CGExpr.cpp revision c849c052d6b4b70f2651c1969531861a5f230053
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGObjCRuntime.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/DeclObjC.h" 20#include "llvm/Target/TargetData.h" 21using namespace clang; 22using namespace CodeGen; 23 24//===--------------------------------------------------------------------===// 25// Miscellaneous Helper Methods 26//===--------------------------------------------------------------------===// 27 28/// CreateTempAlloca - This creates a alloca and inserts it into the entry 29/// block. 30llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 31 const llvm::Twine &Name) { 32 if (!Builder.isNamePreserving()) 33 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 34 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 35} 36 37/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 38/// expression and compare the result against zero, returning an Int1Ty value. 39llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 40 QualType BoolTy = getContext().BoolTy; 41 if (!E->getType()->isAnyComplexType()) 42 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 43 44 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 45} 46 47/// EmitAnyExpr - Emit code to compute the specified expression which can have 48/// any type. The result is returned as an RValue struct. If this is an 49/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the 50/// result should be returned. 51RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, 52 bool IsAggLocVolatile, bool IgnoreResult, 53 bool IsInitializer) { 54 if (!hasAggregateLLVMType(E->getType())) 55 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 56 else if (E->getType()->isAnyComplexType()) 57 return RValue::getComplex(EmitComplexExpr(E, false, false, 58 IgnoreResult, IgnoreResult)); 59 60 EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer); 61 return RValue::getAggregate(AggLoc, IsAggLocVolatile); 62} 63 64/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 65/// always be accessible even if no aggregate location is provided. 66RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, 67 bool IsAggLocVolatile, 68 bool IsInitializer) { 69 llvm::Value *AggLoc = 0; 70 71 if (hasAggregateLLVMType(E->getType()) && 72 !E->getType()->isAnyComplexType()) 73 AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp"); 74 return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false, 75 IsInitializer); 76} 77 78RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E, 79 QualType DestType, 80 bool IsInitializer) { 81 bool ShouldDestroyTemporaries = false; 82 unsigned OldNumLiveTemporaries = 0; 83 84 if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) { 85 ShouldDestroyTemporaries = TE->shouldDestroyTemporaries(); 86 87 // Keep track of the current cleanup stack depth. 88 if (ShouldDestroyTemporaries) 89 OldNumLiveTemporaries = LiveTemporaries.size(); 90 91 E = TE->getSubExpr(); 92 } 93 94 RValue Val; 95 if (E->isLvalue(getContext()) == Expr::LV_Valid) { 96 // Emit the expr as an lvalue. 97 LValue LV = EmitLValue(E); 98 if (LV.isSimple()) 99 return RValue::get(LV.getAddress()); 100 Val = EmitLoadOfLValue(LV, E->getType()); 101 102 if (ShouldDestroyTemporaries) { 103 // Pop temporaries. 104 while (LiveTemporaries.size() > OldNumLiveTemporaries) 105 PopCXXTemporary(); 106 } 107 } else { 108 const CXXRecordDecl *BaseClassDecl = 0; 109 const CXXRecordDecl *DerivedClassDecl = 0; 110 111 if (const CastExpr *CE = 112 dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) { 113 if (CE->getCastKind() == CastExpr::CK_DerivedToBase) { 114 E = CE->getSubExpr(); 115 116 BaseClassDecl = 117 cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl()); 118 DerivedClassDecl = 119 cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 120 } 121 } 122 123 Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false, 124 IsInitializer); 125 126 if (ShouldDestroyTemporaries) { 127 // Pop temporaries. 128 while (LiveTemporaries.size() > OldNumLiveTemporaries) 129 PopCXXTemporary(); 130 } 131 132 if (IsInitializer) { 133 // We might have to destroy the temporary variable. 134 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 135 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 136 if (!ClassDecl->hasTrivialDestructor()) { 137 const CXXDestructorDecl *Dtor = 138 ClassDecl->getDestructor(getContext()); 139 140 CleanupScope scope(*this); 141 EmitCXXDestructorCall(Dtor, Dtor_Complete, Val.getAggregateAddr()); 142 } 143 } 144 } 145 } 146 147 // Check if need to perform the derived-to-base cast. 148 if (BaseClassDecl) { 149 llvm::Value *Derived = Val.getAggregateAddr(); 150 llvm::Value *Base = 151 GetAddressCXXOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl, 152 /*NullCheckValue=*/false); 153 return RValue::get(Base); 154 } 155 } 156 157 if (Val.isAggregate()) { 158 Val = RValue::get(Val.getAggregateAddr()); 159 } else { 160 // Create a temporary variable that we can bind the reference to. 161 llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), 162 "reftmp"); 163 if (Val.isScalar()) 164 EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType()); 165 else 166 StoreComplexToAddr(Val.getComplexVal(), Temp, false); 167 Val = RValue::get(Temp); 168 } 169 170 return Val; 171} 172 173 174/// getAccessedFieldNo - Given an encoded value and a result number, return the 175/// input field number being accessed. 176unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 177 const llvm::Constant *Elts) { 178 if (isa<llvm::ConstantAggregateZero>(Elts)) 179 return 0; 180 181 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 182} 183 184 185//===----------------------------------------------------------------------===// 186// LValue Expression Emission 187//===----------------------------------------------------------------------===// 188 189RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 190 if (Ty->isVoidType()) 191 return RValue::get(0); 192 193 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 194 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 195 llvm::Value *U = llvm::UndefValue::get(EltTy); 196 return RValue::getComplex(std::make_pair(U, U)); 197 } 198 199 if (hasAggregateLLVMType(Ty)) { 200 const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty)); 201 return RValue::getAggregate(llvm::UndefValue::get(LTy)); 202 } 203 204 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 205} 206 207RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 208 const char *Name) { 209 ErrorUnsupported(E, Name); 210 return GetUndefRValue(E->getType()); 211} 212 213LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 214 const char *Name) { 215 ErrorUnsupported(E, Name); 216 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 217 return LValue::MakeAddr(llvm::UndefValue::get(Ty), 218 MakeQualifiers(E->getType())); 219} 220 221/// EmitLValue - Emit code to compute a designator that specifies the location 222/// of the expression. 223/// 224/// This can return one of two things: a simple address or a bitfield reference. 225/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 226/// an LLVM pointer type. 227/// 228/// If this returns a bitfield reference, nothing about the pointee type of the 229/// LLVM value is known: For example, it may not be a pointer to an integer. 