CGExpr.cpp revision 85af7cecadbf5d4b905d6b3b4b1b6fa684183aff
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCXXABI.h" 16#include "CGCall.h" 17#include "CGDebugInfo.h" 18#include "CGObjCRuntime.h" 19#include "CGRecordLayout.h" 20#include "CodeGenModule.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/ADT/Hashing.h" 26#include "llvm/IR/DataLayout.h" 27#include "llvm/IR/Intrinsics.h" 28#include "llvm/IR/LLVMContext.h" 29#include "llvm/IR/MDBuilder.h" 30#include "llvm/Support/ConvertUTF.h" 31 32using namespace clang; 33using namespace CodeGen; 34 35//===--------------------------------------------------------------------===// 36// Miscellaneous Helper Methods 37//===--------------------------------------------------------------------===// 38 39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49} 50 51/// CreateTempAlloca - This creates a alloca and inserts it into the entry 52/// block. 53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58} 59 60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65} 66 67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74} 75 76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83} 84 85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86/// expression and compare the result against zero, returning an Int1Ty value. 87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 89 llvm::Value *MemPtr = EmitScalarExpr(E); 90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 91 } 92 93 QualType BoolTy = getContext().BoolTy; 94 if (!E->getType()->isAnyComplexType()) 95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 96 97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 98} 99 100/// EmitIgnoredExpr - Emit code to compute the specified expression, 101/// ignoring the result. 102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 103 if (E->isRValue()) 104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 105 106 // Just emit it as an l-value and drop the result. 107 EmitLValue(E); 108} 109 110/// EmitAnyExpr - Emit code to compute the specified expression which 111/// can have any type. The result is returned as an RValue struct. 112/// If this is an aggregate expression, AggSlot indicates where the 113/// result should be returned. 114RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 115 AggValueSlot aggSlot, 116 bool ignoreResult) { 117 switch (getEvaluationKind(E->getType())) { 118 case TEK_Scalar: 119 return RValue::get(EmitScalarExpr(E, ignoreResult)); 120 case TEK_Complex: 121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 122 case TEK_Aggregate: 123 if (!ignoreResult && aggSlot.isIgnored()) 124 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 125 EmitAggExpr(E, aggSlot); 126 return aggSlot.asRValue(); 127 } 128 llvm_unreachable("bad evaluation kind"); 129} 130 131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 132/// always be accessible even if no aggregate location is provided. 133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 134 AggValueSlot AggSlot = AggValueSlot::ignored(); 135 136 if (hasAggregateEvaluationKind(E->getType())) 137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 138 return EmitAnyExpr(E, AggSlot); 139} 140 141/// EmitAnyExprToMem - Evaluate an expression into a given memory 142/// location. 143void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 144 llvm::Value *Location, 145 Qualifiers Quals, 146 bool IsInit) { 147 // FIXME: This function should take an LValue as an argument. 148 switch (getEvaluationKind(E->getType())) { 149 case TEK_Complex: 150 EmitComplexExprIntoLValue(E, 151 MakeNaturalAlignAddrLValue(Location, E->getType()), 152 /*isInit*/ false); 153 return; 154 155 case TEK_Aggregate: { 156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 158 AggValueSlot::IsDestructed_t(IsInit), 159 AggValueSlot::DoesNotNeedGCBarriers, 160 AggValueSlot::IsAliased_t(!IsInit))); 161 return; 162 } 163 164 case TEK_Scalar: { 165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 166 LValue LV = MakeAddrLValue(Location, E->getType()); 167 EmitStoreThroughLValue(RV, LV); 168 return; 169 } 170 } 171 llvm_unreachable("bad evaluation kind"); 172} 173 174static void 175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 176 const Expr *E, llvm::Value *ReferenceTemporary) { 177 // Objective-C++ ARC: 178 // If we are binding a reference to a temporary that has ownership, we 179 // need to perform retain/release operations on the temporary. 180 // 181 // FIXME: This should be looking at E, not M. 182 if (CGF.getLangOpts().ObjCAutoRefCount && 183 M->getType()->isObjCLifetimeType()) { 184 QualType ObjCARCReferenceLifetimeType = M->getType(); 185 switch (Qualifiers::ObjCLifetime Lifetime = 186 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 187 case Qualifiers::OCL_None: 188 case Qualifiers::OCL_ExplicitNone: 189 // Carry on to normal cleanup handling. 190 break; 191 192 case Qualifiers::OCL_Autoreleasing: 193 // Nothing to do; cleaned up by an autorelease pool. 194 return; 195 196 case Qualifiers::OCL_Strong: 197 case Qualifiers::OCL_Weak: 198 switch (StorageDuration Duration = M->getStorageDuration()) { 199 case SD_Static: 200 // Note: we intentionally do not register a cleanup to release 201 // the object on program termination. 202 return; 203 204 case SD_Thread: 205 // FIXME: We should probably register a cleanup in this case. 206 return; 207 208 case SD_Automatic: 209 case SD_FullExpression: 210 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 211 CodeGenFunction::Destroyer *Destroy; 212 CleanupKind CleanupKind; 213 if (Lifetime == Qualifiers::OCL_Strong) { 214 const ValueDecl *VD = M->getExtendingDecl(); 215 bool Precise = 216 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 217 CleanupKind = CGF.getARCCleanupKind(); 218 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 219 : &CodeGenFunction::destroyARCStrongImprecise; 220 } else { 221 // __weak objects always get EH cleanups; otherwise, exceptions 222 // could cause really nasty crashes instead of mere leaks. 223 CleanupKind = NormalAndEHCleanup; 224 Destroy = &CodeGenFunction::destroyARCWeak; 225 } 226 if (Duration == SD_FullExpression) 227 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 228 ObjCARCReferenceLifetimeType, *Destroy, 229 CleanupKind & EHCleanup); 230 else 231 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 232 ObjCARCReferenceLifetimeType, 233 *Destroy, CleanupKind & EHCleanup); 234 return; 235 236 case SD_Dynamic: 237 llvm_unreachable("temporary cannot have dynamic storage duration"); 238 } 239 llvm_unreachable("unknown storage duration"); 240 } 241 } 242 243 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 244 if (ILE->initializesStdInitializerList()) { 245 // FIXME: This is wrong if the temporary has static or thread storage 246 // duration. 247 CGF.EmitStdInitializerListCleanup(ReferenceTemporary, ILE); 248 return; 249 } 250 } 251 252 CXXDestructorDecl *ReferenceTemporaryDtor = 0; 253 if (const RecordType *RT = 254 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 255 // Get the destructor for the reference temporary. 256 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 257 if (!ClassDecl->hasTrivialDestructor()) 258 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 259 } 260 261 if (!ReferenceTemporaryDtor) 262 return; 263 264 // Call the destructor for the temporary. 265 switch (M->getStorageDuration()) { 266 case SD_Static: 267 case SD_Thread: { 268 llvm::Constant *CleanupFn; 269 llvm::Constant *CleanupArg; 270 if (E->getType()->isArrayType()) { 271 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 272 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 273 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions); 274 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 275 } else { 276 CleanupFn = 277 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 278 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 279 } 280 CGF.CGM.getCXXABI().registerGlobalDtor( 281 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 282 break; 283 } 284 285 case SD_FullExpression: 286 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 287 CodeGenFunction::destroyCXXObject, 288 CGF.getLangOpts().Exceptions); 289 break; 290 291 case SD_Automatic: 292 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 293 ReferenceTemporary, E->getType(), 294 CodeGenFunction::destroyCXXObject, 295 CGF.getLangOpts().Exceptions); 296 break; 297 298 case SD_Dynamic: 299 llvm_unreachable("temporary cannot have dynamic storage duration"); 300 } 301} 302 303static llvm::Value * 304createReferenceTemporary(CodeGenFunction &CGF, 305 const MaterializeTemporaryExpr *M, const Expr *Inner) { 306 switch (M->getStorageDuration()) { 307 case SD_FullExpression: 308 case SD_Automatic: 309 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 310 311 case SD_Thread: 312 case SD_Static: 313 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 314 315 case SD_Dynamic: 316 llvm_unreachable("temporary can't have dynamic storage duration"); 317 } 318} 319 320static llvm::Value * 321emitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 322 const NamedDecl *InitializedDecl) { 323 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 324 CGF.enterFullExpression(EWC); 325 CodeGenFunction::RunCleanupsScope Scope(CGF); 326 return emitExprForReferenceBinding(CGF, EWC->getSubExpr(), InitializedDecl); 327 } 328 329 const MaterializeTemporaryExpr *M = 0; 330 E = E->findMaterializedTemporary(M); 331 332 if (E->isGLValue()) { 333 // Emit the expression as an lvalue. 334 LValue LV = CGF.EmitLValue(E); 335 assert(LV.isSimple()); 336 return LV.getAddress(); 337 } 338 339 assert(M && "prvalue reference initializer but not a materialized temporary"); 340 341 if (CGF.getLangOpts().ObjCAutoRefCount && 342 M->getType()->isObjCLifetimeType() && 343 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 344 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 345 // FIXME: Fold this into the general case below. 346 llvm::Value *Object = createReferenceTemporary(CGF, M, E); 347 LValue RefTempDst = CGF.MakeAddrLValue(Object, M->getType()); 348 349 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 350 RefTempDst, false); 351 352 pushTemporaryCleanup(CGF, M, E, Object); 353 return Object; 354 } 355 356 SmallVector<const Expr *, 2> CommaLHSs; 357 SmallVector<SubobjectAdjustment, 2> Adjustments; 358 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 359 360 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 361 CGF.EmitIgnoredExpr(CommaLHSs[I]); 362 363 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) { 364 if (opaque->getType()->isRecordType()) { 365 assert(Adjustments.empty()); 366 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 367 } 368 } 369 370 // Create and initialize the reference temporary. 371 llvm::Value *Object = createReferenceTemporary(CGF, M, E); 372 CGF.EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 373 pushTemporaryCleanup(CGF, M, E, Object); 374 375 // Perform derived-to-base casts and/or field accesses, to get from the 376 // temporary object we created (and, potentially, for which we extended 377 // the lifetime) to the subobject we're binding the reference to. 378 for (unsigned I = Adjustments.size(); I != 0; --I) { 379 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 380 switch (Adjustment.Kind) { 381 case SubobjectAdjustment::DerivedToBaseAdjustment: 382 Object = 383 CGF.GetAddressOfBaseClass(Object, 384 Adjustment.DerivedToBase.DerivedClass, 385 Adjustment.DerivedToBase.BasePath->path_begin(), 386 Adjustment.DerivedToBase.BasePath->path_end(), 387 /*NullCheckValue=*/false); 388 break; 389 390 case SubobjectAdjustment::FieldAdjustment: { 391 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 392 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 393 assert(LV.isSimple() && 394 "materialized temporary field is not a simple lvalue"); 395 Object = LV.getAddress(); 396 break; 397 } 398 399 case SubobjectAdjustment::MemberPointerAdjustment: { 400 llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS); 401 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 402 CGF, Object, Ptr, Adjustment.Ptr.MPT); 403 break; 404 } 405 } 406 } 407 408 return Object; 409} 410 411RValue 412CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 413 const NamedDecl *InitializedDecl) { 414 llvm::Value *Value = emitExprForReferenceBinding(*this, E, InitializedDecl); 415 416 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 417 // C++11 [dcl.ref]p5 (as amended by core issue 453): 418 // If a glvalue to which a reference is directly bound designates neither 419 // an existing object or function of an appropriate type nor a region of 420 // storage of suitable size and alignment to contain an object of the 421 // reference's type, the behavior is undefined. 422 QualType Ty = E->getType(); 423 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 424 } 425 426 return RValue::get(Value); 427} 428 429 430/// getAccessedFieldNo - Given an encoded value and a result number, return the 431/// input field number being accessed. 432unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 433 const llvm::Constant *Elts) { 434 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 435 ->getZExtValue(); 436} 437 438/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 439static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 440 llvm::Value *High) { 441 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 442 llvm::Value *K47 = Builder.getInt64(47); 443 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 444 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 445 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 446 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 447 return Builder.CreateMul(B1, KMul); 448} 449 450void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 451 llvm::Value *Address, 452 QualType Ty, CharUnits Alignment) { 453 if (!SanitizePerformTypeCheck) 454 return; 455 456 // Don't check pointers outside the default address space. The null check 457 // isn't correct, the object-size check isn't supported by LLVM, and we can't 458 // communicate the addresses to the runtime handler for the vptr check. 459 if (Address->getType()->getPointerAddressSpace()) 460 return; 461 462 llvm::Value *Cond = 0; 463 llvm::BasicBlock *Done = 0; 464 465 if (SanOpts->Null) { 466 // The glvalue must not be an empty glvalue. 