CGExpr.cpp revision c7971a9efdf9880448a69aabb5182c3c27eecf6d
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/Support/ConvertUTF.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35//===--------------------------------------------------------------------===//
36//                        Miscellaneous Helper Methods
37//===--------------------------------------------------------------------===//
38
39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40  unsigned addressSpace =
41    cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43  llvm::PointerType *destType = Int8PtrTy;
44  if (addressSpace)
45    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47  if (value->getType() == destType) return value;
48  return Builder.CreateBitCast(value, destType);
49}
50
51/// CreateTempAlloca - This creates a alloca and inserts it into the entry
52/// block.
53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                    const Twine &Name) {
55  if (!Builder.isNamePreserving())
56    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58}
59
60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                     llvm::Value *Init) {
62  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65}
66
67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                const Twine &Name) {
69  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70  // FIXME: Should we prefer the preferred type alignment here?
71  CharUnits Align = getContext().getTypeAlignInChars(Ty);
72  Alloc->setAlignment(Align.getQuantity());
73  return Alloc;
74}
75
76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                 const Twine &Name) {
78  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79  // FIXME: Should we prefer the preferred type alignment here?
80  CharUnits Align = getContext().getTypeAlignInChars(Ty);
81  Alloc->setAlignment(Align.getQuantity());
82  return Alloc;
83}
84
85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86/// expression and compare the result against zero, returning an Int1Ty value.
87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89    llvm::Value *MemPtr = EmitScalarExpr(E);
90    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91  }
92
93  QualType BoolTy = getContext().BoolTy;
94  if (!E->getType()->isAnyComplexType())
95    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98}
99
100/// EmitIgnoredExpr - Emit code to compute the specified expression,
101/// ignoring the result.
102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103  if (E->isRValue())
104    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106  // Just emit it as an l-value and drop the result.
107  EmitLValue(E);
108}
109
110/// EmitAnyExpr - Emit code to compute the specified expression which
111/// can have any type.  The result is returned as an RValue struct.
112/// If this is an aggregate expression, AggSlot indicates where the
113/// result should be returned.
114RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                    AggValueSlot aggSlot,
116                                    bool ignoreResult) {
117  switch (getEvaluationKind(E->getType())) {
118  case TEK_Scalar:
119    return RValue::get(EmitScalarExpr(E, ignoreResult));
120  case TEK_Complex:
121    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122  case TEK_Aggregate:
123    if (!ignoreResult && aggSlot.isIgnored())
124      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125    EmitAggExpr(E, aggSlot);
126    return aggSlot.asRValue();
127  }
128  llvm_unreachable("bad evaluation kind");
129}
130
131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132/// always be accessible even if no aggregate location is provided.
133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134  AggValueSlot AggSlot = AggValueSlot::ignored();
135
136  if (hasAggregateEvaluationKind(E->getType()))
137    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138  return EmitAnyExpr(E, AggSlot);
139}
140
141/// EmitAnyExprToMem - Evaluate an expression into a given memory
142/// location.
143void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                       llvm::Value *Location,
145                                       Qualifiers Quals,
146                                       bool IsInit) {
147  // FIXME: This function should take an LValue as an argument.
148  switch (getEvaluationKind(E->getType())) {
149  case TEK_Complex:
150    EmitComplexExprIntoLValue(E,
151                         MakeNaturalAlignAddrLValue(Location, E->getType()),
152                              /*isInit*/ false);
153    return;
154
155  case TEK_Aggregate: {
156    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                         AggValueSlot::IsDestructed_t(IsInit),
159                                         AggValueSlot::DoesNotNeedGCBarriers,
160                                         AggValueSlot::IsAliased_t(!IsInit)));
161    return;
162  }
163
164  case TEK_Scalar: {
165    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166    LValue LV = MakeAddrLValue(Location, E->getType());
167    EmitStoreThroughLValue(RV, LV);
168    return;
169  }
170  }
171  llvm_unreachable("bad evaluation kind");
172}
173
174static void
175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                     const Expr *E, llvm::Value *ReferenceTemporary) {
177  // Objective-C++ ARC:
178  //   If we are binding a reference to a temporary that has ownership, we
179  //   need to perform retain/release operations on the temporary.
180  //
181  // FIXME: This should be looking at E, not M.
182  if (CGF.getLangOpts().ObjCAutoRefCount &&
183      M->getType()->isObjCLifetimeType()) {
184    QualType ObjCARCReferenceLifetimeType = M->getType();
185    switch (Qualifiers::ObjCLifetime Lifetime =
186                ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187    case Qualifiers::OCL_None:
188    case Qualifiers::OCL_ExplicitNone:
189      // Carry on to normal cleanup handling.
190      break;
191
192    case Qualifiers::OCL_Autoreleasing:
193      // Nothing to do; cleaned up by an autorelease pool.
194      return;
195
196    case Qualifiers::OCL_Strong:
197    case Qualifiers::OCL_Weak:
198      switch (StorageDuration Duration = M->getStorageDuration()) {
199      case SD_Static:
200        // Note: we intentionally do not register a cleanup to release
201        // the object on program termination.
202        return;
203
204      case SD_Thread:
205        // FIXME: We should probably register a cleanup in this case.
206        return;
207
208      case SD_Automatic:
209      case SD_FullExpression:
210        assert(!ObjCARCReferenceLifetimeType->isArrayType());
211        CodeGenFunction::Destroyer *Destroy;
212        CleanupKind CleanupKind;
213        if (Lifetime == Qualifiers::OCL_Strong) {
214          const ValueDecl *VD = M->getExtendingDecl();
215          bool Precise =
216              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217          CleanupKind = CGF.getARCCleanupKind();
218          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                            : &CodeGenFunction::destroyARCStrongImprecise;
220        } else {
221          // __weak objects always get EH cleanups; otherwise, exceptions
222          // could cause really nasty crashes instead of mere leaks.
223          CleanupKind = NormalAndEHCleanup;
224          Destroy = &CodeGenFunction::destroyARCWeak;
225        }
226        if (Duration == SD_FullExpression)
227          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                          ObjCARCReferenceLifetimeType, *Destroy,
229                          CleanupKind & EHCleanup);
230        else
231          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                          ObjCARCReferenceLifetimeType,
233                                          *Destroy, CleanupKind & EHCleanup);
234        return;
235
236      case SD_Dynamic:
237        llvm_unreachable("temporary cannot have dynamic storage duration");
238      }
239      llvm_unreachable("unknown storage duration");
240    }
241  }
242
243  CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244  if (const RecordType *RT =
245          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246    // Get the destructor for the reference temporary.
247    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248    if (!ClassDecl->hasTrivialDestructor())
249      ReferenceTemporaryDtor = ClassDecl->getDestructor();
250  }
251
252  if (!ReferenceTemporaryDtor)
253    return;
254
255  // Call the destructor for the temporary.
256  switch (M->getStorageDuration()) {
257  case SD_Static:
258  case SD_Thread: {
259    llvm::Constant *CleanupFn;
260    llvm::Constant *CleanupArg;
261    if (E->getType()->isArrayType()) {
262      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263          cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
265          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
266      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
267    } else {
268      CleanupFn =
269        CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
270      CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
271    }
272    CGF.CGM.getCXXABI().registerGlobalDtor(
273        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
274    break;
275  }
276
277  case SD_FullExpression:
278    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
279                    CodeGenFunction::destroyCXXObject,
280                    CGF.getLangOpts().Exceptions);
281    break;
282
283  case SD_Automatic:
284    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
285                                    ReferenceTemporary, E->getType(),
286                                    CodeGenFunction::destroyCXXObject,
287                                    CGF.getLangOpts().Exceptions);
288    break;
289
290  case SD_Dynamic:
291    llvm_unreachable("temporary cannot have dynamic storage duration");
292  }
293}
294
295static llvm::Value *
296createReferenceTemporary(CodeGenFunction &CGF,
297                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
298  switch (M->getStorageDuration()) {
299  case SD_FullExpression:
300  case SD_Automatic:
301    return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
302
303  case SD_Thread:
304  case SD_Static:
305    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
306
307  case SD_Dynamic:
308    llvm_unreachable("temporary can't have dynamic storage duration");
309  }
310  llvm_unreachable("unknown storage duration");
311}
312
313LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
314                                           const MaterializeTemporaryExpr *M) {
315  const Expr *E = M->GetTemporaryExpr();
316
317  if (getLangOpts().ObjCAutoRefCount &&
318      M->getType()->isObjCLifetimeType() &&
319      M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
320      M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
321    // FIXME: Fold this into the general case below.
322    llvm::Value *Object = createReferenceTemporary(*this, M, E);
323    LValue RefTempDst = MakeAddrLValue(Object, M->getType());
324
325    if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
326      // We should not have emitted the initializer for this temporary as a
327      // constant.
328      assert(!Var->hasInitializer());
329      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
330    }
331
332    EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
333
334    pushTemporaryCleanup(*this, M, E, Object);
335    return RefTempDst;
336  }
337
338  SmallVector<const Expr *, 2> CommaLHSs;
339  SmallVector<SubobjectAdjustment, 2> Adjustments;
340  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
341
342  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
343    EmitIgnoredExpr(CommaLHSs[I]);
344
345  if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
346    if (opaque->getType()->isRecordType()) {
347      assert(Adjustments.empty());
348      return EmitOpaqueValueLValue(opaque);
349    }
350  }
351
352  // Create and initialize the reference temporary.
353  llvm::Value *Object = createReferenceTemporary(*this, M, E);
354  if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
355    // If the temporary is a global and has a constant initializer, we may
356    // have already initialized it.
357    if (!Var->hasInitializer()) {
358      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
359      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
360    }
361  } else {
362    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
363  }
364  pushTemporaryCleanup(*this, M, E, Object);
365
366  // Perform derived-to-base casts and/or field accesses, to get from the
367  // temporary object we created (and, potentially, for which we extended
368  // the lifetime) to the subobject we're binding the reference to.
369  for (unsigned I = Adjustments.size(); I != 0; --I) {
370    SubobjectAdjustment &Adjustment = Adjustments[I-1];
371    switch (Adjustment.Kind) {
372    case SubobjectAdjustment::DerivedToBaseAdjustment:
373      Object =
374          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
375                                Adjustment.DerivedToBase.BasePath->path_begin(),
376                                Adjustment.DerivedToBase.BasePath->path_end(),
377                                /*NullCheckValue=*/ false);
378      break;
379
380    case SubobjectAdjustment::FieldAdjustment: {
381      LValue LV = MakeAddrLValue(Object, E->getType());
382      LV = EmitLValueForField(LV, Adjustment.Field);
383      assert(LV.isSimple() &&
384             "materialized temporary field is not a simple lvalue");
385      Object = LV.getAddress();
386      break;
387    }
388
389    case SubobjectAdjustment::MemberPointerAdjustment: {
390      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
391      Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
392                    *this, Object, Ptr, Adjustment.Ptr.MPT);
393      break;
394    }
395    }
396  }
397
398  return MakeAddrLValue(Object, M->getType());
399}
400
401RValue
402CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
403  // Emit the expression as an lvalue.
404  LValue LV = EmitLValue(E);
405  assert(LV.isSimple());
406  llvm::Value *Value = LV.getAddress();
407
408  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
409    // C++11 [dcl.ref]p5 (as amended by core issue 453):
410    //   If a glvalue to which a reference is directly bound designates neither
411    //   an existing object or function of an appropriate type nor a region of
412    //   storage of suitable size and alignment to contain an object of the
413    //   reference's type, the behavior is undefined.
414    QualType Ty = E->getType();
415    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
416  }
417
418  return RValue::get(Value);
419}
420
421
422/// getAccessedFieldNo - Given an encoded value and a result number, return the
423/// input field number being accessed.
424unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
425                                             const llvm::Constant *Elts) {
426  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
427      ->getZExtValue();
428}
429
430/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
431static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
432                                    llvm::Value *High) {
433  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
434  llvm::Value *K47 = Builder.getInt64(47);
435  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
436  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
437  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
438  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
439  return Builder.CreateMul(B1, KMul);
440}
441
442void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
443                                    llvm::Value *Address,
444                                    QualType Ty, CharUnits Alignment) {
445  if (!SanitizePerformTypeCheck)
446    return;
447
448  // Don't check pointers outside the default address space. The null check
449  // isn't correct, the object-size check isn't supported by LLVM, and we can't
450  // communicate the addresses to the runtime handler for the vptr check.
451  if (Address->getType()->getPointerAddressSpace())
452    return;
453
454  llvm::Value *Cond = 0;
455  llvm::BasicBlock *Done = 0;
456
457  if (SanOpts->Null) {
458    // The glvalue must not be an empty glvalue.
