CGExpr.cpp revision 9eda3abe7e183b05834947391c0cdc291f4ee0d8
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCXXABI.h" 16#include "CGCall.h" 17#include "CGDebugInfo.h" 18#include "CGObjCRuntime.h" 19#include "CGRecordLayout.h" 20#include "CodeGenModule.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/ADT/Hashing.h" 26#include "llvm/IR/DataLayout.h" 27#include "llvm/IR/Intrinsics.h" 28#include "llvm/IR/LLVMContext.h" 29#include "llvm/IR/MDBuilder.h" 30#include "llvm/Support/ConvertUTF.h" 31 32using namespace clang; 33using namespace CodeGen; 34 35//===--------------------------------------------------------------------===// 36// Miscellaneous Helper Methods 37//===--------------------------------------------------------------------===// 38 39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49} 50 51/// CreateTempAlloca - This creates a alloca and inserts it into the entry 52/// block. 53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58} 59 60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65} 66 67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74} 75 76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83} 84 85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86/// expression and compare the result against zero, returning an Int1Ty value. 87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 89 llvm::Value *MemPtr = EmitScalarExpr(E); 90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 91 } 92 93 QualType BoolTy = getContext().BoolTy; 94 if (!E->getType()->isAnyComplexType()) 95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 96 97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 98} 99 100/// EmitIgnoredExpr - Emit code to compute the specified expression, 101/// ignoring the result. 102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 103 if (E->isRValue()) 104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 105 106 // Just emit it as an l-value and drop the result. 107 EmitLValue(E); 108} 109 110/// EmitAnyExpr - Emit code to compute the specified expression which 111/// can have any type. The result is returned as an RValue struct. 112/// If this is an aggregate expression, AggSlot indicates where the 113/// result should be returned. 114RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 115 AggValueSlot aggSlot, 116 bool ignoreResult) { 117 switch (getEvaluationKind(E->getType())) { 118 case TEK_Scalar: 119 return RValue::get(EmitScalarExpr(E, ignoreResult)); 120 case TEK_Complex: 121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 122 case TEK_Aggregate: 123 if (!ignoreResult && aggSlot.isIgnored()) 124 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 125 EmitAggExpr(E, aggSlot); 126 return aggSlot.asRValue(); 127 } 128 llvm_unreachable("bad evaluation kind"); 129} 130 131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 132/// always be accessible even if no aggregate location is provided. 133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 134 AggValueSlot AggSlot = AggValueSlot::ignored(); 135 136 if (hasAggregateEvaluationKind(E->getType())) 137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 138 return EmitAnyExpr(E, AggSlot); 139} 140 141/// EmitAnyExprToMem - Evaluate an expression into a given memory 142/// location. 143void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 144 llvm::Value *Location, 145 Qualifiers Quals, 146 bool IsInit) { 147 // FIXME: This function should take an LValue as an argument. 148 switch (getEvaluationKind(E->getType())) { 149 case TEK_Complex: 150 EmitComplexExprIntoLValue(E, 151 MakeNaturalAlignAddrLValue(Location, E->getType()), 152 /*isInit*/ false); 153 return; 154 155 case TEK_Aggregate: { 156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 158 AggValueSlot::IsDestructed_t(IsInit), 159 AggValueSlot::DoesNotNeedGCBarriers, 160 AggValueSlot::IsAliased_t(!IsInit))); 161 return; 162 } 163 164 case TEK_Scalar: { 165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 166 LValue LV = MakeAddrLValue(Location, E->getType()); 167 EmitStoreThroughLValue(RV, LV); 168 return; 169 } 170 } 171 llvm_unreachable("bad evaluation kind"); 172} 173 174static llvm::Value * 175CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 176 const NamedDecl *InitializedDecl) { 177 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 178 if (VD->hasGlobalStorage()) { 179 SmallString<256> Name; 180 llvm::raw_svector_ostream Out(Name); 181 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 182 Out.flush(); 183 184 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 185 186 // Create the reference temporary. 187 llvm::GlobalValue *RefTemp = 188 new llvm::GlobalVariable(CGF.CGM.getModule(), 189 RefTempTy, /*isConstant=*/false, 190 llvm::GlobalValue::InternalLinkage, 191 llvm::Constant::getNullValue(RefTempTy), 192 Name.str()); 193 return RefTemp; 194 } 195 } 196 197 return CGF.CreateMemTemp(Type, "ref.tmp"); 198} 199 200static llvm::Value * 201EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 202 llvm::Value *&ReferenceTemporary, 203 const CXXDestructorDecl *&ReferenceTemporaryDtor, 204 QualType &ObjCARCReferenceLifetimeType, 205 const NamedDecl *InitializedDecl) { 206 const MaterializeTemporaryExpr *M = NULL; 207 E = E->findMaterializedTemporary(M); 208 // Objective-C++ ARC: 209 // If we are binding a reference to a temporary that has ownership, we 210 // need to perform retain/release operations on the temporary. 211 if (M && CGF.getLangOpts().ObjCAutoRefCount && 212 M->getType()->isObjCLifetimeType() && 213 (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 214 M->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 215 M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 216 ObjCARCReferenceLifetimeType = M->getType(); 217 218 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 219 CGF.enterFullExpression(EWC); 220 CodeGenFunction::RunCleanupsScope Scope(CGF); 221 222 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 223 ReferenceTemporary, 224 ReferenceTemporaryDtor, 225 ObjCARCReferenceLifetimeType, 226 InitializedDecl); 227 } 228 229 RValue RV; 230 if (E->isGLValue()) { 231 // Emit the expression as an lvalue. 232 LValue LV = CGF.EmitLValue(E); 233 234 if (LV.isSimple()) 235 return LV.getAddress(); 236 237 // We have to load the lvalue. 238 RV = CGF.EmitLoadOfLValue(LV); 239 } else { 240 if (!ObjCARCReferenceLifetimeType.isNull()) { 241 ReferenceTemporary = CreateReferenceTemporary(CGF, 242 ObjCARCReferenceLifetimeType, 243 InitializedDecl); 244 245 246 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 247 ObjCARCReferenceLifetimeType); 248 249 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 250 RefTempDst, false); 251 252 bool ExtendsLifeOfTemporary = false; 253 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 254 if (Var->extendsLifetimeOfTemporary()) 255 ExtendsLifeOfTemporary = true; 256 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 257 ExtendsLifeOfTemporary = true; 258 } 259 260 if (!ExtendsLifeOfTemporary) { 261 // Since the lifetime of this temporary isn't going to be extended, 262 // we need to clean it up ourselves at the end of the full expression. 263 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 264 case Qualifiers::OCL_None: 265 case Qualifiers::OCL_ExplicitNone: 266 case Qualifiers::OCL_Autoreleasing: 267 break; 268 269 case Qualifiers::OCL_Strong: { 270 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 271 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 272 CGF.pushDestroy(cleanupKind, 273 ReferenceTemporary, 274 ObjCARCReferenceLifetimeType, 275 CodeGenFunction::destroyARCStrongImprecise, 276 cleanupKind & EHCleanup); 277 break; 278 } 279 280 case Qualifiers::OCL_Weak: 281 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 282 CGF.pushDestroy(NormalAndEHCleanup, 283 ReferenceTemporary, 284 ObjCARCReferenceLifetimeType, 285 CodeGenFunction::destroyARCWeak, 286 /*useEHCleanupForArray*/ true); 287 break; 288 } 289 290 ObjCARCReferenceLifetimeType = QualType(); 291 } 292 293 return ReferenceTemporary; 294 } 295 296 SmallVector<SubobjectAdjustment, 2> Adjustments; 297 E = E->skipRValueSubobjectAdjustments(Adjustments); 298 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 299 if (opaque->getType()->isRecordType()) 300 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 301 302 // Create a reference temporary if necessary. 303 AggValueSlot AggSlot = AggValueSlot::ignored(); 304 if (CGF.hasAggregateEvaluationKind(E->getType())) { 305 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 306 InitializedDecl); 307 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 308 AggValueSlot::IsDestructed_t isDestructed 309 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 310 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 311 Qualifiers(), isDestructed, 312 AggValueSlot::DoesNotNeedGCBarriers, 313 AggValueSlot::IsNotAliased); 314 } 315 316 if (InitializedDecl) { 317 // Get the destructor for the reference temporary. 318 if (const RecordType *RT = 319 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 320 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 321 if (!ClassDecl->hasTrivialDestructor()) 322 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 323 } 324 } 325 326 RV = CGF.EmitAnyExpr(E, AggSlot); 327 328 // Check if need to perform derived-to-base casts and/or field accesses, to 329 // get from the temporary object we created (and, potentially, for which we 330 // extended the lifetime) to the subobject we're binding the reference to. 331 if (!Adjustments.empty()) { 332 llvm::Value *Object = RV.getAggregateAddr(); 333 for (unsigned I = Adjustments.size(); I != 0; --I) { 334 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 335 switch (Adjustment.Kind) { 336 case SubobjectAdjustment::DerivedToBaseAdjustment: 337 Object = 338 CGF.GetAddressOfBaseClass(Object, 339 Adjustment.DerivedToBase.DerivedClass, 340 Adjustment.DerivedToBase.BasePath->path_begin(), 341 Adjustment.DerivedToBase.BasePath->path_end(), 342 /*NullCheckValue=*/false); 343 break; 344 345 case SubobjectAdjustment::FieldAdjustment: { 346 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 347 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 348 if (LV.isSimple()) { 349 Object = LV.getAddress(); 350 break; 351 } 352 353 // For non-simple lvalues, we actually have to create a copy of 354 // the object we're binding to. 355 QualType T = Adjustment.Field->getType().getNonReferenceType() 356 .getUnqualifiedType(); 357 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 358 LValue TempLV = CGF.MakeAddrLValue(Object, 359 Adjustment.Field->getType()); 360 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 361 break; 362 } 363 364 case SubobjectAdjustment::MemberPointerAdjustment: { 365 llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS); 366 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 367 CGF, Object, Ptr, Adjustment.Ptr.MPT); 368 break; 369 } 370 } 371 } 372 373 return Object; 374 } 375 } 376 377 if (RV.isAggregate()) 378 return RV.getAggregateAddr(); 379 380 // Create a temporary variable that we can bind the reference to. 381 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 382 InitializedDecl); 383 384 385 LValue tempLV = CGF.MakeNaturalAlignAddrLValue(ReferenceTemporary, 386 E->getType()); 387 if (RV.isScalar()) 388 CGF.EmitStoreOfScalar(RV.getScalarVal(), tempLV, /*init*/ true); 389 else 390 CGF.EmitStoreOfComplex(RV.getComplexVal(), tempLV, /*init*/ true); 391 return ReferenceTemporary; 392} 393 394RValue 395CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 396 const NamedDecl *InitializedDecl) { 397 llvm::Value *ReferenceTemporary = 0; 398 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 399 QualType ObjCARCReferenceLifetimeType; 400 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 401 ReferenceTemporaryDtor, 402 ObjCARCReferenceLifetimeType, 403 InitializedDecl); 404 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 405 // C++11 [dcl.ref]p5 (as amended by core issue 453): 406 // If a glvalue to which a reference is directly bound designates neither 407 // an existing object or function of an appropriate type nor a region of 408 // storage of suitable size and alignment to contain an object of the 409 // reference's type, the behavior is undefined. 410 QualType Ty = E->getType(); 411 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 412 } 413 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 414 return RValue::get(Value); 415 416 // Make sure to call the destructor for the reference temporary. 417 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 418 if (VD && VD->hasGlobalStorage()) { 419 if (ReferenceTemporaryDtor) { 420 llvm::Constant *CleanupFn; 421 llvm::Constant *CleanupArg; 422 if (E->getType()->isArrayType()) { 423 CleanupFn = CodeGenFunction(CGM).generateDestroyHelper( 424 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 425 destroyCXXObject, getLangOpts().Exceptions); 426 CleanupArg = llvm::Constant::getNullValue(Int8PtrTy); 427 } else { 428 CleanupFn = 429 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 430 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 431 } 432 CGM.getCXXABI().registerGlobalDtor(*this, CleanupFn, CleanupArg); 433 } else { 434 assert(!ObjCARCReferenceLifetimeType.isNull()); 435 // Note: We intentionally do not register a global "destructor" to 436 // release the object. 437 } 438 439 return RValue::get(Value); 440 } 441 442 if (ReferenceTemporaryDtor) { 443 if (E->getType()->isArrayType()) 444 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 445 destroyCXXObject, getLangOpts().Exceptions); 446 else 447 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 448 } else { 449 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 450 case Qualifiers::OCL_None: 451 llvm_unreachable( 452 "Not a reference temporary that needs to be deallocated"); 453 case Qualifiers::OCL_ExplicitNone: 454 case Qualifiers::OCL_Autoreleasing: 455 // Nothing to do. 456 break; 457 458 case Qualifiers::OCL_Strong: { 459 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 460 CleanupKind cleanupKind = getARCCleanupKind(); 461 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 462 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 463 cleanupKind & EHCleanup); 464 break; 465 } 466 467 case Qualifiers::OCL_Weak: { 468 // __weak objects always get EH cleanups; otherwise, exceptions 469 // could cause really nasty crashes instead of mere leaks. 