CGExpr.cpp revision 85af7cecadbf5d4b905d6b3b4b1b6fa684183aff
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/Support/ConvertUTF.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35//===--------------------------------------------------------------------===//
36//                        Miscellaneous Helper Methods
37//===--------------------------------------------------------------------===//
38
39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40  unsigned addressSpace =
41    cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43  llvm::PointerType *destType = Int8PtrTy;
44  if (addressSpace)
45    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47  if (value->getType() == destType) return value;
48  return Builder.CreateBitCast(value, destType);
49}
50
51/// CreateTempAlloca - This creates a alloca and inserts it into the entry
52/// block.
53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                    const Twine &Name) {
55  if (!Builder.isNamePreserving())
56    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58}
59
60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                     llvm::Value *Init) {
62  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65}
66
67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                const Twine &Name) {
69  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70  // FIXME: Should we prefer the preferred type alignment here?
71  CharUnits Align = getContext().getTypeAlignInChars(Ty);
72  Alloc->setAlignment(Align.getQuantity());
73  return Alloc;
74}
75
76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                 const Twine &Name) {
78  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79  // FIXME: Should we prefer the preferred type alignment here?
80  CharUnits Align = getContext().getTypeAlignInChars(Ty);
81  Alloc->setAlignment(Align.getQuantity());
82  return Alloc;
83}
84
85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86/// expression and compare the result against zero, returning an Int1Ty value.
87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89    llvm::Value *MemPtr = EmitScalarExpr(E);
90    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91  }
92
93  QualType BoolTy = getContext().BoolTy;
94  if (!E->getType()->isAnyComplexType())
95    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98}
99
100/// EmitIgnoredExpr - Emit code to compute the specified expression,
101/// ignoring the result.
102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103  if (E->isRValue())
104    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106  // Just emit it as an l-value and drop the result.
107  EmitLValue(E);
108}
109
110/// EmitAnyExpr - Emit code to compute the specified expression which
111/// can have any type.  The result is returned as an RValue struct.
112/// If this is an aggregate expression, AggSlot indicates where the
113/// result should be returned.
114RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                    AggValueSlot aggSlot,
116                                    bool ignoreResult) {
117  switch (getEvaluationKind(E->getType())) {
118  case TEK_Scalar:
119    return RValue::get(EmitScalarExpr(E, ignoreResult));
120  case TEK_Complex:
121    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122  case TEK_Aggregate:
123    if (!ignoreResult && aggSlot.isIgnored())
124      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125    EmitAggExpr(E, aggSlot);
126    return aggSlot.asRValue();
127  }
128  llvm_unreachable("bad evaluation kind");
129}
130
131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132/// always be accessible even if no aggregate location is provided.
133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134  AggValueSlot AggSlot = AggValueSlot::ignored();
135
136  if (hasAggregateEvaluationKind(E->getType()))
137    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138  return EmitAnyExpr(E, AggSlot);
139}
140
141/// EmitAnyExprToMem - Evaluate an expression into a given memory
142/// location.
143void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                       llvm::Value *Location,
145                                       Qualifiers Quals,
146                                       bool IsInit) {
147  // FIXME: This function should take an LValue as an argument.
148  switch (getEvaluationKind(E->getType())) {
149  case TEK_Complex:
150    EmitComplexExprIntoLValue(E,
151                         MakeNaturalAlignAddrLValue(Location, E->getType()),
152                              /*isInit*/ false);
153    return;
154
155  case TEK_Aggregate: {
156    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                         AggValueSlot::IsDestructed_t(IsInit),
159                                         AggValueSlot::DoesNotNeedGCBarriers,
160                                         AggValueSlot::IsAliased_t(!IsInit)));
161    return;
162  }
163
164  case TEK_Scalar: {
165    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166    LValue LV = MakeAddrLValue(Location, E->getType());
167    EmitStoreThroughLValue(RV, LV);
168    return;
169  }
170  }
171  llvm_unreachable("bad evaluation kind");
172}
173
174static void
175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                     const Expr *E, llvm::Value *ReferenceTemporary) {
177  // Objective-C++ ARC:
178  //   If we are binding a reference to a temporary that has ownership, we
179  //   need to perform retain/release operations on the temporary.
180  //
181  // FIXME: This should be looking at E, not M.
182  if (CGF.getLangOpts().ObjCAutoRefCount &&
183      M->getType()->isObjCLifetimeType()) {
184    QualType ObjCARCReferenceLifetimeType = M->getType();
185    switch (Qualifiers::ObjCLifetime Lifetime =
186                ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187    case Qualifiers::OCL_None:
188    case Qualifiers::OCL_ExplicitNone:
189      // Carry on to normal cleanup handling.
190      break;
191
192    case Qualifiers::OCL_Autoreleasing:
193      // Nothing to do; cleaned up by an autorelease pool.
194      return;
195
196    case Qualifiers::OCL_Strong:
197    case Qualifiers::OCL_Weak:
198      switch (StorageDuration Duration = M->getStorageDuration()) {
199      case SD_Static:
200        // Note: we intentionally do not register a cleanup to release
201        // the object on program termination.
202        return;
203
204      case SD_Thread:
205        // FIXME: We should probably register a cleanup in this case.
206        return;
207
208      case SD_Automatic:
209      case SD_FullExpression:
210        assert(!ObjCARCReferenceLifetimeType->isArrayType());
211        CodeGenFunction::Destroyer *Destroy;
212        CleanupKind CleanupKind;
213        if (Lifetime == Qualifiers::OCL_Strong) {
214          const ValueDecl *VD = M->getExtendingDecl();
215          bool Precise =
216              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217          CleanupKind = CGF.getARCCleanupKind();
218          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                            : &CodeGenFunction::destroyARCStrongImprecise;
220        } else {
221          // __weak objects always get EH cleanups; otherwise, exceptions
222          // could cause really nasty crashes instead of mere leaks.
223          CleanupKind = NormalAndEHCleanup;
224          Destroy = &CodeGenFunction::destroyARCWeak;
225        }
226        if (Duration == SD_FullExpression)
227          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                          ObjCARCReferenceLifetimeType, *Destroy,
229                          CleanupKind & EHCleanup);
230        else
231          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                          ObjCARCReferenceLifetimeType,
233                                          *Destroy, CleanupKind & EHCleanup);
234        return;
235
236      case SD_Dynamic:
237        llvm_unreachable("temporary cannot have dynamic storage duration");
238      }
239      llvm_unreachable("unknown storage duration");
240    }
241  }
242
243  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
244    if (ILE->initializesStdInitializerList()) {
245      // FIXME: This is wrong if the temporary has static or thread storage
246      // duration.
247      CGF.EmitStdInitializerListCleanup(ReferenceTemporary, ILE);
248      return;
249    }
250  }
251
252  CXXDestructorDecl *ReferenceTemporaryDtor = 0;
253  if (const RecordType *RT =
254          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
255    // Get the destructor for the reference temporary.
256    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
257    if (!ClassDecl->hasTrivialDestructor())
258      ReferenceTemporaryDtor = ClassDecl->getDestructor();
259  }
260
261  if (!ReferenceTemporaryDtor)
262    return;
263
264  // Call the destructor for the temporary.
265  switch (M->getStorageDuration()) {
266  case SD_Static:
267  case SD_Thread: {
268    llvm::Constant *CleanupFn;
269    llvm::Constant *CleanupArg;
270    if (E->getType()->isArrayType()) {
271      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
272          cast<llvm::Constant>(ReferenceTemporary), E->getType(),
273          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions);
274      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
275    } else {
276      CleanupFn =
277        CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
278      CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
279    }
280    CGF.CGM.getCXXABI().registerGlobalDtor(
281        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
282    break;
283  }
284
285  case SD_FullExpression:
286    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
287                    CodeGenFunction::destroyCXXObject,
288                    CGF.getLangOpts().Exceptions);
289    break;
290
291  case SD_Automatic:
292    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
293                                    ReferenceTemporary, E->getType(),
294                                    CodeGenFunction::destroyCXXObject,
295                                    CGF.getLangOpts().Exceptions);
296    break;
297
298  case SD_Dynamic:
299    llvm_unreachable("temporary cannot have dynamic storage duration");
300  }
301}
302
303static llvm::Value *
304createReferenceTemporary(CodeGenFunction &CGF,
305                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
306  switch (M->getStorageDuration()) {
307  case SD_FullExpression:
308  case SD_Automatic:
309    return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
310
311  case SD_Thread:
312  case SD_Static:
313    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
314
315  case SD_Dynamic:
316    llvm_unreachable("temporary can't have dynamic storage duration");
317  }
318}
319
320static llvm::Value *
321emitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
322                            const NamedDecl *InitializedDecl) {
323  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
324    CGF.enterFullExpression(EWC);
325    CodeGenFunction::RunCleanupsScope Scope(CGF);
326    return emitExprForReferenceBinding(CGF, EWC->getSubExpr(), InitializedDecl);
327  }
328
329  const MaterializeTemporaryExpr *M = 0;
330  E = E->findMaterializedTemporary(M);
331
332  if (E->isGLValue()) {
333    // Emit the expression as an lvalue.
334    LValue LV = CGF.EmitLValue(E);
335    assert(LV.isSimple());
336    return LV.getAddress();
337  }
338
339  assert(M && "prvalue reference initializer but not a materialized temporary");
340
341  if (CGF.getLangOpts().ObjCAutoRefCount &&
342      M->getType()->isObjCLifetimeType() &&
343      M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
344      M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
345    // FIXME: Fold this into the general case below.
346    llvm::Value *Object = createReferenceTemporary(CGF, M, E);
347    LValue RefTempDst = CGF.MakeAddrLValue(Object, M->getType());
348
349    CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
350                       RefTempDst, false);
351
352    pushTemporaryCleanup(CGF, M, E, Object);
353    return Object;
354  }
355
356  SmallVector<const Expr *, 2> CommaLHSs;
357  SmallVector<SubobjectAdjustment, 2> Adjustments;
358  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
359
360  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
361    CGF.EmitIgnoredExpr(CommaLHSs[I]);
362
363  if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
364    if (opaque->getType()->isRecordType()) {
365      assert(Adjustments.empty());
366      return CGF.EmitOpaqueValueLValue(opaque).getAddress();
367    }
368  }
369
370  // Create and initialize the reference temporary.
371  llvm::Value *Object = createReferenceTemporary(CGF, M, E);
372  CGF.EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
373  pushTemporaryCleanup(CGF, M, E, Object);
374
375  // Perform derived-to-base casts and/or field accesses, to get from the
376  // temporary object we created (and, potentially, for which we extended
377  // the lifetime) to the subobject we're binding the reference to.
378  for (unsigned I = Adjustments.size(); I != 0; --I) {
379    SubobjectAdjustment &Adjustment = Adjustments[I-1];
380    switch (Adjustment.Kind) {
381    case SubobjectAdjustment::DerivedToBaseAdjustment:
382      Object =
383          CGF.GetAddressOfBaseClass(Object,
384                                    Adjustment.DerivedToBase.DerivedClass,
385                          Adjustment.DerivedToBase.BasePath->path_begin(),
386                          Adjustment.DerivedToBase.BasePath->path_end(),
387                                    /*NullCheckValue=*/false);
388      break;
389
390    case SubobjectAdjustment::FieldAdjustment: {
391      LValue LV = CGF.MakeAddrLValue(Object, E->getType());
392      LV = CGF.EmitLValueForField(LV, Adjustment.Field);
393      assert(LV.isSimple() &&
394             "materialized temporary field is not a simple lvalue");
395      Object = LV.getAddress();
396      break;
397    }
398
399    case SubobjectAdjustment::MemberPointerAdjustment: {
400      llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
401      Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
402                    CGF, Object, Ptr, Adjustment.Ptr.MPT);
403      break;
404    }
405    }
406  }
407
408  return Object;
409}
410
411RValue
412CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
413                                            const NamedDecl *InitializedDecl) {
414  llvm::Value *Value = emitExprForReferenceBinding(*this, E, InitializedDecl);
415
416  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
417    // C++11 [dcl.ref]p5 (as amended by core issue 453):
418    //   If a glvalue to which a reference is directly bound designates neither
419    //   an existing object or function of an appropriate type nor a region of
420    //   storage of suitable size and alignment to contain an object of the
421    //   reference's type, the behavior is undefined.
422    QualType Ty = E->getType();
423    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
424  }
425
426  return RValue::get(Value);
427}
428
429
430/// getAccessedFieldNo - Given an encoded value and a result number, return the
431/// input field number being accessed.
432unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
433                                             const llvm::Constant *Elts) {
434  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
435      ->getZExtValue();
436}
437
438/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
439static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
440                                    llvm::Value *High) {
441  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
442  llvm::Value *K47 = Builder.getInt64(47);
443  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
444  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
445  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
446  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
447  return Builder.CreateMul(B1, KMul);
448}
449
450void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
451                                    llvm::Value *Address,
452                                    QualType Ty, CharUnits Alignment) {
453  if (!SanitizePerformTypeCheck)
454    return;
455
456  // Don't check pointers outside the default address space. The null check
457  // isn't correct, the object-size check isn't supported by LLVM, and we can't
458  // communicate the addresses to the runtime handler for the vptr check.