230/// 231/// If this returns a normal address, and if the lvalue's C type is fixed size, 232/// this method guarantees that the returned pointer type will point to an LLVM 233/// type of the same size of the lvalue's type. If the lvalue has a variable 234/// length type, this is not possible. 235/// 236LValue CodeGenFunction::EmitLValue(const Expr *E) { 237 switch (E->getStmtClass()) { 238 default: return EmitUnsupportedLValue(E, "l-value expression"); 239 240 case Expr::BinaryOperatorClass: 241 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 242 case Expr::CallExprClass: 243 case Expr::CXXMemberCallExprClass: 244 case Expr::CXXOperatorCallExprClass: 245 return EmitCallExprLValue(cast<CallExpr>(E)); 246 case Expr::VAArgExprClass: 247 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 248 case Expr::DeclRefExprClass: 249 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 250 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 251 case Expr::PredefinedExprClass: 252 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 253 case Expr::StringLiteralClass: 254 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 255 case Expr::ObjCEncodeExprClass: 256 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 257 258 case Expr::BlockDeclRefExprClass: 259 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 260 261 case Expr::CXXConditionDeclExprClass: 262 return EmitCXXConditionDeclLValue(cast<CXXConditionDeclExpr>(E)); 263 case Expr::CXXTemporaryObjectExprClass: 264 case Expr::CXXConstructExprClass: 265 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 266 case Expr::CXXBindTemporaryExprClass: 267 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 268 case Expr::CXXExprWithTemporariesClass: 269 return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E)); 270 case Expr::CXXZeroInitValueExprClass: 271 return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E)); 272 case Expr::CXXDefaultArgExprClass: 273 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 274 case Expr::CXXTypeidExprClass: 275 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 276 277 case Expr::ObjCMessageExprClass: 278 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 279 case Expr::ObjCIvarRefExprClass: 280 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 281 case Expr::ObjCPropertyRefExprClass: 282 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 283 case Expr::ObjCImplicitSetterGetterRefExprClass: 284 return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E)); 285 case Expr::ObjCSuperExprClass: 286 return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E)); 287 288 case Expr::StmtExprClass: 289 return EmitStmtExprLValue(cast<StmtExpr>(E)); 290 case Expr::UnaryOperatorClass: 291 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 292 case Expr::ArraySubscriptExprClass: 293 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 294 case Expr::ExtVectorElementExprClass: 295 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 296 case Expr::MemberExprClass: 297 return EmitMemberExpr(cast<MemberExpr>(E)); 298 case Expr::CompoundLiteralExprClass: 299 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 300 case Expr::ConditionalOperatorClass: 301 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 302 case Expr::ChooseExprClass: 303 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 304 case Expr::ImplicitCastExprClass: 305 case Expr::CStyleCastExprClass: 306 case Expr::CXXFunctionalCastExprClass: 307 case Expr::CXXStaticCastExprClass: 308 case Expr::CXXDynamicCastExprClass: 309 case Expr::CXXReinterpretCastExprClass: 310 case Expr::CXXConstCastExprClass: 311 return EmitCastLValue(cast<CastExpr>(E)); 312 } 313} 314 315llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 316 QualType Ty) { 317 llvm::Value *V = Builder.CreateLoad(Addr, Volatile, "tmp"); 318 319 // Bool can have different representation in memory than in registers. 320 if (Ty->isBooleanType()) 321 if (V->getType() != llvm::Type::getInt1Ty(VMContext)) 322 V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool"); 323 324 return V; 325} 326 327void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 328 bool Volatile, QualType Ty) { 329 330 if (Ty->isBooleanType()) { 331 // Bool can have different representation in memory than in registers. 332 const llvm::Type *SrcTy = Value->getType(); 333 const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 334 if (DstPtr->getElementType() != SrcTy) { 335 const llvm::Type *MemTy = 336 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 337 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 338 } 339 } 340 Builder.CreateStore(Value, Addr, Volatile); 341} 342 343/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 344/// method emits the address of the lvalue, then loads the result as an rvalue, 345/// returning the rvalue. 346RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { 347 if (LV.isObjCWeak()) { 348 // load of a __weak object. 349 llvm::Value *AddrWeakObj = LV.getAddress(); 350 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 351 AddrWeakObj)); 352 } 353 354 if (LV.isSimple()) { 355 llvm::Value *Ptr = LV.getAddress(); 356 const llvm::Type *EltTy = 357 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 358 359 // Simple scalar l-value. 360 if (EltTy->isSingleValueType()) 361 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), 362 ExprType)); 363 364 assert(ExprType->isFunctionType() && "Unknown scalar value"); 365 return RValue::get(Ptr); 366 } 367 368 if (LV.isVectorElt()) { 369 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 370 LV.isVolatileQualified(), "tmp"); 371 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 372 "vecext")); 373 } 374 375 // If this is a reference to a subset of the elements of a vector, either 376 // shuffle the input or extract/insert them as appropriate. 377 if (LV.isExtVectorElt()) 378 return EmitLoadOfExtVectorElementLValue(LV, ExprType); 379 380 if (LV.isBitfield()) 381 return EmitLoadOfBitfieldLValue(LV, ExprType); 382 383 if (LV.isPropertyRef()) 384 return EmitLoadOfPropertyRefLValue(LV, ExprType); 385 386 assert(LV.isKVCRef() && "Unknown LValue type!"); 387 return EmitLoadOfKVCRefLValue(LV, ExprType); 388} 389 390RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 391 QualType ExprType) { 392 unsigned StartBit = LV.getBitfieldStartBit(); 393 unsigned BitfieldSize = LV.getBitfieldSize(); 394 llvm::Value *Ptr = LV.getBitfieldAddr(); 395 396 const llvm::Type *EltTy = 397 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 398 unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy); 399 400 // In some cases the bitfield may straddle two memory locations. Currently we 401 // load the entire bitfield, then do the magic to sign-extend it if 402 // necessary. This results in somewhat more code than necessary for the common 403 // case (one load), since two shifts accomplish both the masking and sign 404 // extension. 405 unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit); 406 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp"); 407 408 // Shift to proper location. 409 if (StartBit) 410 Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit), 411 "bf.lo"); 412 413 // Mask off unused bits. 414 llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext, 415 llvm::APInt::getLowBitsSet(EltTySize, LowBits)); 416 Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared"); 417 418 // Fetch the high bits if necessary. 