 1486static 1487llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1488 llvm::SmallVector<unsigned, 4> &Elts) { 1489 llvm::SmallVector<llvm::Constant*, 4> CElts; 1490 1491 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1492 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1493 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1494 1495 return llvm::ConstantVector::get(CElts); 1496} 1497 1498LValue CodeGenFunction:: 1499EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1500 // Emit the base vector as an l-value. 1501 LValue Base; 1502 1503 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1504 if (E->isArrow()) { 1505 // If it is a pointer to a vector, emit the address and form an lvalue with 1506 // it. 1507 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1508 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1509 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1510 Base.getQuals().removeObjCGCAttr(); 1511 } else if (E->getBase()->isGLValue()) { 1512 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1513 // emit the base as an lvalue. 1514 assert(E->getBase()->getType()->isVectorType()); 1515 Base = EmitLValue(E->getBase()); 1516 } else { 1517 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1518 assert(E->getBase()->getType()->getAs<VectorType>() && 1519 "Result must be a vector"); 1520 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1521 1522 // Store the vector to memory (because LValue wants an address). 1523 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1524 Builder.CreateStore(Vec, VecMem); 1525 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1526 } 1527 1528 // Encode the element access list into a vector of unsigned indices. 1529 llvm::SmallVector<unsigned, 4> Indices; 1530 E->getEncodedElementAccess(Indices); 1531 1532 if (Base.isSimple()) { 1533 llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices); 1534 return LValue::MakeExtVectorElt(Base.getAddress(), CV, 1535 Base.getVRQualifiers()); 1536 } 1537 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1538 1539 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1540 llvm::SmallVector<llvm::Constant *, 4> CElts; 1541 1542 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1543 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1544 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1545 else 1546 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1547 } 1548 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1549 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, 1550 Base.getVRQualifiers()); 1551} 1552 1553LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1554 bool isNonGC = false; 1555 Expr *BaseExpr = E->getBase(); 1556 llvm::Value *BaseValue = NULL; 1557 Qualifiers BaseQuals; 1558 1559 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1560 if (E->isArrow()) { 1561 BaseValue = EmitScalarExpr(BaseExpr); 1562 const PointerType *PTy = 1563 BaseExpr->getType()->getAs<PointerType>(); 1564 BaseQuals = PTy->getPointeeType().getQualifiers(); 1565 } else { 1566 LValue BaseLV = EmitLValue(BaseExpr); 1567 if (BaseLV.isNonGC()) 1568 isNonGC = true; 1569 // FIXME: this isn't right for bitfields. 1570 BaseValue = BaseLV.getAddress(); 1571 QualType BaseTy = BaseExpr->getType(); 1572 BaseQuals = BaseTy.getQualifiers(); 1573 } 1574 1575 NamedDecl *ND = E->getMemberDecl(); 1576 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1577 LValue LV = EmitLValueForField(BaseValue, Field, 1578 BaseQuals.getCVRQualifiers()); 1579 LV.setNonGC(isNonGC); 1580 setObjCGCLValueClass(getContext(), E, LV); 1581 return LV; 1582 } 1583 1584 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1585 return EmitGlobalVarDeclLValue(*this, E, VD); 1586 1587 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1588 return EmitFunctionDeclLValue(*this, E, FD); 1589 1590 assert(false && "Unhandled member declaration!"); 1591 return LValue(); 1592} 1593 1594LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1595 const FieldDecl *Field, 1596 unsigned CVRQualifiers) { 1597 const CGRecordLayout &RL = 1598 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1599 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1600 return LValue::MakeBitfield(BaseValue, Info, 1601 Field->getType().getCVRQualifiers()|CVRQualifiers); 1602} 1603 1604/// EmitLValueForAnonRecordField - Given that the field is a member of 1605/// an anonymous struct or union buried inside a record, and given 1606/// that the base value is a pointer to the enclosing record, derive 1607/// an lvalue for the ultimate field. 