459  if (Address->getType()->getPointerAddressSpace())
460    return;
461
462  llvm::Value *Cond = 0;
463  llvm::BasicBlock *Done = 0;
464
465  if (SanOpts->Null) {
466    // The glvalue must not be an empty glvalue.
467    Cond = Builder.CreateICmpNE(
468        Address, llvm::Constant::getNullValue(Address->getType()));
469
470    if (TCK == TCK_DowncastPointer) {
471      // When performing a pointer downcast, it's OK if the value is null.
472      // Skip the remaining checks in that case.
473      Done = createBasicBlock("null");
474      llvm::BasicBlock *Rest = createBasicBlock("not.null");
475      Builder.CreateCondBr(Cond, Rest, Done);
476      EmitBlock(Rest);
477      Cond = 0;
478    }
479  }
480
481  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
482    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
483
484    // The glvalue must refer to a large enough storage region.
485    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
486    //        to check this.
487    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
488    llvm::Value *Min = Builder.getFalse();
489    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
490    llvm::Value *LargeEnough =
491        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
492                              llvm::ConstantInt::get(IntPtrTy, Size));
493    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
494  }
495
496  uint64_t AlignVal = 0;
497
498  if (SanOpts->Alignment) {
499    AlignVal = Alignment.getQuantity();
500    if (!Ty->isIncompleteType() && !AlignVal)
501      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
502
503    // The glvalue must be suitably aligned.
504    if (AlignVal) {
505      llvm::Value *Align =
506          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
507                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
508      llvm::Value *Aligned =
509        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
510      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
511    }
512  }
513
514  if (Cond) {
515    llvm::Constant *StaticData[] = {
516      EmitCheckSourceLocation(Loc),
517      EmitCheckTypeDescriptor(Ty),
518      llvm::ConstantInt::get(SizeTy, AlignVal),
519      llvm::ConstantInt::get(Int8Ty, TCK)
520    };
521    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
522  }
523
524  // If possible, check that the vptr indicates that there is a subobject of
525  // type Ty at offset zero within this object.
526  //
527  // C++11 [basic.life]p5,6:
528  //   [For storage which does not refer to an object within its lifetime]
529  //   The program has undefined behavior if:
530  //    -- the [pointer or glvalue] is used to access a non-static data member
531  //       or call a non-static member function
532  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
533  if (SanOpts->Vptr &&
534      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
535       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
536      RD && RD->hasDefinition() && RD->isDynamicClass()) {
537    // Compute a hash of the mangled name of the type.
538    //
539    // FIXME: This is not guaranteed to be deterministic! Move to a
540    //        fingerprinting mechanism once LLVM provides one. For the time
541    //        being the implementation happens to be deterministic.
542    SmallString<64> MangledName;
543    llvm::raw_svector_ostream Out(MangledName);
544    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
545                                                     Out);
546    llvm::hash_code TypeHash = hash_value(Out.str());
547
548    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
549    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
550    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
551    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
552    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
553    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
554
555    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
556    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
557
558    // Look the hash up in our cache.
559    const int CacheSize = 128;
560    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
561    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
562                                                   "__ubsan_vptr_type_cache");
563    llvm::Value *Slot = Builder.CreateAnd(Hash,
564                                          llvm::ConstantInt::get(IntPtrTy,
565                                                                 CacheSize-1));
566    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
567    llvm::Value *CacheVal =
568      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
569
570    // If the hash isn't in the cache, call a runtime handler to perform the
571    // hard work of checking whether the vptr is for an object of the right
572    // type. This will either fill in the cache and return, or produce a
573    // diagnostic.
574    llvm::Constant *StaticData[] = {
575      EmitCheckSourceLocation(Loc),
576      EmitCheckTypeDescriptor(Ty),
577      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
578      llvm::ConstantInt::get(Int8Ty, TCK)
579    };
580    llvm::Value *DynamicData[] = { Address, Hash };
581    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
582              "dynamic_type_cache_miss", StaticData, DynamicData,
583              CRK_AlwaysRecoverable);
584  }
585
586  if (Done) {
587    Builder.CreateBr(Done);
588    EmitBlock(Done);
589  }
590}
591
592/// Determine whether this expression refers to a flexible array member in a
593/// struct. We disable array bounds checks for such members.
594static bool isFlexibleArrayMemberExpr(const Expr *E) {
595  // For compatibility with existing code, we treat arrays of length 0 or
596  // 1 as flexible array members.
597  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
598  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
599    if (CAT->getSize().ugt(1))
600      return false;
601  } else if (!isa<IncompleteArrayType>(AT))
602    return false;
603
604  E = E->IgnoreParens();
605
606  // A flexible array member must be the last member in the class.
607  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
608    // FIXME: If the base type of the member expr is not FD->getParent(),
609    // this should not be treated as a flexible array member access.
610    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
611      RecordDecl::field_iterator FI(
612          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
613      return ++FI == FD->getParent()->field_end();
614    }
615  }
616
617  return false;
618}
619
620/// If Base is known to point to the start of an array, return the length of
621/// that array. Return 0 if the length cannot be determined.
622static llvm::Value *getArrayIndexingBound(
623    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
624  // For the vector indexing extension, the bound is the number of elements.
625  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
626    IndexedType = Base->getType();
627    return CGF.Builder.getInt32(VT->getNumElements());
628  }
629
630  Base = Base->IgnoreParens();
631
632  if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
633    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
634        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
635      IndexedType = CE->getSubExpr()->getType();
636      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
637      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
638        return CGF.Builder.getInt(CAT->getSize());
639      else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
640        return CGF.getVLASize(VAT).first;
641    }
642  }
643
644  return 0;
645}
646
647void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
648                                      llvm::Value *Index, QualType IndexType,
649                                      bool Accessed) {
650  assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
651
652  QualType IndexedType;
653  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
654  if (!Bound)
655    return;
656
657  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
658  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
659  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
660
661  llvm::Constant *StaticData[] = {
662    EmitCheckSourceLocation(E->getExprLoc()),
663    EmitCheckTypeDescriptor(IndexedType),
664    EmitCheckTypeDescriptor(IndexType)
665  };
666  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
667                                : Builder.CreateICmpULE(IndexVal, BoundVal);
668  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
669}
670
671
672CodeGenFunction::ComplexPairTy CodeGenFunction::
673EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
674                         bool isInc, bool isPre) {
675  ComplexPairTy InVal = EmitLoadOfComplex(LV);
676
677  llvm::Value *NextVal;
678  if (isa<llvm::IntegerType>(InVal.first->getType())) {
679    uint64_t AmountVal = isInc ? 1 : -1;
680    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
681
682    // Add the inc/dec to the real part.
683    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
684  } else {
685    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
686    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
687    if (!isInc)
688      FVal.changeSign();
689    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
690
691    // Add the inc/dec to the real part.
692    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
693  }
694
695  ComplexPairTy IncVal(NextVal, InVal.second);
696
697  // Store the updated result through the lvalue.
698  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
699
700  // If this is a postinc, return the value read from memory, otherwise use the
701  // updated value.
702  return isPre ? IncVal : InVal;
703}
704
705
706//===----------------------------------------------------------------------===//
707//                         LValue Expression Emission
708//===----------------------------------------------------------------------===//
709
710RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
711  if (Ty->isVoidType())
712    return RValue::get(0);
713
714  switch (getEvaluationKind(Ty)) {
715  case TEK_Complex: {
716    llvm::Type *EltTy =
717      ConvertType(Ty->castAs<ComplexType>()->getElementType());
718    llvm::Value *U = llvm::UndefValue::get(EltTy);
719    return RValue::getComplex(std::make_pair(U, U));
720  }
721
722  // If this is a use of an undefined aggregate type, the aggregate must have an
723  // identifiable address.  Just because the contents of the value are undefined
724  // doesn't mean that the address can't be taken and compared.
725  case TEK_Aggregate: {
726    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
727    return RValue::getAggregate(DestPtr);
728  }
729
730  case TEK_Scalar:
731    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
732  }
733  llvm_unreachable("bad evaluation kind");
734}
735
736RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
737                                              const char *Name) {
738  ErrorUnsupported(E, Name);
739  return GetUndefRValue(E->getType());
740}
741
742LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
743                                              const char *Name) {
744  ErrorUnsupported(E, Name);
745  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
746  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
747}
748
749LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
750  LValue LV;
751  if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
752    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
753  else
754    LV = EmitLValue(E);
755  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
756    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
757                  E->getType(), LV.getAlignment());
758  return LV;
759}
760
761/// EmitLValue - Emit code to compute a designator that specifies the location
762/// of the expression.
763///
764/// This can return one of two things: a simple address or a bitfield reference.
765/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
766/// an LLVM pointer type.
767///
768/// If this returns a bitfield reference, nothing about the pointee type of the
769/// LLVM value is known: For example, it may not be a pointer to an integer.
770///
771/// If this returns a normal address, and if the lvalue's C type is fixed size,
772/// this method guarantees that the returned pointer type will point to an LLVM
773/// type of the same size of the lvalue's type.  If the lvalue has a variable
774/// length type, this is not possible.
775///
776LValue CodeGenFunction::EmitLValue(const Expr *E) {
777  switch (E->getStmtClass()) {
778  default: return EmitUnsupportedLValue(E, "l-value expression");
779
780  case Expr::ObjCPropertyRefExprClass:
781    llvm_unreachable("cannot emit a property reference directly");
782
783  case Expr::ObjCSelectorExprClass:
784    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
785  case Expr::ObjCIsaExprClass:
786    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
787  case Expr::BinaryOperatorClass:
788    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
789  case Expr::CompoundAssignOperatorClass:
790    if (!E->getType()->isAnyComplexType())
791      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
792    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
793  case Expr::CallExprClass:
794  case Expr::CXXMemberCallExprClass:
795  case Expr::CXXOperatorCallExprClass:
796  case Expr::UserDefinedLiteralClass:
797    return EmitCallExprLValue(cast<CallExpr>(E));
798  case Expr::VAArgExprClass:
799    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
800  case Expr::DeclRefExprClass:
801    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
802  case Expr::ParenExprClass:
803    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
804  case Expr::GenericSelectionExprClass:
805    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
806  case Expr::PredefinedExprClass:
807    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
808  case Expr::StringLiteralClass:
809    return EmitStringLiteralLValue(cast<StringLiteral>(E));
810  case Expr::ObjCEncodeExprClass:
811    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
812  case Expr::PseudoObjectExprClass:
813    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
814  case Expr::InitListExprClass:
815    return EmitInitListLValue(cast<InitListExpr>(E));
816  case Expr::CXXTemporaryObjectExprClass:
817  case Expr::CXXConstructExprClass:
818    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
819  case Expr::CXXBindTemporaryExprClass:
820    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
821  case Expr::CXXUuidofExprClass:
822    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
823  case Expr::LambdaExprClass:
824    return EmitLambdaLValue(cast<LambdaExpr>(E));
825
826  case Expr::ExprWithCleanupsClass: {
827    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
828    enterFullExpression(cleanups);
829    RunCleanupsScope Scope(*this);
830    return EmitLValue(cleanups->getSubExpr());
831  }
832
833  case Expr::CXXScalarValueInitExprClass:
834    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
835  case Expr::CXXDefaultArgExprClass:
836    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
837  case Expr::CXXDefaultInitExprClass: {
838    CXXDefaultInitExprScope Scope(*this);
839    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
840  }
841  case Expr::CXXTypeidExprClass:
842    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
843
844  case Expr::ObjCMessageExprClass:
845    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
846  case Expr::ObjCIvarRefExprClass:
847    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
848  case Expr::StmtExprClass:
849    return EmitStmtExprLValue(cast<StmtExpr>(E));
850  case Expr::UnaryOperatorClass:
851    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
852  case Expr::ArraySubscriptExprClass:
853    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
854  case Expr::ExtVectorElementExprClass:
855    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
856  case Expr::MemberExprClass:
857    return EmitMemberExpr(cast<MemberExpr>(E));
858  case Expr::CompoundLiteralExprClass:
859    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
860  case Expr::ConditionalOperatorClass:
861    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
862  case Expr::BinaryConditionalOperatorClass:
863    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
864  case Expr::ChooseExprClass:
865    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
866  case Expr::OpaqueValueExprClass:
867    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
868  case Expr::SubstNonTypeTemplateParmExprClass:
869    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
870  case Expr::ImplicitCastExprClass:
871  case Expr::CStyleCastExprClass:
872  case Expr::CXXFunctionalCastExprClass:
873  case Expr::CXXStaticCastExprClass:
874  case Expr::CXXDynamicCastExprClass:
875  case Expr::CXXReinterpretCastExprClass:
876  case Expr::CXXConstCastExprClass:
877  case Expr::ObjCBridgedCastExprClass:
878    return EmitCastLValue(cast<CastExpr>(E));
879
880  case Expr::MaterializeTemporaryExprClass:
881    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
882  }
883}
884
885/// Given an object of the given canonical type, can we safely copy a
886/// value out of it based on its initializer?
