CGExpr.cpp revision 82fe6aea407a5a09a6131452ce622087ba83880d
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Target/TargetData.h" 28using namespace clang; 29using namespace CodeGen; 30 31//===--------------------------------------------------------------------===// 32// Miscellaneous Helper Methods 33//===--------------------------------------------------------------------===// 34 35llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45} 46 47/// CreateTempAlloca - This creates a alloca and inserts it into the entry 48/// block. 49llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54} 55 56void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61} 62 63llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70} 71 72llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79} 80 81/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82/// expression and compare the result against zero, returning an Int1Ty value. 83llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94} 95 96/// EmitIgnoredExpr - Emit code to compute the specified expression, 97/// ignoring the result. 98void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104} 105 106/// EmitAnyExpr - Emit code to compute the specified expression which 107/// can have any type. The result is returned as an RValue struct. 108/// If this is an aggregate expression, AggSlot indicates where the 109/// result should be returned. 110RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119} 120 121/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122/// always be accessible even if no aggregate location is provided. 123RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130} 131 132/// EmitAnyExprToMem - Evaluate an expression into a given memory 133/// location. 134void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152} 153 154namespace { 155/// \brief An adjustment to be made to the temporary created when emitting a 156/// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181} 182 183static llvm::Value * 184CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207} 208 209static llvm::Value * 210EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443} 444 445RValue 446CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 491 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 492 cleanupKind & EHCleanup); 493 break; 494 } 495 496 case Qualifiers::OCL_Weak: { 497 // __weak objects always get EH cleanups; otherwise, exceptions 498 // could cause really nasty crashes instead of mere leaks. 499 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 500 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 501 break; 502 } 503 } 504 } 505 506 return RValue::get(Value); 507} 508 509 510/// getAccessedFieldNo - Given an encoded value and a result number, return the 511/// input field number being accessed. 512unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 513 const llvm::Constant *Elts) { 514 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 515 ->getZExtValue(); 516} 517 518void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 519 if (!CatchUndefined) 520 return; 521 522 // This needs to be to the standard address space. 523 Address = Builder.CreateBitCast(Address, Int8PtrTy); 524 525 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 526 527 // In time, people may want to control this and use a 1 here. 528 llvm::Value *Arg = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 llvm::BasicBlock *Check = createBasicBlock(); 532 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 533 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 534 535 EmitBlock(Check); 536 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 537 llvm::ConstantInt::get(IntPtrTy, Size)), 538 Cont, getTrapBB()); 539 EmitBlock(Cont); 540} 541 542 543CodeGenFunction::ComplexPairTy CodeGenFunction:: 544EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 545 bool isInc, bool isPre) { 546 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 547 LV.isVolatileQualified()); 548 549 llvm::Value *NextVal; 550 if (isa<llvm::IntegerType>(InVal.first->getType())) { 551 uint64_t AmountVal = isInc ? 1 : -1; 552 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 553 554 // Add the inc/dec to the real part. 555 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 556 } else { 557 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 558 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 559 if (!isInc) 560 FVal.changeSign(); 561 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 562 563 // Add the inc/dec to the real part. 564 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 565 } 566 567 ComplexPairTy IncVal(NextVal, InVal.second); 568 569 // Store the updated result through the lvalue. 570 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 571 572 // If this is a postinc, return the value read from memory, otherwise use the 573 // updated value. 574 return isPre ? IncVal : InVal; 575} 576 577 578//===----------------------------------------------------------------------===// 579// LValue Expression Emission 580//===----------------------------------------------------------------------===// 581 582RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 583 if (Ty->isVoidType()) 584 return RValue::get(0); 585 586 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 587 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 588 llvm::Value *U = llvm::UndefValue::get(EltTy); 589 return RValue::getComplex(std::make_pair(U, U)); 590 } 591 592 // If this is a use of an undefined aggregate type, the aggregate must have an 593 // identifiable address. Just because the contents of the value are undefined 594 // doesn't mean that the address can't be taken and compared. 595 if (hasAggregateLLVMType(Ty)) { 596 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 597 return RValue::getAggregate(DestPtr); 598 } 599 600 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 601} 602 603RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 return GetUndefRValue(E->getType()); 607} 608 609LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 613 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 614} 615 616LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 617 LValue LV = EmitLValue(E); 618 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 619 EmitCheck(LV.getAddress(), 620 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 621 return LV; 622} 623 624/// EmitLValue - Emit code to compute a designator that specifies the location 625/// of the expression. 626/// 627/// This can return one of two things: a simple address or a bitfield reference. 628/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 629/// an LLVM pointer type. 630/// 631/// If this returns a bitfield reference, nothing about the pointee type of the 632/// LLVM value is known: For example, it may not be a pointer to an integer. 633/// 634/// If this returns a normal address, and if the lvalue's C type is fixed size, 635/// this method guarantees that the returned pointer type will point to an LLVM 636/// type of the same size of the lvalue's type. If the lvalue has a variable 637/// length type, this is not possible. 638/// 639LValue CodeGenFunction::EmitLValue(const Expr *E) { 640 switch (E->getStmtClass()) { 641 default: return EmitUnsupportedLValue(E, "l-value expression"); 642 643 case Expr::ObjCPropertyRefExprClass: 644 llvm_unreachable("cannot emit a property reference directly"); 645 646 case Expr::ObjCSelectorExprClass: 647 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 648 case Expr::ObjCIsaExprClass: 649 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 650 case Expr::BinaryOperatorClass: 651 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 652 case Expr::CompoundAssignOperatorClass: 653 if (!E->getType()->isAnyComplexType()) 654 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 655 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 case Expr::CallExprClass: 657 case Expr::CXXMemberCallExprClass: 658 case Expr::CXXOperatorCallExprClass: 659 case Expr::UserDefinedLiteralClass: 660 return EmitCallExprLValue(cast<CallExpr>(E)); 661 case Expr::VAArgExprClass: 662 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 663 case Expr::DeclRefExprClass: 664 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 665 case Expr::ParenExprClass: 666 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 667 case Expr::GenericSelectionExprClass: 668 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 669 case Expr::PredefinedExprClass: 670 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 671 case Expr::StringLiteralClass: 672 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 673 case Expr::ObjCEncodeExprClass: 674 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 675 case Expr::PseudoObjectExprClass: 676 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 677 case Expr::InitListExprClass: 678 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 679 "Only single-element init list can be lvalue."); 680 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 681 682 case Expr::CXXTemporaryObjectExprClass: 683 case Expr::CXXConstructExprClass: 684 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 685 case Expr::CXXBindTemporaryExprClass: 686 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 687 case Expr::LambdaExprClass: 688 return EmitLambdaLValue(cast<LambdaExpr>(E)); 689 690 case Expr::ExprWithCleanupsClass: { 691 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 692 enterFullExpression(cleanups); 693 RunCleanupsScope Scope(*this); 694 return EmitLValue(cleanups->getSubExpr()); 695 } 696 697 case Expr::CXXScalarValueInitExprClass: 698 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 699 case Expr::CXXDefaultArgExprClass: 700 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 701 case Expr::CXXTypeidExprClass: 702 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 703 704 case Expr::ObjCMessageExprClass: 705 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 706 case Expr::ObjCIvarRefExprClass: 707 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 708 case Expr::StmtExprClass: 709 return EmitStmtExprLValue(cast<StmtExpr>(E)); 710 case Expr::UnaryOperatorClass: 711 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 712 case Expr::ArraySubscriptExprClass: 713 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 714 case Expr::ExtVectorElementExprClass: 715 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 716 case Expr::MemberExprClass: 717 return EmitMemberExpr(cast<MemberExpr>(E)); 718 case Expr::CompoundLiteralExprClass: 719 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 720 case Expr::ConditionalOperatorClass: 721 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 722 case Expr::BinaryConditionalOperatorClass: 723 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 724 case Expr::ChooseExprClass: 725 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 726 case Expr::OpaqueValueExprClass: 727 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 728 case Expr::SubstNonTypeTemplateParmExprClass: 729 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 730 case Expr::ImplicitCastExprClass: 731 case Expr::CStyleCastExprClass: 732 case Expr::CXXFunctionalCastExprClass: 733 case Expr::CXXStaticCastExprClass: 734 case Expr::CXXDynamicCastExprClass: 735 case Expr::CXXReinterpretCastExprClass: 736 case Expr::CXXConstCastExprClass: 737 case Expr::ObjCBridgedCastExprClass: 738 return EmitCastLValue(cast<CastExpr>(E)); 739 740 case Expr::MaterializeTemporaryExprClass: 741 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 742 } 743} 744 745/// Given an object of the given canonical type, can we safely copy a 746/// value out of it based on its initializer? 747static bool isConstantEmittableObjectType(QualType type) { 748 assert(type.isCanonical()); 749 assert(!type->isReferenceType()); 750 751 // Must be const-qualified but non-volatile. 