459    Cond = Builder.CreateICmpNE(
460        Address, llvm::Constant::getNullValue(Address->getType()));
461
462    if (TCK == TCK_DowncastPointer) {
463      // When performing a pointer downcast, it's OK if the value is null.
464      // Skip the remaining checks in that case.
465      Done = createBasicBlock("null");
466      llvm::BasicBlock *Rest = createBasicBlock("not.null");
467      Builder.CreateCondBr(Cond, Rest, Done);
468      EmitBlock(Rest);
469      Cond = 0;
470    }
471  }
472
473  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
474    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
475
476    // The glvalue must refer to a large enough storage region.
477    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
478    //        to check this.
479    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
480    llvm::Value *Min = Builder.getFalse();
481    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
482    llvm::Value *LargeEnough =
483        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
484                              llvm::ConstantInt::get(IntPtrTy, Size));
485    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
486  }
487
488  uint64_t AlignVal = 0;
489
490  if (SanOpts->Alignment) {
491    AlignVal = Alignment.getQuantity();
492    if (!Ty->isIncompleteType() && !AlignVal)
493      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
494
495    // The glvalue must be suitably aligned.
496    if (AlignVal) {
497      llvm::Value *Align =
498          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
499                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
500      llvm::Value *Aligned =
501        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
502      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
503    }
504  }
505
506  if (Cond) {
507    llvm::Constant *StaticData[] = {
508      EmitCheckSourceLocation(Loc),
509      EmitCheckTypeDescriptor(Ty),
510      llvm::ConstantInt::get(SizeTy, AlignVal),
511      llvm::ConstantInt::get(Int8Ty, TCK)
512    };
513    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
514  }
515
516  // If possible, check that the vptr indicates that there is a subobject of
517  // type Ty at offset zero within this object.
518  //
519  // C++11 [basic.life]p5,6:
520  //   [For storage which does not refer to an object within its lifetime]
521  //   The program has undefined behavior if:
522  //    -- the [pointer or glvalue] is used to access a non-static data member
523  //       or call a non-static member function
524  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
525  if (SanOpts->Vptr &&
526      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
527       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
528      RD && RD->hasDefinition() && RD->isDynamicClass()) {
529    // Compute a hash of the mangled name of the type.
530    //
531    // FIXME: This is not guaranteed to be deterministic! Move to a
532    //        fingerprinting mechanism once LLVM provides one. For the time
533    //        being the implementation happens to be deterministic.
534    SmallString<64> MangledName;
535    llvm::raw_svector_ostream Out(MangledName);
536    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
537                                                     Out);
538    llvm::hash_code TypeHash = hash_value(Out.str());
539
540    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
541    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
542    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
543    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
544    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
545    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
546
547    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
548    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
549
550    // Look the hash up in our cache.
551    const int CacheSize = 128;
552    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
553    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
554                                                   "__ubsan_vptr_type_cache");
555    llvm::Value *Slot = Builder.CreateAnd(Hash,
556                                          llvm::ConstantInt::get(IntPtrTy,
557                                                                 CacheSize-1));
558    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
559    llvm::Value *CacheVal =
560      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
561
562    // If the hash isn't in the cache, call a runtime handler to perform the
563    // hard work of checking whether the vptr is for an object of the right
564    // type. This will either fill in the cache and return, or produce a
565    // diagnostic.
566    llvm::Constant *StaticData[] = {
567      EmitCheckSourceLocation(Loc),
568      EmitCheckTypeDescriptor(Ty),
569      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
570      llvm::ConstantInt::get(Int8Ty, TCK)
571    };
572    llvm::Value *DynamicData[] = { Address, Hash };
573    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
574              "dynamic_type_cache_miss", StaticData, DynamicData,
575              CRK_AlwaysRecoverable);
576  }
577
578  if (Done) {
579    Builder.CreateBr(Done);
580    EmitBlock(Done);
581  }
582}
583
584/// Determine whether this expression refers to a flexible array member in a
585/// struct. We disable array bounds checks for such members.
586static bool isFlexibleArrayMemberExpr(const Expr *E) {
587  // For compatibility with existing code, we treat arrays of length 0 or
588  // 1 as flexible array members.
589  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
590  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
591    if (CAT->getSize().ugt(1))
592      return false;
593  } else if (!isa<IncompleteArrayType>(AT))
594    return false;
595
596  E = E->IgnoreParens();
597
598  // A flexible array member must be the last member in the class.
599  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
600    // FIXME: If the base type of the member expr is not FD->getParent(),
601    // this should not be treated as a flexible array member access.
602    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
603      RecordDecl::field_iterator FI(
604          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
605      return ++FI == FD->getParent()->field_end();
606    }
607  }
608
609  return false;
610}
611
612/// If Base is known to point to the start of an array, return the length of
613/// that array. Return 0 if the length cannot be determined.
614static llvm::Value *getArrayIndexingBound(
615    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
616  // For the vector indexing extension, the bound is the number of elements.
617  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
618    IndexedType = Base->getType();
619    return CGF.Builder.getInt32(VT->getNumElements());
620  }
621
622  Base = Base->IgnoreParens();
623
624  if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
625    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
626        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
627      IndexedType = CE->getSubExpr()->getType();
628      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
629      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
630        return CGF.Builder.getInt(CAT->getSize());
631      else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
632        return CGF.getVLASize(VAT).first;
633    }
634  }
635
636  return 0;
637}
638
639void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
640                                      llvm::Value *Index, QualType IndexType,
641                                      bool Accessed) {
642  assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
643
644  QualType IndexedType;
645  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
646  if (!Bound)
647    return;
648
649  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
650  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
651  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
652
653  llvm::Constant *StaticData[] = {
654    EmitCheckSourceLocation(E->getExprLoc()),
655    EmitCheckTypeDescriptor(IndexedType),
656    EmitCheckTypeDescriptor(IndexType)
657  };
658  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
659                                : Builder.CreateICmpULE(IndexVal, BoundVal);
660  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
661}
662
663
664CodeGenFunction::ComplexPairTy CodeGenFunction::
665EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
666                         bool isInc, bool isPre) {
667  ComplexPairTy InVal = EmitLoadOfComplex(LV);
668
669  llvm::Value *NextVal;
670  if (isa<llvm::IntegerType>(InVal.first->getType())) {
671    uint64_t AmountVal = isInc ? 1 : -1;
672    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
673
674    // Add the inc/dec to the real part.
675    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
676  } else {
677    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
678    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
679    if (!isInc)
680      FVal.changeSign();
681    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
682
683    // Add the inc/dec to the real part.
684    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
685  }
686
687  ComplexPairTy IncVal(NextVal, InVal.second);
688
689  // Store the updated result through the lvalue.
690  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
691
692  // If this is a postinc, return the value read from memory, otherwise use the
693  // updated value.
694  return isPre ? IncVal : InVal;
695}
696
697
698//===----------------------------------------------------------------------===//
699//                         LValue Expression Emission
700//===----------------------------------------------------------------------===//
701
702RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
703  if (Ty->isVoidType())
704    return RValue::get(0);
705
706  switch (getEvaluationKind(Ty)) {
707  case TEK_Complex: {
708    llvm::Type *EltTy =
709      ConvertType(Ty->castAs<ComplexType>()->getElementType());
710    llvm::Value *U = llvm::UndefValue::get(EltTy);
711    return RValue::getComplex(std::make_pair(U, U));
712  }
713
714  // If this is a use of an undefined aggregate type, the aggregate must have an
715  // identifiable address.  Just because the contents of the value are undefined
716  // doesn't mean that the address can't be taken and compared.
717  case TEK_Aggregate: {
718    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
719    return RValue::getAggregate(DestPtr);
720  }
721
722  case TEK_Scalar:
723    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
724  }
725  llvm_unreachable("bad evaluation kind");
726}
727
728RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
729                                              const char *Name) {
730  ErrorUnsupported(E, Name);
731  return GetUndefRValue(E->getType());
732}
733
734LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
735                                              const char *Name) {
736  ErrorUnsupported(E, Name);
737  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
738  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
739}
740
741LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
742  LValue LV;
743  if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
744    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
745  else
746    LV = EmitLValue(E);
747  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
748    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
749                  E->getType(), LV.getAlignment());
750  return LV;
751}
752
753/// EmitLValue - Emit code to compute a designator that specifies the location
754/// of the expression.
755///
756/// This can return one of two things: a simple address or a bitfield reference.
757/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
758/// an LLVM pointer type.
759///
760/// If this returns a bitfield reference, nothing about the pointee type of the
761/// LLVM value is known: For example, it may not be a pointer to an integer.
762///
763/// If this returns a normal address, and if the lvalue's C type is fixed size,
764/// this method guarantees that the returned pointer type will point to an LLVM
765/// type of the same size of the lvalue's type.  If the lvalue has a variable
766/// length type, this is not possible.
767///
768LValue CodeGenFunction::EmitLValue(const Expr *E) {
769  switch (E->getStmtClass()) {
770  default: return EmitUnsupportedLValue(E, "l-value expression");
771
772  case Expr::ObjCPropertyRefExprClass:
773    llvm_unreachable("cannot emit a property reference directly");
774
775  case Expr::ObjCSelectorExprClass:
776    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
777  case Expr::ObjCIsaExprClass:
778    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
779  case Expr::BinaryOperatorClass:
780    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
781  case Expr::CompoundAssignOperatorClass:
782    if (!E->getType()->isAnyComplexType())
783      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
784    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
785  case Expr::CallExprClass:
786  case Expr::CXXMemberCallExprClass:
787  case Expr::CXXOperatorCallExprClass:
788  case Expr::UserDefinedLiteralClass:
789    return EmitCallExprLValue(cast<CallExpr>(E));
790  case Expr::VAArgExprClass:
791    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
792  case Expr::DeclRefExprClass:
793    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
794  case Expr::ParenExprClass:
795    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
796  case Expr::GenericSelectionExprClass:
797    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
798  case Expr::PredefinedExprClass:
799    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
800  case Expr::StringLiteralClass:
801    return EmitStringLiteralLValue(cast<StringLiteral>(E));
802  case Expr::ObjCEncodeExprClass:
803    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
804  case Expr::PseudoObjectExprClass:
805    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
806  case Expr::InitListExprClass:
807    return EmitInitListLValue(cast<InitListExpr>(E));
808  case Expr::CXXTemporaryObjectExprClass:
809  case Expr::CXXConstructExprClass:
810    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
811  case Expr::CXXBindTemporaryExprClass:
812    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
813  case Expr::CXXUuidofExprClass:
814    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
815  case Expr::LambdaExprClass:
816    return EmitLambdaLValue(cast<LambdaExpr>(E));
817
818  case Expr::ExprWithCleanupsClass: {
819    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
820    enterFullExpression(cleanups);
821    RunCleanupsScope Scope(*this);
822    return EmitLValue(cleanups->getSubExpr());
823  }
824
825  case Expr::CXXDefaultArgExprClass:
826    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
827  case Expr::CXXDefaultInitExprClass: {
828    CXXDefaultInitExprScope Scope(*this);
829    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
830  }
831  case Expr::CXXTypeidExprClass:
832    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
833
834  case Expr::ObjCMessageExprClass:
835    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
836  case Expr::ObjCIvarRefExprClass:
837    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
838  case Expr::StmtExprClass:
839    return EmitStmtExprLValue(cast<StmtExpr>(E));
840  case Expr::UnaryOperatorClass:
841    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
842  case Expr::ArraySubscriptExprClass:
843    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
844  case Expr::ExtVectorElementExprClass:
845    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
846  case Expr::MemberExprClass:
847    return EmitMemberExpr(cast<MemberExpr>(E));
848  case Expr::CompoundLiteralExprClass:
849    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
850  case Expr::ConditionalOperatorClass:
851    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
852  case Expr::BinaryConditionalOperatorClass:
853    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
854  case Expr::ChooseExprClass:
855    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
856  case Expr::OpaqueValueExprClass:
857    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
858  case Expr::SubstNonTypeTemplateParmExprClass:
859    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
860  case Expr::ImplicitCastExprClass:
861  case Expr::CStyleCastExprClass:
862  case Expr::CXXFunctionalCastExprClass:
863  case Expr::CXXStaticCastExprClass:
864  case Expr::CXXDynamicCastExprClass:
865  case Expr::CXXReinterpretCastExprClass:
866  case Expr::CXXConstCastExprClass:
867  case Expr::ObjCBridgedCastExprClass:
868    return EmitCastLValue(cast<CastExpr>(E));
869
870  case Expr::MaterializeTemporaryExprClass:
871    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
872  }
873}
874
875/// Given an object of the given canonical type, can we safely copy a
876/// value out of it based on its initializer?
877static bool isConstantEmittableObjectType(QualType type) {
878  assert(type.isCanonical());
879  assert(!type->isReferenceType());
880
881  // Must be const-qualified but non-volatile.
