CGExpr.cpp revision 922696f03ec9637449e2cba260493808b4977cd3
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/TargetData.h"
24using namespace clang;
25using namespace CodeGen;
26
27//===--------------------------------------------------------------------===//
28//                        Miscellaneous Helper Methods
29//===--------------------------------------------------------------------===//
30
31/// CreateTempAlloca - This creates a alloca and inserts it into the entry
32/// block.
33llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
34                                                    const char *Name) {
35  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
36}
37
38/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
39/// expression and compare the result against zero, returning an Int1Ty value.
40llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
41  QualType BoolTy = getContext().BoolTy;
42  if (!E->getType()->isAnyComplexType())
43    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
44
45  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
46}
47
48/// EmitAnyExpr - Emit code to compute the specified expression which can have
49/// any type.  The result is returned as an RValue struct.  If this is an
50/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
51/// the result should be returned.
52RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
53                                    bool isAggLocVolatile) {
54  if (!hasAggregateLLVMType(E->getType()))
55    return RValue::get(EmitScalarExpr(E));
56  else if (E->getType()->isAnyComplexType())
57    return RValue::getComplex(EmitComplexExpr(E));
58
59  EmitAggExpr(E, AggLoc, isAggLocVolatile);
60  return RValue::getAggregate(AggLoc);
61}
62
63
64//===----------------------------------------------------------------------===//
65//                         LValue Expression Emission
66//===----------------------------------------------------------------------===//
67
68/// EmitLValue - Emit code to compute a designator that specifies the location
69/// of the expression.
70///
71/// This can return one of two things: a simple address or a bitfield
72/// reference.  In either case, the LLVM Value* in the LValue structure is
73/// guaranteed to be an LLVM pointer type.
74///
75/// If this returns a bitfield reference, nothing about the pointee type of
76/// the LLVM value is known: For example, it may not be a pointer to an
77/// integer.
78///
79/// If this returns a normal address, and if the lvalue's C type is fixed
80/// size, this method guarantees that the returned pointer type will point to
81/// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
82/// variable length type, this is not possible.
83///
84LValue CodeGenFunction::EmitLValue(const Expr *E) {
85  switch (E->getStmtClass()) {
86  default: {
87    printf("Statement class: %d\n", E->getStmtClass());
88    WarnUnsupported(E, "l-value expression");
89    llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
90    return LValue::MakeAddr(llvm::UndefValue::get(Ty));
91  }
92
93  case Expr::CallExprClass: return EmitCallExprLValue(cast<CallExpr>(E));
94  case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
95  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
96  case Expr::PreDefinedExprClass:
97    return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
98  case Expr::StringLiteralClass:
99    return EmitStringLiteralLValue(cast<StringLiteral>(E));
100
101  case Expr::ObjCIvarRefExprClass:
102    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
103
104  case Expr::UnaryOperatorClass:
105    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
106  case Expr::ArraySubscriptExprClass:
107    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
108  case Expr::ExtVectorElementExprClass:
109    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
110  case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
111  case Expr::CompoundLiteralExprClass:
112    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
113  }
114}
115
116/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
117/// this method emits the address of the lvalue, then loads the result as an
118/// rvalue, returning the rvalue.
119RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
120  if (LV.isSimple()) {
121    llvm::Value *Ptr = LV.getAddress();
122    const llvm::Type *EltTy =
123      cast<llvm::PointerType>(Ptr->getType())->getElementType();
124
125    // Simple scalar l-value.
126    if (EltTy->isFirstClassType()) {
127      llvm::Value *V = Builder.CreateLoad(Ptr, "tmp");
128
129      // Bool can have different representation in memory than in registers.
130      if (ExprType->isBooleanType()) {
131        if (V->getType() != llvm::Type::Int1Ty)
132          V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool");
133      }
134
135      return RValue::get(V);
136    }
137
138    assert(ExprType->isFunctionType() && "Unknown scalar value");
139    return RValue::get(Ptr);
140  }
141
142  if (LV.isVectorElt()) {
143    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
144    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
145                                                    "vecext"));
146  }
147
148  // If this is a reference to a subset of the elements of a vector, either
149  // shuffle the input or extract/insert them as appropriate.
