CGExpr.cpp revision dc47bdc43c62bf2ff01bc71c811a66cb5376d318
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/ConvertUTF.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/MDBuilder.h"
29#include "llvm/DataLayout.h"
30using namespace clang;
31using namespace CodeGen;
32
33//===--------------------------------------------------------------------===//
34//                        Miscellaneous Helper Methods
35//===--------------------------------------------------------------------===//
36
37llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
38  unsigned addressSpace =
39    cast<llvm::PointerType>(value->getType())->getAddressSpace();
40
41  llvm::PointerType *destType = Int8PtrTy;
42  if (addressSpace)
43    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
44
45  if (value->getType() == destType) return value;
46  return Builder.CreateBitCast(value, destType);
47}
48
49/// CreateTempAlloca - This creates a alloca and inserts it into the entry
50/// block.
51llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
52                                                    const Twine &Name) {
53  if (!Builder.isNamePreserving())
54    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
55  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
56}
57
58void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
59                                     llvm::Value *Init) {
60  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
61  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
62  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
63}
64
65llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
66                                                const Twine &Name) {
67  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
68  // FIXME: Should we prefer the preferred type alignment here?
69  CharUnits Align = getContext().getTypeAlignInChars(Ty);
70  Alloc->setAlignment(Align.getQuantity());
71  return Alloc;
72}
73
74llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
75                                                 const Twine &Name) {
76  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
77  // FIXME: Should we prefer the preferred type alignment here?
78  CharUnits Align = getContext().getTypeAlignInChars(Ty);
79  Alloc->setAlignment(Align.getQuantity());
80  return Alloc;
81}
82
83/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
84/// expression and compare the result against zero, returning an Int1Ty value.
85llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
86  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
87    llvm::Value *MemPtr = EmitScalarExpr(E);
88    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
89  }
90
91  QualType BoolTy = getContext().BoolTy;
92  if (!E->getType()->isAnyComplexType())
93    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
94
95  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
96}
97
98/// EmitIgnoredExpr - Emit code to compute the specified expression,
99/// ignoring the result.
100void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
101  if (E->isRValue())
102    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
103
104  // Just emit it as an l-value and drop the result.
105  EmitLValue(E);
106}
107
108/// EmitAnyExpr - Emit code to compute the specified expression which
109/// can have any type.  The result is returned as an RValue struct.
110/// If this is an aggregate expression, AggSlot indicates where the
111/// result should be returned.
112RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
113                                    AggValueSlot aggSlot,
114                                    bool ignoreResult) {
115  if (!hasAggregateLLVMType(E->getType()))
116    return RValue::get(EmitScalarExpr(E, ignoreResult));
117  else if (E->getType()->isAnyComplexType())
118    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
119
120  if (!ignoreResult && aggSlot.isIgnored())
121    aggSlot = CreateAggTemp(E->getType(), "agg-temp");
122  EmitAggExpr(E, aggSlot);
123  return aggSlot.asRValue();
124}
125
126/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
127/// always be accessible even if no aggregate location is provided.
128RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
129  AggValueSlot AggSlot = AggValueSlot::ignored();
130
131  if (hasAggregateLLVMType(E->getType()) &&
132      !E->getType()->isAnyComplexType())
133    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
134  return EmitAnyExpr(E, AggSlot);
135}
136
137/// EmitAnyExprToMem - Evaluate an expression into a given memory
138/// location.
139void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
140                                       llvm::Value *Location,
141                                       Qualifiers Quals,
142                                       bool IsInit) {
143  // FIXME: This function should take an LValue as an argument.
144  if (E->getType()->isAnyComplexType()) {
145    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
146  } else if (hasAggregateLLVMType(E->getType())) {
147    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
148    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
149                                         AggValueSlot::IsDestructed_t(IsInit),
150                                         AggValueSlot::DoesNotNeedGCBarriers,
151                                         AggValueSlot::IsAliased_t(!IsInit)));
152  } else {
153    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
154    LValue LV = MakeAddrLValue(Location, E->getType());
155    EmitStoreThroughLValue(RV, LV);
156  }
157}
158
159namespace {
160/// \brief An adjustment to be made to the temporary created when emitting a
161/// reference binding, which accesses a particular subobject of that temporary.
162  struct SubobjectAdjustment {
163    enum {
164      DerivedToBaseAdjustment,
165      FieldAdjustment,
166      MemberPointerAdjustment
167    } Kind;
168
169    union {
170      struct {
171        const CastExpr *BasePath;
172        const CXXRecordDecl *DerivedClass;
173      } DerivedToBase;
174
175      FieldDecl *Field;
176
177      struct {
178        const MemberPointerType *MPT;
179        llvm::Value *Ptr;
180      } Ptr;
181    };
182
183    SubobjectAdjustment(const CastExpr *BasePath,
184                        const CXXRecordDecl *DerivedClass)
185      : Kind(DerivedToBaseAdjustment) {
186      DerivedToBase.BasePath = BasePath;
187      DerivedToBase.DerivedClass = DerivedClass;
188    }
189
190    SubobjectAdjustment(FieldDecl *Field)
191      : Kind(FieldAdjustment) {
192      this->Field = Field;
193    }
194
195    SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr)
196      : Kind(MemberPointerAdjustment) {
197      this->Ptr.MPT = MPT;
198      this->Ptr.Ptr = Ptr;
199    }
200  };
201}
202
203static llvm::Value *
204CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
205                         const NamedDecl *InitializedDecl) {
206  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
207    if (VD->hasGlobalStorage()) {
208      SmallString<256> Name;
209      llvm::raw_svector_ostream Out(Name);
210      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
211      Out.flush();
212
213      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
214
215      // Create the reference temporary.
216      llvm::GlobalValue *RefTemp =
217        new llvm::GlobalVariable(CGF.CGM.getModule(),
218                                 RefTempTy, /*isConstant=*/false,
219                                 llvm::GlobalValue::InternalLinkage,
220                                 llvm::Constant::getNullValue(RefTempTy),
221                                 Name.str());
222      return RefTemp;
223    }
224  }
225
226  return CGF.CreateMemTemp(Type, "ref.tmp");
227}
228
229static llvm::Value *
230EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
231                            llvm::Value *&ReferenceTemporary,
232                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
233                            QualType &ObjCARCReferenceLifetimeType,
234                            const NamedDecl *InitializedDecl) {
235  // Look through single-element init lists that claim to be lvalues. They're
236  // just syntactic wrappers in this case.
237  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
238    if (ILE->getNumInits() == 1 && ILE->isGLValue())
239      E = ILE->getInit(0);
240  }
241
242  // Look through expressions for materialized temporaries (for now).
243  if (const MaterializeTemporaryExpr *M
244                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
245    // Objective-C++ ARC:
246    //   If we are binding a reference to a temporary that has ownership, we
247    //   need to perform retain/release operations on the temporary.
248    if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
249        E->getType()->isObjCLifetimeType() &&
250        (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
251         E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
252         E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
253      ObjCARCReferenceLifetimeType = E->getType();
254
255    E = M->GetTemporaryExpr();
256  }
257
258  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
259    E = DAE->getExpr();
260
261  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
262    CGF.enterFullExpression(EWC);
263    CodeGenFunction::RunCleanupsScope Scope(CGF);
264
265    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
266                                       ReferenceTemporary,
267                                       ReferenceTemporaryDtor,
268                                       ObjCARCReferenceLifetimeType,
269                                       InitializedDecl);
270  }
271
272  RValue RV;
273  if (E->isGLValue()) {
274    // Emit the expression as an lvalue.
275    LValue LV = CGF.EmitLValue(E);
276
277    if (LV.isSimple())
278      return LV.getAddress();
279
280    // We have to load the lvalue.