470 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 471 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 472 break; 473 } 474 } 475 } 476 477 return RValue::get(Value); 478} 479 480 481/// getAccessedFieldNo - Given an encoded value and a result number, return the 482/// input field number being accessed. 483unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 484 const llvm::Constant *Elts) { 485 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 486 ->getZExtValue(); 487} 488 489/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 490static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 491 llvm::Value *High) { 492 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 493 llvm::Value *K47 = Builder.getInt64(47); 494 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 495 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 496 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 497 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 498 return Builder.CreateMul(B1, KMul); 499} 500 501void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 502 llvm::Value *Address, 503 QualType Ty, CharUnits Alignment) { 504 if (!SanitizePerformTypeCheck) 505 return; 506 507 // Don't check pointers outside the default address space. The null check 508 // isn't correct, the object-size check isn't supported by LLVM, and we can't 509 // communicate the addresses to the runtime handler for the vptr check. 510 if (Address->getType()->getPointerAddressSpace()) 511 return; 512 513 llvm::Value *Cond = 0; 514 llvm::BasicBlock *Done = 0; 515 516 if (SanOpts->Null) { 517 // The glvalue must not be an empty glvalue. 518 Cond = Builder.CreateICmpNE( 519 Address, llvm::Constant::getNullValue(Address->getType())); 520 521 if (TCK == TCK_DowncastPointer) { 522 // When performing a pointer downcast, it's OK if the value is null. 523 // Skip the remaining checks in that case. 524 Done = createBasicBlock("null"); 525 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 526 Builder.CreateCondBr(Cond, Rest, Done); 527 EmitBlock(Rest); 528 Cond = 0; 529 } 530 } 531 532 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 533 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 534 535 // The glvalue must refer to a large enough storage region. 536 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 537 // to check this. 538 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 539 llvm::Value *Min = Builder.getFalse(); 540 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 541 llvm::Value *LargeEnough = 542 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 543 llvm::ConstantInt::get(IntPtrTy, Size)); 544 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 545 } 546 547 uint64_t AlignVal = 0; 548 549 if (SanOpts->Alignment) { 550 AlignVal = Alignment.getQuantity(); 551 if (!Ty->isIncompleteType() && !AlignVal) 552 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 553 554 // The glvalue must be suitably aligned. 555 if (AlignVal) { 556 llvm::Value *Align = 557 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 558 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 559 llvm::Value *Aligned = 560 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 561 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 562 } 563 } 564 565 if (Cond) { 566 llvm::Constant *StaticData[] = { 567 EmitCheckSourceLocation(Loc), 568 EmitCheckTypeDescriptor(Ty), 569 llvm::ConstantInt::get(SizeTy, AlignVal), 570 llvm::ConstantInt::get(Int8Ty, TCK) 571 }; 572 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 573 } 574 575 // If possible, check that the vptr indicates that there is a subobject of 576 // type Ty at offset zero within this object. 577 // 578 // C++11 [basic.life]p5,6: 579 // [For storage which does not refer to an object within its lifetime] 580 // The program has undefined behavior if: 581 // -- the [pointer or glvalue] is used to access a non-static data member 582 // or call a non-static member function 583 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 584 if (SanOpts->Vptr && 585 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 586 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 587 RD && RD->hasDefinition() && RD->isDynamicClass()) { 588 // Compute a hash of the mangled name of the type. 589 // 590 // FIXME: This is not guaranteed to be deterministic! Move to a 591 // fingerprinting mechanism once LLVM provides one. For the time 592 // being the implementation happens to be deterministic. 593 SmallString<64> MangledName; 594 llvm::raw_svector_ostream Out(MangledName); 595 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 596 Out); 597 llvm::hash_code TypeHash = hash_value(Out.str()); 598 599 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 600 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 601 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 602 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 603 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 604 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 605 606 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 607 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 608 609 // Look the hash up in our cache. 610 const int CacheSize = 128; 611 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 612 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 613 "__ubsan_vptr_type_cache"); 614 llvm::Value *Slot = Builder.CreateAnd(Hash, 615 llvm::ConstantInt::get(IntPtrTy, 616 CacheSize-1)); 617 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 618 llvm::Value *CacheVal = 619 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 620 621 // If the hash isn't in the cache, call a runtime handler to perform the 622 // hard work of checking whether the vptr is for an object of the right 623 // type. This will either fill in the cache and return, or produce a 624 // diagnostic. 625 llvm::Constant *StaticData[] = { 626 EmitCheckSourceLocation(Loc), 627 EmitCheckTypeDescriptor(Ty), 628 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 629 llvm::ConstantInt::get(Int8Ty, TCK) 630 }; 631 llvm::Value *DynamicData[] = { Address, Hash }; 632 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 633 "dynamic_type_cache_miss", StaticData, DynamicData, 634 CRK_AlwaysRecoverable); 635 } 636 637 if (Done) { 638 Builder.CreateBr(Done); 639 EmitBlock(Done); 640 } 641} 642 643/// Determine whether this expression refers to a flexible array member in a 644/// struct. We disable array bounds checks for such members. 645static bool isFlexibleArrayMemberExpr(const Expr *E) { 646 // For compatibility with existing code, we treat arrays of length 0 or 647 // 1 as flexible array members. 648 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 649 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 650 if (CAT->getSize().ugt(1)) 651 return false; 652 } else if (!isa<IncompleteArrayType>(AT)) 653 return false; 654 655 E = E->IgnoreParens(); 656 657 // A flexible array member must be the last member in the class. 658 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 659 // FIXME: If the base type of the member expr is not FD->getParent(), 660 // this should not be treated as a flexible array member access. 661 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 662 RecordDecl::field_iterator FI( 663 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 664 return ++FI == FD->getParent()->field_end(); 665 } 666 } 667 668 return false; 669} 670 671/// If Base is known to point to the start of an array, return the length of 672/// that array. Return 0 if the length cannot be determined. 673llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF, const Expr *Base, 674 QualType &IndexedType) { 675 // For the vector indexing extension, the bound is the number of elements. 676 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 677 IndexedType = Base->getType(); 678 return CGF.Builder.getInt32(VT->getNumElements()); 679 } 680 681 Base = Base->IgnoreParens(); 682 683 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) { 684 if (CE->getCastKind() == CK_ArrayToPointerDecay && 685 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 686 IndexedType = CE->getSubExpr()->getType(); 687 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 688 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 689 return CGF.Builder.getInt(CAT->getSize()); 690 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) 691 return CGF.getVLASize(VAT).first; 692 } 693 } 694 695 return 0; 696} 697 698void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 699 llvm::Value *Index, QualType IndexType, 700 bool Accessed) { 701 assert(SanOpts->Bounds && "should not be called unless adding bounds checks"); 702 703 QualType IndexedType; 704 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 705 if (!Bound) 706 return; 707 708 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 709 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 710 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 711 712 llvm::Constant *StaticData[] = { 713 EmitCheckSourceLocation(E->getExprLoc()), 714 EmitCheckTypeDescriptor(IndexedType), 715 EmitCheckTypeDescriptor(IndexType) 716 }; 717 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 718 : Builder.CreateICmpULE(IndexVal, BoundVal); 719 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 720} 721 722 723CodeGenFunction::ComplexPairTy CodeGenFunction:: 724EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 725 bool isInc, bool isPre) { 726 ComplexPairTy InVal = EmitLoadOfComplex(LV); 727 728 llvm::Value *NextVal; 729 if (isa<llvm::IntegerType>(InVal.first->getType())) { 730 uint64_t AmountVal = isInc ? 1 : -1; 731 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 732 733 // Add the inc/dec to the real part. 734 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 735 } else { 736 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 737 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 738 if (!isInc) 739 FVal.changeSign(); 740 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 741 742 // Add the inc/dec to the real part. 743 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 744 } 745 746 ComplexPairTy IncVal(NextVal, InVal.second); 747 748 // Store the updated result through the lvalue. 749 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 750 751 // If this is a postinc, return the value read from memory, otherwise use the 752 // updated value. 753 return isPre ? IncVal : InVal; 754} 755 756 757//===----------------------------------------------------------------------===// 758// LValue Expression Emission 759//===----------------------------------------------------------------------===// 760 761RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 762 if (Ty->isVoidType()) 763 return RValue::get(0); 764 765 switch (getEvaluationKind(Ty)) { 766 case TEK_Complex: { 767 llvm::Type *EltTy = 768 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 769 llvm::Value *U = llvm::UndefValue::get(EltTy); 770 return RValue::getComplex(std::make_pair(U, U)); 771 } 772 773 // If this is a use of an undefined aggregate type, the aggregate must have an 774 // identifiable address. Just because the contents of the value are undefined 775 // doesn't mean that the address can't be taken and compared. 776 case TEK_Aggregate: { 777 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 778 return RValue::getAggregate(DestPtr); 779 } 780 781 case TEK_Scalar: 782 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 783 } 784 llvm_unreachable("bad evaluation kind"); 785} 786 787RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 788 const char *Name) { 789 ErrorUnsupported(E, Name); 790 return GetUndefRValue(E->getType()); 791} 792 793LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 794 const char *Name) { 795 ErrorUnsupported(E, Name); 796 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 797 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 798} 799 800LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 801 LValue LV; 802 if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E)) 803 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 804 else 805 LV = EmitLValue(E); 806 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 807 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 808 E->getType(), LV.getAlignment()); 809 return LV; 810} 811 812/// EmitLValue - Emit code to compute a designator that specifies the location 813/// of the expression. 814/// 815/// This can return one of two things: a simple address or a bitfield reference. 816/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 817/// an LLVM pointer type. 818/// 819/// If this returns a bitfield reference, nothing about the pointee type of the 820/// LLVM value is known: For example, it may not be a pointer to an integer. 821/// 822/// If this returns a normal address, and if the lvalue's C type is fixed size, 823/// this method guarantees that the returned pointer type will point to an LLVM 824/// type of the same size of the lvalue's type. If the lvalue has a variable 825/// length type, this is not possible. 