752 Qualifiers qs = type.getLocalQualifiers(); 753 if (!qs.hasConst() || qs.hasVolatile()) return false; 754 755 // Otherwise, all object types satisfy this except C++ classes with 756 // mutable subobjects or non-trivial copy/destroy behavior. 757 if (const RecordType *RT = dyn_cast<RecordType>(type)) 758 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 759 if (RD->hasMutableFields() || !RD->isTrivial()) 760 return false; 761 762 return true; 763} 764 765/// Can we constant-emit a load of a reference to a variable of the 766/// given type? This is different from predicates like 767/// Decl::isUsableInConstantExpressions because we do want it to apply 768/// in situations that don't necessarily satisfy the language's rules 769/// for this (e.g. C++'s ODR-use rules). For example, we want to able 770/// to do this with const float variables even if those variables 771/// aren't marked 'constexpr'. 772enum ConstantEmissionKind { 773 CEK_None, 774 CEK_AsReferenceOnly, 775 CEK_AsValueOrReference, 776 CEK_AsValueOnly 777}; 778static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 779 type = type.getCanonicalType(); 780 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 781 if (isConstantEmittableObjectType(ref->getPointeeType())) 782 return CEK_AsValueOrReference; 783 return CEK_AsReferenceOnly; 784 } 785 if (isConstantEmittableObjectType(type)) 786 return CEK_AsValueOnly; 787 return CEK_None; 788} 789 790/// Try to emit a reference to the given value without producing it as 791/// an l-value. This is actually more than an optimization: we can't 792/// produce an l-value for variables that we never actually captured 793/// in a block or lambda, which means const int variables or constexpr 794/// literals or similar. 795CodeGenFunction::ConstantEmission 796CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 797 ValueDecl *value = refExpr->getDecl(); 798 799 // The value needs to be an enum constant or a constant variable. 800 ConstantEmissionKind CEK; 801 if (isa<ParmVarDecl>(value)) { 802 CEK = CEK_None; 803 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 804 CEK = checkVarTypeForConstantEmission(var->getType()); 805 } else if (isa<EnumConstantDecl>(value)) { 806 CEK = CEK_AsValueOnly; 807 } else { 808 CEK = CEK_None; 809 } 810 if (CEK == CEK_None) return ConstantEmission(); 811 812 Expr::EvalResult result; 813 bool resultIsReference; 814 QualType resultType; 815 816 // It's best to evaluate all the way as an r-value if that's permitted. 817 if (CEK != CEK_AsReferenceOnly && 818 refExpr->EvaluateAsRValue(result, getContext())) { 819 resultIsReference = false; 820 resultType = refExpr->getType(); 821 822 // Otherwise, try to evaluate as an l-value. 823 } else if (CEK != CEK_AsValueOnly && 824 refExpr->EvaluateAsLValue(result, getContext())) { 825 resultIsReference = true; 826 resultType = value->getType(); 827 828 // Failure. 829 } else { 830 return ConstantEmission(); 831 } 832 833 // In any case, if the initializer has side-effects, abandon ship. 834 if (result.HasSideEffects) 835 return ConstantEmission(); 836 837 // Emit as a constant. 838 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 839 840 // Make sure we emit a debug reference to the global variable. 841 // This should probably fire even for 842 if (isa<VarDecl>(value)) { 843 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 844 EmitDeclRefExprDbgValue(refExpr, C); 845 } else { 846 assert(isa<EnumConstantDecl>(value)); 847 EmitDeclRefExprDbgValue(refExpr, C); 848 } 849 850 // If we emitted a reference constant, we need to dereference that. 851 if (resultIsReference) 852 return ConstantEmission::forReference(C); 853 854 return ConstantEmission::forValue(C); 855} 856 857llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 858 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 859 lvalue.getAlignment().getQuantity(), 860 lvalue.getType(), lvalue.getTBAAInfo()); 861} 862 863static bool hasBooleanRepresentation(QualType Ty) { 864 if (Ty->isBooleanType()) 865 return true; 866 867 if (const EnumType *ET = Ty->getAs<EnumType>()) 868 return ET->getDecl()->getIntegerType()->isBooleanType(); 869 870 return false; 871} 872 873llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 874 const EnumType *ET = Ty->getAs<EnumType>(); 875 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 876 CGM.getCodeGenOpts().StrictEnums && 877 !ET->getDecl()->isFixed()); 878 bool IsBool = hasBooleanRepresentation(Ty); 879 llvm::Type *LTy; 880 if (!IsBool && !IsRegularCPlusPlusEnum) 881 return NULL; 882 883 llvm::APInt Min; 884 llvm::APInt End; 885 if (IsBool) { 886 Min = llvm::APInt(8, 0); 887 End = llvm::APInt(8, 2); 888 LTy = Int8Ty; 889 } else { 890 const EnumDecl *ED = ET->getDecl(); 891 LTy = ConvertTypeForMem(ED->getIntegerType()); 892 unsigned Bitwidth = LTy->getScalarSizeInBits(); 893 unsigned NumNegativeBits = ED->getNumNegativeBits(); 894 unsigned NumPositiveBits = ED->getNumPositiveBits(); 895 896 if (NumNegativeBits) { 897 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 898 assert(NumBits <= Bitwidth); 899 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 900 Min = -End; 901 } else { 902 assert(NumPositiveBits <= Bitwidth); 903 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 904 Min = llvm::APInt(Bitwidth, 0); 905 } 906 } 907 908 if (End == Min) 909 return NULL; 910 911 llvm::Value *LowAndHigh[2]; 912 LowAndHigh[0] = llvm::ConstantInt::get(LTy, Min); 913 LowAndHigh[1] = llvm::ConstantInt::get(LTy, End); 914 915 llvm::LLVMContext &C = getLLVMContext(); 916 llvm::MDNode *Range = llvm::MDNode::get(C, LowAndHigh); 917 return Range; 918} 919 920llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 921 unsigned Alignment, QualType Ty, 922 llvm::MDNode *TBAAInfo) { 923 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 924 if (Volatile) 925 Load->setVolatile(true); 926 if (Alignment) 927 Load->setAlignment(Alignment); 928 if (TBAAInfo) 929 CGM.DecorateInstruction(Load, TBAAInfo); 930 // If this is an atomic type, all normal reads must be atomic 931 if (Ty->isAtomicType()) 932 Load->setAtomic(llvm::SequentiallyConsistent); 933 934 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 935 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 936 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 937 938 return EmitFromMemory(Load, Ty); 939} 940 941llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 942 // Bool has a different representation in memory than in registers. 943 if (hasBooleanRepresentation(Ty)) { 944 // This should really always be an i1, but sometimes it's already 945 // an i8, and it's awkward to track those cases down. 946 if (Value->getType()->isIntegerTy(1)) 947 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 948 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 949 } 950 951 return Value; 952} 953 954llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 955 // Bool has a different representation in memory than in registers. 956 if (hasBooleanRepresentation(Ty)) { 957 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 958 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 959 } 960 961 return Value; 962} 963 964void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 965 bool Volatile, unsigned Alignment, 966 QualType Ty, 967 llvm::MDNode *TBAAInfo, 968 bool isInit) { 969 Value = EmitToMemory(Value, Ty); 970 971 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 972 if (Alignment) 973 Store->setAlignment(Alignment); 974 if (TBAAInfo) 975 CGM.DecorateInstruction(Store, TBAAInfo); 976 if (!isInit && Ty->isAtomicType()) 977 Store->setAtomic(llvm::SequentiallyConsistent); 978} 979 980void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 981 bool isInit) { 982 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 983 lvalue.getAlignment().getQuantity(), lvalue.getType(), 984 lvalue.getTBAAInfo(), isInit); 985} 986 987/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 988/// method emits the address of the lvalue, then loads the result as an rvalue, 989/// returning the rvalue. 990RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 991 if (LV.isObjCWeak()) { 992 // load of a __weak object. 993 llvm::Value *AddrWeakObj = LV.getAddress(); 994 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 995 AddrWeakObj)); 996 } 997 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 998 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 999 1000 if (LV.isSimple()) { 1001 assert(!LV.getType()->isFunctionType()); 1002 1003 // Everything needs a load. 1004 return RValue::get(EmitLoadOfScalar(LV)); 1005 } 1006 1007 if (LV.isVectorElt()) { 1008 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1009 LV.isVolatileQualified()); 1010 Load->setAlignment(LV.getAlignment().getQuantity()); 1011 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1012 "vecext")); 1013 } 1014 1015 // If this is a reference to a subset of the elements of a vector, either 1016 // shuffle the input or extract/insert them as appropriate. 1017 if (LV.isExtVectorElt()) 1018 return EmitLoadOfExtVectorElementLValue(LV); 1019 1020 assert(LV.isBitField() && "Unknown LValue type!"); 1021 return EmitLoadOfBitfieldLValue(LV); 1022} 1023 1024RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1025 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1026 1027 // Get the output type. 1028 llvm::Type *ResLTy = ConvertType(LV.getType()); 1029 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1030 1031 // Compute the result as an OR of all of the individual component accesses. 1032 llvm::Value *Res = 0; 1033 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1034 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1035 1036 // Get the field pointer. 1037 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1038 1039 // Only offset by the field index if used, so that incoming values are not 1040 // required to be structures. 1041 if (AI.FieldIndex) 1042 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1043 1044 // Offset by the byte offset, if used. 1045 if (!AI.FieldByteOffset.isZero()) { 1046 Ptr = EmitCastToVoidPtr(Ptr); 1047 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1048 "bf.field.offs"); 1049 } 1050 1051 // Cast to the access type. 1052 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1053 CGM.getContext().getTargetAddressSpace(LV.getType())); 1054 Ptr = Builder.CreateBitCast(Ptr, PTy); 1055 1056 // Perform the load. 1057 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1058 if (!AI.AccessAlignment.isZero()) 1059 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1060 1061 // Shift out unused low bits and mask out unused high bits. 1062 llvm::Value *Val = Load; 1063 if (AI.FieldBitStart) 1064 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1065 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1066 AI.TargetBitWidth), 1067 "bf.clear"); 1068 1069 // Extend or truncate to the target size. 1070 if (AI.AccessWidth < ResSizeInBits) 1071 Val = Builder.CreateZExt(Val, ResLTy); 1072 else if (AI.AccessWidth > ResSizeInBits) 1073 Val = Builder.CreateTrunc(Val, ResLTy); 1074 1075 // Shift into place, and OR into the result. 1076 if (AI.TargetBitOffset) 1077 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1078 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1079 } 1080 1081 // If the bit-field is signed, perform the sign-extension. 1082 // 1083 // FIXME: This can easily be folded into the load of the high bits, which 1084 // could also eliminate the mask of high bits in some situations. 1085 if (Info.isSigned()) { 1086 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1087 if (ExtraBits) 1088 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1089 ExtraBits, "bf.val.sext"); 1090 } 1091 1092 return RValue::get(Res); 1093} 1094 1095// If this is a reference to a subset of the elements of a vector, create an 1096// appropriate shufflevector. 