1608LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1609 const IndirectFieldDecl *Field, 1610 unsigned CVRQualifiers) { 1611 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1612 IEnd = Field->chain_end(); 1613 while (true) { 1614 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), CVRQualifiers); 1615 if (++I == IEnd) return LV; 1616 1617 assert(LV.isSimple()); 1618 BaseValue = LV.getAddress(); 1619 CVRQualifiers |= LV.getVRQualifiers(); 1620 } 1621} 1622 1623LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1624 const FieldDecl *field, 1625 unsigned cvr) { 1626 if (field->isBitField()) 1627 return EmitLValueForBitfield(baseAddr, field, cvr); 1628 1629 const RecordDecl *rec = field->getParent(); 1630 QualType type = field->getType(); 1631 1632 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1633 1634 llvm::Value *addr; 1635 if (rec->isUnion()) { 1636 // For unions, we just cast to the appropriate type. 1637 assert(!type->isReferenceType() && "union has reference member"); 1638 1639 const llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(type); 1640 unsigned AS = 1641 cast<llvm::PointerType>(baseAddr->getType())->getAddressSpace(); 1642 addr = Builder.CreateBitCast(baseAddr, llvmType->getPointerTo(AS), 1643 field->getName()); 1644 } else { 1645 // For structs, we GEP to the field that the record layout suggests. 1646 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1647 addr = Builder.CreateStructGEP(baseAddr, idx, field->getName()); 1648 1649 // If this is a reference field, load the reference right now. 1650 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1651 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1652 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1653 1654 if (CGM.shouldUseTBAA()) { 1655 llvm::MDNode *tbaa; 1656 if (mayAlias) 1657 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1658 else 1659 tbaa = CGM.getTBAAInfo(type); 1660 CGM.DecorateInstruction(load, tbaa); 1661 } 1662 1663 addr = load; 1664 mayAlias = false; 1665 type = refType->getPointeeType(); 1666 cvr = 0; // qualifiers don't recursively apply to referencee 1667 } 1668 } 1669 1670 unsigned alignment = getContext().getDeclAlign(field).getQuantity(); 1671 LValue LV = MakeAddrLValue(addr, type, alignment); 1672 LV.getQuals().addCVRQualifiers(cvr); 1673 1674 // __weak attribute on a field is ignored. 1675 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1676 LV.getQuals().removeObjCGCAttr(); 1677 1678 // Fields of may_alias structs act like 'char' for TBAA purposes. 1679 // FIXME: this should get propagated down through anonymous structs 1680 // and unions. 1681 if (mayAlias && LV.getTBAAInfo()) 1682 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1683 1684 return LV; 1685} 1686 1687LValue 1688CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1689 const FieldDecl *Field, 1690 unsigned CVRQualifiers) { 1691 QualType FieldType = Field->getType(); 1692 1693 if (!FieldType->isReferenceType()) 1694 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1695 1696 const CGRecordLayout &RL = 1697 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1698 unsigned idx = RL.getLLVMFieldNo(Field); 1699 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1700 1701 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1702 1703 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1704 return MakeAddrLValue(V, FieldType, Alignment); 1705} 1706 1707LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1708 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1709 const Expr *InitExpr = E->getInitializer(); 1710 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1711 1712 EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false, /*Init*/ true); 1713 1714 return Result; 1715} 1716 1717LValue CodeGenFunction:: 1718EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1719 if (!expr->isGLValue()) { 1720 // ?: here should be an aggregate. 1721 assert((hasAggregateLLVMType(expr->getType()) && 1722 !expr->getType()->isAnyComplexType()) && 1723 "Unexpected conditional operator!"); 1724 return EmitAggExprToLValue(expr); 1725 } 1726 1727 const Expr *condExpr = expr->getCond(); 1728 bool CondExprBool; 1729 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1730 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1731 if (!CondExprBool) std::swap(live, dead); 1732 1733 if (!ContainsLabel(dead)) 1734 return EmitLValue(live); 1735 } 1736 1737 OpaqueValueMapping binding(*this, expr); 1738 1739 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 1740 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 1741 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 1742 1743 ConditionalEvaluation eval(*this); 1744 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 1745 1746 // Any temporaries created here are conditional. 