281    RV = CGF.EmitLoadOfLValue(LV);
282  } else {
283    if (!ObjCARCReferenceLifetimeType.isNull()) {
284      ReferenceTemporary = CreateReferenceTemporary(CGF,
285                                                  ObjCARCReferenceLifetimeType,
286                                                    InitializedDecl);
287
288
289      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
290                                             ObjCARCReferenceLifetimeType);
291
292      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
293                         RefTempDst, false);
294
295      bool ExtendsLifeOfTemporary = false;
296      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
297        if (Var->extendsLifetimeOfTemporary())
298          ExtendsLifeOfTemporary = true;
299      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
300        ExtendsLifeOfTemporary = true;
301      }
302
303      if (!ExtendsLifeOfTemporary) {
304        // Since the lifetime of this temporary isn't going to be extended,
305        // we need to clean it up ourselves at the end of the full expression.
306        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
307        case Qualifiers::OCL_None:
308        case Qualifiers::OCL_ExplicitNone:
309        case Qualifiers::OCL_Autoreleasing:
310          break;
311
312        case Qualifiers::OCL_Strong: {
313          assert(!ObjCARCReferenceLifetimeType->isArrayType());
314          CleanupKind cleanupKind = CGF.getARCCleanupKind();
315          CGF.pushDestroy(cleanupKind,
316                          ReferenceTemporary,
317                          ObjCARCReferenceLifetimeType,
318                          CodeGenFunction::destroyARCStrongImprecise,
319                          cleanupKind & EHCleanup);
320          break;
321        }
322
323        case Qualifiers::OCL_Weak:
324          assert(!ObjCARCReferenceLifetimeType->isArrayType());
325          CGF.pushDestroy(NormalAndEHCleanup,
326                          ReferenceTemporary,
327                          ObjCARCReferenceLifetimeType,
328                          CodeGenFunction::destroyARCWeak,
329                          /*useEHCleanupForArray*/ true);
330          break;
331        }
332
333        ObjCARCReferenceLifetimeType = QualType();
334      }
335
336      return ReferenceTemporary;
337    }
338
339    SmallVector<SubobjectAdjustment, 2> Adjustments;
340    while (true) {
341      E = E->IgnoreParens();
342
343      if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
344        if ((CE->getCastKind() == CK_DerivedToBase ||
345             CE->getCastKind() == CK_UncheckedDerivedToBase) &&
346            E->getType()->isRecordType()) {
347          E = CE->getSubExpr();
348          CXXRecordDecl *Derived
349            = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
350          Adjustments.push_back(SubobjectAdjustment(CE, Derived));
351          continue;
352        }
353
354        if (CE->getCastKind() == CK_NoOp) {
355          E = CE->getSubExpr();
356          continue;
357        }
358      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
359        if (!ME->isArrow() && ME->getBase()->isRValue()) {
360          assert(ME->getBase()->getType()->isRecordType());
361          if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
362            E = ME->getBase();
363            Adjustments.push_back(SubobjectAdjustment(Field));
364            continue;
365          }
366        }
367      } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
368        if (BO->isPtrMemOp()) {
369          assert(BO->getLHS()->isRValue());
370          E = BO->getLHS();
371          const MemberPointerType *MPT =
372              BO->getRHS()->getType()->getAs<MemberPointerType>();
373          llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS());
374          Adjustments.push_back(SubobjectAdjustment(MPT, Ptr));
375        }
376      }
377
378      if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
379        if (opaque->getType()->isRecordType())
380          return CGF.EmitOpaqueValueLValue(opaque).getAddress();
381
382      // Nothing changed.
383      break;
384    }
385
386    // Create a reference temporary if necessary.
387    AggValueSlot AggSlot = AggValueSlot::ignored();
388    if (CGF.hasAggregateLLVMType(E->getType()) &&
389        !E->getType()->isAnyComplexType()) {
390      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
391                                                    InitializedDecl);
392      CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
393      AggValueSlot::IsDestructed_t isDestructed
394        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
395      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
396                                      Qualifiers(), isDestructed,
397                                      AggValueSlot::DoesNotNeedGCBarriers,
398                                      AggValueSlot::IsNotAliased);
399    }
400
401    if (InitializedDecl) {
402      // Get the destructor for the reference temporary.
403      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
404        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
405        if (!ClassDecl->hasTrivialDestructor())
406          ReferenceTemporaryDtor = ClassDecl->getDestructor();
407      }
408    }
409
410    RV = CGF.EmitAnyExpr(E, AggSlot);
411
412    // Check if need to perform derived-to-base casts and/or field accesses, to
413    // get from the temporary object we created (and, potentially, for which we
414    // extended the lifetime) to the subobject we're binding the reference to.
415    if (!Adjustments.empty()) {
416      llvm::Value *Object = RV.getAggregateAddr();
417      for (unsigned I = Adjustments.size(); I != 0; --I) {
418        SubobjectAdjustment &Adjustment = Adjustments[I-1];
419        switch (Adjustment.Kind) {
420        case SubobjectAdjustment::DerivedToBaseAdjustment:
421          Object =
422              CGF.GetAddressOfBaseClass(Object,
423                                        Adjustment.DerivedToBase.DerivedClass,
424                              Adjustment.DerivedToBase.BasePath->path_begin(),
425                              Adjustment.DerivedToBase.BasePath->path_end(),
426                                        /*NullCheckValue=*/false);
427          break;
428
429        case SubobjectAdjustment::FieldAdjustment: {
430          LValue LV = CGF.MakeAddrLValue(Object, E->getType());
431          LV = CGF.EmitLValueForField(LV, Adjustment.Field);
432          if (LV.isSimple()) {
433            Object = LV.getAddress();
434            break;
435          }
436
437          // For non-simple lvalues, we actually have to create a copy of
438          // the object we're binding to.
439          QualType T = Adjustment.Field->getType().getNonReferenceType()
440                                                  .getUnqualifiedType();
441          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
442          LValue TempLV = CGF.MakeAddrLValue(Object,
443                                             Adjustment.Field->getType());
444          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
445          break;
446        }
447
448        case SubobjectAdjustment::MemberPointerAdjustment: {
449          Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
450                        CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT);
451          break;
452        }
453        }
454      }
455
456      return Object;
457    }
458  }
459
460  if (RV.isAggregate())
461    return RV.getAggregateAddr();
462
463  // Create a temporary variable that we can bind the reference to.
464  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
465                                                InitializedDecl);
466
467
468  unsigned Alignment =
469    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
470  if (RV.isScalar())
471    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
472                          /*Volatile=*/false, Alignment, E->getType());
473  else
474    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
475                           /*Volatile=*/false);
476  return ReferenceTemporary;
477}
478
479RValue
480CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
481                                            const NamedDecl *InitializedDecl) {
482  llvm::Value *ReferenceTemporary = 0;
483  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
484  QualType ObjCARCReferenceLifetimeType;
485  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
486                                                   ReferenceTemporaryDtor,
487                                                   ObjCARCReferenceLifetimeType,
488                                                   InitializedDecl);
489  if (CatchUndefined && !E->getType()->isFunctionType()) {
490    // C++11 [dcl.ref]p5 (as amended by core issue 453):
491    //   If a glvalue to which a reference is directly bound designates neither
492    //   an existing object or function of an appropriate type nor a region of
493    //   storage of suitable size and alignment to contain an object of the
494    //   reference's type, the behavior is undefined.
495    QualType Ty = E->getType();
496    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
497  }
498  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
499    return RValue::get(Value);
500
501  // Make sure to call the destructor for the reference temporary.
502  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
503  if (VD && VD->hasGlobalStorage()) {
504    if (ReferenceTemporaryDtor) {
505      llvm::Constant *DtorFn =
506        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
507      CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
508                                    cast<llvm::Constant>(ReferenceTemporary));
509    } else {
510      assert(!ObjCARCReferenceLifetimeType.isNull());
511      // Note: We intentionally do not register a global "destructor" to
512      // release the object.
513    }
514
515    return RValue::get(Value);
516  }
517
518  if (ReferenceTemporaryDtor)
519    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
520  else {
521    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
522    case Qualifiers::OCL_None:
523      llvm_unreachable(
524                      "Not a reference temporary that needs to be deallocated");
525    case Qualifiers::OCL_ExplicitNone:
526    case Qualifiers::OCL_Autoreleasing:
527      // Nothing to do.