419 if (LowBits < BitfieldSize) { 420 unsigned HighBits = BitfieldSize - LowBits; 421 llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get( 422 llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi"); 423 llvm::Value *HighVal = Builder.CreateLoad(HighPtr, 424 LV.isVolatileQualified(), 425 "tmp"); 426 427 // Mask off unused bits. 428 llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext, 429 llvm::APInt::getLowBitsSet(EltTySize, HighBits)); 430 HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared"); 431 432 // Shift to proper location and or in to bitfield value. 433 HighVal = Builder.CreateShl(HighVal, 434 llvm::ConstantInt::get(EltTy, LowBits)); 435 Val = Builder.CreateOr(Val, HighVal, "bf.val"); 436 } 437 438 // Sign extend if necessary. 439 if (LV.isBitfieldSigned()) { 440 llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy, 441 EltTySize - BitfieldSize); 442 Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits), 443 ExtraBits, "bf.val.sext"); 444 } 445 446 // The bitfield type and the normal type differ when the storage sizes differ 447 // (currently just _Bool). 448 Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp"); 449 450 return RValue::get(Val); 451} 452 453RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, 454 QualType ExprType) { 455 return EmitObjCPropertyGet(LV.getPropertyRefExpr()); 456} 457 458RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV, 459 QualType ExprType) { 460 return EmitObjCPropertyGet(LV.getKVCRefExpr()); 461} 462 463// If this is a reference to a subset of the elements of a vector, create an 464// appropriate shufflevector. 465RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, 466 QualType ExprType) { 467 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 468 LV.isVolatileQualified(), "tmp"); 469 470 const llvm::Constant *Elts = LV.getExtVectorElts(); 471 472 // If the result of the expression is a non-vector type, we must be extracting 473 // a single element. Just codegen as an extractelement. 474 const VectorType *ExprVT = ExprType->getAs<VectorType>(); 475 if (!ExprVT) { 476 unsigned InIdx = getAccessedFieldNo(0, Elts); 477 llvm::Value *Elt = llvm::ConstantInt::get( 478 llvm::Type::getInt32Ty(VMContext), InIdx); 479 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 480 } 481 482 // Always use shuffle vector to try to retain the original program structure 483 unsigned NumResultElts = ExprVT->getNumElements(); 484 485 llvm::SmallVector<llvm::Constant*, 4> Mask; 486 for (unsigned i = 0; i != NumResultElts; ++i) { 487 unsigned InIdx = getAccessedFieldNo(i, Elts); 488 Mask.push_back(llvm::ConstantInt::get( 489 llvm::Type::getInt32Ty(VMContext), InIdx)); 490 } 491 492 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 493 Vec = Builder.CreateShuffleVector(Vec, 494 llvm::UndefValue::get(Vec->getType()), 495 MaskV, "tmp"); 496 return RValue::get(Vec); 497} 498 499 500 501/// EmitStoreThroughLValue - Store the specified rvalue into the specified 502/// lvalue, where both are guaranteed to the have the same type, and that type 503/// is 'Ty'. 504void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 505 QualType Ty) { 506 if (!Dst.isSimple()) { 507 if (Dst.isVectorElt()) { 508 // Read/modify/write the vector, inserting the new element. 509 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 510 Dst.isVolatileQualified(), "tmp"); 511 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 512 Dst.getVectorIdx(), "vecins"); 513 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 514 return; 515 } 516 517 // If this is an update of extended vector elements, insert them as 518 // appropriate. 519 if (Dst.isExtVectorElt()) 520 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); 521 522 if (Dst.isBitfield()) 523 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); 524 525 if (Dst.isPropertyRef()) 526 return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty); 527 528 assert(Dst.isKVCRef() && "Unknown LValue type"); 529 return EmitStoreThroughKVCRefLValue(Src, Dst, Ty); 530 } 531 532 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 533 // load of a __weak object. 534 llvm::Value *LvalueDst = Dst.getAddress(); 535 llvm::Value *src = Src.getScalarVal(); 536 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 537 return; 538 } 539 540 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 541 // load of a __strong object. 542 llvm::Value *LvalueDst = Dst.getAddress(); 543 llvm::Value *src = Src.getScalarVal(); 544 if (Dst.isObjCIvar()) { 545 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 546 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 547 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 548 llvm::Value *dst = RHS; 549 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 550 llvm::Value *LHS = 551 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 552 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 553 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 554 BytesBetween); 555 } else if (Dst.isGlobalObjCRef()) 556 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst); 557 else 558 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 559 return; 560 } 561 562 assert(Src.isScalar() && "Can't emit an agg store with this method"); 563 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(), 564 Dst.isVolatileQualified(), Ty); 565} 566 567void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 568 QualType Ty, 569 llvm::Value **Result) { 570 unsigned StartBit = Dst.getBitfieldStartBit(); 571 unsigned BitfieldSize = Dst.getBitfieldSize(); 572 llvm::Value *Ptr = Dst.getBitfieldAddr(); 573 574 const llvm::Type *EltTy = 575 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 576 unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy); 577 578 // Get the new value, cast to the appropriate type and masked to exactly the 579 // size of the bit-field. 580 llvm::Value *SrcVal = Src.getScalarVal(); 581 llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp"); 582 llvm::Constant *Mask = llvm::ConstantInt::get(VMContext, 583 llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize)); 584 NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value"); 585 586 // Return the new value of the bit-field, if requested. 587 if (Result) { 588 // Cast back to the proper type for result. 589 const llvm::Type *SrcTy = SrcVal->getType(); 590 llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false, 591 "bf.reload.val"); 592 593 // Sign extend if necessary. 594 if (Dst.isBitfieldSigned()) { 595 unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy); 596 llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy, 597 SrcTySize - BitfieldSize); 598 SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits), 599 ExtraBits, "bf.reload.sext"); 600 } 601 602 *Result = SrcTrunc; 603 } 604 605 // In some cases the bitfield may straddle two memory locations. Emit the low 606 // part first and check to see if the high needs to be done. 607 unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit); 608 llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 609 "bf.prev.low"); 610 611 // Compute the mask for zero-ing the low part of this bitfield. 