1097RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1098 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1099 LV.isVolatileQualified()); 1100 Load->setAlignment(LV.getAlignment().getQuantity()); 1101 llvm::Value *Vec = Load; 1102 1103 const llvm::Constant *Elts = LV.getExtVectorElts(); 1104 1105 // If the result of the expression is a non-vector type, we must be extracting 1106 // a single element. Just codegen as an extractelement. 1107 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1108 if (!ExprVT) { 1109 unsigned InIdx = getAccessedFieldNo(0, Elts); 1110 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1111 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1112 } 1113 1114 // Always use shuffle vector to try to retain the original program structure 1115 unsigned NumResultElts = ExprVT->getNumElements(); 1116 1117 SmallVector<llvm::Constant*, 4> Mask; 1118 for (unsigned i = 0; i != NumResultElts; ++i) 1119 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1120 1121 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1122 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1123 MaskV); 1124 return RValue::get(Vec); 1125} 1126 1127 1128 1129/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1130/// lvalue, where both are guaranteed to the have the same type, and that type 1131/// is 'Ty'. 1132void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1133 if (!Dst.isSimple()) { 1134 if (Dst.isVectorElt()) { 1135 // Read/modify/write the vector, inserting the new element. 1136 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1137 Dst.isVolatileQualified()); 1138 Load->setAlignment(Dst.getAlignment().getQuantity()); 1139 llvm::Value *Vec = Load; 1140 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1141 Dst.getVectorIdx(), "vecins"); 1142 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1143 Dst.isVolatileQualified()); 1144 Store->setAlignment(Dst.getAlignment().getQuantity()); 1145 return; 1146 } 1147 1148 // If this is an update of extended vector elements, insert them as 1149 // appropriate. 1150 if (Dst.isExtVectorElt()) 1151 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1152 1153 assert(Dst.isBitField() && "Unknown LValue type"); 1154 return EmitStoreThroughBitfieldLValue(Src, Dst); 1155 } 1156 1157 // There's special magic for assigning into an ARC-qualified l-value. 1158 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1159 switch (Lifetime) { 1160 case Qualifiers::OCL_None: 1161 llvm_unreachable("present but none"); 1162 1163 case Qualifiers::OCL_ExplicitNone: 1164 // nothing special 1165 break; 1166 1167 case Qualifiers::OCL_Strong: 1168 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1169 return; 1170 1171 case Qualifiers::OCL_Weak: 1172 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1173 return; 1174 1175 case Qualifiers::OCL_Autoreleasing: 1176 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1177 Src.getScalarVal())); 1178 // fall into the normal path 1179 break; 1180 } 1181 } 1182 1183 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1184 // load of a __weak object. 1185 llvm::Value *LvalueDst = Dst.getAddress(); 1186 llvm::Value *src = Src.getScalarVal(); 1187 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1188 return; 1189 } 1190 1191 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1192 // load of a __strong object. 1193 llvm::Value *LvalueDst = Dst.getAddress(); 1194 llvm::Value *src = Src.getScalarVal(); 1195 if (Dst.isObjCIvar()) { 1196 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1197 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1198 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1199 llvm::Value *dst = RHS; 1200 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1201 llvm::Value *LHS = 1202 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1203 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1204 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1205 BytesBetween); 1206 } else if (Dst.isGlobalObjCRef()) { 1207 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1208 Dst.isThreadLocalRef()); 1209 } 1210 else 1211 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1212 return; 1213 } 1214 1215 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1216 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1217} 1218 1219void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1220 llvm::Value **Result) { 1221 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1222 1223 // Get the output type. 1224 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1225 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1226 1227 // Get the source value, truncated to the width of the bit-field. 1228 llvm::Value *SrcVal = Src.getScalarVal(); 1229 1230 if (Dst.getType()->isBooleanType()) 1231 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1232 1233 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1234 Info.getSize()), 1235 "bf.value"); 1236 1237 // Return the new value of the bit-field, if requested. 1238 if (Result) { 1239 // Cast back to the proper type for result. 1240 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1241 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1242 "bf.reload.val"); 1243 1244 // Sign extend if necessary. 1245 if (Info.isSigned()) { 1246 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1247 if (ExtraBits) 1248 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1249 ExtraBits, "bf.reload.sext"); 1250 } 1251 1252 *Result = ReloadVal; 1253 } 1254 1255 // Iterate over the components, writing each piece to memory. 1256 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1257 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1258 1259 // Get the field pointer. 1260 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1261 unsigned addressSpace = 1262 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1263 1264 // Only offset by the field index if used, so that incoming values are not 1265 // required to be structures. 1266 if (AI.FieldIndex) 1267 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1268 1269 // Offset by the byte offset, if used. 1270 if (!AI.FieldByteOffset.isZero()) { 1271 Ptr = EmitCastToVoidPtr(Ptr); 1272 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1273 "bf.field.offs"); 1274 } 1275 1276 // Cast to the access type. 1277 llvm::Type *AccessLTy = 1278 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1279 1280 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1281 Ptr = Builder.CreateBitCast(Ptr, PTy); 1282 1283 // Extract the piece of the bit-field value to write in this access, limited 1284 // to the values that are part of this access. 1285 llvm::Value *Val = SrcVal; 1286 if (AI.TargetBitOffset) 1287 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1288 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1289 AI.TargetBitWidth)); 1290 1291 // Extend or truncate to the access size. 1292 if (ResSizeInBits < AI.AccessWidth) 1293 Val = Builder.CreateZExt(Val, AccessLTy); 1294 else if (ResSizeInBits > AI.AccessWidth) 1295 Val = Builder.CreateTrunc(Val, AccessLTy); 1296 1297 // Shift into the position in memory. 1298 if (AI.FieldBitStart) 1299 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1300 1301 // If necessary, load and OR in bits that are outside of the bit-field. 1302 if (AI.TargetBitWidth != AI.AccessWidth) { 1303 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1304 if (!AI.AccessAlignment.isZero()) 1305 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1306 1307 // Compute the mask for zeroing the bits that are part of the bit-field. 1308 llvm::APInt InvMask = 1309 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1310 AI.FieldBitStart + AI.TargetBitWidth); 1311 1312 // Apply the mask and OR in to the value to write. 1313 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1314 } 1315 1316 // Write the value. 1317 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1318 Dst.isVolatileQualified()); 1319 if (!AI.AccessAlignment.isZero()) 1320 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1321 } 1322} 1323 1324void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1325 LValue Dst) { 1326 // This access turns into a read/modify/write of the vector. Load the input 1327 // value now. 1328 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1329 Dst.isVolatileQualified()); 1330 Load->setAlignment(Dst.getAlignment().getQuantity()); 1331 llvm::Value *Vec = Load; 1332 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1333 1334 llvm::Value *SrcVal = Src.getScalarVal(); 1335 1336 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1337 unsigned NumSrcElts = VTy->getNumElements(); 1338 unsigned NumDstElts = 1339 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1340 if (NumDstElts == NumSrcElts) { 1341 // Use shuffle vector is the src and destination are the same number of 1342 // elements and restore the vector mask since it is on the side it will be 1343 // stored. 1344 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1345 for (unsigned i = 0; i != NumSrcElts; ++i) 1346 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1347 1348 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1349 Vec = Builder.CreateShuffleVector(SrcVal, 1350 llvm::UndefValue::get(Vec->getType()), 1351 MaskV); 1352 } else if (NumDstElts > NumSrcElts) { 1353 // Extended the source vector to the same length and then shuffle it 1354 // into the destination. 1355 // FIXME: since we're shuffling with undef, can we just use the indices 1356 // into that? This could be simpler. 1357 SmallVector<llvm::Constant*, 4> ExtMask; 1358 for (unsigned i = 0; i != NumSrcElts; ++i) 1359 ExtMask.push_back(Builder.getInt32(i)); 1360 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1361 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1362 llvm::Value *ExtSrcVal = 1363 Builder.CreateShuffleVector(SrcVal, 1364 llvm::UndefValue::get(SrcVal->getType()), 1365 ExtMaskV); 1366 // build identity 1367 SmallVector<llvm::Constant*, 4> Mask; 1368 for (unsigned i = 0; i != NumDstElts; ++i) 1369 Mask.push_back(Builder.getInt32(i)); 1370 1371 // modify when what gets shuffled in 1372 for (unsigned i = 0; i != NumSrcElts; ++i) 1373 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1374 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1375 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1376 } else { 1377 // We should never shorten the vector 1378 llvm_unreachable("unexpected shorten vector length"); 1379 } 1380 } else { 1381 // If the Src is a scalar (not a vector) it must be updating one element. 1382 unsigned InIdx = getAccessedFieldNo(0, Elts); 1383 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1384 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1385 } 1386 1387 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1388 Dst.isVolatileQualified()); 1389 Store->setAlignment(Dst.getAlignment().getQuantity()); 1390} 1391 1392// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1393// generating write-barries API. It is currently a global, ivar, 1394// or neither. 1395static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1396 LValue &LV, 1397 bool IsMemberAccess=false) { 1398 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1399 return; 1400 1401 if (isa<ObjCIvarRefExpr>(E)) { 1402 QualType ExpTy = E->getType(); 1403 if (IsMemberAccess && ExpTy->isPointerType()) { 1404 // If ivar is a structure pointer, assigning to field of 1405 // this struct follows gcc's behavior and makes it a non-ivar 1406 // writer-barrier conservatively. 