CGExpr.cpp revision c7971a9efdf9880448a69aabb5182c3c27eecf6d
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCXXABI.h" 16#include "CGCall.h" 17#include "CGDebugInfo.h" 18#include "CGObjCRuntime.h" 19#include "CGRecordLayout.h" 20#include "CodeGenModule.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/ADT/Hashing.h" 26#include "llvm/IR/DataLayout.h" 27#include "llvm/IR/Intrinsics.h" 28#include "llvm/IR/LLVMContext.h" 29#include "llvm/IR/MDBuilder.h" 30#include "llvm/Support/ConvertUTF.h" 31 32using namespace clang; 33using namespace CodeGen; 34 35//===--------------------------------------------------------------------===// 36// Miscellaneous Helper Methods 37//===--------------------------------------------------------------------===// 38 39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49} 50 51/// CreateTempAlloca - This creates a alloca and inserts it into the entry 52/// block. 53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58} 59 60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65} 66 67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74} 75 76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83} 84 85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86/// expression and compare the result against zero, returning an Int1Ty value. 87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 89 llvm::Value *MemPtr = EmitScalarExpr(E); 90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 91 } 92 93 QualType BoolTy = getContext().BoolTy; 94 if (!E->getType()->isAnyComplexType()) 95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 96 97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 98} 99 100/// EmitIgnoredExpr - Emit code to compute the specified expression, 101/// ignoring the result. 102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 103 if (E->isRValue()) 104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 105 106 // Just emit it as an l-value and drop the result. 107 EmitLValue(E); 108} 109 110/// EmitAnyExpr - Emit code to compute the specified expression which 111/// can have any type. The result is returned as an RValue struct. 112/// If this is an aggregate expression, AggSlot indicates where the 113/// result should be returned. 114RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 115 AggValueSlot aggSlot, 116 bool ignoreResult) { 117 switch (getEvaluationKind(E->getType())) { 118 case TEK_Scalar: 119 return RValue::get(EmitScalarExpr(E, ignoreResult)); 120 case TEK_Complex: 121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 122 case TEK_Aggregate: 123 if (!ignoreResult && aggSlot.isIgnored()) 124 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 125 EmitAggExpr(E, aggSlot); 126 return aggSlot.asRValue(); 127 } 128 llvm_unreachable("bad evaluation kind"); 129} 130 131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 132/// always be accessible even if no aggregate location is provided. 133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 134 AggValueSlot AggSlot = AggValueSlot::ignored(); 135 136 if (hasAggregateEvaluationKind(E->getType())) 137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 138 return EmitAnyExpr(E, AggSlot); 139} 140 141/// EmitAnyExprToMem - Evaluate an expression into a given memory 142/// location. 143void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 144 llvm::Value *Location, 145 Qualifiers Quals, 146 bool IsInit) { 147 // FIXME: This function should take an LValue as an argument. 148 switch (getEvaluationKind(E->getType())) { 149 case TEK_Complex: 150 EmitComplexExprIntoLValue(E, 151 MakeNaturalAlignAddrLValue(Location, E->getType()), 152 /*isInit*/ false); 153 return; 154 155 case TEK_Aggregate: { 156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 158 AggValueSlot::IsDestructed_t(IsInit), 159 AggValueSlot::DoesNotNeedGCBarriers, 160 AggValueSlot::IsAliased_t(!IsInit))); 161 return; 162 } 163 164 case TEK_Scalar: { 165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 166 LValue LV = MakeAddrLValue(Location, E->getType()); 167 EmitStoreThroughLValue(RV, LV); 168 return; 169 } 170 } 171 llvm_unreachable("bad evaluation kind"); 172} 173 174static void 175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 176 const Expr *E, llvm::Value *ReferenceTemporary) { 177 // Objective-C++ ARC: 178 // If we are binding a reference to a temporary that has ownership, we 179 // need to perform retain/release operations on the temporary. 180 // 181 // FIXME: This should be looking at E, not M. 182 if (CGF.getLangOpts().ObjCAutoRefCount && 183 M->getType()->isObjCLifetimeType()) { 184 QualType ObjCARCReferenceLifetimeType = M->getType(); 185 switch (Qualifiers::ObjCLifetime Lifetime = 186 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 187 case Qualifiers::OCL_None: 188 case Qualifiers::OCL_ExplicitNone: 189 // Carry on to normal cleanup handling. 190 break; 191 192 case Qualifiers::OCL_Autoreleasing: 193 // Nothing to do; cleaned up by an autorelease pool. 194 return; 195 196 case Qualifiers::OCL_Strong: 197 case Qualifiers::OCL_Weak: 198 switch (StorageDuration Duration = M->getStorageDuration()) { 199 case SD_Static: 200 // Note: we intentionally do not register a cleanup to release 201 // the object on program termination. 202 return; 203 204 case SD_Thread: 205 // FIXME: We should probably register a cleanup in this case. 206 return; 207 208 case SD_Automatic: 209 case SD_FullExpression: 210 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 211 CodeGenFunction::Destroyer *Destroy; 212 CleanupKind CleanupKind; 213 if (Lifetime == Qualifiers::OCL_Strong) { 214 const ValueDecl *VD = M->getExtendingDecl(); 215 bool Precise = 216 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 217 CleanupKind = CGF.getARCCleanupKind(); 218 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 219 : &CodeGenFunction::destroyARCStrongImprecise; 220 } else { 221 // __weak objects always get EH cleanups; otherwise, exceptions 222 // could cause really nasty crashes instead of mere leaks. 223 CleanupKind = NormalAndEHCleanup; 224 Destroy = &CodeGenFunction::destroyARCWeak; 225 } 226 if (Duration == SD_FullExpression) 227 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 228 ObjCARCReferenceLifetimeType, *Destroy, 229 CleanupKind & EHCleanup); 230 else 231 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 232 ObjCARCReferenceLifetimeType, 233 *Destroy, CleanupKind & EHCleanup); 234 return; 235 236 case SD_Dynamic: 237 llvm_unreachable("temporary cannot have dynamic storage duration"); 238 } 239 llvm_unreachable("unknown storage duration"); 240 } 241 } 242 243 CXXDestructorDecl *ReferenceTemporaryDtor = 0; 244 if (const RecordType *RT = 245 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 246 // Get the destructor for the reference temporary. 247 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 248 if (!ClassDecl->hasTrivialDestructor()) 249 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 250 } 251 252 if (!ReferenceTemporaryDtor) 253 return; 254 255 // Call the destructor for the temporary. 256 switch (M->getStorageDuration()) { 257 case SD_Static: 258 case SD_Thread: { 259 llvm::Constant *CleanupFn; 260 llvm::Constant *CleanupArg; 261 if (E->getType()->isArrayType()) { 262 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 263 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 264 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 265 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 266 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 267 } else { 268 CleanupFn = 269 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 270 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 271 } 272 CGF.CGM.getCXXABI().registerGlobalDtor( 273 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 274 break; 275 } 276 277 case SD_FullExpression: 278 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 279 CodeGenFunction::destroyCXXObject, 280 CGF.getLangOpts().Exceptions); 281 break; 282 283 case SD_Automatic: 284 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 285 ReferenceTemporary, E->getType(), 286 CodeGenFunction::destroyCXXObject, 287 CGF.getLangOpts().Exceptions); 288 break; 289 290 case SD_Dynamic: 291 llvm_unreachable("temporary cannot have dynamic storage duration"); 292 } 293} 294 295static llvm::Value * 296createReferenceTemporary(CodeGenFunction &CGF, 297 const MaterializeTemporaryExpr *M, const Expr *Inner) { 298 switch (M->getStorageDuration()) { 299 case SD_FullExpression: 300 case SD_Automatic: 301 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 302 303 case SD_Thread: 304 case SD_Static: 305 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 306 307 case SD_Dynamic: 308 llvm_unreachable("temporary can't have dynamic storage duration"); 309 } 310 llvm_unreachable("unknown storage duration"); 311} 312 313LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 314 const MaterializeTemporaryExpr *M) { 315 const Expr *E = M->GetTemporaryExpr(); 316 317 if (getLangOpts().ObjCAutoRefCount && 318 M->getType()->isObjCLifetimeType() && 319 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 320 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 321 // FIXME: Fold this into the general case below. 322 llvm::Value *Object = createReferenceTemporary(*this, M, E); 323 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 324 325 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 326 // We should not have emitted the initializer for this temporary as a 327 // constant. 328 assert(!Var->hasInitializer()); 329 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 330 } 331 332 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 333 334 pushTemporaryCleanup(*this, M, E, Object); 335 return RefTempDst; 336 } 337 338 SmallVector<const Expr *, 2> CommaLHSs; 339 SmallVector<SubobjectAdjustment, 2> Adjustments; 340 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 341 342 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 343 EmitIgnoredExpr(CommaLHSs[I]); 344 345 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) { 346 if (opaque->getType()->isRecordType()) { 347 assert(Adjustments.empty()); 348 return EmitOpaqueValueLValue(opaque); 349 } 350 } 351 352 // Create and initialize the reference temporary. 353 llvm::Value *Object = createReferenceTemporary(*this, M, E); 354 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 355 // If the temporary is a global and has a constant initializer, we may 356 // have already initialized it. 357 if (!Var->hasInitializer()) { 358 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 359 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 360 } 361 } else { 362 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 363 } 364 pushTemporaryCleanup(*this, M, E, Object); 365 366 // Perform derived-to-base casts and/or field accesses, to get from the 367 // temporary object we created (and, potentially, for which we extended 368 // the lifetime) to the subobject we're binding the reference to. 369 for (unsigned I = Adjustments.size(); I != 0; --I) { 370 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 371 switch (Adjustment.Kind) { 372 case SubobjectAdjustment::DerivedToBaseAdjustment: 373 Object = 374 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 375 Adjustment.DerivedToBase.BasePath->path_begin(), 376 Adjustment.DerivedToBase.BasePath->path_end(), 377 /*NullCheckValue=*/ false); 378 break; 379 380 case SubobjectAdjustment::FieldAdjustment: { 381 LValue LV = MakeAddrLValue(Object, E->getType()); 382 LV = EmitLValueForField(LV, Adjustment.Field); 383 assert(LV.isSimple() && 384 "materialized temporary field is not a simple lvalue"); 385 Object = LV.getAddress(); 386 break; 387 } 388 389 case SubobjectAdjustment::MemberPointerAdjustment: { 390 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 391 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 392 *this, Object, Ptr, Adjustment.Ptr.MPT); 393 break; 394 } 395 } 396 } 397 398 return MakeAddrLValue(Object, M->getType()); 399} 400 401RValue 402CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 403 // Emit the expression as an lvalue. 404 LValue LV = EmitLValue(E); 405 assert(LV.isSimple()); 406 llvm::Value *Value = LV.getAddress(); 407 408 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 409 // C++11 [dcl.ref]p5 (as amended by core issue 453): 410 // If a glvalue to which a reference is directly bound designates neither 411 // an existing object or function of an appropriate type nor a region of 412 // storage of suitable size and alignment to contain an object of the 413 // reference's type, the behavior is undefined. 414 QualType Ty = E->getType(); 415 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 416 } 417 418 return RValue::get(Value); 419} 420 421 422/// getAccessedFieldNo - Given an encoded value and a result number, return the 423/// input field number being accessed. 424unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 425 const llvm::Constant *Elts) { 426 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 427 ->getZExtValue(); 428} 429 430/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 431static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 432 llvm::Value *High) { 433 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 434 llvm::Value *K47 = Builder.getInt64(47); 435 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 436 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 437 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 438 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 439 return Builder.CreateMul(B1, KMul); 440} 441 442void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 443 llvm::Value *Address, 444 QualType Ty, CharUnits Alignment) { 445 if (!SanitizePerformTypeCheck) 446 return; 447 448 // Don't check pointers outside the default address space. The null check 449 // isn't correct, the object-size check isn't supported by LLVM, and we can't 450 // communicate the addresses to the runtime handler for the vptr check. 451 if (Address->getType()->getPointerAddressSpace()) 452 return; 453 454 llvm::Value *Cond = 0; 455 llvm::BasicBlock *Done = 0; 456 457 if (SanOpts->Null) { 458 // The glvalue must not be an empty glvalue. 459 Cond = Builder.CreateICmpNE( 460 Address, llvm::Constant::getNullValue(Address->getType())); 461 462 if (TCK == TCK_DowncastPointer) { 463 // When performing a pointer downcast, it's OK if the value is null. 464 // Skip the remaining checks in that case. 465 Done = createBasicBlock("null"); 466 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 467 Builder.CreateCondBr(Cond, Rest, Done); 468 EmitBlock(Rest); 469 Cond = 0; 470 } 471 } 472 473 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 474 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 475 476 // The glvalue must refer to a large enough storage region. 