612 llvm::Constant *InvMask = 613 llvm::ConstantInt::get(VMContext, 614 ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits)); 615 616 // Compute the new low part as 617 // LowVal = (LowVal & InvMask) | (NewVal << StartBit), 618 // with the shift of NewVal implicitly stripping the high bits. 619 llvm::Value *NewLowVal = 620 Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit), 621 "bf.value.lo"); 622 LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared"); 623 LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo"); 624 625 // Write back. 626 Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified()); 627 628 // If the low part doesn't cover the bitfield emit a high part. 629 if (LowBits < BitfieldSize) { 630 unsigned HighBits = BitfieldSize - LowBits; 631 llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get( 632 llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi"); 633 llvm::Value *HighVal = Builder.CreateLoad(HighPtr, 634 Dst.isVolatileQualified(), 635 "bf.prev.hi"); 636 637 // Compute the mask for zero-ing the high part of this bitfield. 638 llvm::Constant *InvMask = 639 llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize, 640 HighBits)); 641 642 // Compute the new high part as 643 // HighVal = (HighVal & InvMask) | (NewVal lshr LowBits), 644 // where the high bits of NewVal have already been cleared and the 645 // shift stripping the low bits. 646 llvm::Value *NewHighVal = 647 Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits), 648 "bf.value.high"); 649 HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared"); 650 HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi"); 651 652 // Write back. 653 Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified()); 654 } 655} 656 657void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, 658 LValue Dst, 659 QualType Ty) { 660 EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src); 661} 662 663void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src, 664 LValue Dst, 665 QualType Ty) { 666 EmitObjCPropertySet(Dst.getKVCRefExpr(), Src); 667} 668 669void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 670 LValue Dst, 671 QualType Ty) { 672 // This access turns into a read/modify/write of the vector. Load the input 673 // value now. 674 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 675 Dst.isVolatileQualified(), "tmp"); 676 const llvm::Constant *Elts = Dst.getExtVectorElts(); 677 678 llvm::Value *SrcVal = Src.getScalarVal(); 679 680 if (const VectorType *VTy = Ty->getAs<VectorType>()) { 681 unsigned NumSrcElts = VTy->getNumElements(); 682 unsigned NumDstElts = 683 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 684 if (NumDstElts == NumSrcElts) { 685 // Use shuffle vector is the src and destination are the same number of 686 // elements and restore the vector mask since it is on the side it will be 687 // stored. 688 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 689 for (unsigned i = 0; i != NumSrcElts; ++i) { 690 unsigned InIdx = getAccessedFieldNo(i, Elts); 691 Mask[InIdx] = llvm::ConstantInt::get( 692 llvm::Type::getInt32Ty(VMContext), i); 693 } 694 695 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 696 Vec = Builder.CreateShuffleVector(SrcVal, 697 llvm::UndefValue::get(Vec->getType()), 698 MaskV, "tmp"); 699 } else if (NumDstElts > NumSrcElts) { 700 // Extended the source vector to the same length and then shuffle it 701 // into the destination. 702 // FIXME: since we're shuffling with undef, can we just use the indices 703 // into that? This could be simpler. 704 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 705 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 706 unsigned i; 707 for (i = 0; i != NumSrcElts; ++i) 708 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 709 for (; i != NumDstElts; ++i) 710 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 711 llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0], 712 ExtMask.size()); 713 llvm::Value *ExtSrcVal = 714 Builder.CreateShuffleVector(SrcVal, 715 llvm::UndefValue::get(SrcVal->getType()), 716 ExtMaskV, "tmp"); 717 // build identity 718 llvm::SmallVector<llvm::Constant*, 4> Mask; 719 for (unsigned i = 0; i != NumDstElts; ++i) 720 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 721 722 // modify when what gets shuffled in 723 for (unsigned i = 0; i != NumSrcElts; ++i) { 724 unsigned Idx = getAccessedFieldNo(i, Elts); 725 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 726 } 727 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 728 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 729 } else { 730 // We should never shorten the vector 731 assert(0 && "unexpected shorten vector length"); 732 } 733 } else { 734 // If the Src is a scalar (not a vector) it must be updating one element. 735 unsigned InIdx = getAccessedFieldNo(0, Elts); 736 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 737 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 738 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 739 } 740 741 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 742} 743 744// setObjCGCLValueClass - sets class of he lvalue for the purpose of 745// generating write-barries API. It is currently a global, ivar, 746// or neither. 747static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 748 LValue &LV) { 749 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 750 return; 751 752 if (isa<ObjCIvarRefExpr>(E)) { 753 LV.SetObjCIvar(LV, true); 754 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 755 LV.setBaseIvarExp(Exp->getBase()); 756 LV.SetObjCArray(LV, E->getType()->isArrayType()); 757 return; 758 } 759 760 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 761 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 762 if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) || 763 VD->isFileVarDecl()) 764 LV.SetGlobalObjCRef(LV, true); 765 } 766 LV.SetObjCArray(LV, E->getType()->isArrayType()); 767 return; 768 } 769 770 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 771 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 772 return; 773 } 774 775 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 776 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 777 if (LV.isObjCIvar()) { 778 // If cast is to a structure pointer, follow gcc's behavior and make it 779 // a non-ivar write-barrier. 780 QualType ExpTy = E->getType(); 781 if (ExpTy->isPointerType()) 782 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 783 if (ExpTy->isRecordType()) 784 LV.SetObjCIvar(LV, false); 785 } 786 return; 787 } 788 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 789 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 790 return; 791 } 792 793 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 794 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 795 return; 796 } 797 798 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 799 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 800 if (LV.isObjCIvar() && !LV.isObjCArray()) 801 // Using array syntax to assigning to what an ivar points to is not 802 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 803 LV.SetObjCIvar(LV, false); 804 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 805 // Using array syntax to assigning to what global points to is not 806 // same as assigning to the global itself. {id *G;} G[i] = 0; 807 LV.SetGlobalObjCRef(LV, false); 808 return; 809 } 810 811 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 812 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 813 // We don't know if member is an 'ivar', but this flag is looked at 814 // only in the context of LV.isObjCIvar(). 