467 Cond = Builder.CreateICmpNE( 468 Address, llvm::Constant::getNullValue(Address->getType())); 469 470 if (TCK == TCK_DowncastPointer) { 471 // When performing a pointer downcast, it's OK if the value is null. 472 // Skip the remaining checks in that case. 473 Done = createBasicBlock("null"); 474 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 475 Builder.CreateCondBr(Cond, Rest, Done); 476 EmitBlock(Rest); 477 Cond = 0; 478 } 479 } 480 481 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 482 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 483 484 // The glvalue must refer to a large enough storage region. 485 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 486 // to check this. 487 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 488 llvm::Value *Min = Builder.getFalse(); 489 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 490 llvm::Value *LargeEnough = 491 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 492 llvm::ConstantInt::get(IntPtrTy, Size)); 493 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 494 } 495 496 uint64_t AlignVal = 0; 497 498 if (SanOpts->Alignment) { 499 AlignVal = Alignment.getQuantity(); 500 if (!Ty->isIncompleteType() && !AlignVal) 501 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 502 503 // The glvalue must be suitably aligned. 504 if (AlignVal) { 505 llvm::Value *Align = 506 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 507 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 508 llvm::Value *Aligned = 509 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 510 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 511 } 512 } 513 514 if (Cond) { 515 llvm::Constant *StaticData[] = { 516 EmitCheckSourceLocation(Loc), 517 EmitCheckTypeDescriptor(Ty), 518 llvm::ConstantInt::get(SizeTy, AlignVal), 519 llvm::ConstantInt::get(Int8Ty, TCK) 520 }; 521 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 522 } 523 524 // If possible, check that the vptr indicates that there is a subobject of 525 // type Ty at offset zero within this object. 526 // 527 // C++11 [basic.life]p5,6: 528 // [For storage which does not refer to an object within its lifetime] 529 // The program has undefined behavior if: 530 // -- the [pointer or glvalue] is used to access a non-static data member 531 // or call a non-static member function 532 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 533 if (SanOpts->Vptr && 534 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 535 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 536 RD && RD->hasDefinition() && RD->isDynamicClass()) { 537 // Compute a hash of the mangled name of the type. 538 // 539 // FIXME: This is not guaranteed to be deterministic! Move to a 540 // fingerprinting mechanism once LLVM provides one. For the time 541 // being the implementation happens to be deterministic. 542 SmallString<64> MangledName; 543 llvm::raw_svector_ostream Out(MangledName); 544 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 545 Out); 546 llvm::hash_code TypeHash = hash_value(Out.str()); 547 548 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 549 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 550 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 551 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 552 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 553 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 554 555 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 556 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 557 558 // Look the hash up in our cache. 559 const int CacheSize = 128; 560 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 561 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 562 "__ubsan_vptr_type_cache"); 563 llvm::Value *Slot = Builder.CreateAnd(Hash, 564 llvm::ConstantInt::get(IntPtrTy, 565 CacheSize-1)); 566 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 567 llvm::Value *CacheVal = 568 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 569 570 // If the hash isn't in the cache, call a runtime handler to perform the 571 // hard work of checking whether the vptr is for an object of the right 572 // type. This will either fill in the cache and return, or produce a 573 // diagnostic. 574 llvm::Constant *StaticData[] = { 575 EmitCheckSourceLocation(Loc), 576 EmitCheckTypeDescriptor(Ty), 577 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 578 llvm::ConstantInt::get(Int8Ty, TCK) 579 }; 580 llvm::Value *DynamicData[] = { Address, Hash }; 581 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 582 "dynamic_type_cache_miss", StaticData, DynamicData, 583 CRK_AlwaysRecoverable); 584 } 585 586 if (Done) { 587 Builder.CreateBr(Done); 588 EmitBlock(Done); 589 } 590} 591 592/// Determine whether this expression refers to a flexible array member in a 593/// struct. We disable array bounds checks for such members. 594static bool isFlexibleArrayMemberExpr(const Expr *E) { 595 // For compatibility with existing code, we treat arrays of length 0 or 596 // 1 as flexible array members. 597 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 598 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 599 if (CAT->getSize().ugt(1)) 600 return false; 601 } else if (!isa<IncompleteArrayType>(AT)) 602 return false; 603 604 E = E->IgnoreParens(); 605 606 // A flexible array member must be the last member in the class. 607 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 608 // FIXME: If the base type of the member expr is not FD->getParent(), 609 // this should not be treated as a flexible array member access. 610 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 611 RecordDecl::field_iterator FI( 612 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 613 return ++FI == FD->getParent()->field_end(); 614 } 615 } 616 617 return false; 618} 619 620/// If Base is known to point to the start of an array, return the length of 621/// that array. Return 0 if the length cannot be determined. 622static llvm::Value *getArrayIndexingBound( 623 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 624 // For the vector indexing extension, the bound is the number of elements. 625 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 626 IndexedType = Base->getType(); 627 return CGF.Builder.getInt32(VT->getNumElements()); 628 } 629 630 Base = Base->IgnoreParens(); 631 632 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) { 633 if (CE->getCastKind() == CK_ArrayToPointerDecay && 634 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 635 IndexedType = CE->getSubExpr()->getType(); 636 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 637 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 638 return CGF.Builder.getInt(CAT->getSize()); 639 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) 640 return CGF.getVLASize(VAT).first; 641 } 642 } 643 644 return 0; 645} 646 647void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 648 llvm::Value *Index, QualType IndexType, 649 bool Accessed) { 650 assert(SanOpts->Bounds && "should not be called unless adding bounds checks"); 651 652 QualType IndexedType; 653 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 654 if (!Bound) 655 return; 656 657 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 658 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 659 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 660 661 llvm::Constant *StaticData[] = { 662 EmitCheckSourceLocation(E->getExprLoc()), 663 EmitCheckTypeDescriptor(IndexedType), 664 EmitCheckTypeDescriptor(IndexType) 665 }; 666 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 667 : Builder.CreateICmpULE(IndexVal, BoundVal); 668 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 669} 670 671 672CodeGenFunction::ComplexPairTy CodeGenFunction:: 673EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 674 bool isInc, bool isPre) { 675 ComplexPairTy InVal = EmitLoadOfComplex(LV); 676 677 llvm::Value *NextVal; 678 if (isa<llvm::IntegerType>(InVal.first->getType())) { 679 uint64_t AmountVal = isInc ? 1 : -1; 680 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 681 682 // Add the inc/dec to the real part. 683 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 684 } else { 685 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 686 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 687 if (!isInc) 688 FVal.changeSign(); 689 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 690 691 // Add the inc/dec to the real part. 692 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 693 } 694 695 ComplexPairTy IncVal(NextVal, InVal.second); 696 697 // Store the updated result through the lvalue. 698 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 699 700 // If this is a postinc, return the value read from memory, otherwise use the 701 // updated value. 702 return isPre ? IncVal : InVal; 703} 704 705 706//===----------------------------------------------------------------------===// 707// LValue Expression Emission 708//===----------------------------------------------------------------------===// 709 710RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 711 if (Ty->isVoidType()) 712 return RValue::get(0); 713 714 switch (getEvaluationKind(Ty)) { 715 case TEK_Complex: { 716 llvm::Type *EltTy = 717 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 718 llvm::Value *U = llvm::UndefValue::get(EltTy); 719 return RValue::getComplex(std::make_pair(U, U)); 720 } 721 722 // If this is a use of an undefined aggregate type, the aggregate must have an 723 // identifiable address. Just because the contents of the value are undefined 724 // doesn't mean that the address can't be taken and compared. 725 case TEK_Aggregate: { 726 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 727 return RValue::getAggregate(DestPtr); 728 } 729 730 case TEK_Scalar: 731 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 732 } 733 llvm_unreachable("bad evaluation kind"); 734} 735 736RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 737 const char *Name) { 738 ErrorUnsupported(E, Name); 739 return GetUndefRValue(E->getType()); 740} 741 742LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 743 const char *Name) { 744 ErrorUnsupported(E, Name); 745 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 746 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 747} 748 749LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 750 LValue LV; 751 if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E)) 752 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 753 else 754 LV = EmitLValue(E); 755 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 756 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 757 E->getType(), LV.getAlignment()); 758 return LV; 759} 760 761/// EmitLValue - Emit code to compute a designator that specifies the location 762/// of the expression. 763/// 764/// This can return one of two things: a simple address or a bitfield reference. 765/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 766/// an LLVM pointer type. 767/// 768/// If this returns a bitfield reference, nothing about the pointee type of the 769/// LLVM value is known: For example, it may not be a pointer to an integer. 770/// 771/// If this returns a normal address, and if the lvalue's C type is fixed size, 772/// this method guarantees that the returned pointer type will point to an LLVM 773/// type of the same size of the lvalue's type. If the lvalue has a variable 774/// length type, this is not possible. 775/// 776LValue CodeGenFunction::EmitLValue(const Expr *E) { 777 switch (E->getStmtClass()) { 778 default: return EmitUnsupportedLValue(E, "l-value expression"); 779 780 case Expr::ObjCPropertyRefExprClass: 781 llvm_unreachable("cannot emit a property reference directly"); 782 783 case Expr::ObjCSelectorExprClass: 784 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 785 case Expr::ObjCIsaExprClass: 786 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 787 case Expr::BinaryOperatorClass: 788 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 789 case Expr::CompoundAssignOperatorClass: 790 if (!E->getType()->isAnyComplexType()) 791 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 792 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 793 case Expr::CallExprClass: 794 case Expr::CXXMemberCallExprClass: 795 case Expr::CXXOperatorCallExprClass: 796 case Expr::UserDefinedLiteralClass: 797 return EmitCallExprLValue(cast<CallExpr>(E)); 798 case Expr::VAArgExprClass: 799 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 800 case Expr::DeclRefExprClass: 801 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 802 case Expr::ParenExprClass: 803 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 804 case Expr::GenericSelectionExprClass: 805 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 806 case Expr::PredefinedExprClass: 807 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 808 case Expr::StringLiteralClass: 809 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 810 case Expr::ObjCEncodeExprClass: 811 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 812 case Expr::PseudoObjectExprClass: 813 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 814 case Expr::InitListExprClass: 815 return EmitInitListLValue(cast<InitListExpr>(E)); 816 case Expr::CXXTemporaryObjectExprClass: 817 case Expr::CXXConstructExprClass: 818 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 819 case Expr::CXXBindTemporaryExprClass: 820 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 821 case Expr::CXXUuidofExprClass: 822 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 823 case Expr::LambdaExprClass: 824 return EmitLambdaLValue(cast<LambdaExpr>(E)); 825 826 case Expr::ExprWithCleanupsClass: { 827 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 828 enterFullExpression(cleanups); 829 RunCleanupsScope Scope(*this); 830 return EmitLValue(cleanups->getSubExpr()); 831 } 832 833 case Expr::CXXScalarValueInitExprClass: 834 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 835 case Expr::CXXDefaultArgExprClass: 836 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 837 case Expr::CXXDefaultInitExprClass: { 838 CXXDefaultInitExprScope Scope(*this); 839 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 840 } 841 case Expr::CXXTypeidExprClass: 842 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 843 844 case Expr::ObjCMessageExprClass: 845 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 846 case Expr::ObjCIvarRefExprClass: 847 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 848 case Expr::StmtExprClass: 849 return EmitStmtExprLValue(cast<StmtExpr>(E)); 850 case Expr::UnaryOperatorClass: 851 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 852 case Expr::ArraySubscriptExprClass: 853 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 854 case Expr::ExtVectorElementExprClass: 855 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 856 case Expr::MemberExprClass: 857 return EmitMemberExpr(cast<MemberExpr>(E)); 858 case Expr::CompoundLiteralExprClass: 859 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 860 case Expr::ConditionalOperatorClass: 861 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 862 case Expr::BinaryConditionalOperatorClass: 863 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 864 case Expr::ChooseExprClass: 865 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 866 case Expr::OpaqueValueExprClass: 867 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 868 case Expr::SubstNonTypeTemplateParmExprClass: 869 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 870 case Expr::ImplicitCastExprClass: 871 case Expr::CStyleCastExprClass: 872 case Expr::CXXFunctionalCastExprClass: 873 case Expr::CXXStaticCastExprClass: 874 case Expr::CXXDynamicCastExprClass: 875 case Expr::CXXReinterpretCastExprClass: 876 case Expr::CXXConstCastExprClass: 877 case Expr::ObjCBridgedCastExprClass: 878 return EmitCastLValue(cast<CastExpr>(E)); 879 880 case Expr::MaterializeTemporaryExprClass: 881 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 882 } 883} 884 885/// Given an object of the given canonical type, can we safely copy a 886/// value out of it based on its initializer? 