887static bool isConstantEmittableObjectType(QualType type) {
888  assert(type.isCanonical());
889  assert(!type->isReferenceType());
890
891  // Must be const-qualified but non-volatile.
892  Qualifiers qs = type.getLocalQualifiers();
893  if (!qs.hasConst() || qs.hasVolatile()) return false;
894
895  // Otherwise, all object types satisfy this except C++ classes with
896  // mutable subobjects or non-trivial copy/destroy behavior.
897  if (const RecordType *RT = dyn_cast<RecordType>(type))
898    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
899      if (RD->hasMutableFields() || !RD->isTrivial())
900        return false;
901
902  return true;
903}
904
905/// Can we constant-emit a load of a reference to a variable of the
906/// given type?  This is different from predicates like
907/// Decl::isUsableInConstantExpressions because we do want it to apply
908/// in situations that don't necessarily satisfy the language's rules
909/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
910/// to do this with const float variables even if those variables
911/// aren't marked 'constexpr'.
912enum ConstantEmissionKind {
913  CEK_None,
914  CEK_AsReferenceOnly,
915  CEK_AsValueOrReference,
916  CEK_AsValueOnly
917};
918static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
919  type = type.getCanonicalType();
920  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
921    if (isConstantEmittableObjectType(ref->getPointeeType()))
922      return CEK_AsValueOrReference;
923    return CEK_AsReferenceOnly;
924  }
925  if (isConstantEmittableObjectType(type))
926    return CEK_AsValueOnly;
927  return CEK_None;
928}
929
930/// Try to emit a reference to the given value without producing it as
931/// an l-value.  This is actually more than an optimization: we can't
932/// produce an l-value for variables that we never actually captured
933/// in a block or lambda, which means const int variables or constexpr
934/// literals or similar.
935CodeGenFunction::ConstantEmission
936CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
937  ValueDecl *value = refExpr->getDecl();
938
939  // The value needs to be an enum constant or a constant variable.
940  ConstantEmissionKind CEK;
941  if (isa<ParmVarDecl>(value)) {
942    CEK = CEK_None;
943  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
944    CEK = checkVarTypeForConstantEmission(var->getType());
945  } else if (isa<EnumConstantDecl>(value)) {
946    CEK = CEK_AsValueOnly;
947  } else {
948    CEK = CEK_None;
949  }
950  if (CEK == CEK_None) return ConstantEmission();
951
952  Expr::EvalResult result;
953  bool resultIsReference;
954  QualType resultType;
955
956  // It's best to evaluate all the way as an r-value if that's permitted.
957  if (CEK != CEK_AsReferenceOnly &&
958      refExpr->EvaluateAsRValue(result, getContext())) {
959    resultIsReference = false;
960    resultType = refExpr->getType();
961
962  // Otherwise, try to evaluate as an l-value.
963  } else if (CEK != CEK_AsValueOnly &&
964             refExpr->EvaluateAsLValue(result, getContext())) {
965    resultIsReference = true;
966    resultType = value->getType();
967
968  // Failure.
969  } else {
970    return ConstantEmission();
971  }
972
973  // In any case, if the initializer has side-effects, abandon ship.
974  if (result.HasSideEffects)
975    return ConstantEmission();
976
977  // Emit as a constant.
978  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
979
980  // Make sure we emit a debug reference to the global variable.
981  // This should probably fire even for
982  if (isa<VarDecl>(value)) {
983    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
984      EmitDeclRefExprDbgValue(refExpr, C);
985  } else {
986    assert(isa<EnumConstantDecl>(value));
987    EmitDeclRefExprDbgValue(refExpr, C);
988  }
989
990  // If we emitted a reference constant, we need to dereference that.
991  if (resultIsReference)
992    return ConstantEmission::forReference(C);
993
994  return ConstantEmission::forValue(C);
995}
996
997llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
998  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
999                          lvalue.getAlignment().getQuantity(),
1000                          lvalue.getType(), lvalue.getTBAAInfo(),
1001                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1002}
1003
1004static bool hasBooleanRepresentation(QualType Ty) {
1005  if (Ty->isBooleanType())
1006    return true;
1007
1008  if (const EnumType *ET = Ty->getAs<EnumType>())
1009    return ET->getDecl()->getIntegerType()->isBooleanType();
1010
1011  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1012    return hasBooleanRepresentation(AT->getValueType());
1013
1014  return false;
1015}
1016
1017static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1018                            llvm::APInt &Min, llvm::APInt &End,
1019                            bool StrictEnums) {
1020  const EnumType *ET = Ty->getAs<EnumType>();
1021  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1022                                ET && !ET->getDecl()->isFixed();
1023  bool IsBool = hasBooleanRepresentation(Ty);
1024  if (!IsBool && !IsRegularCPlusPlusEnum)
1025    return false;
1026
1027  if (IsBool) {
1028    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1029    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1030  } else {
1031    const EnumDecl *ED = ET->getDecl();
1032    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1033    unsigned Bitwidth = LTy->getScalarSizeInBits();
1034    unsigned NumNegativeBits = ED->getNumNegativeBits();
1035    unsigned NumPositiveBits = ED->getNumPositiveBits();
1036
1037    if (NumNegativeBits) {
1038      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1039      assert(NumBits <= Bitwidth);
1040      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1041      Min = -End;
1042    } else {
1043      assert(NumPositiveBits <= Bitwidth);
1044      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1045      Min = llvm::APInt(Bitwidth, 0);
1046    }
1047  }
1048  return true;
1049}
1050
1051llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1052  llvm::APInt Min, End;
1053  if (!getRangeForType(*this, Ty, Min, End,
1054                       CGM.getCodeGenOpts().StrictEnums))
1055    return 0;
1056
1057  llvm::MDBuilder MDHelper(getLLVMContext());
1058  return MDHelper.createRange(Min, End);
1059}
1060
1061llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1062                                              unsigned Alignment, QualType Ty,
1063                                              llvm::MDNode *TBAAInfo,
1064                                              QualType TBAABaseType,
1065                                              uint64_t TBAAOffset) {
1066  // For better performance, handle vector loads differently.
1067  if (Ty->isVectorType()) {
1068    llvm::Value *V;
1069    const llvm::Type *EltTy =
1070    cast<llvm::PointerType>(Addr->getType())->getElementType();
1071
1072    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1073
1074    // Handle vectors of size 3, like size 4 for better performance.
1075    if (VTy->getNumElements() == 3) {
1076
1077      // Bitcast to vec4 type.
1078      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1079                                                         4);
1080      llvm::PointerType *ptVec4Ty =
1081      llvm::PointerType::get(vec4Ty,
1082                             (cast<llvm::PointerType>(
1083                                      Addr->getType()))->getAddressSpace());
1084      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1085                                                "castToVec4");
1086      // Now load value.
1087      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1088
1089      // Shuffle vector to get vec3.
1090      llvm::Constant *Mask[] = {
1091        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1092        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1093        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1094      };
1095
1096      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1097      V = Builder.CreateShuffleVector(LoadVal,
1098                                      llvm::UndefValue::get(vec4Ty),
1099                                      MaskV, "extractVec");
1100      return EmitFromMemory(V, Ty);
1101    }
1102  }
1103
1104  // Atomic operations have to be done on integral types.
1105  if (Ty->isAtomicType()) {
1106    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1107                                     CharUnits::fromQuantity(Alignment),
1108                                     getContext(), TBAAInfo);
1109    return EmitAtomicLoad(lvalue).getScalarVal();
1110  }
1111
1112  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1113  if (Volatile)
1114    Load->setVolatile(true);
1115  if (Alignment)
1116    Load->setAlignment(Alignment);
1117  if (TBAAInfo) {
1118    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1119                                                      TBAAOffset);
1120    CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1121  }
1122
1123  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1124      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1125    llvm::APInt Min, End;
1126    if (getRangeForType(*this, Ty, Min, End, true)) {
1127      --End;
1128      llvm::Value *Check;
1129      if (!Min)
1130        Check = Builder.CreateICmpULE(
1131          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1132      else {
1133        llvm::Value *Upper = Builder.CreateICmpSLE(
1134          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1135        llvm::Value *Lower = Builder.CreateICmpSGE(
1136          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1137        Check = Builder.CreateAnd(Upper, Lower);
1138      }
1139      // FIXME: Provide a SourceLocation.
1140      EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1141                EmitCheckValue(Load), CRK_Recoverable);
1142    }
1143  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1144    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1145      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1146
1147  return EmitFromMemory(Load, Ty);
1148}
1149
1150llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1151  // Bool has a different representation in memory than in registers.
1152  if (hasBooleanRepresentation(Ty)) {
1153    // This should really always be an i1, but sometimes it's already
1154    // an i8, and it's awkward to track those cases down.
1155    if (Value->getType()->isIntegerTy(1))
1156      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1157    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1158           "wrong value rep of bool");
1159  }
1160
1161  return Value;
1162}
1163
1164llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1165  // Bool has a different representation in memory than in registers.
1166  if (hasBooleanRepresentation(Ty)) {
1167    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1168           "wrong value rep of bool");
1169    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1170  }
1171
1172  return Value;
1173}
1174
1175void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1176                                        bool Volatile, unsigned Alignment,
1177                                        QualType Ty,
1178                                        llvm::MDNode *TBAAInfo,
1179                                        bool isInit, QualType TBAABaseType,
1180                                        uint64_t TBAAOffset) {
1181
1182  // Handle vectors differently to get better performance.
1183  if (Ty->isVectorType()) {
1184    llvm::Type *SrcTy = Value->getType();
1185    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1186    // Handle vec3 special.
1187    if (VecTy->getNumElements() == 3) {
1188      llvm::LLVMContext &VMContext = getLLVMContext();
1189
1190      // Our source is a vec3, do a shuffle vector to make it a vec4.
1191      SmallVector<llvm::Constant*, 4> Mask;
1192      Mask.push_back(llvm::ConstantInt::get(
1193                                            llvm::Type::getInt32Ty(VMContext),
1194                                            0));
1195      Mask.push_back(llvm::ConstantInt::get(
1196                                            llvm::Type::getInt32Ty(VMContext),
1197                                            1));
1198      Mask.push_back(llvm::ConstantInt::get(
1199                                            llvm::Type::getInt32Ty(VMContext),
1200                                            2));
1201      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1202
1203      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1204      Value = Builder.CreateShuffleVector(Value,
1205                                          llvm::UndefValue::get(VecTy),
1206                                          MaskV, "extractVec");
1207      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1208    }
1209    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1210    if (DstPtr->getElementType() != SrcTy) {
1211      llvm::Type *MemTy =
1212      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1213      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1214    }
1215  }
1216
1217  Value = EmitToMemory(Value, Ty);
1218
1219  if (Ty->isAtomicType()) {
1220    EmitAtomicStore(RValue::get(Value),
1221                    LValue::MakeAddr(Addr, Ty,
1222                                     CharUnits::fromQuantity(Alignment),
1223                                     getContext(), TBAAInfo),
1224                    isInit);
1225    return;
1226  }
1227
1228  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1229  if (Alignment)
1230    Store->setAlignment(Alignment);
1231  if (TBAAInfo) {
1232    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1233                                                      TBAAOffset);
1234    CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1235  }
1236}
1237
1238void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1239                                        bool isInit) {
1240  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1241                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1242                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1243                    lvalue.getTBAAOffset());
1244}
1245
1246/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1247/// method emits the address of the lvalue, then loads the result as an rvalue,
1248/// returning the rvalue.
1249RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1250  if (LV.isObjCWeak()) {
1251    // load of a __weak object.
1252    llvm::Value *AddrWeakObj = LV.getAddress();
1253    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1254                                                             AddrWeakObj));
1255  }
1256  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1257    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1258    Object = EmitObjCConsumeObject(LV.getType(), Object);
1259    return RValue::get(Object);
1260  }
1261
1262  if (LV.isSimple()) {
1263    assert(!LV.getType()->isFunctionType());
1264
1265    // Everything needs a load.
1266    return RValue::get(EmitLoadOfScalar(LV));
1267  }
1268
1269  if (LV.isVectorElt()) {
1270    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1271                                              LV.isVolatileQualified());
1272    Load->setAlignment(LV.getAlignment().getQuantity());
1273    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1274                                                    "vecext"));
1275  }
1276
1277  // If this is a reference to a subset of the elements of a vector, either
1278  // shuffle the input or extract/insert them as appropriate.