1747 EmitBlock(lhsBlock); 1748 eval.begin(*this); 1749 LValue lhs = EmitLValue(expr->getTrueExpr()); 1750 eval.end(*this); 1751 1752 if (!lhs.isSimple()) 1753 return EmitUnsupportedLValue(expr, "conditional operator"); 1754 1755 lhsBlock = Builder.GetInsertBlock(); 1756 Builder.CreateBr(contBlock); 1757 1758 // Any temporaries created here are conditional. 1759 EmitBlock(rhsBlock); 1760 eval.begin(*this); 1761 LValue rhs = EmitLValue(expr->getFalseExpr()); 1762 eval.end(*this); 1763 if (!rhs.isSimple()) 1764 return EmitUnsupportedLValue(expr, "conditional operator"); 1765 rhsBlock = Builder.GetInsertBlock(); 1766 1767 EmitBlock(contBlock); 1768 1769 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 1770 "cond-lvalue"); 1771 phi->reserveOperandSpace(2); 1772 phi->addIncoming(lhs.getAddress(), lhsBlock); 1773 phi->addIncoming(rhs.getAddress(), rhsBlock); 1774 return MakeAddrLValue(phi, expr->getType()); 1775} 1776 1777/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1778/// If the cast is a dynamic_cast, we can have the usual lvalue result, 1779/// otherwise if a cast is needed by the code generator in an lvalue context, 1780/// then it must mean that we need the address of an aggregate in order to 1781/// access one of its fields. This can happen for all the reasons that casts 1782/// are permitted with aggregate result, including noop aggregate casts, and 1783/// cast from scalar to union. 1784LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1785 switch (E->getCastKind()) { 1786 case CK_ToVoid: 1787 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1788 1789 case CK_Dependent: 1790 llvm_unreachable("dependent cast kind in IR gen!"); 1791 1792 case CK_GetObjCProperty: { 1793 LValue LV = EmitLValue(E->getSubExpr()); 1794 assert(LV.isPropertyRef()); 1795 RValue RV = EmitLoadOfPropertyRefLValue(LV); 1796 1797 // Property is an aggregate r-value. 1798 if (RV.isAggregate()) { 1799 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1800 } 1801 1802 // Implicit property returns an l-value. 1803 assert(RV.isScalar()); 1804 return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType()); 1805 } 1806 1807 case CK_NoOp: 1808 case CK_LValueToRValue: 1809 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 1810 || E->getType()->isRecordType()) 1811 return EmitLValue(E->getSubExpr()); 1812 // Fall through to synthesize a temporary. 1813 1814 case CK_BitCast: 1815 case CK_ArrayToPointerDecay: 1816 case CK_FunctionToPointerDecay: 1817 case CK_NullToMemberPointer: 1818 case CK_NullToPointer: 1819 case CK_IntegralToPointer: 1820 case CK_PointerToIntegral: 1821 case CK_PointerToBoolean: 1822 case CK_VectorSplat: 1823 case CK_IntegralCast: 1824 case CK_IntegralToBoolean: 1825 case CK_IntegralToFloating: 1826 case CK_FloatingToIntegral: 1827 case CK_FloatingToBoolean: 1828 case CK_FloatingCast: 1829 case CK_FloatingRealToComplex: 1830 case CK_FloatingComplexToReal: 1831 case CK_FloatingComplexToBoolean: 1832 case CK_FloatingComplexCast: 1833 case CK_FloatingComplexToIntegralComplex: 1834 case CK_IntegralRealToComplex: 1835 case CK_IntegralComplexToReal: 1836 case CK_IntegralComplexToBoolean: 1837 case CK_IntegralComplexCast: 1838 case CK_IntegralComplexToFloatingComplex: 1839 case CK_DerivedToBaseMemberPointer: 1840 case CK_BaseToDerivedMemberPointer: 1841 case CK_MemberPointerToBoolean: 1842 case CK_AnyPointerToBlockPointerCast: { 1843 // These casts only produce lvalues when we're binding a reference to a 1844 // temporary realized from a (converted) pure rvalue. Emit the expression 1845 // as a value, copy it into a temporary, and return an lvalue referring to 1846 // that temporary. 1847 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 1848 EmitAnyExprToMem(E, V, false, false); 1849 return MakeAddrLValue(V, E->getType()); 1850 } 1851 1852 case CK_Dynamic: { 1853 LValue LV = EmitLValue(E->getSubExpr()); 1854 llvm::Value *V = LV.getAddress(); 1855 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 1856 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 1857 } 1858 1859 case CK_ConstructorConversion: 1860 case CK_UserDefinedConversion: 1861 case CK_AnyPointerToObjCPointerCast: 1862 return EmitLValue(E->getSubExpr()); 1863 1864 case CK_UncheckedDerivedToBase: 1865 case CK_DerivedToBase: { 1866 const RecordType *DerivedClassTy = 1867 E->getSubExpr()->getType()->getAs<RecordType>(); 1868 CXXRecordDecl *DerivedClassDecl = 1869 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1870 1871 LValue LV = EmitLValue(E->getSubExpr()); 1872 llvm::Value *This = LV.getAddress(); 1873 1874 // Perform the derived-to-base conversion 1875 llvm::Value *Base = 1876 GetAddressOfBaseClass(This, DerivedClassDecl, 1877 E->path_begin(), E->path_end(), 