826/// 827LValue CodeGenFunction::EmitLValue(const Expr *E) { 828 switch (E->getStmtClass()) { 829 default: return EmitUnsupportedLValue(E, "l-value expression"); 830 831 case Expr::ObjCPropertyRefExprClass: 832 llvm_unreachable("cannot emit a property reference directly"); 833 834 case Expr::ObjCSelectorExprClass: 835 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 836 case Expr::ObjCIsaExprClass: 837 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 838 case Expr::BinaryOperatorClass: 839 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 840 case Expr::CompoundAssignOperatorClass: 841 if (!E->getType()->isAnyComplexType()) 842 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 843 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 844 case Expr::CallExprClass: 845 case Expr::CXXMemberCallExprClass: 846 case Expr::CXXOperatorCallExprClass: 847 case Expr::UserDefinedLiteralClass: 848 return EmitCallExprLValue(cast<CallExpr>(E)); 849 case Expr::VAArgExprClass: 850 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 851 case Expr::DeclRefExprClass: 852 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 853 case Expr::ParenExprClass: 854 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 855 case Expr::GenericSelectionExprClass: 856 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 857 case Expr::PredefinedExprClass: 858 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 859 case Expr::StringLiteralClass: 860 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 861 case Expr::ObjCEncodeExprClass: 862 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 863 case Expr::PseudoObjectExprClass: 864 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 865 case Expr::InitListExprClass: 866 return EmitInitListLValue(cast<InitListExpr>(E)); 867 case Expr::CXXTemporaryObjectExprClass: 868 case Expr::CXXConstructExprClass: 869 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 870 case Expr::CXXBindTemporaryExprClass: 871 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 872 case Expr::CXXUuidofExprClass: 873 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 874 case Expr::LambdaExprClass: 875 return EmitLambdaLValue(cast<LambdaExpr>(E)); 876 877 case Expr::ExprWithCleanupsClass: { 878 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 879 enterFullExpression(cleanups); 880 RunCleanupsScope Scope(*this); 881 return EmitLValue(cleanups->getSubExpr()); 882 } 883 884 case Expr::CXXScalarValueInitExprClass: 885 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 886 case Expr::CXXDefaultArgExprClass: 887 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 888 case Expr::CXXTypeidExprClass: 889 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 890 891 case Expr::ObjCMessageExprClass: 892 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 893 case Expr::ObjCIvarRefExprClass: 894 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 895 case Expr::StmtExprClass: 896 return EmitStmtExprLValue(cast<StmtExpr>(E)); 897 case Expr::UnaryOperatorClass: 898 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 899 case Expr::ArraySubscriptExprClass: 900 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 901 case Expr::ExtVectorElementExprClass: 902 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 903 case Expr::MemberExprClass: 904 return EmitMemberExpr(cast<MemberExpr>(E)); 905 case Expr::CompoundLiteralExprClass: 906 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 907 case Expr::ConditionalOperatorClass: 908 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 909 case Expr::BinaryConditionalOperatorClass: 910 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 911 case Expr::ChooseExprClass: 912 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 913 case Expr::OpaqueValueExprClass: 914 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 915 case Expr::SubstNonTypeTemplateParmExprClass: 916 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 917 case Expr::ImplicitCastExprClass: 918 case Expr::CStyleCastExprClass: 919 case Expr::CXXFunctionalCastExprClass: 920 case Expr::CXXStaticCastExprClass: 921 case Expr::CXXDynamicCastExprClass: 922 case Expr::CXXReinterpretCastExprClass: 923 case Expr::CXXConstCastExprClass: 924 case Expr::ObjCBridgedCastExprClass: 925 return EmitCastLValue(cast<CastExpr>(E)); 926 927 case Expr::MaterializeTemporaryExprClass: 928 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 929 } 930} 931 932/// Given an object of the given canonical type, can we safely copy a 933/// value out of it based on its initializer? 934static bool isConstantEmittableObjectType(QualType type) { 935 assert(type.isCanonical()); 936 assert(!type->isReferenceType()); 937 938 // Must be const-qualified but non-volatile. 939 Qualifiers qs = type.getLocalQualifiers(); 940 if (!qs.hasConst() || qs.hasVolatile()) return false; 941 942 // Otherwise, all object types satisfy this except C++ classes with 943 // mutable subobjects or non-trivial copy/destroy behavior. 944 if (const RecordType *RT = dyn_cast<RecordType>(type)) 945 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 946 if (RD->hasMutableFields() || !RD->isTrivial()) 947 return false; 948 949 return true; 950} 951 952/// Can we constant-emit a load of a reference to a variable of the 953/// given type? This is different from predicates like 954/// Decl::isUsableInConstantExpressions because we do want it to apply 955/// in situations that don't necessarily satisfy the language's rules 956/// for this (e.g. C++'s ODR-use rules). For example, we want to able 957/// to do this with const float variables even if those variables 958/// aren't marked 'constexpr'. 959enum ConstantEmissionKind { 960 CEK_None, 961 CEK_AsReferenceOnly, 962 CEK_AsValueOrReference, 963 CEK_AsValueOnly 964}; 965static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 966 type = type.getCanonicalType(); 967 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 968 if (isConstantEmittableObjectType(ref->getPointeeType())) 969 return CEK_AsValueOrReference; 970 return CEK_AsReferenceOnly; 971 } 972 if (isConstantEmittableObjectType(type)) 973 return CEK_AsValueOnly; 974 return CEK_None; 975} 976 977/// Try to emit a reference to the given value without producing it as 978/// an l-value. This is actually more than an optimization: we can't 979/// produce an l-value for variables that we never actually captured 980/// in a block or lambda, which means const int variables or constexpr 981/// literals or similar. 982CodeGenFunction::ConstantEmission 983CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 984 ValueDecl *value = refExpr->getDecl(); 985 986 // The value needs to be an enum constant or a constant variable. 987 ConstantEmissionKind CEK; 988 if (isa<ParmVarDecl>(value)) { 989 CEK = CEK_None; 990 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 991 CEK = checkVarTypeForConstantEmission(var->getType()); 992 } else if (isa<EnumConstantDecl>(value)) { 993 CEK = CEK_AsValueOnly; 994 } else { 995 CEK = CEK_None; 996 } 997 if (CEK == CEK_None) return ConstantEmission(); 998 999 Expr::EvalResult result; 1000 bool resultIsReference; 1001 QualType resultType; 1002 1003 // It's best to evaluate all the way as an r-value if that's permitted. 1004 if (CEK != CEK_AsReferenceOnly && 1005 refExpr->EvaluateAsRValue(result, getContext())) { 1006 resultIsReference = false; 1007 resultType = refExpr->getType(); 1008 1009 // Otherwise, try to evaluate as an l-value. 1010 } else if (CEK != CEK_AsValueOnly && 1011 refExpr->EvaluateAsLValue(result, getContext())) { 1012 resultIsReference = true; 1013 resultType = value->getType(); 1014 1015 // Failure. 1016 } else { 1017 return ConstantEmission(); 1018 } 1019 1020 // In any case, if the initializer has side-effects, abandon ship. 1021 if (result.HasSideEffects) 1022 return ConstantEmission(); 1023 1024 // Emit as a constant. 1025 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1026 1027 // Make sure we emit a debug reference to the global variable. 1028 // This should probably fire even for 1029 if (isa<VarDecl>(value)) { 1030 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1031 EmitDeclRefExprDbgValue(refExpr, C); 1032 } else { 1033 assert(isa<EnumConstantDecl>(value)); 1034 EmitDeclRefExprDbgValue(refExpr, C); 1035 } 1036 1037 // If we emitted a reference constant, we need to dereference that. 1038 if (resultIsReference) 1039 return ConstantEmission::forReference(C); 1040 1041 return ConstantEmission::forValue(C); 1042} 1043 1044llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 1045 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1046 lvalue.getAlignment().getQuantity(), 1047 lvalue.getType(), lvalue.getTBAAInfo()); 1048} 1049 1050static bool hasBooleanRepresentation(QualType Ty) { 1051 if (Ty->isBooleanType()) 1052 return true; 1053 1054 if (const EnumType *ET = Ty->getAs<EnumType>()) 1055 return ET->getDecl()->getIntegerType()->isBooleanType(); 1056 1057 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1058 return hasBooleanRepresentation(AT->getValueType()); 1059 1060 return false; 1061} 1062 1063static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1064 llvm::APInt &Min, llvm::APInt &End, 1065 bool StrictEnums) { 1066 const EnumType *ET = Ty->getAs<EnumType>(); 1067 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1068 ET && !ET->getDecl()->isFixed(); 1069 bool IsBool = hasBooleanRepresentation(Ty); 1070 if (!IsBool && !IsRegularCPlusPlusEnum) 1071 return false; 1072 1073 if (IsBool) { 1074 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1075 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1076 } else { 1077 const EnumDecl *ED = ET->getDecl(); 1078 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1079 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1080 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1081 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1082 1083 if (NumNegativeBits) { 1084 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1085 assert(NumBits <= Bitwidth); 1086 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1087 Min = -End; 1088 } else { 1089 assert(NumPositiveBits <= Bitwidth); 1090 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1091 Min = llvm::APInt(Bitwidth, 0); 1092 } 1093 } 1094 return true; 1095} 1096 1097llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1098 llvm::APInt Min, End; 1099 if (!getRangeForType(*this, Ty, Min, End, 1100 CGM.getCodeGenOpts().StrictEnums)) 1101 return 0; 1102 1103 llvm::MDBuilder MDHelper(getLLVMContext()); 1104 return MDHelper.createRange(Min, End); 1105} 1106 1107llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1108 unsigned Alignment, QualType Ty, 1109 llvm::MDNode *TBAAInfo) { 1110 // For better performance, handle vector loads differently. 1111 if (Ty->isVectorType()) { 1112 llvm::Value *V; 1113 const llvm::Type *EltTy = 1114 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1115 1116 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 1117 1118 // Handle vectors of size 3, like size 4 for better performance. 1119 if (VTy->getNumElements() == 3) { 1120 1121 // Bitcast to vec4 type. 1122 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1123 4); 1124 llvm::PointerType *ptVec4Ty = 1125 llvm::PointerType::get(vec4Ty, 1126 (cast<llvm::PointerType>( 1127 Addr->getType()))->getAddressSpace()); 1128 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1129 "castToVec4"); 1130 // Now load value. 1131 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1132 1133 // Shuffle vector to get vec3. 1134 llvm::Constant *Mask[] = { 1135 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1136 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1137 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1138 }; 1139 1140 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1141 V = Builder.CreateShuffleVector(LoadVal, 1142 llvm::UndefValue::get(vec4Ty), 1143 MaskV, "extractVec"); 1144 return EmitFromMemory(V, Ty); 1145 } 1146 } 1147 1148 // Atomic operations have to be done on integral types. 1149 if (Ty->isAtomicType()) { 1150 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1151 CharUnits::fromQuantity(Alignment), 1152 getContext(), TBAAInfo); 1153 return EmitAtomicLoad(lvalue).getScalarVal(); 1154 } 1155 1156 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1157 if (Volatile) 1158 Load->setVolatile(true); 1159 if (Alignment) 1160 Load->setAlignment(Alignment); 1161 if (TBAAInfo) 1162 CGM.DecorateInstruction(Load, TBAAInfo); 1163 1164 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1165 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1166 llvm::APInt Min, End; 1167 if (getRangeForType(*this, Ty, Min, End, true)) { 1168 --End; 1169 llvm::Value *Check; 1170 if (!Min) 1171 Check = Builder.CreateICmpULE( 1172 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1173 else { 1174 llvm::Value *Upper = Builder.CreateICmpSLE( 1175 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1176 llvm::Value *Lower = Builder.CreateICmpSGE( 1177 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1178 Check = Builder.CreateAnd(Upper, Lower); 1179 } 1180 // FIXME: Provide a SourceLocation. 1181 EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty), 1182 EmitCheckValue(Load), CRK_Recoverable); 1183 } 1184 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1185 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1186 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1187 1188 return EmitFromMemory(Load, Ty); 1189} 1190 1191llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1192 // Bool has a different representation in memory than in registers. 1193 if (hasBooleanRepresentation(Ty)) { 1194 // This should really always be an i1, but sometimes it's already 1195 // an i8, and it's awkward to track those cases down. 1196 if (Value->getType()->isIntegerTy(1)) 1197 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1198 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1199 "wrong value rep of bool"); 1200 } 1201 1202 return Value; 1203} 1204 1205llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1206 // Bool has a different representation in memory than in registers. 1207 if (hasBooleanRepresentation(Ty)) { 1208 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1209 "wrong value rep of bool"); 1210 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1211 } 1212 1213 return Value; 1214} 1215 1216void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1217 bool Volatile, unsigned Alignment, 1218 QualType Ty, 1219 llvm::MDNode *TBAAInfo, 1220 bool isInit) { 1221 1222 // Handle vectors differently to get better performance. 1223 if (Ty->isVectorType()) { 1224 llvm::Type *SrcTy = Value->getType(); 1225 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1226 // Handle vec3 special. 1227 if (VecTy->getNumElements() == 3) { 1228 llvm::LLVMContext &VMContext = getLLVMContext(); 1229 1230 // Our source is a vec3, do a shuffle vector to make it a vec4. 