882  Qualifiers qs = type.getLocalQualifiers();
883  if (!qs.hasConst() || qs.hasVolatile()) return false;
884
885  // Otherwise, all object types satisfy this except C++ classes with
886  // mutable subobjects or non-trivial copy/destroy behavior.
887  if (const RecordType *RT = dyn_cast<RecordType>(type))
888    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
889      if (RD->hasMutableFields() || !RD->isTrivial())
890        return false;
891
892  return true;
893}
894
895/// Can we constant-emit a load of a reference to a variable of the
896/// given type?  This is different from predicates like
897/// Decl::isUsableInConstantExpressions because we do want it to apply
898/// in situations that don't necessarily satisfy the language's rules
899/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
900/// to do this with const float variables even if those variables
901/// aren't marked 'constexpr'.
902enum ConstantEmissionKind {
903  CEK_None,
904  CEK_AsReferenceOnly,
905  CEK_AsValueOrReference,
906  CEK_AsValueOnly
907};
908static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
909  type = type.getCanonicalType();
910  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
911    if (isConstantEmittableObjectType(ref->getPointeeType()))
912      return CEK_AsValueOrReference;
913    return CEK_AsReferenceOnly;
914  }
915  if (isConstantEmittableObjectType(type))
916    return CEK_AsValueOnly;
917  return CEK_None;
918}
919
920/// Try to emit a reference to the given value without producing it as
921/// an l-value.  This is actually more than an optimization: we can't
922/// produce an l-value for variables that we never actually captured
923/// in a block or lambda, which means const int variables or constexpr
924/// literals or similar.
925CodeGenFunction::ConstantEmission
926CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
927  ValueDecl *value = refExpr->getDecl();
928
929  // The value needs to be an enum constant or a constant variable.
930  ConstantEmissionKind CEK;
931  if (isa<ParmVarDecl>(value)) {
932    CEK = CEK_None;
933  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
934    CEK = checkVarTypeForConstantEmission(var->getType());
935  } else if (isa<EnumConstantDecl>(value)) {
936    CEK = CEK_AsValueOnly;
937  } else {
938    CEK = CEK_None;
939  }
940  if (CEK == CEK_None) return ConstantEmission();
941
942  Expr::EvalResult result;
943  bool resultIsReference;
944  QualType resultType;
945
946  // It's best to evaluate all the way as an r-value if that's permitted.
947  if (CEK != CEK_AsReferenceOnly &&
948      refExpr->EvaluateAsRValue(result, getContext())) {
949    resultIsReference = false;
950    resultType = refExpr->getType();
951
952  // Otherwise, try to evaluate as an l-value.
953  } else if (CEK != CEK_AsValueOnly &&
954             refExpr->EvaluateAsLValue(result, getContext())) {
955    resultIsReference = true;
956    resultType = value->getType();
957
958  // Failure.
959  } else {
960    return ConstantEmission();
961  }
962
963  // In any case, if the initializer has side-effects, abandon ship.
964  if (result.HasSideEffects)
965    return ConstantEmission();
966
967  // Emit as a constant.
968  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
969
970  // Make sure we emit a debug reference to the global variable.
971  // This should probably fire even for
972  if (isa<VarDecl>(value)) {
973    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
974      EmitDeclRefExprDbgValue(refExpr, C);
975  } else {
976    assert(isa<EnumConstantDecl>(value));
977    EmitDeclRefExprDbgValue(refExpr, C);
978  }
979
980  // If we emitted a reference constant, we need to dereference that.
981  if (resultIsReference)
982    return ConstantEmission::forReference(C);
983
984  return ConstantEmission::forValue(C);
985}
986
987llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
988  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
989                          lvalue.getAlignment().getQuantity(),
990                          lvalue.getType(), lvalue.getTBAAInfo(),
991                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
992}
993
994static bool hasBooleanRepresentation(QualType Ty) {
995  if (Ty->isBooleanType())
996    return true;
997
998  if (const EnumType *ET = Ty->getAs<EnumType>())
999    return ET->getDecl()->getIntegerType()->isBooleanType();
1000
1001  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1002    return hasBooleanRepresentation(AT->getValueType());
1003
1004  return false;
1005}
1006
1007static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1008                            llvm::APInt &Min, llvm::APInt &End,
1009                            bool StrictEnums) {
1010  const EnumType *ET = Ty->getAs<EnumType>();
1011  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1012                                ET && !ET->getDecl()->isFixed();
1013  bool IsBool = hasBooleanRepresentation(Ty);
1014  if (!IsBool && !IsRegularCPlusPlusEnum)
1015    return false;
1016
1017  if (IsBool) {
1018    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1019    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1020  } else {
1021    const EnumDecl *ED = ET->getDecl();
1022    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1023    unsigned Bitwidth = LTy->getScalarSizeInBits();
1024    unsigned NumNegativeBits = ED->getNumNegativeBits();
1025    unsigned NumPositiveBits = ED->getNumPositiveBits();
1026
1027    if (NumNegativeBits) {
1028      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1029      assert(NumBits <= Bitwidth);
1030      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1031      Min = -End;
1032    } else {
1033      assert(NumPositiveBits <= Bitwidth);
1034      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1035      Min = llvm::APInt(Bitwidth, 0);
1036    }
1037  }
1038  return true;
1039}
1040
1041llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1042  llvm::APInt Min, End;
1043  if (!getRangeForType(*this, Ty, Min, End,
1044                       CGM.getCodeGenOpts().StrictEnums))
1045    return 0;
1046
1047  llvm::MDBuilder MDHelper(getLLVMContext());
1048  return MDHelper.createRange(Min, End);
1049}
1050
1051llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1052                                              unsigned Alignment, QualType Ty,
1053                                              llvm::MDNode *TBAAInfo,
1054                                              QualType TBAABaseType,
1055                                              uint64_t TBAAOffset) {
1056  // For better performance, handle vector loads differently.
1057  if (Ty->isVectorType()) {
1058    llvm::Value *V;
1059    const llvm::Type *EltTy =
1060    cast<llvm::PointerType>(Addr->getType())->getElementType();
1061
1062    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1063
1064    // Handle vectors of size 3, like size 4 for better performance.
1065    if (VTy->getNumElements() == 3) {
1066
1067      // Bitcast to vec4 type.
1068      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1069                                                         4);
1070      llvm::PointerType *ptVec4Ty =
1071      llvm::PointerType::get(vec4Ty,
1072                             (cast<llvm::PointerType>(
1073                                      Addr->getType()))->getAddressSpace());
1074      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1075                                                "castToVec4");
1076      // Now load value.
1077      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1078
1079      // Shuffle vector to get vec3.
1080      llvm::Constant *Mask[] = {
1081        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1082        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1083        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1084      };
1085
1086      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1087      V = Builder.CreateShuffleVector(LoadVal,
1088                                      llvm::UndefValue::get(vec4Ty),
1089                                      MaskV, "extractVec");
1090      return EmitFromMemory(V, Ty);
1091    }
1092  }
1093
1094  // Atomic operations have to be done on integral types.
1095  if (Ty->isAtomicType()) {
1096    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1097                                     CharUnits::fromQuantity(Alignment),
1098                                     getContext(), TBAAInfo);
1099    return EmitAtomicLoad(lvalue).getScalarVal();
1100  }
1101
1102  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1103  if (Volatile)
1104    Load->setVolatile(true);
1105  if (Alignment)
1106    Load->setAlignment(Alignment);
1107  if (TBAAInfo) {
1108    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1109                                                      TBAAOffset);
1110    CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1111  }
1112
1113  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1114      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1115    llvm::APInt Min, End;
1116    if (getRangeForType(*this, Ty, Min, End, true)) {
1117      --End;
1118      llvm::Value *Check;
1119      if (!Min)
1120        Check = Builder.CreateICmpULE(
1121          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1122      else {
1123        llvm::Value *Upper = Builder.CreateICmpSLE(
1124          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1125        llvm::Value *Lower = Builder.CreateICmpSGE(
1126          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1127        Check = Builder.CreateAnd(Upper, Lower);
1128      }
1129      // FIXME: Provide a SourceLocation.
1130      EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1131                EmitCheckValue(Load), CRK_Recoverable);
1132    }
1133  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1134    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1135      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1136
1137  return EmitFromMemory(Load, Ty);
1138}
1139
1140llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1141  // Bool has a different representation in memory than in registers.
1142  if (hasBooleanRepresentation(Ty)) {
1143    // This should really always be an i1, but sometimes it's already
1144    // an i8, and it's awkward to track those cases down.
1145    if (Value->getType()->isIntegerTy(1))
1146      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1147    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1148           "wrong value rep of bool");
1149  }
1150
1151  return Value;
1152}
1153
1154llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1155  // Bool has a different representation in memory than in registers.
1156  if (hasBooleanRepresentation(Ty)) {
1157    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1158           "wrong value rep of bool");
1159    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1160  }
1161
1162  return Value;
1163}
1164
1165void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1166                                        bool Volatile, unsigned Alignment,
1167                                        QualType Ty,
1168                                        llvm::MDNode *TBAAInfo,
1169                                        bool isInit, QualType TBAABaseType,
1170                                        uint64_t TBAAOffset) {
1171
1172  // Handle vectors differently to get better performance.
1173  if (Ty->isVectorType()) {
1174    llvm::Type *SrcTy = Value->getType();
1175    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1176    // Handle vec3 special.
1177    if (VecTy->getNumElements() == 3) {
1178      llvm::LLVMContext &VMContext = getLLVMContext();
1179
1180      // Our source is a vec3, do a shuffle vector to make it a vec4.
1181      SmallVector<llvm::Constant*, 4> Mask;
1182      Mask.push_back(llvm::ConstantInt::get(
1183                                            llvm::Type::getInt32Ty(VMContext),
1184                                            0));
1185      Mask.push_back(llvm::ConstantInt::get(
1186                                            llvm::Type::getInt32Ty(VMContext),
1187                                            1));
1188      Mask.push_back(llvm::ConstantInt::get(
1189                                            llvm::Type::getInt32Ty(VMContext),
1190                                            2));
1191      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1192
1193      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1194      Value = Builder.CreateShuffleVector(Value,
1195                                          llvm::UndefValue::get(VecTy),
1196                                          MaskV, "extractVec");
1197      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1198    }
1199    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1200    if (DstPtr->getElementType() != SrcTy) {
1201      llvm::Type *MemTy =
1202      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1203      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1204    }
1205  }
1206
1207  Value = EmitToMemory(Value, Ty);
1208
1209  if (Ty->isAtomicType()) {
1210    EmitAtomicStore(RValue::get(Value),
1211                    LValue::MakeAddr(Addr, Ty,
1212                                     CharUnits::fromQuantity(Alignment),
1213                                     getContext(), TBAAInfo),
1214                    isInit);
1215    return;
1216  }
1217
1218  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1219  if (Alignment)
1220    Store->setAlignment(Alignment);
1221  if (TBAAInfo) {
1222    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1223                                                      TBAAOffset);
1224    CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1225  }
1226}
1227
1228void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1229                                        bool isInit) {
1230  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1231                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1232                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1233                    lvalue.getTBAAOffset());
1234}
1235
1236/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1237/// method emits the address of the lvalue, then loads the result as an rvalue,
1238/// returning the rvalue.
1239RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1240  if (LV.isObjCWeak()) {
1241    // load of a __weak object.
1242    llvm::Value *AddrWeakObj = LV.getAddress();
1243    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1244                                                             AddrWeakObj));
1245  }
1246  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1247    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1248    Object = EmitObjCConsumeObject(LV.getType(), Object);
1249    return RValue::get(Object);
1250  }
1251
1252  if (LV.isSimple()) {
1253    assert(!LV.getType()->isFunctionType());
1254
1255    // Everything needs a load.
1256    return RValue::get(EmitLoadOfScalar(LV));
1257  }
1258
1259  if (LV.isVectorElt()) {
1260    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1261                                              LV.isVolatileQualified());
1262    Load->setAlignment(LV.getAlignment().getQuantity());
1263    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1264                                                    "vecext"));
1265  }
1266
1267  // If this is a reference to a subset of the elements of a vector, either
1268  // shuffle the input or extract/insert them as appropriate.
1269  if (LV.isExtVectorElt())
1270    return EmitLoadOfExtVectorElementLValue(LV);
1271
1272  assert(LV.isBitField() && "Unknown LValue type!");
1273  return EmitLoadOfBitfieldLValue(LV);
1274}
1275
1276RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1277  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1278
1279  // Get the output type.