815 LV.SetObjCArray(LV, E->getType()->isArrayType()); 816 return; 817 } 818} 819 820static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 821 const Expr *E, const VarDecl *VD) { 822 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 823 "Var decl must have external storage or be a file var decl!"); 824 825 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 826 if (VD->getType()->isReferenceType()) 827 V = CGF.Builder.CreateLoad(V, "tmp"); 828 LValue LV = LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType())); 829 setObjCGCLValueClass(CGF.getContext(), E, LV); 830 return LV; 831} 832 833LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 834 const NamedDecl *ND = E->getDecl(); 835 836 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 837 838 // Check if this is a global variable. 839 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 840 return EmitGlobalVarDeclLValue(*this, E, VD); 841 842 bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>(); 843 844 llvm::Value *V = LocalDeclMap[VD]; 845 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 846 847 Qualifiers Quals = MakeQualifiers(E->getType()); 848 // local variables do not get their gc attribute set. 849 // local static? 850 if (NonGCable) Quals.removeObjCGCAttr(); 851 852 if (VD->hasAttr<BlocksAttr>()) { 853 V = Builder.CreateStructGEP(V, 1, "forwarding"); 854 V = Builder.CreateLoad(V, false); 855 V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD), 856 VD->getNameAsString()); 857 } 858 if (VD->getType()->isReferenceType()) 859 V = Builder.CreateLoad(V, "tmp"); 860 LValue LV = LValue::MakeAddr(V, Quals); 861 LValue::SetObjCNonGC(LV, NonGCable); 862 setObjCGCLValueClass(getContext(), E, LV); 863 return LV; 864 } 865 866 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 867 llvm::Value* V = CGM.GetAddrOfFunction(FD); 868 if (!FD->hasPrototype()) { 869 if (const FunctionProtoType *Proto = 870 FD->getType()->getAs<FunctionProtoType>()) { 871 // Ugly case: for a K&R-style definition, the type of the definition 872 // isn't the same as the type of a use. Correct for this with a 873 // bitcast. 874 QualType NoProtoType = 875 getContext().getFunctionNoProtoType(Proto->getResultType()); 876 NoProtoType = getContext().getPointerType(NoProtoType); 877 V = Builder.CreateBitCast(V, ConvertType(NoProtoType), "tmp"); 878 } 879 } 880 return LValue::MakeAddr(V, MakeQualifiers(E->getType())); 881 } 882 883 if (E->getQualifier()) { 884 // FIXME: the qualifier check does not seem sufficient here 885 return EmitPointerToDataMemberLValue(cast<FieldDecl>(ND)); 886 } 887 888 assert(false && "Unhandled DeclRefExpr"); 889 890 // an invalid LValue, but the assert will 891 // ensure that this point is never reached. 892 return LValue(); 893} 894 895LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 896 return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType())); 897} 898 899LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 900 // __extension__ doesn't affect lvalue-ness. 901 if (E->getOpcode() == UnaryOperator::Extension) 902 return EmitLValue(E->getSubExpr()); 903 904 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 905 switch (E->getOpcode()) { 906 default: assert(0 && "Unknown unary operator lvalue!"); 907 case UnaryOperator::Deref: { 908 QualType T = E->getSubExpr()->getType()->getPointeeType(); 909 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 910 911 Qualifiers Quals = MakeQualifiers(T); 912 Quals.setAddressSpace(ExprTy.getAddressSpace()); 913 914 LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals); 915 // We should not generate __weak write barrier on indirect reference 916 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 917 // But, we continue to generate __strong write barrier on indirect write 918 // into a pointer to object. 919 if (getContext().getLangOptions().ObjC1 && 920 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 921 LV.isObjCWeak()) 922 LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext())); 923 return LV; 924 } 925 case UnaryOperator::Real: 926 case UnaryOperator::Imag: { 927 LValue LV = EmitLValue(E->getSubExpr()); 928 unsigned Idx = E->getOpcode() == UnaryOperator::Imag; 929 return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(), 930 Idx, "idx"), 931 MakeQualifiers(ExprTy)); 932 } 933 case UnaryOperator::PreInc: 934 case UnaryOperator::PreDec: 935 return EmitUnsupportedLValue(E, "pre-inc/dec expression"); 936 } 937} 938 939LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 940 return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E), 941 Qualifiers()); 942} 943 944LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 945 return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E), 946 Qualifiers()); 947} 948 949 950LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) { 951 std::string GlobalVarName; 952 953 switch (Type) { 954 default: assert(0 && "Invalid type"); 955 case PredefinedExpr::Func: 956 GlobalVarName = "__func__."; 957 break; 958 case PredefinedExpr::Function: 959 GlobalVarName = "__FUNCTION__."; 960 break; 961 case PredefinedExpr::PrettyFunction: 962 GlobalVarName = "__PRETTY_FUNCTION__."; 963 break; 964 } 965 966 llvm::StringRef FnName = CurFn->getName(); 967 if (FnName.startswith("\01")) 968 FnName = FnName.substr(1); 969 GlobalVarName += FnName; 970 971 std::string FunctionName = 972 PredefinedExpr::ComputeName(getContext(), (PredefinedExpr::IdentType)Type, 973 CurCodeDecl); 974 975 llvm::Constant *C = 976 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 977 return LValue::MakeAddr(C, Qualifiers()); 978} 979 980LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 981 switch (E->getIdentType()) { 982 default: 983 return EmitUnsupportedLValue(E, "predefined expression"); 984 case PredefinedExpr::Func: 985 case PredefinedExpr::Function: 986 case PredefinedExpr::PrettyFunction: 987 return EmitPredefinedFunctionName(E->getIdentType()); 988 } 989} 990 991LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 992 // The index must always be an integer, which is not an aggregate. Emit it. 993 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 994 QualType IdxTy = E->getIdx()->getType(); 995 bool IdxSigned = IdxTy->isSignedIntegerType(); 996 997 // If the base is a vector type, then we are forming a vector element lvalue 998 // with this subscript. 999 if (E->getBase()->getType()->isVectorType()) { 1000 // Emit the vector as an lvalue to get its address. 1001 LValue LHS = EmitLValue(E->getBase()); 1002 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1003 Idx = Builder.CreateIntCast(Idx, 1004 llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx"); 1005 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1006 E->getBase()->getType().getCVRQualifiers()); 1007 } 1008 1009 // The base must be a pointer, which is not an aggregate. Emit it. 1010 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1011 1012 // Extend or truncate the index type to 32 or 64-bits. 1013 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); 1014 if (IdxBitwidth != LLVMPointerWidth) 1015 Idx = Builder.CreateIntCast(Idx, 1016 llvm::IntegerType::get(VMContext, LLVMPointerWidth), 1017 IdxSigned, "idxprom"); 1018 1019 // We know that the pointer points to a type of the correct size, unless the 1020 // size is a VLA or Objective-C interface. 