1231 SmallVector<llvm::Constant*, 4> Mask; 1232 Mask.push_back(llvm::ConstantInt::get( 1233 llvm::Type::getInt32Ty(VMContext), 1234 0)); 1235 Mask.push_back(llvm::ConstantInt::get( 1236 llvm::Type::getInt32Ty(VMContext), 1237 1)); 1238 Mask.push_back(llvm::ConstantInt::get( 1239 llvm::Type::getInt32Ty(VMContext), 1240 2)); 1241 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1242 1243 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1244 Value = Builder.CreateShuffleVector(Value, 1245 llvm::UndefValue::get(VecTy), 1246 MaskV, "extractVec"); 1247 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1248 } 1249 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1250 if (DstPtr->getElementType() != SrcTy) { 1251 llvm::Type *MemTy = 1252 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1253 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1254 } 1255 } 1256 1257 Value = EmitToMemory(Value, Ty); 1258 1259 if (Ty->isAtomicType()) { 1260 EmitAtomicStore(RValue::get(Value), 1261 LValue::MakeAddr(Addr, Ty, 1262 CharUnits::fromQuantity(Alignment), 1263 getContext(), TBAAInfo), 1264 isInit); 1265 return; 1266 } 1267 1268 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1269 if (Alignment) 1270 Store->setAlignment(Alignment); 1271 if (TBAAInfo) 1272 CGM.DecorateInstruction(Store, TBAAInfo); 1273} 1274 1275void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1276 bool isInit) { 1277 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1278 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1279 lvalue.getTBAAInfo(), isInit); 1280} 1281 1282/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1283/// method emits the address of the lvalue, then loads the result as an rvalue, 1284/// returning the rvalue. 1285RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1286 if (LV.isObjCWeak()) { 1287 // load of a __weak object. 1288 llvm::Value *AddrWeakObj = LV.getAddress(); 1289 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1290 AddrWeakObj)); 1291 } 1292 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1293 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1294 Object = EmitObjCConsumeObject(LV.getType(), Object); 1295 return RValue::get(Object); 1296 } 1297 1298 if (LV.isSimple()) { 1299 assert(!LV.getType()->isFunctionType()); 1300 1301 // Everything needs a load. 1302 return RValue::get(EmitLoadOfScalar(LV)); 1303 } 1304 1305 if (LV.isVectorElt()) { 1306 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1307 LV.isVolatileQualified()); 1308 Load->setAlignment(LV.getAlignment().getQuantity()); 1309 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1310 "vecext")); 1311 } 1312 1313 // If this is a reference to a subset of the elements of a vector, either 1314 // shuffle the input or extract/insert them as appropriate. 1315 if (LV.isExtVectorElt()) 1316 return EmitLoadOfExtVectorElementLValue(LV); 1317 1318 assert(LV.isBitField() && "Unknown LValue type!"); 1319 return EmitLoadOfBitfieldLValue(LV); 1320} 1321 1322RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1323 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1324 1325 // Get the output type. 1326 llvm::Type *ResLTy = ConvertType(LV.getType()); 1327 1328 llvm::Value *Ptr = LV.getBitFieldAddr(); 1329 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1330 "bf.load"); 1331 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1332 1333 if (Info.IsSigned) { 1334 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1335 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1336 if (HighBits) 1337 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1338 if (Info.Offset + HighBits) 1339 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1340 } else { 1341 if (Info.Offset) 1342 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1343 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1344 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1345 Info.Size), 1346 "bf.clear"); 1347 } 1348 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1349 1350 return RValue::get(Val); 1351} 1352 1353// If this is a reference to a subset of the elements of a vector, create an 1354// appropriate shufflevector. 1355RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1356 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1357 LV.isVolatileQualified()); 1358 Load->setAlignment(LV.getAlignment().getQuantity()); 1359 llvm::Value *Vec = Load; 1360 1361 const llvm::Constant *Elts = LV.getExtVectorElts(); 1362 1363 // If the result of the expression is a non-vector type, we must be extracting 1364 // a single element. Just codegen as an extractelement. 1365 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1366 if (!ExprVT) { 1367 unsigned InIdx = getAccessedFieldNo(0, Elts); 1368 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1369 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1370 } 1371 1372 // Always use shuffle vector to try to retain the original program structure 1373 unsigned NumResultElts = ExprVT->getNumElements(); 1374 1375 SmallVector<llvm::Constant*, 4> Mask; 1376 for (unsigned i = 0; i != NumResultElts; ++i) 1377 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1378 1379 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1380 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1381 MaskV); 1382 return RValue::get(Vec); 1383} 1384 1385 1386 1387/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1388/// lvalue, where both are guaranteed to the have the same type, and that type 1389/// is 'Ty'. 1390void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1391 if (!Dst.isSimple()) { 1392 if (Dst.isVectorElt()) { 1393 // Read/modify/write the vector, inserting the new element. 1394 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1395 Dst.isVolatileQualified()); 1396 Load->setAlignment(Dst.getAlignment().getQuantity()); 1397 llvm::Value *Vec = Load; 1398 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1399 Dst.getVectorIdx(), "vecins"); 1400 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1401 Dst.isVolatileQualified()); 1402 Store->setAlignment(Dst.getAlignment().getQuantity()); 1403 return; 1404 } 1405 1406 // If this is an update of extended vector elements, insert them as 1407 // appropriate. 1408 if (Dst.isExtVectorElt()) 1409 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1410 1411 assert(Dst.isBitField() && "Unknown LValue type"); 1412 return EmitStoreThroughBitfieldLValue(Src, Dst); 1413 } 1414 1415 // There's special magic for assigning into an ARC-qualified l-value. 1416 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1417 switch (Lifetime) { 1418 case Qualifiers::OCL_None: 1419 llvm_unreachable("present but none"); 1420 1421 case Qualifiers::OCL_ExplicitNone: 1422 // nothing special 1423 break; 1424 1425 case Qualifiers::OCL_Strong: 1426 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1427 return; 1428 1429 case Qualifiers::OCL_Weak: 1430 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1431 return; 1432 1433 case Qualifiers::OCL_Autoreleasing: 1434 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1435 Src.getScalarVal())); 1436 // fall into the normal path 1437 break; 1438 } 1439 } 1440 1441 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1442 // load of a __weak object. 1443 llvm::Value *LvalueDst = Dst.getAddress(); 1444 llvm::Value *src = Src.getScalarVal(); 1445 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1446 return; 1447 } 1448 1449 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1450 // load of a __strong object. 1451 llvm::Value *LvalueDst = Dst.getAddress(); 1452 llvm::Value *src = Src.getScalarVal(); 1453 if (Dst.isObjCIvar()) { 1454 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1455 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1456 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1457 llvm::Value *dst = RHS; 1458 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1459 llvm::Value *LHS = 1460 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1461 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1462 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1463 BytesBetween); 1464 } else if (Dst.isGlobalObjCRef()) { 1465 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1466 Dst.isThreadLocalRef()); 1467 } 1468 else 1469 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1470 return; 1471 } 1472 1473 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1474 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1475} 1476 1477void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1478 llvm::Value **Result) { 1479 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1480 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1481 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1482 1483 // Get the source value, truncated to the width of the bit-field. 1484 llvm::Value *SrcVal = Src.getScalarVal(); 1485 1486 // Cast the source to the storage type and shift it into place. 1487 SrcVal = Builder.CreateIntCast(SrcVal, 1488 Ptr->getType()->getPointerElementType(), 1489 /*IsSigned=*/false); 1490 llvm::Value *MaskedVal = SrcVal; 1491 1492 // See if there are other bits in the bitfield's storage we'll need to load 1493 // and mask together with source before storing. 1494 if (Info.StorageSize != Info.Size) { 1495 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1496 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1497 "bf.load"); 1498 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1499 1500 // Mask the source value as needed. 1501 if (!hasBooleanRepresentation(Dst.getType())) 1502 SrcVal = Builder.CreateAnd(SrcVal, 1503 llvm::APInt::getLowBitsSet(Info.StorageSize, 1504 Info.Size), 1505 "bf.value"); 1506 MaskedVal = SrcVal; 1507 if (Info.Offset) 1508 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1509 1510 // Mask out the original value. 1511 Val = Builder.CreateAnd(Val, 1512 ~llvm::APInt::getBitsSet(Info.StorageSize, 1513 Info.Offset, 1514 Info.Offset + Info.Size), 1515 "bf.clear"); 1516 1517 // Or together the unchanged values and the source value. 1518 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1519 } else { 1520 assert(Info.Offset == 0); 1521 } 1522 1523 // Write the new value back out. 1524 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1525 Dst.isVolatileQualified()); 1526 Store->setAlignment(Info.StorageAlignment); 1527 1528 // Return the new value of the bit-field, if requested. 1529 if (Result) { 1530 llvm::Value *ResultVal = MaskedVal; 1531 1532 // Sign extend the value if needed. 1533 if (Info.IsSigned) { 1534 assert(Info.Size <= Info.StorageSize); 1535 unsigned HighBits = Info.StorageSize - Info.Size; 1536 if (HighBits) { 1537 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1538 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1539 } 1540 } 1541 1542 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1543 "bf.result.cast"); 1544 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1545 } 1546} 1547 1548void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1549 LValue Dst) { 1550 // This access turns into a read/modify/write of the vector. Load the input 1551 // value now. 1552 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1553 Dst.isVolatileQualified()); 1554 Load->setAlignment(Dst.getAlignment().getQuantity()); 1555 llvm::Value *Vec = Load; 1556 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1557 1558 llvm::Value *SrcVal = Src.getScalarVal(); 1559 1560 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1561 unsigned NumSrcElts = VTy->getNumElements(); 1562 unsigned NumDstElts = 1563 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1564 if (NumDstElts == NumSrcElts) { 1565 // Use shuffle vector is the src and destination are the same number of 1566 // elements and restore the vector mask since it is on the side it will be 1567 // stored. 1568 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1569 for (unsigned i = 0; i != NumSrcElts; ++i) 1570 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1571 1572 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1573 Vec = Builder.CreateShuffleVector(SrcVal, 1574 llvm::UndefValue::get(Vec->getType()), 1575 MaskV); 1576 } else if (NumDstElts > NumSrcElts) { 1577 // Extended the source vector to the same length and then shuffle it 1578 // into the destination. 1579 // FIXME: since we're shuffling with undef, can we just use the indices 1580 // into that? This could be simpler. 1581 SmallVector<llvm::Constant*, 4> ExtMask; 1582 for (unsigned i = 0; i != NumSrcElts; ++i) 1583 ExtMask.push_back(Builder.getInt32(i)); 1584 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1585 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1586 llvm::Value *ExtSrcVal = 1587 Builder.CreateShuffleVector(SrcVal, 1588 llvm::UndefValue::get(SrcVal->getType()), 1589 ExtMaskV); 1590 // build identity 1591 SmallVector<llvm::Constant*, 4> Mask; 1592 for (unsigned i = 0; i != NumDstElts; ++i) 1593 Mask.push_back(Builder.getInt32(i)); 1594 1595 // modify when what gets shuffled in 1596 for (unsigned i = 0; i != NumSrcElts; ++i) 1597 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1598 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1599 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1600 } else { 1601 // We should never shorten the vector 1602 llvm_unreachable("unexpected shorten vector length"); 1603 } 1604 } else { 1605 // If the Src is a scalar (not a vector) it must be updating one element. 1606 unsigned InIdx = getAccessedFieldNo(0, Elts); 1607 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1608 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1609 } 1610 1611 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1612 Dst.isVolatileQualified()); 1613 Store->setAlignment(Dst.getAlignment().getQuantity()); 1614} 1615 1616// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1617// generating write-barries API. It is currently a global, ivar, 1618// or neither. 1619static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1620 LValue &LV, 1621 bool IsMemberAccess=false) { 1622 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1623 return; 1624 1625 if (isa<ObjCIvarRefExpr>(E)) { 1626 QualType ExpTy = E->getType(); 1627 if (IsMemberAccess && ExpTy->isPointerType()) { 1628 // If ivar is a structure pointer, assigning to field of 1629 // this struct follows gcc's behavior and makes it a non-ivar 1630 // writer-barrier conservatively. 1631 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1632 if (ExpTy->isRecordType()) { 1633 LV.setObjCIvar(false); 1634 return; 1635 } 1636 } 1637 LV.setObjCIvar(true); 1638 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1639 LV.setBaseIvarExp(Exp->getBase()); 1640 LV.setObjCArray(E->getType()->isArrayType()); 1641 return; 1642 } 1643 1644 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1645 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1646 if (VD->hasGlobalStorage()) { 1647 LV.setGlobalObjCRef(true); 1648 LV.setThreadLocalRef(VD->isThreadSpecified()); 1649 } 1650 } 1651 LV.setObjCArray(E->getType()->isArrayType()); 1652 return; 1653 } 1654 1655 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1656 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1657 return; 1658 } 1659 1660 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1661 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1662 if (LV.isObjCIvar()) { 1663 // If cast is to a structure pointer, follow gcc's behavior and make it 1664 // a non-ivar write-barrier. 