1279  if (LV.isExtVectorElt())
1280    return EmitLoadOfExtVectorElementLValue(LV);
1281
1282  assert(LV.isBitField() && "Unknown LValue type!");
1283  return EmitLoadOfBitfieldLValue(LV);
1284}
1285
1286RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1287  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1288
1289  // Get the output type.
1290  llvm::Type *ResLTy = ConvertType(LV.getType());
1291
1292  llvm::Value *Ptr = LV.getBitFieldAddr();
1293  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1294                                        "bf.load");
1295  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1296
1297  if (Info.IsSigned) {
1298    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1299    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1300    if (HighBits)
1301      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1302    if (Info.Offset + HighBits)
1303      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1304  } else {
1305    if (Info.Offset)
1306      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1307    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1308      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1309                                                              Info.Size),
1310                              "bf.clear");
1311  }
1312  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1313
1314  return RValue::get(Val);
1315}
1316
1317// If this is a reference to a subset of the elements of a vector, create an
1318// appropriate shufflevector.
1319RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1320  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1321                                            LV.isVolatileQualified());
1322  Load->setAlignment(LV.getAlignment().getQuantity());
1323  llvm::Value *Vec = Load;
1324
1325  const llvm::Constant *Elts = LV.getExtVectorElts();
1326
1327  // If the result of the expression is a non-vector type, we must be extracting
1328  // a single element.  Just codegen as an extractelement.
1329  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1330  if (!ExprVT) {
1331    unsigned InIdx = getAccessedFieldNo(0, Elts);
1332    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1333    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1334  }
1335
1336  // Always use shuffle vector to try to retain the original program structure
1337  unsigned NumResultElts = ExprVT->getNumElements();
1338
1339  SmallVector<llvm::Constant*, 4> Mask;
1340  for (unsigned i = 0; i != NumResultElts; ++i)
1341    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1342
1343  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1344  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1345                                    MaskV);
1346  return RValue::get(Vec);
1347}
1348
1349
1350
1351/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1352/// lvalue, where both are guaranteed to the have the same type, and that type
1353/// is 'Ty'.
1354void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1355  if (!Dst.isSimple()) {
1356    if (Dst.isVectorElt()) {
1357      // Read/modify/write the vector, inserting the new element.
1358      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1359                                                Dst.isVolatileQualified());
1360      Load->setAlignment(Dst.getAlignment().getQuantity());
1361      llvm::Value *Vec = Load;
1362      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1363                                        Dst.getVectorIdx(), "vecins");
1364      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1365                                                   Dst.isVolatileQualified());
1366      Store->setAlignment(Dst.getAlignment().getQuantity());
1367      return;
1368    }
1369
1370    // If this is an update of extended vector elements, insert them as
1371    // appropriate.
1372    if (Dst.isExtVectorElt())
1373      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1374
1375    assert(Dst.isBitField() && "Unknown LValue type");
1376    return EmitStoreThroughBitfieldLValue(Src, Dst);
1377  }
1378
1379  // There's special magic for assigning into an ARC-qualified l-value.
1380  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1381    switch (Lifetime) {
1382    case Qualifiers::OCL_None:
1383      llvm_unreachable("present but none");
1384
1385    case Qualifiers::OCL_ExplicitNone:
1386      // nothing special
1387      break;
1388
1389    case Qualifiers::OCL_Strong:
1390      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1391      return;
1392
1393    case Qualifiers::OCL_Weak:
1394      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1395      return;
1396
1397    case Qualifiers::OCL_Autoreleasing:
1398      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1399                                                     Src.getScalarVal()));
1400      // fall into the normal path
1401      break;
1402    }
1403  }
1404
1405  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1406    // load of a __weak object.
1407    llvm::Value *LvalueDst = Dst.getAddress();
1408    llvm::Value *src = Src.getScalarVal();
1409     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1410    return;
1411  }
1412
1413  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1414    // load of a __strong object.
1415    llvm::Value *LvalueDst = Dst.getAddress();
1416    llvm::Value *src = Src.getScalarVal();
1417    if (Dst.isObjCIvar()) {
1418      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1419      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1420      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1421      llvm::Value *dst = RHS;
1422      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1423      llvm::Value *LHS =
1424        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1425      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1426      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1427                                              BytesBetween);
1428    } else if (Dst.isGlobalObjCRef()) {
1429      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1430                                                Dst.isThreadLocalRef());
1431    }
1432    else
1433      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1434    return;
1435  }
1436
1437  assert(Src.isScalar() && "Can't emit an agg store with this method");
1438  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1439}
1440
1441void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1442                                                     llvm::Value **Result) {
1443  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1444  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1445  llvm::Value *Ptr = Dst.getBitFieldAddr();
1446
1447  // Get the source value, truncated to the width of the bit-field.
1448  llvm::Value *SrcVal = Src.getScalarVal();
1449
1450  // Cast the source to the storage type and shift it into place.
1451  SrcVal = Builder.CreateIntCast(SrcVal,
1452                                 Ptr->getType()->getPointerElementType(),
1453                                 /*IsSigned=*/false);
1454  llvm::Value *MaskedVal = SrcVal;
1455
1456  // See if there are other bits in the bitfield's storage we'll need to load
1457  // and mask together with source before storing.
1458  if (Info.StorageSize != Info.Size) {
1459    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1460    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1461                                          "bf.load");
1462    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1463
1464    // Mask the source value as needed.
1465    if (!hasBooleanRepresentation(Dst.getType()))
1466      SrcVal = Builder.CreateAnd(SrcVal,
1467                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1468                                                            Info.Size),
1469                                 "bf.value");
1470    MaskedVal = SrcVal;
1471    if (Info.Offset)
1472      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1473
1474    // Mask out the original value.
1475    Val = Builder.CreateAnd(Val,
1476                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1477                                                     Info.Offset,
1478                                                     Info.Offset + Info.Size),
1479                            "bf.clear");
1480
1481    // Or together the unchanged values and the source value.
1482    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1483  } else {
1484    assert(Info.Offset == 0);
1485  }
1486
1487  // Write the new value back out.
1488  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1489                                               Dst.isVolatileQualified());
1490  Store->setAlignment(Info.StorageAlignment);
1491
1492  // Return the new value of the bit-field, if requested.
1493  if (Result) {
1494    llvm::Value *ResultVal = MaskedVal;
1495
1496    // Sign extend the value if needed.
1497    if (Info.IsSigned) {
1498      assert(Info.Size <= Info.StorageSize);
1499      unsigned HighBits = Info.StorageSize - Info.Size;
1500      if (HighBits) {
1501        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1502        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1503      }
1504    }
1505
1506    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1507                                      "bf.result.cast");
1508    *Result = EmitFromMemory(ResultVal, Dst.getType());
1509  }
1510}
1511
1512void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1513                                                               LValue Dst) {
1514  // This access turns into a read/modify/write of the vector.  Load the input
1515  // value now.
1516  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1517                                            Dst.isVolatileQualified());
1518  Load->setAlignment(Dst.getAlignment().getQuantity());
1519  llvm::Value *Vec = Load;
1520  const llvm::Constant *Elts = Dst.getExtVectorElts();
1521
1522  llvm::Value *SrcVal = Src.getScalarVal();
1523
1524  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1525    unsigned NumSrcElts = VTy->getNumElements();
1526    unsigned NumDstElts =
1527       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1528    if (NumDstElts == NumSrcElts) {
1529      // Use shuffle vector is the src and destination are the same number of
1530      // elements and restore the vector mask since it is on the side it will be
1531      // stored.
1532      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1533      for (unsigned i = 0; i != NumSrcElts; ++i)
1534        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1535
1536      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1537      Vec = Builder.CreateShuffleVector(SrcVal,
1538                                        llvm::UndefValue::get(Vec->getType()),
1539                                        MaskV);
1540    } else if (NumDstElts > NumSrcElts) {
1541      // Extended the source vector to the same length and then shuffle it
1542      // into the destination.
1543      // FIXME: since we're shuffling with undef, can we just use the indices
1544      //        into that?  This could be simpler.
1545      SmallVector<llvm::Constant*, 4> ExtMask;
1546      for (unsigned i = 0; i != NumSrcElts; ++i)
1547        ExtMask.push_back(Builder.getInt32(i));
1548      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1549      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1550      llvm::Value *ExtSrcVal =
1551        Builder.CreateShuffleVector(SrcVal,
1552                                    llvm::UndefValue::get(SrcVal->getType()),
1553                                    ExtMaskV);
1554      // build identity
1555      SmallVector<llvm::Constant*, 4> Mask;
1556      for (unsigned i = 0; i != NumDstElts; ++i)
1557        Mask.push_back(Builder.getInt32(i));
1558
1559      // modify when what gets shuffled in
1560      for (unsigned i = 0; i != NumSrcElts; ++i)
1561        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1562      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1563      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1564    } else {
1565      // We should never shorten the vector
1566      llvm_unreachable("unexpected shorten vector length");
1567    }
1568  } else {
1569    // If the Src is a scalar (not a vector) it must be updating one element.
1570    unsigned InIdx = getAccessedFieldNo(0, Elts);
1571    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1572    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1573  }
1574
1575  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1576                                               Dst.isVolatileQualified());
1577  Store->setAlignment(Dst.getAlignment().getQuantity());
1578}
1579
1580// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1581// generating write-barries API. It is currently a global, ivar,
1582// or neither.
1583static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1584                                 LValue &LV,
1585                                 bool IsMemberAccess=false) {
1586  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1587    return;
1588
1589  if (isa<ObjCIvarRefExpr>(E)) {
1590    QualType ExpTy = E->getType();
1591    if (IsMemberAccess && ExpTy->isPointerType()) {
1592      // If ivar is a structure pointer, assigning to field of
1593      // this struct follows gcc's behavior and makes it a non-ivar
1594      // writer-barrier conservatively.
1595      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1596      if (ExpTy->isRecordType()) {
1597        LV.setObjCIvar(false);
1598        return;
1599      }
1600    }
1601    LV.setObjCIvar(true);
1602    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1603    LV.setBaseIvarExp(Exp->getBase());
1604    LV.setObjCArray(E->getType()->isArrayType());
1605    return;
1606  }
1607
1608  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1609    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1610      if (VD->hasGlobalStorage()) {
1611        LV.setGlobalObjCRef(true);
1612        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1613      }
1614    }
1615    LV.setObjCArray(E->getType()->isArrayType());
1616    return;
1617  }
1618
1619  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1620    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1621    return;
1622  }
1623
1624  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1625    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1626    if (LV.isObjCIvar()) {
1627      // If cast is to a structure pointer, follow gcc's behavior and make it
1628      // a non-ivar write-barrier.
1629      QualType ExpTy = E->getType();
1630      if (ExpTy->isPointerType())
1631        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1632      if (ExpTy->isRecordType())
1633        LV.setObjCIvar(false);
1634    }
1635    return;
1636  }
1637
1638  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1639    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1640    return;
1641  }
1642
1643  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1644    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1645    return;
1646  }
1647
1648  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1649    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1650    return;
1651  }
1652
1653  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1654    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1655    return;
1656  }
1657
1658  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1659    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1660    if (LV.isObjCIvar() && !LV.isObjCArray())
1661      // Using array syntax to assigning to what an ivar points to is not
1662      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1663      LV.setObjCIvar(false);
1664    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1665      // Using array syntax to assigning to what global points to is not
1666      // same as assigning to the global itself. {id *G;} G[i] = 0;
1667      LV.setGlobalObjCRef(false);
1668    return;
1669  }
1670
1671  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1672    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1673    // We don't know if member is an 'ivar', but this flag is looked at
1674    // only in the context of LV.isObjCIvar().
1675    LV.setObjCArray(E->getType()->isArrayType());
1676    return;
1677  }
1678}
1679
1680static llvm::Value *
1681EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1682                                llvm::Value *V, llvm::Type *IRType,
1683                                StringRef Name = StringRef()) {
1684  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1685  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1686}
1687
1688static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1689                                      const Expr *E, const VarDecl *VD) {
1690  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1691  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1692  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1693  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1694  QualType T = E->getType();
1695  LValue LV;
1696  if (VD->getType()->isReferenceType()) {
1697    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1698    LI->setAlignment(Alignment.getQuantity());
1699    V = LI;
1700    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1701  } else {
1702    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1703  }
1704  setObjCGCLValueClass(CGF.getContext(), E, LV);
1705  return LV;
1706}
1707
1708static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1709                                     const Expr *E, const FunctionDecl *FD) {
1710  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1711  if (!FD->hasPrototype()) {
1712    if (const FunctionProtoType *Proto =
1713            FD->getType()->getAs<FunctionProtoType>()) {
1714      // Ugly case: for a K&R-style definition, the type of the definition
1715      // isn't the same as the type of a use.  Correct for this with a
1716      // bitcast.