1407 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1408 if (ExpTy->isRecordType()) { 1409 LV.setObjCIvar(false); 1410 return; 1411 } 1412 } 1413 LV.setObjCIvar(true); 1414 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1415 LV.setBaseIvarExp(Exp->getBase()); 1416 LV.setObjCArray(E->getType()->isArrayType()); 1417 return; 1418 } 1419 1420 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1421 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1422 if (VD->hasGlobalStorage()) { 1423 LV.setGlobalObjCRef(true); 1424 LV.setThreadLocalRef(VD->isThreadSpecified()); 1425 } 1426 } 1427 LV.setObjCArray(E->getType()->isArrayType()); 1428 return; 1429 } 1430 1431 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1432 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1433 return; 1434 } 1435 1436 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1437 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1438 if (LV.isObjCIvar()) { 1439 // If cast is to a structure pointer, follow gcc's behavior and make it 1440 // a non-ivar write-barrier. 1441 QualType ExpTy = E->getType(); 1442 if (ExpTy->isPointerType()) 1443 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1444 if (ExpTy->isRecordType()) 1445 LV.setObjCIvar(false); 1446 } 1447 return; 1448 } 1449 1450 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1451 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1452 return; 1453 } 1454 1455 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1456 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1457 return; 1458 } 1459 1460 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1461 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1462 return; 1463 } 1464 1465 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1466 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1467 return; 1468 } 1469 1470 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1471 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1472 if (LV.isObjCIvar() && !LV.isObjCArray()) 1473 // Using array syntax to assigning to what an ivar points to is not 1474 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1475 LV.setObjCIvar(false); 1476 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1477 // Using array syntax to assigning to what global points to is not 1478 // same as assigning to the global itself. {id *G;} G[i] = 0; 1479 LV.setGlobalObjCRef(false); 1480 return; 1481 } 1482 1483 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1484 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1485 // We don't know if member is an 'ivar', but this flag is looked at 1486 // only in the context of LV.isObjCIvar(). 1487 LV.setObjCArray(E->getType()->isArrayType()); 1488 return; 1489 } 1490} 1491 1492static llvm::Value * 1493EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1494 llvm::Value *V, llvm::Type *IRType, 1495 StringRef Name = StringRef()) { 1496 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1497 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1498} 1499 1500static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1501 const Expr *E, const VarDecl *VD) { 1502 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1503 "Var decl must have external storage or be a file var decl!"); 1504 1505 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1506 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1507 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1508 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1509 QualType T = E->getType(); 1510 LValue LV; 1511 if (VD->getType()->isReferenceType()) { 1512 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1513 LI->setAlignment(Alignment.getQuantity()); 1514 V = LI; 1515 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1516 } else { 1517 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1518 } 1519 setObjCGCLValueClass(CGF.getContext(), E, LV); 1520 return LV; 1521} 1522 1523static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1524 const Expr *E, const FunctionDecl *FD) { 1525 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1526 if (!FD->hasPrototype()) { 1527 if (const FunctionProtoType *Proto = 1528 FD->getType()->getAs<FunctionProtoType>()) { 1529 // Ugly case: for a K&R-style definition, the type of the definition 1530 // isn't the same as the type of a use. Correct for this with a 1531 // bitcast. 1532 QualType NoProtoType = 1533 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1534 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1535 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1536 } 1537 } 1538 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1539 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1540} 1541 1542LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1543 const NamedDecl *ND = E->getDecl(); 1544 CharUnits Alignment = getContext().getDeclAlign(ND); 1545 QualType T = E->getType(); 1546 1547 // FIXME: We should be able to assert this for FunctionDecls as well! 1548 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1549 // those with a valid source location. 1550 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1551 !E->getLocation().isValid()) && 1552 "Should not use decl without marking it used!"); 1553 1554 if (ND->hasAttr<WeakRefAttr>()) { 1555 const ValueDecl *VD = cast<ValueDecl>(ND); 1556 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1557 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1558 } 1559 1560 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1561 // Check if this is a global variable. 1562 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1563 return EmitGlobalVarDeclLValue(*this, E, VD); 1564 1565 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1566 1567 bool NonGCable = VD->hasLocalStorage() && 1568 !VD->getType()->isReferenceType() && 1569 !isBlockVariable; 1570 1571 llvm::Value *V = LocalDeclMap[VD]; 1572 if (!V && VD->isStaticLocal()) 1573 V = CGM.getStaticLocalDeclAddress(VD); 1574 1575 // Use special handling for lambdas. 1576 if (!V) { 1577 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1578 return EmitLValueForField(CXXABIThisValue, FD, 0); 1579 1580 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1581 CharUnits alignment = getContext().getDeclAlign(VD); 1582 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1583 E->getType(), alignment); 1584 } 1585 1586 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1587 1588 if (isBlockVariable) 1589 V = BuildBlockByrefAddress(V, VD); 1590 1591 LValue LV; 1592 if (VD->getType()->isReferenceType()) { 1593 llvm::LoadInst *LI = Builder.CreateLoad(V); 1594 LI->setAlignment(Alignment.getQuantity()); 1595 V = LI; 1596 LV = MakeNaturalAlignAddrLValue(V, T); 1597 } else { 1598 LV = MakeAddrLValue(V, T, Alignment); 1599 } 1600 1601 if (NonGCable) { 1602 LV.getQuals().removeObjCGCAttr(); 1603 LV.setNonGC(true); 1604 } 1605 setObjCGCLValueClass(getContext(), E, LV); 1606 return LV; 1607 } 1608 1609 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1610 return EmitFunctionDeclLValue(*this, E, fn); 1611 1612 llvm_unreachable("Unhandled DeclRefExpr"); 1613} 1614 1615LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1616 // __extension__ doesn't affect lvalue-ness. 1617 if (E->getOpcode() == UO_Extension) 1618 return EmitLValue(E->getSubExpr()); 1619 1620 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1621 switch (E->getOpcode()) { 1622 default: llvm_unreachable("Unknown unary operator lvalue!"); 1623 case UO_Deref: { 1624 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1625 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1626 1627 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1628 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1629 1630 // We should not generate __weak write barrier on indirect reference 1631 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1632 // But, we continue to generate __strong write barrier on indirect write 1633 // into a pointer to object. 1634 if (getContext().getLangOpts().ObjC1 && 1635 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1636 LV.isObjCWeak()) 1637 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1638 return LV; 1639 } 1640 case UO_Real: 1641 case UO_Imag: { 1642 LValue LV = EmitLValue(E->getSubExpr()); 1643 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1644 llvm::Value *Addr = LV.getAddress(); 1645 1646 // __real is valid on scalars. This is a faster way of testing that. 1647 // __imag can only produce an rvalue on scalars. 1648 if (E->getOpcode() == UO_Real && 1649 !cast<llvm::PointerType>(Addr->getType()) 1650 ->getElementType()->isStructTy()) { 1651 assert(E->getSubExpr()->getType()->isArithmeticType()); 1652 return LV; 1653 } 1654 1655 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1656 1657 unsigned Idx = E->getOpcode() == UO_Imag; 1658 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1659 Idx, "idx"), 1660 ExprTy); 1661 } 1662 case UO_PreInc: 1663 case UO_PreDec: { 1664 LValue LV = EmitLValue(E->getSubExpr()); 1665 bool isInc = E->getOpcode() == UO_PreInc; 1666 1667 if (E->getType()->isAnyComplexType()) 1668 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1669 else 1670 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1671 return LV; 1672 } 1673 } 1674} 1675 1676LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1677 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1678 E->getType()); 1679} 1680 1681LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1682 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1683 E->getType()); 1684} 1685 1686 1687LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1688 switch (E->getIdentType()) { 1689 default: 1690 return EmitUnsupportedLValue(E, "predefined expression"); 1691 1692 case PredefinedExpr::Func: 1693 case PredefinedExpr::Function: 1694 case PredefinedExpr::PrettyFunction: { 1695 unsigned Type = E->getIdentType(); 1696 std::string GlobalVarName; 1697 1698 switch (Type) { 1699 default: llvm_unreachable("Invalid type"); 1700 case PredefinedExpr::Func: 1701 GlobalVarName = "__func__."; 1702 break; 1703 case PredefinedExpr::Function: 1704 GlobalVarName = "__FUNCTION__."; 1705 break; 1706 case PredefinedExpr::PrettyFunction: 1707 GlobalVarName = "__PRETTY_FUNCTION__."; 1708 break; 1709 } 1710 1711 StringRef FnName = CurFn->getName(); 1712 if (FnName.startswith("\01")) 1713 FnName = FnName.substr(1); 1714 GlobalVarName += FnName; 1715 1716 const Decl *CurDecl = CurCodeDecl; 1717 if (CurDecl == 0) 1718 CurDecl = getContext().getTranslationUnitDecl(); 1719 1720 std::string FunctionName = 1721 (isa<BlockDecl>(CurDecl) 1722 ? FnName.str() 1723 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1724 1725 llvm::Constant *C = 1726 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1727 return MakeAddrLValue(C, E->getType()); 1728 } 1729 } 1730} 1731 1732llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1733 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1734 1735 // If we are not optimzing, don't collapse all calls to trap in the function 1736 // to the same call, that way, in the debugger they can see which operation 1737 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1738 // to just one per function to save on codesize. 1739 if (GCO.OptimizationLevel && TrapBB) 1740 return TrapBB; 1741 1742 llvm::BasicBlock *Cont = 0; 1743 if (HaveInsertPoint()) { 1744 Cont = createBasicBlock("cont"); 1745 EmitBranch(Cont); 1746 } 1747 TrapBB = createBasicBlock("trap"); 1748 EmitBlock(TrapBB); 1749 1750 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1751 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1752 TrapCall->setDoesNotReturn(); 1753 TrapCall->setDoesNotThrow(); 1754 Builder.CreateUnreachable(); 1755 1756 if (Cont) 1757 EmitBlock(Cont); 1758 return TrapBB; 1759} 1760 1761/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1762/// array to pointer, return the array subexpression. 1763static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1764 // If this isn't just an array->pointer decay, bail out. 1765 const CastExpr *CE = dyn_cast<CastExpr>(E); 1766 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1767 return 0; 1768 1769 // If this is a decay from variable width array, bail out. 1770 const Expr *SubExpr = CE->getSubExpr(); 1771 if (SubExpr->getType()->isVariableArrayType()) 1772 return 0; 1773 1774 return SubExpr; 1775} 1776 1777LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1778 // The index must always be an integer, which is not an aggregate. Emit it. 1779 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1780 QualType IdxTy = E->getIdx()->getType(); 1781 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1782 1783 // If the base is a vector type, then we are forming a vector element lvalue 1784 // with this subscript. 