477 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 478 // to check this. 479 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 480 llvm::Value *Min = Builder.getFalse(); 481 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 482 llvm::Value *LargeEnough = 483 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 484 llvm::ConstantInt::get(IntPtrTy, Size)); 485 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 486 } 487 488 uint64_t AlignVal = 0; 489 490 if (SanOpts->Alignment) { 491 AlignVal = Alignment.getQuantity(); 492 if (!Ty->isIncompleteType() && !AlignVal) 493 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 494 495 // The glvalue must be suitably aligned. 496 if (AlignVal) { 497 llvm::Value *Align = 498 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 499 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 500 llvm::Value *Aligned = 501 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 502 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 503 } 504 } 505 506 if (Cond) { 507 llvm::Constant *StaticData[] = { 508 EmitCheckSourceLocation(Loc), 509 EmitCheckTypeDescriptor(Ty), 510 llvm::ConstantInt::get(SizeTy, AlignVal), 511 llvm::ConstantInt::get(Int8Ty, TCK) 512 }; 513 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 514 } 515 516 // If possible, check that the vptr indicates that there is a subobject of 517 // type Ty at offset zero within this object. 518 // 519 // C++11 [basic.life]p5,6: 520 // [For storage which does not refer to an object within its lifetime] 521 // The program has undefined behavior if: 522 // -- the [pointer or glvalue] is used to access a non-static data member 523 // or call a non-static member function 524 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 525 if (SanOpts->Vptr && 526 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 527 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 528 RD && RD->hasDefinition() && RD->isDynamicClass()) { 529 // Compute a hash of the mangled name of the type. 530 // 531 // FIXME: This is not guaranteed to be deterministic! Move to a 532 // fingerprinting mechanism once LLVM provides one. For the time 533 // being the implementation happens to be deterministic. 534 SmallString<64> MangledName; 535 llvm::raw_svector_ostream Out(MangledName); 536 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 537 Out); 538 llvm::hash_code TypeHash = hash_value(Out.str()); 539 540 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 541 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 542 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 543 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 544 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 545 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 546 547 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 548 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 549 550 // Look the hash up in our cache. 551 const int CacheSize = 128; 552 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 553 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 554 "__ubsan_vptr_type_cache"); 555 llvm::Value *Slot = Builder.CreateAnd(Hash, 556 llvm::ConstantInt::get(IntPtrTy, 557 CacheSize-1)); 558 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 559 llvm::Value *CacheVal = 560 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 561 562 // If the hash isn't in the cache, call a runtime handler to perform the 563 // hard work of checking whether the vptr is for an object of the right 564 // type. This will either fill in the cache and return, or produce a 565 // diagnostic. 566 llvm::Constant *StaticData[] = { 567 EmitCheckSourceLocation(Loc), 568 EmitCheckTypeDescriptor(Ty), 569 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 570 llvm::ConstantInt::get(Int8Ty, TCK) 571 }; 572 llvm::Value *DynamicData[] = { Address, Hash }; 573 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 574 "dynamic_type_cache_miss", StaticData, DynamicData, 575 CRK_AlwaysRecoverable); 576 } 577 578 if (Done) { 579 Builder.CreateBr(Done); 580 EmitBlock(Done); 581 } 582} 583 584/// Determine whether this expression refers to a flexible array member in a 585/// struct. We disable array bounds checks for such members. 586static bool isFlexibleArrayMemberExpr(const Expr *E) { 587 // For compatibility with existing code, we treat arrays of length 0 or 588 // 1 as flexible array members. 589 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 590 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 591 if (CAT->getSize().ugt(1)) 592 return false; 593 } else if (!isa<IncompleteArrayType>(AT)) 594 return false; 595 596 E = E->IgnoreParens(); 597 598 // A flexible array member must be the last member in the class. 599 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 600 // FIXME: If the base type of the member expr is not FD->getParent(), 601 // this should not be treated as a flexible array member access. 602 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 603 RecordDecl::field_iterator FI( 604 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 605 return ++FI == FD->getParent()->field_end(); 606 } 607 } 608 609 return false; 610} 611 612/// If Base is known to point to the start of an array, return the length of 613/// that array. Return 0 if the length cannot be determined. 614static llvm::Value *getArrayIndexingBound( 615 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 616 // For the vector indexing extension, the bound is the number of elements. 617 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 618 IndexedType = Base->getType(); 619 return CGF.Builder.getInt32(VT->getNumElements()); 620 } 621 622 Base = Base->IgnoreParens(); 623 624 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) { 625 if (CE->getCastKind() == CK_ArrayToPointerDecay && 626 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 627 IndexedType = CE->getSubExpr()->getType(); 628 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 629 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 630 return CGF.Builder.getInt(CAT->getSize()); 631 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) 632 return CGF.getVLASize(VAT).first; 633 } 634 } 635 636 return 0; 637} 638 639void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 640 llvm::Value *Index, QualType IndexType, 641 bool Accessed) { 642 assert(SanOpts->Bounds && "should not be called unless adding bounds checks"); 643 644 QualType IndexedType; 645 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 646 if (!Bound) 647 return; 648 649 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 650 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 651 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 652 653 llvm::Constant *StaticData[] = { 654 EmitCheckSourceLocation(E->getExprLoc()), 655 EmitCheckTypeDescriptor(IndexedType), 656 EmitCheckTypeDescriptor(IndexType) 657 }; 658 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 659 : Builder.CreateICmpULE(IndexVal, BoundVal); 660 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 661} 662 663 664CodeGenFunction::ComplexPairTy CodeGenFunction:: 665EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 666 bool isInc, bool isPre) { 667 ComplexPairTy InVal = EmitLoadOfComplex(LV); 668 669 llvm::Value *NextVal; 670 if (isa<llvm::IntegerType>(InVal.first->getType())) { 671 uint64_t AmountVal = isInc ? 1 : -1; 672 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 673 674 // Add the inc/dec to the real part. 675 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 676 } else { 677 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 678 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 679 if (!isInc) 680 FVal.changeSign(); 681 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 682 683 // Add the inc/dec to the real part. 684 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 685 } 686 687 ComplexPairTy IncVal(NextVal, InVal.second); 688 689 // Store the updated result through the lvalue. 690 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 691 692 // If this is a postinc, return the value read from memory, otherwise use the 693 // updated value. 694 return isPre ? IncVal : InVal; 695} 696 697 698//===----------------------------------------------------------------------===// 699// LValue Expression Emission 700//===----------------------------------------------------------------------===// 701 702RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 703 if (Ty->isVoidType()) 704 return RValue::get(0); 705 706 switch (getEvaluationKind(Ty)) { 707 case TEK_Complex: { 708 llvm::Type *EltTy = 709 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 710 llvm::Value *U = llvm::UndefValue::get(EltTy); 711 return RValue::getComplex(std::make_pair(U, U)); 712 } 713 714 // If this is a use of an undefined aggregate type, the aggregate must have an 715 // identifiable address. Just because the contents of the value are undefined 716 // doesn't mean that the address can't be taken and compared. 717 case TEK_Aggregate: { 718 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 719 return RValue::getAggregate(DestPtr); 720 } 721 722 case TEK_Scalar: 723 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 724 } 725 llvm_unreachable("bad evaluation kind"); 726} 727 728RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 729 const char *Name) { 730 ErrorUnsupported(E, Name); 731 return GetUndefRValue(E->getType()); 732} 733 734LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 735 const char *Name) { 736 ErrorUnsupported(E, Name); 737 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 738 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 739} 740 741LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 742 LValue LV; 743 if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E)) 744 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 745 else 746 LV = EmitLValue(E); 747 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 748 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 749 E->getType(), LV.getAlignment()); 750 return LV; 751} 752 753/// EmitLValue - Emit code to compute a designator that specifies the location 754/// of the expression. 755/// 756/// This can return one of two things: a simple address or a bitfield reference. 757/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 758/// an LLVM pointer type. 759/// 760/// If this returns a bitfield reference, nothing about the pointee type of the 761/// LLVM value is known: For example, it may not be a pointer to an integer. 762/// 763/// If this returns a normal address, and if the lvalue's C type is fixed size, 764/// this method guarantees that the returned pointer type will point to an LLVM 765/// type of the same size of the lvalue's type. If the lvalue has a variable 766/// length type, this is not possible. 767/// 768LValue CodeGenFunction::EmitLValue(const Expr *E) { 769 switch (E->getStmtClass()) { 770 default: return EmitUnsupportedLValue(E, "l-value expression"); 771 772 case Expr::ObjCPropertyRefExprClass: 773 llvm_unreachable("cannot emit a property reference directly"); 774 775 case Expr::ObjCSelectorExprClass: 776 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 777 case Expr::ObjCIsaExprClass: 778 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 779 case Expr::BinaryOperatorClass: 780 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 781 case Expr::CompoundAssignOperatorClass: 782 if (!E->getType()->isAnyComplexType()) 783 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 784 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 785 case Expr::CallExprClass: 786 case Expr::CXXMemberCallExprClass: 787 case Expr::CXXOperatorCallExprClass: 788 case Expr::UserDefinedLiteralClass: 789 return EmitCallExprLValue(cast<CallExpr>(E)); 790 case Expr::VAArgExprClass: 791 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 792 case Expr::DeclRefExprClass: 793 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 794 case Expr::ParenExprClass: 795 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 796 case Expr::GenericSelectionExprClass: 797 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 798 case Expr::PredefinedExprClass: 799 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 800 case Expr::StringLiteralClass: 801 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 802 case Expr::ObjCEncodeExprClass: 803 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 804 case Expr::PseudoObjectExprClass: 805 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 806 case Expr::InitListExprClass: 807 return EmitInitListLValue(cast<InitListExpr>(E)); 808 case Expr::CXXTemporaryObjectExprClass: 809 case Expr::CXXConstructExprClass: 810 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 811 case Expr::CXXBindTemporaryExprClass: 812 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 813 case Expr::CXXUuidofExprClass: 814 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 815 case Expr::LambdaExprClass: 816 return EmitLambdaLValue(cast<LambdaExpr>(E)); 817 818 case Expr::ExprWithCleanupsClass: { 819 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 820 enterFullExpression(cleanups); 821 RunCleanupsScope Scope(*this); 822 return EmitLValue(cleanups->getSubExpr()); 823 } 824 825 case Expr::CXXDefaultArgExprClass: 826 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 827 case Expr::CXXDefaultInitExprClass: { 828 CXXDefaultInitExprScope Scope(*this); 829 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 830 } 831 case Expr::CXXTypeidExprClass: 832 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 833 834 case Expr::ObjCMessageExprClass: 835 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 836 case Expr::ObjCIvarRefExprClass: 837 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 838 case Expr::StmtExprClass: 839 return EmitStmtExprLValue(cast<StmtExpr>(E)); 840 case Expr::UnaryOperatorClass: 841 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 842 case Expr::ArraySubscriptExprClass: 843 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 844 case Expr::ExtVectorElementExprClass: 845 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 846 case Expr::MemberExprClass: 847 return EmitMemberExpr(cast<MemberExpr>(E)); 848 case Expr::CompoundLiteralExprClass: 849 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 850 case Expr::ConditionalOperatorClass: 851 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 852 case Expr::BinaryConditionalOperatorClass: 853 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 854 case Expr::ChooseExprClass: 855 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 856 case Expr::OpaqueValueExprClass: 857 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 858 case Expr::SubstNonTypeTemplateParmExprClass: 859 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 860 case Expr::ImplicitCastExprClass: 861 case Expr::CStyleCastExprClass: 862 case Expr::CXXFunctionalCastExprClass: 863 case Expr::CXXStaticCastExprClass: 864 case Expr::CXXDynamicCastExprClass: 865 case Expr::CXXReinterpretCastExprClass: 866 case Expr::CXXConstCastExprClass: 867 case Expr::ObjCBridgedCastExprClass: 868 return EmitCastLValue(cast<CastExpr>(E)); 869 870 case Expr::MaterializeTemporaryExprClass: 871 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 872 } 873} 874 875/// Given an object of the given canonical type, can we safely copy a 876/// value out of it based on its initializer? 