CGExpr.cpp revision 8187c7e488837698c5fb7a84107e3347d276f73f
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/ConvertUTF.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/MDBuilder.h"
29#include "llvm/DataLayout.h"
30#include "llvm/ADT/Hashing.h"
31using namespace clang;
32using namespace CodeGen;
33
34//===--------------------------------------------------------------------===//
35//                        Miscellaneous Helper Methods
36//===--------------------------------------------------------------------===//
37
38llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
39  unsigned addressSpace =
40    cast<llvm::PointerType>(value->getType())->getAddressSpace();
41
42  llvm::PointerType *destType = Int8PtrTy;
43  if (addressSpace)
44    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
45
46  if (value->getType() == destType) return value;
47  return Builder.CreateBitCast(value, destType);
48}
49
50/// CreateTempAlloca - This creates a alloca and inserts it into the entry
51/// block.
52llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
53                                                    const Twine &Name) {
54  if (!Builder.isNamePreserving())
55    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
56  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
57}
58
59void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
60                                     llvm::Value *Init) {
61  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
62  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
63  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
64}
65
66llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
67                                                const Twine &Name) {
68  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
69  // FIXME: Should we prefer the preferred type alignment here?
70  CharUnits Align = getContext().getTypeAlignInChars(Ty);
71  Alloc->setAlignment(Align.getQuantity());
72  return Alloc;
73}
74
75llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
76                                                 const Twine &Name) {
77  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
78  // FIXME: Should we prefer the preferred type alignment here?
79  CharUnits Align = getContext().getTypeAlignInChars(Ty);
80  Alloc->setAlignment(Align.getQuantity());
81  return Alloc;
82}
83
84/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
85/// expression and compare the result against zero, returning an Int1Ty value.
86llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
87  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
88    llvm::Value *MemPtr = EmitScalarExpr(E);
89    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
90  }
91
92  QualType BoolTy = getContext().BoolTy;
93  if (!E->getType()->isAnyComplexType())
94    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
95
96  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
97}
98
99/// EmitIgnoredExpr - Emit code to compute the specified expression,
100/// ignoring the result.
101void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
102  if (E->isRValue())
103    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
104
105  // Just emit it as an l-value and drop the result.
106  EmitLValue(E);
107}
108
109/// EmitAnyExpr - Emit code to compute the specified expression which
110/// can have any type.  The result is returned as an RValue struct.
111/// If this is an aggregate expression, AggSlot indicates where the
112/// result should be returned.
113RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
114                                    AggValueSlot aggSlot,
115                                    bool ignoreResult) {
116  if (!hasAggregateLLVMType(E->getType()))
117    return RValue::get(EmitScalarExpr(E, ignoreResult));
118  else if (E->getType()->isAnyComplexType())
119    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
120
121  if (!ignoreResult && aggSlot.isIgnored())
122    aggSlot = CreateAggTemp(E->getType(), "agg-temp");
123  EmitAggExpr(E, aggSlot);
124  return aggSlot.asRValue();
125}
126
127/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
128/// always be accessible even if no aggregate location is provided.
129RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
130  AggValueSlot AggSlot = AggValueSlot::ignored();
131
132  if (hasAggregateLLVMType(E->getType()) &&
133      !E->getType()->isAnyComplexType())
134    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
135  return EmitAnyExpr(E, AggSlot);
136}
137
138/// EmitAnyExprToMem - Evaluate an expression into a given memory
139/// location.
140void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
141                                       llvm::Value *Location,
142                                       Qualifiers Quals,
143                                       bool IsInit) {
144  // FIXME: This function should take an LValue as an argument.
145  if (E->getType()->isAnyComplexType()) {
146    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
147  } else if (hasAggregateLLVMType(E->getType())) {
148    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
149    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
150                                         AggValueSlot::IsDestructed_t(IsInit),
151                                         AggValueSlot::DoesNotNeedGCBarriers,
152                                         AggValueSlot::IsAliased_t(!IsInit)));
153  } else {
154    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
155    LValue LV = MakeAddrLValue(Location, E->getType());
156    EmitStoreThroughLValue(RV, LV);
157  }
158}
159
160static llvm::Value *
161CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
162                         const NamedDecl *InitializedDecl) {
163  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
164    if (VD->hasGlobalStorage()) {
165      SmallString<256> Name;
166      llvm::raw_svector_ostream Out(Name);
167      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
168      Out.flush();
169
170      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
171
172      // Create the reference temporary.
173      llvm::GlobalValue *RefTemp =
174        new llvm::GlobalVariable(CGF.CGM.getModule(),
175                                 RefTempTy, /*isConstant=*/false,
176                                 llvm::GlobalValue::InternalLinkage,
177                                 llvm::Constant::getNullValue(RefTempTy),
178                                 Name.str());
179      return RefTemp;
180    }
181  }
182
183  return CGF.CreateMemTemp(Type, "ref.tmp");
184}
185
186static llvm::Value *
187EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
188                            llvm::Value *&ReferenceTemporary,
189                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
190                            QualType &ObjCARCReferenceLifetimeType,
191                            const NamedDecl *InitializedDecl) {
192  const MaterializeTemporaryExpr *M = NULL;
193  E = E->findMaterializedTemporary(M);
194  // Objective-C++ ARC:
195  //   If we are binding a reference to a temporary that has ownership, we
196  //   need to perform retain/release operations on the temporary.
197  if (M && CGF.getLangOpts().ObjCAutoRefCount &&
198      M->getType()->isObjCLifetimeType() &&
199      (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
200       M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
201       M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
202    ObjCARCReferenceLifetimeType = M->getType();
203
204  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
205    CGF.enterFullExpression(EWC);
206    CodeGenFunction::RunCleanupsScope Scope(CGF);
207
208    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
209                                       ReferenceTemporary,
210                                       ReferenceTemporaryDtor,
211                                       ObjCARCReferenceLifetimeType,
212                                       InitializedDecl);
213  }
214
215  RValue RV;
216  if (E->isGLValue()) {
217    // Emit the expression as an lvalue.
218    LValue LV = CGF.EmitLValue(E);
219
220    if (LV.isSimple())
221      return LV.getAddress();
222
223    // We have to load the lvalue.
224    RV = CGF.EmitLoadOfLValue(LV);
225  } else {
226    if (!ObjCARCReferenceLifetimeType.isNull()) {
227      ReferenceTemporary = CreateReferenceTemporary(CGF,
228                                                  ObjCARCReferenceLifetimeType,
229                                                    InitializedDecl);
230
231
232      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
233                                             ObjCARCReferenceLifetimeType);
234
235      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
236                         RefTempDst, false);
237
238      bool ExtendsLifeOfTemporary = false;
239      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
240        if (Var->extendsLifetimeOfTemporary())
241          ExtendsLifeOfTemporary = true;
242      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
243        ExtendsLifeOfTemporary = true;
244      }
245
246      if (!ExtendsLifeOfTemporary) {
247        // Since the lifetime of this temporary isn't going to be extended,
248        // we need to clean it up ourselves at the end of the full expression.
249        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
250        case Qualifiers::OCL_None:
251        case Qualifiers::OCL_ExplicitNone:
252        case Qualifiers::OCL_Autoreleasing:
253          break;
254
255        case Qualifiers::OCL_Strong: {
256          assert(!ObjCARCReferenceLifetimeType->isArrayType());
257          CleanupKind cleanupKind = CGF.getARCCleanupKind();
258          CGF.pushDestroy(cleanupKind,
259                          ReferenceTemporary,
260                          ObjCARCReferenceLifetimeType,
261                          CodeGenFunction::destroyARCStrongImprecise,
262                          cleanupKind & EHCleanup);
263          break;
264        }
265
266        case Qualifiers::OCL_Weak:
267          assert(!ObjCARCReferenceLifetimeType->isArrayType());
268          CGF.pushDestroy(NormalAndEHCleanup,
269                          ReferenceTemporary,
270                          ObjCARCReferenceLifetimeType,
271                          CodeGenFunction::destroyARCWeak,
272                          /*useEHCleanupForArray*/ true);
273          break;
274        }
275
276        ObjCARCReferenceLifetimeType = QualType();
277      }
278
279      return ReferenceTemporary;
280    }
281
282    SmallVector<SubobjectAdjustment, 2> Adjustments;
283    E = E->skipRValueSubobjectAdjustments(Adjustments);
284    if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
285      if (opaque->getType()->isRecordType())
286        return CGF.EmitOpaqueValueLValue(opaque).getAddress();
287
288    // Create a reference temporary if necessary.
289    AggValueSlot AggSlot = AggValueSlot::ignored();
290    if (CGF.hasAggregateLLVMType(E->getType()) &&
291        !E->getType()->isAnyComplexType()) {
292      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
293                                                    InitializedDecl);
294      CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
295      AggValueSlot::IsDestructed_t isDestructed
296        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
297      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
298                                      Qualifiers(), isDestructed,
299                                      AggValueSlot::DoesNotNeedGCBarriers,
300                                      AggValueSlot::IsNotAliased);
301    }
302
303    if (InitializedDecl) {
304      // Get the destructor for the reference temporary.
305      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
306        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
307        if (!ClassDecl->hasTrivialDestructor())
308          ReferenceTemporaryDtor = ClassDecl->getDestructor();
309      }
310    }
311
312    RV = CGF.EmitAnyExpr(E, AggSlot);
313
314    // Check if need to perform derived-to-base casts and/or field accesses, to
315    // get from the temporary object we created (and, potentially, for which we
316    // extended the lifetime) to the subobject we're binding the reference to.
317    if (!Adjustments.empty()) {
318      llvm::Value *Object = RV.getAggregateAddr();
319      for (unsigned I = Adjustments.size(); I != 0; --I) {
320        SubobjectAdjustment &Adjustment = Adjustments[I-1];
321        switch (Adjustment.Kind) {
322        case SubobjectAdjustment::DerivedToBaseAdjustment:
323          Object =
324              CGF.GetAddressOfBaseClass(Object,
325                                        Adjustment.DerivedToBase.DerivedClass,
326                              Adjustment.DerivedToBase.BasePath->path_begin(),
327                              Adjustment.DerivedToBase.BasePath->path_end(),
328                                        /*NullCheckValue=*/false);
329          break;
330
331        case SubobjectAdjustment::FieldAdjustment: {
332          LValue LV = CGF.MakeAddrLValue(Object, E->getType());
333          LV = CGF.EmitLValueForField(LV, Adjustment.Field);
334          if (LV.isSimple()) {
335            Object = LV.getAddress();
336            break;
337          }
338
339          // For non-simple lvalues, we actually have to create a copy of
340          // the object we're binding to.
341          QualType T = Adjustment.Field->getType().getNonReferenceType()
342                                                  .getUnqualifiedType();
343          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
344          LValue TempLV = CGF.MakeAddrLValue(Object,
345                                             Adjustment.Field->getType());
346          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
347          break;
348        }
349
350        case SubobjectAdjustment::MemberPointerAdjustment: {
351          llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
352          Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
353                        CGF, Object, Ptr, Adjustment.Ptr.MPT);
354          break;
355        }
356        }
357      }
358
359      return Object;
360    }
361  }
362
363  if (RV.isAggregate())
364    return RV.getAggregateAddr();
365
366  // Create a temporary variable that we can bind the reference to.
367  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
368                                                InitializedDecl);
369
370
371  unsigned Alignment =
372    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
373  if (RV.isScalar())
374    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
375                          /*Volatile=*/false, Alignment, E->getType());
376  else
377    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
378                           /*Volatile=*/false);
379  return ReferenceTemporary;
380}
381
382RValue
383CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
384                                            const NamedDecl *InitializedDecl) {
385  llvm::Value *ReferenceTemporary = 0;
386  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
387  QualType ObjCARCReferenceLifetimeType;
388  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
389                                                   ReferenceTemporaryDtor,
390                                                   ObjCARCReferenceLifetimeType,
391                                                   InitializedDecl);
392  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
393    // C++11 [dcl.ref]p5 (as amended by core issue 453):
394    //   If a glvalue to which a reference is directly bound designates neither
395    //   an existing object or function of an appropriate type nor a region of
396    //   storage of suitable size and alignment to contain an object of the
397    //   reference's type, the behavior is undefined.
398    QualType Ty = E->getType();
399    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
400  }
401  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
402    return RValue::get(Value);
403
404  // Make sure to call the destructor for the reference temporary.
405  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
406  if (VD && VD->hasGlobalStorage()) {
407    if (ReferenceTemporaryDtor) {
408      llvm::Constant *DtorFn =
409        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
410      CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
411                                    cast<llvm::Constant>(ReferenceTemporary));
412    } else {
413      assert(!ObjCARCReferenceLifetimeType.isNull());
414      // Note: We intentionally do not register a global "destructor" to
415      // release the object.
416    }
417
418    return RValue::get(Value);
419  }
420
421  if (ReferenceTemporaryDtor)
422    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
423  else {
424    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
425    case Qualifiers::OCL_None:
426      llvm_unreachable(
427                      "Not a reference temporary that needs to be deallocated");
428    case Qualifiers::OCL_ExplicitNone:
429    case Qualifiers::OCL_Autoreleasing:
430      // Nothing to do.
431      break;
432
433    case Qualifiers::OCL_Strong: {
434      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
435      CleanupKind cleanupKind = getARCCleanupKind();
436      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
437                  precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
438                  cleanupKind & EHCleanup);
439      break;
440    }
441
442    case Qualifiers::OCL_Weak: {
443      // __weak objects always get EH cleanups; otherwise, exceptions
444      // could cause really nasty crashes instead of mere leaks.
445      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
446                  ObjCARCReferenceLifetimeType, destroyARCWeak, true);
447      break;
448    }
449    }
450  }
451
452  return RValue::get(Value);
453}
454
455
456/// getAccessedFieldNo - Given an encoded value and a result number, return the
457/// input field number being accessed.
458unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
459                                             const llvm::Constant *Elts) {
460  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
461      ->getZExtValue();
462}
463
464/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
465static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
466                                    llvm::Value *High) {
467  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
468  llvm::Value *K47 = Builder.getInt64(47);
469  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
470  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
471  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
472  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
473  return Builder.CreateMul(B1, KMul);
474}
475
476void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
477                                    llvm::Value *Address,
478                                    QualType Ty, CharUnits Alignment) {
479  if (!SanitizePerformTypeCheck)
480    return;
481
482  // Don't check pointers outside the default address space. The null check
483  // isn't correct, the object-size check isn't supported by LLVM, and we can't
484  // communicate the addresses to the runtime handler for the vptr check.