1878 /*NullCheckValue=*/false); 1879 1880 return MakeAddrLValue(Base, E->getType()); 1881 } 1882 case CK_ToUnion: 1883 return EmitAggExprToLValue(E); 1884 case CK_BaseToDerived: { 1885 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 1886 CXXRecordDecl *DerivedClassDecl = 1887 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1888 1889 LValue LV = EmitLValue(E->getSubExpr()); 1890 1891 // Perform the base-to-derived conversion 1892 llvm::Value *Derived = 1893 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 1894 E->path_begin(), E->path_end(), 1895 /*NullCheckValue=*/false); 1896 1897 return MakeAddrLValue(Derived, E->getType()); 1898 } 1899 case CK_LValueBitCast: { 1900 // This must be a reinterpret_cast (or c-style equivalent). 1901 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 1902 1903 LValue LV = EmitLValue(E->getSubExpr()); 1904 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1905 ConvertType(CE->getTypeAsWritten())); 1906 return MakeAddrLValue(V, E->getType()); 1907 } 1908 case CK_ObjCObjectLValueCast: { 1909 LValue LV = EmitLValue(E->getSubExpr()); 1910 QualType ToType = getContext().getLValueReferenceType(E->getType()); 1911 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1912 ConvertType(ToType)); 1913 return MakeAddrLValue(V, E->getType()); 1914 } 1915 } 1916 1917 llvm_unreachable("Unhandled lvalue cast kind?"); 1918} 1919 1920LValue CodeGenFunction::EmitNullInitializationLValue( 1921 const CXXScalarValueInitExpr *E) { 1922 QualType Ty = E->getType(); 1923 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 1924 EmitNullInitialization(LV.getAddress(), Ty); 1925 return LV; 1926} 1927 1928LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 1929 assert(e->isGLValue() || e->getType()->isRecordType()); 1930 return getOpaqueLValueMapping(e); 1931} 1932 1933//===--------------------------------------------------------------------===// 1934// Expression Emission 1935//===--------------------------------------------------------------------===// 1936 1937 1938RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 1939 ReturnValueSlot ReturnValue) { 1940 if (CGDebugInfo *DI = getDebugInfo()) { 1941 DI->setLocation(E->getLocStart()); 1942 DI->UpdateLineDirectiveRegion(Builder); 1943 DI->EmitStopPoint(Builder); 1944 } 1945 1946 // Builtins never have block type. 1947 if (E->getCallee()->getType()->isBlockPointerType()) 1948 return EmitBlockCallExpr(E, ReturnValue); 1949 1950 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 1951 return EmitCXXMemberCallExpr(CE, ReturnValue); 1952 1953 const Decl *TargetDecl = 0; 1954 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 1955 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 1956 TargetDecl = DRE->getDecl(); 1957 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 1958 if (unsigned builtinID = FD->getBuiltinID()) 1959 return EmitBuiltinExpr(FD, builtinID, E); 1960 } 1961 } 1962 1963 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 1964 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 1965 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 1966 1967 if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 1968 // C++ [expr.pseudo]p1: 1969 // The result shall only be used as the operand for the function call 1970 // operator (), and the result of such a call has type void. The only 1971 // effect is the evaluation of the postfix-expression before the dot or 1972 // arrow. 1973 EmitScalarExpr(E->getCallee()); 1974 return RValue::get(0); 1975 } 1976 1977 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 1978 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 1979 E->arg_begin(), E->arg_end(), TargetDecl); 1980} 1981 1982LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 1983 // Comma expressions just emit their LHS then their RHS as an l-value. 1984 if (E->getOpcode() == BO_Comma) { 1985 EmitIgnoredExpr(E->getLHS()); 1986 EnsureInsertPoint(); 1987 return EmitLValue(E->getRHS()); 1988 } 1989 1990 if (E->getOpcode() == BO_PtrMemD || 1991 E->getOpcode() == BO_PtrMemI) 1992 return EmitPointerToDataMemberBinaryExpr(E); 1993 1994 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 1995 1996 if (!hasAggregateLLVMType(E->getType())) { 1997 // __block variables need the RHS evaluated first. 