1665 QualType ExpTy = E->getType(); 1666 if (ExpTy->isPointerType()) 1667 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1668 if (ExpTy->isRecordType()) 1669 LV.setObjCIvar(false); 1670 } 1671 return; 1672 } 1673 1674 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1675 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1676 return; 1677 } 1678 1679 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1680 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1681 return; 1682 } 1683 1684 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1685 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1686 return; 1687 } 1688 1689 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1690 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1691 return; 1692 } 1693 1694 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1695 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1696 if (LV.isObjCIvar() && !LV.isObjCArray()) 1697 // Using array syntax to assigning to what an ivar points to is not 1698 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1699 LV.setObjCIvar(false); 1700 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1701 // Using array syntax to assigning to what global points to is not 1702 // same as assigning to the global itself. {id *G;} G[i] = 0; 1703 LV.setGlobalObjCRef(false); 1704 return; 1705 } 1706 1707 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1708 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1709 // We don't know if member is an 'ivar', but this flag is looked at 1710 // only in the context of LV.isObjCIvar(). 1711 LV.setObjCArray(E->getType()->isArrayType()); 1712 return; 1713 } 1714} 1715 1716static llvm::Value * 1717EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1718 llvm::Value *V, llvm::Type *IRType, 1719 StringRef Name = StringRef()) { 1720 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1721 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1722} 1723 1724static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1725 const Expr *E, const VarDecl *VD) { 1726 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1727 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1728 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1729 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1730 QualType T = E->getType(); 1731 LValue LV; 1732 if (VD->getType()->isReferenceType()) { 1733 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1734 LI->setAlignment(Alignment.getQuantity()); 1735 V = LI; 1736 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1737 } else { 1738 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1739 } 1740 setObjCGCLValueClass(CGF.getContext(), E, LV); 1741 return LV; 1742} 1743 1744static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1745 const Expr *E, const FunctionDecl *FD) { 1746 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1747 if (!FD->hasPrototype()) { 1748 if (const FunctionProtoType *Proto = 1749 FD->getType()->getAs<FunctionProtoType>()) { 1750 // Ugly case: for a K&R-style definition, the type of the definition 1751 // isn't the same as the type of a use. Correct for this with a 1752 // bitcast. 1753 QualType NoProtoType = 1754 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1755 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1756 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1757 } 1758 } 1759 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1760 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1761} 1762 1763LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1764 const NamedDecl *ND = E->getDecl(); 1765 CharUnits Alignment = getContext().getDeclAlign(ND); 1766 QualType T = E->getType(); 1767 1768 // A DeclRefExpr for a reference initialized by a constant expression can 1769 // appear without being odr-used. Directly emit the constant initializer. 1770 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1771 const Expr *Init = VD->getAnyInitializer(VD); 1772 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1773 VD->isUsableInConstantExpressions(getContext()) && 1774 VD->checkInitIsICE()) { 1775 llvm::Constant *Val = 1776 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1777 assert(Val && "failed to emit reference constant expression"); 1778 // FIXME: Eventually we will want to emit vector element references. 1779 return MakeAddrLValue(Val, T, Alignment); 1780 } 1781 } 1782 1783 // FIXME: We should be able to assert this for FunctionDecls as well! 1784 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1785 // those with a valid source location. 1786 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1787 !E->getLocation().isValid()) && 1788 "Should not use decl without marking it used!"); 1789 1790 if (ND->hasAttr<WeakRefAttr>()) { 1791 const ValueDecl *VD = cast<ValueDecl>(ND); 1792 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1793 return MakeAddrLValue(Aliasee, T, Alignment); 1794 } 1795 1796 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1797 // Check if this is a global variable. 1798 if (VD->hasLinkage() || VD->isStaticDataMember()) 1799 return EmitGlobalVarDeclLValue(*this, E, VD); 1800 1801 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1802 1803 bool NonGCable = VD->hasLocalStorage() && 1804 !VD->getType()->isReferenceType() && 1805 !isBlockVariable; 1806 1807 llvm::Value *V = LocalDeclMap.lookup(VD); 1808 if (!V && VD->isStaticLocal()) 1809 V = CGM.getStaticLocalDeclAddress(VD); 1810 1811 // Use special handling for lambdas. 1812 if (!V) { 1813 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1814 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1815 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1816 LambdaTagType); 1817 return EmitLValueForField(LambdaLV, FD); 1818 } 1819 1820 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1821 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1822 T, Alignment); 1823 } 1824 1825 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1826 1827 if (isBlockVariable) 1828 V = BuildBlockByrefAddress(V, VD); 1829 1830 LValue LV; 1831 if (VD->getType()->isReferenceType()) { 1832 llvm::LoadInst *LI = Builder.CreateLoad(V); 1833 LI->setAlignment(Alignment.getQuantity()); 1834 V = LI; 1835 LV = MakeNaturalAlignAddrLValue(V, T); 1836 } else { 1837 LV = MakeAddrLValue(V, T, Alignment); 1838 } 1839 1840 if (NonGCable) { 1841 LV.getQuals().removeObjCGCAttr(); 1842 LV.setNonGC(true); 1843 } 1844 setObjCGCLValueClass(getContext(), E, LV); 1845 return LV; 1846 } 1847 1848 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1849 return EmitFunctionDeclLValue(*this, E, fn); 1850 1851 llvm_unreachable("Unhandled DeclRefExpr"); 1852} 1853 1854LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1855 // __extension__ doesn't affect lvalue-ness. 1856 if (E->getOpcode() == UO_Extension) 1857 return EmitLValue(E->getSubExpr()); 1858 1859 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1860 switch (E->getOpcode()) { 1861 default: llvm_unreachable("Unknown unary operator lvalue!"); 1862 case UO_Deref: { 1863 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1864 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1865 1866 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1867 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1868 1869 // We should not generate __weak write barrier on indirect reference 1870 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1871 // But, we continue to generate __strong write barrier on indirect write 1872 // into a pointer to object. 1873 if (getLangOpts().ObjC1 && 1874 getLangOpts().getGC() != LangOptions::NonGC && 1875 LV.isObjCWeak()) 1876 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1877 return LV; 1878 } 1879 case UO_Real: 1880 case UO_Imag: { 1881 LValue LV = EmitLValue(E->getSubExpr()); 1882 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1883 llvm::Value *Addr = LV.getAddress(); 1884 1885 // __real is valid on scalars. This is a faster way of testing that. 1886 // __imag can only produce an rvalue on scalars. 1887 if (E->getOpcode() == UO_Real && 1888 !cast<llvm::PointerType>(Addr->getType()) 1889 ->getElementType()->isStructTy()) { 1890 assert(E->getSubExpr()->getType()->isArithmeticType()); 1891 return LV; 1892 } 1893 1894 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1895 1896 unsigned Idx = E->getOpcode() == UO_Imag; 1897 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1898 Idx, "idx"), 1899 ExprTy); 1900 } 1901 case UO_PreInc: 1902 case UO_PreDec: { 1903 LValue LV = EmitLValue(E->getSubExpr()); 1904 bool isInc = E->getOpcode() == UO_PreInc; 1905 1906 if (E->getType()->isAnyComplexType()) 1907 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1908 else 1909 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1910 return LV; 1911 } 1912 } 1913} 1914 1915LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1916 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1917 E->getType()); 1918} 1919 1920LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1921 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1922 E->getType()); 1923} 1924 1925static llvm::Constant* 1926GetAddrOfConstantWideString(StringRef Str, 1927 const char *GlobalName, 1928 ASTContext &Context, 1929 QualType Ty, SourceLocation Loc, 1930 CodeGenModule &CGM) { 1931 1932 StringLiteral *SL = StringLiteral::Create(Context, 1933 Str, 1934 StringLiteral::Wide, 1935 /*Pascal = */false, 1936 Ty, Loc); 1937 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1938 llvm::GlobalVariable *GV = 1939 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1940 !CGM.getLangOpts().WritableStrings, 1941 llvm::GlobalValue::PrivateLinkage, 1942 C, GlobalName); 1943 const unsigned WideAlignment = 1944 Context.getTypeAlignInChars(Ty).getQuantity(); 1945 GV->setAlignment(WideAlignment); 1946 return GV; 1947} 1948 1949static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1950 SmallString<32>& Target) { 1951 Target.resize(CharByteWidth * (Source.size() + 1)); 1952 char *ResultPtr = &Target[0]; 1953 const UTF8 *ErrorPtr; 1954 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1955 (void)success; 1956 assert(success); 1957 Target.resize(ResultPtr - &Target[0]); 1958} 1959 1960LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1961 switch (E->getIdentType()) { 1962 default: 1963 return EmitUnsupportedLValue(E, "predefined expression"); 1964 1965 case PredefinedExpr::Func: 1966 case PredefinedExpr::Function: 1967 case PredefinedExpr::LFunction: 1968 case PredefinedExpr::PrettyFunction: { 1969 unsigned IdentType = E->getIdentType(); 1970 std::string GlobalVarName; 1971 1972 switch (IdentType) { 1973 default: llvm_unreachable("Invalid type"); 1974 case PredefinedExpr::Func: 1975 GlobalVarName = "__func__."; 1976 break; 1977 case PredefinedExpr::Function: 1978 GlobalVarName = "__FUNCTION__."; 1979 break; 1980 case PredefinedExpr::LFunction: 1981 GlobalVarName = "L__FUNCTION__."; 1982 break; 1983 case PredefinedExpr::PrettyFunction: 1984 GlobalVarName = "__PRETTY_FUNCTION__."; 1985 break; 1986 } 1987 1988 StringRef FnName = CurFn->getName(); 1989 if (FnName.startswith("\01")) 1990 FnName = FnName.substr(1); 1991 GlobalVarName += FnName; 1992 1993 const Decl *CurDecl = CurCodeDecl; 1994 if (CurDecl == 0) 1995 CurDecl = getContext().getTranslationUnitDecl(); 1996 1997 std::string FunctionName = 1998 (isa<BlockDecl>(CurDecl) 1999 ? FnName.str() 2000 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 2001 CurDecl)); 2002 2003 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 2004 llvm::Constant *C; 2005 if (ElemType->isWideCharType()) { 2006 SmallString<32> RawChars; 2007 ConvertUTF8ToWideString( 2008 getContext().getTypeSizeInChars(ElemType).getQuantity(), 2009 FunctionName, RawChars); 2010 C = GetAddrOfConstantWideString(RawChars, 2011 GlobalVarName.c_str(), 2012 getContext(), 2013 E->getType(), 2014 E->getLocation(), 2015 CGM); 2016 } else { 2017 C = CGM.GetAddrOfConstantCString(FunctionName, 2018 GlobalVarName.c_str(), 2019 1); 2020 } 2021 return MakeAddrLValue(C, E->getType()); 2022 } 2023 } 2024} 2025 2026/// Emit a type description suitable for use by a runtime sanitizer library. The 2027/// format of a type descriptor is 2028/// 2029/// \code 2030/// { i16 TypeKind, i16 TypeInfo } 2031/// \endcode 2032/// 2033/// followed by an array of i8 containing the type name. TypeKind is 0 for an 2034/// integer, 1 for a floating point value, and -1 for anything else. 2035llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2036 // FIXME: Only emit each type's descriptor once. 2037 uint16_t TypeKind = -1; 2038 uint16_t TypeInfo = 0; 2039 2040 if (T->isIntegerType()) { 2041 TypeKind = 0; 2042 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2043 (T->isSignedIntegerType() ? 1 : 0); 2044 } else if (T->isFloatingType()) { 2045 TypeKind = 1; 2046 TypeInfo = getContext().getTypeSize(T); 2047 } 2048 2049 // Format the type name as if for a diagnostic, including quotes and 2050 // optionally an 'aka'. 2051 SmallString<32> Buffer; 2052 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2053 (intptr_t)T.getAsOpaquePtr(), 2054 0, 0, 0, 0, 0, 0, Buffer, 2055 ArrayRef<intptr_t>()); 2056 2057 llvm::Constant *Components[] = { 2058 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2059 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2060 }; 2061 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2062 2063 llvm::GlobalVariable *GV = 2064 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 2065 /*isConstant=*/true, 2066 llvm::GlobalVariable::PrivateLinkage, 2067 Descriptor); 2068 GV->setUnnamedAddr(true); 2069 return GV; 2070} 2071 2072llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2073 llvm::Type *TargetTy = IntPtrTy; 2074 2075 // Integers which fit in intptr_t are zero-extended and passed directly. 2076 if (V->getType()->isIntegerTy() && 2077 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2078 return Builder.CreateZExt(V, TargetTy); 2079 2080 // Pointers are passed directly, everything else is passed by address. 