485  if (Address->getType()->getPointerAddressSpace())
486    return;
487
488  llvm::Value *Cond = 0;
489
490  if (getLangOpts().SanitizeNull) {
491    // The glvalue must not be an empty glvalue.
492    Cond = Builder.CreateICmpNE(
493        Address, llvm::Constant::getNullValue(Address->getType()));
494  }
495
496  if (getLangOpts().SanitizeObjectSize && !Ty->isIncompleteType()) {
497    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
498
499    // The glvalue must refer to a large enough storage region.
500    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
501    //        to check this.
502    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
503    llvm::Value *Min = Builder.getFalse();
504    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
505    llvm::Value *LargeEnough =
506        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
507                              llvm::ConstantInt::get(IntPtrTy, Size));
508    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
509  }
510
511  uint64_t AlignVal = 0;
512
513  if (getLangOpts().SanitizeAlignment) {
514    AlignVal = Alignment.getQuantity();
515    if (!Ty->isIncompleteType() && !AlignVal)
516      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
517
518    // The glvalue must be suitably aligned.
519    if (AlignVal) {
520      llvm::Value *Align =
521          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
522                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
523      llvm::Value *Aligned =
524        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
525      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
526    }
527  }
528
529  if (Cond) {
530    llvm::Constant *StaticData[] = {
531      EmitCheckSourceLocation(Loc),
532      EmitCheckTypeDescriptor(Ty),
533      llvm::ConstantInt::get(SizeTy, AlignVal),
534      llvm::ConstantInt::get(Int8Ty, TCK)
535    };
536    EmitCheck(Cond, "type_mismatch", StaticData, Address);
537  }
538
539  // If possible, check that the vptr indicates that there is a subobject of
540  // type Ty at offset zero within this object.
541  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
542  if (getLangOpts().SanitizeVptr && TCK != TCK_ConstructorCall &&
543      RD && RD->hasDefinition() && RD->isDynamicClass()) {
544    // Compute a hash of the mangled name of the type.
545    //
546    // FIXME: This is not guaranteed to be deterministic! Move to a
547    //        fingerprinting mechanism once LLVM provides one. For the time
548    //        being the implementation happens to be deterministic.
549    llvm::SmallString<64> MangledName;
550    llvm::raw_svector_ostream Out(MangledName);
551    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
552                                                     Out);
553    llvm::hash_code TypeHash = hash_value(Out.str());
554
555    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
556    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
557    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
558    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
559    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
560    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
561
562    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
563    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
564
565    // Look the hash up in our cache.
566    const int CacheSize = 128;
567    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
568    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
569                                                   "__ubsan_vptr_type_cache");
570    llvm::Value *Slot = Builder.CreateAnd(Hash,
571                                          llvm::ConstantInt::get(IntPtrTy,
572                                                                 CacheSize-1));
573    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
574    llvm::Value *CacheVal =
575      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
576
577    // If the hash isn't in the cache, call a runtime handler to perform the
578    // hard work of checking whether the vptr is for an object of the right
579    // type. This will either fill in the cache and return, or produce a
580    // diagnostic.
581    llvm::Constant *StaticData[] = {
582      EmitCheckSourceLocation(Loc),
583      EmitCheckTypeDescriptor(Ty),
584      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
585      llvm::ConstantInt::get(Int8Ty, TCK)
586    };
587    llvm::Value *DynamicData[] = { Address, Hash };
588    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
589              "dynamic_type_cache_miss", StaticData, DynamicData, true);
590  }
591}
592
593
594CodeGenFunction::ComplexPairTy CodeGenFunction::
595EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
596                         bool isInc, bool isPre) {
597  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
598                                            LV.isVolatileQualified());
599
600  llvm::Value *NextVal;
601  if (isa<llvm::IntegerType>(InVal.first->getType())) {
602    uint64_t AmountVal = isInc ? 1 : -1;
603    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
604
605    // Add the inc/dec to the real part.
606    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
607  } else {
608    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
609    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
610    if (!isInc)
611      FVal.changeSign();
612    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
613
614    // Add the inc/dec to the real part.
615    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
616  }
617
618  ComplexPairTy IncVal(NextVal, InVal.second);
619
620  // Store the updated result through the lvalue.
621  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
622
623  // If this is a postinc, return the value read from memory, otherwise use the
624  // updated value.
625  return isPre ? IncVal : InVal;
626}
627
628
629//===----------------------------------------------------------------------===//
630//                         LValue Expression Emission
631//===----------------------------------------------------------------------===//
632
633RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
634  if (Ty->isVoidType())
635    return RValue::get(0);
636
637  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
638    llvm::Type *EltTy = ConvertType(CTy->getElementType());
639    llvm::Value *U = llvm::UndefValue::get(EltTy);
640    return RValue::getComplex(std::make_pair(U, U));
641  }
642
643  // If this is a use of an undefined aggregate type, the aggregate must have an
644  // identifiable address.  Just because the contents of the value are undefined
645  // doesn't mean that the address can't be taken and compared.
646  if (hasAggregateLLVMType(Ty)) {
647    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
648    return RValue::getAggregate(DestPtr);
649  }
650
651  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
652}
653
654RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
655                                              const char *Name) {
656  ErrorUnsupported(E, Name);
657  return GetUndefRValue(E->getType());
658}
659
660LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
661                                              const char *Name) {
662  ErrorUnsupported(E, Name);
663  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
664  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
665}
666
667LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
668  LValue LV = EmitLValue(E);
669  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
670    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
671                  E->getType(), LV.getAlignment());
672  return LV;
673}
674
675/// EmitLValue - Emit code to compute a designator that specifies the location
676/// of the expression.
677///
678/// This can return one of two things: a simple address or a bitfield reference.
679/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
680/// an LLVM pointer type.
681///
682/// If this returns a bitfield reference, nothing about the pointee type of the
683/// LLVM value is known: For example, it may not be a pointer to an integer.
684///
685/// If this returns a normal address, and if the lvalue's C type is fixed size,
686/// this method guarantees that the returned pointer type will point to an LLVM
687/// type of the same size of the lvalue's type.  If the lvalue has a variable
688/// length type, this is not possible.
689///
690LValue CodeGenFunction::EmitLValue(const Expr *E) {
691  switch (E->getStmtClass()) {
692  default: return EmitUnsupportedLValue(E, "l-value expression");
693
694  case Expr::ObjCPropertyRefExprClass:
695    llvm_unreachable("cannot emit a property reference directly");
696
697  case Expr::ObjCSelectorExprClass:
698    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
699  case Expr::ObjCIsaExprClass:
700    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
701  case Expr::BinaryOperatorClass:
702    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
703  case Expr::CompoundAssignOperatorClass:
704    if (!E->getType()->isAnyComplexType())
705      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
706    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
707  case Expr::CallExprClass:
708  case Expr::CXXMemberCallExprClass:
709  case Expr::CXXOperatorCallExprClass:
710  case Expr::UserDefinedLiteralClass:
711    return EmitCallExprLValue(cast<CallExpr>(E));
712  case Expr::VAArgExprClass:
713    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
714  case Expr::DeclRefExprClass:
715    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
716  case Expr::ParenExprClass:
717    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
718  case Expr::GenericSelectionExprClass:
719    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
720  case Expr::PredefinedExprClass:
721    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
722  case Expr::StringLiteralClass:
723    return EmitStringLiteralLValue(cast<StringLiteral>(E));
724  case Expr::ObjCEncodeExprClass:
725    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
726  case Expr::PseudoObjectExprClass:
727    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
728  case Expr::InitListExprClass:
729    return EmitInitListLValue(cast<InitListExpr>(E));
730  case Expr::CXXTemporaryObjectExprClass:
731  case Expr::CXXConstructExprClass:
732    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
733  case Expr::CXXBindTemporaryExprClass:
734    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
735  case Expr::CXXUuidofExprClass:
736    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
737  case Expr::LambdaExprClass:
738    return EmitLambdaLValue(cast<LambdaExpr>(E));
739
740  case Expr::ExprWithCleanupsClass: {
741    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
742    enterFullExpression(cleanups);
743    RunCleanupsScope Scope(*this);
744    return EmitLValue(cleanups->getSubExpr());
745  }
746
747  case Expr::CXXScalarValueInitExprClass:
748    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
749  case Expr::CXXDefaultArgExprClass:
750    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
751  case Expr::CXXTypeidExprClass:
752    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
753
754  case Expr::ObjCMessageExprClass:
755    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
756  case Expr::ObjCIvarRefExprClass:
757    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
758  case Expr::StmtExprClass:
759    return EmitStmtExprLValue(cast<StmtExpr>(E));
760  case Expr::UnaryOperatorClass:
761    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
762  case Expr::ArraySubscriptExprClass:
763    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
764  case Expr::ExtVectorElementExprClass:
765    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
766  case Expr::MemberExprClass:
767    return EmitMemberExpr(cast<MemberExpr>(E));
768  case Expr::CompoundLiteralExprClass:
769    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
770  case Expr::ConditionalOperatorClass:
771    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
772  case Expr::BinaryConditionalOperatorClass:
773    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
774  case Expr::ChooseExprClass:
775    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
776  case Expr::OpaqueValueExprClass:
777    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
778  case Expr::SubstNonTypeTemplateParmExprClass:
779    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
780  case Expr::ImplicitCastExprClass:
781  case Expr::CStyleCastExprClass:
782  case Expr::CXXFunctionalCastExprClass:
783  case Expr::CXXStaticCastExprClass:
784  case Expr::CXXDynamicCastExprClass:
785  case Expr::CXXReinterpretCastExprClass:
786  case Expr::CXXConstCastExprClass:
787  case Expr::ObjCBridgedCastExprClass:
788    return EmitCastLValue(cast<CastExpr>(E));
789
790  case Expr::MaterializeTemporaryExprClass:
791    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
792  }
793}
794
795/// Given an object of the given canonical type, can we safely copy a
796/// value out of it based on its initializer?
797static bool isConstantEmittableObjectType(QualType type) {
798  assert(type.isCanonical());
799  assert(!type->isReferenceType());
800
801  // Must be const-qualified but non-volatile.
802  Qualifiers qs = type.getLocalQualifiers();
803  if (!qs.hasConst() || qs.hasVolatile()) return false;
804
805  // Otherwise, all object types satisfy this except C++ classes with
806  // mutable subobjects or non-trivial copy/destroy behavior.
807  if (const RecordType *RT = dyn_cast<RecordType>(type))
808    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
809      if (RD->hasMutableFields() || !RD->isTrivial())
810        return false;
811
812  return true;
813}
814
815/// Can we constant-emit a load of a reference to a variable of the
816/// given type?  This is different from predicates like
817/// Decl::isUsableInConstantExpressions because we do want it to apply
818/// in situations that don't necessarily satisfy the language's rules
819/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
820/// to do this with const float variables even if those variables
821/// aren't marked 'constexpr'.
822enum ConstantEmissionKind {
823  CEK_None,
824  CEK_AsReferenceOnly,
825  CEK_AsValueOrReference,
826  CEK_AsValueOnly
827};
828static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
829  type = type.getCanonicalType();
830  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
831    if (isConstantEmittableObjectType(ref->getPointeeType()))
832      return CEK_AsValueOrReference;
833    return CEK_AsReferenceOnly;
834  }
835  if (isConstantEmittableObjectType(type))
836    return CEK_AsValueOnly;
837  return CEK_None;
838}
839
840/// Try to emit a reference to the given value without producing it as
841/// an l-value.  This is actually more than an optimization: we can't
842/// produce an l-value for variables that we never actually captured
843/// in a block or lambda, which means const int variables or constexpr
844/// literals or similar.
845CodeGenFunction::ConstantEmission
846CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
847  ValueDecl *value = refExpr->getDecl();
848
849  // The value needs to be an enum constant or a constant variable.
850  ConstantEmissionKind CEK;
851  if (isa<ParmVarDecl>(value)) {
852    CEK = CEK_None;
853  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
854    CEK = checkVarTypeForConstantEmission(var->getType());
855  } else if (isa<EnumConstantDecl>(value)) {
856    CEK = CEK_AsValueOnly;
857  } else {
858    CEK = CEK_None;
859  }
860  if (CEK == CEK_None) return ConstantEmission();
861
862  Expr::EvalResult result;
863  bool resultIsReference;
864  QualType resultType;
865
866  // It's best to evaluate all the way as an r-value if that's permitted.
867  if (CEK != CEK_AsReferenceOnly &&
868      refExpr->EvaluateAsRValue(result, getContext())) {
869    resultIsReference = false;
870    resultType = refExpr->getType();
871
872  // Otherwise, try to evaluate as an l-value.
873  } else if (CEK != CEK_AsValueOnly &&
874             refExpr->EvaluateAsLValue(result, getContext())) {
875    resultIsReference = true;
876    resultType = value->getType();
877
878  // Failure.
879  } else {
880    return ConstantEmission();
881  }
882
883  // In any case, if the initializer has side-effects, abandon ship.
884  if (result.HasSideEffects)
885    return ConstantEmission();
886
887  // Emit as a constant.
888  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
889
890  // Make sure we emit a debug reference to the global variable.
891  // This should probably fire even for
892  if (isa<VarDecl>(value)) {
893    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
894      EmitDeclRefExprDbgValue(refExpr, C);
895  } else {
896    assert(isa<EnumConstantDecl>(value));
897    EmitDeclRefExprDbgValue(refExpr, C);
898  }
899
900  // If we emitted a reference constant, we need to dereference that.