877static bool isConstantEmittableObjectType(QualType type) { 878 assert(type.isCanonical()); 879 assert(!type->isReferenceType()); 880 881 // Must be const-qualified but non-volatile. 882 Qualifiers qs = type.getLocalQualifiers(); 883 if (!qs.hasConst() || qs.hasVolatile()) return false; 884 885 // Otherwise, all object types satisfy this except C++ classes with 886 // mutable subobjects or non-trivial copy/destroy behavior. 887 if (const RecordType *RT = dyn_cast<RecordType>(type)) 888 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 889 if (RD->hasMutableFields() || !RD->isTrivial()) 890 return false; 891 892 return true; 893} 894 895/// Can we constant-emit a load of a reference to a variable of the 896/// given type? This is different from predicates like 897/// Decl::isUsableInConstantExpressions because we do want it to apply 898/// in situations that don't necessarily satisfy the language's rules 899/// for this (e.g. C++'s ODR-use rules). For example, we want to able 900/// to do this with const float variables even if those variables 901/// aren't marked 'constexpr'. 902enum ConstantEmissionKind { 903 CEK_None, 904 CEK_AsReferenceOnly, 905 CEK_AsValueOrReference, 906 CEK_AsValueOnly 907}; 908static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 909 type = type.getCanonicalType(); 910 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 911 if (isConstantEmittableObjectType(ref->getPointeeType())) 912 return CEK_AsValueOrReference; 913 return CEK_AsReferenceOnly; 914 } 915 if (isConstantEmittableObjectType(type)) 916 return CEK_AsValueOnly; 917 return CEK_None; 918} 919 920/// Try to emit a reference to the given value without producing it as 921/// an l-value. This is actually more than an optimization: we can't 922/// produce an l-value for variables that we never actually captured 923/// in a block or lambda, which means const int variables or constexpr 924/// literals or similar. 925CodeGenFunction::ConstantEmission 926CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 927 ValueDecl *value = refExpr->getDecl(); 928 929 // The value needs to be an enum constant or a constant variable. 930 ConstantEmissionKind CEK; 931 if (isa<ParmVarDecl>(value)) { 932 CEK = CEK_None; 933 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 934 CEK = checkVarTypeForConstantEmission(var->getType()); 935 } else if (isa<EnumConstantDecl>(value)) { 936 CEK = CEK_AsValueOnly; 937 } else { 938 CEK = CEK_None; 939 } 940 if (CEK == CEK_None) return ConstantEmission(); 941 942 Expr::EvalResult result; 943 bool resultIsReference; 944 QualType resultType; 945 946 // It's best to evaluate all the way as an r-value if that's permitted. 947 if (CEK != CEK_AsReferenceOnly && 948 refExpr->EvaluateAsRValue(result, getContext())) { 949 resultIsReference = false; 950 resultType = refExpr->getType(); 951 952 // Otherwise, try to evaluate as an l-value. 953 } else if (CEK != CEK_AsValueOnly && 954 refExpr->EvaluateAsLValue(result, getContext())) { 955 resultIsReference = true; 956 resultType = value->getType(); 957 958 // Failure. 959 } else { 960 return ConstantEmission(); 961 } 962 963 // In any case, if the initializer has side-effects, abandon ship. 964 if (result.HasSideEffects) 965 return ConstantEmission(); 966 967 // Emit as a constant. 968 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 969 970 // Make sure we emit a debug reference to the global variable. 971 // This should probably fire even for 972 if (isa<VarDecl>(value)) { 973 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 974 EmitDeclRefExprDbgValue(refExpr, C); 975 } else { 976 assert(isa<EnumConstantDecl>(value)); 977 EmitDeclRefExprDbgValue(refExpr, C); 978 } 979 980 // If we emitted a reference constant, we need to dereference that. 981 if (resultIsReference) 982 return ConstantEmission::forReference(C); 983 984 return ConstantEmission::forValue(C); 985} 986 987llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 988 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 989 lvalue.getAlignment().getQuantity(), 990 lvalue.getType(), lvalue.getTBAAInfo(), 991 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 992} 993 994static bool hasBooleanRepresentation(QualType Ty) { 995 if (Ty->isBooleanType()) 996 return true; 997 998 if (const EnumType *ET = Ty->getAs<EnumType>()) 999 return ET->getDecl()->getIntegerType()->isBooleanType(); 1000 1001 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1002 return hasBooleanRepresentation(AT->getValueType()); 1003 1004 return false; 1005} 1006 1007static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1008 llvm::APInt &Min, llvm::APInt &End, 1009 bool StrictEnums) { 1010 const EnumType *ET = Ty->getAs<EnumType>(); 1011 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1012 ET && !ET->getDecl()->isFixed(); 1013 bool IsBool = hasBooleanRepresentation(Ty); 1014 if (!IsBool && !IsRegularCPlusPlusEnum) 1015 return false; 1016 1017 if (IsBool) { 1018 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1019 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1020 } else { 1021 const EnumDecl *ED = ET->getDecl(); 1022 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1023 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1024 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1025 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1026 1027 if (NumNegativeBits) { 1028 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1029 assert(NumBits <= Bitwidth); 1030 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1031 Min = -End; 1032 } else { 1033 assert(NumPositiveBits <= Bitwidth); 1034 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1035 Min = llvm::APInt(Bitwidth, 0); 1036 } 1037 } 1038 return true; 1039} 1040 1041llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1042 llvm::APInt Min, End; 1043 if (!getRangeForType(*this, Ty, Min, End, 1044 CGM.getCodeGenOpts().StrictEnums)) 1045 return 0; 1046 1047 llvm::MDBuilder MDHelper(getLLVMContext()); 1048 return MDHelper.createRange(Min, End); 1049} 1050 1051llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1052 unsigned Alignment, QualType Ty, 1053 llvm::MDNode *TBAAInfo, 1054 QualType TBAABaseType, 1055 uint64_t TBAAOffset) { 1056 // For better performance, handle vector loads differently. 1057 if (Ty->isVectorType()) { 1058 llvm::Value *V; 1059 const llvm::Type *EltTy = 1060 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1061 1062 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 1063 1064 // Handle vectors of size 3, like size 4 for better performance. 1065 if (VTy->getNumElements() == 3) { 1066 1067 // Bitcast to vec4 type. 1068 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1069 4); 1070 llvm::PointerType *ptVec4Ty = 1071 llvm::PointerType::get(vec4Ty, 1072 (cast<llvm::PointerType>( 1073 Addr->getType()))->getAddressSpace()); 1074 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1075 "castToVec4"); 1076 // Now load value. 1077 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1078 1079 // Shuffle vector to get vec3. 1080 llvm::Constant *Mask[] = { 1081 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1082 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1083 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1084 }; 1085 1086 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1087 V = Builder.CreateShuffleVector(LoadVal, 1088 llvm::UndefValue::get(vec4Ty), 1089 MaskV, "extractVec"); 1090 return EmitFromMemory(V, Ty); 1091 } 1092 } 1093 1094 // Atomic operations have to be done on integral types. 1095 if (Ty->isAtomicType()) { 1096 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1097 CharUnits::fromQuantity(Alignment), 1098 getContext(), TBAAInfo); 1099 return EmitAtomicLoad(lvalue).getScalarVal(); 1100 } 1101 1102 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1103 if (Volatile) 1104 Load->setVolatile(true); 1105 if (Alignment) 1106 Load->setAlignment(Alignment); 1107 if (TBAAInfo) { 1108 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1109 TBAAOffset); 1110 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1111 } 1112 1113 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1114 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1115 llvm::APInt Min, End; 1116 if (getRangeForType(*this, Ty, Min, End, true)) { 1117 --End; 1118 llvm::Value *Check; 1119 if (!Min) 1120 Check = Builder.CreateICmpULE( 1121 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1122 else { 1123 llvm::Value *Upper = Builder.CreateICmpSLE( 1124 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1125 llvm::Value *Lower = Builder.CreateICmpSGE( 1126 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1127 Check = Builder.CreateAnd(Upper, Lower); 1128 } 1129 // FIXME: Provide a SourceLocation. 1130 EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty), 1131 EmitCheckValue(Load), CRK_Recoverable); 1132 } 1133 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1134 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1135 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1136 1137 return EmitFromMemory(Load, Ty); 1138} 1139 1140llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1141 // Bool has a different representation in memory than in registers. 1142 if (hasBooleanRepresentation(Ty)) { 1143 // This should really always be an i1, but sometimes it's already 1144 // an i8, and it's awkward to track those cases down. 1145 if (Value->getType()->isIntegerTy(1)) 1146 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1147 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1148 "wrong value rep of bool"); 1149 } 1150 1151 return Value; 1152} 1153 1154llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1155 // Bool has a different representation in memory than in registers. 1156 if (hasBooleanRepresentation(Ty)) { 1157 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1158 "wrong value rep of bool"); 1159 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1160 } 1161 1162 return Value; 1163} 1164 1165void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1166 bool Volatile, unsigned Alignment, 1167 QualType Ty, 1168 llvm::MDNode *TBAAInfo, 1169 bool isInit, QualType TBAABaseType, 1170 uint64_t TBAAOffset) { 1171 1172 // Handle vectors differently to get better performance. 1173 if (Ty->isVectorType()) { 1174 llvm::Type *SrcTy = Value->getType(); 1175 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1176 // Handle vec3 special. 1177 if (VecTy->getNumElements() == 3) { 1178 llvm::LLVMContext &VMContext = getLLVMContext(); 1179 1180 // Our source is a vec3, do a shuffle vector to make it a vec4. 1181 SmallVector<llvm::Constant*, 4> Mask; 1182 Mask.push_back(llvm::ConstantInt::get( 1183 llvm::Type::getInt32Ty(VMContext), 1184 0)); 1185 Mask.push_back(llvm::ConstantInt::get( 1186 llvm::Type::getInt32Ty(VMContext), 1187 1)); 1188 Mask.push_back(llvm::ConstantInt::get( 1189 llvm::Type::getInt32Ty(VMContext), 1190 2)); 1191 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1192 1193 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1194 Value = Builder.CreateShuffleVector(Value, 1195 llvm::UndefValue::get(VecTy), 1196 MaskV, "extractVec"); 1197 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1198 } 1199 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1200 if (DstPtr->getElementType() != SrcTy) { 1201 llvm::Type *MemTy = 1202 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1203 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1204 } 1205 } 1206 1207 Value = EmitToMemory(Value, Ty); 1208 1209 if (Ty->isAtomicType()) { 1210 EmitAtomicStore(RValue::get(Value), 1211 LValue::MakeAddr(Addr, Ty, 1212 CharUnits::fromQuantity(Alignment), 1213 getContext(), TBAAInfo), 1214 isInit); 1215 return; 1216 } 1217 1218 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1219 if (Alignment) 1220 Store->setAlignment(Alignment); 1221 if (TBAAInfo) { 1222 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1223 TBAAOffset); 1224 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1225 } 1226} 1227 1228void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1229 bool isInit) { 1230 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1231 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1232 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1233 lvalue.getTBAAOffset()); 1234} 1235 1236/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1237/// method emits the address of the lvalue, then loads the result as an rvalue, 1238/// returning the rvalue. 1239RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1240 if (LV.isObjCWeak()) { 1241 // load of a __weak object. 1242 llvm::Value *AddrWeakObj = LV.getAddress(); 1243 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1244 AddrWeakObj)); 1245 } 1246 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1247 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1248 Object = EmitObjCConsumeObject(LV.getType(), Object); 1249 return RValue::get(Object); 1250 } 1251 1252 if (LV.isSimple()) { 1253 assert(!LV.getType()->isFunctionType()); 1254 1255 // Everything needs a load. 1256 return RValue::get(EmitLoadOfScalar(LV)); 1257 } 1258 1259 if (LV.isVectorElt()) { 1260 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1261 LV.isVolatileQualified()); 1262 Load->setAlignment(LV.getAlignment().getQuantity()); 1263 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1264 "vecext")); 1265 } 1266 1267 // If this is a reference to a subset of the elements of a vector, either 1268 // shuffle the input or extract/insert them as appropriate. 