1717      QualType NoProtoType =
1718          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1719      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1720      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1721    }
1722  }
1723  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1724  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1725}
1726
1727static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1728                                      llvm::Value *ThisValue) {
1729  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1730  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1731  return CGF.EmitLValueForField(LV, FD);
1732}
1733
1734LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1735  const NamedDecl *ND = E->getDecl();
1736  CharUnits Alignment = getContext().getDeclAlign(ND);
1737  QualType T = E->getType();
1738
1739  // A DeclRefExpr for a reference initialized by a constant expression can
1740  // appear without being odr-used. Directly emit the constant initializer.
1741  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1742    const Expr *Init = VD->getAnyInitializer(VD);
1743    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1744        VD->isUsableInConstantExpressions(getContext()) &&
1745        VD->checkInitIsICE()) {
1746      llvm::Constant *Val =
1747        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1748      assert(Val && "failed to emit reference constant expression");
1749      // FIXME: Eventually we will want to emit vector element references.
1750      return MakeAddrLValue(Val, T, Alignment);
1751    }
1752  }
1753
1754  // FIXME: We should be able to assert this for FunctionDecls as well!
1755  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1756  // those with a valid source location.
1757  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1758          !E->getLocation().isValid()) &&
1759         "Should not use decl without marking it used!");
1760
1761  if (ND->hasAttr<WeakRefAttr>()) {
1762    const ValueDecl *VD = cast<ValueDecl>(ND);
1763    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1764    return MakeAddrLValue(Aliasee, T, Alignment);
1765  }
1766
1767  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1768    // Check if this is a global variable.
1769    if (VD->hasLinkage() || VD->isStaticDataMember()) {
1770      // If it's thread_local, emit a call to its wrapper function instead.
1771      if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1772        return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1773      return EmitGlobalVarDeclLValue(*this, E, VD);
1774    }
1775
1776    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1777
1778    llvm::Value *V = LocalDeclMap.lookup(VD);
1779    if (!V && VD->isStaticLocal())
1780      V = CGM.getStaticLocalDeclAddress(VD);
1781
1782    // Use special handling for lambdas.
1783    if (!V) {
1784      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1785        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1786      } else if (CapturedStmtInfo) {
1787        if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1788          return EmitCapturedFieldLValue(*this, FD,
1789                                         CapturedStmtInfo->getContextValue());
1790      }
1791
1792      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1793      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1794                            T, Alignment);
1795    }
1796
1797    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1798
1799    if (isBlockVariable)
1800      V = BuildBlockByrefAddress(V, VD);
1801
1802    LValue LV;
1803    if (VD->getType()->isReferenceType()) {
1804      llvm::LoadInst *LI = Builder.CreateLoad(V);
1805      LI->setAlignment(Alignment.getQuantity());
1806      V = LI;
1807      LV = MakeNaturalAlignAddrLValue(V, T);
1808    } else {
1809      LV = MakeAddrLValue(V, T, Alignment);
1810    }
1811
1812    bool isLocalStorage = VD->hasLocalStorage();
1813
1814    bool NonGCable = isLocalStorage &&
1815                     !VD->getType()->isReferenceType() &&
1816                     !isBlockVariable;
1817    if (NonGCable) {
1818      LV.getQuals().removeObjCGCAttr();
1819      LV.setNonGC(true);
1820    }
1821
1822    bool isImpreciseLifetime =
1823      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1824    if (isImpreciseLifetime)
1825      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1826    setObjCGCLValueClass(getContext(), E, LV);
1827    return LV;
1828  }
1829
1830  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1831    return EmitFunctionDeclLValue(*this, E, fn);
1832
1833  llvm_unreachable("Unhandled DeclRefExpr");
1834}
1835
1836LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1837  // __extension__ doesn't affect lvalue-ness.
1838  if (E->getOpcode() == UO_Extension)
1839    return EmitLValue(E->getSubExpr());
1840
1841  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1842  switch (E->getOpcode()) {
1843  default: llvm_unreachable("Unknown unary operator lvalue!");
1844  case UO_Deref: {
1845    QualType T = E->getSubExpr()->getType()->getPointeeType();
1846    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1847
1848    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1849    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1850
1851    // We should not generate __weak write barrier on indirect reference
1852    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1853    // But, we continue to generate __strong write barrier on indirect write
1854    // into a pointer to object.
1855    if (getLangOpts().ObjC1 &&
1856        getLangOpts().getGC() != LangOptions::NonGC &&
1857        LV.isObjCWeak())
1858      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1859    return LV;
1860  }
1861  case UO_Real:
1862  case UO_Imag: {
1863    LValue LV = EmitLValue(E->getSubExpr());
1864    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1865    llvm::Value *Addr = LV.getAddress();
1866
1867    // __real is valid on scalars.  This is a faster way of testing that.
1868    // __imag can only produce an rvalue on scalars.
1869    if (E->getOpcode() == UO_Real &&
1870        !cast<llvm::PointerType>(Addr->getType())
1871           ->getElementType()->isStructTy()) {
1872      assert(E->getSubExpr()->getType()->isArithmeticType());
1873      return LV;
1874    }
1875
1876    assert(E->getSubExpr()->getType()->isAnyComplexType());
1877
1878    unsigned Idx = E->getOpcode() == UO_Imag;
1879    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1880                                                  Idx, "idx"),
1881                          ExprTy);
1882  }
1883  case UO_PreInc:
1884  case UO_PreDec: {
1885    LValue LV = EmitLValue(E->getSubExpr());
1886    bool isInc = E->getOpcode() == UO_PreInc;
1887
1888    if (E->getType()->isAnyComplexType())
1889      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1890    else
1891      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1892    return LV;
1893  }
1894  }
1895}
1896
1897LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1898  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1899                        E->getType());
1900}
1901
1902LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1903  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1904                        E->getType());
1905}
1906
1907static llvm::Constant*
1908GetAddrOfConstantWideString(StringRef Str,
1909                            const char *GlobalName,
1910                            ASTContext &Context,
1911                            QualType Ty, SourceLocation Loc,
1912                            CodeGenModule &CGM) {
1913
1914  StringLiteral *SL = StringLiteral::Create(Context,
1915                                            Str,
1916                                            StringLiteral::Wide,
1917                                            /*Pascal = */false,
1918                                            Ty, Loc);
1919  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1920  llvm::GlobalVariable *GV =
1921    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1922                             !CGM.getLangOpts().WritableStrings,
1923                             llvm::GlobalValue::PrivateLinkage,
1924                             C, GlobalName);
1925  const unsigned WideAlignment =
1926    Context.getTypeAlignInChars(Ty).getQuantity();
1927  GV->setAlignment(WideAlignment);
1928  return GV;
1929}
1930
1931static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1932                                    SmallString<32>& Target) {
1933  Target.resize(CharByteWidth * (Source.size() + 1));
1934  char *ResultPtr = &Target[0];
1935  const UTF8 *ErrorPtr;
1936  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1937  (void)success;
1938  assert(success);
1939  Target.resize(ResultPtr - &Target[0]);
1940}
1941
1942LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1943  switch (E->getIdentType()) {
1944  default:
1945    return EmitUnsupportedLValue(E, "predefined expression");
1946
1947  case PredefinedExpr::Func:
1948  case PredefinedExpr::Function:
1949  case PredefinedExpr::LFunction:
1950  case PredefinedExpr::PrettyFunction: {
1951    unsigned IdentType = E->getIdentType();
1952    std::string GlobalVarName;
1953
1954    switch (IdentType) {
1955    default: llvm_unreachable("Invalid type");
1956    case PredefinedExpr::Func:
1957      GlobalVarName = "__func__.";
1958      break;
1959    case PredefinedExpr::Function:
1960      GlobalVarName = "__FUNCTION__.";
1961      break;
1962    case PredefinedExpr::LFunction:
1963      GlobalVarName = "L__FUNCTION__.";
1964      break;
1965    case PredefinedExpr::PrettyFunction:
1966      GlobalVarName = "__PRETTY_FUNCTION__.";
1967      break;
1968    }
1969
1970    StringRef FnName = CurFn->getName();
1971    if (FnName.startswith("\01"))
1972      FnName = FnName.substr(1);
1973    GlobalVarName += FnName;
1974
1975    const Decl *CurDecl = CurCodeDecl;
1976    if (CurDecl == 0)
1977      CurDecl = getContext().getTranslationUnitDecl();
1978
1979    std::string FunctionName =
1980        (isa<BlockDecl>(CurDecl)
1981         ? FnName.str()
1982         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1983                                       CurDecl));
1984
1985    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1986    llvm::Constant *C;
1987    if (ElemType->isWideCharType()) {
1988      SmallString<32> RawChars;
1989      ConvertUTF8ToWideString(
1990          getContext().getTypeSizeInChars(ElemType).getQuantity(),
1991          FunctionName, RawChars);
1992      C = GetAddrOfConstantWideString(RawChars,
1993                                      GlobalVarName.c_str(),
1994                                      getContext(),
1995                                      E->getType(),
1996                                      E->getLocation(),
1997                                      CGM);
1998    } else {
1999      C = CGM.GetAddrOfConstantCString(FunctionName,
2000                                       GlobalVarName.c_str(),
2001                                       1);
2002    }
2003    return MakeAddrLValue(C, E->getType());
2004  }
2005  }
2006}
2007
2008/// Emit a type description suitable for use by a runtime sanitizer library. The
2009/// format of a type descriptor is
2010///
2011/// \code
2012///   { i16 TypeKind, i16 TypeInfo }
2013/// \endcode
2014///
2015/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2016/// integer, 1 for a floating point value, and -1 for anything else.
2017llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2018  // FIXME: Only emit each type's descriptor once.
2019  uint16_t TypeKind = -1;
2020  uint16_t TypeInfo = 0;
2021
2022  if (T->isIntegerType()) {
2023    TypeKind = 0;
2024    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2025               (T->isSignedIntegerType() ? 1 : 0);
2026  } else if (T->isFloatingType()) {
2027    TypeKind = 1;
2028    TypeInfo = getContext().getTypeSize(T);
2029  }
2030
2031  // Format the type name as if for a diagnostic, including quotes and
2032  // optionally an 'aka'.
2033  SmallString<32> Buffer;
2034  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2035                                    (intptr_t)T.getAsOpaquePtr(),
2036                                    0, 0, 0, 0, 0, 0, Buffer,
2037                                    ArrayRef<intptr_t>());
2038
2039  llvm::Constant *Components[] = {
2040    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2041    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2042  };
2043  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2044
2045  llvm::GlobalVariable *GV =
2046    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2047                             /*isConstant=*/true,
2048                             llvm::GlobalVariable::PrivateLinkage,
2049                             Descriptor);
2050  GV->setUnnamedAddr(true);
2051  return GV;
2052}
2053
2054llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2055  llvm::Type *TargetTy = IntPtrTy;
2056
2057  // Floating-point types which fit into intptr_t are bitcast to integers
2058  // and then passed directly (after zero-extension, if necessary).
2059  if (V->getType()->isFloatingPointTy()) {
2060    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2061    if (Bits <= TargetTy->getIntegerBitWidth())
2062      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2063                                                         Bits));
2064  }
2065
2066  // Integers which fit in intptr_t are zero-extended and passed directly.
2067  if (V->getType()->isIntegerTy() &&
2068      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2069    return Builder.CreateZExt(V, TargetTy);
2070
2071  // Pointers are passed directly, everything else is passed by address.
2072  if (!V->getType()->isPointerTy()) {
2073    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2074    Builder.CreateStore(V, Ptr);
2075    V = Ptr;
2076  }
2077  return Builder.CreatePtrToInt(V, TargetTy);
2078}
2079
2080/// \brief Emit a representation of a SourceLocation for passing to a handler
2081/// in a sanitizer runtime library. The format for this data is:
2082/// \code
2083///   struct SourceLocation {
2084///     const char *Filename;
2085///     int32_t Line, Column;
2086///   };
2087/// \endcode
2088/// For an invalid SourceLocation, the Filename pointer is null.
2089llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2090  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2091
2092  llvm::Constant *Data[] = {
2093    // FIXME: Only emit each file name once.
2094    PLoc.isValid() ? cast<llvm::Constant>(
2095                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2096                   : llvm::Constant::getNullValue(Int8PtrTy),
2097    Builder.getInt32(PLoc.getLine()),
2098    Builder.getInt32(PLoc.getColumn())
2099  };
2100
2101  return llvm::ConstantStruct::getAnon(Data);
2102}
2103
2104void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2105                                ArrayRef<llvm::Constant *> StaticArgs,
2106                                ArrayRef<llvm::Value *> DynamicArgs,
2107                                CheckRecoverableKind RecoverKind) {
2108  assert(SanOpts != &SanitizerOptions::Disabled);
2109
2110  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2111    assert (RecoverKind != CRK_AlwaysRecoverable &&
2112            "Runtime call required for AlwaysRecoverable kind!");
2113    return EmitTrapCheck(Checked);
2114  }
2115
2116  llvm::BasicBlock *Cont = createBasicBlock("cont");
2117
2118  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2119
2120  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2121
2122  // Give hint that we very much don't expect to execute the handler
2123  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2124  llvm::MDBuilder MDHelper(getLLVMContext());
2125  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2126  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2127
2128  EmitBlock(Handler);
2129
2130  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2131  llvm::GlobalValue *InfoPtr =
2132      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2133                               llvm::GlobalVariable::PrivateLinkage, Info);
2134  InfoPtr->setUnnamedAddr(true);
2135
2136  SmallVector<llvm::Value *, 4> Args;
2137  SmallVector<llvm::Type *, 4> ArgTypes;
2138  Args.reserve(DynamicArgs.size() + 1);
2139  ArgTypes.reserve(DynamicArgs.size() + 1);
2140
2141  // Handler functions take an i8* pointing to the (handler-specific) static
2142  // information block, followed by a sequence of intptr_t arguments
2143  // representing operand values.