528      break;
529
530    case Qualifiers::OCL_Strong: {
531      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
532      CleanupKind cleanupKind = getARCCleanupKind();
533      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
534                  precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
535                  cleanupKind & EHCleanup);
536      break;
537    }
538
539    case Qualifiers::OCL_Weak: {
540      // __weak objects always get EH cleanups; otherwise, exceptions
541      // could cause really nasty crashes instead of mere leaks.
542      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
543                  ObjCARCReferenceLifetimeType, destroyARCWeak, true);
544      break;
545    }
546    }
547  }
548
549  return RValue::get(Value);
550}
551
552
553/// getAccessedFieldNo - Given an encoded value and a result number, return the
554/// input field number being accessed.
555unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
556                                             const llvm::Constant *Elts) {
557  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
558      ->getZExtValue();
559}
560
561void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
562                                    llvm::Value *Address,
563                                    QualType Ty, CharUnits Alignment) {
564  if (!CatchUndefined)
565    return;
566
567  llvm::Value *Cond = 0;
568
569  if (TCK != TCK_Load && TCK != TCK_Store) {
570    // The glvalue must not be an empty glvalue. Don't bother checking this for
571    // loads and stores, because we will get a segfault anyway (if the operation
572    // isn't optimized out).
573    Cond = Builder.CreateICmpNE(
574        Address, llvm::Constant::getNullValue(Address->getType()));
575  }
576
577  uint64_t AlignVal = Alignment.getQuantity();
578
579  if (!Ty->isIncompleteType()) {
580    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
581    if (!AlignVal)
582      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
583
584    // This needs to be to the standard address space.
585    Address = Builder.CreateBitCast(Address, Int8PtrTy);
586
587    // The glvalue must refer to a large enough storage region.
588    // FIXME: If -faddress-sanitizer is enabled, insert dynamic instrumentation
589    //        to check this.
590    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
591    llvm::Value *Min = Builder.getFalse();
592    llvm::Value *LargeEnough =
593        Builder.CreateICmpUGE(Builder.CreateCall2(F, Address, Min),
594                              llvm::ConstantInt::get(IntPtrTy, Size));
595    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
596  }
597
598  if (AlignVal) {
599    // The glvalue must be suitably aligned.
600    llvm::Value *Align =
601        Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
602                          llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
603    Cond = Builder.CreateAnd(Cond,
604        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)));
605  }
606
607  if (Cond) {
608    llvm::Constant *StaticData[] = {
609      EmitCheckSourceLocation(Loc),
610      EmitCheckTypeDescriptor(Ty),
611      llvm::ConstantInt::get(SizeTy, AlignVal),
612      llvm::ConstantInt::get(Int8Ty, TCK)
613    };
614    EmitCheck(Cond, "type_mismatch", StaticData, Address);
615  }
616}
617
618
619CodeGenFunction::ComplexPairTy CodeGenFunction::
620EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
621                         bool isInc, bool isPre) {
622  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
623                                            LV.isVolatileQualified());
624
625  llvm::Value *NextVal;
626  if (isa<llvm::IntegerType>(InVal.first->getType())) {
627    uint64_t AmountVal = isInc ? 1 : -1;
628    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
629
630    // Add the inc/dec to the real part.
631    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
632  } else {
633    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
634    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
635    if (!isInc)
636      FVal.changeSign();
637    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
638
639    // Add the inc/dec to the real part.
640    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
641  }
642
643  ComplexPairTy IncVal(NextVal, InVal.second);
644
645  // Store the updated result through the lvalue.
646  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
647
648  // If this is a postinc, return the value read from memory, otherwise use the
649  // updated value.
650  return isPre ? IncVal : InVal;
651}
652
653
654//===----------------------------------------------------------------------===//
655//                         LValue Expression Emission
656//===----------------------------------------------------------------------===//
657
658RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
659  if (Ty->isVoidType())
660    return RValue::get(0);
661
662  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
663    llvm::Type *EltTy = ConvertType(CTy->getElementType());
664    llvm::Value *U = llvm::UndefValue::get(EltTy);
665    return RValue::getComplex(std::make_pair(U, U));
666  }
667
668  // If this is a use of an undefined aggregate type, the aggregate must have an
669  // identifiable address.  Just because the contents of the value are undefined
670  // doesn't mean that the address can't be taken and compared.
671  if (hasAggregateLLVMType(Ty)) {
672    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
673    return RValue::getAggregate(DestPtr);
674  }
675
676  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
677}
678
679RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
680                                              const char *Name) {
681  ErrorUnsupported(E, Name);
682  return GetUndefRValue(E->getType());
683}
684
685LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
686                                              const char *Name) {
687  ErrorUnsupported(E, Name);
688  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
689  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
690}
691
692LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
693  LValue LV = EmitLValue(E);
694  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
695    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
696                  E->getType(), LV.getAlignment());
697  return LV;
698}
699
700/// EmitLValue - Emit code to compute a designator that specifies the location
701/// of the expression.
702///
703/// This can return one of two things: a simple address or a bitfield reference.
704/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
705/// an LLVM pointer type.
706///
707/// If this returns a bitfield reference, nothing about the pointee type of the
708/// LLVM value is known: For example, it may not be a pointer to an integer.
709///
710/// If this returns a normal address, and if the lvalue's C type is fixed size,
711/// this method guarantees that the returned pointer type will point to an LLVM
712/// type of the same size of the lvalue's type.  If the lvalue has a variable
713/// length type, this is not possible.
714///
715LValue CodeGenFunction::EmitLValue(const Expr *E) {
716  switch (E->getStmtClass()) {
717  default: return EmitUnsupportedLValue(E, "l-value expression");
718
719  case Expr::ObjCPropertyRefExprClass:
720    llvm_unreachable("cannot emit a property reference directly");
721
722  case Expr::ObjCSelectorExprClass:
723  return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
724  case Expr::ObjCIsaExprClass:
725    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
726  case Expr::BinaryOperatorClass:
727    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
728  case Expr::CompoundAssignOperatorClass:
729    if (!E->getType()->isAnyComplexType())
730      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
731    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
732  case Expr::CallExprClass:
733  case Expr::CXXMemberCallExprClass:
734  case Expr::CXXOperatorCallExprClass:
735  case Expr::UserDefinedLiteralClass:
736    return EmitCallExprLValue(cast<CallExpr>(E));
737  case Expr::VAArgExprClass:
738    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
739  case Expr::DeclRefExprClass:
740    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
741  case Expr::ParenExprClass:
742    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
743  case Expr::GenericSelectionExprClass:
744    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
745  case Expr::PredefinedExprClass:
746    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
747  case Expr::StringLiteralClass:
748    return EmitStringLiteralLValue(cast<StringLiteral>(E));
749  case Expr::ObjCEncodeExprClass:
750    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
751  case Expr::PseudoObjectExprClass:
752    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
753  case Expr::InitListExprClass:
754    return EmitInitListLValue(cast<InitListExpr>(E));
755  case Expr::CXXTemporaryObjectExprClass:
756  case Expr::CXXConstructExprClass:
757    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
758  case Expr::CXXBindTemporaryExprClass:
759    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
760  case Expr::LambdaExprClass:
761    return EmitLambdaLValue(cast<LambdaExpr>(E));
762
763  case Expr::ExprWithCleanupsClass: {
764    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
765    enterFullExpression(cleanups);
766    RunCleanupsScope Scope(*this);
767    return EmitLValue(cleanups->getSubExpr());
768  }
769
770  case Expr::CXXScalarValueInitExprClass:
771    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
772  case Expr::CXXDefaultArgExprClass:
773    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
774  case Expr::CXXTypeidExprClass:
775    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
776
777  case Expr::ObjCMessageExprClass:
778    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
779  case Expr::ObjCIvarRefExprClass:
780    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
781  case Expr::StmtExprClass:
782    return EmitStmtExprLValue(cast<StmtExpr>(E));
783  case Expr::UnaryOperatorClass:
784    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
785  case Expr::ArraySubscriptExprClass:
786    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
787  case Expr::ExtVectorElementExprClass:
788    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
789  case Expr::MemberExprClass:
790    return EmitMemberExpr(cast<MemberExpr>(E));
791  case Expr::CompoundLiteralExprClass:
792    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
793  case Expr::ConditionalOperatorClass:
794    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
795  case Expr::BinaryConditionalOperatorClass:
796    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
797  case Expr::ChooseExprClass:
798    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
799  case Expr::OpaqueValueExprClass:
800    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
801  case Expr::SubstNonTypeTemplateParmExprClass:
802    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
803  case Expr::ImplicitCastExprClass:
804  case Expr::CStyleCastExprClass:
805  case Expr::CXXFunctionalCastExprClass:
806  case Expr::CXXStaticCastExprClass:
807  case Expr::CXXDynamicCastExprClass:
808  case Expr::CXXReinterpretCastExprClass:
809  case Expr::CXXConstCastExprClass:
810  case Expr::ObjCBridgedCastExprClass:
811    return EmitCastLValue(cast<CastExpr>(E));
812
813  case Expr::MaterializeTemporaryExprClass:
814    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
815  }
816}
817
818/// Given an object of the given canonical type, can we safely copy a
819/// value out of it based on its initializer?