1785 if (E->getBase()->getType()->isVectorType()) { 1786 // Emit the vector as an lvalue to get its address. 1787 LValue LHS = EmitLValue(E->getBase()); 1788 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1789 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1790 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1791 E->getBase()->getType(), LHS.getAlignment()); 1792 } 1793 1794 // Extend or truncate the index type to 32 or 64-bits. 1795 if (Idx->getType() != IntPtrTy) 1796 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1797 1798 // FIXME: As llvm implements the object size checking, this can come out. 1799 if (CatchUndefined) { 1800 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1801 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1802 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1803 if (const ConstantArrayType *CAT 1804 = getContext().getAsConstantArrayType(DRE->getType())) { 1805 llvm::APInt Size = CAT->getSize(); 1806 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1807 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1808 llvm::ConstantInt::get(Idx->getType(), Size)), 1809 Cont, getTrapBB()); 1810 EmitBlock(Cont); 1811 } 1812 } 1813 } 1814 } 1815 } 1816 1817 // We know that the pointer points to a type of the correct size, unless the 1818 // size is a VLA or Objective-C interface. 1819 llvm::Value *Address = 0; 1820 CharUnits ArrayAlignment; 1821 if (const VariableArrayType *vla = 1822 getContext().getAsVariableArrayType(E->getType())) { 1823 // The base must be a pointer, which is not an aggregate. Emit 1824 // it. It needs to be emitted first in case it's what captures 1825 // the VLA bounds. 1826 Address = EmitScalarExpr(E->getBase()); 1827 1828 // The element count here is the total number of non-VLA elements. 1829 llvm::Value *numElements = getVLASize(vla).first; 1830 1831 // Effectively, the multiply by the VLA size is part of the GEP. 1832 // GEP indexes are signed, and scaling an index isn't permitted to 1833 // signed-overflow, so we use the same semantics for our explicit 1834 // multiply. We suppress this if overflow is not undefined behavior. 1835 if (getLangOpts().isSignedOverflowDefined()) { 1836 Idx = Builder.CreateMul(Idx, numElements); 1837 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1838 } else { 1839 Idx = Builder.CreateNSWMul(Idx, numElements); 1840 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1841 } 1842 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1843 // Indexing over an interface, as in "NSString *P; P[4];" 1844 llvm::Value *InterfaceSize = 1845 llvm::ConstantInt::get(Idx->getType(), 1846 getContext().getTypeSizeInChars(OIT).getQuantity()); 1847 1848 Idx = Builder.CreateMul(Idx, InterfaceSize); 1849 1850 // The base must be a pointer, which is not an aggregate. Emit it. 1851 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1852 Address = EmitCastToVoidPtr(Base); 1853 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1854 Address = Builder.CreateBitCast(Address, Base->getType()); 1855 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1856 // If this is A[i] where A is an array, the frontend will have decayed the 1857 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1858 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1859 // "gep x, i" here. Emit one "gep A, 0, i". 1860 assert(Array->getType()->isArrayType() && 1861 "Array to pointer decay must have array source type!"); 1862 LValue ArrayLV = EmitLValue(Array); 1863 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1864 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1865 llvm::Value *Args[] = { Zero, Idx }; 1866 1867 // Propagate the alignment from the array itself to the result. 1868 ArrayAlignment = ArrayLV.getAlignment(); 1869 1870 if (getContext().getLangOpts().isSignedOverflowDefined()) 1871 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1872 else 1873 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1874 } else { 1875 // The base must be a pointer, which is not an aggregate. Emit it. 1876 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1877 if (getContext().getLangOpts().isSignedOverflowDefined()) 1878 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1879 else 1880 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1881 } 1882 1883 QualType T = E->getBase()->getType()->getPointeeType(); 1884 assert(!T.isNull() && 1885 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1886 1887 1888 // Limit the alignment to that of the result type. 1889 LValue LV; 1890 if (!ArrayAlignment.isZero()) { 1891 CharUnits Align = getContext().getTypeAlignInChars(T); 1892 ArrayAlignment = std::min(Align, ArrayAlignment); 1893 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1894 } else { 1895 LV = MakeNaturalAlignAddrLValue(Address, T); 1896 } 1897 1898 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1899 1900 if (getContext().getLangOpts().ObjC1 && 1901 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1902 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1903 setObjCGCLValueClass(getContext(), E, LV); 1904 } 1905 return LV; 1906} 1907 1908static 1909llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1910 SmallVector<unsigned, 4> &Elts) { 1911 SmallVector<llvm::Constant*, 4> CElts; 1912 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1913 CElts.push_back(Builder.getInt32(Elts[i])); 1914 1915 return llvm::ConstantVector::get(CElts); 1916} 1917 1918LValue CodeGenFunction:: 1919EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1920 // Emit the base vector as an l-value. 1921 LValue Base; 1922 1923 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1924 if (E->isArrow()) { 1925 // If it is a pointer to a vector, emit the address and form an lvalue with 1926 // it. 1927 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1928 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1929 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1930 Base.getQuals().removeObjCGCAttr(); 1931 } else if (E->getBase()->isGLValue()) { 1932 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1933 // emit the base as an lvalue. 1934 assert(E->getBase()->getType()->isVectorType()); 1935 Base = EmitLValue(E->getBase()); 1936 } else { 1937 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1938 assert(E->getBase()->getType()->isVectorType() && 1939 "Result must be a vector"); 1940 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1941 1942 // Store the vector to memory (because LValue wants an address). 1943 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1944 Builder.CreateStore(Vec, VecMem); 1945 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1946 } 1947 1948 QualType type = 1949 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1950 1951 // Encode the element access list into a vector of unsigned indices. 1952 SmallVector<unsigned, 4> Indices; 1953 E->getEncodedElementAccess(Indices); 1954 1955 if (Base.isSimple()) { 1956 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1957 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 1958 Base.getAlignment()); 1959 } 1960 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1961 1962 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1963 SmallVector<llvm::Constant *, 4> CElts; 1964 1965 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1966 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1967 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1968 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 1969 Base.getAlignment()); 1970} 1971 1972LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1973 bool isNonGC = false; 1974 Expr *BaseExpr = E->getBase(); 1975 llvm::Value *BaseValue = NULL; 1976 Qualifiers BaseQuals; 1977 1978 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1979 if (E->isArrow()) { 1980 BaseValue = EmitScalarExpr(BaseExpr); 1981 const PointerType *PTy = 1982 BaseExpr->getType()->getAs<PointerType>(); 1983 BaseQuals = PTy->getPointeeType().getQualifiers(); 1984 } else { 1985 LValue BaseLV = EmitLValue(BaseExpr); 1986 if (BaseLV.isNonGC()) 1987 isNonGC = true; 1988 // FIXME: this isn't right for bitfields. 1989 BaseValue = BaseLV.getAddress(); 1990 QualType BaseTy = BaseExpr->getType(); 1991 BaseQuals = BaseTy.getQualifiers(); 1992 } 1993 1994 NamedDecl *ND = E->getMemberDecl(); 1995 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1996 LValue LV = EmitLValueForField(BaseValue, Field, 1997 BaseQuals.getCVRQualifiers()); 1998 LV.setNonGC(isNonGC); 1999 setObjCGCLValueClass(getContext(), E, LV); 2000 return LV; 2001 } 2002 2003 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2004 return EmitGlobalVarDeclLValue(*this, E, VD); 2005 2006 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2007 return EmitFunctionDeclLValue(*this, E, FD); 2008 2009 llvm_unreachable("Unhandled member declaration!"); 2010} 2011 2012LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 2013 const FieldDecl *Field, 2014 unsigned CVRQualifiers) { 2015 const CGRecordLayout &RL = 2016 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2017 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 2018 return LValue::MakeBitfield(BaseValue, Info, 2019 Field->getType().withCVRQualifiers(CVRQualifiers)); 2020} 2021 2022/// EmitLValueForAnonRecordField - Given that the field is a member of 2023/// an anonymous struct or union buried inside a record, and given 2024/// that the base value is a pointer to the enclosing record, derive 2025/// an lvalue for the ultimate field. 2026LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 2027 const IndirectFieldDecl *Field, 2028 unsigned CVRQualifiers) { 2029 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 2030 IEnd = Field->chain_end(); 2031 while (true) { 2032 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 2033 CVRQualifiers); 2034 if (++I == IEnd) return LV; 2035 2036 assert(LV.isSimple()); 2037 BaseValue = LV.getAddress(); 2038 CVRQualifiers |= LV.getVRQualifiers(); 2039 } 2040} 2041 2042LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 2043 const FieldDecl *field, 2044 unsigned cvr) { 2045 if (field->isBitField()) 2046 return EmitLValueForBitfield(baseAddr, field, cvr); 2047 2048 const RecordDecl *rec = field->getParent(); 2049 QualType type = field->getType(); 2050 CharUnits alignment = getContext().getDeclAlign(field); 2051 2052 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2053 2054 llvm::Value *addr = baseAddr; 2055 if (rec->isUnion()) { 2056 // For unions, there is no pointer adjustment. 2057 assert(!type->isReferenceType() && "union has reference member"); 2058 } else { 2059 // For structs, we GEP to the field that the record layout suggests. 2060 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2061 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2062 2063 // If this is a reference field, load the reference right now. 2064 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2065 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2066 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2067 load->setAlignment(alignment.getQuantity()); 2068 2069 if (CGM.shouldUseTBAA()) { 2070 llvm::MDNode *tbaa; 2071 if (mayAlias) 2072 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2073 else 2074 tbaa = CGM.getTBAAInfo(type); 2075 CGM.DecorateInstruction(load, tbaa); 2076 } 2077 2078 addr = load; 2079 mayAlias = false; 2080 type = refType->getPointeeType(); 2081 if (type->isIncompleteType()) 2082 alignment = CharUnits(); 2083 else 2084 alignment = getContext().getTypeAlignInChars(type); 2085 cvr = 0; // qualifiers don't recursively apply to referencee 2086 } 2087 } 2088 2089 // Make sure that the address is pointing to the right type. This is critical 2090 // for both unions and structs. A union needs a bitcast, a struct element 2091 // will need a bitcast if the LLVM type laid out doesn't match the desired 2092 // type. 2093 addr = EmitBitCastOfLValueToProperType(*this, addr, 2094 CGM.getTypes().ConvertTypeForMem(type), 2095 field->getName()); 2096 2097 if (field->hasAttr<AnnotateAttr>()) 2098 addr = EmitFieldAnnotations(field, addr); 2099 2100 LValue LV = MakeAddrLValue(addr, type, alignment); 2101 LV.getQuals().addCVRQualifiers(cvr); 2102 2103 // __weak attribute on a field is ignored. 