2144  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2145  ArgTypes.push_back(Int8PtrTy);
2146  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2147    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2148    ArgTypes.push_back(IntPtrTy);
2149  }
2150
2151  bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2152                 ((RecoverKind == CRK_Recoverable) &&
2153                   CGM.getCodeGenOpts().SanitizeRecover);
2154
2155  llvm::FunctionType *FnType =
2156    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2157  llvm::AttrBuilder B;
2158  if (!Recover) {
2159    B.addAttribute(llvm::Attribute::NoReturn)
2160     .addAttribute(llvm::Attribute::NoUnwind);
2161  }
2162  B.addAttribute(llvm::Attribute::UWTable);
2163
2164  // Checks that have two variants use a suffix to differentiate them
2165  bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2166                           !CGM.getCodeGenOpts().SanitizeRecover;
2167  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2168                              (NeedsAbortSuffix? "_abort" : "")).str();
2169  llvm::Value *Fn =
2170    CGM.CreateRuntimeFunction(FnType, FunctionName,
2171                              llvm::AttributeSet::get(getLLVMContext(),
2172                                              llvm::AttributeSet::FunctionIndex,
2173                                                      B));
2174  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2175  if (Recover) {
2176    Builder.CreateBr(Cont);
2177  } else {
2178    HandlerCall->setDoesNotReturn();
2179    Builder.CreateUnreachable();
2180  }
2181
2182  EmitBlock(Cont);
2183}
2184
2185void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2186  llvm::BasicBlock *Cont = createBasicBlock("cont");
2187
2188  // If we're optimizing, collapse all calls to trap down to just one per
2189  // function to save on code size.
2190  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2191    TrapBB = createBasicBlock("trap");
2192    Builder.CreateCondBr(Checked, Cont, TrapBB);
2193    EmitBlock(TrapBB);
2194    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2195    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2196    TrapCall->setDoesNotReturn();
2197    TrapCall->setDoesNotThrow();
2198    Builder.CreateUnreachable();
2199  } else {
2200    Builder.CreateCondBr(Checked, Cont, TrapBB);
2201  }
2202
2203  EmitBlock(Cont);
2204}
2205
2206/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2207/// array to pointer, return the array subexpression.
2208static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2209  // If this isn't just an array->pointer decay, bail out.
2210  const CastExpr *CE = dyn_cast<CastExpr>(E);
2211  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2212    return 0;
2213
2214  // If this is a decay from variable width array, bail out.
2215  const Expr *SubExpr = CE->getSubExpr();
2216  if (SubExpr->getType()->isVariableArrayType())
2217    return 0;
2218
2219  return SubExpr;
2220}
2221
2222LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2223                                               bool Accessed) {
2224  // The index must always be an integer, which is not an aggregate.  Emit it.
2225  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2226  QualType IdxTy  = E->getIdx()->getType();
2227  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2228
2229  if (SanOpts->Bounds)
2230    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2231
2232  // If the base is a vector type, then we are forming a vector element lvalue
2233  // with this subscript.
2234  if (E->getBase()->getType()->isVectorType()) {
2235    // Emit the vector as an lvalue to get its address.
2236    LValue LHS = EmitLValue(E->getBase());
2237    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2238    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2239    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2240                                 E->getBase()->getType(), LHS.getAlignment());
2241  }
2242
2243  // Extend or truncate the index type to 32 or 64-bits.
2244  if (Idx->getType() != IntPtrTy)
2245    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2246
2247  // We know that the pointer points to a type of the correct size, unless the
2248  // size is a VLA or Objective-C interface.
2249  llvm::Value *Address = 0;
2250  CharUnits ArrayAlignment;
2251  if (const VariableArrayType *vla =
2252        getContext().getAsVariableArrayType(E->getType())) {
2253    // The base must be a pointer, which is not an aggregate.  Emit
2254    // it.  It needs to be emitted first in case it's what captures
2255    // the VLA bounds.
2256    Address = EmitScalarExpr(E->getBase());
2257
2258    // The element count here is the total number of non-VLA elements.
2259    llvm::Value *numElements = getVLASize(vla).first;
2260
2261    // Effectively, the multiply by the VLA size is part of the GEP.
2262    // GEP indexes are signed, and scaling an index isn't permitted to
2263    // signed-overflow, so we use the same semantics for our explicit
2264    // multiply.  We suppress this if overflow is not undefined behavior.
2265    if (getLangOpts().isSignedOverflowDefined()) {
2266      Idx = Builder.CreateMul(Idx, numElements);
2267      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2268    } else {
2269      Idx = Builder.CreateNSWMul(Idx, numElements);
2270      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2271    }
2272  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2273    // Indexing over an interface, as in "NSString *P; P[4];"
2274    llvm::Value *InterfaceSize =
2275      llvm::ConstantInt::get(Idx->getType(),
2276          getContext().getTypeSizeInChars(OIT).getQuantity());
2277
2278    Idx = Builder.CreateMul(Idx, InterfaceSize);
2279
2280    // The base must be a pointer, which is not an aggregate.  Emit it.
2281    llvm::Value *Base = EmitScalarExpr(E->getBase());
2282    Address = EmitCastToVoidPtr(Base);
2283    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2284    Address = Builder.CreateBitCast(Address, Base->getType());
2285  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2286    // If this is A[i] where A is an array, the frontend will have decayed the
2287    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2288    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2289    // "gep x, i" here.  Emit one "gep A, 0, i".
2290    assert(Array->getType()->isArrayType() &&
2291           "Array to pointer decay must have array source type!");
2292    LValue ArrayLV;
2293    // For simple multidimensional array indexing, set the 'accessed' flag for
2294    // better bounds-checking of the base expression.
2295    if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2296      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2297    else
2298      ArrayLV = EmitLValue(Array);
2299    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2300    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2301    llvm::Value *Args[] = { Zero, Idx };
2302
2303    // Propagate the alignment from the array itself to the result.
2304    ArrayAlignment = ArrayLV.getAlignment();
2305
2306    if (getLangOpts().isSignedOverflowDefined())
2307      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2308    else
2309      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2310  } else {
2311    // The base must be a pointer, which is not an aggregate.  Emit it.
2312    llvm::Value *Base = EmitScalarExpr(E->getBase());
2313    if (getLangOpts().isSignedOverflowDefined())
2314      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2315    else
2316      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2317  }
2318
2319  QualType T = E->getBase()->getType()->getPointeeType();
2320  assert(!T.isNull() &&
2321         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2322
2323
2324  // Limit the alignment to that of the result type.
2325  LValue LV;
2326  if (!ArrayAlignment.isZero()) {
2327    CharUnits Align = getContext().getTypeAlignInChars(T);
2328    ArrayAlignment = std::min(Align, ArrayAlignment);
2329    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2330  } else {
2331    LV = MakeNaturalAlignAddrLValue(Address, T);
2332  }
2333
2334  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2335
2336  if (getLangOpts().ObjC1 &&
2337      getLangOpts().getGC() != LangOptions::NonGC) {
2338    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2339    setObjCGCLValueClass(getContext(), E, LV);
2340  }
2341  return LV;
2342}
2343
2344static
2345llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2346                                       SmallVector<unsigned, 4> &Elts) {
2347  SmallVector<llvm::Constant*, 4> CElts;
2348  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2349    CElts.push_back(Builder.getInt32(Elts[i]));
2350
2351  return llvm::ConstantVector::get(CElts);
2352}
2353
2354LValue CodeGenFunction::
2355EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2356  // Emit the base vector as an l-value.
2357  LValue Base;
2358
2359  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2360  if (E->isArrow()) {
2361    // If it is a pointer to a vector, emit the address and form an lvalue with
2362    // it.
2363    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2364    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2365    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2366    Base.getQuals().removeObjCGCAttr();
2367  } else if (E->getBase()->isGLValue()) {
2368    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2369    // emit the base as an lvalue.
2370    assert(E->getBase()->getType()->isVectorType());
2371    Base = EmitLValue(E->getBase());
2372  } else {
2373    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2374    assert(E->getBase()->getType()->isVectorType() &&
2375           "Result must be a vector");
2376    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2377
2378    // Store the vector to memory (because LValue wants an address).
2379    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2380    Builder.CreateStore(Vec, VecMem);
2381    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2382  }
2383
2384  QualType type =
2385    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2386
2387  // Encode the element access list into a vector of unsigned indices.
2388  SmallVector<unsigned, 4> Indices;
2389  E->getEncodedElementAccess(Indices);
2390
2391  if (Base.isSimple()) {
2392    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2393    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2394                                    Base.getAlignment());
2395  }
2396  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2397
2398  llvm::Constant *BaseElts = Base.getExtVectorElts();
2399  SmallVector<llvm::Constant *, 4> CElts;
2400
2401  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2402    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2403  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2404  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2405                                  Base.getAlignment());
2406}
2407
2408LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2409  Expr *BaseExpr = E->getBase();
2410
2411  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2412  LValue BaseLV;
2413  if (E->isArrow()) {
2414    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2415    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2416    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2417    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2418  } else
2419    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2420
2421  NamedDecl *ND = E->getMemberDecl();
2422  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2423    LValue LV = EmitLValueForField(BaseLV, Field);
2424    setObjCGCLValueClass(getContext(), E, LV);
2425    return LV;
2426  }
2427
2428  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2429    return EmitGlobalVarDeclLValue(*this, E, VD);
2430
2431  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2432    return EmitFunctionDeclLValue(*this, E, FD);
2433
2434  llvm_unreachable("Unhandled member declaration!");
2435}
2436
2437/// Given that we are currently emitting a lambda, emit an l-value for
2438/// one of its members.
2439LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2440  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2441  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2442  QualType LambdaTagType =
2443    getContext().getTagDeclType(Field->getParent());
2444  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2445  return EmitLValueForField(LambdaLV, Field);
2446}
2447
2448LValue CodeGenFunction::EmitLValueForField(LValue base,
2449                                           const FieldDecl *field) {
2450  if (field->isBitField()) {
2451    const CGRecordLayout &RL =
2452      CGM.getTypes().getCGRecordLayout(field->getParent());
2453    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2454    llvm::Value *Addr = base.getAddress();
2455    unsigned Idx = RL.getLLVMFieldNo(field);
2456    if (Idx != 0)
2457      // For structs, we GEP to the field that the record layout suggests.
2458      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2459    // Get the access type.
2460    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2461      getLLVMContext(), Info.StorageSize,
2462      CGM.getContext().getTargetAddressSpace(base.getType()));
2463    if (Addr->getType() != PtrTy)
2464      Addr = Builder.CreateBitCast(Addr, PtrTy);
2465
2466    QualType fieldType =
2467      field->getType().withCVRQualifiers(base.getVRQualifiers());
2468    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2469  }
2470
2471  const RecordDecl *rec = field->getParent();
2472  QualType type = field->getType();
2473  CharUnits alignment = getContext().getDeclAlign(field);
2474
2475  // FIXME: It should be impossible to have an LValue without alignment for a
2476  // complete type.
2477  if (!base.getAlignment().isZero())
2478    alignment = std::min(alignment, base.getAlignment());
2479
2480  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2481
2482  llvm::Value *addr = base.getAddress();
2483  unsigned cvr = base.getVRQualifiers();
2484  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2485  if (rec->isUnion()) {
2486    // For unions, there is no pointer adjustment.
2487    assert(!type->isReferenceType() && "union has reference member");
2488    // TODO: handle path-aware TBAA for union.
2489    TBAAPath = false;
2490  } else {
2491    // For structs, we GEP to the field that the record layout suggests.
2492    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2493    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2494
2495    // If this is a reference field, load the reference right now.
2496    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2497      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2498      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2499      load->setAlignment(alignment.getQuantity());
2500
2501      // Loading the reference will disable path-aware TBAA.