1280  llvm::Type *ResLTy = ConvertType(LV.getType());
1281
1282  llvm::Value *Ptr = LV.getBitFieldAddr();
1283  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1284                                        "bf.load");
1285  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1286
1287  if (Info.IsSigned) {
1288    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1289    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1290    if (HighBits)
1291      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1292    if (Info.Offset + HighBits)
1293      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1294  } else {
1295    if (Info.Offset)
1296      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1297    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1298      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1299                                                              Info.Size),
1300                              "bf.clear");
1301  }
1302  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1303
1304  return RValue::get(Val);
1305}
1306
1307// If this is a reference to a subset of the elements of a vector, create an
1308// appropriate shufflevector.
1309RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1310  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1311                                            LV.isVolatileQualified());
1312  Load->setAlignment(LV.getAlignment().getQuantity());
1313  llvm::Value *Vec = Load;
1314
1315  const llvm::Constant *Elts = LV.getExtVectorElts();
1316
1317  // If the result of the expression is a non-vector type, we must be extracting
1318  // a single element.  Just codegen as an extractelement.
1319  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1320  if (!ExprVT) {
1321    unsigned InIdx = getAccessedFieldNo(0, Elts);
1322    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1323    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1324  }
1325
1326  // Always use shuffle vector to try to retain the original program structure
1327  unsigned NumResultElts = ExprVT->getNumElements();
1328
1329  SmallVector<llvm::Constant*, 4> Mask;
1330  for (unsigned i = 0; i != NumResultElts; ++i)
1331    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1332
1333  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1334  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1335                                    MaskV);
1336  return RValue::get(Vec);
1337}
1338
1339
1340
1341/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1342/// lvalue, where both are guaranteed to the have the same type, and that type
1343/// is 'Ty'.
1344void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1345  if (!Dst.isSimple()) {
1346    if (Dst.isVectorElt()) {
1347      // Read/modify/write the vector, inserting the new element.
1348      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1349                                                Dst.isVolatileQualified());
1350      Load->setAlignment(Dst.getAlignment().getQuantity());
1351      llvm::Value *Vec = Load;
1352      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1353                                        Dst.getVectorIdx(), "vecins");
1354      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1355                                                   Dst.isVolatileQualified());
1356      Store->setAlignment(Dst.getAlignment().getQuantity());
1357      return;
1358    }
1359
1360    // If this is an update of extended vector elements, insert them as
1361    // appropriate.
1362    if (Dst.isExtVectorElt())
1363      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1364
1365    assert(Dst.isBitField() && "Unknown LValue type");
1366    return EmitStoreThroughBitfieldLValue(Src, Dst);
1367  }
1368
1369  // There's special magic for assigning into an ARC-qualified l-value.
1370  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1371    switch (Lifetime) {
1372    case Qualifiers::OCL_None:
1373      llvm_unreachable("present but none");
1374
1375    case Qualifiers::OCL_ExplicitNone:
1376      // nothing special
1377      break;
1378
1379    case Qualifiers::OCL_Strong:
1380      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1381      return;
1382
1383    case Qualifiers::OCL_Weak:
1384      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1385      return;
1386
1387    case Qualifiers::OCL_Autoreleasing:
1388      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1389                                                     Src.getScalarVal()));
1390      // fall into the normal path
1391      break;
1392    }
1393  }
1394
1395  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1396    // load of a __weak object.
1397    llvm::Value *LvalueDst = Dst.getAddress();
1398    llvm::Value *src = Src.getScalarVal();
1399     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1400    return;
1401  }
1402
1403  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1404    // load of a __strong object.
1405    llvm::Value *LvalueDst = Dst.getAddress();
1406    llvm::Value *src = Src.getScalarVal();
1407    if (Dst.isObjCIvar()) {
1408      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1409      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1410      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1411      llvm::Value *dst = RHS;
1412      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1413      llvm::Value *LHS =
1414        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1415      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1416      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1417                                              BytesBetween);
1418    } else if (Dst.isGlobalObjCRef()) {
1419      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1420                                                Dst.isThreadLocalRef());
1421    }
1422    else
1423      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1424    return;
1425  }
1426
1427  assert(Src.isScalar() && "Can't emit an agg store with this method");
1428  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1429}
1430
1431void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1432                                                     llvm::Value **Result) {
1433  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1434  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1435  llvm::Value *Ptr = Dst.getBitFieldAddr();
1436
1437  // Get the source value, truncated to the width of the bit-field.
1438  llvm::Value *SrcVal = Src.getScalarVal();
1439
1440  // Cast the source to the storage type and shift it into place.
1441  SrcVal = Builder.CreateIntCast(SrcVal,
1442                                 Ptr->getType()->getPointerElementType(),
1443                                 /*IsSigned=*/false);
1444  llvm::Value *MaskedVal = SrcVal;
1445
1446  // See if there are other bits in the bitfield's storage we'll need to load
1447  // and mask together with source before storing.
1448  if (Info.StorageSize != Info.Size) {
1449    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1450    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1451                                          "bf.load");
1452    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1453
1454    // Mask the source value as needed.
1455    if (!hasBooleanRepresentation(Dst.getType()))
1456      SrcVal = Builder.CreateAnd(SrcVal,
1457                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1458                                                            Info.Size),
1459                                 "bf.value");
1460    MaskedVal = SrcVal;
1461    if (Info.Offset)
1462      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1463
1464    // Mask out the original value.
1465    Val = Builder.CreateAnd(Val,
1466                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1467                                                     Info.Offset,
1468                                                     Info.Offset + Info.Size),
1469                            "bf.clear");
1470
1471    // Or together the unchanged values and the source value.
1472    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1473  } else {
1474    assert(Info.Offset == 0);
1475  }
1476
1477  // Write the new value back out.
1478  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1479                                               Dst.isVolatileQualified());
1480  Store->setAlignment(Info.StorageAlignment);
1481
1482  // Return the new value of the bit-field, if requested.
1483  if (Result) {
1484    llvm::Value *ResultVal = MaskedVal;
1485
1486    // Sign extend the value if needed.
1487    if (Info.IsSigned) {
1488      assert(Info.Size <= Info.StorageSize);
1489      unsigned HighBits = Info.StorageSize - Info.Size;
1490      if (HighBits) {
1491        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1492        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1493      }
1494    }
1495
1496    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1497                                      "bf.result.cast");
1498    *Result = EmitFromMemory(ResultVal, Dst.getType());
1499  }
1500}
1501
1502void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1503                                                               LValue Dst) {
1504  // This access turns into a read/modify/write of the vector.  Load the input
1505  // value now.
1506  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1507                                            Dst.isVolatileQualified());
1508  Load->setAlignment(Dst.getAlignment().getQuantity());
1509  llvm::Value *Vec = Load;
1510  const llvm::Constant *Elts = Dst.getExtVectorElts();
1511
1512  llvm::Value *SrcVal = Src.getScalarVal();
1513
1514  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1515    unsigned NumSrcElts = VTy->getNumElements();
1516    unsigned NumDstElts =
1517       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1518    if (NumDstElts == NumSrcElts) {
1519      // Use shuffle vector is the src and destination are the same number of
1520      // elements and restore the vector mask since it is on the side it will be
1521      // stored.
1522      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1523      for (unsigned i = 0; i != NumSrcElts; ++i)
1524        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1525
1526      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1527      Vec = Builder.CreateShuffleVector(SrcVal,
1528                                        llvm::UndefValue::get(Vec->getType()),
1529                                        MaskV);
1530    } else if (NumDstElts > NumSrcElts) {
1531      // Extended the source vector to the same length and then shuffle it
1532      // into the destination.
1533      // FIXME: since we're shuffling with undef, can we just use the indices
1534      //        into that?  This could be simpler.
1535      SmallVector<llvm::Constant*, 4> ExtMask;
1536      for (unsigned i = 0; i != NumSrcElts; ++i)
1537        ExtMask.push_back(Builder.getInt32(i));
1538      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1539      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1540      llvm::Value *ExtSrcVal =
1541        Builder.CreateShuffleVector(SrcVal,
1542                                    llvm::UndefValue::get(SrcVal->getType()),
1543                                    ExtMaskV);
1544      // build identity
1545      SmallVector<llvm::Constant*, 4> Mask;
1546      for (unsigned i = 0; i != NumDstElts; ++i)
1547        Mask.push_back(Builder.getInt32(i));
1548
1549      // modify when what gets shuffled in
1550      for (unsigned i = 0; i != NumSrcElts; ++i)
1551        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1552      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1553      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1554    } else {
1555      // We should never shorten the vector
1556      llvm_unreachable("unexpected shorten vector length");
1557    }
1558  } else {
1559    // If the Src is a scalar (not a vector) it must be updating one element.
1560    unsigned InIdx = getAccessedFieldNo(0, Elts);
1561    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1562    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1563  }
1564
1565  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1566                                               Dst.isVolatileQualified());
1567  Store->setAlignment(Dst.getAlignment().getQuantity());
1568}
1569
1570// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1571// generating write-barries API. It is currently a global, ivar,
1572// or neither.
1573static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1574                                 LValue &LV,
1575                                 bool IsMemberAccess=false) {
1576  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1577    return;
1578
1579  if (isa<ObjCIvarRefExpr>(E)) {
1580    QualType ExpTy = E->getType();
1581    if (IsMemberAccess && ExpTy->isPointerType()) {
1582      // If ivar is a structure pointer, assigning to field of
1583      // this struct follows gcc's behavior and makes it a non-ivar
1584      // writer-barrier conservatively.
1585      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1586      if (ExpTy->isRecordType()) {
1587        LV.setObjCIvar(false);
1588        return;
1589      }
1590    }
1591    LV.setObjCIvar(true);
1592    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1593    LV.setBaseIvarExp(Exp->getBase());
1594    LV.setObjCArray(E->getType()->isArrayType());
1595    return;
1596  }
1597
1598  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1599    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1600      if (VD->hasGlobalStorage()) {
1601        LV.setGlobalObjCRef(true);
1602        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1603      }
1604    }
1605    LV.setObjCArray(E->getType()->isArrayType());
1606    return;
1607  }
1608
1609  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1610    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1611    return;
1612  }
1613
1614  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1615    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1616    if (LV.isObjCIvar()) {
1617      // If cast is to a structure pointer, follow gcc's behavior and make it
1618      // a non-ivar write-barrier.
1619      QualType ExpTy = E->getType();
1620      if (ExpTy->isPointerType())
1621        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1622      if (ExpTy->isRecordType())
1623        LV.setObjCIvar(false);
1624    }
1625    return;
1626  }
1627
1628  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1629    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1630    return;
1631  }
1632
1633  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1634    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1635    return;
1636  }
1637
1638  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1639    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1640    return;
1641  }
1642
1643  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1644    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1645    return;
1646  }
1647
1648  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1649    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1650    if (LV.isObjCIvar() && !LV.isObjCArray())
1651      // Using array syntax to assigning to what an ivar points to is not
1652      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1653      LV.setObjCIvar(false);
1654    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1655      // Using array syntax to assigning to what global points to is not
1656      // same as assigning to the global itself. {id *G;} G[i] = 0;
1657      LV.setGlobalObjCRef(false);
1658    return;
1659  }
1660
1661  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1662    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1663    // We don't know if member is an 'ivar', but this flag is looked at
1664    // only in the context of LV.isObjCIvar().
1665    LV.setObjCArray(E->getType()->isArrayType());
1666    return;
1667  }
1668}
1669
1670static llvm::Value *
1671EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1672                                llvm::Value *V, llvm::Type *IRType,
1673                                StringRef Name = StringRef()) {
1674  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1675  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1676}
1677
1678static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1679                                      const Expr *E, const VarDecl *VD) {
1680  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1681  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1682  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1683  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1684  QualType T = E->getType();
1685  LValue LV;
1686  if (VD->getType()->isReferenceType()) {
1687    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1688    LI->setAlignment(Alignment.getQuantity());
1689    V = LI;
1690    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1691  } else {
1692    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1693  }
1694  setObjCGCLValueClass(CGF.getContext(), E, LV);
1695  return LV;
1696}
1697
1698static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1699                                     const Expr *E, const FunctionDecl *FD) {
1700  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1701  if (!FD->hasPrototype()) {
1702    if (const FunctionProtoType *Proto =
1703            FD->getType()->getAs<FunctionProtoType>()) {
1704      // Ugly case: for a K&R-style definition, the type of the definition
1705      // isn't the same as the type of a use.  Correct for this with a
1706      // bitcast.
1707      QualType NoProtoType =
1708          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1709      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1710      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1711    }
1712  }
1713  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1714  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1715}
1716
1717static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1718                                      llvm::Value *ThisValue) {
1719  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1720  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1721  return CGF.EmitLValueForField(LV, FD);
1722}
1723
1724LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1725  const NamedDecl *ND = E->getDecl();
1726  CharUnits Alignment = getContext().getDeclAlign(ND);
1727  QualType T = E->getType();
1728
1729  // A DeclRefExpr for a reference initialized by a constant expression can
1730  // appear without being odr-used. Directly emit the constant initializer.