1269 if (LV.isExtVectorElt()) 1270 return EmitLoadOfExtVectorElementLValue(LV); 1271 1272 assert(LV.isBitField() && "Unknown LValue type!"); 1273 return EmitLoadOfBitfieldLValue(LV); 1274} 1275 1276RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1277 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1278 1279 // Get the output type. 1280 llvm::Type *ResLTy = ConvertType(LV.getType()); 1281 1282 llvm::Value *Ptr = LV.getBitFieldAddr(); 1283 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1284 "bf.load"); 1285 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1286 1287 if (Info.IsSigned) { 1288 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1289 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1290 if (HighBits) 1291 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1292 if (Info.Offset + HighBits) 1293 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1294 } else { 1295 if (Info.Offset) 1296 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1297 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1298 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1299 Info.Size), 1300 "bf.clear"); 1301 } 1302 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1303 1304 return RValue::get(Val); 1305} 1306 1307// If this is a reference to a subset of the elements of a vector, create an 1308// appropriate shufflevector. 1309RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1310 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1311 LV.isVolatileQualified()); 1312 Load->setAlignment(LV.getAlignment().getQuantity()); 1313 llvm::Value *Vec = Load; 1314 1315 const llvm::Constant *Elts = LV.getExtVectorElts(); 1316 1317 // If the result of the expression is a non-vector type, we must be extracting 1318 // a single element. Just codegen as an extractelement. 1319 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1320 if (!ExprVT) { 1321 unsigned InIdx = getAccessedFieldNo(0, Elts); 1322 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1323 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1324 } 1325 1326 // Always use shuffle vector to try to retain the original program structure 1327 unsigned NumResultElts = ExprVT->getNumElements(); 1328 1329 SmallVector<llvm::Constant*, 4> Mask; 1330 for (unsigned i = 0; i != NumResultElts; ++i) 1331 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1332 1333 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1334 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1335 MaskV); 1336 return RValue::get(Vec); 1337} 1338 1339 1340 1341/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1342/// lvalue, where both are guaranteed to the have the same type, and that type 1343/// is 'Ty'. 1344void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1345 if (!Dst.isSimple()) { 1346 if (Dst.isVectorElt()) { 1347 // Read/modify/write the vector, inserting the new element. 1348 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1349 Dst.isVolatileQualified()); 1350 Load->setAlignment(Dst.getAlignment().getQuantity()); 1351 llvm::Value *Vec = Load; 1352 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1353 Dst.getVectorIdx(), "vecins"); 1354 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1355 Dst.isVolatileQualified()); 1356 Store->setAlignment(Dst.getAlignment().getQuantity()); 1357 return; 1358 } 1359 1360 // If this is an update of extended vector elements, insert them as 1361 // appropriate. 1362 if (Dst.isExtVectorElt()) 1363 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1364 1365 assert(Dst.isBitField() && "Unknown LValue type"); 1366 return EmitStoreThroughBitfieldLValue(Src, Dst); 1367 } 1368 1369 // There's special magic for assigning into an ARC-qualified l-value. 1370 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1371 switch (Lifetime) { 1372 case Qualifiers::OCL_None: 1373 llvm_unreachable("present but none"); 1374 1375 case Qualifiers::OCL_ExplicitNone: 1376 // nothing special 1377 break; 1378 1379 case Qualifiers::OCL_Strong: 1380 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1381 return; 1382 1383 case Qualifiers::OCL_Weak: 1384 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1385 return; 1386 1387 case Qualifiers::OCL_Autoreleasing: 1388 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1389 Src.getScalarVal())); 1390 // fall into the normal path 1391 break; 1392 } 1393 } 1394 1395 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1396 // load of a __weak object. 1397 llvm::Value *LvalueDst = Dst.getAddress(); 1398 llvm::Value *src = Src.getScalarVal(); 1399 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1400 return; 1401 } 1402 1403 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1404 // load of a __strong object. 1405 llvm::Value *LvalueDst = Dst.getAddress(); 1406 llvm::Value *src = Src.getScalarVal(); 1407 if (Dst.isObjCIvar()) { 1408 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1409 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1410 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1411 llvm::Value *dst = RHS; 1412 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1413 llvm::Value *LHS = 1414 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1415 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1416 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1417 BytesBetween); 1418 } else if (Dst.isGlobalObjCRef()) { 1419 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1420 Dst.isThreadLocalRef()); 1421 } 1422 else 1423 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1424 return; 1425 } 1426 1427 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1428 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1429} 1430 1431void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1432 llvm::Value **Result) { 1433 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1434 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1435 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1436 1437 // Get the source value, truncated to the width of the bit-field. 1438 llvm::Value *SrcVal = Src.getScalarVal(); 1439 1440 // Cast the source to the storage type and shift it into place. 1441 SrcVal = Builder.CreateIntCast(SrcVal, 1442 Ptr->getType()->getPointerElementType(), 1443 /*IsSigned=*/false); 1444 llvm::Value *MaskedVal = SrcVal; 1445 1446 // See if there are other bits in the bitfield's storage we'll need to load 1447 // and mask together with source before storing. 1448 if (Info.StorageSize != Info.Size) { 1449 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1450 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1451 "bf.load"); 1452 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1453 1454 // Mask the source value as needed. 1455 if (!hasBooleanRepresentation(Dst.getType())) 1456 SrcVal = Builder.CreateAnd(SrcVal, 1457 llvm::APInt::getLowBitsSet(Info.StorageSize, 1458 Info.Size), 1459 "bf.value"); 1460 MaskedVal = SrcVal; 1461 if (Info.Offset) 1462 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1463 1464 // Mask out the original value. 1465 Val = Builder.CreateAnd(Val, 1466 ~llvm::APInt::getBitsSet(Info.StorageSize, 1467 Info.Offset, 1468 Info.Offset + Info.Size), 1469 "bf.clear"); 1470 1471 // Or together the unchanged values and the source value. 1472 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1473 } else { 1474 assert(Info.Offset == 0); 1475 } 1476 1477 // Write the new value back out. 1478 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1479 Dst.isVolatileQualified()); 1480 Store->setAlignment(Info.StorageAlignment); 1481 1482 // Return the new value of the bit-field, if requested. 1483 if (Result) { 1484 llvm::Value *ResultVal = MaskedVal; 1485 1486 // Sign extend the value if needed. 1487 if (Info.IsSigned) { 1488 assert(Info.Size <= Info.StorageSize); 1489 unsigned HighBits = Info.StorageSize - Info.Size; 1490 if (HighBits) { 1491 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1492 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1493 } 1494 } 1495 1496 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1497 "bf.result.cast"); 1498 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1499 } 1500} 1501 1502void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1503 LValue Dst) { 1504 // This access turns into a read/modify/write of the vector. Load the input 1505 // value now. 1506 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1507 Dst.isVolatileQualified()); 1508 Load->setAlignment(Dst.getAlignment().getQuantity()); 1509 llvm::Value *Vec = Load; 1510 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1511 1512 llvm::Value *SrcVal = Src.getScalarVal(); 1513 1514 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1515 unsigned NumSrcElts = VTy->getNumElements(); 1516 unsigned NumDstElts = 1517 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1518 if (NumDstElts == NumSrcElts) { 1519 // Use shuffle vector is the src and destination are the same number of 1520 // elements and restore the vector mask since it is on the side it will be 1521 // stored. 1522 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1523 for (unsigned i = 0; i != NumSrcElts; ++i) 1524 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1525 1526 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1527 Vec = Builder.CreateShuffleVector(SrcVal, 1528 llvm::UndefValue::get(Vec->getType()), 1529 MaskV); 1530 } else if (NumDstElts > NumSrcElts) { 1531 // Extended the source vector to the same length and then shuffle it 1532 // into the destination. 1533 // FIXME: since we're shuffling with undef, can we just use the indices 1534 // into that? This could be simpler. 1535 SmallVector<llvm::Constant*, 4> ExtMask; 1536 for (unsigned i = 0; i != NumSrcElts; ++i) 1537 ExtMask.push_back(Builder.getInt32(i)); 1538 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1539 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1540 llvm::Value *ExtSrcVal = 1541 Builder.CreateShuffleVector(SrcVal, 1542 llvm::UndefValue::get(SrcVal->getType()), 1543 ExtMaskV); 1544 // build identity 1545 SmallVector<llvm::Constant*, 4> Mask; 1546 for (unsigned i = 0; i != NumDstElts; ++i) 1547 Mask.push_back(Builder.getInt32(i)); 1548 1549 // modify when what gets shuffled in 1550 for (unsigned i = 0; i != NumSrcElts; ++i) 1551 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1552 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1553 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1554 } else { 1555 // We should never shorten the vector 1556 llvm_unreachable("unexpected shorten vector length"); 1557 } 1558 } else { 1559 // If the Src is a scalar (not a vector) it must be updating one element. 1560 unsigned InIdx = getAccessedFieldNo(0, Elts); 1561 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1562 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1563 } 1564 1565 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1566 Dst.isVolatileQualified()); 1567 Store->setAlignment(Dst.getAlignment().getQuantity()); 1568} 1569 1570// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1571// generating write-barries API. It is currently a global, ivar, 1572// or neither. 1573static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1574 LValue &LV, 1575 bool IsMemberAccess=false) { 1576 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1577 return; 1578 1579 if (isa<ObjCIvarRefExpr>(E)) { 1580 QualType ExpTy = E->getType(); 1581 if (IsMemberAccess && ExpTy->isPointerType()) { 1582 // If ivar is a structure pointer, assigning to field of 1583 // this struct follows gcc's behavior and makes it a non-ivar 1584 // writer-barrier conservatively. 1585 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1586 if (ExpTy->isRecordType()) { 1587 LV.setObjCIvar(false); 1588 return; 1589 } 1590 } 1591 LV.setObjCIvar(true); 1592 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1593 LV.setBaseIvarExp(Exp->getBase()); 1594 LV.setObjCArray(E->getType()->isArrayType()); 1595 return; 1596 } 1597 1598 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1599 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1600 if (VD->hasGlobalStorage()) { 1601 LV.setGlobalObjCRef(true); 1602 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1603 } 1604 } 1605 LV.setObjCArray(E->getType()->isArrayType()); 1606 return; 1607 } 1608 1609 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1610 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1611 return; 1612 } 1613 1614 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1615 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1616 if (LV.isObjCIvar()) { 1617 // If cast is to a structure pointer, follow gcc's behavior and make it 1618 // a non-ivar write-barrier. 1619 QualType ExpTy = E->getType(); 1620 if (ExpTy->isPointerType()) 1621 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1622 if (ExpTy->isRecordType()) 1623 LV.setObjCIvar(false); 1624 } 1625 return; 1626 } 1627 1628 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1629 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1630 return; 1631 } 1632 1633 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1634 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1635 return; 1636 } 1637 1638 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1639 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1640 return; 1641 } 1642 1643 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1644 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1645 return; 1646 } 1647 1648 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1649 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1650 if (LV.isObjCIvar() && !LV.isObjCArray()) 1651 // Using array syntax to assigning to what an ivar points to is not 1652 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1653 LV.setObjCIvar(false); 1654 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1655 // Using array syntax to assigning to what global points to is not 1656 // same as assigning to the global itself. {id *G;} G[i] = 0; 1657 LV.setGlobalObjCRef(false); 1658 return; 1659 } 1660 1661 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1662 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1663 // We don't know if member is an 'ivar', but this flag is looked at 1664 // only in the context of LV.isObjCIvar(). 