2081 if (!V->getType()->isPointerTy()) { 2082 llvm::Value *Ptr = Builder.CreateAlloca(V->getType()); 2083 Builder.CreateStore(V, Ptr); 2084 V = Ptr; 2085 } 2086 return Builder.CreatePtrToInt(V, TargetTy); 2087} 2088 2089/// \brief Emit a representation of a SourceLocation for passing to a handler 2090/// in a sanitizer runtime library. The format for this data is: 2091/// \code 2092/// struct SourceLocation { 2093/// const char *Filename; 2094/// int32_t Line, Column; 2095/// }; 2096/// \endcode 2097/// For an invalid SourceLocation, the Filename pointer is null. 2098llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2099 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2100 2101 llvm::Constant *Data[] = { 2102 // FIXME: Only emit each file name once. 2103 PLoc.isValid() ? cast<llvm::Constant>( 2104 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2105 : llvm::Constant::getNullValue(Int8PtrTy), 2106 Builder.getInt32(PLoc.getLine()), 2107 Builder.getInt32(PLoc.getColumn()) 2108 }; 2109 2110 return llvm::ConstantStruct::getAnon(Data); 2111} 2112 2113void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2114 ArrayRef<llvm::Constant *> StaticArgs, 2115 ArrayRef<llvm::Value *> DynamicArgs, 2116 CheckRecoverableKind RecoverKind) { 2117 assert(SanOpts != &SanitizerOptions::Disabled); 2118 2119 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2120 assert (RecoverKind != CRK_AlwaysRecoverable && 2121 "Runtime call required for AlwaysRecoverable kind!"); 2122 return EmitTrapCheck(Checked); 2123 } 2124 2125 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2126 2127 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2128 2129 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2130 2131 // Give hint that we very much don't expect to execute the handler 2132 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2133 llvm::MDBuilder MDHelper(getLLVMContext()); 2134 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2135 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2136 2137 EmitBlock(Handler); 2138 2139 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2140 llvm::GlobalValue *InfoPtr = 2141 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2142 llvm::GlobalVariable::PrivateLinkage, Info); 2143 InfoPtr->setUnnamedAddr(true); 2144 2145 SmallVector<llvm::Value *, 4> Args; 2146 SmallVector<llvm::Type *, 4> ArgTypes; 2147 Args.reserve(DynamicArgs.size() + 1); 2148 ArgTypes.reserve(DynamicArgs.size() + 1); 2149 2150 // Handler functions take an i8* pointing to the (handler-specific) static 2151 // information block, followed by a sequence of intptr_t arguments 2152 // representing operand values. 2153 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2154 ArgTypes.push_back(Int8PtrTy); 2155 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2156 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2157 ArgTypes.push_back(IntPtrTy); 2158 } 2159 2160 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2161 ((RecoverKind == CRK_Recoverable) && 2162 CGM.getCodeGenOpts().SanitizeRecover); 2163 2164 llvm::FunctionType *FnType = 2165 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2166 llvm::AttrBuilder B; 2167 if (!Recover) { 2168 B.addAttribute(llvm::Attribute::NoReturn) 2169 .addAttribute(llvm::Attribute::NoUnwind); 2170 } 2171 B.addAttribute(llvm::Attribute::UWTable); 2172 2173 // Checks that have two variants use a suffix to differentiate them 2174 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2175 !CGM.getCodeGenOpts().SanitizeRecover; 2176 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2177 (NeedsAbortSuffix? "_abort" : "")).str(); 2178 llvm::Value *Fn = 2179 CGM.CreateRuntimeFunction(FnType, FunctionName, 2180 llvm::AttributeSet::get(getLLVMContext(), 2181 llvm::AttributeSet::FunctionIndex, 2182 B)); 2183 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2184 if (Recover) { 2185 Builder.CreateBr(Cont); 2186 } else { 2187 HandlerCall->setDoesNotReturn(); 2188 Builder.CreateUnreachable(); 2189 } 2190 2191 EmitBlock(Cont); 2192} 2193 2194void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2195 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2196 2197 // If we're optimizing, collapse all calls to trap down to just one per 2198 // function to save on code size. 2199 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2200 TrapBB = createBasicBlock("trap"); 2201 Builder.CreateCondBr(Checked, Cont, TrapBB); 2202 EmitBlock(TrapBB); 2203 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2204 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2205 TrapCall->setDoesNotReturn(); 2206 TrapCall->setDoesNotThrow(); 2207 Builder.CreateUnreachable(); 2208 } else { 2209 Builder.CreateCondBr(Checked, Cont, TrapBB); 2210 } 2211 2212 EmitBlock(Cont); 2213} 2214 2215/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2216/// array to pointer, return the array subexpression. 2217static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2218 // If this isn't just an array->pointer decay, bail out. 2219 const CastExpr *CE = dyn_cast<CastExpr>(E); 2220 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2221 return 0; 2222 2223 // If this is a decay from variable width array, bail out. 2224 const Expr *SubExpr = CE->getSubExpr(); 2225 if (SubExpr->getType()->isVariableArrayType()) 2226 return 0; 2227 2228 return SubExpr; 2229} 2230 2231LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2232 bool Accessed) { 2233 // The index must always be an integer, which is not an aggregate. Emit it. 2234 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2235 QualType IdxTy = E->getIdx()->getType(); 2236 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2237 2238 if (SanOpts->Bounds) 2239 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2240 2241 // If the base is a vector type, then we are forming a vector element lvalue 2242 // with this subscript. 2243 if (E->getBase()->getType()->isVectorType()) { 2244 // Emit the vector as an lvalue to get its address. 2245 LValue LHS = EmitLValue(E->getBase()); 2246 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2247 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2248 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2249 E->getBase()->getType(), LHS.getAlignment()); 2250 } 2251 2252 // Extend or truncate the index type to 32 or 64-bits. 2253 if (Idx->getType() != IntPtrTy) 2254 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2255 2256 // We know that the pointer points to a type of the correct size, unless the 2257 // size is a VLA or Objective-C interface. 2258 llvm::Value *Address = 0; 2259 CharUnits ArrayAlignment; 2260 if (const VariableArrayType *vla = 2261 getContext().getAsVariableArrayType(E->getType())) { 2262 // The base must be a pointer, which is not an aggregate. Emit 2263 // it. It needs to be emitted first in case it's what captures 2264 // the VLA bounds. 2265 Address = EmitScalarExpr(E->getBase()); 2266 2267 // The element count here is the total number of non-VLA elements. 2268 llvm::Value *numElements = getVLASize(vla).first; 2269 2270 // Effectively, the multiply by the VLA size is part of the GEP. 2271 // GEP indexes are signed, and scaling an index isn't permitted to 2272 // signed-overflow, so we use the same semantics for our explicit 2273 // multiply. We suppress this if overflow is not undefined behavior. 2274 if (getLangOpts().isSignedOverflowDefined()) { 2275 Idx = Builder.CreateMul(Idx, numElements); 2276 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2277 } else { 2278 Idx = Builder.CreateNSWMul(Idx, numElements); 2279 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2280 } 2281 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2282 // Indexing over an interface, as in "NSString *P; P[4];" 2283 llvm::Value *InterfaceSize = 2284 llvm::ConstantInt::get(Idx->getType(), 2285 getContext().getTypeSizeInChars(OIT).getQuantity()); 2286 2287 Idx = Builder.CreateMul(Idx, InterfaceSize); 2288 2289 // The base must be a pointer, which is not an aggregate. Emit it. 2290 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2291 Address = EmitCastToVoidPtr(Base); 2292 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2293 Address = Builder.CreateBitCast(Address, Base->getType()); 2294 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2295 // If this is A[i] where A is an array, the frontend will have decayed the 2296 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2297 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2298 // "gep x, i" here. Emit one "gep A, 0, i". 2299 assert(Array->getType()->isArrayType() && 2300 "Array to pointer decay must have array source type!"); 2301 LValue ArrayLV; 2302 // For simple multidimensional array indexing, set the 'accessed' flag for 2303 // better bounds-checking of the base expression. 2304 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2305 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2306 else 2307 ArrayLV = EmitLValue(Array); 2308 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2309 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2310 llvm::Value *Args[] = { Zero, Idx }; 2311 2312 // Propagate the alignment from the array itself to the result. 2313 ArrayAlignment = ArrayLV.getAlignment(); 2314 2315 if (getLangOpts().isSignedOverflowDefined()) 2316 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2317 else 2318 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2319 } else { 2320 // The base must be a pointer, which is not an aggregate. Emit it. 2321 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2322 if (getLangOpts().isSignedOverflowDefined()) 2323 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2324 else 2325 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2326 } 2327 2328 QualType T = E->getBase()->getType()->getPointeeType(); 2329 assert(!T.isNull() && 2330 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2331 2332 2333 // Limit the alignment to that of the result type. 2334 LValue LV; 2335 if (!ArrayAlignment.isZero()) { 2336 CharUnits Align = getContext().getTypeAlignInChars(T); 2337 ArrayAlignment = std::min(Align, ArrayAlignment); 2338 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2339 } else { 2340 LV = MakeNaturalAlignAddrLValue(Address, T); 2341 } 2342 2343 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2344 2345 if (getLangOpts().ObjC1 && 2346 getLangOpts().getGC() != LangOptions::NonGC) { 2347 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2348 setObjCGCLValueClass(getContext(), E, LV); 2349 } 2350 return LV; 2351} 2352 2353static 2354llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2355 SmallVector<unsigned, 4> &Elts) { 2356 SmallVector<llvm::Constant*, 4> CElts; 2357 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2358 CElts.push_back(Builder.getInt32(Elts[i])); 2359 2360 return llvm::ConstantVector::get(CElts); 2361} 2362 2363LValue CodeGenFunction:: 2364EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2365 // Emit the base vector as an l-value. 2366 LValue Base; 2367 2368 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2369 if (E->isArrow()) { 2370 // If it is a pointer to a vector, emit the address and form an lvalue with 2371 // it. 2372 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2373 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2374 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2375 Base.getQuals().removeObjCGCAttr(); 2376 } else if (E->getBase()->isGLValue()) { 2377 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2378 // emit the base as an lvalue. 2379 assert(E->getBase()->getType()->isVectorType()); 2380 Base = EmitLValue(E->getBase()); 2381 } else { 2382 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2383 assert(E->getBase()->getType()->isVectorType() && 2384 "Result must be a vector"); 2385 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2386 2387 // Store the vector to memory (because LValue wants an address). 2388 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2389 Builder.CreateStore(Vec, VecMem); 2390 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2391 } 2392 2393 QualType type = 2394 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2395 2396 // Encode the element access list into a vector of unsigned indices. 2397 SmallVector<unsigned, 4> Indices; 2398 E->getEncodedElementAccess(Indices); 2399 2400 if (Base.isSimple()) { 2401 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2402 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2403 Base.getAlignment()); 2404 } 2405 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2406 2407 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2408 SmallVector<llvm::Constant *, 4> CElts; 2409 2410 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2411 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2412 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2413 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2414 Base.getAlignment()); 2415} 2416 2417LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2418 Expr *BaseExpr = E->getBase(); 2419 2420 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2421 LValue BaseLV; 2422 if (E->isArrow()) { 2423 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2424 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2425 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2426 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2427 } else 2428 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2429 2430 NamedDecl *ND = E->getMemberDecl(); 2431 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2432 LValue LV = EmitLValueForField(BaseLV, Field); 2433 setObjCGCLValueClass(getContext(), E, LV); 2434 return LV; 2435 } 2436 2437 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2438 return EmitGlobalVarDeclLValue(*this, E, VD); 2439 2440 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2441 return EmitFunctionDeclLValue(*this, E, FD); 2442 2443 llvm_unreachable("Unhandled member declaration!"); 2444} 2445 2446LValue CodeGenFunction::EmitLValueForField(LValue base, 2447 const FieldDecl *field) { 2448 if (field->isBitField()) { 2449 const CGRecordLayout &RL = 2450 CGM.getTypes().getCGRecordLayout(field->getParent()); 2451 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2452 llvm::Value *Addr = base.getAddress(); 2453 unsigned Idx = RL.getLLVMFieldNo(field); 2454 if (Idx != 0) 2455 // For structs, we GEP to the field that the record layout suggests. 