2502      TBAAPath = false;
2503      if (CGM.shouldUseTBAA()) {
2504        llvm::MDNode *tbaa;
2505        if (mayAlias)
2506          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2507        else
2508          tbaa = CGM.getTBAAInfo(type);
2509        CGM.DecorateInstruction(load, tbaa);
2510      }
2511
2512      addr = load;
2513      mayAlias = false;
2514      type = refType->getPointeeType();
2515      if (type->isIncompleteType())
2516        alignment = CharUnits();
2517      else
2518        alignment = getContext().getTypeAlignInChars(type);
2519      cvr = 0; // qualifiers don't recursively apply to referencee
2520    }
2521  }
2522
2523  // Make sure that the address is pointing to the right type.  This is critical
2524  // for both unions and structs.  A union needs a bitcast, a struct element
2525  // will need a bitcast if the LLVM type laid out doesn't match the desired
2526  // type.
2527  addr = EmitBitCastOfLValueToProperType(*this, addr,
2528                                         CGM.getTypes().ConvertTypeForMem(type),
2529                                         field->getName());
2530
2531  if (field->hasAttr<AnnotateAttr>())
2532    addr = EmitFieldAnnotations(field, addr);
2533
2534  LValue LV = MakeAddrLValue(addr, type, alignment);
2535  LV.getQuals().addCVRQualifiers(cvr);
2536  if (TBAAPath) {
2537    const ASTRecordLayout &Layout =
2538        getContext().getASTRecordLayout(field->getParent());
2539    // Set the base type to be the base type of the base LValue and
2540    // update offset to be relative to the base type.
2541    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2542    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2543                     Layout.getFieldOffset(field->getFieldIndex()) /
2544                                           getContext().getCharWidth());
2545  }
2546
2547  // __weak attribute on a field is ignored.
2548  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2549    LV.getQuals().removeObjCGCAttr();
2550
2551  // Fields of may_alias structs act like 'char' for TBAA purposes.
2552  // FIXME: this should get propagated down through anonymous structs
2553  // and unions.
2554  if (mayAlias && LV.getTBAAInfo())
2555    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2556
2557  return LV;
2558}
2559
2560LValue
2561CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2562                                                  const FieldDecl *Field) {
2563  QualType FieldType = Field->getType();
2564
2565  if (!FieldType->isReferenceType())
2566    return EmitLValueForField(Base, Field);
2567
2568  const CGRecordLayout &RL =
2569    CGM.getTypes().getCGRecordLayout(Field->getParent());
2570  unsigned idx = RL.getLLVMFieldNo(Field);
2571  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2572  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2573
2574  // Make sure that the address is pointing to the right type.  This is critical
2575  // for both unions and structs.  A union needs a bitcast, a struct element
2576  // will need a bitcast if the LLVM type laid out doesn't match the desired
2577  // type.
2578  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2579  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2580
2581  CharUnits Alignment = getContext().getDeclAlign(Field);
2582
2583  // FIXME: It should be impossible to have an LValue without alignment for a
2584  // complete type.
2585  if (!Base.getAlignment().isZero())
2586    Alignment = std::min(Alignment, Base.getAlignment());
2587
2588  return MakeAddrLValue(V, FieldType, Alignment);
2589}
2590
2591LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2592  if (E->isFileScope()) {
2593    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2594    return MakeAddrLValue(GlobalPtr, E->getType());
2595  }
2596  if (E->getType()->isVariablyModifiedType())
2597    // make sure to emit the VLA size.
2598    EmitVariablyModifiedType(E->getType());
2599
2600  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2601  const Expr *InitExpr = E->getInitializer();
2602  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2603
2604  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2605                   /*Init*/ true);
2606
2607  return Result;
2608}
2609
2610LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2611  if (!E->isGLValue())
2612    // Initializing an aggregate temporary in C++11: T{...}.
2613    return EmitAggExprToLValue(E);
2614
2615  // An lvalue initializer list must be initializing a reference.
2616  assert(E->getNumInits() == 1 && "reference init with multiple values");
2617  return EmitLValue(E->getInit(0));
2618}
2619
2620LValue CodeGenFunction::
2621EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2622  if (!expr->isGLValue()) {
2623    // ?: here should be an aggregate.
2624    assert(hasAggregateEvaluationKind(expr->getType()) &&
2625           "Unexpected conditional operator!");
2626    return EmitAggExprToLValue(expr);
2627  }
2628
2629  OpaqueValueMapping binding(*this, expr);
2630
2631  const Expr *condExpr = expr->getCond();
2632  bool CondExprBool;
2633  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2634    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2635    if (!CondExprBool) std::swap(live, dead);
2636
2637    if (!ContainsLabel(dead))
2638      return EmitLValue(live);
2639  }
2640
2641  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2642  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2643  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2644
2645  ConditionalEvaluation eval(*this);
2646  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2647
2648  // Any temporaries created here are conditional.
2649  EmitBlock(lhsBlock);
2650  eval.begin(*this);
2651  LValue lhs = EmitLValue(expr->getTrueExpr());
2652  eval.end(*this);
2653
2654  if (!lhs.isSimple())
2655    return EmitUnsupportedLValue(expr, "conditional operator");
2656
2657  lhsBlock = Builder.GetInsertBlock();
2658  Builder.CreateBr(contBlock);
2659
2660  // Any temporaries created here are conditional.
2661  EmitBlock(rhsBlock);
2662  eval.begin(*this);
2663  LValue rhs = EmitLValue(expr->getFalseExpr());
2664  eval.end(*this);
2665  if (!rhs.isSimple())
2666    return EmitUnsupportedLValue(expr, "conditional operator");
2667  rhsBlock = Builder.GetInsertBlock();
2668
2669  EmitBlock(contBlock);
2670
2671  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2672                                         "cond-lvalue");
2673  phi->addIncoming(lhs.getAddress(), lhsBlock);
2674  phi->addIncoming(rhs.getAddress(), rhsBlock);
2675  return MakeAddrLValue(phi, expr->getType());
2676}
2677
2678/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2679/// type. If the cast is to a reference, we can have the usual lvalue result,
2680/// otherwise if a cast is needed by the code generator in an lvalue context,
2681/// then it must mean that we need the address of an aggregate in order to
2682/// access one of its members.  This can happen for all the reasons that casts
2683/// are permitted with aggregate result, including noop aggregate casts, and
2684/// cast from scalar to union.
2685LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2686  switch (E->getCastKind()) {
2687  case CK_ToVoid:
2688    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2689
2690  case CK_Dependent:
2691    llvm_unreachable("dependent cast kind in IR gen!");
2692
2693  case CK_BuiltinFnToFnPtr:
2694    llvm_unreachable("builtin functions are handled elsewhere");
2695
2696  // These two casts are currently treated as no-ops, although they could
2697  // potentially be real operations depending on the target's ABI.
2698  case CK_NonAtomicToAtomic:
2699  case CK_AtomicToNonAtomic:
2700
2701  case CK_NoOp:
2702  case CK_LValueToRValue:
2703    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2704        || E->getType()->isRecordType())
2705      return EmitLValue(E->getSubExpr());
2706    // Fall through to synthesize a temporary.
2707
2708  case CK_BitCast:
2709  case CK_ArrayToPointerDecay:
2710  case CK_FunctionToPointerDecay:
2711  case CK_NullToMemberPointer:
2712  case CK_NullToPointer:
2713  case CK_IntegralToPointer:
2714  case CK_PointerToIntegral:
2715  case CK_PointerToBoolean:
2716  case CK_VectorSplat:
2717  case CK_IntegralCast:
2718  case CK_IntegralToBoolean:
2719  case CK_IntegralToFloating:
2720  case CK_FloatingToIntegral:
2721  case CK_FloatingToBoolean:
2722  case CK_FloatingCast:
2723  case CK_FloatingRealToComplex:
2724  case CK_FloatingComplexToReal:
2725  case CK_FloatingComplexToBoolean:
2726  case CK_FloatingComplexCast:
2727  case CK_FloatingComplexToIntegralComplex:
2728  case CK_IntegralRealToComplex:
2729  case CK_IntegralComplexToReal:
2730  case CK_IntegralComplexToBoolean:
2731  case CK_IntegralComplexCast:
2732  case CK_IntegralComplexToFloatingComplex:
2733  case CK_DerivedToBaseMemberPointer:
2734  case CK_BaseToDerivedMemberPointer:
2735  case CK_MemberPointerToBoolean:
2736  case CK_ReinterpretMemberPointer:
2737  case CK_AnyPointerToBlockPointerCast:
2738  case CK_ARCProduceObject:
2739  case CK_ARCConsumeObject:
2740  case CK_ARCReclaimReturnedObject:
2741  case CK_ARCExtendBlockObject:
2742  case CK_CopyAndAutoreleaseBlockObject: {
2743    // These casts only produce lvalues when we're binding a reference to a
2744    // temporary realized from a (converted) pure rvalue. Emit the expression
2745    // as a value, copy it into a temporary, and return an lvalue referring to
2746    // that temporary.
2747    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2748    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2749    return MakeAddrLValue(V, E->getType());
2750  }
2751
2752  case CK_Dynamic: {
2753    LValue LV = EmitLValue(E->getSubExpr());
2754    llvm::Value *V = LV.getAddress();
2755    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2756    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2757  }
2758
2759  case CK_ConstructorConversion:
2760  case CK_UserDefinedConversion:
2761  case CK_CPointerToObjCPointerCast:
2762  case CK_BlockPointerToObjCPointerCast:
2763    return EmitLValue(E->getSubExpr());
2764
2765  case CK_UncheckedDerivedToBase:
2766  case CK_DerivedToBase: {
2767    const RecordType *DerivedClassTy =
2768      E->getSubExpr()->getType()->getAs<RecordType>();
2769    CXXRecordDecl *DerivedClassDecl =
2770      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2771
2772    LValue LV = EmitLValue(E->getSubExpr());
2773    llvm::Value *This = LV.getAddress();
2774
2775    // Perform the derived-to-base conversion
2776    llvm::Value *Base =
2777      GetAddressOfBaseClass(This, DerivedClassDecl,
2778                            E->path_begin(), E->path_end(),
2779                            /*NullCheckValue=*/false);
2780
2781    return MakeAddrLValue(Base, E->getType());
2782  }
2783  case CK_ToUnion:
2784    return EmitAggExprToLValue(E);
2785  case CK_BaseToDerived: {
2786    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2787    CXXRecordDecl *DerivedClassDecl =
2788      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2789
2790    LValue LV = EmitLValue(E->getSubExpr());
2791
2792    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2793    // performed and the object is not of the derived type.
2794    if (SanitizePerformTypeCheck)
2795      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2796                    LV.getAddress(), E->getType());
2797
2798    // Perform the base-to-derived conversion
2799    llvm::Value *Derived =
2800      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2801                               E->path_begin(), E->path_end(),
2802                               /*NullCheckValue=*/false);
2803
2804    return MakeAddrLValue(Derived, E->getType());
2805  }
2806  case CK_LValueBitCast: {
2807    // This must be a reinterpret_cast (or c-style equivalent).
2808    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2809
2810    LValue LV = EmitLValue(E->getSubExpr());
2811    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2812                                           ConvertType(CE->getTypeAsWritten()));
2813    return MakeAddrLValue(V, E->getType());
2814  }
2815  case CK_ObjCObjectLValueCast: {
2816    LValue LV = EmitLValue(E->getSubExpr());
2817    QualType ToType = getContext().getLValueReferenceType(E->getType());
2818    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2819                                           ConvertType(ToType));
2820    return MakeAddrLValue(V, E->getType());
2821  }
2822  case CK_ZeroToOCLEvent:
2823    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2824  }
2825
2826  llvm_unreachable("Unhandled lvalue cast kind?");
2827}
2828
2829LValue CodeGenFunction::EmitNullInitializationLValue(
2830                                              const CXXScalarValueInitExpr *E) {
2831  QualType Ty = E->getType();
2832  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2833  EmitNullInitialization(LV.getAddress(), Ty);
2834  return LV;
2835}
2836
2837LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2838  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2839  return getOpaqueLValueMapping(e);
2840}
2841
2842LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2843                                           const MaterializeTemporaryExpr *E) {
2844  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2845  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2846}
2847
2848RValue CodeGenFunction::EmitRValueForField(LValue LV,
2849                                           const FieldDecl *FD) {
2850  QualType FT = FD->getType();
2851  LValue FieldLV = EmitLValueForField(LV, FD);
2852  switch (getEvaluationKind(FT)) {
2853  case TEK_Complex:
2854    return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2855  case TEK_Aggregate:
2856    return FieldLV.asAggregateRValue();
2857  case TEK_Scalar:
2858    return EmitLoadOfLValue(FieldLV);
2859  }
2860  llvm_unreachable("bad evaluation kind");
2861}
2862
2863//===--------------------------------------------------------------------===//
2864//                             Expression Emission
2865//===--------------------------------------------------------------------===//
2866
2867RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2868                                     ReturnValueSlot ReturnValue) {
2869  if (CGDebugInfo *DI = getDebugInfo()) {
2870    SourceLocation Loc = E->getLocStart();
2871    // Force column info to be generated so we can differentiate
2872    // multiple call sites on the same line in the debug info.