2104 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2105 LV.getQuals().removeObjCGCAttr(); 2106 2107 // Fields of may_alias structs act like 'char' for TBAA purposes. 2108 // FIXME: this should get propagated down through anonymous structs 2109 // and unions. 2110 if (mayAlias && LV.getTBAAInfo()) 2111 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2112 2113 return LV; 2114} 2115 2116LValue 2117CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 2118 const FieldDecl *Field, 2119 unsigned CVRQualifiers) { 2120 QualType FieldType = Field->getType(); 2121 2122 if (!FieldType->isReferenceType()) 2123 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 2124 2125 const CGRecordLayout &RL = 2126 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2127 unsigned idx = RL.getLLVMFieldNo(Field); 2128 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 2129 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2130 2131 2132 // Make sure that the address is pointing to the right type. This is critical 2133 // for both unions and structs. A union needs a bitcast, a struct element 2134 // will need a bitcast if the LLVM type laid out doesn't match the desired 2135 // type. 2136 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2137 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2138 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 2139 2140 CharUnits Alignment = getContext().getDeclAlign(Field); 2141 return MakeAddrLValue(V, FieldType, Alignment); 2142} 2143 2144LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2145 if (E->isFileScope()) { 2146 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2147 return MakeAddrLValue(GlobalPtr, E->getType()); 2148 } 2149 2150 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2151 const Expr *InitExpr = E->getInitializer(); 2152 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2153 2154 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2155 /*Init*/ true); 2156 2157 return Result; 2158} 2159 2160LValue CodeGenFunction:: 2161EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2162 if (!expr->isGLValue()) { 2163 // ?: here should be an aggregate. 2164 assert((hasAggregateLLVMType(expr->getType()) && 2165 !expr->getType()->isAnyComplexType()) && 2166 "Unexpected conditional operator!"); 2167 return EmitAggExprToLValue(expr); 2168 } 2169 2170 OpaqueValueMapping binding(*this, expr); 2171 2172 const Expr *condExpr = expr->getCond(); 2173 bool CondExprBool; 2174 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2175 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2176 if (!CondExprBool) std::swap(live, dead); 2177 2178 if (!ContainsLabel(dead)) 2179 return EmitLValue(live); 2180 } 2181 2182 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2183 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2184 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2185 2186 ConditionalEvaluation eval(*this); 2187 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2188 2189 // Any temporaries created here are conditional. 2190 EmitBlock(lhsBlock); 2191 eval.begin(*this); 2192 LValue lhs = EmitLValue(expr->getTrueExpr()); 2193 eval.end(*this); 2194 2195 if (!lhs.isSimple()) 2196 return EmitUnsupportedLValue(expr, "conditional operator"); 2197 2198 lhsBlock = Builder.GetInsertBlock(); 2199 Builder.CreateBr(contBlock); 2200 2201 // Any temporaries created here are conditional. 2202 EmitBlock(rhsBlock); 2203 eval.begin(*this); 2204 LValue rhs = EmitLValue(expr->getFalseExpr()); 2205 eval.end(*this); 2206 if (!rhs.isSimple()) 2207 return EmitUnsupportedLValue(expr, "conditional operator"); 2208 rhsBlock = Builder.GetInsertBlock(); 2209 2210 EmitBlock(contBlock); 2211 2212 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2213 "cond-lvalue"); 2214 phi->addIncoming(lhs.getAddress(), lhsBlock); 2215 phi->addIncoming(rhs.getAddress(), rhsBlock); 2216 return MakeAddrLValue(phi, expr->getType()); 2217} 2218 2219/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2220/// If the cast is a dynamic_cast, we can have the usual lvalue result, 2221/// otherwise if a cast is needed by the code generator in an lvalue context, 2222/// then it must mean that we need the address of an aggregate in order to 2223/// access one of its fields. This can happen for all the reasons that casts 2224/// are permitted with aggregate result, including noop aggregate casts, and 2225/// cast from scalar to union. 2226LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2227 switch (E->getCastKind()) { 2228 case CK_ToVoid: 2229 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2230 2231 case CK_Dependent: 2232 llvm_unreachable("dependent cast kind in IR gen!"); 2233 2234 // These two casts are currently treated as no-ops, although they could 2235 // potentially be real operations depending on the target's ABI. 2236 case CK_NonAtomicToAtomic: 2237 case CK_AtomicToNonAtomic: 2238 2239 case CK_NoOp: 2240 case CK_LValueToRValue: 2241 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2242 || E->getType()->isRecordType()) 2243 return EmitLValue(E->getSubExpr()); 2244 // Fall through to synthesize a temporary. 2245 2246 case CK_BitCast: 2247 case CK_ArrayToPointerDecay: 2248 case CK_FunctionToPointerDecay: 2249 case CK_NullToMemberPointer: 2250 case CK_NullToPointer: 2251 case CK_IntegralToPointer: 2252 case CK_PointerToIntegral: 2253 case CK_PointerToBoolean: 2254 case CK_VectorSplat: 2255 case CK_IntegralCast: 2256 case CK_IntegralToBoolean: 2257 case CK_IntegralToFloating: 2258 case CK_FloatingToIntegral: 2259 case CK_FloatingToBoolean: 2260 case CK_FloatingCast: 2261 case CK_FloatingRealToComplex: 2262 case CK_FloatingComplexToReal: 2263 case CK_FloatingComplexToBoolean: 2264 case CK_FloatingComplexCast: 2265 case CK_FloatingComplexToIntegralComplex: 2266 case CK_IntegralRealToComplex: 2267 case CK_IntegralComplexToReal: 2268 case CK_IntegralComplexToBoolean: 2269 case CK_IntegralComplexCast: 2270 case CK_IntegralComplexToFloatingComplex: 2271 case CK_DerivedToBaseMemberPointer: 2272 case CK_BaseToDerivedMemberPointer: 2273 case CK_MemberPointerToBoolean: 2274 case CK_ReinterpretMemberPointer: 2275 case CK_AnyPointerToBlockPointerCast: 2276 case CK_ARCProduceObject: 2277 case CK_ARCConsumeObject: 2278 case CK_ARCReclaimReturnedObject: 2279 case CK_ARCExtendBlockObject: 2280 case CK_CopyAndAutoreleaseBlockObject: { 2281 // These casts only produce lvalues when we're binding a reference to a 2282 // temporary realized from a (converted) pure rvalue. Emit the expression 2283 // as a value, copy it into a temporary, and return an lvalue referring to 2284 // that temporary. 2285 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2286 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2287 return MakeAddrLValue(V, E->getType()); 2288 } 2289 2290 case CK_Dynamic: { 2291 LValue LV = EmitLValue(E->getSubExpr()); 2292 llvm::Value *V = LV.getAddress(); 2293 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2294 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2295 } 2296 2297 case CK_ConstructorConversion: 2298 case CK_UserDefinedConversion: 2299 case CK_CPointerToObjCPointerCast: 2300 case CK_BlockPointerToObjCPointerCast: 2301 return EmitLValue(E->getSubExpr()); 2302 2303 case CK_UncheckedDerivedToBase: 2304 case CK_DerivedToBase: { 2305 const RecordType *DerivedClassTy = 2306 E->getSubExpr()->getType()->getAs<RecordType>(); 2307 CXXRecordDecl *DerivedClassDecl = 2308 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2309 2310 LValue LV = EmitLValue(E->getSubExpr()); 2311 llvm::Value *This = LV.getAddress(); 2312 2313 // Perform the derived-to-base conversion 2314 llvm::Value *Base = 2315 GetAddressOfBaseClass(This, DerivedClassDecl, 2316 E->path_begin(), E->path_end(), 2317 /*NullCheckValue=*/false); 2318 2319 return MakeAddrLValue(Base, E->getType()); 2320 } 2321 case CK_ToUnion: 2322 return EmitAggExprToLValue(E); 2323 case CK_BaseToDerived: { 2324 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2325 CXXRecordDecl *DerivedClassDecl = 2326 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2327 2328 LValue LV = EmitLValue(E->getSubExpr()); 2329 2330 // Perform the base-to-derived conversion 2331 llvm::Value *Derived = 2332 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2333 E->path_begin(), E->path_end(), 2334 /*NullCheckValue=*/false); 2335 2336 return MakeAddrLValue(Derived, E->getType()); 2337 } 2338 case CK_LValueBitCast: { 2339 // This must be a reinterpret_cast (or c-style equivalent). 2340 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2341 2342 LValue LV = EmitLValue(E->getSubExpr()); 2343 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2344 ConvertType(CE->getTypeAsWritten())); 2345 return MakeAddrLValue(V, E->getType()); 2346 } 2347 case CK_ObjCObjectLValueCast: { 2348 LValue LV = EmitLValue(E->getSubExpr()); 2349 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2350 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2351 ConvertType(ToType)); 2352 return MakeAddrLValue(V, E->getType()); 2353 } 2354 } 2355 2356 llvm_unreachable("Unhandled lvalue cast kind?"); 2357} 2358 2359LValue CodeGenFunction::EmitNullInitializationLValue( 2360 const CXXScalarValueInitExpr *E) { 2361 QualType Ty = E->getType(); 2362 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2363 EmitNullInitialization(LV.getAddress(), Ty); 2364 return LV; 2365} 2366 2367LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2368 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2369 return getOpaqueLValueMapping(e); 2370} 2371 2372LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2373 const MaterializeTemporaryExpr *E) { 2374 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2375 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2376} 2377 2378 2379//===--------------------------------------------------------------------===// 2380// Expression Emission 2381//===--------------------------------------------------------------------===// 2382 2383RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2384 ReturnValueSlot ReturnValue) { 2385 if (CGDebugInfo *DI = getDebugInfo()) 2386 DI->EmitLocation(Builder, E->getLocStart()); 2387 2388 // Builtins never have block type. 2389 if (E->getCallee()->getType()->isBlockPointerType()) 2390 return EmitBlockCallExpr(E, ReturnValue); 2391 2392 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2393 return EmitCXXMemberCallExpr(CE, ReturnValue); 2394 2395 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2396 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2397 2398 const Decl *TargetDecl = E->getCalleeDecl(); 2399 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2400 if (unsigned builtinID = FD->getBuiltinID()) 2401 return EmitBuiltinExpr(FD, builtinID, E); 2402 } 2403 2404 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2405 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2406 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2407 2408 if (const CXXPseudoDestructorExpr *PseudoDtor 2409 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2410 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2411 if (getContext().getLangOpts().ObjCAutoRefCount && 2412 DestroyedType->isObjCLifetimeType() && 2413 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2414 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2415 // Automatic Reference Counting: 2416 // If the pseudo-expression names a retainable object with weak or 2417 // strong lifetime, the object shall be released. 