820static bool isConstantEmittableObjectType(QualType type) {
821  assert(type.isCanonical());
822  assert(!type->isReferenceType());
823
824  // Must be const-qualified but non-volatile.
825  Qualifiers qs = type.getLocalQualifiers();
826  if (!qs.hasConst() || qs.hasVolatile()) return false;
827
828  // Otherwise, all object types satisfy this except C++ classes with
829  // mutable subobjects or non-trivial copy/destroy behavior.
830  if (const RecordType *RT = dyn_cast<RecordType>(type))
831    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
832      if (RD->hasMutableFields() || !RD->isTrivial())
833        return false;
834
835  return true;
836}
837
838/// Can we constant-emit a load of a reference to a variable of the
839/// given type?  This is different from predicates like
840/// Decl::isUsableInConstantExpressions because we do want it to apply
841/// in situations that don't necessarily satisfy the language's rules
842/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
843/// to do this with const float variables even if those variables
844/// aren't marked 'constexpr'.
845enum ConstantEmissionKind {
846  CEK_None,
847  CEK_AsReferenceOnly,
848  CEK_AsValueOrReference,
849  CEK_AsValueOnly
850};
851static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
852  type = type.getCanonicalType();
853  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
854    if (isConstantEmittableObjectType(ref->getPointeeType()))
855      return CEK_AsValueOrReference;
856    return CEK_AsReferenceOnly;
857  }
858  if (isConstantEmittableObjectType(type))
859    return CEK_AsValueOnly;
860  return CEK_None;
861}
862
863/// Try to emit a reference to the given value without producing it as
864/// an l-value.  This is actually more than an optimization: we can't
865/// produce an l-value for variables that we never actually captured
866/// in a block or lambda, which means const int variables or constexpr
867/// literals or similar.
868CodeGenFunction::ConstantEmission
869CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
870  ValueDecl *value = refExpr->getDecl();
871
872  // The value needs to be an enum constant or a constant variable.
873  ConstantEmissionKind CEK;
874  if (isa<ParmVarDecl>(value)) {
875    CEK = CEK_None;
876  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
877    CEK = checkVarTypeForConstantEmission(var->getType());
878  } else if (isa<EnumConstantDecl>(value)) {
879    CEK = CEK_AsValueOnly;
880  } else {
881    CEK = CEK_None;
882  }
883  if (CEK == CEK_None) return ConstantEmission();
884
885  Expr::EvalResult result;
886  bool resultIsReference;
887  QualType resultType;
888
889  // It's best to evaluate all the way as an r-value if that's permitted.
890  if (CEK != CEK_AsReferenceOnly &&
891      refExpr->EvaluateAsRValue(result, getContext())) {
892    resultIsReference = false;
893    resultType = refExpr->getType();
894
895  // Otherwise, try to evaluate as an l-value.
896  } else if (CEK != CEK_AsValueOnly &&
897             refExpr->EvaluateAsLValue(result, getContext())) {
898    resultIsReference = true;
899    resultType = value->getType();
900
901  // Failure.
902  } else {
903    return ConstantEmission();
904  }
905
906  // In any case, if the initializer has side-effects, abandon ship.
907  if (result.HasSideEffects)
908    return ConstantEmission();
909
910  // Emit as a constant.
911  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
912
913  // Make sure we emit a debug reference to the global variable.
914  // This should probably fire even for
915  if (isa<VarDecl>(value)) {
916    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
917      EmitDeclRefExprDbgValue(refExpr, C);
918  } else {
919    assert(isa<EnumConstantDecl>(value));
920    EmitDeclRefExprDbgValue(refExpr, C);
921  }
922
923  // If we emitted a reference constant, we need to dereference that.
924  if (resultIsReference)
925    return ConstantEmission::forReference(C);
926
927  return ConstantEmission::forValue(C);
928}
929
930llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
931  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
932                          lvalue.getAlignment().getQuantity(),
933                          lvalue.getType(), lvalue.getTBAAInfo());
934}
935
936static bool hasBooleanRepresentation(QualType Ty) {
937  if (Ty->isBooleanType())
938    return true;
939
940  if (const EnumType *ET = Ty->getAs<EnumType>())
941    return ET->getDecl()->getIntegerType()->isBooleanType();
942
943  if (const AtomicType *AT = Ty->getAs<AtomicType>())
944    return hasBooleanRepresentation(AT->getValueType());
945
946  return false;
947}
948
949llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
950  const EnumType *ET = Ty->getAs<EnumType>();
951  bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
952                                 CGM.getCodeGenOpts().StrictEnums &&
953                                 !ET->getDecl()->isFixed());
954  bool IsBool = hasBooleanRepresentation(Ty);
955  if (!IsBool && !IsRegularCPlusPlusEnum)
956    return NULL;
957
958  llvm::APInt Min;
959  llvm::APInt End;
960  if (IsBool) {
961    Min = llvm::APInt(8, 0);
962    End = llvm::APInt(8, 2);
963  } else {
964    const EnumDecl *ED = ET->getDecl();
965    llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
966    unsigned Bitwidth = LTy->getScalarSizeInBits();
967    unsigned NumNegativeBits = ED->getNumNegativeBits();
968    unsigned NumPositiveBits = ED->getNumPositiveBits();
969
970    if (NumNegativeBits) {
971      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
972      assert(NumBits <= Bitwidth);
973      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
974      Min = -End;
975    } else {
976      assert(NumPositiveBits <= Bitwidth);
977      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
978      Min = llvm::APInt(Bitwidth, 0);
979    }
980  }
981
982  llvm::MDBuilder MDHelper(getLLVMContext());
983  return MDHelper.createRange(Min, End);
984}
985
986llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
987                                              unsigned Alignment, QualType Ty,
988                                              llvm::MDNode *TBAAInfo) {
989
990  // For better performance, handle vector loads differently.
991  if (Ty->isVectorType()) {
992    llvm::Value *V;
993    const llvm::Type *EltTy =
994    cast<llvm::PointerType>(Addr->getType())->getElementType();
995
996    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
997
998    // Handle vectors of size 3, like size 4 for better performance.
999    if (VTy->getNumElements() == 3) {
1000
1001      // Bitcast to vec4 type.
1002      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1003                                                         4);
1004      llvm::PointerType *ptVec4Ty =
1005      llvm::PointerType::get(vec4Ty,
1006                             (cast<llvm::PointerType>(
1007                                      Addr->getType()))->getAddressSpace());
1008      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1009                                                "castToVec4");
1010      // Now load value.
1011      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1012
1013      // Shuffle vector to get vec3.