1998 RValue RV = EmitAnyExpr(E->getRHS()); 1999 LValue LV = EmitLValue(E->getLHS()); 2000 EmitStoreThroughLValue(RV, LV, E->getType()); 2001 return LV; 2002 } 2003 2004 if (E->getType()->isAnyComplexType()) 2005 return EmitComplexAssignmentLValue(E); 2006 2007 return EmitAggExprToLValue(E); 2008} 2009 2010LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2011 RValue RV = EmitCallExpr(E); 2012 2013 if (!RV.isScalar()) 2014 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2015 2016 assert(E->getCallReturnType()->isReferenceType() && 2017 "Can't have a scalar return unless the return type is a " 2018 "reference type!"); 2019 2020 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2021} 2022 2023LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2024 // FIXME: This shouldn't require another copy. 2025 return EmitAggExprToLValue(E); 2026} 2027 2028LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2029 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2030 && "binding l-value to type which needs a temporary"); 2031 AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp"); 2032 EmitCXXConstructExpr(E, Slot); 2033 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2034} 2035 2036LValue 2037CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2038 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2039} 2040 2041LValue 2042CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2043 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2044 Slot.setLifetimeExternallyManaged(); 2045 EmitAggExpr(E->getSubExpr(), Slot); 2046 EmitCXXTemporary(E->getTemporary(), Slot.getAddr()); 2047 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2048} 2049 2050LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2051 RValue RV = EmitObjCMessageExpr(E); 2052 2053 if (!RV.isScalar()) 2054 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2055 2056 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2057 "Can't have a scalar return unless the return type is a " 2058 "reference type!"); 2059 2060 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2061} 2062 2063LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2064 llvm::Value *V = 2065 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2066 return MakeAddrLValue(V, E->getType()); 2067} 2068 2069llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2070 const ObjCIvarDecl *Ivar) { 2071 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2072} 2073 2074LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2075 llvm::Value *BaseValue, 2076 const ObjCIvarDecl *Ivar, 2077 unsigned CVRQualifiers) { 2078 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2079 Ivar, CVRQualifiers); 2080} 2081 2082LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2083 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2084 llvm::Value *BaseValue = 0; 2085 const Expr *BaseExpr = E->getBase(); 2086 Qualifiers BaseQuals; 2087 QualType ObjectTy; 2088 if (E->isArrow()) { 2089 BaseValue = EmitScalarExpr(BaseExpr); 2090 ObjectTy = BaseExpr->getType()->getPointeeType(); 2091 BaseQuals = ObjectTy.getQualifiers(); 2092 } else { 2093 LValue BaseLV = EmitLValue(BaseExpr); 2094 // FIXME: this isn't right for bitfields. 2095 BaseValue = BaseLV.getAddress(); 2096 ObjectTy = BaseExpr->getType(); 2097 BaseQuals = ObjectTy.getQualifiers(); 2098 } 2099 2100 LValue LV = 2101 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2102 BaseQuals.getCVRQualifiers()); 2103 setObjCGCLValueClass(getContext(), E, LV); 2104 return LV; 2105} 2106 2107LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2108 // Can only get l-value for message expression returning aggregate type 2109 RValue RV = EmitAnyExprToTemp(E); 2110 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2111} 2112 2113RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2114 ReturnValueSlot ReturnValue, 2115 CallExpr::const_arg_iterator ArgBeg, 2116 CallExpr::const_arg_iterator ArgEnd, 2117 const Decl *TargetDecl) { 2118 // Get the actual function type. The callee type will always be a pointer to 2119 // function type or a block pointer type. 2120 assert(CalleeType->isFunctionPointerType() && 2121 "Call must have function pointer type!"); 2122 2123 CalleeType = getContext().getCanonicalType(CalleeType); 2124 2125 const FunctionType *FnType 2126 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2127 2128 CallArgList Args; 2129 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2130 2131 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), 2132 Callee, ReturnValue, Args, TargetDecl); 2133} 2134 2135LValue CodeGenFunction:: 2136EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2137 llvm::Value *BaseV; 2138 if (E->getOpcode() == BO_PtrMemI) 2139 BaseV = EmitScalarExpr(E->getLHS()); 2140 else 2141 BaseV = EmitLValue(E->getLHS()).getAddress(); 2142 2143 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2144 2145 const MemberPointerType *MPT 2146 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2147 2148 llvm::Value *AddV = 2149 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2150 2151 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2152} 2153