887static bool isConstantEmittableObjectType(QualType type) { 888 assert(type.isCanonical()); 889 assert(!type->isReferenceType()); 890 891 // Must be const-qualified but non-volatile. 892 Qualifiers qs = type.getLocalQualifiers(); 893 if (!qs.hasConst() || qs.hasVolatile()) return false; 894 895 // Otherwise, all object types satisfy this except C++ classes with 896 // mutable subobjects or non-trivial copy/destroy behavior. 897 if (const RecordType *RT = dyn_cast<RecordType>(type)) 898 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 899 if (RD->hasMutableFields() || !RD->isTrivial()) 900 return false; 901 902 return true; 903} 904 905/// Can we constant-emit a load of a reference to a variable of the 906/// given type? This is different from predicates like 907/// Decl::isUsableInConstantExpressions because we do want it to apply 908/// in situations that don't necessarily satisfy the language's rules 909/// for this (e.g. C++'s ODR-use rules). For example, we want to able 910/// to do this with const float variables even if those variables 911/// aren't marked 'constexpr'. 912enum ConstantEmissionKind { 913 CEK_None, 914 CEK_AsReferenceOnly, 915 CEK_AsValueOrReference, 916 CEK_AsValueOnly 917}; 918static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 919 type = type.getCanonicalType(); 920 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 921 if (isConstantEmittableObjectType(ref->getPointeeType())) 922 return CEK_AsValueOrReference; 923 return CEK_AsReferenceOnly; 924 } 925 if (isConstantEmittableObjectType(type)) 926 return CEK_AsValueOnly; 927 return CEK_None; 928} 929 930/// Try to emit a reference to the given value without producing it as 931/// an l-value. This is actually more than an optimization: we can't 932/// produce an l-value for variables that we never actually captured 933/// in a block or lambda, which means const int variables or constexpr 934/// literals or similar. 935CodeGenFunction::ConstantEmission 936CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 937 ValueDecl *value = refExpr->getDecl(); 938 939 // The value needs to be an enum constant or a constant variable. 940 ConstantEmissionKind CEK; 941 if (isa<ParmVarDecl>(value)) { 942 CEK = CEK_None; 943 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 944 CEK = checkVarTypeForConstantEmission(var->getType()); 945 } else if (isa<EnumConstantDecl>(value)) { 946 CEK = CEK_AsValueOnly; 947 } else { 948 CEK = CEK_None; 949 } 950 if (CEK == CEK_None) return ConstantEmission(); 951 952 Expr::EvalResult result; 953 bool resultIsReference; 954 QualType resultType; 955 956 // It's best to evaluate all the way as an r-value if that's permitted. 957 if (CEK != CEK_AsReferenceOnly && 958 refExpr->EvaluateAsRValue(result, getContext())) { 959 resultIsReference = false; 960 resultType = refExpr->getType(); 961 962 // Otherwise, try to evaluate as an l-value. 963 } else if (CEK != CEK_AsValueOnly && 964 refExpr->EvaluateAsLValue(result, getContext())) { 965 resultIsReference = true; 966 resultType = value->getType(); 967 968 // Failure. 969 } else { 970 return ConstantEmission(); 971 } 972 973 // In any case, if the initializer has side-effects, abandon ship. 974 if (result.HasSideEffects) 975 return ConstantEmission(); 976 977 // Emit as a constant. 978 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 979 980 // Make sure we emit a debug reference to the global variable. 981 // This should probably fire even for 982 if (isa<VarDecl>(value)) { 983 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 984 EmitDeclRefExprDbgValue(refExpr, C); 985 } else { 986 assert(isa<EnumConstantDecl>(value)); 987 EmitDeclRefExprDbgValue(refExpr, C); 988 } 989 990 // If we emitted a reference constant, we need to dereference that. 991 if (resultIsReference) 992 return ConstantEmission::forReference(C); 993 994 return ConstantEmission::forValue(C); 995} 996 997llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 998 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 999 lvalue.getAlignment().getQuantity(), 1000 lvalue.getType(), lvalue.getTBAAInfo(), 1001 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1002} 1003 1004static bool hasBooleanRepresentation(QualType Ty) { 1005 if (Ty->isBooleanType()) 1006 return true; 1007 1008 if (const EnumType *ET = Ty->getAs<EnumType>()) 1009 return ET->getDecl()->getIntegerType()->isBooleanType(); 1010 1011 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1012 return hasBooleanRepresentation(AT->getValueType()); 1013 1014 return false; 1015} 1016 1017static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1018 llvm::APInt &Min, llvm::APInt &End, 1019 bool StrictEnums) { 1020 const EnumType *ET = Ty->getAs<EnumType>(); 1021 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1022 ET && !ET->getDecl()->isFixed(); 1023 bool IsBool = hasBooleanRepresentation(Ty); 1024 if (!IsBool && !IsRegularCPlusPlusEnum) 1025 return false; 1026 1027 if (IsBool) { 1028 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1029 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1030 } else { 1031 const EnumDecl *ED = ET->getDecl(); 1032 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1033 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1034 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1035 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1036 1037 if (NumNegativeBits) { 1038 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1039 assert(NumBits <= Bitwidth); 1040 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1041 Min = -End; 1042 } else { 1043 assert(NumPositiveBits <= Bitwidth); 1044 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1045 Min = llvm::APInt(Bitwidth, 0); 1046 } 1047 } 1048 return true; 1049} 1050 1051llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1052 llvm::APInt Min, End; 1053 if (!getRangeForType(*this, Ty, Min, End, 1054 CGM.getCodeGenOpts().StrictEnums)) 1055 return 0; 1056 1057 llvm::MDBuilder MDHelper(getLLVMContext()); 1058 return MDHelper.createRange(Min, End); 1059} 1060 1061llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1062 unsigned Alignment, QualType Ty, 1063 llvm::MDNode *TBAAInfo, 1064 QualType TBAABaseType, 1065 uint64_t TBAAOffset) { 1066 // For better performance, handle vector loads differently. 1067 if (Ty->isVectorType()) { 1068 llvm::Value *V; 1069 const llvm::Type *EltTy = 1070 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1071 1072 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 1073 1074 // Handle vectors of size 3, like size 4 for better performance. 1075 if (VTy->getNumElements() == 3) { 1076 1077 // Bitcast to vec4 type. 1078 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1079 4); 1080 llvm::PointerType *ptVec4Ty = 1081 llvm::PointerType::get(vec4Ty, 1082 (cast<llvm::PointerType>( 1083 Addr->getType()))->getAddressSpace()); 1084 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1085 "castToVec4"); 1086 // Now load value. 1087 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1088 1089 // Shuffle vector to get vec3. 1090 llvm::Constant *Mask[] = { 1091 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1092 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1093 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1094 }; 1095 1096 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1097 V = Builder.CreateShuffleVector(LoadVal, 1098 llvm::UndefValue::get(vec4Ty), 1099 MaskV, "extractVec"); 1100 return EmitFromMemory(V, Ty); 1101 } 1102 } 1103 1104 // Atomic operations have to be done on integral types. 1105 if (Ty->isAtomicType()) { 1106 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1107 CharUnits::fromQuantity(Alignment), 1108 getContext(), TBAAInfo); 1109 return EmitAtomicLoad(lvalue).getScalarVal(); 1110 } 1111 1112 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1113 if (Volatile) 1114 Load->setVolatile(true); 1115 if (Alignment) 1116 Load->setAlignment(Alignment); 1117 if (TBAAInfo) { 1118 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1119 TBAAOffset); 1120 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1121 } 1122 1123 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1124 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1125 llvm::APInt Min, End; 1126 if (getRangeForType(*this, Ty, Min, End, true)) { 1127 --End; 1128 llvm::Value *Check; 1129 if (!Min) 1130 Check = Builder.CreateICmpULE( 1131 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1132 else { 1133 llvm::Value *Upper = Builder.CreateICmpSLE( 1134 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1135 llvm::Value *Lower = Builder.CreateICmpSGE( 1136 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1137 Check = Builder.CreateAnd(Upper, Lower); 1138 } 1139 // FIXME: Provide a SourceLocation. 1140 EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty), 1141 EmitCheckValue(Load), CRK_Recoverable); 1142 } 1143 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1144 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1145 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1146 1147 return EmitFromMemory(Load, Ty); 1148} 1149 1150llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1151 // Bool has a different representation in memory than in registers. 1152 if (hasBooleanRepresentation(Ty)) { 1153 // This should really always be an i1, but sometimes it's already 1154 // an i8, and it's awkward to track those cases down. 1155 if (Value->getType()->isIntegerTy(1)) 1156 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1157 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1158 "wrong value rep of bool"); 1159 } 1160 1161 return Value; 1162} 1163 1164llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1165 // Bool has a different representation in memory than in registers. 1166 if (hasBooleanRepresentation(Ty)) { 1167 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1168 "wrong value rep of bool"); 1169 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1170 } 1171 1172 return Value; 1173} 1174 1175void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1176 bool Volatile, unsigned Alignment, 1177 QualType Ty, 1178 llvm::MDNode *TBAAInfo, 1179 bool isInit, QualType TBAABaseType, 1180 uint64_t TBAAOffset) { 1181 1182 // Handle vectors differently to get better performance. 1183 if (Ty->isVectorType()) { 1184 llvm::Type *SrcTy = Value->getType(); 1185 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1186 // Handle vec3 special. 1187 if (VecTy->getNumElements() == 3) { 1188 llvm::LLVMContext &VMContext = getLLVMContext(); 1189 1190 // Our source is a vec3, do a shuffle vector to make it a vec4. 1191 SmallVector<llvm::Constant*, 4> Mask; 1192 Mask.push_back(llvm::ConstantInt::get( 1193 llvm::Type::getInt32Ty(VMContext), 1194 0)); 1195 Mask.push_back(llvm::ConstantInt::get( 1196 llvm::Type::getInt32Ty(VMContext), 1197 1)); 1198 Mask.push_back(llvm::ConstantInt::get( 1199 llvm::Type::getInt32Ty(VMContext), 1200 2)); 1201 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1202 1203 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1204 Value = Builder.CreateShuffleVector(Value, 1205 llvm::UndefValue::get(VecTy), 1206 MaskV, "extractVec"); 1207 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1208 } 1209 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1210 if (DstPtr->getElementType() != SrcTy) { 1211 llvm::Type *MemTy = 1212 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1213 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1214 } 1215 } 1216 1217 Value = EmitToMemory(Value, Ty); 1218 1219 if (Ty->isAtomicType()) { 1220 EmitAtomicStore(RValue::get(Value), 1221 LValue::MakeAddr(Addr, Ty, 1222 CharUnits::fromQuantity(Alignment), 1223 getContext(), TBAAInfo), 1224 isInit); 1225 return; 1226 } 1227 1228 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1229 if (Alignment) 1230 Store->setAlignment(Alignment); 1231 if (TBAAInfo) { 1232 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1233 TBAAOffset); 1234 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1235 } 1236} 1237 1238void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1239 bool isInit) { 1240 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1241 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1242 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1243 lvalue.getTBAAOffset()); 1244} 1245 1246/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1247/// method emits the address of the lvalue, then loads the result as an rvalue, 1248/// returning the rvalue. 1249RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1250 if (LV.isObjCWeak()) { 1251 // load of a __weak object. 1252 llvm::Value *AddrWeakObj = LV.getAddress(); 1253 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1254 AddrWeakObj)); 1255 } 1256 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1257 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1258 Object = EmitObjCConsumeObject(LV.getType(), Object); 1259 return RValue::get(Object); 1260 } 1261 1262 if (LV.isSimple()) { 1263 assert(!LV.getType()->isFunctionType()); 1264 1265 // Everything needs a load. 1266 return RValue::get(EmitLoadOfScalar(LV)); 1267 } 1268 1269 if (LV.isVectorElt()) { 1270 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1271 LV.isVolatileQualified()); 1272 Load->setAlignment(LV.getAlignment().getQuantity()); 1273 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1274 "vecext")); 1275 } 1276 1277 // If this is a reference to a subset of the elements of a vector, either 1278 // shuffle the input or extract/insert them as appropriate. 