1014      llvm::SmallVector<llvm::Constant*, 3> Mask;
1015      Mask.push_back(llvm::ConstantInt::get(
1016                                    llvm::Type::getInt32Ty(getLLVMContext()),
1017                                            0));
1018      Mask.push_back(llvm::ConstantInt::get(
1019                                    llvm::Type::getInt32Ty(getLLVMContext()),
1020                                            1));
1021      Mask.push_back(llvm::ConstantInt::get(
1022                                     llvm::Type::getInt32Ty(getLLVMContext()),
1023                                            2));
1024
1025      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1026      V = Builder.CreateShuffleVector(LoadVal,
1027                                      llvm::UndefValue::get(vec4Ty),
1028                                      MaskV, "extractVec");
1029      return EmitFromMemory(V, Ty);
1030    }
1031  }
1032
1033  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1034  if (Volatile)
1035    Load->setVolatile(true);
1036  if (Alignment)
1037    Load->setAlignment(Alignment);
1038  if (TBAAInfo)
1039    CGM.DecorateInstruction(Load, TBAAInfo);
1040  // If this is an atomic type, all normal reads must be atomic
1041  if (Ty->isAtomicType())
1042    Load->setAtomic(llvm::SequentiallyConsistent);
1043
1044  if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1045    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1046      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1047
1048  return EmitFromMemory(Load, Ty);
1049}
1050
1051llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1052  // Bool has a different representation in memory than in registers.
1053  if (hasBooleanRepresentation(Ty)) {
1054    // This should really always be an i1, but sometimes it's already
1055    // an i8, and it's awkward to track those cases down.
1056    if (Value->getType()->isIntegerTy(1))
1057      return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
1058    assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
1059  }
1060
1061  return Value;
1062}
1063
1064llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1065  // Bool has a different representation in memory than in registers.
1066  if (hasBooleanRepresentation(Ty)) {
1067    assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
1068    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1069  }
1070
1071  return Value;
1072}
1073
1074void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1075                                        bool Volatile, unsigned Alignment,
1076                                        QualType Ty,
1077                                        llvm::MDNode *TBAAInfo,
1078                                        bool isInit) {
1079
1080  // Handle vectors differently to get better performance.
1081  if (Ty->isVectorType()) {
1082    llvm::Type *SrcTy = Value->getType();
1083    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1084    // Handle vec3 special.
1085    if (VecTy->getNumElements() == 3) {
1086      llvm::LLVMContext &VMContext = getLLVMContext();
1087
1088      // Our source is a vec3, do a shuffle vector to make it a vec4.
1089      llvm::SmallVector<llvm::Constant*, 4> Mask;
1090      Mask.push_back(llvm::ConstantInt::get(
1091                                            llvm::Type::getInt32Ty(VMContext),
1092                                            0));
1093      Mask.push_back(llvm::ConstantInt::get(
1094                                            llvm::Type::getInt32Ty(VMContext),
1095                                            1));
1096      Mask.push_back(llvm::ConstantInt::get(
1097                                            llvm::Type::getInt32Ty(VMContext),
1098                                            2));
1099      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1100
1101      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1102      Value = Builder.CreateShuffleVector(Value,
1103                                          llvm::UndefValue::get(VecTy),
1104                                          MaskV, "extractVec");
1105      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1106    }
1107    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1108    if (DstPtr->getElementType() != SrcTy) {
1109      llvm::Type *MemTy =
1110      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1111      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1112    }
1113  }
1114
1115  Value = EmitToMemory(Value, Ty);
1116
1117  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1118  if (Alignment)
1119    Store->setAlignment(Alignment);
1120  if (TBAAInfo)
1121    CGM.DecorateInstruction(Store, TBAAInfo);
1122  if (!isInit && Ty->isAtomicType())
1123    Store->setAtomic(llvm::SequentiallyConsistent);
1124}
1125
1126void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1127    bool isInit) {
1128  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1129                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1130                    lvalue.getTBAAInfo(), isInit);
1131}
1132
1133/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1134/// method emits the address of the lvalue, then loads the result as an rvalue,
1135/// returning the rvalue.
1136RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1137  if (LV.isObjCWeak()) {
1138    // load of a __weak object.
1139    llvm::Value *AddrWeakObj = LV.getAddress();
1140    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1141                                                             AddrWeakObj));
1142  }
1143  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1144    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1145
1146  if (LV.isSimple()) {
1147    assert(!LV.getType()->isFunctionType());
1148
1149    // Everything needs a load.
1150    return RValue::get(EmitLoadOfScalar(LV));
1151  }
1152
1153  if (LV.isVectorElt()) {
1154    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1155                                              LV.isVolatileQualified());
1156    Load->setAlignment(LV.getAlignment().getQuantity());
1157    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1158                                                    "vecext"));
1159  }
1160
1161  // If this is a reference to a subset of the elements of a vector, either
1162  // shuffle the input or extract/insert them as appropriate.
1163  if (LV.isExtVectorElt())
1164    return EmitLoadOfExtVectorElementLValue(LV);
1165
1166  assert(LV.isBitField() && "Unknown LValue type!");
1167  return EmitLoadOfBitfieldLValue(LV);
1168}
1169
1170RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1171  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1172
1173  // Get the output type.
1174  llvm::Type *ResLTy = ConvertType(LV.getType());
1175  unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy);
1176
1177  // Compute the result as an OR of all of the individual component accesses.
1178  llvm::Value *Res = 0;
1179  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1180    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1181    CharUnits AccessAlignment = AI.AccessAlignment;
1182    if (!LV.getAlignment().isZero())
1183      AccessAlignment = std::min(AccessAlignment, LV.getAlignment());
1184
1185    // Get the field pointer.
1186    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1187
1188    // Only offset by the field index if used, so that incoming values are not
1189    // required to be structures.
1190    if (AI.FieldIndex)
1191      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1192
1193    // Offset by the byte offset, if used.
1194    if (!AI.FieldByteOffset.isZero()) {
1195      Ptr = EmitCastToVoidPtr(Ptr);
1196      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1197                                       "bf.field.offs");
1198    }
1199
1200    // Cast to the access type.
1201    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1202                       CGM.getContext().getTargetAddressSpace(LV.getType()));
1203    Ptr = Builder.CreateBitCast(Ptr, PTy);
1204
1205    // Perform the load.
1206    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1207    Load->setAlignment(AccessAlignment.getQuantity());
1208
1209    // Shift out unused low bits and mask out unused high bits.
1210    llvm::Value *Val = Load;
1211    if (AI.FieldBitStart)
1212      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1213    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1214                                                            AI.TargetBitWidth),
1215                            "bf.clear");
1216
1217    // Extend or truncate to the target size.
1218    if (AI.AccessWidth < ResSizeInBits)
1219      Val = Builder.CreateZExt(Val, ResLTy);
1220    else if (AI.AccessWidth > ResSizeInBits)
1221      Val = Builder.CreateTrunc(Val, ResLTy);
1222
1223    // Shift into place, and OR into the result.
1224    if (AI.TargetBitOffset)
1225      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1226    Res = Res ? Builder.CreateOr(Res, Val) : Val;
1227  }
1228
1229  // If the bit-field is signed, perform the sign-extension.
1230  //
1231  // FIXME: This can easily be folded into the load of the high bits, which
1232  // could also eliminate the mask of high bits in some situations.
1233  if (Info.isSigned()) {
1234    unsigned ExtraBits = ResSizeInBits - Info.getSize();
1235    if (ExtraBits)
1236      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1237                               ExtraBits, "bf.val.sext");
1238  }
1239
1240  return RValue::get(Res);
1241}
1242
1243// If this is a reference to a subset of the elements of a vector, create an
1244// appropriate shufflevector.
1245RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1246  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1247                                            LV.isVolatileQualified());
1248  Load->setAlignment(LV.getAlignment().getQuantity());
1249  llvm::Value *Vec = Load;
1250
1251  const llvm::Constant *Elts = LV.getExtVectorElts();
1252
1253  // If the result of the expression is a non-vector type, we must be extracting
1254  // a single element.  Just codegen as an extractelement.