1731  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1732    const Expr *Init = VD->getAnyInitializer(VD);
1733    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1734        VD->isUsableInConstantExpressions(getContext()) &&
1735        VD->checkInitIsICE()) {
1736      llvm::Constant *Val =
1737        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1738      assert(Val && "failed to emit reference constant expression");
1739      // FIXME: Eventually we will want to emit vector element references.
1740      return MakeAddrLValue(Val, T, Alignment);
1741    }
1742  }
1743
1744  // FIXME: We should be able to assert this for FunctionDecls as well!
1745  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1746  // those with a valid source location.
1747  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1748          !E->getLocation().isValid()) &&
1749         "Should not use decl without marking it used!");
1750
1751  if (ND->hasAttr<WeakRefAttr>()) {
1752    const ValueDecl *VD = cast<ValueDecl>(ND);
1753    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1754    return MakeAddrLValue(Aliasee, T, Alignment);
1755  }
1756
1757  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1758    // Check if this is a global variable.
1759    if (VD->hasLinkage() || VD->isStaticDataMember()) {
1760      // If it's thread_local, emit a call to its wrapper function instead.
1761      if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1762        return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1763      return EmitGlobalVarDeclLValue(*this, E, VD);
1764    }
1765
1766    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1767
1768    llvm::Value *V = LocalDeclMap.lookup(VD);
1769    if (!V && VD->isStaticLocal())
1770      V = CGM.getStaticLocalDeclAddress(VD);
1771
1772    // Use special handling for lambdas.
1773    if (!V) {
1774      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1775        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1776      } else if (CapturedStmtInfo) {
1777        if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1778          return EmitCapturedFieldLValue(*this, FD,
1779                                         CapturedStmtInfo->getContextValue());
1780      }
1781
1782      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1783      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1784                            T, Alignment);
1785    }
1786
1787    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1788
1789    if (isBlockVariable)
1790      V = BuildBlockByrefAddress(V, VD);
1791
1792    LValue LV;
1793    if (VD->getType()->isReferenceType()) {
1794      llvm::LoadInst *LI = Builder.CreateLoad(V);
1795      LI->setAlignment(Alignment.getQuantity());
1796      V = LI;
1797      LV = MakeNaturalAlignAddrLValue(V, T);
1798    } else {
1799      LV = MakeAddrLValue(V, T, Alignment);
1800    }
1801
1802    bool isLocalStorage = VD->hasLocalStorage();
1803
1804    bool NonGCable = isLocalStorage &&
1805                     !VD->getType()->isReferenceType() &&
1806                     !isBlockVariable;
1807    if (NonGCable) {
1808      LV.getQuals().removeObjCGCAttr();
1809      LV.setNonGC(true);
1810    }
1811
1812    bool isImpreciseLifetime =
1813      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1814    if (isImpreciseLifetime)
1815      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1816    setObjCGCLValueClass(getContext(), E, LV);
1817    return LV;
1818  }
1819
1820  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1821    return EmitFunctionDeclLValue(*this, E, fn);
1822
1823  llvm_unreachable("Unhandled DeclRefExpr");
1824}
1825
1826LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1827  // __extension__ doesn't affect lvalue-ness.
1828  if (E->getOpcode() == UO_Extension)
1829    return EmitLValue(E->getSubExpr());
1830
1831  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1832  switch (E->getOpcode()) {
1833  default: llvm_unreachable("Unknown unary operator lvalue!");
1834  case UO_Deref: {
1835    QualType T = E->getSubExpr()->getType()->getPointeeType();
1836    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1837
1838    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1839    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1840
1841    // We should not generate __weak write barrier on indirect reference
1842    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1843    // But, we continue to generate __strong write barrier on indirect write
1844    // into a pointer to object.
1845    if (getLangOpts().ObjC1 &&
1846        getLangOpts().getGC() != LangOptions::NonGC &&
1847        LV.isObjCWeak())
1848      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1849    return LV;
1850  }
1851  case UO_Real:
1852  case UO_Imag: {
1853    LValue LV = EmitLValue(E->getSubExpr());
1854    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1855    llvm::Value *Addr = LV.getAddress();
1856
1857    // __real is valid on scalars.  This is a faster way of testing that.
1858    // __imag can only produce an rvalue on scalars.
1859    if (E->getOpcode() == UO_Real &&
1860        !cast<llvm::PointerType>(Addr->getType())
1861           ->getElementType()->isStructTy()) {
1862      assert(E->getSubExpr()->getType()->isArithmeticType());
1863      return LV;
1864    }
1865
1866    assert(E->getSubExpr()->getType()->isAnyComplexType());
1867
1868    unsigned Idx = E->getOpcode() == UO_Imag;
1869    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1870                                                  Idx, "idx"),
1871                          ExprTy);
1872  }
1873  case UO_PreInc:
1874  case UO_PreDec: {
1875    LValue LV = EmitLValue(E->getSubExpr());
1876    bool isInc = E->getOpcode() == UO_PreInc;
1877
1878    if (E->getType()->isAnyComplexType())
1879      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1880    else
1881      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1882    return LV;
1883  }
1884  }
1885}
1886
1887LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1888  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1889                        E->getType());
1890}
1891
1892LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1893  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1894                        E->getType());
1895}
1896
1897static llvm::Constant*
1898GetAddrOfConstantWideString(StringRef Str,
1899                            const char *GlobalName,
1900                            ASTContext &Context,
1901                            QualType Ty, SourceLocation Loc,
1902                            CodeGenModule &CGM) {
1903
1904  StringLiteral *SL = StringLiteral::Create(Context,
1905                                            Str,
1906                                            StringLiteral::Wide,
1907                                            /*Pascal = */false,
1908                                            Ty, Loc);
1909  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1910  llvm::GlobalVariable *GV =
1911    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1912                             !CGM.getLangOpts().WritableStrings,
1913                             llvm::GlobalValue::PrivateLinkage,
1914                             C, GlobalName);
1915  const unsigned WideAlignment =
1916    Context.getTypeAlignInChars(Ty).getQuantity();
1917  GV->setAlignment(WideAlignment);
1918  return GV;
1919}
1920
1921static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1922                                    SmallString<32>& Target) {
1923  Target.resize(CharByteWidth * (Source.size() + 1));
1924  char *ResultPtr = &Target[0];
1925  const UTF8 *ErrorPtr;
1926  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1927  (void)success;
1928  assert(success);
1929  Target.resize(ResultPtr - &Target[0]);
1930}
1931
1932LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1933  switch (E->getIdentType()) {
1934  default:
1935    return EmitUnsupportedLValue(E, "predefined expression");
1936
1937  case PredefinedExpr::Func:
1938  case PredefinedExpr::Function:
1939  case PredefinedExpr::LFunction:
1940  case PredefinedExpr::PrettyFunction: {
1941    PredefinedExpr::IdentType IdentType = E->getIdentType();
1942    std::string GlobalVarName;
1943
1944    switch (IdentType) {
1945    default: llvm_unreachable("Invalid type");
1946    case PredefinedExpr::Func:
1947      GlobalVarName = "__func__.";
1948      break;
1949    case PredefinedExpr::Function:
1950      GlobalVarName = "__FUNCTION__.";
1951      break;
1952    case PredefinedExpr::LFunction:
1953      GlobalVarName = "L__FUNCTION__.";
1954      break;
1955    case PredefinedExpr::PrettyFunction:
1956      GlobalVarName = "__PRETTY_FUNCTION__.";
1957      break;
1958    }
1959
1960    StringRef FnName = CurFn->getName();
1961    if (FnName.startswith("\01"))
1962      FnName = FnName.substr(1);
1963    GlobalVarName += FnName;
1964
1965    // If this is outside of a function use the top level decl.
1966    const Decl *CurDecl = CurCodeDecl;
1967    if (CurDecl == 0 || isa<VarDecl>(CurDecl))
1968      CurDecl = getContext().getTranslationUnitDecl();
1969
1970    const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1971    std::string FunctionName;
1972    if (isa<BlockDecl>(CurDecl)) {
1973      // Blocks use the mangled function name.
1974      // FIXME: ComputeName should handle blocks.
1975      FunctionName = FnName.str();
1976    } else if (isa<CapturedDecl>(CurDecl)) {
1977      // For a captured statement, the function name is its enclosing
1978      // function name not the one compiler generated.
1979      FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1980    } else {
1981      FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1982      assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
1983                 FunctionName.size() &&
1984             "Computed __func__ length differs from type!");
1985    }
1986
1987    llvm::Constant *C;
1988    if (ElemType->isWideCharType()) {
1989      SmallString<32> RawChars;
1990      ConvertUTF8ToWideString(
1991          getContext().getTypeSizeInChars(ElemType).getQuantity(),
1992          FunctionName, RawChars);
1993      C = GetAddrOfConstantWideString(RawChars,
1994                                      GlobalVarName.c_str(),
1995                                      getContext(),
1996                                      E->getType(),
1997                                      E->getLocation(),
1998                                      CGM);
1999    } else {
2000      C = CGM.GetAddrOfConstantCString(FunctionName,
2001                                       GlobalVarName.c_str(),
2002                                       1);
2003    }
2004    return MakeAddrLValue(C, E->getType());
2005  }
2006  }
2007}
2008
2009/// Emit a type description suitable for use by a runtime sanitizer library. The
2010/// format of a type descriptor is
2011///
2012/// \code
2013///   { i16 TypeKind, i16 TypeInfo }
2014/// \endcode
2015///
2016/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2017/// integer, 1 for a floating point value, and -1 for anything else.
2018llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2019  // FIXME: Only emit each type's descriptor once.
2020  uint16_t TypeKind = -1;
2021  uint16_t TypeInfo = 0;
2022
2023  if (T->isIntegerType()) {
2024    TypeKind = 0;
2025    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2026               (T->isSignedIntegerType() ? 1 : 0);
2027  } else if (T->isFloatingType()) {
2028    TypeKind = 1;
2029    TypeInfo = getContext().getTypeSize(T);
2030  }
2031
2032  // Format the type name as if for a diagnostic, including quotes and
2033  // optionally an 'aka'.
2034  SmallString<32> Buffer;
2035  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2036                                    (intptr_t)T.getAsOpaquePtr(),
2037                                    0, 0, 0, 0, 0, 0, Buffer,
2038                                    ArrayRef<intptr_t>());
2039
2040  llvm::Constant *Components[] = {
2041    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2042    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2043  };
2044  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2045
2046  llvm::GlobalVariable *GV =
2047    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2048                             /*isConstant=*/true,
2049                             llvm::GlobalVariable::PrivateLinkage,
2050                             Descriptor);
2051  GV->setUnnamedAddr(true);
2052  return GV;
2053}
2054
2055llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2056  llvm::Type *TargetTy = IntPtrTy;
2057
2058  // Floating-point types which fit into intptr_t are bitcast to integers
2059  // and then passed directly (after zero-extension, if necessary).
2060  if (V->getType()->isFloatingPointTy()) {
2061    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2062    if (Bits <= TargetTy->getIntegerBitWidth())
2063      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2064                                                         Bits));
2065  }
2066
2067  // Integers which fit in intptr_t are zero-extended and passed directly.
2068  if (V->getType()->isIntegerTy() &&
2069      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2070    return Builder.CreateZExt(V, TargetTy);
2071
2072  // Pointers are passed directly, everything else is passed by address.
2073  if (!V->getType()->isPointerTy()) {
2074    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2075    Builder.CreateStore(V, Ptr);
2076    V = Ptr;
2077  }
2078  return Builder.CreatePtrToInt(V, TargetTy);
2079}
2080
2081/// \brief Emit a representation of a SourceLocation for passing to a handler
2082/// in a sanitizer runtime library. The format for this data is:
2083/// \code
2084///   struct SourceLocation {
2085///     const char *Filename;
2086///     int32_t Line, Column;
2087///   };
2088/// \endcode
2089/// For an invalid SourceLocation, the Filename pointer is null.
2090llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2091  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2092
2093  llvm::Constant *Data[] = {
2094    // FIXME: Only emit each file name once.