1279 if (LV.isExtVectorElt()) 1280 return EmitLoadOfExtVectorElementLValue(LV); 1281 1282 assert(LV.isBitField() && "Unknown LValue type!"); 1283 return EmitLoadOfBitfieldLValue(LV); 1284} 1285 1286RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1287 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1288 1289 // Get the output type. 1290 llvm::Type *ResLTy = ConvertType(LV.getType()); 1291 1292 llvm::Value *Ptr = LV.getBitFieldAddr(); 1293 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1294 "bf.load"); 1295 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1296 1297 if (Info.IsSigned) { 1298 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1299 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1300 if (HighBits) 1301 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1302 if (Info.Offset + HighBits) 1303 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1304 } else { 1305 if (Info.Offset) 1306 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1307 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1308 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1309 Info.Size), 1310 "bf.clear"); 1311 } 1312 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1313 1314 return RValue::get(Val); 1315} 1316 1317// If this is a reference to a subset of the elements of a vector, create an 1318// appropriate shufflevector. 1319RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1320 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1321 LV.isVolatileQualified()); 1322 Load->setAlignment(LV.getAlignment().getQuantity()); 1323 llvm::Value *Vec = Load; 1324 1325 const llvm::Constant *Elts = LV.getExtVectorElts(); 1326 1327 // If the result of the expression is a non-vector type, we must be extracting 1328 // a single element. Just codegen as an extractelement. 1329 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1330 if (!ExprVT) { 1331 unsigned InIdx = getAccessedFieldNo(0, Elts); 1332 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1333 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1334 } 1335 1336 // Always use shuffle vector to try to retain the original program structure 1337 unsigned NumResultElts = ExprVT->getNumElements(); 1338 1339 SmallVector<llvm::Constant*, 4> Mask; 1340 for (unsigned i = 0; i != NumResultElts; ++i) 1341 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1342 1343 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1344 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1345 MaskV); 1346 return RValue::get(Vec); 1347} 1348 1349 1350 1351/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1352/// lvalue, where both are guaranteed to the have the same type, and that type 1353/// is 'Ty'. 1354void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1355 if (!Dst.isSimple()) { 1356 if (Dst.isVectorElt()) { 1357 // Read/modify/write the vector, inserting the new element. 1358 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1359 Dst.isVolatileQualified()); 1360 Load->setAlignment(Dst.getAlignment().getQuantity()); 1361 llvm::Value *Vec = Load; 1362 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1363 Dst.getVectorIdx(), "vecins"); 1364 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1365 Dst.isVolatileQualified()); 1366 Store->setAlignment(Dst.getAlignment().getQuantity()); 1367 return; 1368 } 1369 1370 // If this is an update of extended vector elements, insert them as 1371 // appropriate. 1372 if (Dst.isExtVectorElt()) 1373 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1374 1375 assert(Dst.isBitField() && "Unknown LValue type"); 1376 return EmitStoreThroughBitfieldLValue(Src, Dst); 1377 } 1378 1379 // There's special magic for assigning into an ARC-qualified l-value. 1380 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1381 switch (Lifetime) { 1382 case Qualifiers::OCL_None: 1383 llvm_unreachable("present but none"); 1384 1385 case Qualifiers::OCL_ExplicitNone: 1386 // nothing special 1387 break; 1388 1389 case Qualifiers::OCL_Strong: 1390 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1391 return; 1392 1393 case Qualifiers::OCL_Weak: 1394 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1395 return; 1396 1397 case Qualifiers::OCL_Autoreleasing: 1398 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1399 Src.getScalarVal())); 1400 // fall into the normal path 1401 break; 1402 } 1403 } 1404 1405 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1406 // load of a __weak object. 1407 llvm::Value *LvalueDst = Dst.getAddress(); 1408 llvm::Value *src = Src.getScalarVal(); 1409 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1410 return; 1411 } 1412 1413 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1414 // load of a __strong object. 1415 llvm::Value *LvalueDst = Dst.getAddress(); 1416 llvm::Value *src = Src.getScalarVal(); 1417 if (Dst.isObjCIvar()) { 1418 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1419 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1420 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1421 llvm::Value *dst = RHS; 1422 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1423 llvm::Value *LHS = 1424 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1425 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1426 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1427 BytesBetween); 1428 } else if (Dst.isGlobalObjCRef()) { 1429 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1430 Dst.isThreadLocalRef()); 1431 } 1432 else 1433 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1434 return; 1435 } 1436 1437 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1438 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1439} 1440 1441void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1442 llvm::Value **Result) { 1443 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1444 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1445 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1446 1447 // Get the source value, truncated to the width of the bit-field. 1448 llvm::Value *SrcVal = Src.getScalarVal(); 1449 1450 // Cast the source to the storage type and shift it into place. 1451 SrcVal = Builder.CreateIntCast(SrcVal, 1452 Ptr->getType()->getPointerElementType(), 1453 /*IsSigned=*/false); 1454 llvm::Value *MaskedVal = SrcVal; 1455 1456 // See if there are other bits in the bitfield's storage we'll need to load 1457 // and mask together with source before storing. 1458 if (Info.StorageSize != Info.Size) { 1459 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1460 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1461 "bf.load"); 1462 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1463 1464 // Mask the source value as needed. 1465 if (!hasBooleanRepresentation(Dst.getType())) 1466 SrcVal = Builder.CreateAnd(SrcVal, 1467 llvm::APInt::getLowBitsSet(Info.StorageSize, 1468 Info.Size), 1469 "bf.value"); 1470 MaskedVal = SrcVal; 1471 if (Info.Offset) 1472 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1473 1474 // Mask out the original value. 1475 Val = Builder.CreateAnd(Val, 1476 ~llvm::APInt::getBitsSet(Info.StorageSize, 1477 Info.Offset, 1478 Info.Offset + Info.Size), 1479 "bf.clear"); 1480 1481 // Or together the unchanged values and the source value. 1482 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1483 } else { 1484 assert(Info.Offset == 0); 1485 } 1486 1487 // Write the new value back out. 1488 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1489 Dst.isVolatileQualified()); 1490 Store->setAlignment(Info.StorageAlignment); 1491 1492 // Return the new value of the bit-field, if requested. 1493 if (Result) { 1494 llvm::Value *ResultVal = MaskedVal; 1495 1496 // Sign extend the value if needed. 1497 if (Info.IsSigned) { 1498 assert(Info.Size <= Info.StorageSize); 1499 unsigned HighBits = Info.StorageSize - Info.Size; 1500 if (HighBits) { 1501 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1502 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1503 } 1504 } 1505 1506 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1507 "bf.result.cast"); 1508 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1509 } 1510} 1511 1512void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1513 LValue Dst) { 1514 // This access turns into a read/modify/write of the vector. Load the input 1515 // value now. 1516 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1517 Dst.isVolatileQualified()); 1518 Load->setAlignment(Dst.getAlignment().getQuantity()); 1519 llvm::Value *Vec = Load; 1520 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1521 1522 llvm::Value *SrcVal = Src.getScalarVal(); 1523 1524 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1525 unsigned NumSrcElts = VTy->getNumElements(); 1526 unsigned NumDstElts = 1527 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1528 if (NumDstElts == NumSrcElts) { 1529 // Use shuffle vector is the src and destination are the same number of 1530 // elements and restore the vector mask since it is on the side it will be 1531 // stored. 1532 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1533 for (unsigned i = 0; i != NumSrcElts; ++i) 1534 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1535 1536 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1537 Vec = Builder.CreateShuffleVector(SrcVal, 1538 llvm::UndefValue::get(Vec->getType()), 1539 MaskV); 1540 } else if (NumDstElts > NumSrcElts) { 1541 // Extended the source vector to the same length and then shuffle it 1542 // into the destination. 1543 // FIXME: since we're shuffling with undef, can we just use the indices 1544 // into that? This could be simpler. 1545 SmallVector<llvm::Constant*, 4> ExtMask; 1546 for (unsigned i = 0; i != NumSrcElts; ++i) 1547 ExtMask.push_back(Builder.getInt32(i)); 1548 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1549 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1550 llvm::Value *ExtSrcVal = 1551 Builder.CreateShuffleVector(SrcVal, 1552 llvm::UndefValue::get(SrcVal->getType()), 1553 ExtMaskV); 1554 // build identity 1555 SmallVector<llvm::Constant*, 4> Mask; 1556 for (unsigned i = 0; i != NumDstElts; ++i) 1557 Mask.push_back(Builder.getInt32(i)); 1558 1559 // modify when what gets shuffled in 1560 for (unsigned i = 0; i != NumSrcElts; ++i) 1561 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1562 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1563 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1564 } else { 1565 // We should never shorten the vector 1566 llvm_unreachable("unexpected shorten vector length"); 1567 } 1568 } else { 1569 // If the Src is a scalar (not a vector) it must be updating one element. 1570 unsigned InIdx = getAccessedFieldNo(0, Elts); 1571 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1572 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1573 } 1574 1575 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1576 Dst.isVolatileQualified()); 1577 Store->setAlignment(Dst.getAlignment().getQuantity()); 1578} 1579 1580// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1581// generating write-barries API. It is currently a global, ivar, 1582// or neither. 1583static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1584 LValue &LV, 1585 bool IsMemberAccess=false) { 1586 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1587 return; 1588 1589 if (isa<ObjCIvarRefExpr>(E)) { 1590 QualType ExpTy = E->getType(); 1591 if (IsMemberAccess && ExpTy->isPointerType()) { 1592 // If ivar is a structure pointer, assigning to field of 1593 // this struct follows gcc's behavior and makes it a non-ivar 1594 // writer-barrier conservatively. 1595 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1596 if (ExpTy->isRecordType()) { 1597 LV.setObjCIvar(false); 1598 return; 1599 } 1600 } 1601 LV.setObjCIvar(true); 1602 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1603 LV.setBaseIvarExp(Exp->getBase()); 1604 LV.setObjCArray(E->getType()->isArrayType()); 1605 return; 1606 } 1607 1608 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1609 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1610 if (VD->hasGlobalStorage()) { 1611 LV.setGlobalObjCRef(true); 1612 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1613 } 1614 } 1615 LV.setObjCArray(E->getType()->isArrayType()); 1616 return; 1617 } 1618 1619 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1620 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1621 return; 1622 } 1623 1624 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1625 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1626 if (LV.isObjCIvar()) { 1627 // If cast is to a structure pointer, follow gcc's behavior and make it 1628 // a non-ivar write-barrier. 1629 QualType ExpTy = E->getType(); 1630 if (ExpTy->isPointerType()) 1631 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1632 if (ExpTy->isRecordType()) 1633 LV.setObjCIvar(false); 1634 } 1635 return; 1636 } 1637 1638 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1639 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1640 return; 1641 } 1642 1643 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1644 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1645 return; 1646 } 1647 1648 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1649 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1650 return; 1651 } 1652 1653 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1654 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1655 return; 1656 } 1657 1658 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1659 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1660 if (LV.isObjCIvar() && !LV.isObjCArray()) 1661 // Using array syntax to assigning to what an ivar points to is not 1662 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1663 LV.setObjCIvar(false); 1664 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1665 // Using array syntax to assigning to what global points to is not 1666 // same as assigning to the global itself. {id *G;} G[i] = 0; 1667 LV.setGlobalObjCRef(false); 1668 return; 1669 } 1670 1671 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1672 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1673 // We don't know if member is an 'ivar', but this flag is looked at 1674 // only in the context of LV.isObjCIvar(). 