150  if (LV.isExtVectorElt())
151    return EmitLoadOfExtVectorElementLValue(LV, ExprType);
152
153  if (LV.isBitfield())
154    return EmitLoadOfBitfieldLValue(LV, ExprType);
155
156  assert(0 && "Unknown LValue type!");
157  //an invalid RValue, but the assert will
158  //ensure that this point is never reached
159  return RValue();
160}
161
162RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
163                                                 QualType ExprType) {
164  llvm::Value *Ptr = LV.getBitfieldAddr();
165  const llvm::Type *EltTy =
166    cast<llvm::PointerType>(Ptr->getType())->getElementType();
167  unsigned EltTySize = EltTy->getPrimitiveSizeInBits();
168  unsigned short BitfieldSize = LV.getBitfieldSize();
169  unsigned short EndBit = LV.getBitfieldStartBit() + BitfieldSize;
170
171  llvm::Value *V = Builder.CreateLoad(Ptr, "tmp");
172
173  llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - EndBit);
174  V = Builder.CreateShl(V, ShAmt, "tmp");
175
176  ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - BitfieldSize);
177  V = LV.isBitfieldSigned() ?
178    Builder.CreateAShr(V, ShAmt, "tmp") :
179    Builder.CreateLShr(V, ShAmt, "tmp");
180
181  // The bitfield type and the normal type differ when the storage sizes
182  // differ (currently just _Bool).
183  V = Builder.CreateIntCast(V, ConvertType(ExprType), false, "tmp");
184
185  return RValue::get(V);
186}
187
188// If this is a reference to a subset of the elements of a vector, either
189// shuffle the input or extract/insert them as appropriate.
190RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
191                                                         QualType ExprType) {
192  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), "tmp");
193
194  const llvm::Constant *Elts = LV.getExtVectorElts();
195
196  // If the result of the expression is a non-vector type, we must be
197  // extracting a single element.  Just codegen as an extractelement.
198  const VectorType *ExprVT = ExprType->getAsVectorType();
199  if (!ExprVT) {
200    unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(0, Elts);
201    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
202    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
203  }
204
205  // If the source and destination have the same number of elements, use a
206  // vector shuffle instead of insert/extracts.
207  unsigned NumResultElts = ExprVT->getNumElements();
208  unsigned NumSourceElts =
209    cast<llvm::VectorType>(Vec->getType())->getNumElements();
210
211  if (NumResultElts == NumSourceElts) {
212    llvm::SmallVector<llvm::Constant*, 4> Mask;
213    for (unsigned i = 0; i != NumResultElts; ++i) {
214      unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(i, Elts);
215      Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
216    }
217
218    llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
219    Vec = Builder.CreateShuffleVector(Vec,
220                                      llvm::UndefValue::get(Vec->getType()),
221                                      MaskV, "tmp");
222    return RValue::get(Vec);
223  }
224
225  // Start out with an undef of the result type.
226  llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
227
228  // Extract/Insert each element of the result.
229  for (unsigned i = 0; i != NumResultElts; ++i) {
230    unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(i, Elts);
231    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
232    Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
233
234    llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
235    Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
236  }
237
238  return RValue::get(Result);
239}
240
241
242
243/// EmitStoreThroughLValue - Store the specified rvalue into the specified
244/// lvalue, where both are guaranteed to the have the same type, and that type
245/// is 'Ty'.
246void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
247                                             QualType Ty) {
248  if (!Dst.isSimple()) {
249    if (Dst.isVectorElt()) {
250      // Read/modify/write the vector, inserting the new element.
251      // FIXME: Volatility.
252      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
253      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
254                                        Dst.getVectorIdx(), "vecins");
255      Builder.CreateStore(Vec, Dst.getVectorAddr());
256      return;
257    }
258
259    // If this is an update of extended vector elements, insert them as
260    // appropriate.
261    if (Dst.isExtVectorElt())
262      return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
263
264    if (Dst.isBitfield())
265      return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
266
267    assert(0 && "Unknown LValue type");
268  }
269
270  llvm::Value *DstAddr = Dst.getAddress();
271  assert(Src.isScalar() && "Can't emit an agg store with this method");
272  // FIXME: Handle volatility etc.