2418 Expr *BaseExpr = PseudoDtor->getBase(); 2419 llvm::Value *BaseValue = NULL; 2420 Qualifiers BaseQuals; 2421 2422 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2423 if (PseudoDtor->isArrow()) { 2424 BaseValue = EmitScalarExpr(BaseExpr); 2425 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2426 BaseQuals = PTy->getPointeeType().getQualifiers(); 2427 } else { 2428 LValue BaseLV = EmitLValue(BaseExpr); 2429 BaseValue = BaseLV.getAddress(); 2430 QualType BaseTy = BaseExpr->getType(); 2431 BaseQuals = BaseTy.getQualifiers(); 2432 } 2433 2434 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2435 case Qualifiers::OCL_None: 2436 case Qualifiers::OCL_ExplicitNone: 2437 case Qualifiers::OCL_Autoreleasing: 2438 break; 2439 2440 case Qualifiers::OCL_Strong: 2441 EmitARCRelease(Builder.CreateLoad(BaseValue, 2442 PseudoDtor->getDestroyedType().isVolatileQualified()), 2443 /*precise*/ true); 2444 break; 2445 2446 case Qualifiers::OCL_Weak: 2447 EmitARCDestroyWeak(BaseValue); 2448 break; 2449 } 2450 } else { 2451 // C++ [expr.pseudo]p1: 2452 // The result shall only be used as the operand for the function call 2453 // operator (), and the result of such a call has type void. The only 2454 // effect is the evaluation of the postfix-expression before the dot or 2455 // arrow. 2456 EmitScalarExpr(E->getCallee()); 2457 } 2458 2459 return RValue::get(0); 2460 } 2461 2462 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2463 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2464 E->arg_begin(), E->arg_end(), TargetDecl); 2465} 2466 2467LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2468 // Comma expressions just emit their LHS then their RHS as an l-value. 2469 if (E->getOpcode() == BO_Comma) { 2470 EmitIgnoredExpr(E->getLHS()); 2471 EnsureInsertPoint(); 2472 return EmitLValue(E->getRHS()); 2473 } 2474 2475 if (E->getOpcode() == BO_PtrMemD || 2476 E->getOpcode() == BO_PtrMemI) 2477 return EmitPointerToDataMemberBinaryExpr(E); 2478 2479 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2480 2481 // Note that in all of these cases, __block variables need the RHS 2482 // evaluated first just in case the variable gets moved by the RHS. 2483 2484 if (!hasAggregateLLVMType(E->getType())) { 2485 switch (E->getLHS()->getType().getObjCLifetime()) { 2486 case Qualifiers::OCL_Strong: 2487 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2488 2489 case Qualifiers::OCL_Autoreleasing: 2490 return EmitARCStoreAutoreleasing(E).first; 2491 2492 // No reason to do any of these differently. 2493 case Qualifiers::OCL_None: 2494 case Qualifiers::OCL_ExplicitNone: 2495 case Qualifiers::OCL_Weak: 2496 break; 2497 } 2498 2499 RValue RV = EmitAnyExpr(E->getRHS()); 2500 LValue LV = EmitLValue(E->getLHS()); 2501 EmitStoreThroughLValue(RV, LV); 2502 return LV; 2503 } 2504 2505 if (E->getType()->isAnyComplexType()) 2506 return EmitComplexAssignmentLValue(E); 2507 2508 return EmitAggExprToLValue(E); 2509} 2510 2511LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2512 RValue RV = EmitCallExpr(E); 2513 2514 if (!RV.isScalar()) 2515 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2516 2517 assert(E->getCallReturnType()->isReferenceType() && 2518 "Can't have a scalar return unless the return type is a " 2519 "reference type!"); 2520 2521 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2522} 2523 2524LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2525 // FIXME: This shouldn't require another copy. 2526 return EmitAggExprToLValue(E); 2527} 2528 2529LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2530 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2531 && "binding l-value to type which needs a temporary"); 2532 AggValueSlot Slot = CreateAggTemp(E->getType()); 2533 EmitCXXConstructExpr(E, Slot); 2534 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2535} 2536 2537LValue 2538CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2539 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2540} 2541 2542LValue 2543CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2544 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2545 Slot.setExternallyDestructed(); 2546 EmitAggExpr(E->getSubExpr(), Slot); 2547 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2548 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2549} 2550 2551LValue 2552CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2553 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2554 EmitLambdaExpr(E, Slot); 2555 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2556} 2557 2558LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2559 RValue RV = EmitObjCMessageExpr(E); 2560 2561 if (!RV.isScalar()) 2562 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2563 2564 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2565 "Can't have a scalar return unless the return type is a " 2566 "reference type!"); 2567 2568 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2569} 2570 2571LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2572 llvm::Value *V = 2573 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2574 return MakeAddrLValue(V, E->getType()); 2575} 2576 2577llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2578 const ObjCIvarDecl *Ivar) { 2579 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2580} 2581 2582LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2583 llvm::Value *BaseValue, 2584 const ObjCIvarDecl *Ivar, 2585 unsigned CVRQualifiers) { 2586 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2587 Ivar, CVRQualifiers); 2588} 2589 2590LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2591 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2592 llvm::Value *BaseValue = 0; 2593 const Expr *BaseExpr = E->getBase(); 2594 Qualifiers BaseQuals; 2595 QualType ObjectTy; 2596 if (E->isArrow()) { 2597 BaseValue = EmitScalarExpr(BaseExpr); 2598 ObjectTy = BaseExpr->getType()->getPointeeType(); 2599 BaseQuals = ObjectTy.getQualifiers(); 2600 } else { 2601 LValue BaseLV = EmitLValue(BaseExpr); 2602 // FIXME: this isn't right for bitfields. 2603 BaseValue = BaseLV.getAddress(); 2604 ObjectTy = BaseExpr->getType(); 2605 BaseQuals = ObjectTy.getQualifiers(); 2606 } 2607 2608 LValue LV = 2609 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2610 BaseQuals.getCVRQualifiers()); 2611 setObjCGCLValueClass(getContext(), E, LV); 2612 return LV; 2613} 2614 2615LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2616 // Can only get l-value for message expression returning aggregate type 2617 RValue RV = EmitAnyExprToTemp(E); 2618 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2619} 2620 2621RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2622 ReturnValueSlot ReturnValue, 2623 CallExpr::const_arg_iterator ArgBeg, 2624 CallExpr::const_arg_iterator ArgEnd, 2625 const Decl *TargetDecl) { 2626 // Get the actual function type. The callee type will always be a pointer to 2627 // function type or a block pointer type. 2628 assert(CalleeType->isFunctionPointerType() && 2629 "Call must have function pointer type!"); 2630 2631 CalleeType = getContext().getCanonicalType(CalleeType); 2632 2633 const FunctionType *FnType 2634 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2635 2636 CallArgList Args; 2637 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2638 2639 const CGFunctionInfo &FnInfo = 2640 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2641 2642 // C99 6.5.2.2p6: 2643 // If the expression that denotes the called function has a type 2644 // that does not include a prototype, [the default argument 2645 // promotions are performed]. If the number of arguments does not 2646 // equal the number of parameters, the behavior is undefined. If 2647 // the function is defined with a type that includes a prototype, 2648 // and either the prototype ends with an ellipsis (, ...) or the 2649 // types of the arguments after promotion are not compatible with 2650 // the types of the parameters, the behavior is undefined. If the 2651 // function is defined with a type that does not include a 2652 // prototype, and the types of the arguments after promotion are 2653 // not compatible with those of the parameters after promotion, 2654 // the behavior is undefined [except in some trivial cases]. 2655 // That is, in the general case, we should assume that a call 2656 // through an unprototyped function type works like a *non-variadic* 2657 // call. The way we make this work is to cast to the exact type 2658 // of the promoted arguments. 2659 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2660 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2661 CalleeTy = CalleeTy->getPointerTo(); 2662 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2663 } 2664 2665 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2666} 2667 2668LValue CodeGenFunction:: 2669EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2670 llvm::Value *BaseV; 2671 if (E->getOpcode() == BO_PtrMemI) 2672 BaseV = EmitScalarExpr(E->getLHS()); 2673 else 2674 BaseV = EmitLValue(E->getLHS()).getAddress(); 2675 2676 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2677 2678 const MemberPointerType *MPT 2679 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2680 2681 llvm::Value *AddV = 2682 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2683 2684 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2685} 2686 2687static void 2688EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2689 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2690 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2691 if (E->isCmpXChg()) { 2692 // Note that cmpxchg only supports specifying one ordering and 2693 // doesn't support weak cmpxchg, at least at the moment. 2694 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2695 LoadVal1->setAlignment(Align); 2696 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2697 LoadVal2->setAlignment(Align); 2698 llvm::AtomicCmpXchgInst *CXI = 2699 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2700 CXI->setVolatile(E->isVolatile()); 2701 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2702 StoreVal1->setAlignment(Align); 2703 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2704 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2705 return; 2706 } 2707 2708 if (E->getOp() == AtomicExpr::Load) { 2709 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2710 Load->setAtomic(Order); 2711 Load->setAlignment(Size); 2712 Load->setVolatile(E->isVolatile()); 2713 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2714 StoreDest->setAlignment(Align); 2715 return; 2716 } 2717 2718 if (E->getOp() == AtomicExpr::Store) { 2719 assert(!Dest && "Store does not return a value"); 2720 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2721 LoadVal1->setAlignment(Align); 2722 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2723 Store->setAtomic(Order); 2724 Store->setAlignment(Size); 2725 Store->setVolatile(E->isVolatile()); 2726 return; 2727 } 2728 2729 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2730 switch (E->getOp()) { 2731 case AtomicExpr::CmpXchgWeak: 2732 case AtomicExpr::CmpXchgStrong: 2733 case AtomicExpr::Store: 2734 case AtomicExpr::Init: 2735 case AtomicExpr::Load: assert(0 && "Already handled!"); 2736 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2737 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2738 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2739 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2740 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2741 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2742 } 2743 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2744 LoadVal1->setAlignment(Align); 2745 llvm::AtomicRMWInst *RMWI = 2746 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2747 RMWI->setVolatile(E->isVolatile()); 2748 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2749 StoreDest->setAlignment(Align); 2750} 2751 2752// This function emits any expression (scalar, complex, or aggregate) 2753// into a temporary alloca. 