2095    PLoc.isValid() ? cast<llvm::Constant>(
2096                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2097                   : llvm::Constant::getNullValue(Int8PtrTy),
2098    Builder.getInt32(PLoc.getLine()),
2099    Builder.getInt32(PLoc.getColumn())
2100  };
2101
2102  return llvm::ConstantStruct::getAnon(Data);
2103}
2104
2105void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2106                                ArrayRef<llvm::Constant *> StaticArgs,
2107                                ArrayRef<llvm::Value *> DynamicArgs,
2108                                CheckRecoverableKind RecoverKind) {
2109  assert(SanOpts != &SanitizerOptions::Disabled);
2110
2111  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2112    assert (RecoverKind != CRK_AlwaysRecoverable &&
2113            "Runtime call required for AlwaysRecoverable kind!");
2114    return EmitTrapCheck(Checked);
2115  }
2116
2117  llvm::BasicBlock *Cont = createBasicBlock("cont");
2118
2119  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2120
2121  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2122
2123  // Give hint that we very much don't expect to execute the handler
2124  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2125  llvm::MDBuilder MDHelper(getLLVMContext());
2126  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2127  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2128
2129  EmitBlock(Handler);
2130
2131  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2132  llvm::GlobalValue *InfoPtr =
2133      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2134                               llvm::GlobalVariable::PrivateLinkage, Info);
2135  InfoPtr->setUnnamedAddr(true);
2136
2137  SmallVector<llvm::Value *, 4> Args;
2138  SmallVector<llvm::Type *, 4> ArgTypes;
2139  Args.reserve(DynamicArgs.size() + 1);
2140  ArgTypes.reserve(DynamicArgs.size() + 1);
2141
2142  // Handler functions take an i8* pointing to the (handler-specific) static
2143  // information block, followed by a sequence of intptr_t arguments
2144  // representing operand values.
2145  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2146  ArgTypes.push_back(Int8PtrTy);
2147  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2148    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2149    ArgTypes.push_back(IntPtrTy);
2150  }
2151
2152  bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2153                 ((RecoverKind == CRK_Recoverable) &&
2154                   CGM.getCodeGenOpts().SanitizeRecover);
2155
2156  llvm::FunctionType *FnType =
2157    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2158  llvm::AttrBuilder B;
2159  if (!Recover) {
2160    B.addAttribute(llvm::Attribute::NoReturn)
2161     .addAttribute(llvm::Attribute::NoUnwind);
2162  }
2163  B.addAttribute(llvm::Attribute::UWTable);
2164
2165  // Checks that have two variants use a suffix to differentiate them
2166  bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2167                           !CGM.getCodeGenOpts().SanitizeRecover;
2168  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2169                              (NeedsAbortSuffix? "_abort" : "")).str();
2170  llvm::Value *Fn =
2171    CGM.CreateRuntimeFunction(FnType, FunctionName,
2172                              llvm::AttributeSet::get(getLLVMContext(),
2173                                              llvm::AttributeSet::FunctionIndex,
2174                                                      B));
2175  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2176  if (Recover) {
2177    Builder.CreateBr(Cont);
2178  } else {
2179    HandlerCall->setDoesNotReturn();
2180    Builder.CreateUnreachable();
2181  }
2182
2183  EmitBlock(Cont);
2184}
2185
2186void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2187  llvm::BasicBlock *Cont = createBasicBlock("cont");
2188
2189  // If we're optimizing, collapse all calls to trap down to just one per
2190  // function to save on code size.
2191  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2192    TrapBB = createBasicBlock("trap");
2193    Builder.CreateCondBr(Checked, Cont, TrapBB);
2194    EmitBlock(TrapBB);
2195    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2196    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2197    TrapCall->setDoesNotReturn();
2198    TrapCall->setDoesNotThrow();
2199    Builder.CreateUnreachable();
2200  } else {
2201    Builder.CreateCondBr(Checked, Cont, TrapBB);
2202  }
2203
2204  EmitBlock(Cont);
2205}
2206
2207/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2208/// array to pointer, return the array subexpression.
2209static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2210  // If this isn't just an array->pointer decay, bail out.
2211  const CastExpr *CE = dyn_cast<CastExpr>(E);
2212  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2213    return 0;
2214
2215  // If this is a decay from variable width array, bail out.
2216  const Expr *SubExpr = CE->getSubExpr();
2217  if (SubExpr->getType()->isVariableArrayType())
2218    return 0;
2219
2220  return SubExpr;
2221}
2222
2223LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2224                                               bool Accessed) {
2225  // The index must always be an integer, which is not an aggregate.  Emit it.
2226  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2227  QualType IdxTy  = E->getIdx()->getType();
2228  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2229
2230  if (SanOpts->Bounds)
2231    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2232
2233  // If the base is a vector type, then we are forming a vector element lvalue
2234  // with this subscript.
2235  if (E->getBase()->getType()->isVectorType()) {
2236    // Emit the vector as an lvalue to get its address.
2237    LValue LHS = EmitLValue(E->getBase());
2238    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2239    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2240    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2241                                 E->getBase()->getType(), LHS.getAlignment());
2242  }
2243
2244  // Extend or truncate the index type to 32 or 64-bits.
2245  if (Idx->getType() != IntPtrTy)
2246    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2247
2248  // We know that the pointer points to a type of the correct size, unless the
2249  // size is a VLA or Objective-C interface.
2250  llvm::Value *Address = 0;
2251  CharUnits ArrayAlignment;
2252  if (const VariableArrayType *vla =
2253        getContext().getAsVariableArrayType(E->getType())) {
2254    // The base must be a pointer, which is not an aggregate.  Emit
2255    // it.  It needs to be emitted first in case it's what captures
2256    // the VLA bounds.
2257    Address = EmitScalarExpr(E->getBase());
2258
2259    // The element count here is the total number of non-VLA elements.
2260    llvm::Value *numElements = getVLASize(vla).first;
2261
2262    // Effectively, the multiply by the VLA size is part of the GEP.
2263    // GEP indexes are signed, and scaling an index isn't permitted to
2264    // signed-overflow, so we use the same semantics for our explicit
2265    // multiply.  We suppress this if overflow is not undefined behavior.
2266    if (getLangOpts().isSignedOverflowDefined()) {
2267      Idx = Builder.CreateMul(Idx, numElements);
2268      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2269    } else {
2270      Idx = Builder.CreateNSWMul(Idx, numElements);
2271      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2272    }
2273  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2274    // Indexing over an interface, as in "NSString *P; P[4];"
2275    llvm::Value *InterfaceSize =
2276      llvm::ConstantInt::get(Idx->getType(),
2277          getContext().getTypeSizeInChars(OIT).getQuantity());
2278
2279    Idx = Builder.CreateMul(Idx, InterfaceSize);
2280
2281    // The base must be a pointer, which is not an aggregate.  Emit it.
2282    llvm::Value *Base = EmitScalarExpr(E->getBase());
2283    Address = EmitCastToVoidPtr(Base);
2284    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2285    Address = Builder.CreateBitCast(Address, Base->getType());
2286  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2287    // If this is A[i] where A is an array, the frontend will have decayed the
2288    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2289    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2290    // "gep x, i" here.  Emit one "gep A, 0, i".
2291    assert(Array->getType()->isArrayType() &&
2292           "Array to pointer decay must have array source type!");
2293    LValue ArrayLV;
2294    // For simple multidimensional array indexing, set the 'accessed' flag for
2295    // better bounds-checking of the base expression.
2296    if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2297      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2298    else
2299      ArrayLV = EmitLValue(Array);
2300    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2301    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2302    llvm::Value *Args[] = { Zero, Idx };
2303
2304    // Propagate the alignment from the array itself to the result.
2305    ArrayAlignment = ArrayLV.getAlignment();
2306
2307    if (getLangOpts().isSignedOverflowDefined())
2308      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2309    else
2310      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2311  } else {
2312    // The base must be a pointer, which is not an aggregate.  Emit it.
2313    llvm::Value *Base = EmitScalarExpr(E->getBase());
2314    if (getLangOpts().isSignedOverflowDefined())
2315      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2316    else
2317      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2318  }
2319
2320  QualType T = E->getBase()->getType()->getPointeeType();
2321  assert(!T.isNull() &&
2322         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2323
2324
2325  // Limit the alignment to that of the result type.
2326  LValue LV;
2327  if (!ArrayAlignment.isZero()) {
2328    CharUnits Align = getContext().getTypeAlignInChars(T);
2329    ArrayAlignment = std::min(Align, ArrayAlignment);
2330    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2331  } else {
2332    LV = MakeNaturalAlignAddrLValue(Address, T);
2333  }
2334
2335  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2336
2337  if (getLangOpts().ObjC1 &&
2338      getLangOpts().getGC() != LangOptions::NonGC) {
2339    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2340    setObjCGCLValueClass(getContext(), E, LV);
2341  }
2342  return LV;
2343}
2344
2345static
2346llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2347                                       SmallVectorImpl<unsigned> &Elts) {
2348  SmallVector<llvm::Constant*, 4> CElts;
2349  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2350    CElts.push_back(Builder.getInt32(Elts[i]));
2351
2352  return llvm::ConstantVector::get(CElts);
2353}
2354
2355LValue CodeGenFunction::
2356EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2357  // Emit the base vector as an l-value.
2358  LValue Base;
2359
2360  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2361  if (E->isArrow()) {
2362    // If it is a pointer to a vector, emit the address and form an lvalue with
2363    // it.
2364    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2365    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2366    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2367    Base.getQuals().removeObjCGCAttr();
2368  } else if (E->getBase()->isGLValue()) {
2369    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2370    // emit the base as an lvalue.
2371    assert(E->getBase()->getType()->isVectorType());
2372    Base = EmitLValue(E->getBase());
2373  } else {
2374    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2375    assert(E->getBase()->getType()->isVectorType() &&
2376           "Result must be a vector");
2377    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2378
2379    // Store the vector to memory (because LValue wants an address).
2380    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2381    Builder.CreateStore(Vec, VecMem);
2382    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2383  }
2384
2385  QualType type =
2386    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2387
2388  // Encode the element access list into a vector of unsigned indices.
2389  SmallVector<unsigned, 4> Indices;
2390  E->getEncodedElementAccess(Indices);
2391
2392  if (Base.isSimple()) {
2393    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2394    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2395                                    Base.getAlignment());
2396  }
2397  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2398
2399  llvm::Constant *BaseElts = Base.getExtVectorElts();
2400  SmallVector<llvm::Constant *, 4> CElts;
2401
2402  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2403    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2404  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2405  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2406                                  Base.getAlignment());
2407}
2408
2409LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2410  Expr *BaseExpr = E->getBase();
2411
2412  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2413  LValue BaseLV;
2414  if (E->isArrow()) {
2415    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2416    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2417    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2418    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2419  } else
2420    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2421
2422  NamedDecl *ND = E->getMemberDecl();
2423  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2424    LValue LV = EmitLValueForField(BaseLV, Field);
2425    setObjCGCLValueClass(getContext(), E, LV);
2426    return LV;
2427  }
2428
2429  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2430    return EmitGlobalVarDeclLValue(*this, E, VD);
2431
2432  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2433    return EmitFunctionDeclLValue(*this, E, FD);
2434
2435  llvm_unreachable("Unhandled member declaration!");
2436}
2437
2438/// Given that we are currently emitting a lambda, emit an l-value for
2439/// one of its members.
2440LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2441  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2442  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2443  QualType LambdaTagType =
2444    getContext().getTagDeclType(Field->getParent());
2445  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2446  return EmitLValueForField(LambdaLV, Field);
2447}
2448
2449LValue CodeGenFunction::EmitLValueForField(LValue base,
2450                                           const FieldDecl *field) {
2451  if (field->isBitField()) {
2452    const CGRecordLayout &RL =
2453      CGM.getTypes().getCGRecordLayout(field->getParent());
2454    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2455    llvm::Value *Addr = base.getAddress();
2456    unsigned Idx = RL.getLLVMFieldNo(field);
2457    if (Idx != 0)
2458      // For structs, we GEP to the field that the record layout suggests.
2459      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2460    // Get the access type.
2461    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2462      getLLVMContext(), Info.StorageSize,
2463      CGM.getContext().getTargetAddressSpace(base.getType()));
2464    if (Addr->getType() != PtrTy)
2465      Addr = Builder.CreateBitCast(Addr, PtrTy);
2466
2467    QualType fieldType =
2468      field->getType().withCVRQualifiers(base.getVRQualifiers());
2469    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2470  }
2471
2472  const RecordDecl *rec = field->getParent();
2473  QualType type = field->getType();
2474  CharUnits alignment = getContext().getDeclAlign(field);
2475
2476  // FIXME: It should be impossible to have an LValue without alignment for a
2477  // complete type.
2478  if (!base.getAlignment().isZero())
2479    alignment = std::min(alignment, base.getAlignment());
2480
2481  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2482
2483  llvm::Value *addr = base.getAddress();
2484  unsigned cvr = base.getVRQualifiers();
2485  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2486  if (rec->isUnion()) {
2487    // For unions, there is no pointer adjustment.
2488    assert(!type->isReferenceType() && "union has reference member");
2489    // TODO: handle path-aware TBAA for union.
2490    TBAAPath = false;
2491  } else {
2492    // For structs, we GEP to the field that the record layout suggests.
2493    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2494    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2495
2496    // If this is a reference field, load the reference right now.