273  const llvm::Type *SrcTy = Src.getScalarVal()->getType();
274  const llvm::PointerType *DstPtr = cast<llvm::PointerType>(DstAddr->getType());
275  const llvm::Type *AddrTy = DstPtr->getElementType();
276  unsigned AS = DstPtr->getAddressSpace();
277
278  if (AddrTy != SrcTy)
279    DstAddr = Builder.CreateBitCast(DstAddr,
280                                    llvm::PointerType::get(SrcTy, AS),
281                                    "storetmp");
282  Builder.CreateStore(Src.getScalarVal(), DstAddr);
283}
284
285void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
286                                                     QualType Ty) {
287  unsigned short StartBit = Dst.getBitfieldStartBit();
288  unsigned short BitfieldSize = Dst.getBitfieldSize();
289  llvm::Value *Ptr = Dst.getBitfieldAddr();
290
291  llvm::Value *NewVal = Src.getScalarVal();
292  llvm::Value *OldVal = Builder.CreateLoad(Ptr, "tmp");
293
294  // The bitfield type and the normal type differ when the storage sizes
295  // differ (currently just _Bool).
296  const llvm::Type *EltTy = OldVal->getType();
297  unsigned EltTySize = CGM.getTargetData().getABITypeSizeInBits(EltTy);
298
299  NewVal = Builder.CreateIntCast(NewVal, EltTy, false, "tmp");
300
301  // Move the bits into the appropriate location
302  llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, StartBit);
303  NewVal = Builder.CreateShl(NewVal, ShAmt, "tmp");
304
305  llvm::Constant *Mask = llvm::ConstantInt::get(
306           llvm::APInt::getBitsSet(EltTySize, StartBit,
307                                   StartBit + BitfieldSize));
308
309  // Mask out any bits that shouldn't be set in the result.
310  NewVal = Builder.CreateAnd(NewVal, Mask, "tmp");
311
312  // Next, mask out the bits this bit-field should include from the old value.
313  Mask = llvm::ConstantExpr::getNot(Mask);
314  OldVal = Builder.CreateAnd(OldVal, Mask, "tmp");
315
316  // Finally, merge the two together and store it.
317  NewVal = Builder.CreateOr(OldVal, NewVal, "tmp");
318
319  Builder.CreateStore(NewVal, Ptr);
320}
321
322void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
323                                                               LValue Dst,
324                                                               QualType Ty) {
325  // This access turns into a read/modify/write of the vector.  Load the input
326  // value now.
327  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), "tmp");
328  // FIXME: Volatility.
329  const llvm::Constant *Elts = Dst.getExtVectorElts();
330
331  llvm::Value *SrcVal = Src.getScalarVal();
332
333  if (const VectorType *VTy = Ty->getAsVectorType()) {
334    unsigned NumSrcElts = VTy->getNumElements();
335
336    // Extract/Insert each element.
337    for (unsigned i = 0; i != NumSrcElts; ++i) {
338      llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
339      Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
340
341      unsigned Idx = ExtVectorElementExpr::getAccessedFieldNo(i, Elts);
342      llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
343      Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
344    }
345  } else {
346    // If the Src is a scalar (not a vector) it must be updating one element.
347    unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(0, Elts);
348    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
349    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
350  }
351
352  Builder.CreateStore(Vec, Dst.getExtVectorAddr());
353}
354
355
356LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
357  const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
358
359  if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD))) {
360    if (VD->getStorageClass() == VarDecl::Extern)
361      return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD, false));
362    else {
363      llvm::Value *V = LocalDeclMap[VD];
364      assert(V && "BlockVarDecl not entered in LocalDeclMap?");
365      return LValue::MakeAddr(V);
366    }
367  } else if (VD && VD->isFileVarDecl()) {
368    return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD, false));
369  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
370    return LValue::MakeAddr(CGM.GetAddrOfFunctionDecl(FD, false));
371  }
372  assert(0 && "Unimp declref");
373  //an invalid LValue, but the assert will
374  //ensure that this point is never reached.
375  return LValue();
376}
377
378LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
379  // __extension__ doesn't affect lvalue-ness.