901  if (resultIsReference)
902    return ConstantEmission::forReference(C);
903
904  return ConstantEmission::forValue(C);
905}
906
907llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
908  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
909                          lvalue.getAlignment().getQuantity(),
910                          lvalue.getType(), lvalue.getTBAAInfo());
911}
912
913static bool hasBooleanRepresentation(QualType Ty) {
914  if (Ty->isBooleanType())
915    return true;
916
917  if (const EnumType *ET = Ty->getAs<EnumType>())
918    return ET->getDecl()->getIntegerType()->isBooleanType();
919
920  if (const AtomicType *AT = Ty->getAs<AtomicType>())
921    return hasBooleanRepresentation(AT->getValueType());
922
923  return false;
924}
925
926llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
927  const EnumType *ET = Ty->getAs<EnumType>();
928  bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
929                                 CGM.getCodeGenOpts().StrictEnums &&
930                                 !ET->getDecl()->isFixed());
931  bool IsBool = hasBooleanRepresentation(Ty);
932  if (!IsBool && !IsRegularCPlusPlusEnum)
933    return NULL;
934
935  llvm::APInt Min;
936  llvm::APInt End;
937  if (IsBool) {
938    Min = llvm::APInt(getContext().getTypeSize(Ty), 0);
939    End = llvm::APInt(getContext().getTypeSize(Ty), 2);
940  } else {
941    const EnumDecl *ED = ET->getDecl();
942    llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
943    unsigned Bitwidth = LTy->getScalarSizeInBits();
944    unsigned NumNegativeBits = ED->getNumNegativeBits();
945    unsigned NumPositiveBits = ED->getNumPositiveBits();
946
947    if (NumNegativeBits) {
948      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
949      assert(NumBits <= Bitwidth);
950      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
951      Min = -End;
952    } else {
953      assert(NumPositiveBits <= Bitwidth);
954      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
955      Min = llvm::APInt(Bitwidth, 0);
956    }
957  }
958
959  llvm::MDBuilder MDHelper(getLLVMContext());
960  return MDHelper.createRange(Min, End);
961}
962
963llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
964                                              unsigned Alignment, QualType Ty,
965                                              llvm::MDNode *TBAAInfo) {
966
967  // For better performance, handle vector loads differently.
968  if (Ty->isVectorType()) {
969    llvm::Value *V;
970    const llvm::Type *EltTy =
971    cast<llvm::PointerType>(Addr->getType())->getElementType();
972
973    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
974
975    // Handle vectors of size 3, like size 4 for better performance.
976    if (VTy->getNumElements() == 3) {
977
978      // Bitcast to vec4 type.
979      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
980                                                         4);
981      llvm::PointerType *ptVec4Ty =
982      llvm::PointerType::get(vec4Ty,
983                             (cast<llvm::PointerType>(
984                                      Addr->getType()))->getAddressSpace());
985      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
986                                                "castToVec4");
987      // Now load value.
988      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
989
990      // Shuffle vector to get vec3.
991      llvm::SmallVector<llvm::Constant*, 3> Mask;
992      Mask.push_back(llvm::ConstantInt::get(
993                                    llvm::Type::getInt32Ty(getLLVMContext()),
994                                            0));
995      Mask.push_back(llvm::ConstantInt::get(
996                                    llvm::Type::getInt32Ty(getLLVMContext()),
997                                            1));
998      Mask.push_back(llvm::ConstantInt::get(
999                                     llvm::Type::getInt32Ty(getLLVMContext()),
1000                                            2));
1001
1002      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1003      V = Builder.CreateShuffleVector(LoadVal,
1004                                      llvm::UndefValue::get(vec4Ty),
1005                                      MaskV, "extractVec");
1006      return EmitFromMemory(V, Ty);
1007    }
1008  }
1009
1010  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1011  if (Volatile)
1012    Load->setVolatile(true);
1013  if (Alignment)
1014    Load->setAlignment(Alignment);
1015  if (TBAAInfo)
1016    CGM.DecorateInstruction(Load, TBAAInfo);
1017  // If this is an atomic type, all normal reads must be atomic
1018  if (Ty->isAtomicType())
1019    Load->setAtomic(llvm::SequentiallyConsistent);
1020
1021  if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1022    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1023      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1024
1025  return EmitFromMemory(Load, Ty);
1026}
1027
1028llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1029  // Bool has a different representation in memory than in registers.
1030  if (hasBooleanRepresentation(Ty)) {
1031    // This should really always be an i1, but sometimes it's already
1032    // an i8, and it's awkward to track those cases down.
1033    if (Value->getType()->isIntegerTy(1))
1034      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1035    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1036           "wrong value rep of bool");
1037  }
1038
1039  return Value;
1040}
1041
1042llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1043  // Bool has a different representation in memory than in registers.
1044  if (hasBooleanRepresentation(Ty)) {
1045    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1046           "wrong value rep of bool");
1047    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1048  }
1049
1050  return Value;
1051}
1052
1053void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1054                                        bool Volatile, unsigned Alignment,
1055                                        QualType Ty,
1056                                        llvm::MDNode *TBAAInfo,
1057                                        bool isInit) {
1058
1059  // Handle vectors differently to get better performance.
1060  if (Ty->isVectorType()) {
1061    llvm::Type *SrcTy = Value->getType();
1062    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1063    // Handle vec3 special.
1064    if (VecTy->getNumElements() == 3) {
1065      llvm::LLVMContext &VMContext = getLLVMContext();
1066
1067      // Our source is a vec3, do a shuffle vector to make it a vec4.
1068      llvm::SmallVector<llvm::Constant*, 4> Mask;
1069      Mask.push_back(llvm::ConstantInt::get(
1070                                            llvm::Type::getInt32Ty(VMContext),
1071                                            0));
1072      Mask.push_back(llvm::ConstantInt::get(
1073                                            llvm::Type::getInt32Ty(VMContext),
1074                                            1));
1075      Mask.push_back(llvm::ConstantInt::get(
1076                                            llvm::Type::getInt32Ty(VMContext),
1077                                            2));
1078      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1079
1080      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1081      Value = Builder.CreateShuffleVector(Value,
1082                                          llvm::UndefValue::get(VecTy),
1083                                          MaskV, "extractVec");
1084      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1085    }
1086    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1087    if (DstPtr->getElementType() != SrcTy) {
1088      llvm::Type *MemTy =
1089      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1090      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1091    }
1092  }
1093
1094  Value = EmitToMemory(Value, Ty);
1095
1096  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1097  if (Alignment)
1098    Store->setAlignment(Alignment);
1099  if (TBAAInfo)
1100    CGM.DecorateInstruction(Store, TBAAInfo);
1101  if (!isInit && Ty->isAtomicType())
1102    Store->setAtomic(llvm::SequentiallyConsistent);
1103}
1104
1105void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1106    bool isInit) {
1107  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1108                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1109                    lvalue.getTBAAInfo(), isInit);
1110}
1111
1112/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1113/// method emits the address of the lvalue, then loads the result as an rvalue,
1114/// returning the rvalue.
1115RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1116  if (LV.isObjCWeak()) {
1117    // load of a __weak object.
1118    llvm::Value *AddrWeakObj = LV.getAddress();
1119    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1120                                                             AddrWeakObj));
1121  }
1122  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1123    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1124
1125  if (LV.isSimple()) {
1126    assert(!LV.getType()->isFunctionType());
1127
1128    // Everything needs a load.
1129    return RValue::get(EmitLoadOfScalar(LV));
1130  }
1131
1132  if (LV.isVectorElt()) {
1133    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1134                                              LV.isVolatileQualified());
1135    Load->setAlignment(LV.getAlignment().getQuantity());
1136    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1137                                                    "vecext"));
1138  }
1139
1140  // If this is a reference to a subset of the elements of a vector, either
1141  // shuffle the input or extract/insert them as appropriate.
1142  if (LV.isExtVectorElt())
1143    return EmitLoadOfExtVectorElementLValue(LV);
1144
1145  assert(LV.isBitField() && "Unknown LValue type!");
1146  return EmitLoadOfBitfieldLValue(LV);
1147}
1148
1149RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1150  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1151
1152  // Get the output type.
1153  llvm::Type *ResLTy = ConvertType(LV.getType());
1154  unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy);
1155
1156  // Compute the result as an OR of all of the individual component accesses.
1157  llvm::Value *Res = 0;
1158  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1159    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1160    CharUnits AccessAlignment = AI.AccessAlignment;
1161    if (!LV.getAlignment().isZero())
1162      AccessAlignment = std::min(AccessAlignment, LV.getAlignment());
1163
1164    // Get the field pointer.
1165    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1166
1167    // Only offset by the field index if used, so that incoming values are not
1168    // required to be structures.
1169    if (AI.FieldIndex)
1170      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1171
1172    // Offset by the byte offset, if used.
1173    if (!AI.FieldByteOffset.isZero()) {
1174      Ptr = EmitCastToVoidPtr(Ptr);
1175      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1176                                       "bf.field.offs");
1177    }
1178
1179    // Cast to the access type.
1180    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1181                       CGM.getContext().getTargetAddressSpace(LV.getType()));
1182    Ptr = Builder.CreateBitCast(Ptr, PTy);
1183
1184    // Perform the load.
1185    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1186    Load->setAlignment(AccessAlignment.getQuantity());
1187
1188    // Shift out unused low bits and mask out unused high bits.
1189    llvm::Value *Val = Load;
1190    if (AI.FieldBitStart)
1191      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1192    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1193                                                            AI.TargetBitWidth),
1194                            "bf.clear");
1195
1196    // Extend or truncate to the target size.
1197    if (AI.AccessWidth < ResSizeInBits)
1198      Val = Builder.CreateZExt(Val, ResLTy);
1199    else if (AI.AccessWidth > ResSizeInBits)
1200      Val = Builder.CreateTrunc(Val, ResLTy);
1201
1202    // Shift into place, and OR into the result.
1203    if (AI.TargetBitOffset)
1204      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1205    Res = Res ? Builder.CreateOr(Res, Val) : Val;
1206  }
1207
1208  // If the bit-field is signed, perform the sign-extension.
1209  //
1210  // FIXME: This can easily be folded into the load of the high bits, which
1211  // could also eliminate the mask of high bits in some situations.
1212  if (Info.isSigned()) {
1213    unsigned ExtraBits = ResSizeInBits - Info.getSize();
1214    if (ExtraBits)
1215      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1216                               ExtraBits, "bf.val.sext");
1217  }
1218
1219  return RValue::get(Res);
1220}
1221
1222// If this is a reference to a subset of the elements of a vector, create an
1223// appropriate shufflevector.
1224RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1225  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1226                                            LV.isVolatileQualified());
1227  Load->setAlignment(LV.getAlignment().getQuantity());
1228  llvm::Value *Vec = Load;
1229
1230  const llvm::Constant *Elts = LV.getExtVectorElts();
1231
1232  // If the result of the expression is a non-vector type, we must be extracting
1233  // a single element.  Just codegen as an extractelement.
1234  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1235  if (!ExprVT) {
1236    unsigned InIdx = getAccessedFieldNo(0, Elts);
1237    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1238    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1239  }
1240
1241  // Always use shuffle vector to try to retain the original program structure
1242  unsigned NumResultElts = ExprVT->getNumElements();
1243
1244  SmallVector<llvm::Constant*, 4> Mask;
1245  for (unsigned i = 0; i != NumResultElts; ++i)
1246    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1247
1248  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1249  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1250                                    MaskV);
1251  return RValue::get(Vec);
1252}
1253
1254
1255
1256/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1257/// lvalue, where both are guaranteed to the have the same type, and that type
1258/// is 'Ty'.
1259void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1260  if (!Dst.isSimple()) {
1261    if (Dst.isVectorElt()) {
1262      // Read/modify/write the vector, inserting the new element.
1263      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1264                                                Dst.isVolatileQualified());
1265      Load->setAlignment(Dst.getAlignment().getQuantity());
1266      llvm::Value *Vec = Load;
1267      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1268                                        Dst.getVectorIdx(), "vecins");
1269      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1270                                                   Dst.isVolatileQualified());
1271      Store->setAlignment(Dst.getAlignment().getQuantity());
1272      return;
1273    }
1274
1275    // If this is an update of extended vector elements, insert them as
1276    // appropriate.
1277    if (Dst.isExtVectorElt())
1278      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1279
1280    assert(Dst.isBitField() && "Unknown LValue type");
1281    return EmitStoreThroughBitfieldLValue(Src, Dst);
1282  }
1283
1284  // There's special magic for assigning into an ARC-qualified l-value.
1285  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1286    switch (Lifetime) {
1287    case Qualifiers::OCL_None:
1288      llvm_unreachable("present but none");
1289
1290    case Qualifiers::OCL_ExplicitNone:
1291      // nothing special
1292      break;
1293
1294    case Qualifiers::OCL_Strong:
1295      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1296      return;
1297
1298    case Qualifiers::OCL_Weak:
1299      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1300      return;
1301
1302    case Qualifiers::OCL_Autoreleasing:
1303      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1304                                                     Src.getScalarVal()));
1305      // fall into the normal path
1306      break;
1307    }
1308  }
1309
1310  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1311    // load of a __weak object.
1312    llvm::Value *LvalueDst = Dst.getAddress();
1313    llvm::Value *src = Src.getScalarVal();
1314     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1315    return;
1316  }
1317
1318  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1319    // load of a __strong object.
1320    llvm::Value *LvalueDst = Dst.getAddress();
1321    llvm::Value *src = Src.getScalarVal();
1322    if (Dst.isObjCIvar()) {
1323      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1324      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1325      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1326      llvm::Value *dst = RHS;
1327      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1328      llvm::Value *LHS =
1329        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1330      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1331      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1332                                              BytesBetween);
1333    } else if (Dst.isGlobalObjCRef()) {
1334      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1335                                                Dst.isThreadLocalRef());
1336    }
1337    else
1338      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1339    return;
1340  }
1341
1342  assert(Src.isScalar() && "Can't emit an agg store with this method");
1343  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1344}
1345
1346void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1347                                                     llvm::Value **Result) {
1348  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1349
1350  // Get the output type.
1351  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1352  unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy);
1353
1354  // Get the source value, truncated to the width of the bit-field.
1355  llvm::Value *SrcVal = Src.getScalarVal();
1356
1357  if (hasBooleanRepresentation(Dst.getType()))
1358    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1359
1360  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1361                                                                Info.getSize()),
1362                             "bf.value");
1363
1364  // Return the new value of the bit-field, if requested.
1365  if (Result) {
1366    // Cast back to the proper type for result.
1367    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1368    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1369                                                   "bf.reload.val");
1370
1371    // Sign extend if necessary.
1372    if (Info.isSigned()) {
1373      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1374      if (ExtraBits)
1375        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1376                                       ExtraBits, "bf.reload.sext");
1377    }
1378
1379    *Result = ReloadVal;
1380  }
1381
1382  // Iterate over the components, writing each piece to memory.
1383  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1384    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1385    CharUnits AccessAlignment = AI.AccessAlignment;
1386    if (!Dst.getAlignment().isZero())
1387      AccessAlignment = std::min(AccessAlignment, Dst.getAlignment());
1388
1389    // Get the field pointer.
1390    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1391    unsigned addressSpace =
1392      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1393
1394    // Only offset by the field index if used, so that incoming values are not
1395    // required to be structures.
1396    if (AI.FieldIndex)
1397      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1398
1399    // Offset by the byte offset, if used.
1400    if (!AI.FieldByteOffset.isZero()) {
1401      Ptr = EmitCastToVoidPtr(Ptr);
1402      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1403                                       "bf.field.offs");
1404    }
1405
1406    // Cast to the access type.