2497    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2498      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2499      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2500      load->setAlignment(alignment.getQuantity());
2501
2502      // Loading the reference will disable path-aware TBAA.
2503      TBAAPath = false;
2504      if (CGM.shouldUseTBAA()) {
2505        llvm::MDNode *tbaa;
2506        if (mayAlias)
2507          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2508        else
2509          tbaa = CGM.getTBAAInfo(type);
2510        CGM.DecorateInstruction(load, tbaa);
2511      }
2512
2513      addr = load;
2514      mayAlias = false;
2515      type = refType->getPointeeType();
2516      if (type->isIncompleteType())
2517        alignment = CharUnits();
2518      else
2519        alignment = getContext().getTypeAlignInChars(type);
2520      cvr = 0; // qualifiers don't recursively apply to referencee
2521    }
2522  }
2523
2524  // Make sure that the address is pointing to the right type.  This is critical
2525  // for both unions and structs.  A union needs a bitcast, a struct element
2526  // will need a bitcast if the LLVM type laid out doesn't match the desired
2527  // type.
2528  addr = EmitBitCastOfLValueToProperType(*this, addr,
2529                                         CGM.getTypes().ConvertTypeForMem(type),
2530                                         field->getName());
2531
2532  if (field->hasAttr<AnnotateAttr>())
2533    addr = EmitFieldAnnotations(field, addr);
2534
2535  LValue LV = MakeAddrLValue(addr, type, alignment);
2536  LV.getQuals().addCVRQualifiers(cvr);
2537  if (TBAAPath) {
2538    const ASTRecordLayout &Layout =
2539        getContext().getASTRecordLayout(field->getParent());
2540    // Set the base type to be the base type of the base LValue and
2541    // update offset to be relative to the base type.
2542    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2543    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2544                     Layout.getFieldOffset(field->getFieldIndex()) /
2545                                           getContext().getCharWidth());
2546  }
2547
2548  // __weak attribute on a field is ignored.
2549  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2550    LV.getQuals().removeObjCGCAttr();
2551
2552  // Fields of may_alias structs act like 'char' for TBAA purposes.
2553  // FIXME: this should get propagated down through anonymous structs
2554  // and unions.
2555  if (mayAlias && LV.getTBAAInfo())
2556    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2557
2558  return LV;
2559}
2560
2561LValue
2562CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2563                                                  const FieldDecl *Field) {
2564  QualType FieldType = Field->getType();
2565
2566  if (!FieldType->isReferenceType())
2567    return EmitLValueForField(Base, Field);
2568
2569  const CGRecordLayout &RL =
2570    CGM.getTypes().getCGRecordLayout(Field->getParent());
2571  unsigned idx = RL.getLLVMFieldNo(Field);
2572  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2573  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2574
2575  // Make sure that the address is pointing to the right type.  This is critical
2576  // for both unions and structs.  A union needs a bitcast, a struct element
2577  // will need a bitcast if the LLVM type laid out doesn't match the desired
2578  // type.
2579  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2580  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2581
2582  CharUnits Alignment = getContext().getDeclAlign(Field);
2583
2584  // FIXME: It should be impossible to have an LValue without alignment for a
2585  // complete type.
2586  if (!Base.getAlignment().isZero())
2587    Alignment = std::min(Alignment, Base.getAlignment());
2588
2589  return MakeAddrLValue(V, FieldType, Alignment);
2590}
2591
2592LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2593  if (E->isFileScope()) {
2594    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2595    return MakeAddrLValue(GlobalPtr, E->getType());
2596  }
2597  if (E->getType()->isVariablyModifiedType())
2598    // make sure to emit the VLA size.
2599    EmitVariablyModifiedType(E->getType());
2600
2601  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2602  const Expr *InitExpr = E->getInitializer();
2603  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2604
2605  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2606                   /*Init*/ true);
2607
2608  return Result;
2609}
2610
2611LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2612  if (!E->isGLValue())
2613    // Initializing an aggregate temporary in C++11: T{...}.
2614    return EmitAggExprToLValue(E);
2615
2616  // An lvalue initializer list must be initializing a reference.
2617  assert(E->getNumInits() == 1 && "reference init with multiple values");
2618  return EmitLValue(E->getInit(0));
2619}
2620
2621LValue CodeGenFunction::
2622EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2623  if (!expr->isGLValue()) {
2624    // ?: here should be an aggregate.
2625    assert(hasAggregateEvaluationKind(expr->getType()) &&
2626           "Unexpected conditional operator!");
2627    return EmitAggExprToLValue(expr);
2628  }
2629
2630  OpaqueValueMapping binding(*this, expr);
2631
2632  const Expr *condExpr = expr->getCond();
2633  bool CondExprBool;
2634  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2635    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2636    if (!CondExprBool) std::swap(live, dead);
2637
2638    if (!ContainsLabel(dead))
2639      return EmitLValue(live);
2640  }
2641
2642  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2643  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2644  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2645
2646  ConditionalEvaluation eval(*this);
2647  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2648
2649  // Any temporaries created here are conditional.
2650  EmitBlock(lhsBlock);
2651  eval.begin(*this);
2652  LValue lhs = EmitLValue(expr->getTrueExpr());
2653  eval.end(*this);
2654
2655  if (!lhs.isSimple())
2656    return EmitUnsupportedLValue(expr, "conditional operator");
2657
2658  lhsBlock = Builder.GetInsertBlock();
2659  Builder.CreateBr(contBlock);
2660
2661  // Any temporaries created here are conditional.
2662  EmitBlock(rhsBlock);
2663  eval.begin(*this);
2664  LValue rhs = EmitLValue(expr->getFalseExpr());
2665  eval.end(*this);
2666  if (!rhs.isSimple())
2667    return EmitUnsupportedLValue(expr, "conditional operator");
2668  rhsBlock = Builder.GetInsertBlock();
2669
2670  EmitBlock(contBlock);
2671
2672  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2673                                         "cond-lvalue");
2674  phi->addIncoming(lhs.getAddress(), lhsBlock);
2675  phi->addIncoming(rhs.getAddress(), rhsBlock);
2676  return MakeAddrLValue(phi, expr->getType());
2677}
2678
2679/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2680/// type. If the cast is to a reference, we can have the usual lvalue result,
2681/// otherwise if a cast is needed by the code generator in an lvalue context,
2682/// then it must mean that we need the address of an aggregate in order to
2683/// access one of its members.  This can happen for all the reasons that casts
2684/// are permitted with aggregate result, including noop aggregate casts, and
2685/// cast from scalar to union.
2686LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2687  switch (E->getCastKind()) {
2688  case CK_ToVoid:
2689  case CK_BitCast:
2690  case CK_ArrayToPointerDecay:
2691  case CK_FunctionToPointerDecay:
2692  case CK_NullToMemberPointer:
2693  case CK_NullToPointer:
2694  case CK_IntegralToPointer:
2695  case CK_PointerToIntegral:
2696  case CK_PointerToBoolean:
2697  case CK_VectorSplat:
2698  case CK_IntegralCast:
2699  case CK_IntegralToBoolean:
2700  case CK_IntegralToFloating:
2701  case CK_FloatingToIntegral:
2702  case CK_FloatingToBoolean:
2703  case CK_FloatingCast:
2704  case CK_FloatingRealToComplex:
2705  case CK_FloatingComplexToReal:
2706  case CK_FloatingComplexToBoolean:
2707  case CK_FloatingComplexCast:
2708  case CK_FloatingComplexToIntegralComplex:
2709  case CK_IntegralRealToComplex:
2710  case CK_IntegralComplexToReal:
2711  case CK_IntegralComplexToBoolean:
2712  case CK_IntegralComplexCast:
2713  case CK_IntegralComplexToFloatingComplex:
2714  case CK_DerivedToBaseMemberPointer:
2715  case CK_BaseToDerivedMemberPointer:
2716  case CK_MemberPointerToBoolean:
2717  case CK_ReinterpretMemberPointer:
2718  case CK_AnyPointerToBlockPointerCast:
2719  case CK_ARCProduceObject:
2720  case CK_ARCConsumeObject:
2721  case CK_ARCReclaimReturnedObject:
2722  case CK_ARCExtendBlockObject:
2723  case CK_CopyAndAutoreleaseBlockObject:
2724    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2725
2726  case CK_Dependent:
2727    llvm_unreachable("dependent cast kind in IR gen!");
2728
2729  case CK_BuiltinFnToFnPtr:
2730    llvm_unreachable("builtin functions are handled elsewhere");
2731
2732  // These are never l-values; just use the aggregate emission code.
2733  case CK_NonAtomicToAtomic:
2734  case CK_AtomicToNonAtomic:
2735    return EmitAggExprToLValue(E);
2736
2737  case CK_Dynamic: {
2738    LValue LV = EmitLValue(E->getSubExpr());
2739    llvm::Value *V = LV.getAddress();
2740    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2741    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2742  }
2743
2744  case CK_ConstructorConversion:
2745  case CK_UserDefinedConversion:
2746  case CK_CPointerToObjCPointerCast:
2747  case CK_BlockPointerToObjCPointerCast:
2748  case CK_NoOp:
2749  case CK_LValueToRValue:
2750    return EmitLValue(E->getSubExpr());
2751
2752  case CK_UncheckedDerivedToBase:
2753  case CK_DerivedToBase: {
2754    const RecordType *DerivedClassTy =
2755      E->getSubExpr()->getType()->getAs<RecordType>();
2756    CXXRecordDecl *DerivedClassDecl =
2757      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2758
2759    LValue LV = EmitLValue(E->getSubExpr());
2760    llvm::Value *This = LV.getAddress();
2761
2762    // Perform the derived-to-base conversion
2763    llvm::Value *Base =
2764      GetAddressOfBaseClass(This, DerivedClassDecl,
2765                            E->path_begin(), E->path_end(),
2766                            /*NullCheckValue=*/false);
2767
2768    return MakeAddrLValue(Base, E->getType());
2769  }
2770  case CK_ToUnion:
2771    return EmitAggExprToLValue(E);
2772  case CK_BaseToDerived: {
2773    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2774    CXXRecordDecl *DerivedClassDecl =
2775      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2776
2777    LValue LV = EmitLValue(E->getSubExpr());
2778
2779    // Perform the base-to-derived conversion
2780    llvm::Value *Derived =
2781      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2782                               E->path_begin(), E->path_end(),
2783                               /*NullCheckValue=*/false);
2784
2785    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2786    // performed and the object is not of the derived type.
2787    if (SanitizePerformTypeCheck)
2788      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2789                    Derived, E->getType());
2790
2791    return MakeAddrLValue(Derived, E->getType());
2792  }
2793  case CK_LValueBitCast: {
2794    // This must be a reinterpret_cast (or c-style equivalent).
2795    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2796
2797    LValue LV = EmitLValue(E->getSubExpr());
2798    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2799                                           ConvertType(CE->getTypeAsWritten()));
2800    return MakeAddrLValue(V, E->getType());
2801  }
2802  case CK_ObjCObjectLValueCast: {
2803    LValue LV = EmitLValue(E->getSubExpr());
2804    QualType ToType = getContext().getLValueReferenceType(E->getType());
2805    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2806                                           ConvertType(ToType));
2807    return MakeAddrLValue(V, E->getType());
2808  }
2809  case CK_ZeroToOCLEvent:
2810    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2811  }
2812
2813  llvm_unreachable("Unhandled lvalue cast kind?");
2814}
2815
2816LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2817  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2818  return getOpaqueLValueMapping(e);
2819}
2820
2821RValue CodeGenFunction::EmitRValueForField(LValue LV,
2822                                           const FieldDecl *FD) {
2823  QualType FT = FD->getType();
2824  LValue FieldLV = EmitLValueForField(LV, FD);
2825  switch (getEvaluationKind(FT)) {
2826  case TEK_Complex:
2827    return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2828  case TEK_Aggregate:
2829    return FieldLV.asAggregateRValue();
2830  case TEK_Scalar:
2831    return EmitLoadOfLValue(FieldLV);
2832  }
2833  llvm_unreachable("bad evaluation kind");
2834}
2835
2836//===--------------------------------------------------------------------===//
2837//                             Expression Emission
2838//===--------------------------------------------------------------------===//
2839
2840RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2841                                     ReturnValueSlot ReturnValue) {
2842  if (CGDebugInfo *DI = getDebugInfo()) {
2843    SourceLocation Loc = E->getLocStart();
2844    // Force column info to be generated so we can differentiate
2845    // multiple call sites on the same line in the debug info.
2846    const FunctionDecl* Callee = E->getDirectCallee();
2847    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2848    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2849  }
2850
2851  // Builtins never have block type.