1675 LV.setObjCArray(E->getType()->isArrayType()); 1676 return; 1677 } 1678} 1679 1680static llvm::Value * 1681EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1682 llvm::Value *V, llvm::Type *IRType, 1683 StringRef Name = StringRef()) { 1684 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1685 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1686} 1687 1688static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1689 const Expr *E, const VarDecl *VD) { 1690 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1691 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1692 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1693 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1694 QualType T = E->getType(); 1695 LValue LV; 1696 if (VD->getType()->isReferenceType()) { 1697 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1698 LI->setAlignment(Alignment.getQuantity()); 1699 V = LI; 1700 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1701 } else { 1702 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1703 } 1704 setObjCGCLValueClass(CGF.getContext(), E, LV); 1705 return LV; 1706} 1707 1708static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1709 const Expr *E, const FunctionDecl *FD) { 1710 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1711 if (!FD->hasPrototype()) { 1712 if (const FunctionProtoType *Proto = 1713 FD->getType()->getAs<FunctionProtoType>()) { 1714 // Ugly case: for a K&R-style definition, the type of the definition 1715 // isn't the same as the type of a use. Correct for this with a 1716 // bitcast. 1717 QualType NoProtoType = 1718 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1719 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1720 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1721 } 1722 } 1723 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1724 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1725} 1726 1727static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1728 llvm::Value *ThisValue) { 1729 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1730 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1731 return CGF.EmitLValueForField(LV, FD); 1732} 1733 1734LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1735 const NamedDecl *ND = E->getDecl(); 1736 CharUnits Alignment = getContext().getDeclAlign(ND); 1737 QualType T = E->getType(); 1738 1739 // A DeclRefExpr for a reference initialized by a constant expression can 1740 // appear without being odr-used. Directly emit the constant initializer. 1741 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1742 const Expr *Init = VD->getAnyInitializer(VD); 1743 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1744 VD->isUsableInConstantExpressions(getContext()) && 1745 VD->checkInitIsICE()) { 1746 llvm::Constant *Val = 1747 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1748 assert(Val && "failed to emit reference constant expression"); 1749 // FIXME: Eventually we will want to emit vector element references. 1750 return MakeAddrLValue(Val, T, Alignment); 1751 } 1752 } 1753 1754 // FIXME: We should be able to assert this for FunctionDecls as well! 1755 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1756 // those with a valid source location. 1757 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1758 !E->getLocation().isValid()) && 1759 "Should not use decl without marking it used!"); 1760 1761 if (ND->hasAttr<WeakRefAttr>()) { 1762 const ValueDecl *VD = cast<ValueDecl>(ND); 1763 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1764 return MakeAddrLValue(Aliasee, T, Alignment); 1765 } 1766 1767 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1768 // Check if this is a global variable. 1769 if (VD->hasLinkage() || VD->isStaticDataMember()) { 1770 // If it's thread_local, emit a call to its wrapper function instead. 1771 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1772 return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E); 1773 return EmitGlobalVarDeclLValue(*this, E, VD); 1774 } 1775 1776 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1777 1778 llvm::Value *V = LocalDeclMap.lookup(VD); 1779 if (!V && VD->isStaticLocal()) 1780 V = CGM.getStaticLocalDeclAddress(VD); 1781 1782 // Use special handling for lambdas. 1783 if (!V) { 1784 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1785 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1786 } else if (CapturedStmtInfo) { 1787 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1788 return EmitCapturedFieldLValue(*this, FD, 1789 CapturedStmtInfo->getContextValue()); 1790 } 1791 1792 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1793 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1794 T, Alignment); 1795 } 1796 1797 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1798 1799 if (isBlockVariable) 1800 V = BuildBlockByrefAddress(V, VD); 1801 1802 LValue LV; 1803 if (VD->getType()->isReferenceType()) { 1804 llvm::LoadInst *LI = Builder.CreateLoad(V); 1805 LI->setAlignment(Alignment.getQuantity()); 1806 V = LI; 1807 LV = MakeNaturalAlignAddrLValue(V, T); 1808 } else { 1809 LV = MakeAddrLValue(V, T, Alignment); 1810 } 1811 1812 bool isLocalStorage = VD->hasLocalStorage(); 1813 1814 bool NonGCable = isLocalStorage && 1815 !VD->getType()->isReferenceType() && 1816 !isBlockVariable; 1817 if (NonGCable) { 1818 LV.getQuals().removeObjCGCAttr(); 1819 LV.setNonGC(true); 1820 } 1821 1822 bool isImpreciseLifetime = 1823 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1824 if (isImpreciseLifetime) 1825 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1826 setObjCGCLValueClass(getContext(), E, LV); 1827 return LV; 1828 } 1829 1830 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1831 return EmitFunctionDeclLValue(*this, E, fn); 1832 1833 llvm_unreachable("Unhandled DeclRefExpr"); 1834} 1835 1836LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1837 // __extension__ doesn't affect lvalue-ness. 1838 if (E->getOpcode() == UO_Extension) 1839 return EmitLValue(E->getSubExpr()); 1840 1841 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1842 switch (E->getOpcode()) { 1843 default: llvm_unreachable("Unknown unary operator lvalue!"); 1844 case UO_Deref: { 1845 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1846 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1847 1848 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1849 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1850 1851 // We should not generate __weak write barrier on indirect reference 1852 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1853 // But, we continue to generate __strong write barrier on indirect write 1854 // into a pointer to object. 1855 if (getLangOpts().ObjC1 && 1856 getLangOpts().getGC() != LangOptions::NonGC && 1857 LV.isObjCWeak()) 1858 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1859 return LV; 1860 } 1861 case UO_Real: 1862 case UO_Imag: { 1863 LValue LV = EmitLValue(E->getSubExpr()); 1864 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1865 llvm::Value *Addr = LV.getAddress(); 1866 1867 // __real is valid on scalars. This is a faster way of testing that. 1868 // __imag can only produce an rvalue on scalars. 1869 if (E->getOpcode() == UO_Real && 1870 !cast<llvm::PointerType>(Addr->getType()) 1871 ->getElementType()->isStructTy()) { 1872 assert(E->getSubExpr()->getType()->isArithmeticType()); 1873 return LV; 1874 } 1875 1876 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1877 1878 unsigned Idx = E->getOpcode() == UO_Imag; 1879 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1880 Idx, "idx"), 1881 ExprTy); 1882 } 1883 case UO_PreInc: 1884 case UO_PreDec: { 1885 LValue LV = EmitLValue(E->getSubExpr()); 1886 bool isInc = E->getOpcode() == UO_PreInc; 1887 1888 if (E->getType()->isAnyComplexType()) 1889 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1890 else 1891 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1892 return LV; 1893 } 1894 } 1895} 1896 1897LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1898 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1899 E->getType()); 1900} 1901 1902LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1903 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1904 E->getType()); 1905} 1906 1907static llvm::Constant* 1908GetAddrOfConstantWideString(StringRef Str, 1909 const char *GlobalName, 1910 ASTContext &Context, 1911 QualType Ty, SourceLocation Loc, 1912 CodeGenModule &CGM) { 1913 1914 StringLiteral *SL = StringLiteral::Create(Context, 1915 Str, 1916 StringLiteral::Wide, 1917 /*Pascal = */false, 1918 Ty, Loc); 1919 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1920 llvm::GlobalVariable *GV = 1921 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1922 !CGM.getLangOpts().WritableStrings, 1923 llvm::GlobalValue::PrivateLinkage, 1924 C, GlobalName); 1925 const unsigned WideAlignment = 1926 Context.getTypeAlignInChars(Ty).getQuantity(); 1927 GV->setAlignment(WideAlignment); 1928 return GV; 1929} 1930 1931static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1932 SmallString<32>& Target) { 1933 Target.resize(CharByteWidth * (Source.size() + 1)); 1934 char *ResultPtr = &Target[0]; 1935 const UTF8 *ErrorPtr; 1936 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1937 (void)success; 1938 assert(success); 1939 Target.resize(ResultPtr - &Target[0]); 1940} 1941 1942LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1943 switch (E->getIdentType()) { 1944 default: 1945 return EmitUnsupportedLValue(E, "predefined expression"); 1946 1947 case PredefinedExpr::Func: 1948 case PredefinedExpr::Function: 1949 case PredefinedExpr::LFunction: 1950 case PredefinedExpr::PrettyFunction: { 1951 unsigned IdentType = E->getIdentType(); 1952 std::string GlobalVarName; 1953 1954 switch (IdentType) { 1955 default: llvm_unreachable("Invalid type"); 1956 case PredefinedExpr::Func: 1957 GlobalVarName = "__func__."; 1958 break; 1959 case PredefinedExpr::Function: 1960 GlobalVarName = "__FUNCTION__."; 1961 break; 1962 case PredefinedExpr::LFunction: 1963 GlobalVarName = "L__FUNCTION__."; 1964 break; 1965 case PredefinedExpr::PrettyFunction: 1966 GlobalVarName = "__PRETTY_FUNCTION__."; 1967 break; 1968 } 1969 1970 StringRef FnName = CurFn->getName(); 1971 if (FnName.startswith("\01")) 1972 FnName = FnName.substr(1); 1973 GlobalVarName += FnName; 1974 1975 const Decl *CurDecl = CurCodeDecl; 1976 if (CurDecl == 0) 1977 CurDecl = getContext().getTranslationUnitDecl(); 1978 1979 std::string FunctionName = 1980 (isa<BlockDecl>(CurDecl) 1981 ? FnName.str() 1982 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1983 CurDecl)); 1984 1985 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1986 llvm::Constant *C; 1987 if (ElemType->isWideCharType()) { 1988 SmallString<32> RawChars; 1989 ConvertUTF8ToWideString( 1990 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1991 FunctionName, RawChars); 1992 C = GetAddrOfConstantWideString(RawChars, 1993 GlobalVarName.c_str(), 1994 getContext(), 1995 E->getType(), 1996 E->getLocation(), 1997 CGM); 1998 } else { 1999 C = CGM.GetAddrOfConstantCString(FunctionName, 2000 GlobalVarName.c_str(), 2001 1); 2002 } 2003 return MakeAddrLValue(C, E->getType()); 2004 } 2005 } 2006} 2007 2008/// Emit a type description suitable for use by a runtime sanitizer library. The 2009/// format of a type descriptor is 2010/// 2011/// \code 2012/// { i16 TypeKind, i16 TypeInfo } 2013/// \endcode 2014/// 2015/// followed by an array of i8 containing the type name. TypeKind is 0 for an 2016/// integer, 1 for a floating point value, and -1 for anything else. 2017llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2018 // FIXME: Only emit each type's descriptor once. 2019 uint16_t TypeKind = -1; 2020 uint16_t TypeInfo = 0; 2021 2022 if (T->isIntegerType()) { 2023 TypeKind = 0; 2024 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2025 (T->isSignedIntegerType() ? 1 : 0); 2026 } else if (T->isFloatingType()) { 2027 TypeKind = 1; 2028 TypeInfo = getContext().getTypeSize(T); 2029 } 2030 2031 // Format the type name as if for a diagnostic, including quotes and 2032 // optionally an 'aka'. 2033 SmallString<32> Buffer; 2034 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2035 (intptr_t)T.getAsOpaquePtr(), 2036 0, 0, 0, 0, 0, 0, Buffer, 2037 ArrayRef<intptr_t>()); 2038 2039 llvm::Constant *Components[] = { 2040 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2041 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2042 }; 2043 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2044 2045 llvm::GlobalVariable *GV = 2046 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 2047 /*isConstant=*/true, 2048 llvm::GlobalVariable::PrivateLinkage, 2049 Descriptor); 2050 GV->setUnnamedAddr(true); 2051 return GV; 2052} 2053 2054llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2055 llvm::Type *TargetTy = IntPtrTy; 2056 2057 // Floating-point types which fit into intptr_t are bitcast to integers 2058 // and then passed directly (after zero-extension, if necessary). 2059 if (V->getType()->isFloatingPointTy()) { 2060 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2061 if (Bits <= TargetTy->getIntegerBitWidth()) 2062 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2063 Bits)); 2064 } 2065 2066 // Integers which fit in intptr_t are zero-extended and passed directly. 2067 if (V->getType()->isIntegerTy() && 2068 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2069 return Builder.CreateZExt(V, TargetTy); 2070 2071 // Pointers are passed directly, everything else is passed by address. 