1021 llvm::Value *Address = 0; 1022 if (const VariableArrayType *VAT = 1023 getContext().getAsVariableArrayType(E->getType())) { 1024 llvm::Value *VLASize = GetVLASize(VAT); 1025 1026 Idx = Builder.CreateMul(Idx, VLASize); 1027 1028 QualType BaseType = getContext().getBaseElementType(VAT); 1029 1030 uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8; 1031 Idx = Builder.CreateUDiv(Idx, 1032 llvm::ConstantInt::get(Idx->getType(), 1033 BaseTypeSize)); 1034 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1035 } else if (const ObjCInterfaceType *OIT = 1036 dyn_cast<ObjCInterfaceType>(E->getType())) { 1037 llvm::Value *InterfaceSize = 1038 llvm::ConstantInt::get(Idx->getType(), 1039 getContext().getTypeSize(OIT) / 8); 1040 1041 Idx = Builder.CreateMul(Idx, InterfaceSize); 1042 1043 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 1044 Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy), 1045 Idx, "arrayidx"); 1046 Address = Builder.CreateBitCast(Address, Base->getType()); 1047 } else { 1048 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1049 } 1050 1051 QualType T = E->getBase()->getType()->getPointeeType(); 1052 assert(!T.isNull() && 1053 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1054 1055 Qualifiers Quals = MakeQualifiers(T); 1056 Quals.setAddressSpace(E->getBase()->getType().getAddressSpace()); 1057 1058 LValue LV = LValue::MakeAddr(Address, Quals); 1059 if (getContext().getLangOptions().ObjC1 && 1060 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1061 LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext())); 1062 setObjCGCLValueClass(getContext(), E, LV); 1063 } 1064 return LV; 1065} 1066 1067static 1068llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1069 llvm::SmallVector<unsigned, 4> &Elts) { 1070 llvm::SmallVector<llvm::Constant *, 4> CElts; 1071 1072 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1073 CElts.push_back(llvm::ConstantInt::get( 1074 llvm::Type::getInt32Ty(VMContext), Elts[i])); 1075 1076 return llvm::ConstantVector::get(&CElts[0], CElts.size()); 1077} 1078 1079LValue CodeGenFunction:: 1080EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1081 // Emit the base vector as an l-value. 1082 LValue Base; 1083 1084 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1085 if (!E->isArrow()) { 1086 assert(E->getBase()->getType()->isVectorType()); 1087 Base = EmitLValue(E->getBase()); 1088 } else { 1089 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1090 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1091 Qualifiers Quals = MakeQualifiers(PT->getPointeeType()); 1092 Quals.removeObjCGCAttr(); 1093 Base = LValue::MakeAddr(Ptr, Quals); 1094 } 1095 1096 // Encode the element access list into a vector of unsigned indices. 1097 llvm::SmallVector<unsigned, 4> Indices; 1098 E->getEncodedElementAccess(Indices); 1099 1100 if (Base.isSimple()) { 1101 llvm::Constant *CV = GenerateConstantVector(VMContext, Indices); 1102 return LValue::MakeExtVectorElt(Base.getAddress(), CV, 1103 Base.getVRQualifiers()); 1104 } 1105 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1106 1107 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1108 llvm::SmallVector<llvm::Constant *, 4> CElts; 1109 1110 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1111 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1112 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1113 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1114 else 1115 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1116 } 1117 llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size()); 1118 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, 1119 Base.getVRQualifiers()); 1120} 1121 1122LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1123 bool isUnion = false; 1124 bool isNonGC = false; 1125 Expr *BaseExpr = E->getBase(); 1126 llvm::Value *BaseValue = NULL; 1127 Qualifiers BaseQuals; 1128 1129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1130 if (E->isArrow()) { 1131 BaseValue = EmitScalarExpr(BaseExpr); 1132 const PointerType *PTy = 1133 BaseExpr->getType()->getAs<PointerType>(); 1134 if (PTy->getPointeeType()->isUnionType()) 1135 isUnion = true; 1136 BaseQuals = PTy->getPointeeType().getQualifiers(); 1137 } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) || 1138 isa<ObjCImplicitSetterGetterRefExpr>( 1139 BaseExpr->IgnoreParens())) { 1140 RValue RV = EmitObjCPropertyGet(BaseExpr); 1141 BaseValue = RV.getAggregateAddr(); 1142 if (BaseExpr->getType()->isUnionType()) 1143 isUnion = true; 1144 BaseQuals = BaseExpr->getType().getQualifiers(); 1145 } else { 1146 LValue BaseLV = EmitLValue(BaseExpr); 1147 if (BaseLV.isNonGC()) 1148 isNonGC = true; 1149 // FIXME: this isn't right for bitfields. 1150 BaseValue = BaseLV.getAddress(); 1151 QualType BaseTy = BaseExpr->getType(); 1152 if (BaseTy->isUnionType()) 1153 isUnion = true; 1154 BaseQuals = BaseTy.getQualifiers(); 1155 } 1156 1157 NamedDecl *ND = E->getMemberDecl(); 1158 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1159 LValue LV = EmitLValueForField(BaseValue, Field, isUnion, 1160 BaseQuals.getCVRQualifiers()); 1161 LValue::SetObjCNonGC(LV, isNonGC); 1162 setObjCGCLValueClass(getContext(), E, LV); 1163 return LV; 1164 } 1165 1166 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1167 return EmitGlobalVarDeclLValue(*this, E, VD); 1168 1169 assert(false && "Unhandled member declaration!"); 1170 return LValue(); 1171} 1172 1173LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue, 1174 FieldDecl* Field, 1175 unsigned CVRQualifiers) { 1176 CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field); 1177 1178 // FIXME: CodeGenTypes should expose a method to get the appropriate type for 1179 // FieldTy (the appropriate type is ABI-dependent). 1180 const llvm::Type *FieldTy = 1181 CGM.getTypes().ConvertTypeForMem(Field->getType()); 1182 const llvm::PointerType *BaseTy = 1183 cast<llvm::PointerType>(BaseValue->getType()); 1184 unsigned AS = BaseTy->getAddressSpace(); 1185 BaseValue = Builder.CreateBitCast(BaseValue, 1186 llvm::PointerType::get(FieldTy, AS), 1187 "tmp"); 1188 1189 llvm::Value *Idx = 1190 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo); 1191 llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp"); 1192 1193 return LValue::MakeBitfield(V, Info.Start, Info.Size, 1194 Field->getType()->isSignedIntegerType(), 1195 Field->getType().getCVRQualifiers()|CVRQualifiers); 1196} 1197 1198LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue, 1199 FieldDecl* Field, 1200 bool isUnion, 1201 unsigned CVRQualifiers) { 1202 if (Field->isBitField()) 1203 return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers); 1204 1205 unsigned idx = CGM.getTypes().getLLVMFieldNo(Field); 1206 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1207 1208 // Match union field type. 1209 if (isUnion) { 1210 const llvm::Type *FieldTy = 1211 CGM.getTypes().ConvertTypeForMem(Field->getType()); 1212 const llvm::PointerType * BaseTy = 1213 cast<llvm::PointerType>(BaseValue->getType()); 1214 unsigned AS = BaseTy->getAddressSpace(); 1215 V = Builder.CreateBitCast(V, 1216 llvm::PointerType::get(FieldTy, AS), 1217 "tmp"); 1218 } 1219 if (Field->getType()->isReferenceType()) 1220 V = Builder.CreateLoad(V, "tmp"); 1221 1222 Qualifiers Quals = MakeQualifiers(Field->getType()); 1223 Quals.addCVRQualifiers(CVRQualifiers); 1224 // __weak attribute on a field is ignored. 