1665 LV.setObjCArray(E->getType()->isArrayType()); 1666 return; 1667 } 1668} 1669 1670static llvm::Value * 1671EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1672 llvm::Value *V, llvm::Type *IRType, 1673 StringRef Name = StringRef()) { 1674 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1675 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1676} 1677 1678static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1679 const Expr *E, const VarDecl *VD) { 1680 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1681 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1682 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1683 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1684 QualType T = E->getType(); 1685 LValue LV; 1686 if (VD->getType()->isReferenceType()) { 1687 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1688 LI->setAlignment(Alignment.getQuantity()); 1689 V = LI; 1690 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1691 } else { 1692 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1693 } 1694 setObjCGCLValueClass(CGF.getContext(), E, LV); 1695 return LV; 1696} 1697 1698static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1699 const Expr *E, const FunctionDecl *FD) { 1700 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1701 if (!FD->hasPrototype()) { 1702 if (const FunctionProtoType *Proto = 1703 FD->getType()->getAs<FunctionProtoType>()) { 1704 // Ugly case: for a K&R-style definition, the type of the definition 1705 // isn't the same as the type of a use. Correct for this with a 1706 // bitcast. 1707 QualType NoProtoType = 1708 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1709 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1710 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1711 } 1712 } 1713 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1714 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1715} 1716 1717static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1718 llvm::Value *ThisValue) { 1719 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1720 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1721 return CGF.EmitLValueForField(LV, FD); 1722} 1723 1724LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1725 const NamedDecl *ND = E->getDecl(); 1726 CharUnits Alignment = getContext().getDeclAlign(ND); 1727 QualType T = E->getType(); 1728 1729 // A DeclRefExpr for a reference initialized by a constant expression can 1730 // appear without being odr-used. Directly emit the constant initializer. 1731 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1732 const Expr *Init = VD->getAnyInitializer(VD); 1733 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1734 VD->isUsableInConstantExpressions(getContext()) && 1735 VD->checkInitIsICE()) { 1736 llvm::Constant *Val = 1737 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1738 assert(Val && "failed to emit reference constant expression"); 1739 // FIXME: Eventually we will want to emit vector element references. 1740 return MakeAddrLValue(Val, T, Alignment); 1741 } 1742 } 1743 1744 // FIXME: We should be able to assert this for FunctionDecls as well! 1745 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1746 // those with a valid source location. 1747 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1748 !E->getLocation().isValid()) && 1749 "Should not use decl without marking it used!"); 1750 1751 if (ND->hasAttr<WeakRefAttr>()) { 1752 const ValueDecl *VD = cast<ValueDecl>(ND); 1753 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1754 return MakeAddrLValue(Aliasee, T, Alignment); 1755 } 1756 1757 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1758 // Check if this is a global variable. 1759 if (VD->hasLinkage() || VD->isStaticDataMember()) { 1760 // If it's thread_local, emit a call to its wrapper function instead. 1761 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1762 return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E); 1763 return EmitGlobalVarDeclLValue(*this, E, VD); 1764 } 1765 1766 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1767 1768 llvm::Value *V = LocalDeclMap.lookup(VD); 1769 if (!V && VD->isStaticLocal()) 1770 V = CGM.getStaticLocalDeclAddress(VD); 1771 1772 // Use special handling for lambdas. 1773 if (!V) { 1774 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1775 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1776 } else if (CapturedStmtInfo) { 1777 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1778 return EmitCapturedFieldLValue(*this, FD, 1779 CapturedStmtInfo->getContextValue()); 1780 } 1781 1782 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1783 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1784 T, Alignment); 1785 } 1786 1787 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1788 1789 if (isBlockVariable) 1790 V = BuildBlockByrefAddress(V, VD); 1791 1792 LValue LV; 1793 if (VD->getType()->isReferenceType()) { 1794 llvm::LoadInst *LI = Builder.CreateLoad(V); 1795 LI->setAlignment(Alignment.getQuantity()); 1796 V = LI; 1797 LV = MakeNaturalAlignAddrLValue(V, T); 1798 } else { 1799 LV = MakeAddrLValue(V, T, Alignment); 1800 } 1801 1802 bool isLocalStorage = VD->hasLocalStorage(); 1803 1804 bool NonGCable = isLocalStorage && 1805 !VD->getType()->isReferenceType() && 1806 !isBlockVariable; 1807 if (NonGCable) { 1808 LV.getQuals().removeObjCGCAttr(); 1809 LV.setNonGC(true); 1810 } 1811 1812 bool isImpreciseLifetime = 1813 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1814 if (isImpreciseLifetime) 1815 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1816 setObjCGCLValueClass(getContext(), E, LV); 1817 return LV; 1818 } 1819 1820 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1821 return EmitFunctionDeclLValue(*this, E, fn); 1822 1823 llvm_unreachable("Unhandled DeclRefExpr"); 1824} 1825 1826LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1827 // __extension__ doesn't affect lvalue-ness. 1828 if (E->getOpcode() == UO_Extension) 1829 return EmitLValue(E->getSubExpr()); 1830 1831 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1832 switch (E->getOpcode()) { 1833 default: llvm_unreachable("Unknown unary operator lvalue!"); 1834 case UO_Deref: { 1835 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1836 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1837 1838 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1839 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1840 1841 // We should not generate __weak write barrier on indirect reference 1842 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1843 // But, we continue to generate __strong write barrier on indirect write 1844 // into a pointer to object. 1845 if (getLangOpts().ObjC1 && 1846 getLangOpts().getGC() != LangOptions::NonGC && 1847 LV.isObjCWeak()) 1848 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1849 return LV; 1850 } 1851 case UO_Real: 1852 case UO_Imag: { 1853 LValue LV = EmitLValue(E->getSubExpr()); 1854 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1855 llvm::Value *Addr = LV.getAddress(); 1856 1857 // __real is valid on scalars. This is a faster way of testing that. 1858 // __imag can only produce an rvalue on scalars. 1859 if (E->getOpcode() == UO_Real && 1860 !cast<llvm::PointerType>(Addr->getType()) 1861 ->getElementType()->isStructTy()) { 1862 assert(E->getSubExpr()->getType()->isArithmeticType()); 1863 return LV; 1864 } 1865 1866 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1867 1868 unsigned Idx = E->getOpcode() == UO_Imag; 1869 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1870 Idx, "idx"), 1871 ExprTy); 1872 } 1873 case UO_PreInc: 1874 case UO_PreDec: { 1875 LValue LV = EmitLValue(E->getSubExpr()); 1876 bool isInc = E->getOpcode() == UO_PreInc; 1877 1878 if (E->getType()->isAnyComplexType()) 1879 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1880 else 1881 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1882 return LV; 1883 } 1884 } 1885} 1886 1887LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1888 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1889 E->getType()); 1890} 1891 1892LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1893 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1894 E->getType()); 1895} 1896 1897static llvm::Constant* 1898GetAddrOfConstantWideString(StringRef Str, 1899 const char *GlobalName, 1900 ASTContext &Context, 1901 QualType Ty, SourceLocation Loc, 1902 CodeGenModule &CGM) { 1903 1904 StringLiteral *SL = StringLiteral::Create(Context, 1905 Str, 1906 StringLiteral::Wide, 1907 /*Pascal = */false, 1908 Ty, Loc); 1909 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1910 llvm::GlobalVariable *GV = 1911 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1912 !CGM.getLangOpts().WritableStrings, 1913 llvm::GlobalValue::PrivateLinkage, 1914 C, GlobalName); 1915 const unsigned WideAlignment = 1916 Context.getTypeAlignInChars(Ty).getQuantity(); 1917 GV->setAlignment(WideAlignment); 1918 return GV; 1919} 1920 1921static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1922 SmallString<32>& Target) { 1923 Target.resize(CharByteWidth * (Source.size() + 1)); 1924 char *ResultPtr = &Target[0]; 1925 const UTF8 *ErrorPtr; 1926 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1927 (void)success; 1928 assert(success); 1929 Target.resize(ResultPtr - &Target[0]); 1930} 1931 1932LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1933 switch (E->getIdentType()) { 1934 default: 1935 return EmitUnsupportedLValue(E, "predefined expression"); 1936 1937 case PredefinedExpr::Func: 1938 case PredefinedExpr::Function: 1939 case PredefinedExpr::LFunction: 1940 case PredefinedExpr::PrettyFunction: { 1941 PredefinedExpr::IdentType IdentType = E->getIdentType(); 1942 std::string GlobalVarName; 1943 1944 switch (IdentType) { 1945 default: llvm_unreachable("Invalid type"); 1946 case PredefinedExpr::Func: 1947 GlobalVarName = "__func__."; 1948 break; 1949 case PredefinedExpr::Function: 1950 GlobalVarName = "__FUNCTION__."; 1951 break; 1952 case PredefinedExpr::LFunction: 1953 GlobalVarName = "L__FUNCTION__."; 1954 break; 1955 case PredefinedExpr::PrettyFunction: 1956 GlobalVarName = "__PRETTY_FUNCTION__."; 1957 break; 1958 } 1959 1960 StringRef FnName = CurFn->getName(); 1961 if (FnName.startswith("\01")) 1962 FnName = FnName.substr(1); 1963 GlobalVarName += FnName; 1964 1965 // If this is outside of a function use the top level decl. 1966 const Decl *CurDecl = CurCodeDecl; 1967 if (CurDecl == 0 || isa<VarDecl>(CurDecl)) 1968 CurDecl = getContext().getTranslationUnitDecl(); 1969 1970 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1971 std::string FunctionName; 1972 if (isa<BlockDecl>(CurDecl)) { 1973 // Blocks use the mangled function name. 1974 // FIXME: ComputeName should handle blocks. 1975 FunctionName = FnName.str(); 1976 } else if (isa<CapturedDecl>(CurDecl)) { 1977 // For a captured statement, the function name is its enclosing 1978 // function name not the one compiler generated. 1979 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 1980 } else { 1981 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 1982 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 == 1983 FunctionName.size() && 1984 "Computed __func__ length differs from type!"); 1985 } 1986 1987 llvm::Constant *C; 1988 if (ElemType->isWideCharType()) { 1989 SmallString<32> RawChars; 1990 ConvertUTF8ToWideString( 1991 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1992 FunctionName, RawChars); 1993 C = GetAddrOfConstantWideString(RawChars, 1994 GlobalVarName.c_str(), 1995 getContext(), 1996 E->getType(), 1997 E->getLocation(), 1998 CGM); 1999 } else { 2000 C = CGM.GetAddrOfConstantCString(FunctionName, 2001 GlobalVarName.c_str(), 2002 1); 2003 } 2004 return MakeAddrLValue(C, E->getType()); 2005 } 2006 } 2007} 2008 2009/// Emit a type description suitable for use by a runtime sanitizer library. The 2010/// format of a type descriptor is 2011/// 2012/// \code 2013/// { i16 TypeKind, i16 TypeInfo } 2014/// \endcode 2015/// 2016/// followed by an array of i8 containing the type name. TypeKind is 0 for an 2017/// integer, 1 for a floating point value, and -1 for anything else. 2018llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2019 // FIXME: Only emit each type's descriptor once. 2020 uint16_t TypeKind = -1; 2021 uint16_t TypeInfo = 0; 2022 2023 if (T->isIntegerType()) { 2024 TypeKind = 0; 2025 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2026 (T->isSignedIntegerType() ? 1 : 0); 2027 } else if (T->isFloatingType()) { 2028 TypeKind = 1; 2029 TypeInfo = getContext().getTypeSize(T); 2030 } 2031 2032 // Format the type name as if for a diagnostic, including quotes and 2033 // optionally an 'aka'. 2034 SmallString<32> Buffer; 2035 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2036 (intptr_t)T.getAsOpaquePtr(), 2037 0, 0, 0, 0, 0, 0, Buffer, 2038 ArrayRef<intptr_t>()); 2039 2040 llvm::Constant *Components[] = { 2041 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2042 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2043 }; 2044 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2045 2046 llvm::GlobalVariable *GV = 2047 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 2048 /*isConstant=*/true, 2049 llvm::GlobalVariable::PrivateLinkage, 2050 Descriptor); 2051 GV->setUnnamedAddr(true); 2052 return GV; 2053} 2054 2055llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2056 llvm::Type *TargetTy = IntPtrTy; 2057 2058 // Floating-point types which fit into intptr_t are bitcast to integers 2059 // and then passed directly (after zero-extension, if necessary). 2060 if (V->getType()->isFloatingPointTy()) { 2061 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2062 if (Bits <= TargetTy->getIntegerBitWidth()) 2063 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2064 Bits)); 2065 } 2066 2067 // Integers which fit in intptr_t are zero-extended and passed directly. 2068 if (V->getType()->isIntegerTy() && 2069 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2070 return Builder.CreateZExt(V, TargetTy); 2071 2072 // Pointers are passed directly, everything else is passed by address. 