2456 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2457 // Get the access type. 2458 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2459 getLLVMContext(), Info.StorageSize, 2460 CGM.getContext().getTargetAddressSpace(base.getType())); 2461 if (Addr->getType() != PtrTy) 2462 Addr = Builder.CreateBitCast(Addr, PtrTy); 2463 2464 QualType fieldType = 2465 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2466 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2467 } 2468 2469 const RecordDecl *rec = field->getParent(); 2470 QualType type = field->getType(); 2471 CharUnits alignment = getContext().getDeclAlign(field); 2472 2473 // FIXME: It should be impossible to have an LValue without alignment for a 2474 // complete type. 2475 if (!base.getAlignment().isZero()) 2476 alignment = std::min(alignment, base.getAlignment()); 2477 2478 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2479 2480 llvm::Value *addr = base.getAddress(); 2481 unsigned cvr = base.getVRQualifiers(); 2482 if (rec->isUnion()) { 2483 // For unions, there is no pointer adjustment. 2484 assert(!type->isReferenceType() && "union has reference member"); 2485 } else { 2486 // For structs, we GEP to the field that the record layout suggests. 2487 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2488 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2489 2490 // If this is a reference field, load the reference right now. 2491 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2492 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2493 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2494 load->setAlignment(alignment.getQuantity()); 2495 2496 if (CGM.shouldUseTBAA()) { 2497 llvm::MDNode *tbaa; 2498 if (mayAlias) 2499 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2500 else 2501 tbaa = CGM.getTBAAInfo(type); 2502 CGM.DecorateInstruction(load, tbaa); 2503 } 2504 2505 addr = load; 2506 mayAlias = false; 2507 type = refType->getPointeeType(); 2508 if (type->isIncompleteType()) 2509 alignment = CharUnits(); 2510 else 2511 alignment = getContext().getTypeAlignInChars(type); 2512 cvr = 0; // qualifiers don't recursively apply to referencee 2513 } 2514 } 2515 2516 // Make sure that the address is pointing to the right type. This is critical 2517 // for both unions and structs. A union needs a bitcast, a struct element 2518 // will need a bitcast if the LLVM type laid out doesn't match the desired 2519 // type. 2520 addr = EmitBitCastOfLValueToProperType(*this, addr, 2521 CGM.getTypes().ConvertTypeForMem(type), 2522 field->getName()); 2523 2524 if (field->hasAttr<AnnotateAttr>()) 2525 addr = EmitFieldAnnotations(field, addr); 2526 2527 LValue LV = MakeAddrLValue(addr, type, alignment); 2528 LV.getQuals().addCVRQualifiers(cvr); 2529 2530 // __weak attribute on a field is ignored. 2531 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2532 LV.getQuals().removeObjCGCAttr(); 2533 2534 // Fields of may_alias structs act like 'char' for TBAA purposes. 2535 // FIXME: this should get propagated down through anonymous structs 2536 // and unions. 2537 if (mayAlias && LV.getTBAAInfo()) 2538 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2539 2540 return LV; 2541} 2542 2543LValue 2544CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2545 const FieldDecl *Field) { 2546 QualType FieldType = Field->getType(); 2547 2548 if (!FieldType->isReferenceType()) 2549 return EmitLValueForField(Base, Field); 2550 2551 const CGRecordLayout &RL = 2552 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2553 unsigned idx = RL.getLLVMFieldNo(Field); 2554 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2555 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2556 2557 // Make sure that the address is pointing to the right type. This is critical 2558 // for both unions and structs. A union needs a bitcast, a struct element 2559 // will need a bitcast if the LLVM type laid out doesn't match the desired 2560 // type. 2561 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2562 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2563 2564 CharUnits Alignment = getContext().getDeclAlign(Field); 2565 2566 // FIXME: It should be impossible to have an LValue without alignment for a 2567 // complete type. 2568 if (!Base.getAlignment().isZero()) 2569 Alignment = std::min(Alignment, Base.getAlignment()); 2570 2571 return MakeAddrLValue(V, FieldType, Alignment); 2572} 2573 2574LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2575 if (E->isFileScope()) { 2576 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2577 return MakeAddrLValue(GlobalPtr, E->getType()); 2578 } 2579 if (E->getType()->isVariablyModifiedType()) 2580 // make sure to emit the VLA size. 2581 EmitVariablyModifiedType(E->getType()); 2582 2583 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2584 const Expr *InitExpr = E->getInitializer(); 2585 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2586 2587 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2588 /*Init*/ true); 2589 2590 return Result; 2591} 2592 2593LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2594 if (!E->isGLValue()) 2595 // Initializing an aggregate temporary in C++11: T{...}. 2596 return EmitAggExprToLValue(E); 2597 2598 // An lvalue initializer list must be initializing a reference. 2599 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2600 return EmitLValue(E->getInit(0)); 2601} 2602 2603LValue CodeGenFunction:: 2604EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2605 if (!expr->isGLValue()) { 2606 // ?: here should be an aggregate. 2607 assert(hasAggregateEvaluationKind(expr->getType()) && 2608 "Unexpected conditional operator!"); 2609 return EmitAggExprToLValue(expr); 2610 } 2611 2612 OpaqueValueMapping binding(*this, expr); 2613 2614 const Expr *condExpr = expr->getCond(); 2615 bool CondExprBool; 2616 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2617 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2618 if (!CondExprBool) std::swap(live, dead); 2619 2620 if (!ContainsLabel(dead)) 2621 return EmitLValue(live); 2622 } 2623 2624 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2625 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2626 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2627 2628 ConditionalEvaluation eval(*this); 2629 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2630 2631 // Any temporaries created here are conditional. 2632 EmitBlock(lhsBlock); 2633 eval.begin(*this); 2634 LValue lhs = EmitLValue(expr->getTrueExpr()); 2635 eval.end(*this); 2636 2637 if (!lhs.isSimple()) 2638 return EmitUnsupportedLValue(expr, "conditional operator"); 2639 2640 lhsBlock = Builder.GetInsertBlock(); 2641 Builder.CreateBr(contBlock); 2642 2643 // Any temporaries created here are conditional. 2644 EmitBlock(rhsBlock); 2645 eval.begin(*this); 2646 LValue rhs = EmitLValue(expr->getFalseExpr()); 2647 eval.end(*this); 2648 if (!rhs.isSimple()) 2649 return EmitUnsupportedLValue(expr, "conditional operator"); 2650 rhsBlock = Builder.GetInsertBlock(); 2651 2652 EmitBlock(contBlock); 2653 2654 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2655 "cond-lvalue"); 2656 phi->addIncoming(lhs.getAddress(), lhsBlock); 2657 phi->addIncoming(rhs.getAddress(), rhsBlock); 2658 return MakeAddrLValue(phi, expr->getType()); 2659} 2660 2661/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2662/// type. If the cast is to a reference, we can have the usual lvalue result, 2663/// otherwise if a cast is needed by the code generator in an lvalue context, 2664/// then it must mean that we need the address of an aggregate in order to 2665/// access one of its members. This can happen for all the reasons that casts 2666/// are permitted with aggregate result, including noop aggregate casts, and 2667/// cast from scalar to union. 2668LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2669 switch (E->getCastKind()) { 2670 case CK_ToVoid: 2671 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2672 2673 case CK_Dependent: 2674 llvm_unreachable("dependent cast kind in IR gen!"); 2675 2676 case CK_BuiltinFnToFnPtr: 2677 llvm_unreachable("builtin functions are handled elsewhere"); 2678 2679 // These two casts are currently treated as no-ops, although they could 2680 // potentially be real operations depending on the target's ABI. 2681 case CK_NonAtomicToAtomic: 2682 case CK_AtomicToNonAtomic: 2683 2684 case CK_NoOp: 2685 case CK_LValueToRValue: 2686 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2687 || E->getType()->isRecordType()) 2688 return EmitLValue(E->getSubExpr()); 2689 // Fall through to synthesize a temporary. 2690 2691 case CK_BitCast: 2692 case CK_ArrayToPointerDecay: 2693 case CK_FunctionToPointerDecay: 2694 case CK_NullToMemberPointer: 2695 case CK_NullToPointer: 2696 case CK_IntegralToPointer: 2697 case CK_PointerToIntegral: 2698 case CK_PointerToBoolean: 2699 case CK_VectorSplat: 2700 case CK_IntegralCast: 2701 case CK_IntegralToBoolean: 2702 case CK_IntegralToFloating: 2703 case CK_FloatingToIntegral: 2704 case CK_FloatingToBoolean: 2705 case CK_FloatingCast: 2706 case CK_FloatingRealToComplex: 2707 case CK_FloatingComplexToReal: 2708 case CK_FloatingComplexToBoolean: 2709 case CK_FloatingComplexCast: 2710 case CK_FloatingComplexToIntegralComplex: 2711 case CK_IntegralRealToComplex: 2712 case CK_IntegralComplexToReal: 2713 case CK_IntegralComplexToBoolean: 2714 case CK_IntegralComplexCast: 2715 case CK_IntegralComplexToFloatingComplex: 2716 case CK_DerivedToBaseMemberPointer: 2717 case CK_BaseToDerivedMemberPointer: 2718 case CK_MemberPointerToBoolean: 2719 case CK_ReinterpretMemberPointer: 2720 case CK_AnyPointerToBlockPointerCast: 2721 case CK_ARCProduceObject: 2722 case CK_ARCConsumeObject: 2723 case CK_ARCReclaimReturnedObject: 2724 case CK_ARCExtendBlockObject: 2725 case CK_CopyAndAutoreleaseBlockObject: { 2726 // These casts only produce lvalues when we're binding a reference to a 2727 // temporary realized from a (converted) pure rvalue. Emit the expression 2728 // as a value, copy it into a temporary, and return an lvalue referring to 2729 // that temporary. 2730 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2731 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2732 return MakeAddrLValue(V, E->getType()); 2733 } 2734 2735 case CK_Dynamic: { 2736 LValue LV = EmitLValue(E->getSubExpr()); 2737 llvm::Value *V = LV.getAddress(); 2738 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2739 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2740 } 2741 2742 case CK_ConstructorConversion: 2743 case CK_UserDefinedConversion: 2744 case CK_CPointerToObjCPointerCast: 2745 case CK_BlockPointerToObjCPointerCast: 2746 return EmitLValue(E->getSubExpr()); 2747 2748 case CK_UncheckedDerivedToBase: 2749 case CK_DerivedToBase: { 2750 const RecordType *DerivedClassTy = 2751 E->getSubExpr()->getType()->getAs<RecordType>(); 2752 CXXRecordDecl *DerivedClassDecl = 2753 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2754 2755 LValue LV = EmitLValue(E->getSubExpr()); 2756 llvm::Value *This = LV.getAddress(); 2757 2758 // Perform the derived-to-base conversion 2759 llvm::Value *Base = 2760 GetAddressOfBaseClass(This, DerivedClassDecl, 2761 E->path_begin(), E->path_end(), 2762 /*NullCheckValue=*/false); 2763 2764 return MakeAddrLValue(Base, E->getType()); 2765 } 2766 case CK_ToUnion: 2767 return EmitAggExprToLValue(E); 2768 case CK_BaseToDerived: { 2769 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2770 CXXRecordDecl *DerivedClassDecl = 2771 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2772 2773 LValue LV = EmitLValue(E->getSubExpr()); 2774 2775 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2776 // performed and the object is not of the derived type. 2777 if (SanitizePerformTypeCheck) 2778 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2779 LV.getAddress(), E->getType()); 2780 2781 // Perform the base-to-derived conversion 2782 llvm::Value *Derived = 2783 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2784 E->path_begin(), E->path_end(), 2785 /*NullCheckValue=*/false); 2786 2787 return MakeAddrLValue(Derived, E->getType()); 2788 } 2789 case CK_LValueBitCast: { 2790 // This must be a reinterpret_cast (or c-style equivalent). 2791 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2792 2793 LValue LV = EmitLValue(E->getSubExpr()); 2794 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2795 ConvertType(CE->getTypeAsWritten())); 2796 return MakeAddrLValue(V, E->getType()); 2797 } 2798 case CK_ObjCObjectLValueCast: { 2799 LValue LV = EmitLValue(E->getSubExpr()); 2800 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2801 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2802 ConvertType(ToType)); 2803 return MakeAddrLValue(V, E->getType()); 2804 } 2805 case CK_ZeroToOCLEvent: 2806 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2807 } 2808 2809 llvm_unreachable("Unhandled lvalue cast kind?"); 2810} 2811 2812LValue CodeGenFunction::EmitNullInitializationLValue( 2813 const CXXScalarValueInitExpr *E) { 2814 QualType Ty = E->getType(); 2815 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2816 EmitNullInitialization(LV.getAddress(), Ty); 2817 return LV; 2818} 2819 2820LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2821 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2822 return getOpaqueLValueMapping(e); 2823} 2824 2825LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2826 const MaterializeTemporaryExpr *E) { 2827 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2828 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2829} 2830 2831RValue CodeGenFunction::EmitRValueForField(LValue LV, 2832 const FieldDecl *FD) { 2833 QualType FT = FD->getType(); 2834 LValue FieldLV = EmitLValueForField(LV, FD); 2835 switch (getEvaluationKind(FT)) { 2836 case TEK_Complex: 2837 return RValue::getComplex(EmitLoadOfComplex(FieldLV)); 2838 case TEK_Aggregate: 2839 return FieldLV.asAggregateRValue(); 2840 case TEK_Scalar: 2841 return EmitLoadOfLValue(FieldLV); 2842 } 2843 llvm_unreachable("bad evaluation kind"); 2844} 2845 2846//===--------------------------------------------------------------------===// 2847// Expression Emission 2848//===--------------------------------------------------------------------===// 2849 2850RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2851 ReturnValueSlot ReturnValue) { 2852 if (CGDebugInfo *DI = getDebugInfo()) 2853 DI->EmitLocation(Builder, E->getLocStart()); 2854 2855 // Builtins never have block type. 2856 if (E->getCallee()->getType()->isBlockPointerType()) 2857 return EmitBlockCallExpr(E, ReturnValue); 2858 2859 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2860 return EmitCXXMemberCallExpr(CE, ReturnValue); 2861 2862 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2863 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2864 2865 const Decl *TargetDecl = E->getCalleeDecl(); 2866 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2867 if (unsigned builtinID = FD->getBuiltinID()) 2868 return EmitBuiltinExpr(FD, builtinID, E); 2869 } 2870 2871 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2872 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2873 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2874 2875 if (const CXXPseudoDestructorExpr *PseudoDtor 2876 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2877 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2878 if (getLangOpts().ObjCAutoRefCount && 2879 DestroyedType->isObjCLifetimeType() && 2880 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2881 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2882 // Automatic Reference Counting: 2883 // If the pseudo-expression names a retainable object with weak or 2884 // strong lifetime, the object shall be released. 