1225 if (Quals.getObjCGCAttr() == Qualifiers::Weak) 1226 Quals.removeObjCGCAttr(); 1227 1228 return LValue::MakeAddr(V, Quals); 1229} 1230 1231LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){ 1232 const llvm::Type *LTy = ConvertType(E->getType()); 1233 llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral"); 1234 1235 const Expr* InitExpr = E->getInitializer(); 1236 LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType())); 1237 1238 if (E->getType()->isComplexType()) 1239 EmitComplexExprIntoAddr(InitExpr, DeclPtr, false); 1240 else if (hasAggregateLLVMType(E->getType())) 1241 EmitAnyExpr(InitExpr, DeclPtr, false); 1242 else 1243 EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType()); 1244 1245 return Result; 1246} 1247 1248LValue 1249CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) { 1250 if (E->isLvalue(getContext()) == Expr::LV_Valid) { 1251 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1252 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1253 llvm::BasicBlock *ContBlock = createBasicBlock("cond.end"); 1254 1255 llvm::Value *Cond = EvaluateExprAsBool(E->getCond()); 1256 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 1257 1258 EmitBlock(LHSBlock); 1259 1260 LValue LHS = EmitLValue(E->getLHS()); 1261 if (!LHS.isSimple()) 1262 return EmitUnsupportedLValue(E, "conditional operator"); 1263 1264 llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp"); 1265 Builder.CreateStore(LHS.getAddress(), Temp); 1266 EmitBranch(ContBlock); 1267 1268 EmitBlock(RHSBlock); 1269 LValue RHS = EmitLValue(E->getRHS()); 1270 if (!RHS.isSimple()) 1271 return EmitUnsupportedLValue(E, "conditional operator"); 1272 1273 Builder.CreateStore(RHS.getAddress(), Temp); 1274 EmitBranch(ContBlock); 1275 1276 EmitBlock(ContBlock); 1277 1278 Temp = Builder.CreateLoad(Temp, "lv"); 1279 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1280 } 1281 1282 // ?: here should be an aggregate. 1283 assert((hasAggregateLLVMType(E->getType()) && 1284 !E->getType()->isAnyComplexType()) && 1285 "Unexpected conditional operator!"); 1286 1287 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1288 EmitAggExpr(E, Temp, false); 1289 1290 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1291} 1292 1293/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1294/// If the cast is a dynamic_cast, we can have the usual lvalue result, 1295/// otherwise if a cast is needed by the code generator in an lvalue context, 1296/// then it must mean that we need the address of an aggregate in order to 1297/// access one of its fields. This can happen for all the reasons that casts 1298/// are permitted with aggregate result, including noop aggregate casts, and 1299/// cast from scalar to union. 1300LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1301 switch (E->getCastKind()) { 1302 default: 1303 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1304 1305 case CastExpr::CK_Dynamic: { 1306 LValue LV = EmitLValue(E->getSubExpr()); 1307 llvm::Value *V = LV.getAddress(); 1308 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 1309 return LValue::MakeAddr(EmitDynamicCast(V, DCE), 1310 MakeQualifiers(E->getType())); 1311 } 1312 1313 case CastExpr::CK_NoOp: 1314 case CastExpr::CK_ConstructorConversion: 1315 case CastExpr::CK_UserDefinedConversion: 1316 return EmitLValue(E->getSubExpr()); 1317 1318 case CastExpr::CK_DerivedToBase: { 1319 const RecordType *DerivedClassTy = 1320 E->getSubExpr()->getType()->getAs<RecordType>(); 1321 CXXRecordDecl *DerivedClassDecl = 1322 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1323 1324 const RecordType *BaseClassTy = E->getType()->getAs<RecordType>(); 1325 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl()); 1326 1327 LValue LV = EmitLValue(E->getSubExpr()); 1328 1329 // Perform the derived-to-base conversion 1330 llvm::Value *Base = 1331 GetAddressCXXOfBaseClass(LV.getAddress(), DerivedClassDecl, 1332 BaseClassDecl, /*NullCheckValue=*/false); 1333 1334 return LValue::MakeAddr(Base, MakeQualifiers(E->getType())); 1335 } 1336 case CastExpr::CK_ToUnion: { 1337 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1338 EmitAnyExpr(E->getSubExpr(), Temp, false); 1339 1340 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1341 } 1342 case CastExpr::CK_BaseToDerived: { 1343 return EmitUnsupportedLValue(E, "base-to-derived cast lvalue"); 1344 } 1345 case CastExpr::CK_BitCast: { 1346 // This must be a reinterpret_cast (or c-style equivalent). 1347 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 1348 1349 LValue LV = EmitLValue(E->getSubExpr()); 1350 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1351 ConvertType(CE->getTypeAsWritten())); 1352 return LValue::MakeAddr(V, MakeQualifiers(E->getType())); 1353 } 1354 } 1355} 1356 1357LValue CodeGenFunction::EmitNullInitializationLValue( 1358 const CXXZeroInitValueExpr *E) { 1359 QualType Ty = E->getType(); 1360 const llvm::Type *LTy = ConvertTypeForMem(Ty); 1361 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 1362 unsigned Align = getContext().getTypeAlign(Ty)/8; 1363 Alloc->setAlignment(Align); 1364 LValue lvalue = LValue::MakeAddr(Alloc, Qualifiers()); 1365 EmitMemSetToZero(lvalue.getAddress(), Ty); 1366 return lvalue; 1367} 1368 1369//===--------------------------------------------------------------------===// 1370// Expression Emission 1371//===--------------------------------------------------------------------===// 1372 1373 1374RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) { 1375 // Builtins never have block type. 1376 if (E->getCallee()->getType()->isBlockPointerType()) 1377 return EmitBlockCallExpr(E); 1378 1379 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 1380 return EmitCXXMemberCallExpr(CE); 1381 1382 const Decl *TargetDecl = 0; 1383 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 1384 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 1385 TargetDecl = DRE->getDecl(); 1386 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 1387 if (unsigned builtinID = FD->getBuiltinID()) 1388 return EmitBuiltinExpr(FD, builtinID, E); 1389 } 1390 } 1391 1392 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 1393 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 1394 return EmitCXXOperatorMemberCallExpr(CE, MD); 1395 1396 if (isa<CXXPseudoDestructorExpr>(E->getCallee())) { 1397 // C++ [expr.pseudo]p1: 1398 // The result shall only be used as the operand for the function call 1399 // operator (), and the result of such a call has type void. The only 1400 // effect is the evaluation of the postfix-expression before the dot or 1401 // arrow. 1402 EmitScalarExpr(E->getCallee()); 1403 return RValue::get(0); 1404 } 1405 1406 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 1407 return EmitCall(Callee, E->getCallee()->getType(), 1408 E->arg_begin(), E->arg_end(), TargetDecl); 1409} 1410 1411LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 1412 // Comma expressions just emit their LHS then their RHS as an l-value. 1413 if (E->getOpcode() == BinaryOperator::Comma) { 1414 EmitAnyExpr(E->getLHS()); 1415 return EmitLValue(E->getRHS()); 1416 } 1417 1418 if (E->getOpcode() == BinaryOperator::PtrMemD || 1419 E->getOpcode() == BinaryOperator::PtrMemI) 1420 return EmitPointerToDataMemberBinaryExpr(E); 1421 1422 // Can only get l-value for binary operator expressions which are a 1423 // simple assignment of aggregate type. 1424 if (E->getOpcode() != BinaryOperator::Assign) 1425 return EmitUnsupportedLValue(E, "binary l-value expression"); 1426 1427 if (!hasAggregateLLVMType(E->getType())) { 1428 // Emit the LHS as an l-value. 