2073 if (!V->getType()->isPointerTy()) { 2074 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2075 Builder.CreateStore(V, Ptr); 2076 V = Ptr; 2077 } 2078 return Builder.CreatePtrToInt(V, TargetTy); 2079} 2080 2081/// \brief Emit a representation of a SourceLocation for passing to a handler 2082/// in a sanitizer runtime library. The format for this data is: 2083/// \code 2084/// struct SourceLocation { 2085/// const char *Filename; 2086/// int32_t Line, Column; 2087/// }; 2088/// \endcode 2089/// For an invalid SourceLocation, the Filename pointer is null. 2090llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2091 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2092 2093 llvm::Constant *Data[] = { 2094 // FIXME: Only emit each file name once. 2095 PLoc.isValid() ? cast<llvm::Constant>( 2096 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2097 : llvm::Constant::getNullValue(Int8PtrTy), 2098 Builder.getInt32(PLoc.getLine()), 2099 Builder.getInt32(PLoc.getColumn()) 2100 }; 2101 2102 return llvm::ConstantStruct::getAnon(Data); 2103} 2104 2105void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2106 ArrayRef<llvm::Constant *> StaticArgs, 2107 ArrayRef<llvm::Value *> DynamicArgs, 2108 CheckRecoverableKind RecoverKind) { 2109 assert(SanOpts != &SanitizerOptions::Disabled); 2110 2111 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2112 assert (RecoverKind != CRK_AlwaysRecoverable && 2113 "Runtime call required for AlwaysRecoverable kind!"); 2114 return EmitTrapCheck(Checked); 2115 } 2116 2117 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2118 2119 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2120 2121 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2122 2123 // Give hint that we very much don't expect to execute the handler 2124 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2125 llvm::MDBuilder MDHelper(getLLVMContext()); 2126 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2127 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2128 2129 EmitBlock(Handler); 2130 2131 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2132 llvm::GlobalValue *InfoPtr = 2133 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2134 llvm::GlobalVariable::PrivateLinkage, Info); 2135 InfoPtr->setUnnamedAddr(true); 2136 2137 SmallVector<llvm::Value *, 4> Args; 2138 SmallVector<llvm::Type *, 4> ArgTypes; 2139 Args.reserve(DynamicArgs.size() + 1); 2140 ArgTypes.reserve(DynamicArgs.size() + 1); 2141 2142 // Handler functions take an i8* pointing to the (handler-specific) static 2143 // information block, followed by a sequence of intptr_t arguments 2144 // representing operand values. 2145 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2146 ArgTypes.push_back(Int8PtrTy); 2147 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2148 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2149 ArgTypes.push_back(IntPtrTy); 2150 } 2151 2152 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2153 ((RecoverKind == CRK_Recoverable) && 2154 CGM.getCodeGenOpts().SanitizeRecover); 2155 2156 llvm::FunctionType *FnType = 2157 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2158 llvm::AttrBuilder B; 2159 if (!Recover) { 2160 B.addAttribute(llvm::Attribute::NoReturn) 2161 .addAttribute(llvm::Attribute::NoUnwind); 2162 } 2163 B.addAttribute(llvm::Attribute::UWTable); 2164 2165 // Checks that have two variants use a suffix to differentiate them 2166 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2167 !CGM.getCodeGenOpts().SanitizeRecover; 2168 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2169 (NeedsAbortSuffix? "_abort" : "")).str(); 2170 llvm::Value *Fn = 2171 CGM.CreateRuntimeFunction(FnType, FunctionName, 2172 llvm::AttributeSet::get(getLLVMContext(), 2173 llvm::AttributeSet::FunctionIndex, 2174 B)); 2175 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2176 if (Recover) { 2177 Builder.CreateBr(Cont); 2178 } else { 2179 HandlerCall->setDoesNotReturn(); 2180 Builder.CreateUnreachable(); 2181 } 2182 2183 EmitBlock(Cont); 2184} 2185 2186void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2187 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2188 2189 // If we're optimizing, collapse all calls to trap down to just one per 2190 // function to save on code size. 2191 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2192 TrapBB = createBasicBlock("trap"); 2193 Builder.CreateCondBr(Checked, Cont, TrapBB); 2194 EmitBlock(TrapBB); 2195 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2196 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2197 TrapCall->setDoesNotReturn(); 2198 TrapCall->setDoesNotThrow(); 2199 Builder.CreateUnreachable(); 2200 } else { 2201 Builder.CreateCondBr(Checked, Cont, TrapBB); 2202 } 2203 2204 EmitBlock(Cont); 2205} 2206 2207/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2208/// array to pointer, return the array subexpression. 2209static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2210 // If this isn't just an array->pointer decay, bail out. 2211 const CastExpr *CE = dyn_cast<CastExpr>(E); 2212 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2213 return 0; 2214 2215 // If this is a decay from variable width array, bail out. 2216 const Expr *SubExpr = CE->getSubExpr(); 2217 if (SubExpr->getType()->isVariableArrayType()) 2218 return 0; 2219 2220 return SubExpr; 2221} 2222 2223LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2224 bool Accessed) { 2225 // The index must always be an integer, which is not an aggregate. Emit it. 2226 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2227 QualType IdxTy = E->getIdx()->getType(); 2228 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2229 2230 if (SanOpts->Bounds) 2231 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2232 2233 // If the base is a vector type, then we are forming a vector element lvalue 2234 // with this subscript. 2235 if (E->getBase()->getType()->isVectorType()) { 2236 // Emit the vector as an lvalue to get its address. 2237 LValue LHS = EmitLValue(E->getBase()); 2238 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2239 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2240 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2241 E->getBase()->getType(), LHS.getAlignment()); 2242 } 2243 2244 // Extend or truncate the index type to 32 or 64-bits. 2245 if (Idx->getType() != IntPtrTy) 2246 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2247 2248 // We know that the pointer points to a type of the correct size, unless the 2249 // size is a VLA or Objective-C interface. 2250 llvm::Value *Address = 0; 2251 CharUnits ArrayAlignment; 2252 if (const VariableArrayType *vla = 2253 getContext().getAsVariableArrayType(E->getType())) { 2254 // The base must be a pointer, which is not an aggregate. Emit 2255 // it. It needs to be emitted first in case it's what captures 2256 // the VLA bounds. 2257 Address = EmitScalarExpr(E->getBase()); 2258 2259 // The element count here is the total number of non-VLA elements. 2260 llvm::Value *numElements = getVLASize(vla).first; 2261 2262 // Effectively, the multiply by the VLA size is part of the GEP. 2263 // GEP indexes are signed, and scaling an index isn't permitted to 2264 // signed-overflow, so we use the same semantics for our explicit 2265 // multiply. We suppress this if overflow is not undefined behavior. 2266 if (getLangOpts().isSignedOverflowDefined()) { 2267 Idx = Builder.CreateMul(Idx, numElements); 2268 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2269 } else { 2270 Idx = Builder.CreateNSWMul(Idx, numElements); 2271 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2272 } 2273 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2274 // Indexing over an interface, as in "NSString *P; P[4];" 2275 llvm::Value *InterfaceSize = 2276 llvm::ConstantInt::get(Idx->getType(), 2277 getContext().getTypeSizeInChars(OIT).getQuantity()); 2278 2279 Idx = Builder.CreateMul(Idx, InterfaceSize); 2280 2281 // The base must be a pointer, which is not an aggregate. Emit it. 2282 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2283 Address = EmitCastToVoidPtr(Base); 2284 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2285 Address = Builder.CreateBitCast(Address, Base->getType()); 2286 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2287 // If this is A[i] where A is an array, the frontend will have decayed the 2288 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2289 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2290 // "gep x, i" here. Emit one "gep A, 0, i". 2291 assert(Array->getType()->isArrayType() && 2292 "Array to pointer decay must have array source type!"); 2293 LValue ArrayLV; 2294 // For simple multidimensional array indexing, set the 'accessed' flag for 2295 // better bounds-checking of the base expression. 2296 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2297 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2298 else 2299 ArrayLV = EmitLValue(Array); 2300 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2301 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2302 llvm::Value *Args[] = { Zero, Idx }; 2303 2304 // Propagate the alignment from the array itself to the result. 2305 ArrayAlignment = ArrayLV.getAlignment(); 2306 2307 if (getLangOpts().isSignedOverflowDefined()) 2308 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2309 else 2310 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2311 } else { 2312 // The base must be a pointer, which is not an aggregate. Emit it. 2313 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2314 if (getLangOpts().isSignedOverflowDefined()) 2315 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2316 else 2317 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2318 } 2319 2320 QualType T = E->getBase()->getType()->getPointeeType(); 2321 assert(!T.isNull() && 2322 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2323 2324 2325 // Limit the alignment to that of the result type. 2326 LValue LV; 2327 if (!ArrayAlignment.isZero()) { 2328 CharUnits Align = getContext().getTypeAlignInChars(T); 2329 ArrayAlignment = std::min(Align, ArrayAlignment); 2330 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2331 } else { 2332 LV = MakeNaturalAlignAddrLValue(Address, T); 2333 } 2334 2335 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2336 2337 if (getLangOpts().ObjC1 && 2338 getLangOpts().getGC() != LangOptions::NonGC) { 2339 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2340 setObjCGCLValueClass(getContext(), E, LV); 2341 } 2342 return LV; 2343} 2344 2345static 2346llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2347 SmallVectorImpl<unsigned> &Elts) { 2348 SmallVector<llvm::Constant*, 4> CElts; 2349 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2350 CElts.push_back(Builder.getInt32(Elts[i])); 2351 2352 return llvm::ConstantVector::get(CElts); 2353} 2354 2355LValue CodeGenFunction:: 2356EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2357 // Emit the base vector as an l-value. 2358 LValue Base; 2359 2360 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2361 if (E->isArrow()) { 2362 // If it is a pointer to a vector, emit the address and form an lvalue with 2363 // it. 2364 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2365 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2366 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2367 Base.getQuals().removeObjCGCAttr(); 2368 } else if (E->getBase()->isGLValue()) { 2369 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2370 // emit the base as an lvalue. 2371 assert(E->getBase()->getType()->isVectorType()); 2372 Base = EmitLValue(E->getBase()); 2373 } else { 2374 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2375 assert(E->getBase()->getType()->isVectorType() && 2376 "Result must be a vector"); 2377 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2378 2379 // Store the vector to memory (because LValue wants an address). 2380 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2381 Builder.CreateStore(Vec, VecMem); 2382 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2383 } 2384 2385 QualType type = 2386 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2387 2388 // Encode the element access list into a vector of unsigned indices. 2389 SmallVector<unsigned, 4> Indices; 2390 E->getEncodedElementAccess(Indices); 2391 2392 if (Base.isSimple()) { 2393 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2394 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2395 Base.getAlignment()); 2396 } 2397 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2398 2399 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2400 SmallVector<llvm::Constant *, 4> CElts; 2401 2402 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2403 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2404 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2405 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2406 Base.getAlignment()); 2407} 2408 2409LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2410 Expr *BaseExpr = E->getBase(); 2411 2412 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2413 LValue BaseLV; 2414 if (E->isArrow()) { 2415 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2416 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2417 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2418 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2419 } else 2420 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2421 2422 NamedDecl *ND = E->getMemberDecl(); 2423 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2424 LValue LV = EmitLValueForField(BaseLV, Field); 2425 setObjCGCLValueClass(getContext(), E, LV); 2426 return LV; 2427 } 2428 2429 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2430 return EmitGlobalVarDeclLValue(*this, E, VD); 2431 2432 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2433 return EmitFunctionDeclLValue(*this, E, FD); 2434 2435 llvm_unreachable("Unhandled member declaration!"); 2436} 2437 2438/// Given that we are currently emitting a lambda, emit an l-value for 2439/// one of its members. 2440LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2441 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2442 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2443 QualType LambdaTagType = 2444 getContext().getTagDeclType(Field->getParent()); 2445 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2446 return EmitLValueForField(LambdaLV, Field); 2447} 2448 2449LValue CodeGenFunction::EmitLValueForField(LValue base, 2450 const FieldDecl *field) { 2451 if (field->isBitField()) { 2452 const CGRecordLayout &RL = 2453 CGM.getTypes().getCGRecordLayout(field->getParent()); 2454 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2455 llvm::Value *Addr = base.getAddress(); 2456 unsigned Idx = RL.getLLVMFieldNo(field); 2457 if (Idx != 0) 2458 // For structs, we GEP to the field that the record layout suggests. 