2072 if (!V->getType()->isPointerTy()) { 2073 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2074 Builder.CreateStore(V, Ptr); 2075 V = Ptr; 2076 } 2077 return Builder.CreatePtrToInt(V, TargetTy); 2078} 2079 2080/// \brief Emit a representation of a SourceLocation for passing to a handler 2081/// in a sanitizer runtime library. The format for this data is: 2082/// \code 2083/// struct SourceLocation { 2084/// const char *Filename; 2085/// int32_t Line, Column; 2086/// }; 2087/// \endcode 2088/// For an invalid SourceLocation, the Filename pointer is null. 2089llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2090 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2091 2092 llvm::Constant *Data[] = { 2093 // FIXME: Only emit each file name once. 2094 PLoc.isValid() ? cast<llvm::Constant>( 2095 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2096 : llvm::Constant::getNullValue(Int8PtrTy), 2097 Builder.getInt32(PLoc.getLine()), 2098 Builder.getInt32(PLoc.getColumn()) 2099 }; 2100 2101 return llvm::ConstantStruct::getAnon(Data); 2102} 2103 2104void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2105 ArrayRef<llvm::Constant *> StaticArgs, 2106 ArrayRef<llvm::Value *> DynamicArgs, 2107 CheckRecoverableKind RecoverKind) { 2108 assert(SanOpts != &SanitizerOptions::Disabled); 2109 2110 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2111 assert (RecoverKind != CRK_AlwaysRecoverable && 2112 "Runtime call required for AlwaysRecoverable kind!"); 2113 return EmitTrapCheck(Checked); 2114 } 2115 2116 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2117 2118 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2119 2120 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2121 2122 // Give hint that we very much don't expect to execute the handler 2123 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2124 llvm::MDBuilder MDHelper(getLLVMContext()); 2125 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2126 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2127 2128 EmitBlock(Handler); 2129 2130 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2131 llvm::GlobalValue *InfoPtr = 2132 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2133 llvm::GlobalVariable::PrivateLinkage, Info); 2134 InfoPtr->setUnnamedAddr(true); 2135 2136 SmallVector<llvm::Value *, 4> Args; 2137 SmallVector<llvm::Type *, 4> ArgTypes; 2138 Args.reserve(DynamicArgs.size() + 1); 2139 ArgTypes.reserve(DynamicArgs.size() + 1); 2140 2141 // Handler functions take an i8* pointing to the (handler-specific) static 2142 // information block, followed by a sequence of intptr_t arguments 2143 // representing operand values. 2144 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2145 ArgTypes.push_back(Int8PtrTy); 2146 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2147 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2148 ArgTypes.push_back(IntPtrTy); 2149 } 2150 2151 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2152 ((RecoverKind == CRK_Recoverable) && 2153 CGM.getCodeGenOpts().SanitizeRecover); 2154 2155 llvm::FunctionType *FnType = 2156 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2157 llvm::AttrBuilder B; 2158 if (!Recover) { 2159 B.addAttribute(llvm::Attribute::NoReturn) 2160 .addAttribute(llvm::Attribute::NoUnwind); 2161 } 2162 B.addAttribute(llvm::Attribute::UWTable); 2163 2164 // Checks that have two variants use a suffix to differentiate them 2165 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2166 !CGM.getCodeGenOpts().SanitizeRecover; 2167 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2168 (NeedsAbortSuffix? "_abort" : "")).str(); 2169 llvm::Value *Fn = 2170 CGM.CreateRuntimeFunction(FnType, FunctionName, 2171 llvm::AttributeSet::get(getLLVMContext(), 2172 llvm::AttributeSet::FunctionIndex, 2173 B)); 2174 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2175 if (Recover) { 2176 Builder.CreateBr(Cont); 2177 } else { 2178 HandlerCall->setDoesNotReturn(); 2179 Builder.CreateUnreachable(); 2180 } 2181 2182 EmitBlock(Cont); 2183} 2184 2185void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2186 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2187 2188 // If we're optimizing, collapse all calls to trap down to just one per 2189 // function to save on code size. 2190 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2191 TrapBB = createBasicBlock("trap"); 2192 Builder.CreateCondBr(Checked, Cont, TrapBB); 2193 EmitBlock(TrapBB); 2194 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2195 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2196 TrapCall->setDoesNotReturn(); 2197 TrapCall->setDoesNotThrow(); 2198 Builder.CreateUnreachable(); 2199 } else { 2200 Builder.CreateCondBr(Checked, Cont, TrapBB); 2201 } 2202 2203 EmitBlock(Cont); 2204} 2205 2206/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2207/// array to pointer, return the array subexpression. 2208static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2209 // If this isn't just an array->pointer decay, bail out. 2210 const CastExpr *CE = dyn_cast<CastExpr>(E); 2211 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2212 return 0; 2213 2214 // If this is a decay from variable width array, bail out. 2215 const Expr *SubExpr = CE->getSubExpr(); 2216 if (SubExpr->getType()->isVariableArrayType()) 2217 return 0; 2218 2219 return SubExpr; 2220} 2221 2222LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2223 bool Accessed) { 2224 // The index must always be an integer, which is not an aggregate. Emit it. 2225 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2226 QualType IdxTy = E->getIdx()->getType(); 2227 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2228 2229 if (SanOpts->Bounds) 2230 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2231 2232 // If the base is a vector type, then we are forming a vector element lvalue 2233 // with this subscript. 2234 if (E->getBase()->getType()->isVectorType()) { 2235 // Emit the vector as an lvalue to get its address. 2236 LValue LHS = EmitLValue(E->getBase()); 2237 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2238 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2239 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2240 E->getBase()->getType(), LHS.getAlignment()); 2241 } 2242 2243 // Extend or truncate the index type to 32 or 64-bits. 2244 if (Idx->getType() != IntPtrTy) 2245 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2246 2247 // We know that the pointer points to a type of the correct size, unless the 2248 // size is a VLA or Objective-C interface. 2249 llvm::Value *Address = 0; 2250 CharUnits ArrayAlignment; 2251 if (const VariableArrayType *vla = 2252 getContext().getAsVariableArrayType(E->getType())) { 2253 // The base must be a pointer, which is not an aggregate. Emit 2254 // it. It needs to be emitted first in case it's what captures 2255 // the VLA bounds. 2256 Address = EmitScalarExpr(E->getBase()); 2257 2258 // The element count here is the total number of non-VLA elements. 2259 llvm::Value *numElements = getVLASize(vla).first; 2260 2261 // Effectively, the multiply by the VLA size is part of the GEP. 2262 // GEP indexes are signed, and scaling an index isn't permitted to 2263 // signed-overflow, so we use the same semantics for our explicit 2264 // multiply. We suppress this if overflow is not undefined behavior. 2265 if (getLangOpts().isSignedOverflowDefined()) { 2266 Idx = Builder.CreateMul(Idx, numElements); 2267 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2268 } else { 2269 Idx = Builder.CreateNSWMul(Idx, numElements); 2270 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2271 } 2272 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2273 // Indexing over an interface, as in "NSString *P; P[4];" 2274 llvm::Value *InterfaceSize = 2275 llvm::ConstantInt::get(Idx->getType(), 2276 getContext().getTypeSizeInChars(OIT).getQuantity()); 2277 2278 Idx = Builder.CreateMul(Idx, InterfaceSize); 2279 2280 // The base must be a pointer, which is not an aggregate. Emit it. 2281 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2282 Address = EmitCastToVoidPtr(Base); 2283 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2284 Address = Builder.CreateBitCast(Address, Base->getType()); 2285 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2286 // If this is A[i] where A is an array, the frontend will have decayed the 2287 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2288 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2289 // "gep x, i" here. Emit one "gep A, 0, i". 2290 assert(Array->getType()->isArrayType() && 2291 "Array to pointer decay must have array source type!"); 2292 LValue ArrayLV; 2293 // For simple multidimensional array indexing, set the 'accessed' flag for 2294 // better bounds-checking of the base expression. 2295 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2296 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2297 else 2298 ArrayLV = EmitLValue(Array); 2299 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2300 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2301 llvm::Value *Args[] = { Zero, Idx }; 2302 2303 // Propagate the alignment from the array itself to the result. 2304 ArrayAlignment = ArrayLV.getAlignment(); 2305 2306 if (getLangOpts().isSignedOverflowDefined()) 2307 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2308 else 2309 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2310 } else { 2311 // The base must be a pointer, which is not an aggregate. Emit it. 2312 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2313 if (getLangOpts().isSignedOverflowDefined()) 2314 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2315 else 2316 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2317 } 2318 2319 QualType T = E->getBase()->getType()->getPointeeType(); 2320 assert(!T.isNull() && 2321 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2322 2323 2324 // Limit the alignment to that of the result type. 2325 LValue LV; 2326 if (!ArrayAlignment.isZero()) { 2327 CharUnits Align = getContext().getTypeAlignInChars(T); 2328 ArrayAlignment = std::min(Align, ArrayAlignment); 2329 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2330 } else { 2331 LV = MakeNaturalAlignAddrLValue(Address, T); 2332 } 2333 2334 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2335 2336 if (getLangOpts().ObjC1 && 2337 getLangOpts().getGC() != LangOptions::NonGC) { 2338 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2339 setObjCGCLValueClass(getContext(), E, LV); 2340 } 2341 return LV; 2342} 2343 2344static 2345llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2346 SmallVector<unsigned, 4> &Elts) { 2347 SmallVector<llvm::Constant*, 4> CElts; 2348 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2349 CElts.push_back(Builder.getInt32(Elts[i])); 2350 2351 return llvm::ConstantVector::get(CElts); 2352} 2353 2354LValue CodeGenFunction:: 2355EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2356 // Emit the base vector as an l-value. 2357 LValue Base; 2358 2359 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2360 if (E->isArrow()) { 2361 // If it is a pointer to a vector, emit the address and form an lvalue with 2362 // it. 2363 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2364 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2365 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2366 Base.getQuals().removeObjCGCAttr(); 2367 } else if (E->getBase()->isGLValue()) { 2368 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2369 // emit the base as an lvalue. 2370 assert(E->getBase()->getType()->isVectorType()); 2371 Base = EmitLValue(E->getBase()); 2372 } else { 2373 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2374 assert(E->getBase()->getType()->isVectorType() && 2375 "Result must be a vector"); 2376 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2377 2378 // Store the vector to memory (because LValue wants an address). 2379 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2380 Builder.CreateStore(Vec, VecMem); 2381 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2382 } 2383 2384 QualType type = 2385 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2386 2387 // Encode the element access list into a vector of unsigned indices. 2388 SmallVector<unsigned, 4> Indices; 2389 E->getEncodedElementAccess(Indices); 2390 2391 if (Base.isSimple()) { 2392 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2393 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2394 Base.getAlignment()); 2395 } 2396 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2397 2398 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2399 SmallVector<llvm::Constant *, 4> CElts; 2400 2401 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2402 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2403 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2404 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2405 Base.getAlignment()); 2406} 2407 2408LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2409 Expr *BaseExpr = E->getBase(); 2410 2411 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2412 LValue BaseLV; 2413 if (E->isArrow()) { 2414 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2415 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2416 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2417 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2418 } else 2419 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2420 2421 NamedDecl *ND = E->getMemberDecl(); 2422 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2423 LValue LV = EmitLValueForField(BaseLV, Field); 2424 setObjCGCLValueClass(getContext(), E, LV); 2425 return LV; 2426 } 2427 2428 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2429 return EmitGlobalVarDeclLValue(*this, E, VD); 2430 2431 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2432 return EmitFunctionDeclLValue(*this, E, FD); 2433 2434 llvm_unreachable("Unhandled member declaration!"); 2435} 2436 2437/// Given that we are currently emitting a lambda, emit an l-value for 2438/// one of its members. 2439LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2440 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2441 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2442 QualType LambdaTagType = 2443 getContext().getTagDeclType(Field->getParent()); 2444 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2445 return EmitLValueForField(LambdaLV, Field); 2446} 2447 2448LValue CodeGenFunction::EmitLValueForField(LValue base, 2449 const FieldDecl *field) { 2450 if (field->isBitField()) { 2451 const CGRecordLayout &RL = 2452 CGM.getTypes().getCGRecordLayout(field->getParent()); 2453 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2454 llvm::Value *Addr = base.getAddress(); 2455 unsigned Idx = RL.getLLVMFieldNo(field); 2456 if (Idx != 0) 2457 // For structs, we GEP to the field that the record layout suggests. 2458 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2459 // Get the access type. 2460 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2461 getLLVMContext(), Info.StorageSize, 2462 CGM.getContext().getTargetAddressSpace(base.getType())); 2463 if (Addr->getType() != PtrTy) 2464 Addr = Builder.CreateBitCast(Addr, PtrTy); 2465 2466 QualType fieldType = 2467 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2468 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2469 } 2470 2471 const RecordDecl *rec = field->getParent(); 2472 QualType type = field->getType(); 2473 CharUnits alignment = getContext().getDeclAlign(field); 2474 2475 // FIXME: It should be impossible to have an LValue without alignment for a 2476 // complete type. 2477 if (!base.getAlignment().isZero()) 2478 alignment = std::min(alignment, base.getAlignment()); 2479 2480 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2481 2482 llvm::Value *addr = base.getAddress(); 2483 unsigned cvr = base.getVRQualifiers(); 2484 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2485 if (rec->isUnion()) { 2486 // For unions, there is no pointer adjustment. 