2885 Expr *BaseExpr = PseudoDtor->getBase(); 2886 llvm::Value *BaseValue = NULL; 2887 Qualifiers BaseQuals; 2888 2889 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2890 if (PseudoDtor->isArrow()) { 2891 BaseValue = EmitScalarExpr(BaseExpr); 2892 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2893 BaseQuals = PTy->getPointeeType().getQualifiers(); 2894 } else { 2895 LValue BaseLV = EmitLValue(BaseExpr); 2896 BaseValue = BaseLV.getAddress(); 2897 QualType BaseTy = BaseExpr->getType(); 2898 BaseQuals = BaseTy.getQualifiers(); 2899 } 2900 2901 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2902 case Qualifiers::OCL_None: 2903 case Qualifiers::OCL_ExplicitNone: 2904 case Qualifiers::OCL_Autoreleasing: 2905 break; 2906 2907 case Qualifiers::OCL_Strong: 2908 EmitARCRelease(Builder.CreateLoad(BaseValue, 2909 PseudoDtor->getDestroyedType().isVolatileQualified()), 2910 /*precise*/ true); 2911 break; 2912 2913 case Qualifiers::OCL_Weak: 2914 EmitARCDestroyWeak(BaseValue); 2915 break; 2916 } 2917 } else { 2918 // C++ [expr.pseudo]p1: 2919 // The result shall only be used as the operand for the function call 2920 // operator (), and the result of such a call has type void. The only 2921 // effect is the evaluation of the postfix-expression before the dot or 2922 // arrow. 2923 EmitScalarExpr(E->getCallee()); 2924 } 2925 2926 return RValue::get(0); 2927 } 2928 2929 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2930 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2931 E->arg_begin(), E->arg_end(), TargetDecl); 2932} 2933 2934LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2935 // Comma expressions just emit their LHS then their RHS as an l-value. 2936 if (E->getOpcode() == BO_Comma) { 2937 EmitIgnoredExpr(E->getLHS()); 2938 EnsureInsertPoint(); 2939 return EmitLValue(E->getRHS()); 2940 } 2941 2942 if (E->getOpcode() == BO_PtrMemD || 2943 E->getOpcode() == BO_PtrMemI) 2944 return EmitPointerToDataMemberBinaryExpr(E); 2945 2946 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2947 2948 // Note that in all of these cases, __block variables need the RHS 2949 // evaluated first just in case the variable gets moved by the RHS. 2950 2951 switch (getEvaluationKind(E->getType())) { 2952 case TEK_Scalar: { 2953 switch (E->getLHS()->getType().getObjCLifetime()) { 2954 case Qualifiers::OCL_Strong: 2955 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2956 2957 case Qualifiers::OCL_Autoreleasing: 2958 return EmitARCStoreAutoreleasing(E).first; 2959 2960 // No reason to do any of these differently. 2961 case Qualifiers::OCL_None: 2962 case Qualifiers::OCL_ExplicitNone: 2963 case Qualifiers::OCL_Weak: 2964 break; 2965 } 2966 2967 RValue RV = EmitAnyExpr(E->getRHS()); 2968 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2969 EmitStoreThroughLValue(RV, LV); 2970 return LV; 2971 } 2972 2973 case TEK_Complex: 2974 return EmitComplexAssignmentLValue(E); 2975 2976 case TEK_Aggregate: 2977 return EmitAggExprToLValue(E); 2978 } 2979 llvm_unreachable("bad evaluation kind"); 2980} 2981 2982LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2983 RValue RV = EmitCallExpr(E); 2984 2985 if (!RV.isScalar()) 2986 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2987 2988 assert(E->getCallReturnType()->isReferenceType() && 2989 "Can't have a scalar return unless the return type is a " 2990 "reference type!"); 2991 2992 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2993} 2994 2995LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2996 // FIXME: This shouldn't require another copy. 2997 return EmitAggExprToLValue(E); 2998} 2999 3000LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3001 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3002 && "binding l-value to type which needs a temporary"); 3003 AggValueSlot Slot = CreateAggTemp(E->getType()); 3004 EmitCXXConstructExpr(E, Slot); 3005 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3006} 3007 3008LValue 3009CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3010 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3011} 3012 3013llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3014 return CGM.GetAddrOfUuidDescriptor(E); 3015} 3016 3017LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3018 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3019} 3020 3021LValue 3022CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3023 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3024 Slot.setExternallyDestructed(); 3025 EmitAggExpr(E->getSubExpr(), Slot); 3026 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3027 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3028} 3029 3030LValue 3031CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3032 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3033 EmitLambdaExpr(E, Slot); 3034 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3035} 3036 3037LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3038 RValue RV = EmitObjCMessageExpr(E); 3039 3040 if (!RV.isScalar()) 3041 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3042 3043 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 3044 "Can't have a scalar return unless the return type is a " 3045 "reference type!"); 3046 3047 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3048} 3049 3050LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3051 llvm::Value *V = 3052 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3053 return MakeAddrLValue(V, E->getType()); 3054} 3055 3056llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3057 const ObjCIvarDecl *Ivar) { 3058 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3059} 3060 3061LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3062 llvm::Value *BaseValue, 3063 const ObjCIvarDecl *Ivar, 3064 unsigned CVRQualifiers) { 3065 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3066 Ivar, CVRQualifiers); 3067} 3068 3069LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3070 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3071 llvm::Value *BaseValue = 0; 3072 const Expr *BaseExpr = E->getBase(); 3073 Qualifiers BaseQuals; 3074 QualType ObjectTy; 3075 if (E->isArrow()) { 3076 BaseValue = EmitScalarExpr(BaseExpr); 3077 ObjectTy = BaseExpr->getType()->getPointeeType(); 3078 BaseQuals = ObjectTy.getQualifiers(); 3079 } else { 3080 LValue BaseLV = EmitLValue(BaseExpr); 3081 // FIXME: this isn't right for bitfields. 3082 BaseValue = BaseLV.getAddress(); 3083 ObjectTy = BaseExpr->getType(); 3084 BaseQuals = ObjectTy.getQualifiers(); 3085 } 3086 3087 LValue LV = 3088 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3089 BaseQuals.getCVRQualifiers()); 3090 setObjCGCLValueClass(getContext(), E, LV); 3091 return LV; 3092} 3093 3094LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3095 // Can only get l-value for message expression returning aggregate type 3096 RValue RV = EmitAnyExprToTemp(E); 3097 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3098} 3099 3100RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3101 ReturnValueSlot ReturnValue, 3102 CallExpr::const_arg_iterator ArgBeg, 3103 CallExpr::const_arg_iterator ArgEnd, 3104 const Decl *TargetDecl) { 3105 // Get the actual function type. The callee type will always be a pointer to 3106 // function type or a block pointer type. 3107 assert(CalleeType->isFunctionPointerType() && 3108 "Call must have function pointer type!"); 3109 3110 CalleeType = getContext().getCanonicalType(CalleeType); 3111 3112 const FunctionType *FnType 3113 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3114 3115 CallArgList Args; 3116 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 3117 3118 const CGFunctionInfo &FnInfo = 3119 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3120 3121 // C99 6.5.2.2p6: 3122 // If the expression that denotes the called function has a type 3123 // that does not include a prototype, [the default argument 3124 // promotions are performed]. If the number of arguments does not 3125 // equal the number of parameters, the behavior is undefined. If 3126 // the function is defined with a type that includes a prototype, 3127 // and either the prototype ends with an ellipsis (, ...) or the 3128 // types of the arguments after promotion are not compatible with 3129 // the types of the parameters, the behavior is undefined. If the 3130 // function is defined with a type that does not include a 3131 // prototype, and the types of the arguments after promotion are 3132 // not compatible with those of the parameters after promotion, 3133 // the behavior is undefined [except in some trivial cases]. 3134 // That is, in the general case, we should assume that a call 3135 // through an unprototyped function type works like a *non-variadic* 3136 // call. The way we make this work is to cast to the exact type 3137 // of the promoted arguments. 3138 if (isa<FunctionNoProtoType>(FnType)) { 3139 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3140 CalleeTy = CalleeTy->getPointerTo(); 3141 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3142 } 3143 3144 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3145} 3146 3147LValue CodeGenFunction:: 3148EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3149 llvm::Value *BaseV; 3150 if (E->getOpcode() == BO_PtrMemI) 3151 BaseV = EmitScalarExpr(E->getLHS()); 3152 else 3153 BaseV = EmitLValue(E->getLHS()).getAddress(); 3154 3155 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3156 3157 const MemberPointerType *MPT 3158 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3159 3160 llvm::Value *AddV = 3161 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3162 3163 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3164} 3165 3166/// Given the address of a temporary variable, produce an r-value of 3167/// its type. 3168RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3169 QualType type) { 3170 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3171 switch (getEvaluationKind(type)) { 3172 case TEK_Complex: 3173 return RValue::getComplex(EmitLoadOfComplex(lvalue)); 3174 case TEK_Aggregate: 3175 return lvalue.asAggregateRValue(); 3176 case TEK_Scalar: 3177 return RValue::get(EmitLoadOfScalar(lvalue)); 3178 } 3179 llvm_unreachable("bad evaluation kind"); 3180} 3181 3182void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3183 assert(Val->getType()->isFPOrFPVectorTy()); 3184 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3185 return; 3186 3187 llvm::MDBuilder MDHelper(getLLVMContext()); 3188 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3189 3190 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3191} 3192 3193namespace { 3194 struct LValueOrRValue { 3195 LValue LV; 3196 RValue RV; 3197 }; 3198} 3199 3200static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3201 const PseudoObjectExpr *E, 3202 bool forLValue, 3203 AggValueSlot slot) { 3204 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3205 3206 // Find the result expression, if any. 3207 const Expr *resultExpr = E->getResultExpr(); 3208 LValueOrRValue result; 3209 3210 for (PseudoObjectExpr::const_semantics_iterator 3211 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3212 const Expr *semantic = *i; 3213 3214 // If this semantic expression is an opaque value, bind it 3215 // to the result of its source expression. 3216 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3217 3218 // If this is the result expression, we may need to evaluate 3219 // directly into the slot. 3220 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3221 OVMA opaqueData; 3222 if (ov == resultExpr && ov->isRValue() && !forLValue && 3223 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3224 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3225 3226 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3227 opaqueData = OVMA::bind(CGF, ov, LV); 3228 result.RV = slot.asRValue(); 3229 3230 // Otherwise, emit as normal. 3231 } else { 3232 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3233 3234 // If this is the result, also evaluate the result now. 3235 if (ov == resultExpr) { 3236 if (forLValue) 3237 result.LV = CGF.EmitLValue(ov); 3238 else 3239 result.RV = CGF.EmitAnyExpr(ov, slot); 3240 } 3241 } 3242 3243 opaques.push_back(opaqueData); 3244 3245 // Otherwise, if the expression is the result, evaluate it 3246 // and remember the result. 3247 } else if (semantic == resultExpr) { 3248 if (forLValue) 3249 result.LV = CGF.EmitLValue(semantic); 3250 else 3251 result.RV = CGF.EmitAnyExpr(semantic, slot); 3252 3253 // Otherwise, evaluate the expression in an ignored context. 3254 } else { 3255 CGF.EmitIgnoredExpr(semantic); 3256 } 3257 } 3258 3259 // Unbind all the opaques now. 3260 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3261 opaques[i].unbind(CGF); 3262 3263 return result; 3264} 3265 3266RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3267 AggValueSlot slot) { 3268 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3269} 3270 3271LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3272 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3273} 3274