380  if (E->getOpcode() == UnaryOperator::Extension)
381    return EmitLValue(E->getSubExpr());
382
383  switch (E->getOpcode()) {
384  default: assert(0 && "Unknown unary operator lvalue!");
385  case UnaryOperator::Deref:
386    return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()));
387  case UnaryOperator::Real:
388  case UnaryOperator::Imag:
389    LValue LV = EmitLValue(E->getSubExpr());
390    unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
391    return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
392                                                    Idx, "idx"));
393  }
394}
395
396LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
397  assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
398  // Get the string data
399  const char *StrData = E->getStrData();
400  unsigned Len = E->getByteLength();
401  std::string StringLiteral(StrData, StrData+Len);
402
403  // Resize the string to the right size
404  const ConstantArrayType *CAT = E->getType()->getAsConstantArrayType();
405  uint64_t RealLen = CAT->getSize().getZExtValue();
406  StringLiteral.resize(RealLen, '\0');
407
408  return LValue::MakeAddr(CGM.GetAddrOfConstantString(StringLiteral));
409}
410
411LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
412  std::string FunctionName;
413  if(const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurFuncDecl)) {
414    FunctionName = FD->getName();
415  }
416  else {
417    assert(0 && "Attempting to load predefined constant for invalid decl type");
418  }
419  std::string GlobalVarName;
420
421  switch (E->getIdentType()) {
422    default:
423      assert(0 && "unknown pre-defined ident type");
424    case PreDefinedExpr::Func:
425      GlobalVarName = "__func__.";
426      break;
427    case PreDefinedExpr::Function:
428      GlobalVarName = "__FUNCTION__.";
429      break;
430    case PreDefinedExpr::PrettyFunction:
431      // FIXME:: Demangle C++ method names
432      GlobalVarName = "__PRETTY_FUNCTION__.";
433      break;
434  }
435
436  GlobalVarName += FunctionName;
437
438  // FIXME: Can cache/reuse these within the module.
439  llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
440
441  // Create a global variable for this.
442  C = new llvm::GlobalVariable(C->getType(), true,
443                               llvm::GlobalValue::InternalLinkage,
444                               C, GlobalVarName, CurFn->getParent());
445  return LValue::MakeAddr(C);
446}
447
448LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
449  // The index must always be an integer, which is not an aggregate.  Emit it.
450  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
451
452  // If the base is a vector type, then we are forming a vector element lvalue
453  // with this subscript.
454  if (E->getLHS()->getType()->isVectorType()) {
455    // Emit the vector as an lvalue to get its address.
456    LValue LHS = EmitLValue(E->getLHS());
457    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
458    // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
459    return LValue::MakeVectorElt(LHS.getAddress(), Idx);
460  }
461
462  // The base must be a pointer, which is not an aggregate.  Emit it.
463  llvm::Value *Base = EmitScalarExpr(E->getBase());
464
465  // Extend or truncate the index type to 32 or 64-bits.
466  QualType IdxTy  = E->getIdx()->getType();
467  bool IdxSigned = IdxTy->isSignedIntegerType();
468  unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
469  if (IdxBitwidth != LLVMPointerWidth)
470    Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
471                                IdxSigned, "idxprom");
472
473  // We know that the pointer points to a type of the correct size, unless the
474  // size is a VLA.
475  if (!E->getType()->isConstantSizeType())
476    assert(0 && "VLA idx not implemented");
477  return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
478}
479
480static
481llvm::Constant *GenerateConstantVector(llvm::SmallVector<unsigned, 4> &Elts) {
482  llvm::SmallVector<llvm::Constant *, 4> CElts;
483
484  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
485    CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, Elts[i]));
486
487  return llvm::ConstantVector::get(&CElts[0], CElts.size());
488}
489
490LValue CodeGenFunction::
491EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
492  // Emit the base vector as an l-value.
493  LValue Base = EmitLValue(E->getBase());
494
495  // Encode the element access list into a vector of unsigned indices.