2487 assert(!type->isReferenceType() && "union has reference member"); 2488 // TODO: handle path-aware TBAA for union. 2489 TBAAPath = false; 2490 } else { 2491 // For structs, we GEP to the field that the record layout suggests. 2492 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2493 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2494 2495 // If this is a reference field, load the reference right now. 2496 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2497 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2498 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2499 load->setAlignment(alignment.getQuantity()); 2500 2501 // Loading the reference will disable path-aware TBAA. 2502 TBAAPath = false; 2503 if (CGM.shouldUseTBAA()) { 2504 llvm::MDNode *tbaa; 2505 if (mayAlias) 2506 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2507 else 2508 tbaa = CGM.getTBAAInfo(type); 2509 CGM.DecorateInstruction(load, tbaa); 2510 } 2511 2512 addr = load; 2513 mayAlias = false; 2514 type = refType->getPointeeType(); 2515 if (type->isIncompleteType()) 2516 alignment = CharUnits(); 2517 else 2518 alignment = getContext().getTypeAlignInChars(type); 2519 cvr = 0; // qualifiers don't recursively apply to referencee 2520 } 2521 } 2522 2523 // Make sure that the address is pointing to the right type. This is critical 2524 // for both unions and structs. A union needs a bitcast, a struct element 2525 // will need a bitcast if the LLVM type laid out doesn't match the desired 2526 // type. 2527 addr = EmitBitCastOfLValueToProperType(*this, addr, 2528 CGM.getTypes().ConvertTypeForMem(type), 2529 field->getName()); 2530 2531 if (field->hasAttr<AnnotateAttr>()) 2532 addr = EmitFieldAnnotations(field, addr); 2533 2534 LValue LV = MakeAddrLValue(addr, type, alignment); 2535 LV.getQuals().addCVRQualifiers(cvr); 2536 if (TBAAPath) { 2537 const ASTRecordLayout &Layout = 2538 getContext().getASTRecordLayout(field->getParent()); 2539 // Set the base type to be the base type of the base LValue and 2540 // update offset to be relative to the base type. 2541 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2542 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2543 Layout.getFieldOffset(field->getFieldIndex()) / 2544 getContext().getCharWidth()); 2545 } 2546 2547 // __weak attribute on a field is ignored. 2548 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2549 LV.getQuals().removeObjCGCAttr(); 2550 2551 // Fields of may_alias structs act like 'char' for TBAA purposes. 2552 // FIXME: this should get propagated down through anonymous structs 2553 // and unions. 2554 if (mayAlias && LV.getTBAAInfo()) 2555 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2556 2557 return LV; 2558} 2559 2560LValue 2561CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2562 const FieldDecl *Field) { 2563 QualType FieldType = Field->getType(); 2564 2565 if (!FieldType->isReferenceType()) 2566 return EmitLValueForField(Base, Field); 2567 2568 const CGRecordLayout &RL = 2569 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2570 unsigned idx = RL.getLLVMFieldNo(Field); 2571 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2572 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2573 2574 // Make sure that the address is pointing to the right type. This is critical 2575 // for both unions and structs. A union needs a bitcast, a struct element 2576 // will need a bitcast if the LLVM type laid out doesn't match the desired 2577 // type. 2578 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2579 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2580 2581 CharUnits Alignment = getContext().getDeclAlign(Field); 2582 2583 // FIXME: It should be impossible to have an LValue without alignment for a 2584 // complete type. 2585 if (!Base.getAlignment().isZero()) 2586 Alignment = std::min(Alignment, Base.getAlignment()); 2587 2588 return MakeAddrLValue(V, FieldType, Alignment); 2589} 2590 2591LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2592 if (E->isFileScope()) { 2593 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2594 return MakeAddrLValue(GlobalPtr, E->getType()); 2595 } 2596 if (E->getType()->isVariablyModifiedType()) 2597 // make sure to emit the VLA size. 2598 EmitVariablyModifiedType(E->getType()); 2599 2600 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2601 const Expr *InitExpr = E->getInitializer(); 2602 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2603 2604 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2605 /*Init*/ true); 2606 2607 return Result; 2608} 2609 2610LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2611 if (!E->isGLValue()) 2612 // Initializing an aggregate temporary in C++11: T{...}. 2613 return EmitAggExprToLValue(E); 2614 2615 // An lvalue initializer list must be initializing a reference. 2616 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2617 return EmitLValue(E->getInit(0)); 2618} 2619 2620LValue CodeGenFunction:: 2621EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2622 if (!expr->isGLValue()) { 2623 // ?: here should be an aggregate. 2624 assert(hasAggregateEvaluationKind(expr->getType()) && 2625 "Unexpected conditional operator!"); 2626 return EmitAggExprToLValue(expr); 2627 } 2628 2629 OpaqueValueMapping binding(*this, expr); 2630 2631 const Expr *condExpr = expr->getCond(); 2632 bool CondExprBool; 2633 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2634 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2635 if (!CondExprBool) std::swap(live, dead); 2636 2637 if (!ContainsLabel(dead)) 2638 return EmitLValue(live); 2639 } 2640 2641 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2642 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2643 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2644 2645 ConditionalEvaluation eval(*this); 2646 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2647 2648 // Any temporaries created here are conditional. 2649 EmitBlock(lhsBlock); 2650 eval.begin(*this); 2651 LValue lhs = EmitLValue(expr->getTrueExpr()); 2652 eval.end(*this); 2653 2654 if (!lhs.isSimple()) 2655 return EmitUnsupportedLValue(expr, "conditional operator"); 2656 2657 lhsBlock = Builder.GetInsertBlock(); 2658 Builder.CreateBr(contBlock); 2659 2660 // Any temporaries created here are conditional. 2661 EmitBlock(rhsBlock); 2662 eval.begin(*this); 2663 LValue rhs = EmitLValue(expr->getFalseExpr()); 2664 eval.end(*this); 2665 if (!rhs.isSimple()) 2666 return EmitUnsupportedLValue(expr, "conditional operator"); 2667 rhsBlock = Builder.GetInsertBlock(); 2668 2669 EmitBlock(contBlock); 2670 2671 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2672 "cond-lvalue"); 2673 phi->addIncoming(lhs.getAddress(), lhsBlock); 2674 phi->addIncoming(rhs.getAddress(), rhsBlock); 2675 return MakeAddrLValue(phi, expr->getType()); 2676} 2677 2678/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2679/// type. If the cast is to a reference, we can have the usual lvalue result, 2680/// otherwise if a cast is needed by the code generator in an lvalue context, 2681/// then it must mean that we need the address of an aggregate in order to 2682/// access one of its members. This can happen for all the reasons that casts 2683/// are permitted with aggregate result, including noop aggregate casts, and 2684/// cast from scalar to union. 2685LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2686 switch (E->getCastKind()) { 2687 case CK_ToVoid: 2688 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2689 2690 case CK_Dependent: 2691 llvm_unreachable("dependent cast kind in IR gen!"); 2692 2693 case CK_BuiltinFnToFnPtr: 2694 llvm_unreachable("builtin functions are handled elsewhere"); 2695 2696 // These two casts are currently treated as no-ops, although they could 2697 // potentially be real operations depending on the target's ABI. 2698 case CK_NonAtomicToAtomic: 2699 case CK_AtomicToNonAtomic: 2700 2701 case CK_NoOp: 2702 case CK_LValueToRValue: 2703 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2704 || E->getType()->isRecordType()) 2705 return EmitLValue(E->getSubExpr()); 2706 // Fall through to synthesize a temporary. 2707 2708 case CK_BitCast: 2709 case CK_ArrayToPointerDecay: 2710 case CK_FunctionToPointerDecay: 2711 case CK_NullToMemberPointer: 2712 case CK_NullToPointer: 2713 case CK_IntegralToPointer: 2714 case CK_PointerToIntegral: 2715 case CK_PointerToBoolean: 2716 case CK_VectorSplat: 2717 case CK_IntegralCast: 2718 case CK_IntegralToBoolean: 2719 case CK_IntegralToFloating: 2720 case CK_FloatingToIntegral: 2721 case CK_FloatingToBoolean: 2722 case CK_FloatingCast: 2723 case CK_FloatingRealToComplex: 2724 case CK_FloatingComplexToReal: 2725 case CK_FloatingComplexToBoolean: 2726 case CK_FloatingComplexCast: 2727 case CK_FloatingComplexToIntegralComplex: 2728 case CK_IntegralRealToComplex: 2729 case CK_IntegralComplexToReal: 2730 case CK_IntegralComplexToBoolean: 2731 case CK_IntegralComplexCast: 2732 case CK_IntegralComplexToFloatingComplex: 2733 case CK_DerivedToBaseMemberPointer: 2734 case CK_BaseToDerivedMemberPointer: 2735 case CK_MemberPointerToBoolean: 2736 case CK_ReinterpretMemberPointer: 2737 case CK_AnyPointerToBlockPointerCast: 2738 case CK_ARCProduceObject: 2739 case CK_ARCConsumeObject: 2740 case CK_ARCReclaimReturnedObject: 2741 case CK_ARCExtendBlockObject: 2742 case CK_CopyAndAutoreleaseBlockObject: { 2743 // These casts only produce lvalues when we're binding a reference to a 2744 // temporary realized from a (converted) pure rvalue. Emit the expression 2745 // as a value, copy it into a temporary, and return an lvalue referring to 2746 // that temporary. 2747 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2748 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2749 return MakeAddrLValue(V, E->getType()); 2750 } 2751 2752 case CK_Dynamic: { 2753 LValue LV = EmitLValue(E->getSubExpr()); 2754 llvm::Value *V = LV.getAddress(); 2755 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2756 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2757 } 2758 2759 case CK_ConstructorConversion: 2760 case CK_UserDefinedConversion: 2761 case CK_CPointerToObjCPointerCast: 2762 case CK_BlockPointerToObjCPointerCast: 2763 return EmitLValue(E->getSubExpr()); 2764 2765 case CK_UncheckedDerivedToBase: 2766 case CK_DerivedToBase: { 2767 const RecordType *DerivedClassTy = 2768 E->getSubExpr()->getType()->getAs<RecordType>(); 2769 CXXRecordDecl *DerivedClassDecl = 2770 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2771 2772 LValue LV = EmitLValue(E->getSubExpr()); 2773 llvm::Value *This = LV.getAddress(); 2774 2775 // Perform the derived-to-base conversion 2776 llvm::Value *Base = 2777 GetAddressOfBaseClass(This, DerivedClassDecl, 2778 E->path_begin(), E->path_end(), 2779 /*NullCheckValue=*/false); 2780 2781 return MakeAddrLValue(Base, E->getType()); 2782 } 2783 case CK_ToUnion: 2784 return EmitAggExprToLValue(E); 2785 case CK_BaseToDerived: { 2786 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2787 CXXRecordDecl *DerivedClassDecl = 2788 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2789 2790 LValue LV = EmitLValue(E->getSubExpr()); 2791 2792 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2793 // performed and the object is not of the derived type. 2794 if (SanitizePerformTypeCheck) 2795 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2796 LV.getAddress(), E->getType()); 2797 2798 // Perform the base-to-derived conversion 2799 llvm::Value *Derived = 2800 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2801 E->path_begin(), E->path_end(), 2802 /*NullCheckValue=*/false); 2803 2804 return MakeAddrLValue(Derived, E->getType()); 2805 } 2806 case CK_LValueBitCast: { 2807 // This must be a reinterpret_cast (or c-style equivalent). 2808 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2809 2810 LValue LV = EmitLValue(E->getSubExpr()); 2811 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2812 ConvertType(CE->getTypeAsWritten())); 2813 return MakeAddrLValue(V, E->getType()); 2814 } 2815 case CK_ObjCObjectLValueCast: { 2816 LValue LV = EmitLValue(E->getSubExpr()); 2817 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2818 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2819 ConvertType(ToType)); 2820 return MakeAddrLValue(V, E->getType()); 2821 } 2822 case CK_ZeroToOCLEvent: 2823 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2824 } 2825 2826 llvm_unreachable("Unhandled lvalue cast kind?"); 2827} 2828 2829LValue CodeGenFunction::EmitNullInitializationLValue( 2830 const CXXScalarValueInitExpr *E) { 2831 QualType Ty = E->getType(); 2832 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2833 EmitNullInitialization(LV.getAddress(), Ty); 2834 return LV; 2835} 2836 2837LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2838 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2839 return getOpaqueLValueMapping(e); 2840} 2841 2842LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2843 const MaterializeTemporaryExpr *E) { 2844 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2845 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2846} 2847 2848RValue CodeGenFunction::EmitRValueForField(LValue LV, 2849 const FieldDecl *FD) { 2850 QualType FT = FD->getType(); 2851 LValue FieldLV = EmitLValueForField(LV, FD); 2852 switch (getEvaluationKind(FT)) { 2853 case TEK_Complex: 2854 return RValue::getComplex(EmitLoadOfComplex(FieldLV)); 2855 case TEK_Aggregate: 2856 return FieldLV.asAggregateRValue(); 2857 case TEK_Scalar: 2858 return EmitLoadOfLValue(FieldLV); 2859 } 2860 llvm_unreachable("bad evaluation kind"); 2861} 2862 2863//===--------------------------------------------------------------------===// 2864// Expression Emission 2865//===--------------------------------------------------------------------===// 2866 2867RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2868 ReturnValueSlot ReturnValue) { 2869 if (CGDebugInfo *DI = getDebugInfo()) { 2870 SourceLocation Loc = E->getLocStart(); 2871 // Force column info to be generated so we can differentiate 2872 // multiple call sites on the same line in the debug info. 2873 const FunctionDecl* Callee = E->getDirectCallee(); 2874 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2875 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2876 } 2877 2878 // Builtins never have block type. 2879 if (E->getCallee()->getType()->isBlockPointerType()) 2880 return EmitBlockCallExpr(E, ReturnValue); 2881 2882 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2883 return EmitCXXMemberCallExpr(CE, ReturnValue); 2884 2885 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2886 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2887 2888 const Decl *TargetDecl = E->getCalleeDecl(); 2889 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2890 if (unsigned builtinID = FD->getBuiltinID()) 2891 return EmitBuiltinExpr(FD, builtinID, E); 2892 } 2893 2894 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2895 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2896 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2897 2898 if (const CXXPseudoDestructorExpr *PseudoDtor 2899 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2900 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2901 if (getLangOpts().ObjCAutoRefCount && 2902 DestroyedType->isObjCLifetimeType() && 2903 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2904 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2905 // Automatic Reference Counting: 2906 // If the pseudo-expression names a retainable object with weak or 2907 // strong lifetime, the object shall be released. 