1407    llvm::Type *AccessLTy =
1408      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1409
1410    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1411    Ptr = Builder.CreateBitCast(Ptr, PTy);
1412
1413    // Extract the piece of the bit-field value to write in this access, limited
1414    // to the values that are part of this access.
1415    llvm::Value *Val = SrcVal;
1416    if (AI.TargetBitOffset)
1417      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1418    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1419                                                            AI.TargetBitWidth));
1420
1421    // Extend or truncate to the access size.
1422    if (ResSizeInBits < AI.AccessWidth)
1423      Val = Builder.CreateZExt(Val, AccessLTy);
1424    else if (ResSizeInBits > AI.AccessWidth)
1425      Val = Builder.CreateTrunc(Val, AccessLTy);
1426
1427    // Shift into the position in memory.
1428    if (AI.FieldBitStart)
1429      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1430
1431    // If necessary, load and OR in bits that are outside of the bit-field.
1432    if (AI.TargetBitWidth != AI.AccessWidth) {
1433      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1434      Load->setAlignment(AccessAlignment.getQuantity());
1435
1436      // Compute the mask for zeroing the bits that are part of the bit-field.
1437      llvm::APInt InvMask =
1438        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1439                                 AI.FieldBitStart + AI.TargetBitWidth);
1440
1441      // Apply the mask and OR in to the value to write.
1442      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1443    }
1444
1445    // Write the value.
1446    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1447                                                 Dst.isVolatileQualified());
1448    Store->setAlignment(AccessAlignment.getQuantity());
1449  }
1450}
1451
1452void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1453                                                               LValue Dst) {
1454  // This access turns into a read/modify/write of the vector.  Load the input
1455  // value now.
1456  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1457                                            Dst.isVolatileQualified());
1458  Load->setAlignment(Dst.getAlignment().getQuantity());
1459  llvm::Value *Vec = Load;
1460  const llvm::Constant *Elts = Dst.getExtVectorElts();
1461
1462  llvm::Value *SrcVal = Src.getScalarVal();
1463
1464  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1465    unsigned NumSrcElts = VTy->getNumElements();
1466    unsigned NumDstElts =
1467       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1468    if (NumDstElts == NumSrcElts) {
1469      // Use shuffle vector is the src and destination are the same number of
1470      // elements and restore the vector mask since it is on the side it will be
1471      // stored.
1472      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1473      for (unsigned i = 0; i != NumSrcElts; ++i)
1474        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1475
1476      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1477      Vec = Builder.CreateShuffleVector(SrcVal,
1478                                        llvm::UndefValue::get(Vec->getType()),
1479                                        MaskV);
1480    } else if (NumDstElts > NumSrcElts) {
1481      // Extended the source vector to the same length and then shuffle it
1482      // into the destination.
1483      // FIXME: since we're shuffling with undef, can we just use the indices
1484      //        into that?  This could be simpler.
1485      SmallVector<llvm::Constant*, 4> ExtMask;
1486      for (unsigned i = 0; i != NumSrcElts; ++i)
1487        ExtMask.push_back(Builder.getInt32(i));
1488      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1489      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1490      llvm::Value *ExtSrcVal =
1491        Builder.CreateShuffleVector(SrcVal,
1492                                    llvm::UndefValue::get(SrcVal->getType()),
1493                                    ExtMaskV);
1494      // build identity
1495      SmallVector<llvm::Constant*, 4> Mask;
1496      for (unsigned i = 0; i != NumDstElts; ++i)
1497        Mask.push_back(Builder.getInt32(i));
1498
1499      // modify when what gets shuffled in
1500      for (unsigned i = 0; i != NumSrcElts; ++i)
1501        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1502      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1503      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1504    } else {
1505      // We should never shorten the vector
1506      llvm_unreachable("unexpected shorten vector length");
1507    }
1508  } else {
1509    // If the Src is a scalar (not a vector) it must be updating one element.
1510    unsigned InIdx = getAccessedFieldNo(0, Elts);
1511    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1512    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1513  }
1514
1515  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1516                                               Dst.isVolatileQualified());
1517  Store->setAlignment(Dst.getAlignment().getQuantity());
1518}
1519
1520// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1521// generating write-barries API. It is currently a global, ivar,
1522// or neither.
1523static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1524                                 LValue &LV,
1525                                 bool IsMemberAccess=false) {
1526  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1527    return;
1528
1529  if (isa<ObjCIvarRefExpr>(E)) {
1530    QualType ExpTy = E->getType();
1531    if (IsMemberAccess && ExpTy->isPointerType()) {
1532      // If ivar is a structure pointer, assigning to field of
1533      // this struct follows gcc's behavior and makes it a non-ivar
1534      // writer-barrier conservatively.
1535      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1536      if (ExpTy->isRecordType()) {
1537        LV.setObjCIvar(false);
1538        return;
1539      }
1540    }
1541    LV.setObjCIvar(true);
1542    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1543    LV.setBaseIvarExp(Exp->getBase());
1544    LV.setObjCArray(E->getType()->isArrayType());
1545    return;
1546  }
1547
1548  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1549    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1550      if (VD->hasGlobalStorage()) {
1551        LV.setGlobalObjCRef(true);
1552        LV.setThreadLocalRef(VD->isThreadSpecified());
1553      }
1554    }
1555    LV.setObjCArray(E->getType()->isArrayType());
1556    return;
1557  }
1558
1559  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1560    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1561    return;
1562  }
1563
1564  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1565    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1566    if (LV.isObjCIvar()) {
1567      // If cast is to a structure pointer, follow gcc's behavior and make it
1568      // a non-ivar write-barrier.
1569      QualType ExpTy = E->getType();
1570      if (ExpTy->isPointerType())
1571        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1572      if (ExpTy->isRecordType())
1573        LV.setObjCIvar(false);
1574    }
1575    return;
1576  }
1577
1578  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1579    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1580    return;
1581  }
1582
1583  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1584    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1585    return;
1586  }
1587
1588  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1589    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1590    return;
1591  }
1592
1593  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1594    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1595    return;
1596  }
1597
1598  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1599    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1600    if (LV.isObjCIvar() && !LV.isObjCArray())
1601      // Using array syntax to assigning to what an ivar points to is not
1602      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1603      LV.setObjCIvar(false);
1604    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1605      // Using array syntax to assigning to what global points to is not
1606      // same as assigning to the global itself. {id *G;} G[i] = 0;
1607      LV.setGlobalObjCRef(false);
1608    return;
1609  }
1610
1611  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1612    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1613    // We don't know if member is an 'ivar', but this flag is looked at
1614    // only in the context of LV.isObjCIvar().
1615    LV.setObjCArray(E->getType()->isArrayType());
1616    return;
1617  }
1618}
1619
1620static llvm::Value *
1621EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1622                                llvm::Value *V, llvm::Type *IRType,
1623                                StringRef Name = StringRef()) {
1624  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1625  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1626}
1627
1628static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1629                                      const Expr *E, const VarDecl *VD) {
1630  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1631         "Var decl must have external storage or be a file var decl!");
1632
1633  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1634  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1635  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1636  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1637  QualType T = E->getType();
1638  LValue LV;
1639  if (VD->getType()->isReferenceType()) {
1640    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1641    LI->setAlignment(Alignment.getQuantity());
1642    V = LI;
1643    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1644  } else {
1645    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1646  }
1647  setObjCGCLValueClass(CGF.getContext(), E, LV);
1648  return LV;
1649}
1650
1651static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1652                                     const Expr *E, const FunctionDecl *FD) {
1653  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1654  if (!FD->hasPrototype()) {
1655    if (const FunctionProtoType *Proto =
1656            FD->getType()->getAs<FunctionProtoType>()) {
1657      // Ugly case: for a K&R-style definition, the type of the definition
1658      // isn't the same as the type of a use.  Correct for this with a
1659      // bitcast.
1660      QualType NoProtoType =
1661          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1662      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1663      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1664    }
1665  }
1666  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1667  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1668}
1669
1670LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1671  const NamedDecl *ND = E->getDecl();
1672  CharUnits Alignment = getContext().getDeclAlign(ND);
1673  QualType T = E->getType();
1674
1675  // A DeclRefExpr for a reference initialized by a constant expression can
1676  // appear without being odr-used. Directly emit the constant initializer.
1677  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1678    const Expr *Init = VD->getAnyInitializer(VD);
1679    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1680        VD->isUsableInConstantExpressions(getContext()) &&
1681        VD->checkInitIsICE()) {
1682      llvm::Constant *Val =
1683        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1684      assert(Val && "failed to emit reference constant expression");
1685      // FIXME: Eventually we will want to emit vector element references.
1686      return MakeAddrLValue(Val, T, Alignment);
1687    }
1688  }
1689
1690  // FIXME: We should be able to assert this for FunctionDecls as well!
1691  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1692  // those with a valid source location.
1693  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1694          !E->getLocation().isValid()) &&
1695         "Should not use decl without marking it used!");
1696
1697  if (ND->hasAttr<WeakRefAttr>()) {
1698    const ValueDecl *VD = cast<ValueDecl>(ND);
1699    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1700    return MakeAddrLValue(Aliasee, T, Alignment);
1701  }
1702
1703  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1704    // Check if this is a global variable.
1705    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1706      return EmitGlobalVarDeclLValue(*this, E, VD);
1707
1708    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1709
1710    bool NonGCable = VD->hasLocalStorage() &&
1711                     !VD->getType()->isReferenceType() &&
1712                     !isBlockVariable;
1713
1714    llvm::Value *V = LocalDeclMap[VD];
1715    if (!V && VD->isStaticLocal())
1716      V = CGM.getStaticLocalDeclAddress(VD);
1717
1718    // Use special handling for lambdas.
1719    if (!V) {
1720      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1721        QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1722        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1723                                                     LambdaTagType);
1724        return EmitLValueForField(LambdaLV, FD);
1725      }
1726
1727      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1728      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1729                            T, Alignment);
1730    }
1731
1732    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1733
1734    if (isBlockVariable)
1735      V = BuildBlockByrefAddress(V, VD);
1736
1737    LValue LV;
1738    if (VD->getType()->isReferenceType()) {
1739      llvm::LoadInst *LI = Builder.CreateLoad(V);
1740      LI->setAlignment(Alignment.getQuantity());
1741      V = LI;
1742      LV = MakeNaturalAlignAddrLValue(V, T);
1743    } else {
1744      LV = MakeAddrLValue(V, T, Alignment);
1745    }
1746
1747    if (NonGCable) {
1748      LV.getQuals().removeObjCGCAttr();
1749      LV.setNonGC(true);
1750    }
1751    setObjCGCLValueClass(getContext(), E, LV);
1752    return LV;
1753  }
1754
1755  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1756    return EmitFunctionDeclLValue(*this, E, fn);
1757
1758  llvm_unreachable("Unhandled DeclRefExpr");
1759}
1760
1761LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1762  // __extension__ doesn't affect lvalue-ness.
1763  if (E->getOpcode() == UO_Extension)
1764    return EmitLValue(E->getSubExpr());
1765
1766  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1767  switch (E->getOpcode()) {
1768  default: llvm_unreachable("Unknown unary operator lvalue!");
1769  case UO_Deref: {
1770    QualType T = E->getSubExpr()->getType()->getPointeeType();
1771    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1772
1773    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1774    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1775
1776    // We should not generate __weak write barrier on indirect reference
1777    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1778    // But, we continue to generate __strong write barrier on indirect write
1779    // into a pointer to object.
1780    if (getLangOpts().ObjC1 &&
1781        getLangOpts().getGC() != LangOptions::NonGC &&
1782        LV.isObjCWeak())
1783      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1784    return LV;
1785  }
1786  case UO_Real:
1787  case UO_Imag: {
1788    LValue LV = EmitLValue(E->getSubExpr());
1789    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1790    llvm::Value *Addr = LV.getAddress();
1791
1792    // __real is valid on scalars.  This is a faster way of testing that.
1793    // __imag can only produce an rvalue on scalars.
1794    if (E->getOpcode() == UO_Real &&
1795        !cast<llvm::PointerType>(Addr->getType())
1796           ->getElementType()->isStructTy()) {
1797      assert(E->getSubExpr()->getType()->isArithmeticType());
1798      return LV;
1799    }
1800
1801    assert(E->getSubExpr()->getType()->isAnyComplexType());
1802
1803    unsigned Idx = E->getOpcode() == UO_Imag;
1804    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1805                                                  Idx, "idx"),
1806                          ExprTy);
1807  }
1808  case UO_PreInc:
1809  case UO_PreDec: {
1810    LValue LV = EmitLValue(E->getSubExpr());
1811    bool isInc = E->getOpcode() == UO_PreInc;
1812
1813    if (E->getType()->isAnyComplexType())
1814      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1815    else
1816      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1817    return LV;
1818  }
1819  }
1820}
1821
1822LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1823  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1824                        E->getType());
1825}
1826
1827LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1828  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1829                        E->getType());
1830}
1831
1832static llvm::Constant*
1833GetAddrOfConstantWideString(StringRef Str,
1834                            const char *GlobalName,
1835                            ASTContext &Context,
1836                            QualType Ty, SourceLocation Loc,
1837                            CodeGenModule &CGM) {
1838
1839  StringLiteral *SL = StringLiteral::Create(Context,
1840                                            Str,
1841                                            StringLiteral::Wide,
1842                                            /*Pascal = */false,
1843                                            Ty, Loc);
1844  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1845  llvm::GlobalVariable *GV =
1846    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1847                             !CGM.getLangOpts().WritableStrings,
1848                             llvm::GlobalValue::PrivateLinkage,
1849                             C, GlobalName);
1850  const unsigned WideAlignment =
1851    Context.getTypeAlignInChars(Ty).getQuantity();
1852  GV->setAlignment(WideAlignment);
1853  return GV;
1854}
1855
1856static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1857                                    SmallString<32>& Target) {
1858  Target.resize(CharByteWidth * (Source.size() + 1));
1859  char *ResultPtr = &Target[0];
1860  const UTF8 *ErrorPtr;
1861  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1862  (void)success;
1863  assert(success);
1864  Target.resize(ResultPtr - &Target[0]);
1865}
1866
1867LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1868  switch (E->getIdentType()) {
1869  default:
1870    return EmitUnsupportedLValue(E, "predefined expression");
1871
1872  case PredefinedExpr::Func:
1873  case PredefinedExpr::Function:
1874  case PredefinedExpr::LFunction:
1875  case PredefinedExpr::PrettyFunction: {
1876    unsigned IdentType = E->getIdentType();
1877    std::string GlobalVarName;
1878
1879    switch (IdentType) {
1880    default: llvm_unreachable("Invalid type");
1881    case PredefinedExpr::Func:
1882      GlobalVarName = "__func__.";
1883      break;
1884    case PredefinedExpr::Function:
1885      GlobalVarName = "__FUNCTION__.";
1886      break;
1887    case PredefinedExpr::LFunction:
1888      GlobalVarName = "L__FUNCTION__.";
1889      break;
1890    case PredefinedExpr::PrettyFunction:
1891      GlobalVarName = "__PRETTY_FUNCTION__.";
1892      break;
1893    }
1894
1895    StringRef FnName = CurFn->getName();
1896    if (FnName.startswith("\01"))
1897      FnName = FnName.substr(1);
1898    GlobalVarName += FnName;
1899
1900    const Decl *CurDecl = CurCodeDecl;
1901    if (CurDecl == 0)
1902      CurDecl = getContext().getTranslationUnitDecl();
1903
1904    std::string FunctionName =
1905        (isa<BlockDecl>(CurDecl)
1906         ? FnName.str()
1907         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1908                                       CurDecl));
1909
1910    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1911    llvm::Constant *C;
1912    if (ElemType->isWideCharType()) {
1913      SmallString<32> RawChars;
1914      ConvertUTF8ToWideString(
1915          getContext().getTypeSizeInChars(ElemType).getQuantity(),
1916          FunctionName, RawChars);
1917      C = GetAddrOfConstantWideString(RawChars,
1918                                      GlobalVarName.c_str(),
1919                                      getContext(),
1920                                      E->getType(),
1921                                      E->getLocation(),
1922                                      CGM);
1923    } else {
1924      C = CGM.GetAddrOfConstantCString(FunctionName,
1925                                       GlobalVarName.c_str(),
1926                                       1);
1927    }
1928    return MakeAddrLValue(C, E->getType());
1929  }
1930  }
1931}
1932
1933/// Emit a type description suitable for use by a runtime sanitizer library. The
1934/// format of a type descriptor is
1935///
1936/// \code
1937///   { i16 TypeKind, i16 TypeInfo }
1938/// \endcode
1939///
1940/// followed by an array of i8 containing the type name. TypeKind is 0 for an
1941/// integer, 1 for a floating point value, and -1 for anything else.