1255  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1256  if (!ExprVT) {
1257    unsigned InIdx = getAccessedFieldNo(0, Elts);
1258    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1259    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1260  }
1261
1262  // Always use shuffle vector to try to retain the original program structure
1263  unsigned NumResultElts = ExprVT->getNumElements();
1264
1265  SmallVector<llvm::Constant*, 4> Mask;
1266  for (unsigned i = 0; i != NumResultElts; ++i)
1267    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1268
1269  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1270  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1271                                    MaskV);
1272  return RValue::get(Vec);
1273}
1274
1275
1276
1277/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1278/// lvalue, where both are guaranteed to the have the same type, and that type
1279/// is 'Ty'.
1280void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1281  if (!Dst.isSimple()) {
1282    if (Dst.isVectorElt()) {
1283      // Read/modify/write the vector, inserting the new element.
1284      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1285                                                Dst.isVolatileQualified());
1286      Load->setAlignment(Dst.getAlignment().getQuantity());
1287      llvm::Value *Vec = Load;
1288      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1289                                        Dst.getVectorIdx(), "vecins");
1290      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1291                                                   Dst.isVolatileQualified());
1292      Store->setAlignment(Dst.getAlignment().getQuantity());
1293      return;
1294    }
1295
1296    // If this is an update of extended vector elements, insert them as
1297    // appropriate.
1298    if (Dst.isExtVectorElt())
1299      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1300
1301    assert(Dst.isBitField() && "Unknown LValue type");
1302    return EmitStoreThroughBitfieldLValue(Src, Dst);
1303  }
1304
1305  // There's special magic for assigning into an ARC-qualified l-value.
1306  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1307    switch (Lifetime) {
1308    case Qualifiers::OCL_None:
1309      llvm_unreachable("present but none");
1310
1311    case Qualifiers::OCL_ExplicitNone:
1312      // nothing special
1313      break;
1314
1315    case Qualifiers::OCL_Strong:
1316      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1317      return;
1318
1319    case Qualifiers::OCL_Weak:
1320      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1321      return;
1322
1323    case Qualifiers::OCL_Autoreleasing:
1324      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1325                                                     Src.getScalarVal()));
1326      // fall into the normal path
1327      break;
1328    }
1329  }
1330
1331  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1332    // load of a __weak object.
1333    llvm::Value *LvalueDst = Dst.getAddress();
1334    llvm::Value *src = Src.getScalarVal();
1335     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1336    return;
1337  }
1338
1339  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1340    // load of a __strong object.
1341    llvm::Value *LvalueDst = Dst.getAddress();
1342    llvm::Value *src = Src.getScalarVal();
1343    if (Dst.isObjCIvar()) {
1344      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1345      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1346      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1347      llvm::Value *dst = RHS;
1348      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1349      llvm::Value *LHS =
1350        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1351      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1352      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1353                                              BytesBetween);
1354    } else if (Dst.isGlobalObjCRef()) {
1355      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1356                                                Dst.isThreadLocalRef());
1357    }
1358    else
1359      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1360    return;
1361  }
1362
1363  assert(Src.isScalar() && "Can't emit an agg store with this method");
1364  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1365}
1366
1367void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1368                                                     llvm::Value **Result) {
1369  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1370
1371  // Get the output type.
1372  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1373  unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy);
1374
1375  // Get the source value, truncated to the width of the bit-field.
1376  llvm::Value *SrcVal = Src.getScalarVal();
1377
1378  if (hasBooleanRepresentation(Dst.getType()))
1379    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1380
1381  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1382                                                                Info.getSize()),
1383                             "bf.value");
1384
1385  // Return the new value of the bit-field, if requested.
1386  if (Result) {
1387    // Cast back to the proper type for result.
1388    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1389    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1390                                                   "bf.reload.val");
1391
1392    // Sign extend if necessary.
1393    if (Info.isSigned()) {
1394      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1395      if (ExtraBits)
1396        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1397                                       ExtraBits, "bf.reload.sext");
1398    }
1399
1400    *Result = ReloadVal;
1401  }
1402
1403  // Iterate over the components, writing each piece to memory.
1404  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1405    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1406    CharUnits AccessAlignment = AI.AccessAlignment;
1407    if (!Dst.getAlignment().isZero())
1408      AccessAlignment = std::min(AccessAlignment, Dst.getAlignment());
1409
1410    // Get the field pointer.
1411    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1412    unsigned addressSpace =
1413      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1414
1415    // Only offset by the field index if used, so that incoming values are not
1416    // required to be structures.
1417    if (AI.FieldIndex)
1418      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1419
1420    // Offset by the byte offset, if used.
1421    if (!AI.FieldByteOffset.isZero()) {
1422      Ptr = EmitCastToVoidPtr(Ptr);
1423      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1424                                       "bf.field.offs");
1425    }
1426
1427    // Cast to the access type.
1428    llvm::Type *AccessLTy =
1429      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1430
1431    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1432    Ptr = Builder.CreateBitCast(Ptr, PTy);
1433
1434    // Extract the piece of the bit-field value to write in this access, limited
1435    // to the values that are part of this access.
1436    llvm::Value *Val = SrcVal;
1437    if (AI.TargetBitOffset)
1438      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1439    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1440                                                            AI.TargetBitWidth));
1441
1442    // Extend or truncate to the access size.
1443    if (ResSizeInBits < AI.AccessWidth)
1444      Val = Builder.CreateZExt(Val, AccessLTy);
1445    else if (ResSizeInBits > AI.AccessWidth)
1446      Val = Builder.CreateTrunc(Val, AccessLTy);
1447
1448    // Shift into the position in memory.
1449    if (AI.FieldBitStart)
1450      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1451
1452    // If necessary, load and OR in bits that are outside of the bit-field.
1453    if (AI.TargetBitWidth != AI.AccessWidth) {
1454      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1455      Load->setAlignment(AccessAlignment.getQuantity());
1456
1457      // Compute the mask for zeroing the bits that are part of the bit-field.
1458      llvm::APInt InvMask =
1459        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1460                                 AI.FieldBitStart + AI.TargetBitWidth);
1461
1462      // Apply the mask and OR in to the value to write.
1463      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1464    }
1465
1466    // Write the value.
1467    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1468                                                 Dst.isVolatileQualified());
1469    Store->setAlignment(AccessAlignment.getQuantity());
1470  }
1471}
1472
1473void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1474                                                               LValue Dst) {
1475  // This access turns into a read/modify/write of the vector.  Load the input
1476  // value now.
1477  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1478                                            Dst.isVolatileQualified());
1479  Load->setAlignment(Dst.getAlignment().getQuantity());
1480  llvm::Value *Vec = Load;
1481  const llvm::Constant *Elts = Dst.getExtVectorElts();
1482
1483  llvm::Value *SrcVal = Src.getScalarVal();
1484
1485  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1486    unsigned NumSrcElts = VTy->getNumElements();
1487    unsigned NumDstElts =
1488       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1489    if (NumDstElts == NumSrcElts) {
1490      // Use shuffle vector is the src and destination are the same number of
1491      // elements and restore the vector mask since it is on the side it will be
1492      // stored.
1493      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1494      for (unsigned i = 0; i != NumSrcElts; ++i)
1495        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1496
1497      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1498      Vec = Builder.CreateShuffleVector(SrcVal,
1499                                        llvm::UndefValue::get(Vec->getType()),
1500                                        MaskV);
1501    } else if (NumDstElts > NumSrcElts) {
1502      // Extended the source vector to the same length and then shuffle it
1503      // into the destination.
1504      // FIXME: since we're shuffling with undef, can we just use the indices
1505      //        into that?  This could be simpler.