2459 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2460 // Get the access type. 2461 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2462 getLLVMContext(), Info.StorageSize, 2463 CGM.getContext().getTargetAddressSpace(base.getType())); 2464 if (Addr->getType() != PtrTy) 2465 Addr = Builder.CreateBitCast(Addr, PtrTy); 2466 2467 QualType fieldType = 2468 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2469 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2470 } 2471 2472 const RecordDecl *rec = field->getParent(); 2473 QualType type = field->getType(); 2474 CharUnits alignment = getContext().getDeclAlign(field); 2475 2476 // FIXME: It should be impossible to have an LValue without alignment for a 2477 // complete type. 2478 if (!base.getAlignment().isZero()) 2479 alignment = std::min(alignment, base.getAlignment()); 2480 2481 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2482 2483 llvm::Value *addr = base.getAddress(); 2484 unsigned cvr = base.getVRQualifiers(); 2485 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2486 if (rec->isUnion()) { 2487 // For unions, there is no pointer adjustment. 2488 assert(!type->isReferenceType() && "union has reference member"); 2489 // TODO: handle path-aware TBAA for union. 2490 TBAAPath = false; 2491 } else { 2492 // For structs, we GEP to the field that the record layout suggests. 2493 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2494 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2495 2496 // If this is a reference field, load the reference right now. 2497 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2498 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2499 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2500 load->setAlignment(alignment.getQuantity()); 2501 2502 // Loading the reference will disable path-aware TBAA. 2503 TBAAPath = false; 2504 if (CGM.shouldUseTBAA()) { 2505 llvm::MDNode *tbaa; 2506 if (mayAlias) 2507 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2508 else 2509 tbaa = CGM.getTBAAInfo(type); 2510 CGM.DecorateInstruction(load, tbaa); 2511 } 2512 2513 addr = load; 2514 mayAlias = false; 2515 type = refType->getPointeeType(); 2516 if (type->isIncompleteType()) 2517 alignment = CharUnits(); 2518 else 2519 alignment = getContext().getTypeAlignInChars(type); 2520 cvr = 0; // qualifiers don't recursively apply to referencee 2521 } 2522 } 2523 2524 // Make sure that the address is pointing to the right type. This is critical 2525 // for both unions and structs. A union needs a bitcast, a struct element 2526 // will need a bitcast if the LLVM type laid out doesn't match the desired 2527 // type. 2528 addr = EmitBitCastOfLValueToProperType(*this, addr, 2529 CGM.getTypes().ConvertTypeForMem(type), 2530 field->getName()); 2531 2532 if (field->hasAttr<AnnotateAttr>()) 2533 addr = EmitFieldAnnotations(field, addr); 2534 2535 LValue LV = MakeAddrLValue(addr, type, alignment); 2536 LV.getQuals().addCVRQualifiers(cvr); 2537 if (TBAAPath) { 2538 const ASTRecordLayout &Layout = 2539 getContext().getASTRecordLayout(field->getParent()); 2540 // Set the base type to be the base type of the base LValue and 2541 // update offset to be relative to the base type. 2542 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2543 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2544 Layout.getFieldOffset(field->getFieldIndex()) / 2545 getContext().getCharWidth()); 2546 } 2547 2548 // __weak attribute on a field is ignored. 2549 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2550 LV.getQuals().removeObjCGCAttr(); 2551 2552 // Fields of may_alias structs act like 'char' for TBAA purposes. 2553 // FIXME: this should get propagated down through anonymous structs 2554 // and unions. 2555 if (mayAlias && LV.getTBAAInfo()) 2556 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2557 2558 return LV; 2559} 2560 2561LValue 2562CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2563 const FieldDecl *Field) { 2564 QualType FieldType = Field->getType(); 2565 2566 if (!FieldType->isReferenceType()) 2567 return EmitLValueForField(Base, Field); 2568 2569 const CGRecordLayout &RL = 2570 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2571 unsigned idx = RL.getLLVMFieldNo(Field); 2572 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2573 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2574 2575 // Make sure that the address is pointing to the right type. This is critical 2576 // for both unions and structs. A union needs a bitcast, a struct element 2577 // will need a bitcast if the LLVM type laid out doesn't match the desired 2578 // type. 2579 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2580 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2581 2582 CharUnits Alignment = getContext().getDeclAlign(Field); 2583 2584 // FIXME: It should be impossible to have an LValue without alignment for a 2585 // complete type. 2586 if (!Base.getAlignment().isZero()) 2587 Alignment = std::min(Alignment, Base.getAlignment()); 2588 2589 return MakeAddrLValue(V, FieldType, Alignment); 2590} 2591 2592LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2593 if (E->isFileScope()) { 2594 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2595 return MakeAddrLValue(GlobalPtr, E->getType()); 2596 } 2597 if (E->getType()->isVariablyModifiedType()) 2598 // make sure to emit the VLA size. 2599 EmitVariablyModifiedType(E->getType()); 2600 2601 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2602 const Expr *InitExpr = E->getInitializer(); 2603 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2604 2605 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2606 /*Init*/ true); 2607 2608 return Result; 2609} 2610 2611LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2612 if (!E->isGLValue()) 2613 // Initializing an aggregate temporary in C++11: T{...}. 2614 return EmitAggExprToLValue(E); 2615 2616 // An lvalue initializer list must be initializing a reference. 2617 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2618 return EmitLValue(E->getInit(0)); 2619} 2620 2621LValue CodeGenFunction:: 2622EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2623 if (!expr->isGLValue()) { 2624 // ?: here should be an aggregate. 2625 assert(hasAggregateEvaluationKind(expr->getType()) && 2626 "Unexpected conditional operator!"); 2627 return EmitAggExprToLValue(expr); 2628 } 2629 2630 OpaqueValueMapping binding(*this, expr); 2631 2632 const Expr *condExpr = expr->getCond(); 2633 bool CondExprBool; 2634 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2635 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2636 if (!CondExprBool) std::swap(live, dead); 2637 2638 if (!ContainsLabel(dead)) 2639 return EmitLValue(live); 2640 } 2641 2642 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2643 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2644 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2645 2646 ConditionalEvaluation eval(*this); 2647 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2648 2649 // Any temporaries created here are conditional. 2650 EmitBlock(lhsBlock); 2651 eval.begin(*this); 2652 LValue lhs = EmitLValue(expr->getTrueExpr()); 2653 eval.end(*this); 2654 2655 if (!lhs.isSimple()) 2656 return EmitUnsupportedLValue(expr, "conditional operator"); 2657 2658 lhsBlock = Builder.GetInsertBlock(); 2659 Builder.CreateBr(contBlock); 2660 2661 // Any temporaries created here are conditional. 2662 EmitBlock(rhsBlock); 2663 eval.begin(*this); 2664 LValue rhs = EmitLValue(expr->getFalseExpr()); 2665 eval.end(*this); 2666 if (!rhs.isSimple()) 2667 return EmitUnsupportedLValue(expr, "conditional operator"); 2668 rhsBlock = Builder.GetInsertBlock(); 2669 2670 EmitBlock(contBlock); 2671 2672 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2673 "cond-lvalue"); 2674 phi->addIncoming(lhs.getAddress(), lhsBlock); 2675 phi->addIncoming(rhs.getAddress(), rhsBlock); 2676 return MakeAddrLValue(phi, expr->getType()); 2677} 2678 2679/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2680/// type. If the cast is to a reference, we can have the usual lvalue result, 2681/// otherwise if a cast is needed by the code generator in an lvalue context, 2682/// then it must mean that we need the address of an aggregate in order to 2683/// access one of its members. This can happen for all the reasons that casts 2684/// are permitted with aggregate result, including noop aggregate casts, and 2685/// cast from scalar to union. 2686LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2687 switch (E->getCastKind()) { 2688 case CK_ToVoid: 2689 case CK_BitCast: 2690 case CK_ArrayToPointerDecay: 2691 case CK_FunctionToPointerDecay: 2692 case CK_NullToMemberPointer: 2693 case CK_NullToPointer: 2694 case CK_IntegralToPointer: 2695 case CK_PointerToIntegral: 2696 case CK_PointerToBoolean: 2697 case CK_VectorSplat: 2698 case CK_IntegralCast: 2699 case CK_IntegralToBoolean: 2700 case CK_IntegralToFloating: 2701 case CK_FloatingToIntegral: 2702 case CK_FloatingToBoolean: 2703 case CK_FloatingCast: 2704 case CK_FloatingRealToComplex: 2705 case CK_FloatingComplexToReal: 2706 case CK_FloatingComplexToBoolean: 2707 case CK_FloatingComplexCast: 2708 case CK_FloatingComplexToIntegralComplex: 2709 case CK_IntegralRealToComplex: 2710 case CK_IntegralComplexToReal: 2711 case CK_IntegralComplexToBoolean: 2712 case CK_IntegralComplexCast: 2713 case CK_IntegralComplexToFloatingComplex: 2714 case CK_DerivedToBaseMemberPointer: 2715 case CK_BaseToDerivedMemberPointer: 2716 case CK_MemberPointerToBoolean: 2717 case CK_ReinterpretMemberPointer: 2718 case CK_AnyPointerToBlockPointerCast: 2719 case CK_ARCProduceObject: 2720 case CK_ARCConsumeObject: 2721 case CK_ARCReclaimReturnedObject: 2722 case CK_ARCExtendBlockObject: 2723 case CK_CopyAndAutoreleaseBlockObject: 2724 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2725 2726 case CK_Dependent: 2727 llvm_unreachable("dependent cast kind in IR gen!"); 2728 2729 case CK_BuiltinFnToFnPtr: 2730 llvm_unreachable("builtin functions are handled elsewhere"); 2731 2732 // These are never l-values; just use the aggregate emission code. 2733 case CK_NonAtomicToAtomic: 2734 case CK_AtomicToNonAtomic: 2735 return EmitAggExprToLValue(E); 2736 2737 case CK_Dynamic: { 2738 LValue LV = EmitLValue(E->getSubExpr()); 2739 llvm::Value *V = LV.getAddress(); 2740 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2741 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2742 } 2743 2744 case CK_ConstructorConversion: 2745 case CK_UserDefinedConversion: 2746 case CK_CPointerToObjCPointerCast: 2747 case CK_BlockPointerToObjCPointerCast: 2748 case CK_NoOp: 2749 case CK_LValueToRValue: 2750 return EmitLValue(E->getSubExpr()); 2751 2752 case CK_UncheckedDerivedToBase: 2753 case CK_DerivedToBase: { 2754 const RecordType *DerivedClassTy = 2755 E->getSubExpr()->getType()->getAs<RecordType>(); 2756 CXXRecordDecl *DerivedClassDecl = 2757 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2758 2759 LValue LV = EmitLValue(E->getSubExpr()); 2760 llvm::Value *This = LV.getAddress(); 2761 2762 // Perform the derived-to-base conversion 2763 llvm::Value *Base = 2764 GetAddressOfBaseClass(This, DerivedClassDecl, 2765 E->path_begin(), E->path_end(), 2766 /*NullCheckValue=*/false); 2767 2768 return MakeAddrLValue(Base, E->getType()); 2769 } 2770 case CK_ToUnion: 2771 return EmitAggExprToLValue(E); 2772 case CK_BaseToDerived: { 2773 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2774 CXXRecordDecl *DerivedClassDecl = 2775 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2776 2777 LValue LV = EmitLValue(E->getSubExpr()); 2778 2779 // Perform the base-to-derived conversion 2780 llvm::Value *Derived = 2781 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2782 E->path_begin(), E->path_end(), 2783 /*NullCheckValue=*/false); 2784 2785 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2786 // performed and the object is not of the derived type. 2787 if (SanitizePerformTypeCheck) 2788 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2789 Derived, E->getType()); 2790 2791 return MakeAddrLValue(Derived, E->getType()); 2792 } 2793 case CK_LValueBitCast: { 2794 // This must be a reinterpret_cast (or c-style equivalent). 2795 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2796 2797 LValue LV = EmitLValue(E->getSubExpr()); 2798 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2799 ConvertType(CE->getTypeAsWritten())); 2800 return MakeAddrLValue(V, E->getType()); 2801 } 2802 case CK_ObjCObjectLValueCast: { 2803 LValue LV = EmitLValue(E->getSubExpr()); 2804 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2805 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2806 ConvertType(ToType)); 2807 return MakeAddrLValue(V, E->getType()); 2808 } 2809 case CK_ZeroToOCLEvent: 2810 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2811 } 2812 2813 llvm_unreachable("Unhandled lvalue cast kind?"); 2814} 2815 2816LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2817 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2818 return getOpaqueLValueMapping(e); 2819} 2820 2821RValue CodeGenFunction::EmitRValueForField(LValue LV, 2822 const FieldDecl *FD) { 2823 QualType FT = FD->getType(); 2824 LValue FieldLV = EmitLValueForField(LV, FD); 2825 switch (getEvaluationKind(FT)) { 2826 case TEK_Complex: 2827 return RValue::getComplex(EmitLoadOfComplex(FieldLV)); 2828 case TEK_Aggregate: 2829 return FieldLV.asAggregateRValue(); 2830 case TEK_Scalar: 2831 return EmitLoadOfLValue(FieldLV); 2832 } 2833 llvm_unreachable("bad evaluation kind"); 2834} 2835 2836//===--------------------------------------------------------------------===// 2837// Expression Emission 2838//===--------------------------------------------------------------------===// 2839 2840RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2841 ReturnValueSlot ReturnValue) { 2842 if (CGDebugInfo *DI = getDebugInfo()) { 2843 SourceLocation Loc = E->getLocStart(); 2844 // Force column info to be generated so we can differentiate 2845 // multiple call sites on the same line in the debug info. 2846 const FunctionDecl* Callee = E->getDirectCallee(); 2847 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2848 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2849 } 2850 2851 // Builtins never have block type. 2852 if (E->getCallee()->getType()->isBlockPointerType()) 2853 return EmitBlockCallExpr(E, ReturnValue); 2854 2855 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2856 return EmitCXXMemberCallExpr(CE, ReturnValue); 2857 2858 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2859 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2860 2861 const Decl *TargetDecl = E->getCalleeDecl(); 2862 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2863 if (unsigned builtinID = FD->getBuiltinID()) 2864 return EmitBuiltinExpr(FD, builtinID, E); 2865 } 2866 2867 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2868 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2869 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2870 2871 if (const CXXPseudoDestructorExpr *PseudoDtor 2872 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2873 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2874 if (getLangOpts().ObjCAutoRefCount && 2875 DestroyedType->isObjCLifetimeType() && 2876 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2877 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2878 // Automatic Reference Counting: 2879 // If the pseudo-expression names a retainable object with weak or 2880 // strong lifetime, the object shall be released. 