1942llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
1943  // FIXME: Only emit each type's descriptor once.
1944  uint16_t TypeKind = -1;
1945  uint16_t TypeInfo = 0;
1946
1947  if (T->isIntegerType()) {
1948    TypeKind = 0;
1949    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
1950               T->isSignedIntegerType();
1951  } else if (T->isFloatingType()) {
1952    TypeKind = 1;
1953    TypeInfo = getContext().getTypeSize(T);
1954  }
1955
1956  // Format the type name as if for a diagnostic, including quotes and
1957  // optionally an 'aka'.
1958  llvm::SmallString<32> Buffer;
1959  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
1960                                    (intptr_t)T.getAsOpaquePtr(),
1961                                    0, 0, 0, 0, 0, 0, Buffer,
1962                                    ArrayRef<intptr_t>());
1963
1964  llvm::Constant *Components[] = {
1965    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
1966    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
1967  };
1968  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
1969
1970  llvm::GlobalVariable *GV =
1971    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
1972                             /*isConstant=*/true,
1973                             llvm::GlobalVariable::PrivateLinkage,
1974                             Descriptor);
1975  GV->setUnnamedAddr(true);
1976  return GV;
1977}
1978
1979llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
1980  llvm::Type *TargetTy = IntPtrTy;
1981
1982  // Integers which fit in intptr_t are zero-extended and passed directly.
1983  if (V->getType()->isIntegerTy() &&
1984      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
1985    return Builder.CreateZExt(V, TargetTy);
1986
1987  // Pointers are passed directly, everything else is passed by address.
1988  if (!V->getType()->isPointerTy()) {
1989    llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
1990    Builder.CreateStore(V, Ptr);
1991    V = Ptr;
1992  }
1993  return Builder.CreatePtrToInt(V, TargetTy);
1994}
1995
1996/// \brief Emit a representation of a SourceLocation for passing to a handler
1997/// in a sanitizer runtime library. The format for this data is:
1998/// \code
1999///   struct SourceLocation {
2000///     const char *Filename;
2001///     int32_t Line, Column;
2002///   };
2003/// \endcode
2004/// For an invalid SourceLocation, the Filename pointer is null.
2005llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2006  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2007
2008  llvm::Constant *Data[] = {
2009    // FIXME: Only emit each file name once.
2010    PLoc.isValid() ? cast<llvm::Constant>(
2011                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2012                   : llvm::Constant::getNullValue(Int8PtrTy),
2013    Builder.getInt32(PLoc.getLine()),
2014    Builder.getInt32(PLoc.getColumn())
2015  };
2016
2017  return llvm::ConstantStruct::getAnon(Data);
2018}
2019
2020void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2021                                llvm::ArrayRef<llvm::Constant *> StaticArgs,
2022                                llvm::ArrayRef<llvm::Value *> DynamicArgs,
2023                                bool Recoverable) {
2024  llvm::BasicBlock *Cont = createBasicBlock("cont");
2025
2026  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2027  Builder.CreateCondBr(Checked, Cont, Handler);
2028  EmitBlock(Handler);
2029
2030  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2031  llvm::GlobalValue *InfoPtr =
2032      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true,
2033                               llvm::GlobalVariable::PrivateLinkage, Info);
2034  InfoPtr->setUnnamedAddr(true);
2035
2036  llvm::SmallVector<llvm::Value *, 4> Args;
2037  llvm::SmallVector<llvm::Type *, 4> ArgTypes;
2038  Args.reserve(DynamicArgs.size() + 1);
2039  ArgTypes.reserve(DynamicArgs.size() + 1);
2040
2041  // Handler functions take an i8* pointing to the (handler-specific) static
2042  // information block, followed by a sequence of intptr_t arguments
2043  // representing operand values.
2044  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2045  ArgTypes.push_back(Int8PtrTy);
2046  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2047    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2048    ArgTypes.push_back(IntPtrTy);
2049  }
2050
2051  llvm::FunctionType *FnType =
2052    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2053  llvm::AttrBuilder B;
2054  if (!Recoverable) {
2055    B.addAttribute(llvm::Attributes::NoReturn)
2056     .addAttribute(llvm::Attributes::NoUnwind);
2057  }
2058  B.addAttribute(llvm::Attributes::UWTable);
2059  llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType,
2060                                          ("__ubsan_handle_" + CheckName).str(),
2061                                         llvm::Attributes::get(getLLVMContext(),
2062                                                               B));
2063  llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args);
2064  if (Recoverable) {
2065    Builder.CreateBr(Cont);
2066  } else {
2067    HandlerCall->setDoesNotReturn();
2068    HandlerCall->setDoesNotThrow();
2069    Builder.CreateUnreachable();
2070  }
2071
2072  EmitBlock(Cont);
2073}
2074
2075void CodeGenFunction::EmitTrapvCheck(llvm::Value *Checked) {
2076  llvm::BasicBlock *Cont = createBasicBlock("cont");
2077
2078  // If we're optimizing, collapse all calls to trap down to just one per
2079  // function to save on code size.
2080  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2081    TrapBB = createBasicBlock("trap");
2082    Builder.CreateCondBr(Checked, Cont, TrapBB);
2083    EmitBlock(TrapBB);
2084    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2085    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2086    TrapCall->setDoesNotReturn();
2087    TrapCall->setDoesNotThrow();
2088    Builder.CreateUnreachable();
2089  } else {
2090    Builder.CreateCondBr(Checked, Cont, TrapBB);
2091  }
2092
2093  EmitBlock(Cont);
2094}
2095
2096/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2097/// array to pointer, return the array subexpression.
2098static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2099  // If this isn't just an array->pointer decay, bail out.
2100  const CastExpr *CE = dyn_cast<CastExpr>(E);
2101  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2102    return 0;
2103
2104  // If this is a decay from variable width array, bail out.
2105  const Expr *SubExpr = CE->getSubExpr();
2106  if (SubExpr->getType()->isVariableArrayType())
2107    return 0;
2108
2109  return SubExpr;
2110}
2111
2112LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2113  // The index must always be an integer, which is not an aggregate.  Emit it.
2114  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2115  QualType IdxTy  = E->getIdx()->getType();
2116  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2117
2118  // If the base is a vector type, then we are forming a vector element lvalue
2119  // with this subscript.
2120  if (E->getBase()->getType()->isVectorType()) {
2121    // Emit the vector as an lvalue to get its address.
2122    LValue LHS = EmitLValue(E->getBase());
2123    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2124    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2125    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2126                                 E->getBase()->getType(), LHS.getAlignment());
2127  }
2128
2129  // Extend or truncate the index type to 32 or 64-bits.
2130  if (Idx->getType() != IntPtrTy)
2131    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2132
2133  // We know that the pointer points to a type of the correct size, unless the
2134  // size is a VLA or Objective-C interface.
2135  llvm::Value *Address = 0;
2136  CharUnits ArrayAlignment;
2137  if (const VariableArrayType *vla =
2138        getContext().getAsVariableArrayType(E->getType())) {
2139    // The base must be a pointer, which is not an aggregate.  Emit
2140    // it.  It needs to be emitted first in case it's what captures
2141    // the VLA bounds.
2142    Address = EmitScalarExpr(E->getBase());
2143
2144    // The element count here is the total number of non-VLA elements.
2145    llvm::Value *numElements = getVLASize(vla).first;
2146
2147    // Effectively, the multiply by the VLA size is part of the GEP.
2148    // GEP indexes are signed, and scaling an index isn't permitted to
2149    // signed-overflow, so we use the same semantics for our explicit
2150    // multiply.  We suppress this if overflow is not undefined behavior.
2151    if (getLangOpts().isSignedOverflowDefined()) {
2152      Idx = Builder.CreateMul(Idx, numElements);
2153      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2154    } else {
2155      Idx = Builder.CreateNSWMul(Idx, numElements);
2156      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2157    }
2158  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2159    // Indexing over an interface, as in "NSString *P; P[4];"
2160    llvm::Value *InterfaceSize =
2161      llvm::ConstantInt::get(Idx->getType(),
2162          getContext().getTypeSizeInChars(OIT).getQuantity());
2163
2164    Idx = Builder.CreateMul(Idx, InterfaceSize);
2165
2166    // The base must be a pointer, which is not an aggregate.  Emit it.
2167    llvm::Value *Base = EmitScalarExpr(E->getBase());
2168    Address = EmitCastToVoidPtr(Base);
2169    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2170    Address = Builder.CreateBitCast(Address, Base->getType());
2171  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2172    // If this is A[i] where A is an array, the frontend will have decayed the
2173    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2174    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2175    // "gep x, i" here.  Emit one "gep A, 0, i".
2176    assert(Array->getType()->isArrayType() &&
2177           "Array to pointer decay must have array source type!");
2178    LValue ArrayLV = EmitLValue(Array);
2179    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2180    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2181    llvm::Value *Args[] = { Zero, Idx };
2182
2183    // Propagate the alignment from the array itself to the result.
2184    ArrayAlignment = ArrayLV.getAlignment();
2185
2186    if (getLangOpts().isSignedOverflowDefined())
2187      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2188    else
2189      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2190  } else {
2191    // The base must be a pointer, which is not an aggregate.  Emit it.
2192    llvm::Value *Base = EmitScalarExpr(E->getBase());
2193    if (getLangOpts().isSignedOverflowDefined())
2194      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2195    else
2196      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2197  }
2198
2199  QualType T = E->getBase()->getType()->getPointeeType();
2200  assert(!T.isNull() &&
2201         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2202
2203
2204  // Limit the alignment to that of the result type.
2205  LValue LV;
2206  if (!ArrayAlignment.isZero()) {
2207    CharUnits Align = getContext().getTypeAlignInChars(T);
2208    ArrayAlignment = std::min(Align, ArrayAlignment);
2209    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2210  } else {
2211    LV = MakeNaturalAlignAddrLValue(Address, T);
2212  }
2213
2214  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2215
2216  if (getLangOpts().ObjC1 &&
2217      getLangOpts().getGC() != LangOptions::NonGC) {
2218    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2219    setObjCGCLValueClass(getContext(), E, LV);
2220  }
2221  return LV;
2222}
2223
2224static
2225llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2226                                       SmallVector<unsigned, 4> &Elts) {
2227  SmallVector<llvm::Constant*, 4> CElts;
2228  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2229    CElts.push_back(Builder.getInt32(Elts[i]));
2230
2231  return llvm::ConstantVector::get(CElts);
2232}
2233
2234LValue CodeGenFunction::
2235EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2236  // Emit the base vector as an l-value.
2237  LValue Base;
2238
2239  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2240  if (E->isArrow()) {
2241    // If it is a pointer to a vector, emit the address and form an lvalue with
2242    // it.
2243    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2244    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2245    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2246    Base.getQuals().removeObjCGCAttr();
2247  } else if (E->getBase()->isGLValue()) {
2248    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2249    // emit the base as an lvalue.
2250    assert(E->getBase()->getType()->isVectorType());
2251    Base = EmitLValue(E->getBase());
2252  } else {
2253    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2254    assert(E->getBase()->getType()->isVectorType() &&
2255           "Result must be a vector");
2256    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2257
2258    // Store the vector to memory (because LValue wants an address).
2259    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2260    Builder.CreateStore(Vec, VecMem);
2261    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2262  }
2263
2264  QualType type =
2265    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2266
2267  // Encode the element access list into a vector of unsigned indices.