1506      SmallVector<llvm::Constant*, 4> ExtMask;
1507      for (unsigned i = 0; i != NumSrcElts; ++i)
1508        ExtMask.push_back(Builder.getInt32(i));
1509      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1510      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1511      llvm::Value *ExtSrcVal =
1512        Builder.CreateShuffleVector(SrcVal,
1513                                    llvm::UndefValue::get(SrcVal->getType()),
1514                                    ExtMaskV);
1515      // build identity
1516      SmallVector<llvm::Constant*, 4> Mask;
1517      for (unsigned i = 0; i != NumDstElts; ++i)
1518        Mask.push_back(Builder.getInt32(i));
1519
1520      // modify when what gets shuffled in
1521      for (unsigned i = 0; i != NumSrcElts; ++i)
1522        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1523      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1524      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1525    } else {
1526      // We should never shorten the vector
1527      llvm_unreachable("unexpected shorten vector length");
1528    }
1529  } else {
1530    // If the Src is a scalar (not a vector) it must be updating one element.
1531    unsigned InIdx = getAccessedFieldNo(0, Elts);
1532    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1533    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1534  }
1535
1536  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1537                                               Dst.isVolatileQualified());
1538  Store->setAlignment(Dst.getAlignment().getQuantity());
1539}
1540
1541// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1542// generating write-barries API. It is currently a global, ivar,
1543// or neither.
1544static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1545                                 LValue &LV,
1546                                 bool IsMemberAccess=false) {
1547  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1548    return;
1549
1550  if (isa<ObjCIvarRefExpr>(E)) {
1551    QualType ExpTy = E->getType();
1552    if (IsMemberAccess && ExpTy->isPointerType()) {
1553      // If ivar is a structure pointer, assigning to field of
1554      // this struct follows gcc's behavior and makes it a non-ivar
1555      // writer-barrier conservatively.
1556      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1557      if (ExpTy->isRecordType()) {
1558        LV.setObjCIvar(false);
1559        return;
1560      }
1561    }
1562    LV.setObjCIvar(true);
1563    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1564    LV.setBaseIvarExp(Exp->getBase());
1565    LV.setObjCArray(E->getType()->isArrayType());
1566    return;
1567  }
1568
1569  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1570    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1571      if (VD->hasGlobalStorage()) {
1572        LV.setGlobalObjCRef(true);
1573        LV.setThreadLocalRef(VD->isThreadSpecified());
1574      }
1575    }
1576    LV.setObjCArray(E->getType()->isArrayType());
1577    return;
1578  }
1579
1580  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1581    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1582    return;
1583  }
1584
1585  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1586    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1587    if (LV.isObjCIvar()) {
1588      // If cast is to a structure pointer, follow gcc's behavior and make it
1589      // a non-ivar write-barrier.
1590      QualType ExpTy = E->getType();
1591      if (ExpTy->isPointerType())
1592        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1593      if (ExpTy->isRecordType())
1594        LV.setObjCIvar(false);
1595    }
1596    return;
1597  }
1598
1599  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1600    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1601    return;
1602  }
1603
1604  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1605    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1606    return;
1607  }
1608
1609  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1610    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1611    return;
1612  }
1613
1614  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1615    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1616    return;
1617  }
1618
1619  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1620    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1621    if (LV.isObjCIvar() && !LV.isObjCArray())
1622      // Using array syntax to assigning to what an ivar points to is not
1623      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1624      LV.setObjCIvar(false);
1625    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1626      // Using array syntax to assigning to what global points to is not
1627      // same as assigning to the global itself. {id *G;} G[i] = 0;
1628      LV.setGlobalObjCRef(false);
1629    return;
1630  }
1631
1632  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1633    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1634    // We don't know if member is an 'ivar', but this flag is looked at
1635    // only in the context of LV.isObjCIvar().
1636    LV.setObjCArray(E->getType()->isArrayType());
1637    return;
1638  }
1639}
1640
1641static llvm::Value *
1642EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1643                                llvm::Value *V, llvm::Type *IRType,
1644                                StringRef Name = StringRef()) {
1645  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1646  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1647}
1648
1649static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1650                                      const Expr *E, const VarDecl *VD) {
1651  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1652         "Var decl must have external storage or be a file var decl!");
1653
1654  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1655  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1656  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1657  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1658  QualType T = E->getType();
1659  LValue LV;
1660  if (VD->getType()->isReferenceType()) {
1661    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1662    LI->setAlignment(Alignment.getQuantity());
1663    V = LI;
1664    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1665  } else {
1666    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1667  }
1668  setObjCGCLValueClass(CGF.getContext(), E, LV);
1669  return LV;
1670}
1671
1672static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1673                                     const Expr *E, const FunctionDecl *FD) {
1674  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1675  if (!FD->hasPrototype()) {
1676    if (const FunctionProtoType *Proto =
1677            FD->getType()->getAs<FunctionProtoType>()) {
1678      // Ugly case: for a K&R-style definition, the type of the definition
1679      // isn't the same as the type of a use.  Correct for this with a
1680      // bitcast.
1681      QualType NoProtoType =
1682          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1683      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1684      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1685    }
1686  }
1687  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1688  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1689}
1690
1691LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1692  const NamedDecl *ND = E->getDecl();
1693  CharUnits Alignment = getContext().getDeclAlign(ND);
1694  QualType T = E->getType();
1695
1696  // FIXME: We should be able to assert this for FunctionDecls as well!
1697  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1698  // those with a valid source location.
1699  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1700          !E->getLocation().isValid()) &&
1701         "Should not use decl without marking it used!");
1702
1703  if (ND->hasAttr<WeakRefAttr>()) {
1704    const ValueDecl *VD = cast<ValueDecl>(ND);
1705    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1706    return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1707  }
1708
1709  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1710    // Check if this is a global variable.
1711    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1712      return EmitGlobalVarDeclLValue(*this, E, VD);
1713
1714    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1715
1716    bool NonGCable = VD->hasLocalStorage() &&
1717                     !VD->getType()->isReferenceType() &&
1718                     !isBlockVariable;
1719
1720    llvm::Value *V = LocalDeclMap[VD];
1721    if (!V && VD->isStaticLocal())
1722      V = CGM.getStaticLocalDeclAddress(VD);
1723
1724    // Use special handling for lambdas.
1725    if (!V) {
1726      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1727        QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1728        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1729                                                     LambdaTagType);
1730        return EmitLValueForField(LambdaLV, FD);
1731      }
1732
1733      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1734      CharUnits alignment = getContext().getDeclAlign(VD);
1735      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1736                            E->getType(), alignment);
1737    }
1738
1739    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1740
1741    if (isBlockVariable)
1742      V = BuildBlockByrefAddress(V, VD);
1743
1744    LValue LV;
1745    if (VD->getType()->isReferenceType()) {
1746      llvm::LoadInst *LI = Builder.CreateLoad(V);
1747      LI->setAlignment(Alignment.getQuantity());
1748      V = LI;
1749      LV = MakeNaturalAlignAddrLValue(V, T);
1750    } else {
1751      LV = MakeAddrLValue(V, T, Alignment);
1752    }
1753
1754    if (NonGCable) {
1755      LV.getQuals().removeObjCGCAttr();
1756      LV.setNonGC(true);
1757    }
1758    setObjCGCLValueClass(getContext(), E, LV);
1759    return LV;
1760  }
1761
1762  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1763    return EmitFunctionDeclLValue(*this, E, fn);
1764
1765  llvm_unreachable("Unhandled DeclRefExpr");
1766}
1767
1768LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1769  // __extension__ doesn't affect lvalue-ness.
1770  if (E->getOpcode() == UO_Extension)
1771    return EmitLValue(E->getSubExpr());
1772
1773  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1774  switch (E->getOpcode()) {
1775  default: llvm_unreachable("Unknown unary operator lvalue!");
1776  case UO_Deref: {
1777    QualType T = E->getSubExpr()->getType()->getPointeeType();
1778    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1779
1780    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1781    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1782
1783    // We should not generate __weak write barrier on indirect reference
1784    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1785    // But, we continue to generate __strong write barrier on indirect write
1786    // into a pointer to object.