2873    const FunctionDecl* Callee = E->getDirectCallee();
2874    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2875    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2876  }
2877
2878  // Builtins never have block type.
2879  if (E->getCallee()->getType()->isBlockPointerType())
2880    return EmitBlockCallExpr(E, ReturnValue);
2881
2882  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2883    return EmitCXXMemberCallExpr(CE, ReturnValue);
2884
2885  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2886    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2887
2888  const Decl *TargetDecl = E->getCalleeDecl();
2889  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2890    if (unsigned builtinID = FD->getBuiltinID())
2891      return EmitBuiltinExpr(FD, builtinID, E);
2892  }
2893
2894  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2895    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2896      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2897
2898  if (const CXXPseudoDestructorExpr *PseudoDtor
2899          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2900    QualType DestroyedType = PseudoDtor->getDestroyedType();
2901    if (getLangOpts().ObjCAutoRefCount &&
2902        DestroyedType->isObjCLifetimeType() &&
2903        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2904         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2905      // Automatic Reference Counting:
2906      //   If the pseudo-expression names a retainable object with weak or
2907      //   strong lifetime, the object shall be released.
2908      Expr *BaseExpr = PseudoDtor->getBase();
2909      llvm::Value *BaseValue = NULL;
2910      Qualifiers BaseQuals;
2911
2912      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2913      if (PseudoDtor->isArrow()) {
2914        BaseValue = EmitScalarExpr(BaseExpr);
2915        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2916        BaseQuals = PTy->getPointeeType().getQualifiers();
2917      } else {
2918        LValue BaseLV = EmitLValue(BaseExpr);
2919        BaseValue = BaseLV.getAddress();
2920        QualType BaseTy = BaseExpr->getType();
2921        BaseQuals = BaseTy.getQualifiers();
2922      }
2923
2924      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2925      case Qualifiers::OCL_None:
2926      case Qualifiers::OCL_ExplicitNone:
2927      case Qualifiers::OCL_Autoreleasing:
2928        break;
2929
2930      case Qualifiers::OCL_Strong:
2931        EmitARCRelease(Builder.CreateLoad(BaseValue,
2932                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2933                       ARCPreciseLifetime);
2934        break;
2935
2936      case Qualifiers::OCL_Weak:
2937        EmitARCDestroyWeak(BaseValue);
2938        break;
2939      }
2940    } else {
2941      // C++ [expr.pseudo]p1:
2942      //   The result shall only be used as the operand for the function call
2943      //   operator (), and the result of such a call has type void. The only
2944      //   effect is the evaluation of the postfix-expression before the dot or
2945      //   arrow.
2946      EmitScalarExpr(E->getCallee());
2947    }
2948
2949    return RValue::get(0);
2950  }
2951
2952  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2953  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2954                  E->arg_begin(), E->arg_end(), TargetDecl);
2955}
2956
2957LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2958  // Comma expressions just emit their LHS then their RHS as an l-value.
2959  if (E->getOpcode() == BO_Comma) {
2960    EmitIgnoredExpr(E->getLHS());
2961    EnsureInsertPoint();
2962    return EmitLValue(E->getRHS());
2963  }
2964
2965  if (E->getOpcode() == BO_PtrMemD ||
2966      E->getOpcode() == BO_PtrMemI)
2967    return EmitPointerToDataMemberBinaryExpr(E);
2968
2969  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2970
2971  // Note that in all of these cases, __block variables need the RHS
2972  // evaluated first just in case the variable gets moved by the RHS.
2973
2974  switch (getEvaluationKind(E->getType())) {
2975  case TEK_Scalar: {
2976    switch (E->getLHS()->getType().getObjCLifetime()) {
2977    case Qualifiers::OCL_Strong:
2978      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2979
2980    case Qualifiers::OCL_Autoreleasing:
2981      return EmitARCStoreAutoreleasing(E).first;
2982
2983    // No reason to do any of these differently.
2984    case Qualifiers::OCL_None:
2985    case Qualifiers::OCL_ExplicitNone:
2986    case Qualifiers::OCL_Weak:
2987      break;
2988    }
2989
2990    RValue RV = EmitAnyExpr(E->getRHS());
2991    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2992    EmitStoreThroughLValue(RV, LV);
2993    return LV;
2994  }
2995
2996  case TEK_Complex:
2997    return EmitComplexAssignmentLValue(E);
2998
2999  case TEK_Aggregate:
3000    return EmitAggExprToLValue(E);
3001  }
3002  llvm_unreachable("bad evaluation kind");
3003}
3004
3005LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3006  RValue RV = EmitCallExpr(E);
3007
3008  if (!RV.isScalar())
3009    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3010
3011  assert(E->getCallReturnType()->isReferenceType() &&
3012         "Can't have a scalar return unless the return type is a "
3013         "reference type!");
3014
3015  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3016}
3017
3018LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3019  // FIXME: This shouldn't require another copy.
3020  return EmitAggExprToLValue(E);
3021}
3022
3023LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3024  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3025         && "binding l-value to type which needs a temporary");
3026  AggValueSlot Slot = CreateAggTemp(E->getType());
3027  EmitCXXConstructExpr(E, Slot);
3028  return MakeAddrLValue(Slot.getAddr(), E->getType());
3029}
3030
3031LValue
3032CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3033  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3034}
3035
3036llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3037  return CGM.GetAddrOfUuidDescriptor(E);
3038}
3039
3040LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3041  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3042}
3043
3044LValue
3045CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3046  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3047  Slot.setExternallyDestructed();
3048  EmitAggExpr(E->getSubExpr(), Slot);
3049  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3050  return MakeAddrLValue(Slot.getAddr(), E->getType());
3051}
3052
3053LValue
3054CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3055  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3056  EmitLambdaExpr(E, Slot);
3057  return MakeAddrLValue(Slot.getAddr(), E->getType());
3058}
3059
3060LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3061  RValue RV = EmitObjCMessageExpr(E);
3062
3063  if (!RV.isScalar())
3064    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3065
3066  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3067         "Can't have a scalar return unless the return type is a "
3068         "reference type!");
3069
3070  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3071}
3072
3073LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3074  llvm::Value *V =
3075    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3076  return MakeAddrLValue(V, E->getType());
3077}
3078
3079llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3080                                             const ObjCIvarDecl *Ivar) {
3081  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3082}
3083
3084LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3085                                          llvm::Value *BaseValue,
3086                                          const ObjCIvarDecl *Ivar,
3087                                          unsigned CVRQualifiers) {
3088  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3089                                                   Ivar, CVRQualifiers);
3090}
3091
3092LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3093  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3094  llvm::Value *BaseValue = 0;
3095  const Expr *BaseExpr = E->getBase();
3096  Qualifiers BaseQuals;
3097  QualType ObjectTy;
3098  if (E->isArrow()) {
3099    BaseValue = EmitScalarExpr(BaseExpr);
3100    ObjectTy = BaseExpr->getType()->getPointeeType();
3101    BaseQuals = ObjectTy.getQualifiers();
3102  } else {
3103    LValue BaseLV = EmitLValue(BaseExpr);
3104    // FIXME: this isn't right for bitfields.
3105    BaseValue = BaseLV.getAddress();
3106    ObjectTy = BaseExpr->getType();
3107    BaseQuals = ObjectTy.getQualifiers();
3108  }
3109
3110  LValue LV =
3111    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3112                      BaseQuals.getCVRQualifiers());
3113  setObjCGCLValueClass(getContext(), E, LV);
3114  return LV;
3115}
3116
3117LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3118  // Can only get l-value for message expression returning aggregate type
3119  RValue RV = EmitAnyExprToTemp(E);
3120  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3121}
3122
3123RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3124                                 ReturnValueSlot ReturnValue,
3125                                 CallExpr::const_arg_iterator ArgBeg,
3126                                 CallExpr::const_arg_iterator ArgEnd,
3127                                 const Decl *TargetDecl) {
3128  // Get the actual function type. The callee type will always be a pointer to
3129  // function type or a block pointer type.
3130  assert(CalleeType->isFunctionPointerType() &&
3131         "Call must have function pointer type!");
3132
3133  CalleeType = getContext().getCanonicalType(CalleeType);
3134
3135  const FunctionType *FnType
3136    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3137
3138  CallArgList Args;
3139  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
3140
3141  const CGFunctionInfo &FnInfo =
3142    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3143
3144  // C99 6.5.2.2p6:
3145  //   If the expression that denotes the called function has a type
3146  //   that does not include a prototype, [the default argument
3147  //   promotions are performed]. If the number of arguments does not
3148  //   equal the number of parameters, the behavior is undefined. If
3149  //   the function is defined with a type that includes a prototype,
3150  //   and either the prototype ends with an ellipsis (, ...) or the
3151  //   types of the arguments after promotion are not compatible with
3152  //   the types of the parameters, the behavior is undefined. If the
3153  //   function is defined with a type that does not include a
3154  //   prototype, and the types of the arguments after promotion are
3155  //   not compatible with those of the parameters after promotion,
3156  //   the behavior is undefined [except in some trivial cases].
3157  // That is, in the general case, we should assume that a call
3158  // through an unprototyped function type works like a *non-variadic*
3159  // call.  The way we make this work is to cast to the exact type
3160  // of the promoted arguments.
3161  if (isa<FunctionNoProtoType>(FnType)) {
3162    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3163    CalleeTy = CalleeTy->getPointerTo();
3164    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3165  }
3166
3167  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3168}
3169
3170LValue CodeGenFunction::
3171EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3172  llvm::Value *BaseV;
3173  if (E->getOpcode() == BO_PtrMemI)
3174    BaseV = EmitScalarExpr(E->getLHS());
3175  else
3176    BaseV = EmitLValue(E->getLHS()).getAddress();
3177
3178  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3179
3180  const MemberPointerType *MPT
3181    = E->getRHS()->getType()->getAs<MemberPointerType>();
3182
3183  llvm::Value *AddV =
3184    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3185
3186  return MakeAddrLValue(AddV, MPT->getPointeeType());
3187}
3188
3189/// Given the address of a temporary variable, produce an r-value of
3190/// its type.
3191RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3192                                            QualType type) {
3193  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3194  switch (getEvaluationKind(type)) {
3195  case TEK_Complex:
3196    return RValue::getComplex(EmitLoadOfComplex(lvalue));
3197  case TEK_Aggregate:
3198    return lvalue.asAggregateRValue();
3199  case TEK_Scalar:
3200    return RValue::get(EmitLoadOfScalar(lvalue));
3201  }
3202  llvm_unreachable("bad evaluation kind");
3203}
3204
3205void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3206  assert(Val->getType()->isFPOrFPVectorTy());
3207  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3208    return;
3209
3210  llvm::MDBuilder MDHelper(getLLVMContext());
3211  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3212
3213  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3214}
3215
3216namespace {
3217  struct LValueOrRValue {
3218    LValue LV;
3219    RValue RV;
3220  };
3221}
3222
3223static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3224                                           const PseudoObjectExpr *E,
3225                                           bool forLValue,
3226                                           AggValueSlot slot) {
3227  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3228
3229  // Find the result expression, if any.
3230  const Expr *resultExpr = E->getResultExpr();
3231  LValueOrRValue result;
3232
3233  for (PseudoObjectExpr::const_semantics_iterator
3234         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3235    const Expr *semantic = *i;
3236
3237    // If this semantic expression is an opaque value, bind it
3238    // to the result of its source expression.
3239    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3240
3241      // If this is the result expression, we may need to evaluate
3242      // directly into the slot.
3243      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3244      OVMA opaqueData;
3245      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3246          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3247        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3248
3249        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3250        opaqueData = OVMA::bind(CGF, ov, LV);
3251        result.RV = slot.asRValue();
3252
3253      // Otherwise, emit as normal.
3254      } else {
3255        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3256
3257        // If this is the result, also evaluate the result now.
3258        if (ov == resultExpr) {
3259          if (forLValue)
3260            result.LV = CGF.EmitLValue(ov);
3261          else
3262            result.RV = CGF.EmitAnyExpr(ov, slot);
3263        }
3264      }
3265
3266      opaques.push_back(opaqueData);
3267
3268    // Otherwise, if the expression is the result, evaluate it
3269    // and remember the result.
3270    } else if (semantic == resultExpr) {
3271      if (forLValue)
3272        result.LV = CGF.EmitLValue(semantic);
3273      else
3274        result.RV = CGF.EmitAnyExpr(semantic, slot);
3275
3276    // Otherwise, evaluate the expression in an ignored context.
3277    } else {
3278      CGF.EmitIgnoredExpr(semantic);
3279    }
3280  }
3281
3282  // Unbind all the opaques now.
3283  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3284    opaques[i].unbind(CGF);
3285
3286  return result;
3287}
3288
3289RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3290                                               AggValueSlot slot) {
3291  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3292}
3293
3294LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3295  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3296}
3297