2268  SmallVector<unsigned, 4> Indices;
2269  E->getEncodedElementAccess(Indices);
2270
2271  if (Base.isSimple()) {
2272    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2273    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2274                                    Base.getAlignment());
2275  }
2276  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2277
2278  llvm::Constant *BaseElts = Base.getExtVectorElts();
2279  SmallVector<llvm::Constant *, 4> CElts;
2280
2281  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2282    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2283  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2284  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2285                                  Base.getAlignment());
2286}
2287
2288LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2289  Expr *BaseExpr = E->getBase();
2290
2291  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2292  LValue BaseLV;
2293  if (E->isArrow()) {
2294    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2295    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2296    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2297    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2298  } else
2299    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2300
2301  NamedDecl *ND = E->getMemberDecl();
2302  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2303    LValue LV = EmitLValueForField(BaseLV, Field);
2304    setObjCGCLValueClass(getContext(), E, LV);
2305    return LV;
2306  }
2307
2308  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2309    return EmitGlobalVarDeclLValue(*this, E, VD);
2310
2311  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2312    return EmitFunctionDeclLValue(*this, E, FD);
2313
2314  llvm_unreachable("Unhandled member declaration!");
2315}
2316
2317LValue CodeGenFunction::EmitLValueForField(LValue base,
2318                                           const FieldDecl *field) {
2319  if (field->isBitField()) {
2320    const CGRecordLayout &RL =
2321      CGM.getTypes().getCGRecordLayout(field->getParent());
2322    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2323    QualType fieldType =
2324      field->getType().withCVRQualifiers(base.getVRQualifiers());
2325    return LValue::MakeBitfield(base.getAddress(), Info, fieldType,
2326                                base.getAlignment());
2327  }
2328
2329  const RecordDecl *rec = field->getParent();
2330  QualType type = field->getType();
2331  CharUnits alignment = getContext().getDeclAlign(field);
2332
2333  // FIXME: It should be impossible to have an LValue without alignment for a
2334  // complete type.
2335  if (!base.getAlignment().isZero())
2336    alignment = std::min(alignment, base.getAlignment());
2337
2338  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2339
2340  llvm::Value *addr = base.getAddress();
2341  unsigned cvr = base.getVRQualifiers();
2342  if (rec->isUnion()) {
2343    // For unions, there is no pointer adjustment.
2344    assert(!type->isReferenceType() && "union has reference member");
2345  } else {
2346    // For structs, we GEP to the field that the record layout suggests.
2347    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2348    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2349
2350    // If this is a reference field, load the reference right now.
2351    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2352      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2353      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2354      load->setAlignment(alignment.getQuantity());
2355
2356      if (CGM.shouldUseTBAA()) {
2357        llvm::MDNode *tbaa;
2358        if (mayAlias)
2359          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2360        else
2361          tbaa = CGM.getTBAAInfo(type);
2362        CGM.DecorateInstruction(load, tbaa);
2363      }
2364
2365      addr = load;
2366      mayAlias = false;
2367      type = refType->getPointeeType();
2368      if (type->isIncompleteType())
2369        alignment = CharUnits();
2370      else
2371        alignment = getContext().getTypeAlignInChars(type);
2372      cvr = 0; // qualifiers don't recursively apply to referencee
2373    }
2374  }
2375
2376  // Make sure that the address is pointing to the right type.  This is critical
2377  // for both unions and structs.  A union needs a bitcast, a struct element
2378  // will need a bitcast if the LLVM type laid out doesn't match the desired
2379  // type.
2380  addr = EmitBitCastOfLValueToProperType(*this, addr,
2381                                         CGM.getTypes().ConvertTypeForMem(type),
2382                                         field->getName());
2383
2384  if (field->hasAttr<AnnotateAttr>())
2385    addr = EmitFieldAnnotations(field, addr);
2386
2387  LValue LV = MakeAddrLValue(addr, type, alignment);
2388  LV.getQuals().addCVRQualifiers(cvr);
2389
2390  // __weak attribute on a field is ignored.
2391  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2392    LV.getQuals().removeObjCGCAttr();
2393
2394  // Fields of may_alias structs act like 'char' for TBAA purposes.
2395  // FIXME: this should get propagated down through anonymous structs
2396  // and unions.
2397  if (mayAlias && LV.getTBAAInfo())
2398    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2399
2400  return LV;
2401}
2402
2403LValue
2404CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2405                                                  const FieldDecl *Field) {
2406  QualType FieldType = Field->getType();
2407
2408  if (!FieldType->isReferenceType())
2409    return EmitLValueForField(Base, Field);
2410
2411  const CGRecordLayout &RL =
2412    CGM.getTypes().getCGRecordLayout(Field->getParent());
2413  unsigned idx = RL.getLLVMFieldNo(Field);
2414  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2415  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2416
2417  // Make sure that the address is pointing to the right type.  This is critical
2418  // for both unions and structs.  A union needs a bitcast, a struct element
2419  // will need a bitcast if the LLVM type laid out doesn't match the desired
2420  // type.
2421  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2422  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2423
2424  CharUnits Alignment = getContext().getDeclAlign(Field);
2425
2426  // FIXME: It should be impossible to have an LValue without alignment for a
2427  // complete type.
2428  if (!Base.getAlignment().isZero())
2429    Alignment = std::min(Alignment, Base.getAlignment());
2430
2431  return MakeAddrLValue(V, FieldType, Alignment);
2432}
2433
2434LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2435  if (E->isFileScope()) {
2436    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2437    return MakeAddrLValue(GlobalPtr, E->getType());
2438  }
2439  if (E->getType()->isVariablyModifiedType())
2440    // make sure to emit the VLA size.
2441    EmitVariablyModifiedType(E->getType());
2442
2443  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2444  const Expr *InitExpr = E->getInitializer();
2445  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2446
2447  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2448                   /*Init*/ true);
2449
2450  return Result;
2451}
2452
2453LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2454  if (!E->isGLValue())
2455    // Initializing an aggregate temporary in C++11: T{...}.
2456    return EmitAggExprToLValue(E);
2457
2458  // An lvalue initializer list must be initializing a reference.
2459  assert(E->getNumInits() == 1 && "reference init with multiple values");
2460  return EmitLValue(E->getInit(0));
2461}
2462
2463LValue CodeGenFunction::
2464EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2465  if (!expr->isGLValue()) {
2466    // ?: here should be an aggregate.
2467    assert((hasAggregateLLVMType(expr->getType()) &&
2468            !expr->getType()->isAnyComplexType()) &&
2469           "Unexpected conditional operator!");
2470    return EmitAggExprToLValue(expr);
2471  }
2472
2473  OpaqueValueMapping binding(*this, expr);
2474
2475  const Expr *condExpr = expr->getCond();
2476  bool CondExprBool;
2477  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2478    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2479    if (!CondExprBool) std::swap(live, dead);
2480
2481    if (!ContainsLabel(dead))
2482      return EmitLValue(live);
2483  }
2484
2485  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2486  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2487  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2488
2489  ConditionalEvaluation eval(*this);
2490  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2491
2492  // Any temporaries created here are conditional.
2493  EmitBlock(lhsBlock);
2494  eval.begin(*this);
2495  LValue lhs = EmitLValue(expr->getTrueExpr());
2496  eval.end(*this);
2497
2498  if (!lhs.isSimple())
2499    return EmitUnsupportedLValue(expr, "conditional operator");
2500
2501  lhsBlock = Builder.GetInsertBlock();
2502  Builder.CreateBr(contBlock);
2503
2504  // Any temporaries created here are conditional.
2505  EmitBlock(rhsBlock);
2506  eval.begin(*this);
2507  LValue rhs = EmitLValue(expr->getFalseExpr());
2508  eval.end(*this);
2509  if (!rhs.isSimple())
2510    return EmitUnsupportedLValue(expr, "conditional operator");
2511  rhsBlock = Builder.GetInsertBlock();
2512
2513  EmitBlock(contBlock);
2514
2515  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2516                                         "cond-lvalue");
2517  phi->addIncoming(lhs.getAddress(), lhsBlock);
2518  phi->addIncoming(rhs.getAddress(), rhsBlock);
2519  return MakeAddrLValue(phi, expr->getType());
2520}
2521
2522/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2523/// type. If the cast is to a reference, we can have the usual lvalue result,
2524/// otherwise if a cast is needed by the code generator in an lvalue context,
2525/// then it must mean that we need the address of an aggregate in order to
2526/// access one of its members.  This can happen for all the reasons that casts
2527/// are permitted with aggregate result, including noop aggregate casts, and
2528/// cast from scalar to union.
2529LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2530  switch (E->getCastKind()) {
2531  case CK_ToVoid:
2532    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2533
2534  case CK_Dependent:
2535    llvm_unreachable("dependent cast kind in IR gen!");
2536
2537  case CK_BuiltinFnToFnPtr:
2538    llvm_unreachable("builtin functions are handled elsewhere");
2539
2540  // These two casts are currently treated as no-ops, although they could
2541  // potentially be real operations depending on the target's ABI.
2542  case CK_NonAtomicToAtomic:
2543  case CK_AtomicToNonAtomic:
2544
2545  case CK_NoOp:
2546  case CK_LValueToRValue:
2547    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2548        || E->getType()->isRecordType())
2549      return EmitLValue(E->getSubExpr());
2550    // Fall through to synthesize a temporary.
2551
2552  case CK_BitCast:
2553  case CK_ArrayToPointerDecay:
2554  case CK_FunctionToPointerDecay:
2555  case CK_NullToMemberPointer:
2556  case CK_NullToPointer:
2557  case CK_IntegralToPointer:
2558  case CK_PointerToIntegral:
2559  case CK_PointerToBoolean:
2560  case CK_VectorSplat:
2561  case CK_IntegralCast:
2562  case CK_IntegralToBoolean:
2563  case CK_IntegralToFloating:
2564  case CK_FloatingToIntegral:
2565  case CK_FloatingToBoolean:
2566  case CK_FloatingCast:
2567  case CK_FloatingRealToComplex:
2568  case CK_FloatingComplexToReal:
2569  case CK_FloatingComplexToBoolean:
2570  case CK_FloatingComplexCast:
2571  case CK_FloatingComplexToIntegralComplex:
2572  case CK_IntegralRealToComplex:
2573  case CK_IntegralComplexToReal:
2574  case CK_IntegralComplexToBoolean:
2575  case CK_IntegralComplexCast:
2576  case CK_IntegralComplexToFloatingComplex:
2577  case CK_DerivedToBaseMemberPointer:
2578  case CK_BaseToDerivedMemberPointer:
2579  case CK_MemberPointerToBoolean:
2580  case CK_ReinterpretMemberPointer:
2581  case CK_AnyPointerToBlockPointerCast:
2582  case CK_ARCProduceObject:
2583  case CK_ARCConsumeObject:
2584  case CK_ARCReclaimReturnedObject:
2585  case CK_ARCExtendBlockObject:
2586  case CK_CopyAndAutoreleaseBlockObject: {
2587    // These casts only produce lvalues when we're binding a reference to a
2588    // temporary realized from a (converted) pure rvalue. Emit the expression
2589    // as a value, copy it into a temporary, and return an lvalue referring to
2590    // that temporary.
2591    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2592    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2593    return MakeAddrLValue(V, E->getType());
2594  }
2595
2596  case CK_Dynamic: {
2597    LValue LV = EmitLValue(E->getSubExpr());
2598    llvm::Value *V = LV.getAddress();
2599    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2600    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2601  }
2602
2603  case CK_ConstructorConversion:
2604  case CK_UserDefinedConversion:
2605  case CK_CPointerToObjCPointerCast:
2606  case CK_BlockPointerToObjCPointerCast:
2607    return EmitLValue(E->getSubExpr());
2608
2609  case CK_UncheckedDerivedToBase:
2610  case CK_DerivedToBase: {
2611    const RecordType *DerivedClassTy =
2612      E->getSubExpr()->getType()->getAs<RecordType>();
2613    CXXRecordDecl *DerivedClassDecl =
2614      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2615
2616    LValue LV = EmitLValue(E->getSubExpr());
2617    llvm::Value *This = LV.getAddress();
2618
2619    // Perform the derived-to-base conversion
2620    llvm::Value *Base =
2621      GetAddressOfBaseClass(This, DerivedClassDecl,
2622                            E->path_begin(), E->path_end(),
2623                            /*NullCheckValue=*/false);
2624
2625    return MakeAddrLValue(Base, E->getType());
2626  }
2627  case CK_ToUnion:
2628    return EmitAggExprToLValue(E);
2629  case CK_BaseToDerived: {
2630    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2631    CXXRecordDecl *DerivedClassDecl =
2632      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2633
2634    LValue LV = EmitLValue(E->getSubExpr());
2635
2636    // Perform the base-to-derived conversion
2637    llvm::Value *Derived =
2638      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2639                               E->path_begin(), E->path_end(),
2640                               /*NullCheckValue=*/false);
2641
2642    return MakeAddrLValue(Derived, E->getType());
2643  }
2644  case CK_LValueBitCast: {
2645    // This must be a reinterpret_cast (or c-style equivalent).
2646    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2647
2648    LValue LV = EmitLValue(E->getSubExpr());
2649    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2650                                           ConvertType(CE->getTypeAsWritten()));
2651    return MakeAddrLValue(V, E->getType());
2652  }
2653  case CK_ObjCObjectLValueCast: {
2654    LValue LV = EmitLValue(E->getSubExpr());
2655    QualType ToType = getContext().getLValueReferenceType(E->getType());
2656    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2657                                           ConvertType(ToType));
2658    return MakeAddrLValue(V, E->getType());
2659  }
2660  }
2661
2662  llvm_unreachable("Unhandled lvalue cast kind?");
2663}
2664
2665LValue CodeGenFunction::EmitNullInitializationLValue(
2666                                              const CXXScalarValueInitExpr *E) {
2667  QualType Ty = E->getType();
2668  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2669  EmitNullInitialization(LV.getAddress(), Ty);
2670  return LV;
2671}
2672
2673LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2674  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2675  return getOpaqueLValueMapping(e);
2676}
2677
2678LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2679                                           const MaterializeTemporaryExpr *E) {
2680  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2681  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2682}
2683
2684RValue CodeGenFunction::EmitRValueForField(LValue LV,
2685                                           const FieldDecl *FD) {
2686  QualType FT = FD->getType();
2687  LValue FieldLV = EmitLValueForField(LV, FD);
2688  if (FT->isAnyComplexType())
2689    return RValue::getComplex(
2690        LoadComplexFromAddr(FieldLV.getAddress(),
2691                            FieldLV.isVolatileQualified()));
2692  else if (CodeGenFunction::hasAggregateLLVMType(FT))
2693    return FieldLV.asAggregateRValue();
2694
2695  return EmitLoadOfLValue(FieldLV);
2696}
2697
2698//===--------------------------------------------------------------------===//
2699//                             Expression Emission
2700//===--------------------------------------------------------------------===//
2701
2702RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2703                                     ReturnValueSlot ReturnValue) {
2704  if (CGDebugInfo *DI = getDebugInfo())
2705    DI->EmitLocation(Builder, E->getLocStart());
2706
2707  // Builtins never have block type.