1429 LValue LV = EmitLValue(E->getLHS()); 1430 1431 llvm::Value *RHS = EmitScalarExpr(E->getRHS()); 1432 EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(), 1433 E->getType()); 1434 return LV; 1435 } 1436 1437 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1438 EmitAggExpr(E, Temp, false); 1439 // FIXME: Are these qualifiers correct? 1440 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1441} 1442 1443LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 1444 RValue RV = EmitCallExpr(E); 1445 1446 if (!RV.isScalar()) 1447 return LValue::MakeAddr(RV.getAggregateAddr(),MakeQualifiers(E->getType())); 1448 1449 assert(E->getCallReturnType()->isReferenceType() && 1450 "Can't have a scalar return unless the return type is a " 1451 "reference type!"); 1452 1453 return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType())); 1454} 1455 1456LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 1457 // FIXME: This shouldn't require another copy. 1458 llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); 1459 EmitAggExpr(E, Temp, false); 1460 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1461} 1462 1463LValue 1464CodeGenFunction::EmitCXXConditionDeclLValue(const CXXConditionDeclExpr *E) { 1465 EmitLocalBlockVarDecl(*E->getVarDecl()); 1466 return EmitDeclRefLValue(E); 1467} 1468 1469LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 1470 llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp"); 1471 EmitCXXConstructExpr(Temp, E); 1472 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1473} 1474 1475LValue 1476CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 1477 llvm::Value *Temp = EmitCXXTypeidExpr(E); 1478 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType())); 1479} 1480 1481LValue 1482CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 1483 LValue LV = EmitLValue(E->getSubExpr()); 1484 PushCXXTemporary(E->getTemporary(), LV.getAddress()); 1485 return LV; 1486} 1487 1488LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 1489 // Can only get l-value for message expression returning aggregate type 1490 RValue RV = EmitObjCMessageExpr(E); 1491 // FIXME: can this be volatile? 1492 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType())); 1493} 1494 1495llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 1496 const ObjCIvarDecl *Ivar) { 1497 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 1498} 1499 1500LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 1501 llvm::Value *BaseValue, 1502 const ObjCIvarDecl *Ivar, 1503 unsigned CVRQualifiers) { 1504 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 1505 Ivar, CVRQualifiers); 1506} 1507 1508LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 1509 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 1510 llvm::Value *BaseValue = 0; 1511 const Expr *BaseExpr = E->getBase(); 1512 Qualifiers BaseQuals; 1513 QualType ObjectTy; 1514 if (E->isArrow()) { 1515 BaseValue = EmitScalarExpr(BaseExpr); 1516 ObjectTy = BaseExpr->getType()->getPointeeType(); 1517 BaseQuals = ObjectTy.getQualifiers(); 1518 } else { 1519 LValue BaseLV = EmitLValue(BaseExpr); 1520 // FIXME: this isn't right for bitfields. 1521 BaseValue = BaseLV.getAddress(); 1522 ObjectTy = BaseExpr->getType(); 1523 BaseQuals = ObjectTy.getQualifiers(); 1524 } 1525 1526 LValue LV = 1527 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 1528 BaseQuals.getCVRQualifiers()); 1529 setObjCGCLValueClass(getContext(), E, LV); 1530 return LV; 1531} 1532 1533LValue 1534CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { 1535 // This is a special l-value that just issues sends when we load or store 1536 // through it. 1537 return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers()); 1538} 1539 1540LValue CodeGenFunction::EmitObjCKVCRefLValue( 1541 const ObjCImplicitSetterGetterRefExpr *E) { 1542 // This is a special l-value that just issues sends when we load or store 1543 // through it. 1544 return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers()); 1545} 1546 1547LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) { 1548 return EmitUnsupportedLValue(E, "use of super"); 1549} 1550 1551LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 1552 // Can only get l-value for message expression returning aggregate type 1553 RValue RV = EmitAnyExprToTemp(E); 1554 // FIXME: can this be volatile? 1555 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType())); 1556} 1557 1558 1559LValue CodeGenFunction::EmitPointerToDataMemberLValue(const FieldDecl *Field) { 1560 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Field->getDeclContext()); 1561 QualType NNSpecTy = 1562 getContext().getCanonicalType( 1563 getContext().getTypeDeclType(const_cast<CXXRecordDecl*>(ClassDecl))); 1564 NNSpecTy = getContext().getPointerType(NNSpecTy); 1565 llvm::Value *V = llvm::Constant::getNullValue(ConvertType(NNSpecTy)); 1566 LValue MemExpLV = EmitLValueForField(V, const_cast<FieldDecl*>(Field), 1567 /*isUnion*/false, /*Qualifiers*/0); 1568 const llvm::Type *ResultType = ConvertType(getContext().getPointerDiffType()); 1569 V = Builder.CreatePtrToInt(MemExpLV.getAddress(), ResultType, "datamember"); 1570 return LValue::MakeAddr(V, MakeQualifiers(Field->getType())); 1571} 1572 1573RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType, 1574 CallExpr::const_arg_iterator ArgBeg, 1575 CallExpr::const_arg_iterator ArgEnd, 1576 const Decl *TargetDecl) { 1577 // Get the actual function type. The callee type will always be a pointer to 1578 // function type or a block pointer type. 1579 assert(CalleeType->isFunctionPointerType() && 1580 "Call must have function pointer type!"); 1581 1582 CalleeType = getContext().getCanonicalType(CalleeType); 1583 1584 QualType FnType = cast<PointerType>(CalleeType)->getPointeeType(); 1585 QualType ResultType = cast<FunctionType>(FnType)->getResultType(); 1586 1587 CallArgList Args; 1588 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 1589 1590 // FIXME: We should not need to do this, it should be part of the function 1591 // type. 1592 unsigned CallingConvention = 0; 1593 if (const llvm::Function *F = 1594 dyn_cast<llvm::Function>(Callee->stripPointerCasts())) 1595 CallingConvention = F->getCallingConv(); 1596 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, 1597 CallingConvention), 1598 Callee, Args, TargetDecl); 1599} 1600 1601LValue CodeGenFunction:: 1602EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 1603 llvm::Value *BaseV = EmitLValue(E->getLHS()).getAddress(); 1604 if (E->getOpcode() == BinaryOperator::PtrMemI) 1605 BaseV = Builder.CreateLoad(BaseV, "indir.ptr"); 1606 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(getLLVMContext()); 1607 BaseV = Builder.CreateBitCast(BaseV, i8Ty); 1608 LValue RHSLV = EmitLValue(E->getRHS()); 1609 llvm::Value *OffsetV = 1610 EmitLoadOfLValue(RHSLV, E->getRHS()->getType()).getScalarVal(); 1611 const llvm::Type* ResultType = ConvertType(getContext().getPointerDiffType()); 1612 OffsetV = Builder.CreateBitCast(OffsetV, ResultType); 1613 llvm::Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr"); 1614 1615 QualType Ty = E->getRHS()->getType(); 1616 Ty = Ty->getAs<MemberPointerType>()->getPointeeType(); 1617 1618 const llvm::Type *PType = ConvertType(getContext().getPointerType(Ty)); 1619 AddV = Builder.CreateBitCast(AddV, PType); 1620 return LValue::MakeAddr(AddV, MakeQualifiers(Ty)); 1621} 1622 1623