2908 Expr *BaseExpr = PseudoDtor->getBase(); 2909 llvm::Value *BaseValue = NULL; 2910 Qualifiers BaseQuals; 2911 2912 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2913 if (PseudoDtor->isArrow()) { 2914 BaseValue = EmitScalarExpr(BaseExpr); 2915 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2916 BaseQuals = PTy->getPointeeType().getQualifiers(); 2917 } else { 2918 LValue BaseLV = EmitLValue(BaseExpr); 2919 BaseValue = BaseLV.getAddress(); 2920 QualType BaseTy = BaseExpr->getType(); 2921 BaseQuals = BaseTy.getQualifiers(); 2922 } 2923 2924 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2925 case Qualifiers::OCL_None: 2926 case Qualifiers::OCL_ExplicitNone: 2927 case Qualifiers::OCL_Autoreleasing: 2928 break; 2929 2930 case Qualifiers::OCL_Strong: 2931 EmitARCRelease(Builder.CreateLoad(BaseValue, 2932 PseudoDtor->getDestroyedType().isVolatileQualified()), 2933 ARCPreciseLifetime); 2934 break; 2935 2936 case Qualifiers::OCL_Weak: 2937 EmitARCDestroyWeak(BaseValue); 2938 break; 2939 } 2940 } else { 2941 // C++ [expr.pseudo]p1: 2942 // The result shall only be used as the operand for the function call 2943 // operator (), and the result of such a call has type void. The only 2944 // effect is the evaluation of the postfix-expression before the dot or 2945 // arrow. 2946 EmitScalarExpr(E->getCallee()); 2947 } 2948 2949 return RValue::get(0); 2950 } 2951 2952 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2953 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2954 E->arg_begin(), E->arg_end(), TargetDecl); 2955} 2956 2957LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2958 // Comma expressions just emit their LHS then their RHS as an l-value. 2959 if (E->getOpcode() == BO_Comma) { 2960 EmitIgnoredExpr(E->getLHS()); 2961 EnsureInsertPoint(); 2962 return EmitLValue(E->getRHS()); 2963 } 2964 2965 if (E->getOpcode() == BO_PtrMemD || 2966 E->getOpcode() == BO_PtrMemI) 2967 return EmitPointerToDataMemberBinaryExpr(E); 2968 2969 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2970 2971 // Note that in all of these cases, __block variables need the RHS 2972 // evaluated first just in case the variable gets moved by the RHS. 2973 2974 switch (getEvaluationKind(E->getType())) { 2975 case TEK_Scalar: { 2976 switch (E->getLHS()->getType().getObjCLifetime()) { 2977 case Qualifiers::OCL_Strong: 2978 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2979 2980 case Qualifiers::OCL_Autoreleasing: 2981 return EmitARCStoreAutoreleasing(E).first; 2982 2983 // No reason to do any of these differently. 2984 case Qualifiers::OCL_None: 2985 case Qualifiers::OCL_ExplicitNone: 2986 case Qualifiers::OCL_Weak: 2987 break; 2988 } 2989 2990 RValue RV = EmitAnyExpr(E->getRHS()); 2991 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2992 EmitStoreThroughLValue(RV, LV); 2993 return LV; 2994 } 2995 2996 case TEK_Complex: 2997 return EmitComplexAssignmentLValue(E); 2998 2999 case TEK_Aggregate: 3000 return EmitAggExprToLValue(E); 3001 } 3002 llvm_unreachable("bad evaluation kind"); 3003} 3004 3005LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3006 RValue RV = EmitCallExpr(E); 3007 3008 if (!RV.isScalar()) 3009 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3010 3011 assert(E->getCallReturnType()->isReferenceType() && 3012 "Can't have a scalar return unless the return type is a " 3013 "reference type!"); 3014 3015 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3016} 3017 3018LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3019 // FIXME: This shouldn't require another copy. 3020 return EmitAggExprToLValue(E); 3021} 3022 3023LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3024 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3025 && "binding l-value to type which needs a temporary"); 3026 AggValueSlot Slot = CreateAggTemp(E->getType()); 3027 EmitCXXConstructExpr(E, Slot); 3028 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3029} 3030 3031LValue 3032CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3033 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3034} 3035 3036llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3037 return CGM.GetAddrOfUuidDescriptor(E); 3038} 3039 3040LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3041 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3042} 3043 3044LValue 3045CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3046 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3047 Slot.setExternallyDestructed(); 3048 EmitAggExpr(E->getSubExpr(), Slot); 3049 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3050 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3051} 3052 3053LValue 3054CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3055 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3056 EmitLambdaExpr(E, Slot); 3057 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3058} 3059 3060LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3061 RValue RV = EmitObjCMessageExpr(E); 3062 3063 if (!RV.isScalar()) 3064 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3065 3066 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 3067 "Can't have a scalar return unless the return type is a " 3068 "reference type!"); 3069 3070 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3071} 3072 3073LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3074 llvm::Value *V = 3075 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3076 return MakeAddrLValue(V, E->getType()); 3077} 3078 3079llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3080 const ObjCIvarDecl *Ivar) { 3081 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3082} 3083 3084LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3085 llvm::Value *BaseValue, 3086 const ObjCIvarDecl *Ivar, 3087 unsigned CVRQualifiers) { 3088 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3089 Ivar, CVRQualifiers); 3090} 3091 3092LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3093 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3094 llvm::Value *BaseValue = 0; 3095 const Expr *BaseExpr = E->getBase(); 3096 Qualifiers BaseQuals; 3097 QualType ObjectTy; 3098 if (E->isArrow()) { 3099 BaseValue = EmitScalarExpr(BaseExpr); 3100 ObjectTy = BaseExpr->getType()->getPointeeType(); 3101 BaseQuals = ObjectTy.getQualifiers(); 3102 } else { 3103 LValue BaseLV = EmitLValue(BaseExpr); 3104 // FIXME: this isn't right for bitfields. 3105 BaseValue = BaseLV.getAddress(); 3106 ObjectTy = BaseExpr->getType(); 3107 BaseQuals = ObjectTy.getQualifiers(); 3108 } 3109 3110 LValue LV = 3111 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3112 BaseQuals.getCVRQualifiers()); 3113 setObjCGCLValueClass(getContext(), E, LV); 3114 return LV; 3115} 3116 3117LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3118 // Can only get l-value for message expression returning aggregate type 3119 RValue RV = EmitAnyExprToTemp(E); 3120 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3121} 3122 3123RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3124 ReturnValueSlot ReturnValue, 3125 CallExpr::const_arg_iterator ArgBeg, 3126 CallExpr::const_arg_iterator ArgEnd, 3127 const Decl *TargetDecl) { 3128 // Get the actual function type. The callee type will always be a pointer to 3129 // function type or a block pointer type. 3130 assert(CalleeType->isFunctionPointerType() && 3131 "Call must have function pointer type!"); 3132 3133 CalleeType = getContext().getCanonicalType(CalleeType); 3134 3135 const FunctionType *FnType 3136 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3137 3138 CallArgList Args; 3139 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 3140 3141 const CGFunctionInfo &FnInfo = 3142 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3143 3144 // C99 6.5.2.2p6: 3145 // If the expression that denotes the called function has a type 3146 // that does not include a prototype, [the default argument 3147 // promotions are performed]. If the number of arguments does not 3148 // equal the number of parameters, the behavior is undefined. If 3149 // the function is defined with a type that includes a prototype, 3150 // and either the prototype ends with an ellipsis (, ...) or the 3151 // types of the arguments after promotion are not compatible with 3152 // the types of the parameters, the behavior is undefined. If the 3153 // function is defined with a type that does not include a 3154 // prototype, and the types of the arguments after promotion are 3155 // not compatible with those of the parameters after promotion, 3156 // the behavior is undefined [except in some trivial cases]. 3157 // That is, in the general case, we should assume that a call 3158 // through an unprototyped function type works like a *non-variadic* 3159 // call. The way we make this work is to cast to the exact type 3160 // of the promoted arguments. 3161 if (isa<FunctionNoProtoType>(FnType)) { 3162 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3163 CalleeTy = CalleeTy->getPointerTo(); 3164 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3165 } 3166 3167 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3168} 3169 3170LValue CodeGenFunction:: 3171EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3172 llvm::Value *BaseV; 3173 if (E->getOpcode() == BO_PtrMemI) 3174 BaseV = EmitScalarExpr(E->getLHS()); 3175 else 3176 BaseV = EmitLValue(E->getLHS()).getAddress(); 3177 3178 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3179 3180 const MemberPointerType *MPT 3181 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3182 3183 llvm::Value *AddV = 3184 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3185 3186 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3187} 3188 3189/// Given the address of a temporary variable, produce an r-value of 3190/// its type. 3191RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3192 QualType type) { 3193 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3194 switch (getEvaluationKind(type)) { 3195 case TEK_Complex: 3196 return RValue::getComplex(EmitLoadOfComplex(lvalue)); 3197 case TEK_Aggregate: 3198 return lvalue.asAggregateRValue(); 3199 case TEK_Scalar: 3200 return RValue::get(EmitLoadOfScalar(lvalue)); 3201 } 3202 llvm_unreachable("bad evaluation kind"); 3203} 3204 3205void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3206 assert(Val->getType()->isFPOrFPVectorTy()); 3207 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3208 return; 3209 3210 llvm::MDBuilder MDHelper(getLLVMContext()); 3211 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3212 3213 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3214} 3215 3216namespace { 3217 struct LValueOrRValue { 3218 LValue LV; 3219 RValue RV; 3220 }; 3221} 3222 3223static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3224 const PseudoObjectExpr *E, 3225 bool forLValue, 3226 AggValueSlot slot) { 3227 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3228 3229 // Find the result expression, if any. 3230 const Expr *resultExpr = E->getResultExpr(); 3231 LValueOrRValue result; 3232 3233 for (PseudoObjectExpr::const_semantics_iterator 3234 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3235 const Expr *semantic = *i; 3236 3237 // If this semantic expression is an opaque value, bind it 3238 // to the result of its source expression. 3239 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3240 3241 // If this is the result expression, we may need to evaluate 3242 // directly into the slot. 3243 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3244 OVMA opaqueData; 3245 if (ov == resultExpr && ov->isRValue() && !forLValue && 3246 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3247 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3248 3249 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3250 opaqueData = OVMA::bind(CGF, ov, LV); 3251 result.RV = slot.asRValue(); 3252 3253 // Otherwise, emit as normal. 3254 } else { 3255 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3256 3257 // If this is the result, also evaluate the result now. 3258 if (ov == resultExpr) { 3259 if (forLValue) 3260 result.LV = CGF.EmitLValue(ov); 3261 else 3262 result.RV = CGF.EmitAnyExpr(ov, slot); 3263 } 3264 } 3265 3266 opaques.push_back(opaqueData); 3267 3268 // Otherwise, if the expression is the result, evaluate it 3269 // and remember the result. 3270 } else if (semantic == resultExpr) { 3271 if (forLValue) 3272 result.LV = CGF.EmitLValue(semantic); 3273 else 3274 result.RV = CGF.EmitAnyExpr(semantic, slot); 3275 3276 // Otherwise, evaluate the expression in an ignored context. 3277 } else { 3278 CGF.EmitIgnoredExpr(semantic); 3279 } 3280 } 3281 3282 // Unbind all the opaques now. 3283 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3284 opaques[i].unbind(CGF); 3285 3286 return result; 3287} 3288 3289RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3290 AggValueSlot slot) { 3291 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3292} 3293 3294LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3295 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3296} 3297