2708  if (E->getCallee()->getType()->isBlockPointerType())
2709    return EmitBlockCallExpr(E, ReturnValue);
2710
2711  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2712    return EmitCXXMemberCallExpr(CE, ReturnValue);
2713
2714  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2715    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2716
2717  const Decl *TargetDecl = E->getCalleeDecl();
2718  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2719    if (unsigned builtinID = FD->getBuiltinID())
2720      return EmitBuiltinExpr(FD, builtinID, E);
2721  }
2722
2723  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2724    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2725      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2726
2727  if (const CXXPseudoDestructorExpr *PseudoDtor
2728          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2729    QualType DestroyedType = PseudoDtor->getDestroyedType();
2730    if (getLangOpts().ObjCAutoRefCount &&
2731        DestroyedType->isObjCLifetimeType() &&
2732        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2733         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2734      // Automatic Reference Counting:
2735      //   If the pseudo-expression names a retainable object with weak or
2736      //   strong lifetime, the object shall be released.
2737      Expr *BaseExpr = PseudoDtor->getBase();
2738      llvm::Value *BaseValue = NULL;
2739      Qualifiers BaseQuals;
2740
2741      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2742      if (PseudoDtor->isArrow()) {
2743        BaseValue = EmitScalarExpr(BaseExpr);
2744        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2745        BaseQuals = PTy->getPointeeType().getQualifiers();
2746      } else {
2747        LValue BaseLV = EmitLValue(BaseExpr);
2748        BaseValue = BaseLV.getAddress();
2749        QualType BaseTy = BaseExpr->getType();
2750        BaseQuals = BaseTy.getQualifiers();
2751      }
2752
2753      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2754      case Qualifiers::OCL_None:
2755      case Qualifiers::OCL_ExplicitNone:
2756      case Qualifiers::OCL_Autoreleasing:
2757        break;
2758
2759      case Qualifiers::OCL_Strong:
2760        EmitARCRelease(Builder.CreateLoad(BaseValue,
2761                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2762                       /*precise*/ true);
2763        break;
2764
2765      case Qualifiers::OCL_Weak:
2766        EmitARCDestroyWeak(BaseValue);
2767        break;
2768      }
2769    } else {
2770      // C++ [expr.pseudo]p1:
2771      //   The result shall only be used as the operand for the function call
2772      //   operator (), and the result of such a call has type void. The only
2773      //   effect is the evaluation of the postfix-expression before the dot or
2774      //   arrow.
2775      EmitScalarExpr(E->getCallee());
2776    }
2777
2778    return RValue::get(0);
2779  }
2780
2781  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2782  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2783                  E->arg_begin(), E->arg_end(), TargetDecl);
2784}
2785
2786LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2787  // Comma expressions just emit their LHS then their RHS as an l-value.
2788  if (E->getOpcode() == BO_Comma) {
2789    EmitIgnoredExpr(E->getLHS());
2790    EnsureInsertPoint();
2791    return EmitLValue(E->getRHS());
2792  }
2793
2794  if (E->getOpcode() == BO_PtrMemD ||
2795      E->getOpcode() == BO_PtrMemI)
2796    return EmitPointerToDataMemberBinaryExpr(E);
2797
2798  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2799
2800  // Note that in all of these cases, __block variables need the RHS
2801  // evaluated first just in case the variable gets moved by the RHS.
2802
2803  if (!hasAggregateLLVMType(E->getType())) {
2804    switch (E->getLHS()->getType().getObjCLifetime()) {
2805    case Qualifiers::OCL_Strong:
2806      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2807
2808    case Qualifiers::OCL_Autoreleasing:
2809      return EmitARCStoreAutoreleasing(E).first;
2810
2811    // No reason to do any of these differently.
2812    case Qualifiers::OCL_None:
2813    case Qualifiers::OCL_ExplicitNone:
2814    case Qualifiers::OCL_Weak:
2815      break;
2816    }
2817
2818    RValue RV = EmitAnyExpr(E->getRHS());
2819    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2820    EmitStoreThroughLValue(RV, LV);
2821    return LV;
2822  }
2823
2824  if (E->getType()->isAnyComplexType())
2825    return EmitComplexAssignmentLValue(E);
2826
2827  return EmitAggExprToLValue(E);
2828}
2829
2830LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2831  RValue RV = EmitCallExpr(E);
2832
2833  if (!RV.isScalar())
2834    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2835
2836  assert(E->getCallReturnType()->isReferenceType() &&
2837         "Can't have a scalar return unless the return type is a "
2838         "reference type!");
2839
2840  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2841}
2842
2843LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2844  // FIXME: This shouldn't require another copy.
2845  return EmitAggExprToLValue(E);
2846}
2847
2848LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2849  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2850         && "binding l-value to type which needs a temporary");
2851  AggValueSlot Slot = CreateAggTemp(E->getType());
2852  EmitCXXConstructExpr(E, Slot);
2853  return MakeAddrLValue(Slot.getAddr(), E->getType());
2854}
2855
2856LValue
2857CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2858  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2859}
2860
2861llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2862  return CGM.GetAddrOfUuidDescriptor(E);
2863}
2864
2865LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
2866  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
2867}
2868
2869LValue
2870CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2871  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2872  Slot.setExternallyDestructed();
2873  EmitAggExpr(E->getSubExpr(), Slot);
2874  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2875  return MakeAddrLValue(Slot.getAddr(), E->getType());
2876}
2877
2878LValue
2879CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2880  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2881  EmitLambdaExpr(E, Slot);
2882  return MakeAddrLValue(Slot.getAddr(), E->getType());
2883}
2884
2885LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2886  RValue RV = EmitObjCMessageExpr(E);
2887
2888  if (!RV.isScalar())
2889    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2890
2891  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2892         "Can't have a scalar return unless the return type is a "
2893         "reference type!");
2894
2895  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2896}
2897
2898LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2899  llvm::Value *V =
2900    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2901  return MakeAddrLValue(V, E->getType());
2902}
2903
2904llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2905                                             const ObjCIvarDecl *Ivar) {
2906  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2907}
2908
2909LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2910                                          llvm::Value *BaseValue,
2911                                          const ObjCIvarDecl *Ivar,
2912                                          unsigned CVRQualifiers) {
2913  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2914                                                   Ivar, CVRQualifiers);
2915}
2916
2917LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2918  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2919  llvm::Value *BaseValue = 0;
2920  const Expr *BaseExpr = E->getBase();
2921  Qualifiers BaseQuals;
2922  QualType ObjectTy;
2923  if (E->isArrow()) {
2924    BaseValue = EmitScalarExpr(BaseExpr);
2925    ObjectTy = BaseExpr->getType()->getPointeeType();
2926    BaseQuals = ObjectTy.getQualifiers();
2927  } else {
2928    LValue BaseLV = EmitLValue(BaseExpr);
2929    // FIXME: this isn't right for bitfields.
2930    BaseValue = BaseLV.getAddress();
2931    ObjectTy = BaseExpr->getType();
2932    BaseQuals = ObjectTy.getQualifiers();
2933  }
2934
2935  LValue LV =
2936    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2937                      BaseQuals.getCVRQualifiers());
2938  setObjCGCLValueClass(getContext(), E, LV);
2939  return LV;
2940}
2941
2942LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2943  // Can only get l-value for message expression returning aggregate type
2944  RValue RV = EmitAnyExprToTemp(E);
2945  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2946}
2947
2948RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2949                                 ReturnValueSlot ReturnValue,
2950                                 CallExpr::const_arg_iterator ArgBeg,
2951                                 CallExpr::const_arg_iterator ArgEnd,
2952                                 const Decl *TargetDecl) {
2953  // Get the actual function type. The callee type will always be a pointer to
2954  // function type or a block pointer type.
2955  assert(CalleeType->isFunctionPointerType() &&
2956         "Call must have function pointer type!");
2957
2958  CalleeType = getContext().getCanonicalType(CalleeType);
2959
2960  const FunctionType *FnType
2961    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2962
2963  CallArgList Args;
2964  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2965
2966  const CGFunctionInfo &FnInfo =
2967    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2968
2969  // C99 6.5.2.2p6:
2970  //   If the expression that denotes the called function has a type
2971  //   that does not include a prototype, [the default argument
2972  //   promotions are performed]. If the number of arguments does not
2973  //   equal the number of parameters, the behavior is undefined. If
2974  //   the function is defined with a type that includes a prototype,
2975  //   and either the prototype ends with an ellipsis (, ...) or the
2976  //   types of the arguments after promotion are not compatible with
2977  //   the types of the parameters, the behavior is undefined. If the
2978  //   function is defined with a type that does not include a
2979  //   prototype, and the types of the arguments after promotion are
2980  //   not compatible with those of the parameters after promotion,
2981  //   the behavior is undefined [except in some trivial cases].
2982  // That is, in the general case, we should assume that a call
2983  // through an unprototyped function type works like a *non-variadic*
2984  // call.  The way we make this work is to cast to the exact type
2985  // of the promoted arguments.
2986  if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2987    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2988    CalleeTy = CalleeTy->getPointerTo();
2989    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2990  }
2991
2992  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2993}
2994
2995LValue CodeGenFunction::
2996EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2997  llvm::Value *BaseV;
2998  if (E->getOpcode() == BO_PtrMemI)
2999    BaseV = EmitScalarExpr(E->getLHS());
3000  else
3001    BaseV = EmitLValue(E->getLHS()).getAddress();
3002
3003  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3004
3005  const MemberPointerType *MPT
3006    = E->getRHS()->getType()->getAs<MemberPointerType>();
3007
3008  llvm::Value *AddV =
3009    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3010
3011  return MakeAddrLValue(AddV, MPT->getPointeeType());
3012}
3013
3014static void
3015EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
3016             llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
3017             uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
3018  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
3019  llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
3020
3021  switch (E->getOp()) {
3022  case AtomicExpr::AO__c11_atomic_init:
3023    llvm_unreachable("Already handled!");
3024
3025  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3026  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3027  case AtomicExpr::AO__atomic_compare_exchange:
3028  case AtomicExpr::AO__atomic_compare_exchange_n: {
3029    // Note that cmpxchg only supports specifying one ordering and
3030    // doesn't support weak cmpxchg, at least at the moment.
3031    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3032    LoadVal1->setAlignment(Align);
3033    llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
3034    LoadVal2->setAlignment(Align);
3035    llvm::AtomicCmpXchgInst *CXI =
3036        CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
3037    CXI->setVolatile(E->isVolatile());
3038    llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
3039    StoreVal1->setAlignment(Align);
3040    llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
3041    CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
3042    return;
3043  }
3044
3045  case AtomicExpr::AO__c11_atomic_load:
3046  case AtomicExpr::AO__atomic_load_n:
3047  case AtomicExpr::AO__atomic_load: {
3048    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
3049    Load->setAtomic(Order);
3050    Load->setAlignment(Size);
3051    Load->setVolatile(E->isVolatile());
3052    llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
3053    StoreDest->setAlignment(Align);
3054    return;
3055  }
3056
3057  case AtomicExpr::AO__c11_atomic_store:
3058  case AtomicExpr::AO__atomic_store:
3059  case AtomicExpr::AO__atomic_store_n: {
3060    assert(!Dest && "Store does not return a value");
3061    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3062    LoadVal1->setAlignment(Align);
3063    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
3064    Store->setAtomic(Order);
3065    Store->setAlignment(Size);
3066    Store->setVolatile(E->isVolatile());
3067    return;
3068  }
3069
3070  case AtomicExpr::AO__c11_atomic_exchange:
3071  case AtomicExpr::AO__atomic_exchange_n:
3072  case AtomicExpr::AO__atomic_exchange:
3073    Op = llvm::AtomicRMWInst::Xchg;
3074    break;
3075
3076  case AtomicExpr::AO__atomic_add_fetch:
3077    PostOp = llvm::Instruction::Add;
3078    // Fall through.
3079  case AtomicExpr::AO__c11_atomic_fetch_add:
3080  case AtomicExpr::AO__atomic_fetch_add:
3081    Op = llvm::AtomicRMWInst::Add;
3082    break;
3083
3084  case AtomicExpr::AO__atomic_sub_fetch:
3085    PostOp = llvm::Instruction::Sub;
3086    // Fall through.
3087  case AtomicExpr::AO__c11_atomic_fetch_sub:
3088  case AtomicExpr::AO__atomic_fetch_sub:
3089    Op = llvm::AtomicRMWInst::Sub;
3090    break;
3091
3092  case AtomicExpr::AO__atomic_and_fetch:
3093    PostOp = llvm::Instruction::And;
3094    // Fall through.
3095  case AtomicExpr::AO__c11_atomic_fetch_and:
3096  case AtomicExpr::AO__atomic_fetch_and:
3097    Op = llvm::AtomicRMWInst::And;
3098    break;
3099
3100  case AtomicExpr::AO__atomic_or_fetch:
3101    PostOp = llvm::Instruction::Or;
3102    // Fall through.
3103  case AtomicExpr::AO__c11_atomic_fetch_or:
3104  case AtomicExpr::AO__atomic_fetch_or:
3105    Op = llvm::AtomicRMWInst::Or;
3106    break;
3107
3108  case AtomicExpr::AO__atomic_xor_fetch:
3109    PostOp = llvm::Instruction::Xor;
3110    // Fall through.
3111  case AtomicExpr::AO__c11_atomic_fetch_xor:
3112  case AtomicExpr::AO__atomic_fetch_xor:
3113    Op = llvm::AtomicRMWInst::Xor;
3114    break;
3115
3116  case AtomicExpr::AO__atomic_nand_fetch:
3117    PostOp = llvm::Instruction::And;
3118    // Fall through.
3119  case AtomicExpr::AO__atomic_fetch_nand:
3120    Op = llvm::AtomicRMWInst::Nand;
3121    break;
3122  }
3123
3124  llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3125  LoadVal1->setAlignment(Align);
3126  llvm::AtomicRMWInst *RMWI =
3127      CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
3128  RMWI->setVolatile(E->isVolatile());
3129
3130  // For __atomic_*_fetch operations, perform the operation again to
3131  // determine the value which was written.
3132  llvm::Value *Result = RMWI;
3133  if (PostOp)
3134    Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
3135  if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
3136    Result = CGF.Builder.CreateNot(Result);
3137  llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
3138  StoreDest->setAlignment(Align);
3139}
3140
3141// This function emits any expression (scalar, complex, or aggregate)
3142// into a temporary alloca.