496  llvm::SmallVector<unsigned, 4> Indices;
497  E->getEncodedElementAccess(Indices);
498
499  if (Base.isSimple()) {
500    llvm::Constant *CV = GenerateConstantVector(Indices);
501    return LValue::MakeExtVectorElt(Base.getAddress(), CV);
502  }
503  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
504
505  llvm::Constant *BaseElts = Base.getExtVectorElts();
506  llvm::SmallVector<llvm::Constant *, 4> CElts;
507
508  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
509    if (isa<llvm::ConstantAggregateZero>(BaseElts))
510      CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
511    else
512      CElts.push_back(BaseElts->getOperand(Indices[i]));
513  }
514  llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
515  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV);
516}
517
518LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
519  bool isUnion = false;
520  Expr *BaseExpr = E->getBase();
521  llvm::Value *BaseValue = NULL;
522
523  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
524  if (E->isArrow()) {
525    BaseValue = EmitScalarExpr(BaseExpr);
526    const PointerType *PTy =
527      cast<PointerType>(BaseExpr->getType().getCanonicalType());
528    if (PTy->getPointeeType()->isUnionType())
529      isUnion = true;
530  }
531  else {
532    LValue BaseLV = EmitLValue(BaseExpr);
533    // FIXME: this isn't right for bitfields.
534    BaseValue = BaseLV.getAddress();
535    if (BaseExpr->getType()->isUnionType())
536      isUnion = true;
537  }
538
539  FieldDecl *Field = E->getMemberDecl();
540  return EmitLValueForField(BaseValue, Field, isUnion);
541}
542
543LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
544                                           FieldDecl* Field,
545                                           bool isUnion)
546{
547  llvm::Value *V;
548  unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
549
550  if (!Field->isBitField()) {
551    V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
552  } else {
553    // FIXME: CodeGenTypes should expose a method to get the appropriate
554    // type for FieldTy (the appropriate type is ABI-dependent).
555    unsigned EltTySize =
556      CGM.getTargetData().getABITypeSizeInBits(ConvertType(Field->getType()));
557    const llvm::Type *FieldTy = llvm::IntegerType::get(EltTySize);
558    const llvm::PointerType *BaseTy =
559      cast<llvm::PointerType>(BaseValue->getType());
560    unsigned AS = BaseTy->getAddressSpace();
561    BaseValue = Builder.CreateBitCast(BaseValue,
562                                      llvm::PointerType::get(FieldTy, AS),
563                                      "tmp");
564    V = Builder.CreateGEP(BaseValue,
565                          llvm::ConstantInt::get(llvm::Type::Int32Ty, idx),
566                          "tmp");
567  }
568
569  // Match union field type.
570  if (isUnion) {
571    const llvm::Type * FieldTy = ConvertType(Field->getType());
572    const llvm::PointerType * BaseTy =
573      cast<llvm::PointerType>(BaseValue->getType());
574    if (FieldTy != BaseTy->getElementType()) {
575      unsigned AS = BaseTy->getAddressSpace();
576      V = Builder.CreateBitCast(V,
577                                llvm::PointerType::get(FieldTy, AS),
578                                "tmp");
579    }
580  }
581
582  if (!Field->isBitField())
583    return LValue::MakeAddr(V);
584
585  CodeGenTypes::BitFieldInfo bitFieldInfo =
586    CGM.getTypes().getBitFieldInfo(Field);
587  return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size,
588                              Field->getType()->isSignedIntegerType());
589}
590
591LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E) {
592  const llvm::Type *LTy = ConvertType(E->getType());
593  llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");
594
595  const Expr* InitExpr = E->getInitializer();
596  LValue Result = LValue::MakeAddr(DeclPtr);
597
598  if (E->getType()->isComplexType()) {
599    EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
600  } else if (hasAggregateLLVMType(E->getType())) {
601    EmitAnyExpr(InitExpr, DeclPtr, false);
602  } else {
603    EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
604  }
605
606  return Result;
607}
608
609//===--------------------------------------------------------------------===//
610//                             Expression Emission
611//===--------------------------------------------------------------------===//
612
613
614RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
615  if (const ImplicitCastExpr *IcExpr =
616      dyn_cast<const ImplicitCastExpr>(E->getCallee()))
617    if (const DeclRefExpr *DRExpr =
618        dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
619      if (const FunctionDecl *FDecl =
620          dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
621        if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
622          return EmitBuiltinExpr(builtinID, E);
623
624  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
625  return EmitCallExpr(Callee, E->getCallee()->getType(),
626                      E->arg_begin(), E->getNumArgs());
627}
628
629RValue CodeGenFunction::EmitCallExpr(Expr *FnExpr, Expr *const *Args,
630                                     unsigned NumArgs) {
631  llvm::Value *Callee = EmitScalarExpr(FnExpr);
632  return EmitCallExpr(Callee, FnExpr->getType(), Args, NumArgs);
633}
634
635LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
636  // Can only get l-value for call expression returning aggregate type
637  RValue RV = EmitCallExpr(E);
638  return LValue::MakeAddr(RV.getAggregateAddr());
639}
640
641LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
642  // Objective-C objects are traditionally C structures with their layout
643  // defined at compile-time.  In some implementations, their layout is not
644  // defined until run time in order to allow instance variables to be added to
645  // a class without recompiling all of the subclasses.  If this is the case
646  // then the CGObjCRuntime subclass must return true to LateBoundIvars and
647  // implement the lookup itself.