2754static llvm::Value * 2755EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2756 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2757 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2758 /*Init*/ true); 2759 return DeclPtr; 2760} 2761 2762static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2763 llvm::Value *Dest) { 2764 if (Ty->isAnyComplexType()) 2765 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2766 if (CGF.hasAggregateLLVMType(Ty)) 2767 return RValue::getAggregate(Dest); 2768 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2769} 2770 2771RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2772 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2773 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2774 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2775 uint64_t Size = sizeChars.getQuantity(); 2776 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2777 unsigned Align = alignChars.getQuantity(); 2778 unsigned MaxInlineWidth = 2779 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2780 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2781 2782 2783 2784 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2785 Ptr = EmitScalarExpr(E->getPtr()); 2786 2787 if (E->getOp() == AtomicExpr::Init) { 2788 assert(!Dest && "Init does not return a value"); 2789 Val1 = EmitScalarExpr(E->getVal1()); 2790 llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr); 2791 Store->setAlignment(Size); 2792 Store->setVolatile(E->isVolatile()); 2793 return RValue::get(0); 2794 } 2795 2796 Order = EmitScalarExpr(E->getOrder()); 2797 if (E->isCmpXChg()) { 2798 Val1 = EmitScalarExpr(E->getVal1()); 2799 Val2 = EmitValToTemp(*this, E->getVal2()); 2800 OrderFail = EmitScalarExpr(E->getOrderFail()); 2801 (void)OrderFail; // OrderFail is unused at the moment 2802 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2803 MemTy->isPointerType()) { 2804 // For pointers, we're required to do a bit of math: adding 1 to an int* 2805 // is not the same as adding 1 to a uintptr_t. 2806 QualType Val1Ty = E->getVal1()->getType(); 2807 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2808 CharUnits PointeeIncAmt = 2809 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2810 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2811 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2812 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2813 } else if (E->getOp() != AtomicExpr::Load) { 2814 Val1 = EmitValToTemp(*this, E->getVal1()); 2815 } 2816 2817 if (E->getOp() != AtomicExpr::Store && !Dest) 2818 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2819 2820 if (UseLibcall) { 2821 // FIXME: Finalize what the libcalls are actually supposed to look like. 2822 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2823 return EmitUnsupportedRValue(E, "atomic library call"); 2824 } 2825#if 0 2826 if (UseLibcall) { 2827 const char* LibCallName; 2828 switch (E->getOp()) { 2829 case AtomicExpr::CmpXchgWeak: 2830 LibCallName = "__atomic_compare_exchange_generic"; break; 2831 case AtomicExpr::CmpXchgStrong: 2832 LibCallName = "__atomic_compare_exchange_generic"; break; 2833 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2834 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2835 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2836 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2837 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2838 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2839 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2840 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2841 } 2842 llvm::SmallVector<QualType, 4> Params; 2843 CallArgList Args; 2844 QualType RetTy = getContext().VoidTy; 2845 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2846 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2847 getContext().VoidPtrTy); 2848 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2849 getContext().VoidPtrTy); 2850 if (E->getOp() != AtomicExpr::Load) 2851 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2852 getContext().VoidPtrTy); 2853 if (E->isCmpXChg()) { 2854 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2855 getContext().VoidPtrTy); 2856 RetTy = getContext().IntTy; 2857 } 2858 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2859 getContext().getSizeType()); 2860 const CGFunctionInfo &FuncInfo = 2861 CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(), 2862 /*variadic*/ false); 2863 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2864 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2865 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2866 if (E->isCmpXChg()) 2867 return Res; 2868 if (E->getOp() == AtomicExpr::Store) 2869 return RValue::get(0); 2870 return ConvertTempToRValue(*this, E->getType(), Dest); 2871 } 2872#endif 2873 llvm::Type *IPtrTy = 2874 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2875 llvm::Value *OrigDest = Dest; 2876 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2877 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2878 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2879 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2880 2881 if (isa<llvm::ConstantInt>(Order)) { 2882 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2883 switch (ord) { 2884 case 0: // memory_order_relaxed 2885 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2886 llvm::Monotonic); 2887 break; 2888 case 1: // memory_order_consume 2889 case 2: // memory_order_acquire 2890 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2891 llvm::Acquire); 2892 break; 2893 case 3: // memory_order_release 2894 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2895 llvm::Release); 2896 break; 2897 case 4: // memory_order_acq_rel 2898 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2899 llvm::AcquireRelease); 2900 break; 2901 case 5: // memory_order_seq_cst 2902 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2903 llvm::SequentiallyConsistent); 2904 break; 2905 default: // invalid order 2906 // We should not ever get here normally, but it's hard to 2907 // enforce that in general. 2908 break; 2909 } 2910 if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init) 2911 return RValue::get(0); 2912 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2913 } 2914 2915 // Long case, when Order isn't obviously constant. 2916 2917 // Create all the relevant BB's 2918 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2919 *AcqRelBB = 0, *SeqCstBB = 0; 2920 MonotonicBB = createBasicBlock("monotonic", CurFn); 2921 if (E->getOp() != AtomicExpr::Store) 2922 AcquireBB = createBasicBlock("acquire", CurFn); 2923 if (E->getOp() != AtomicExpr::Load) 2924 ReleaseBB = createBasicBlock("release", CurFn); 2925 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2926 AcqRelBB = createBasicBlock("acqrel", CurFn); 2927 SeqCstBB = createBasicBlock("seqcst", CurFn); 2928 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2929 2930 // Create the switch for the split 2931 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2932 // doesn't matter unless someone is crazy enough to use something that 2933 // doesn't fold to a constant for the ordering. 2934 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2935 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2936 2937 // Emit all the different atomics 2938 Builder.SetInsertPoint(MonotonicBB); 2939 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2940 llvm::Monotonic); 2941 Builder.CreateBr(ContBB); 2942 if (E->getOp() != AtomicExpr::Store) { 2943 Builder.SetInsertPoint(AcquireBB); 2944 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2945 llvm::Acquire); 2946 Builder.CreateBr(ContBB); 2947 SI->addCase(Builder.getInt32(1), AcquireBB); 2948 SI->addCase(Builder.getInt32(2), AcquireBB); 2949 } 2950 if (E->getOp() != AtomicExpr::Load) { 2951 Builder.SetInsertPoint(ReleaseBB); 2952 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2953 llvm::Release); 2954 Builder.CreateBr(ContBB); 2955 SI->addCase(Builder.getInt32(3), ReleaseBB); 2956 } 2957 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2958 Builder.SetInsertPoint(AcqRelBB); 2959 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2960 llvm::AcquireRelease); 2961 Builder.CreateBr(ContBB); 2962 SI->addCase(Builder.getInt32(4), AcqRelBB); 2963 } 2964 Builder.SetInsertPoint(SeqCstBB); 2965 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2966 llvm::SequentiallyConsistent); 2967 Builder.CreateBr(ContBB); 2968 SI->addCase(Builder.getInt32(5), SeqCstBB); 2969 2970 // Cleanup and return 2971 Builder.SetInsertPoint(ContBB); 2972 if (E->getOp() == AtomicExpr::Store) 2973 return RValue::get(0); 2974 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2975} 2976 2977void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2978 unsigned AccuracyD) { 2979 assert(Val->getType()->isFPOrFPVectorTy()); 2980 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2981 return; 2982 2983 llvm::Value *Vals[2]; 2984 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2985 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2986 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2987 2988 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2989 Node); 2990} 2991 2992namespace { 2993 struct LValueOrRValue { 2994 LValue LV; 2995 RValue RV; 2996 }; 2997} 2998 2999static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3000 const PseudoObjectExpr *E, 3001 bool forLValue, 3002 AggValueSlot slot) { 3003 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3004 3005 // Find the result expression, if any. 3006 const Expr *resultExpr = E->getResultExpr(); 3007 LValueOrRValue result; 3008 3009 for (PseudoObjectExpr::const_semantics_iterator 3010 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3011 const Expr *semantic = *i; 3012 3013 // If this semantic expression is an opaque value, bind it 3014 // to the result of its source expression. 3015 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3016 3017 // If this is the result expression, we may need to evaluate 3018 // directly into the slot. 3019 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3020 OVMA opaqueData; 3021 if (ov == resultExpr && ov->isRValue() && !forLValue && 3022 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3023 !ov->getType()->isAnyComplexType()) { 3024 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3025 3026 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3027 opaqueData = OVMA::bind(CGF, ov, LV); 3028 result.RV = slot.asRValue(); 3029 3030 // Otherwise, emit as normal. 3031 } else { 3032 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3033 3034 // If this is the result, also evaluate the result now. 3035 if (ov == resultExpr) { 3036 if (forLValue) 3037 result.LV = CGF.EmitLValue(ov); 3038 else 3039 result.RV = CGF.EmitAnyExpr(ov, slot); 3040 } 3041 } 3042 3043 opaques.push_back(opaqueData); 3044 3045 // Otherwise, if the expression is the result, evaluate it 3046 // and remember the result. 3047 } else if (semantic == resultExpr) { 3048 if (forLValue) 3049 result.LV = CGF.EmitLValue(semantic); 3050 else 3051 result.RV = CGF.EmitAnyExpr(semantic, slot); 3052 3053 // Otherwise, evaluate the expression in an ignored context. 3054 } else { 3055 CGF.EmitIgnoredExpr(semantic); 3056 } 3057 } 3058 3059 // Unbind all the opaques now. 3060 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3061 opaques[i].unbind(CGF); 3062 3063 return result; 3064} 3065 3066RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3067 AggValueSlot slot) { 3068 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3069} 3070 3071LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3072 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3073} 3074