3143static llvm::Value *
3144EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
3145  llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
3146  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3147                       /*Init*/ true);
3148  return DeclPtr;
3149}
3150
3151static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3152                                  llvm::Value *Dest) {
3153  if (Ty->isAnyComplexType())
3154    return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3155  if (CGF.hasAggregateLLVMType(Ty))
3156    return RValue::getAggregate(Dest);
3157  return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3158}
3159
3160RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3161  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3162  QualType MemTy = AtomicTy;
3163  if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3164    MemTy = AT->getValueType();
3165  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3166  uint64_t Size = sizeChars.getQuantity();
3167  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3168  unsigned Align = alignChars.getQuantity();
3169  unsigned MaxInlineWidth =
3170      getContext().getTargetInfo().getMaxAtomicInlineWidth();
3171  bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
3172
3173
3174
3175  llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3176  Ptr = EmitScalarExpr(E->getPtr());
3177
3178  if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3179    assert(!Dest && "Init does not return a value");
3180    if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3181      QualType PointeeType
3182        = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3183      EmitScalarInit(EmitScalarExpr(E->getVal1()),
3184                     LValue::MakeAddr(Ptr, PointeeType, alignChars,
3185                                      getContext()));
3186    } else if (E->getType()->isAnyComplexType()) {
3187      EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3188    } else {
3189      AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3190                                        AtomicTy.getQualifiers(),
3191                                        AggValueSlot::IsNotDestructed,
3192                                        AggValueSlot::DoesNotNeedGCBarriers,
3193                                        AggValueSlot::IsNotAliased);
3194      EmitAggExpr(E->getVal1(), Slot);
3195    }
3196    return RValue::get(0);
3197  }
3198
3199  Order = EmitScalarExpr(E->getOrder());
3200
3201  switch (E->getOp()) {
3202  case AtomicExpr::AO__c11_atomic_init:
3203    llvm_unreachable("Already handled!");
3204
3205  case AtomicExpr::AO__c11_atomic_load:
3206  case AtomicExpr::AO__atomic_load_n:
3207    break;
3208
3209  case AtomicExpr::AO__atomic_load:
3210    Dest = EmitScalarExpr(E->getVal1());
3211    break;
3212
3213  case AtomicExpr::AO__atomic_store:
3214    Val1 = EmitScalarExpr(E->getVal1());
3215    break;
3216
3217  case AtomicExpr::AO__atomic_exchange:
3218    Val1 = EmitScalarExpr(E->getVal1());
3219    Dest = EmitScalarExpr(E->getVal2());
3220    break;
3221
3222  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3223  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3224  case AtomicExpr::AO__atomic_compare_exchange_n:
3225  case AtomicExpr::AO__atomic_compare_exchange:
3226    Val1 = EmitScalarExpr(E->getVal1());
3227    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3228      Val2 = EmitScalarExpr(E->getVal2());
3229    else
3230      Val2 = EmitValToTemp(*this, E->getVal2());
3231    OrderFail = EmitScalarExpr(E->getOrderFail());
3232    // Evaluate and discard the 'weak' argument.
3233    if (E->getNumSubExprs() == 6)
3234      EmitScalarExpr(E->getWeak());
3235    break;
3236
3237  case AtomicExpr::AO__c11_atomic_fetch_add:
3238  case AtomicExpr::AO__c11_atomic_fetch_sub:
3239    if (MemTy->isPointerType()) {
3240      // For pointer arithmetic, we're required to do a bit of math:
3241      // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3242      // ... but only for the C11 builtins. The GNU builtins expect the
3243      // user to multiply by sizeof(T).
3244      QualType Val1Ty = E->getVal1()->getType();
3245      llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3246      CharUnits PointeeIncAmt =
3247          getContext().getTypeSizeInChars(MemTy->getPointeeType());
3248      Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3249      Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3250      EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3251      break;
3252    }
3253    // Fall through.
3254  case AtomicExpr::AO__atomic_fetch_add:
3255  case AtomicExpr::AO__atomic_fetch_sub:
3256  case AtomicExpr::AO__atomic_add_fetch:
3257  case AtomicExpr::AO__atomic_sub_fetch:
3258  case AtomicExpr::AO__c11_atomic_store:
3259  case AtomicExpr::AO__c11_atomic_exchange:
3260  case AtomicExpr::AO__atomic_store_n:
3261  case AtomicExpr::AO__atomic_exchange_n:
3262  case AtomicExpr::AO__c11_atomic_fetch_and:
3263  case AtomicExpr::AO__c11_atomic_fetch_or:
3264  case AtomicExpr::AO__c11_atomic_fetch_xor:
3265  case AtomicExpr::AO__atomic_fetch_and:
3266  case AtomicExpr::AO__atomic_fetch_or:
3267  case AtomicExpr::AO__atomic_fetch_xor:
3268  case AtomicExpr::AO__atomic_fetch_nand:
3269  case AtomicExpr::AO__atomic_and_fetch:
3270  case AtomicExpr::AO__atomic_or_fetch:
3271  case AtomicExpr::AO__atomic_xor_fetch:
3272  case AtomicExpr::AO__atomic_nand_fetch:
3273    Val1 = EmitValToTemp(*this, E->getVal1());
3274    break;
3275  }
3276
3277  if (!E->getType()->isVoidType() && !Dest)
3278    Dest = CreateMemTemp(E->getType(), ".atomicdst");
3279
3280  // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3281  if (UseLibcall) {
3282
3283    llvm::SmallVector<QualType, 5> Params;
3284    CallArgList Args;
3285    // Size is always the first parameter
3286    Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3287             getContext().getSizeType());
3288    // Atomic address is always the second parameter
3289    Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3290             getContext().VoidPtrTy);
3291
3292    const char* LibCallName;
3293    QualType RetTy = getContext().VoidTy;
3294    switch (E->getOp()) {
3295    // There is only one libcall for compare an exchange, because there is no
3296    // optimisation benefit possible from a libcall version of a weak compare
3297    // and exchange.
3298    // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3299    //                                void *desired, int success, int failure)
3300    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3301    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3302    case AtomicExpr::AO__atomic_compare_exchange:
3303    case AtomicExpr::AO__atomic_compare_exchange_n:
3304      LibCallName = "__atomic_compare_exchange";
3305      RetTy = getContext().BoolTy;
3306      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3307               getContext().VoidPtrTy);
3308      Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3309               getContext().VoidPtrTy);
3310      Args.add(RValue::get(Order),
3311               getContext().IntTy);
3312      Order = OrderFail;
3313      break;
3314    // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3315    //                        int order)
3316    case AtomicExpr::AO__c11_atomic_exchange:
3317    case AtomicExpr::AO__atomic_exchange_n:
3318    case AtomicExpr::AO__atomic_exchange:
3319      LibCallName = "__atomic_exchange";
3320      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3321               getContext().VoidPtrTy);
3322      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3323               getContext().VoidPtrTy);
3324      break;
3325    // void __atomic_store(size_t size, void *mem, void *val, int order)
3326    case AtomicExpr::AO__c11_atomic_store:
3327    case AtomicExpr::AO__atomic_store:
3328    case AtomicExpr::AO__atomic_store_n:
3329      LibCallName = "__atomic_store";
3330      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3331               getContext().VoidPtrTy);
3332      break;
3333    // void __atomic_load(size_t size, void *mem, void *return, int order)
3334    case AtomicExpr::AO__c11_atomic_load:
3335    case AtomicExpr::AO__atomic_load:
3336    case AtomicExpr::AO__atomic_load_n:
3337      LibCallName = "__atomic_load";
3338      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3339               getContext().VoidPtrTy);
3340      break;
3341#if 0
3342    // These are only defined for 1-16 byte integers.  It is not clear what
3343    // their semantics would be on anything else...
3344    case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3345    case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3346    case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3347    case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3348    case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3349#endif
3350    default: return EmitUnsupportedRValue(E, "atomic library call");
3351    }
3352    // order is always the last parameter
3353    Args.add(RValue::get(Order),
3354             getContext().IntTy);
3355
3356    const CGFunctionInfo &FuncInfo =
3357        CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3358            FunctionType::ExtInfo(), RequiredArgs::All);
3359    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3360    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3361    RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3362    if (E->isCmpXChg())
3363      return Res;
3364    if (E->getType()->isVoidType())
3365      return RValue::get(0);
3366    return ConvertTempToRValue(*this, E->getType(), Dest);
3367  }
3368
3369  bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3370                 E->getOp() == AtomicExpr::AO__atomic_store ||
3371                 E->getOp() == AtomicExpr::AO__atomic_store_n;
3372  bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3373                E->getOp() == AtomicExpr::AO__atomic_load ||
3374                E->getOp() == AtomicExpr::AO__atomic_load_n;
3375
3376  llvm::Type *IPtrTy =
3377      llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3378  llvm::Value *OrigDest = Dest;
3379  Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3380  if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3381  if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3382  if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3383
3384  if (isa<llvm::ConstantInt>(Order)) {
3385    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3386    switch (ord) {
3387    case 0:  // memory_order_relaxed
3388      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3389                   llvm::Monotonic);
3390      break;
3391    case 1:  // memory_order_consume
3392    case 2:  // memory_order_acquire
3393      if (IsStore)
3394        break; // Avoid crashing on code with undefined behavior
3395      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3396                   llvm::Acquire);
3397      break;
3398    case 3:  // memory_order_release
3399      if (IsLoad)
3400        break; // Avoid crashing on code with undefined behavior
3401      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3402                   llvm::Release);
3403      break;
3404    case 4:  // memory_order_acq_rel
3405      if (IsLoad || IsStore)
3406        break; // Avoid crashing on code with undefined behavior
3407      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3408                   llvm::AcquireRelease);
3409      break;
3410    case 5:  // memory_order_seq_cst
3411      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3412                   llvm::SequentiallyConsistent);
3413      break;
3414    default: // invalid order
3415      // We should not ever get here normally, but it's hard to
3416      // enforce that in general.
3417      break;
3418    }
3419    if (E->getType()->isVoidType())
3420      return RValue::get(0);
3421    return ConvertTempToRValue(*this, E->getType(), OrigDest);
3422  }
3423
3424  // Long case, when Order isn't obviously constant.
3425
3426  // Create all the relevant BB's
3427  llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3428                   *AcqRelBB = 0, *SeqCstBB = 0;
3429  MonotonicBB = createBasicBlock("monotonic", CurFn);
3430  if (!IsStore)
3431    AcquireBB = createBasicBlock("acquire", CurFn);
3432  if (!IsLoad)
3433    ReleaseBB = createBasicBlock("release", CurFn);
3434  if (!IsLoad && !IsStore)
3435    AcqRelBB = createBasicBlock("acqrel", CurFn);
3436  SeqCstBB = createBasicBlock("seqcst", CurFn);
3437  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3438
3439  // Create the switch for the split
3440  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3441  // doesn't matter unless someone is crazy enough to use something that
3442  // doesn't fold to a constant for the ordering.
3443  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3444  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3445
3446  // Emit all the different atomics
3447  Builder.SetInsertPoint(MonotonicBB);
3448  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3449               llvm::Monotonic);
3450  Builder.CreateBr(ContBB);
3451  if (!IsStore) {
3452    Builder.SetInsertPoint(AcquireBB);
3453    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3454                 llvm::Acquire);
3455    Builder.CreateBr(ContBB);
3456    SI->addCase(Builder.getInt32(1), AcquireBB);
3457    SI->addCase(Builder.getInt32(2), AcquireBB);
3458  }
3459  if (!IsLoad) {
3460    Builder.SetInsertPoint(ReleaseBB);
3461    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3462                 llvm::Release);
3463    Builder.CreateBr(ContBB);
3464    SI->addCase(Builder.getInt32(3), ReleaseBB);
3465  }
3466  if (!IsLoad && !IsStore) {
3467    Builder.SetInsertPoint(AcqRelBB);
3468    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3469                 llvm::AcquireRelease);
3470    Builder.CreateBr(ContBB);
3471    SI->addCase(Builder.getInt32(4), AcqRelBB);
3472  }
3473  Builder.SetInsertPoint(SeqCstBB);
3474  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3475               llvm::SequentiallyConsistent);
3476  Builder.CreateBr(ContBB);
3477  SI->addCase(Builder.getInt32(5), SeqCstBB);
3478
3479  // Cleanup and return
3480  Builder.SetInsertPoint(ContBB);
3481  if (E->getType()->isVoidType())
3482    return RValue::get(0);
3483  return ConvertTempToRValue(*this, E->getType(), OrigDest);
3484}
3485
3486void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3487  assert(Val->getType()->isFPOrFPVectorTy());
3488  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3489    return;
3490
3491  llvm::MDBuilder MDHelper(getLLVMContext());
3492  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3493
3494  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3495}
3496
3497namespace {
3498  struct LValueOrRValue {
3499    LValue LV;
3500    RValue RV;
3501  };
3502}
3503
3504static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3505                                           const PseudoObjectExpr *E,
3506                                           bool forLValue,
3507                                           AggValueSlot slot) {
3508  llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3509
3510  // Find the result expression, if any.
3511  const Expr *resultExpr = E->getResultExpr();
3512  LValueOrRValue result;
3513
3514  for (PseudoObjectExpr::const_semantics_iterator
3515         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3516    const Expr *semantic = *i;
3517
3518    // If this semantic expression is an opaque value, bind it
3519    // to the result of its source expression.
3520    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3521
3522      // If this is the result expression, we may need to evaluate
3523      // directly into the slot.
3524      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3525      OVMA opaqueData;
3526      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3527          CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3528          !ov->getType()->isAnyComplexType()) {
3529        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3530
3531        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3532        opaqueData = OVMA::bind(CGF, ov, LV);
3533        result.RV = slot.asRValue();
3534
3535      // Otherwise, emit as normal.
3536      } else {
3537        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3538
3539        // If this is the result, also evaluate the result now.
3540        if (ov == resultExpr) {
3541          if (forLValue)
3542            result.LV = CGF.EmitLValue(ov);
3543          else
3544            result.RV = CGF.EmitAnyExpr(ov, slot);
3545        }
3546      }
3547
3548      opaques.push_back(opaqueData);
3549
3550    // Otherwise, if the expression is the result, evaluate it
3551    // and remember the result.
3552    } else if (semantic == resultExpr) {
3553      if (forLValue)
3554        result.LV = CGF.EmitLValue(semantic);
3555      else
3556        result.RV = CGF.EmitAnyExpr(semantic, slot);
3557
3558    // Otherwise, evaluate the expression in an ignored context.
3559    } else {
3560      CGF.EmitIgnoredExpr(semantic);
3561    }
3562  }
3563
3564  // Unbind all the opaques now.
3565  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3566    opaques[i].unbind(CGF);
3567
3568  return result;
3569}
3570
3571RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3572                                               AggValueSlot slot) {
3573  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3574}
3575
3576LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3577  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3578}
3579