648  if (CGM.getObjCRuntime()->LateBoundIVars()) {
649    assert(0 && "FIXME: Implement support for late-bound instance variables");
650    return LValue(); // Not reached.
651  }
652
653  // Get a structure type for the object
654  QualType ExprTy = E->getBase()->getType();
655  const llvm::Type *ObjectType = ConvertType(ExprTy);
656  // TODO:  Add a special case for isa (index 0)
657  // Work out which index the ivar is
658  const ObjCIvarDecl *Decl = E->getDecl();
659  unsigned Index = CGM.getTypes().getLLVMFieldNo(Decl);
660
661  // Get object pointer and coerce object pointer to correct type.
662  llvm::Value *Object = EmitLValue(E->getBase()).getAddress();
663  Object = Builder.CreateLoad(Object, E->getDecl()->getName());
664  if (Object->getType() != ObjectType)
665    Object = Builder.CreateBitCast(Object, ObjectType);
666
667
668  // Return a pointer to the right element.
669  return LValue::MakeAddr(Builder.CreateStructGEP(Object, Index,
670                                                  Decl->getName()));
671}
672
673RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, QualType FnType,
674                                     Expr *const *ArgExprs, unsigned NumArgs) {
675  // The callee type will always be a pointer to function type, get the function
676  // type.
677  FnType = cast<PointerType>(FnType.getCanonicalType())->getPointeeType();
678  QualType ResultType = cast<FunctionType>(FnType)->getResultType();
679
680  llvm::SmallVector<llvm::Value*, 16> Args;
681
682  // Handle struct-return functions by passing a pointer to the location that
683  // we would like to return into.
684  if (hasAggregateLLVMType(ResultType)) {
685    // Create a temporary alloca to hold the result of the call. :(
686    Args.push_back(CreateTempAlloca(ConvertType(ResultType)));
687    // FIXME: set the stret attribute on the argument.
688  }
689
690  for (unsigned i = 0, e = NumArgs; i != e; ++i) {
691    QualType ArgTy = ArgExprs[i]->getType();
692
693    if (!hasAggregateLLVMType(ArgTy)) {
694      // Scalar argument is passed by-value.
695      Args.push_back(EmitScalarExpr(ArgExprs[i]));
696    } else if (ArgTy->isAnyComplexType()) {
697      // Make a temporary alloca to pass the argument.
698      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
699      EmitComplexExprIntoAddr(ArgExprs[i], DestMem, false);
700      Args.push_back(DestMem);
701    } else {
702      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
703      EmitAggExpr(ArgExprs[i], DestMem, false);
704      Args.push_back(DestMem);
705    }
706  }
707
708  llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
709  if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
710    CI->setCallingConv(F->getCallingConv());
711  if (CI->getType() != llvm::Type::VoidTy)
712    CI->setName("call");
713  else if (ResultType->isAnyComplexType())
714    return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
715  else if (hasAggregateLLVMType(ResultType))
716    // Struct return.
717    return RValue::getAggregate(Args[0]);
718  else {
719    // void return.
720    assert(ResultType->isVoidType() && "Should only have a void expr here");
721    CI = 0;
722  }
723
724  return RValue::get(CI);
725}
726