2852  if (E->getCallee()->getType()->isBlockPointerType())
2853    return EmitBlockCallExpr(E, ReturnValue);
2854
2855  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2856    return EmitCXXMemberCallExpr(CE, ReturnValue);
2857
2858  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2859    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2860
2861  const Decl *TargetDecl = E->getCalleeDecl();
2862  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2863    if (unsigned builtinID = FD->getBuiltinID())
2864      return EmitBuiltinExpr(FD, builtinID, E);
2865  }
2866
2867  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2868    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2869      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2870
2871  if (const CXXPseudoDestructorExpr *PseudoDtor
2872          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2873    QualType DestroyedType = PseudoDtor->getDestroyedType();
2874    if (getLangOpts().ObjCAutoRefCount &&
2875        DestroyedType->isObjCLifetimeType() &&
2876        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2877         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2878      // Automatic Reference Counting:
2879      //   If the pseudo-expression names a retainable object with weak or
2880      //   strong lifetime, the object shall be released.
2881      Expr *BaseExpr = PseudoDtor->getBase();
2882      llvm::Value *BaseValue = NULL;
2883      Qualifiers BaseQuals;
2884
2885      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2886      if (PseudoDtor->isArrow()) {
2887        BaseValue = EmitScalarExpr(BaseExpr);
2888        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2889        BaseQuals = PTy->getPointeeType().getQualifiers();
2890      } else {
2891        LValue BaseLV = EmitLValue(BaseExpr);
2892        BaseValue = BaseLV.getAddress();
2893        QualType BaseTy = BaseExpr->getType();
2894        BaseQuals = BaseTy.getQualifiers();
2895      }
2896
2897      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2898      case Qualifiers::OCL_None:
2899      case Qualifiers::OCL_ExplicitNone:
2900      case Qualifiers::OCL_Autoreleasing:
2901        break;
2902
2903      case Qualifiers::OCL_Strong:
2904        EmitARCRelease(Builder.CreateLoad(BaseValue,
2905                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2906                       ARCPreciseLifetime);
2907        break;
2908
2909      case Qualifiers::OCL_Weak:
2910        EmitARCDestroyWeak(BaseValue);
2911        break;
2912      }
2913    } else {
2914      // C++ [expr.pseudo]p1:
2915      //   The result shall only be used as the operand for the function call
2916      //   operator (), and the result of such a call has type void. The only
2917      //   effect is the evaluation of the postfix-expression before the dot or
2918      //   arrow.
2919      EmitScalarExpr(E->getCallee());
2920    }
2921
2922    return RValue::get(0);
2923  }
2924
2925  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2926  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2927                  E->arg_begin(), E->arg_end(), TargetDecl);
2928}
2929
2930LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2931  // Comma expressions just emit their LHS then their RHS as an l-value.
2932  if (E->getOpcode() == BO_Comma) {
2933    EmitIgnoredExpr(E->getLHS());
2934    EnsureInsertPoint();
2935    return EmitLValue(E->getRHS());
2936  }
2937
2938  if (E->getOpcode() == BO_PtrMemD ||
2939      E->getOpcode() == BO_PtrMemI)
2940    return EmitPointerToDataMemberBinaryExpr(E);
2941
2942  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2943
2944  // Note that in all of these cases, __block variables need the RHS
2945  // evaluated first just in case the variable gets moved by the RHS.
2946
2947  switch (getEvaluationKind(E->getType())) {
2948  case TEK_Scalar: {
2949    switch (E->getLHS()->getType().getObjCLifetime()) {
2950    case Qualifiers::OCL_Strong:
2951      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2952
2953    case Qualifiers::OCL_Autoreleasing:
2954      return EmitARCStoreAutoreleasing(E).first;
2955
2956    // No reason to do any of these differently.
2957    case Qualifiers::OCL_None:
2958    case Qualifiers::OCL_ExplicitNone:
2959    case Qualifiers::OCL_Weak:
2960      break;
2961    }
2962
2963    RValue RV = EmitAnyExpr(E->getRHS());
2964    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2965    EmitStoreThroughLValue(RV, LV);
2966    return LV;
2967  }
2968
2969  case TEK_Complex:
2970    return EmitComplexAssignmentLValue(E);
2971
2972  case TEK_Aggregate:
2973    return EmitAggExprToLValue(E);
2974  }
2975  llvm_unreachable("bad evaluation kind");
2976}
2977
2978LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2979  RValue RV = EmitCallExpr(E);
2980
2981  if (!RV.isScalar())
2982    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2983
2984  assert(E->getCallReturnType()->isReferenceType() &&
2985         "Can't have a scalar return unless the return type is a "
2986         "reference type!");
2987
2988  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2989}
2990
2991LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2992  // FIXME: This shouldn't require another copy.
2993  return EmitAggExprToLValue(E);
2994}
2995
2996LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2997  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2998         && "binding l-value to type which needs a temporary");
2999  AggValueSlot Slot = CreateAggTemp(E->getType());
3000  EmitCXXConstructExpr(E, Slot);
3001  return MakeAddrLValue(Slot.getAddr(), E->getType());
3002}
3003
3004LValue
3005CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3006  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3007}
3008
3009llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3010  return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3011                               ConvertType(E->getType())->getPointerTo());
3012}
3013
3014LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3015  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3016}
3017
3018LValue
3019CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3020  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3021  Slot.setExternallyDestructed();
3022  EmitAggExpr(E->getSubExpr(), Slot);
3023  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3024  return MakeAddrLValue(Slot.getAddr(), E->getType());
3025}
3026
3027LValue
3028CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3029  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3030  EmitLambdaExpr(E, Slot);
3031  return MakeAddrLValue(Slot.getAddr(), E->getType());
3032}
3033
3034LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3035  RValue RV = EmitObjCMessageExpr(E);
3036
3037  if (!RV.isScalar())
3038    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3039
3040  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3041         "Can't have a scalar return unless the return type is a "
3042         "reference type!");
3043
3044  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3045}
3046
3047LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3048  llvm::Value *V =
3049    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3050  return MakeAddrLValue(V, E->getType());
3051}
3052
3053llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3054                                             const ObjCIvarDecl *Ivar) {
3055  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3056}
3057
3058LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3059                                          llvm::Value *BaseValue,
3060                                          const ObjCIvarDecl *Ivar,
3061                                          unsigned CVRQualifiers) {
3062  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3063                                                   Ivar, CVRQualifiers);
3064}
3065
3066LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3067  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3068  llvm::Value *BaseValue = 0;
3069  const Expr *BaseExpr = E->getBase();
3070  Qualifiers BaseQuals;
3071  QualType ObjectTy;
3072  if (E->isArrow()) {
3073    BaseValue = EmitScalarExpr(BaseExpr);
3074    ObjectTy = BaseExpr->getType()->getPointeeType();
3075    BaseQuals = ObjectTy.getQualifiers();
3076  } else {
3077    LValue BaseLV = EmitLValue(BaseExpr);
3078    // FIXME: this isn't right for bitfields.
3079    BaseValue = BaseLV.getAddress();
3080    ObjectTy = BaseExpr->getType();
3081    BaseQuals = ObjectTy.getQualifiers();
3082  }
3083
3084  LValue LV =
3085    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3086                      BaseQuals.getCVRQualifiers());
3087  setObjCGCLValueClass(getContext(), E, LV);
3088  return LV;
3089}
3090
3091LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3092  // Can only get l-value for message expression returning aggregate type
3093  RValue RV = EmitAnyExprToTemp(E);
3094  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3095}
3096
3097RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3098                                 ReturnValueSlot ReturnValue,
3099                                 CallExpr::const_arg_iterator ArgBeg,
3100                                 CallExpr::const_arg_iterator ArgEnd,
3101                                 const Decl *TargetDecl) {
3102  // Get the actual function type. The callee type will always be a pointer to
3103  // function type or a block pointer type.
3104  assert(CalleeType->isFunctionPointerType() &&
3105         "Call must have function pointer type!");
3106
3107  CalleeType = getContext().getCanonicalType(CalleeType);
3108
3109  const FunctionType *FnType
3110    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3111
3112  // Force column info to differentiate multiple inlined call sites on
3113  // the same line, analoguous to EmitCallExpr.
3114  bool ForceColumnInfo = false;
3115  if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3116    ForceColumnInfo = FD->isInlineSpecified();
3117
3118  CallArgList Args;
3119  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3120               ForceColumnInfo);
3121
3122  const CGFunctionInfo &FnInfo =
3123    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3124
3125  // C99 6.5.2.2p6:
3126  //   If the expression that denotes the called function has a type
3127  //   that does not include a prototype, [the default argument
3128  //   promotions are performed]. If the number of arguments does not
3129  //   equal the number of parameters, the behavior is undefined. If
3130  //   the function is defined with a type that includes a prototype,
3131  //   and either the prototype ends with an ellipsis (, ...) or the
3132  //   types of the arguments after promotion are not compatible with
3133  //   the types of the parameters, the behavior is undefined. If the
3134  //   function is defined with a type that does not include a
3135  //   prototype, and the types of the arguments after promotion are
3136  //   not compatible with those of the parameters after promotion,
3137  //   the behavior is undefined [except in some trivial cases].
3138  // That is, in the general case, we should assume that a call
3139  // through an unprototyped function type works like a *non-variadic*
3140  // call.  The way we make this work is to cast to the exact type
3141  // of the promoted arguments.
3142  if (isa<FunctionNoProtoType>(FnType)) {
3143    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3144    CalleeTy = CalleeTy->getPointerTo();
3145    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3146  }
3147
3148  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3149}
3150
3151LValue CodeGenFunction::
3152EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3153  llvm::Value *BaseV;
3154  if (E->getOpcode() == BO_PtrMemI)
3155    BaseV = EmitScalarExpr(E->getLHS());
3156  else
3157    BaseV = EmitLValue(E->getLHS()).getAddress();
3158
3159  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3160
3161  const MemberPointerType *MPT
3162    = E->getRHS()->getType()->getAs<MemberPointerType>();
3163
3164  llvm::Value *AddV =
3165    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3166
3167  return MakeAddrLValue(AddV, MPT->getPointeeType());
3168}
3169
3170/// Given the address of a temporary variable, produce an r-value of
3171/// its type.
3172RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3173                                            QualType type) {
3174  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3175  switch (getEvaluationKind(type)) {
3176  case TEK_Complex:
3177    return RValue::getComplex(EmitLoadOfComplex(lvalue));
3178  case TEK_Aggregate:
3179    return lvalue.asAggregateRValue();
3180  case TEK_Scalar:
3181    return RValue::get(EmitLoadOfScalar(lvalue));
3182  }
3183  llvm_unreachable("bad evaluation kind");
3184}
3185
3186void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3187  assert(Val->getType()->isFPOrFPVectorTy());
3188  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3189    return;
3190
3191  llvm::MDBuilder MDHelper(getLLVMContext());
3192  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3193
3194  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3195}
3196
3197namespace {
3198  struct LValueOrRValue {
3199    LValue LV;
3200    RValue RV;
3201  };
3202}
3203
3204static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3205                                           const PseudoObjectExpr *E,
3206                                           bool forLValue,
3207                                           AggValueSlot slot) {
3208  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3209
3210  // Find the result expression, if any.
3211  const Expr *resultExpr = E->getResultExpr();
3212  LValueOrRValue result;
3213
3214  for (PseudoObjectExpr::const_semantics_iterator
3215         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3216    const Expr *semantic = *i;
3217
3218    // If this semantic expression is an opaque value, bind it
3219    // to the result of its source expression.
3220    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3221
3222      // If this is the result expression, we may need to evaluate
3223      // directly into the slot.
3224      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3225      OVMA opaqueData;
3226      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3227          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3228        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3229
3230        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3231        opaqueData = OVMA::bind(CGF, ov, LV);
3232        result.RV = slot.asRValue();
3233
3234      // Otherwise, emit as normal.
3235      } else {
3236        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3237
3238        // If this is the result, also evaluate the result now.
3239        if (ov == resultExpr) {
3240          if (forLValue)
3241            result.LV = CGF.EmitLValue(ov);
3242          else
3243            result.RV = CGF.EmitAnyExpr(ov, slot);
3244        }
3245      }
3246
3247      opaques.push_back(opaqueData);
3248
3249    // Otherwise, if the expression is the result, evaluate it
3250    // and remember the result.
3251    } else if (semantic == resultExpr) {
3252      if (forLValue)
3253        result.LV = CGF.EmitLValue(semantic);
3254      else
3255        result.RV = CGF.EmitAnyExpr(semantic, slot);
3256
3257    // Otherwise, evaluate the expression in an ignored context.
3258    } else {
3259      CGF.EmitIgnoredExpr(semantic);
3260    }
3261  }
3262
3263  // Unbind all the opaques now.
3264  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3265    opaques[i].unbind(CGF);
3266
3267  return result;
3268}
3269
3270RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3271                                               AggValueSlot slot) {
3272  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3273}
3274
3275LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3276  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3277}
3278