2881 Expr *BaseExpr = PseudoDtor->getBase(); 2882 llvm::Value *BaseValue = NULL; 2883 Qualifiers BaseQuals; 2884 2885 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2886 if (PseudoDtor->isArrow()) { 2887 BaseValue = EmitScalarExpr(BaseExpr); 2888 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2889 BaseQuals = PTy->getPointeeType().getQualifiers(); 2890 } else { 2891 LValue BaseLV = EmitLValue(BaseExpr); 2892 BaseValue = BaseLV.getAddress(); 2893 QualType BaseTy = BaseExpr->getType(); 2894 BaseQuals = BaseTy.getQualifiers(); 2895 } 2896 2897 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2898 case Qualifiers::OCL_None: 2899 case Qualifiers::OCL_ExplicitNone: 2900 case Qualifiers::OCL_Autoreleasing: 2901 break; 2902 2903 case Qualifiers::OCL_Strong: 2904 EmitARCRelease(Builder.CreateLoad(BaseValue, 2905 PseudoDtor->getDestroyedType().isVolatileQualified()), 2906 ARCPreciseLifetime); 2907 break; 2908 2909 case Qualifiers::OCL_Weak: 2910 EmitARCDestroyWeak(BaseValue); 2911 break; 2912 } 2913 } else { 2914 // C++ [expr.pseudo]p1: 2915 // The result shall only be used as the operand for the function call 2916 // operator (), and the result of such a call has type void. The only 2917 // effect is the evaluation of the postfix-expression before the dot or 2918 // arrow. 2919 EmitScalarExpr(E->getCallee()); 2920 } 2921 2922 return RValue::get(0); 2923 } 2924 2925 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2926 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2927 E->arg_begin(), E->arg_end(), TargetDecl); 2928} 2929 2930LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2931 // Comma expressions just emit their LHS then their RHS as an l-value. 2932 if (E->getOpcode() == BO_Comma) { 2933 EmitIgnoredExpr(E->getLHS()); 2934 EnsureInsertPoint(); 2935 return EmitLValue(E->getRHS()); 2936 } 2937 2938 if (E->getOpcode() == BO_PtrMemD || 2939 E->getOpcode() == BO_PtrMemI) 2940 return EmitPointerToDataMemberBinaryExpr(E); 2941 2942 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2943 2944 // Note that in all of these cases, __block variables need the RHS 2945 // evaluated first just in case the variable gets moved by the RHS. 2946 2947 switch (getEvaluationKind(E->getType())) { 2948 case TEK_Scalar: { 2949 switch (E->getLHS()->getType().getObjCLifetime()) { 2950 case Qualifiers::OCL_Strong: 2951 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2952 2953 case Qualifiers::OCL_Autoreleasing: 2954 return EmitARCStoreAutoreleasing(E).first; 2955 2956 // No reason to do any of these differently. 2957 case Qualifiers::OCL_None: 2958 case Qualifiers::OCL_ExplicitNone: 2959 case Qualifiers::OCL_Weak: 2960 break; 2961 } 2962 2963 RValue RV = EmitAnyExpr(E->getRHS()); 2964 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2965 EmitStoreThroughLValue(RV, LV); 2966 return LV; 2967 } 2968 2969 case TEK_Complex: 2970 return EmitComplexAssignmentLValue(E); 2971 2972 case TEK_Aggregate: 2973 return EmitAggExprToLValue(E); 2974 } 2975 llvm_unreachable("bad evaluation kind"); 2976} 2977 2978LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2979 RValue RV = EmitCallExpr(E); 2980 2981 if (!RV.isScalar()) 2982 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2983 2984 assert(E->getCallReturnType()->isReferenceType() && 2985 "Can't have a scalar return unless the return type is a " 2986 "reference type!"); 2987 2988 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2989} 2990 2991LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2992 // FIXME: This shouldn't require another copy. 2993 return EmitAggExprToLValue(E); 2994} 2995 2996LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2997 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2998 && "binding l-value to type which needs a temporary"); 2999 AggValueSlot Slot = CreateAggTemp(E->getType()); 3000 EmitCXXConstructExpr(E, Slot); 3001 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3002} 3003 3004LValue 3005CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3006 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3007} 3008 3009llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3010 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3011 ConvertType(E->getType())->getPointerTo()); 3012} 3013 3014LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3015 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3016} 3017 3018LValue 3019CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3020 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3021 Slot.setExternallyDestructed(); 3022 EmitAggExpr(E->getSubExpr(), Slot); 3023 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3024 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3025} 3026 3027LValue 3028CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3029 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3030 EmitLambdaExpr(E, Slot); 3031 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3032} 3033 3034LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3035 RValue RV = EmitObjCMessageExpr(E); 3036 3037 if (!RV.isScalar()) 3038 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3039 3040 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 3041 "Can't have a scalar return unless the return type is a " 3042 "reference type!"); 3043 3044 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3045} 3046 3047LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3048 llvm::Value *V = 3049 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3050 return MakeAddrLValue(V, E->getType()); 3051} 3052 3053llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3054 const ObjCIvarDecl *Ivar) { 3055 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3056} 3057 3058LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3059 llvm::Value *BaseValue, 3060 const ObjCIvarDecl *Ivar, 3061 unsigned CVRQualifiers) { 3062 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3063 Ivar, CVRQualifiers); 3064} 3065 3066LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3067 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3068 llvm::Value *BaseValue = 0; 3069 const Expr *BaseExpr = E->getBase(); 3070 Qualifiers BaseQuals; 3071 QualType ObjectTy; 3072 if (E->isArrow()) { 3073 BaseValue = EmitScalarExpr(BaseExpr); 3074 ObjectTy = BaseExpr->getType()->getPointeeType(); 3075 BaseQuals = ObjectTy.getQualifiers(); 3076 } else { 3077 LValue BaseLV = EmitLValue(BaseExpr); 3078 // FIXME: this isn't right for bitfields. 3079 BaseValue = BaseLV.getAddress(); 3080 ObjectTy = BaseExpr->getType(); 3081 BaseQuals = ObjectTy.getQualifiers(); 3082 } 3083 3084 LValue LV = 3085 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3086 BaseQuals.getCVRQualifiers()); 3087 setObjCGCLValueClass(getContext(), E, LV); 3088 return LV; 3089} 3090 3091LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3092 // Can only get l-value for message expression returning aggregate type 3093 RValue RV = EmitAnyExprToTemp(E); 3094 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3095} 3096 3097RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3098 ReturnValueSlot ReturnValue, 3099 CallExpr::const_arg_iterator ArgBeg, 3100 CallExpr::const_arg_iterator ArgEnd, 3101 const Decl *TargetDecl) { 3102 // Get the actual function type. The callee type will always be a pointer to 3103 // function type or a block pointer type. 3104 assert(CalleeType->isFunctionPointerType() && 3105 "Call must have function pointer type!"); 3106 3107 CalleeType = getContext().getCanonicalType(CalleeType); 3108 3109 const FunctionType *FnType 3110 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3111 3112 // Force column info to differentiate multiple inlined call sites on 3113 // the same line, analoguous to EmitCallExpr. 3114 bool ForceColumnInfo = false; 3115 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3116 ForceColumnInfo = FD->isInlineSpecified(); 3117 3118 CallArgList Args; 3119 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3120 ForceColumnInfo); 3121 3122 const CGFunctionInfo &FnInfo = 3123 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3124 3125 // C99 6.5.2.2p6: 3126 // If the expression that denotes the called function has a type 3127 // that does not include a prototype, [the default argument 3128 // promotions are performed]. If the number of arguments does not 3129 // equal the number of parameters, the behavior is undefined. If 3130 // the function is defined with a type that includes a prototype, 3131 // and either the prototype ends with an ellipsis (, ...) or the 3132 // types of the arguments after promotion are not compatible with 3133 // the types of the parameters, the behavior is undefined. If the 3134 // function is defined with a type that does not include a 3135 // prototype, and the types of the arguments after promotion are 3136 // not compatible with those of the parameters after promotion, 3137 // the behavior is undefined [except in some trivial cases]. 3138 // That is, in the general case, we should assume that a call 3139 // through an unprototyped function type works like a *non-variadic* 3140 // call. The way we make this work is to cast to the exact type 3141 // of the promoted arguments. 3142 if (isa<FunctionNoProtoType>(FnType)) { 3143 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3144 CalleeTy = CalleeTy->getPointerTo(); 3145 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3146 } 3147 3148 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3149} 3150 3151LValue CodeGenFunction:: 3152EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3153 llvm::Value *BaseV; 3154 if (E->getOpcode() == BO_PtrMemI) 3155 BaseV = EmitScalarExpr(E->getLHS()); 3156 else 3157 BaseV = EmitLValue(E->getLHS()).getAddress(); 3158 3159 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3160 3161 const MemberPointerType *MPT 3162 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3163 3164 llvm::Value *AddV = 3165 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3166 3167 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3168} 3169 3170/// Given the address of a temporary variable, produce an r-value of 3171/// its type. 3172RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3173 QualType type) { 3174 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3175 switch (getEvaluationKind(type)) { 3176 case TEK_Complex: 3177 return RValue::getComplex(EmitLoadOfComplex(lvalue)); 3178 case TEK_Aggregate: 3179 return lvalue.asAggregateRValue(); 3180 case TEK_Scalar: 3181 return RValue::get(EmitLoadOfScalar(lvalue)); 3182 } 3183 llvm_unreachable("bad evaluation kind"); 3184} 3185 3186void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3187 assert(Val->getType()->isFPOrFPVectorTy()); 3188 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3189 return; 3190 3191 llvm::MDBuilder MDHelper(getLLVMContext()); 3192 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3193 3194 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3195} 3196 3197namespace { 3198 struct LValueOrRValue { 3199 LValue LV; 3200 RValue RV; 3201 }; 3202} 3203 3204static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3205 const PseudoObjectExpr *E, 3206 bool forLValue, 3207 AggValueSlot slot) { 3208 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3209 3210 // Find the result expression, if any. 3211 const Expr *resultExpr = E->getResultExpr(); 3212 LValueOrRValue result; 3213 3214 for (PseudoObjectExpr::const_semantics_iterator 3215 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3216 const Expr *semantic = *i; 3217 3218 // If this semantic expression is an opaque value, bind it 3219 // to the result of its source expression. 3220 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3221 3222 // If this is the result expression, we may need to evaluate 3223 // directly into the slot. 3224 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3225 OVMA opaqueData; 3226 if (ov == resultExpr && ov->isRValue() && !forLValue && 3227 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3228 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3229 3230 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3231 opaqueData = OVMA::bind(CGF, ov, LV); 3232 result.RV = slot.asRValue(); 3233 3234 // Otherwise, emit as normal. 3235 } else { 3236 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3237 3238 // If this is the result, also evaluate the result now. 3239 if (ov == resultExpr) { 3240 if (forLValue) 3241 result.LV = CGF.EmitLValue(ov); 3242 else 3243 result.RV = CGF.EmitAnyExpr(ov, slot); 3244 } 3245 } 3246 3247 opaques.push_back(opaqueData); 3248 3249 // Otherwise, if the expression is the result, evaluate it 3250 // and remember the result. 3251 } else if (semantic == resultExpr) { 3252 if (forLValue) 3253 result.LV = CGF.EmitLValue(semantic); 3254 else 3255 result.RV = CGF.EmitAnyExpr(semantic, slot); 3256 3257 // Otherwise, evaluate the expression in an ignored context. 3258 } else { 3259 CGF.EmitIgnoredExpr(semantic); 3260 } 3261 } 3262 3263 // Unbind all the opaques now. 3264 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3265 opaques[i].unbind(CGF); 3266 3267 return result; 3268} 3269 3270RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3271 AggValueSlot slot) { 3272 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3273} 3274 3275LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3276 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3277} 3278