1787    if (getContext().getLangOpts().ObjC1 &&
1788        getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1789        LV.isObjCWeak())
1790      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1791    return LV;
1792  }
1793  case UO_Real:
1794  case UO_Imag: {
1795    LValue LV = EmitLValue(E->getSubExpr());
1796    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1797    llvm::Value *Addr = LV.getAddress();
1798
1799    // __real is valid on scalars.  This is a faster way of testing that.
1800    // __imag can only produce an rvalue on scalars.
1801    if (E->getOpcode() == UO_Real &&
1802        !cast<llvm::PointerType>(Addr->getType())
1803           ->getElementType()->isStructTy()) {
1804      assert(E->getSubExpr()->getType()->isArithmeticType());
1805      return LV;
1806    }
1807
1808    assert(E->getSubExpr()->getType()->isAnyComplexType());
1809
1810    unsigned Idx = E->getOpcode() == UO_Imag;
1811    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1812                                                  Idx, "idx"),
1813                          ExprTy);
1814  }
1815  case UO_PreInc:
1816  case UO_PreDec: {
1817    LValue LV = EmitLValue(E->getSubExpr());
1818    bool isInc = E->getOpcode() == UO_PreInc;
1819
1820    if (E->getType()->isAnyComplexType())
1821      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1822    else
1823      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1824    return LV;
1825  }
1826  }
1827}
1828
1829LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1830  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1831                        E->getType());
1832}
1833
1834LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1835  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1836                        E->getType());
1837}
1838
1839static llvm::Constant*
1840GetAddrOfConstantWideString(StringRef Str,
1841                            const char *GlobalName,
1842                            ASTContext &Context,
1843                            QualType Ty, SourceLocation Loc,
1844                            CodeGenModule &CGM) {
1845
1846  StringLiteral *SL = StringLiteral::Create(Context,
1847                                            Str,
1848                                            StringLiteral::Wide,
1849                                            /*Pascal = */false,
1850                                            Ty, Loc);
1851  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1852  llvm::GlobalVariable *GV =
1853    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1854                             !CGM.getLangOpts().WritableStrings,
1855                             llvm::GlobalValue::PrivateLinkage,
1856                             C, GlobalName);
1857  const unsigned WideAlignment =
1858    Context.getTypeAlignInChars(Ty).getQuantity();
1859  GV->setAlignment(WideAlignment);
1860  return GV;
1861}
1862
1863static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1864                                    SmallString<32>& Target) {
1865  Target.resize(CharByteWidth * (Source.size() + 1));
1866  char *ResultPtr = &Target[0];
1867  const UTF8 *ErrorPtr;
1868  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1869  (void)success;
1870  assert(success);
1871  Target.resize(ResultPtr - &Target[0]);
1872}
1873
1874LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1875  switch (E->getIdentType()) {
1876  default:
1877    return EmitUnsupportedLValue(E, "predefined expression");
1878
1879  case PredefinedExpr::Func:
1880  case PredefinedExpr::Function:
1881  case PredefinedExpr::LFunction:
1882  case PredefinedExpr::PrettyFunction: {
1883    unsigned IdentType = E->getIdentType();
1884    std::string GlobalVarName;
1885
1886    switch (IdentType) {
1887    default: llvm_unreachable("Invalid type");
1888    case PredefinedExpr::Func:
1889      GlobalVarName = "__func__.";
1890      break;
1891    case PredefinedExpr::Function:
1892      GlobalVarName = "__FUNCTION__.";
1893      break;
1894    case PredefinedExpr::LFunction:
1895      GlobalVarName = "L__FUNCTION__.";
1896      break;
1897    case PredefinedExpr::PrettyFunction:
1898      GlobalVarName = "__PRETTY_FUNCTION__.";
1899      break;
1900    }
1901
1902    StringRef FnName = CurFn->getName();
1903    if (FnName.startswith("\01"))
1904      FnName = FnName.substr(1);
1905    GlobalVarName += FnName;
1906
1907    const Decl *CurDecl = CurCodeDecl;
1908    if (CurDecl == 0)
1909      CurDecl = getContext().getTranslationUnitDecl();
1910
1911    std::string FunctionName =
1912        (isa<BlockDecl>(CurDecl)
1913         ? FnName.str()
1914         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1915                                       CurDecl));
1916
1917    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1918    llvm::Constant *C;
1919    if (ElemType->isWideCharType()) {
1920      SmallString<32> RawChars;
1921      ConvertUTF8ToWideString(
1922          getContext().getTypeSizeInChars(ElemType).getQuantity(),
1923          FunctionName, RawChars);
1924      C = GetAddrOfConstantWideString(RawChars,
1925                                      GlobalVarName.c_str(),
1926                                      getContext(),
1927                                      E->getType(),
1928                                      E->getLocation(),
1929                                      CGM);
1930    } else {
1931      C = CGM.GetAddrOfConstantCString(FunctionName,
1932                                       GlobalVarName.c_str(),
1933                                       1);
1934    }
1935    return MakeAddrLValue(C, E->getType());
1936  }
1937  }
1938}
1939
1940/// Emit a type description suitable for use by a runtime sanitizer library. The
1941/// format of a type descriptor is
1942///
1943/// \code
1944///   { i16 TypeKind, i16 TypeInfo }
1945/// \endcode
1946///
1947/// followed by an array of i8 containing the type name. TypeKind is 0 for an
1948/// integer, 1 for a floating point value, and -1 for anything else.
1949llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
1950  // FIXME: Only emit each type's descriptor once.
1951  uint16_t TypeKind = -1;
1952  uint16_t TypeInfo = 0;
1953
1954  if (T->isIntegerType()) {
1955    TypeKind = 0;
1956    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
1957               T->isSignedIntegerType();
1958  } else if (T->isFloatingType()) {
1959    TypeKind = 1;
1960    TypeInfo = getContext().getTypeSize(T);
1961  }
1962
1963  // Format the type name as if for a diagnostic, including quotes and
1964  // optionally an 'aka'.
1965  llvm::SmallString<32> Buffer;
1966  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
1967                                    (intptr_t)T.getAsOpaquePtr(),
1968                                    0, 0, 0, 0, 0, 0, Buffer,
1969                                    ArrayRef<intptr_t>());
1970
1971  llvm::Constant *Components[] = {
1972    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
1973    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
1974  };
1975  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
1976
1977  llvm::GlobalVariable *GV =
1978    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
1979                             /*isConstant=*/true,
1980                             llvm::GlobalVariable::PrivateLinkage,
1981                             Descriptor);
1982  GV->setUnnamedAddr(true);
1983  return GV;
1984}
1985
1986llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
1987  llvm::Type *TargetTy = IntPtrTy;
1988
1989  // Integers which fit in intptr_t are zero-extended and passed directly.
1990  if (V->getType()->isIntegerTy() &&
1991      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
1992    return Builder.CreateZExt(V, TargetTy);
1993
1994  // Pointers are passed directly, everything else is passed by address.
1995  if (!V->getType()->isPointerTy()) {
1996    llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
1997    Builder.CreateStore(V, Ptr);
1998    V = Ptr;
1999  }
2000  return Builder.CreatePtrToInt(V, TargetTy);
2001}
2002
2003/// \brief Emit a representation of a SourceLocation for passing to a handler
2004/// in a sanitizer runtime library. The format for this data is:
2005/// \code
2006///   struct SourceLocation {
2007///     const char *Filename;
2008///     int32_t Line, Column;
2009///   };
2010/// \endcode
2011/// For an invalid SourceLocation, the Filename pointer is null.
2012llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2013  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2014
2015  llvm::Constant *Data[] = {
2016    // FIXME: Only emit each file name once.
2017    PLoc.isValid() ? cast<llvm::Constant>(
2018                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2019                   : llvm::Constant::getNullValue(Int8PtrTy),
2020    Builder.getInt32(PLoc.getLine()),
2021    Builder.getInt32(PLoc.getColumn())
2022  };
2023
2024  return llvm::ConstantStruct::getAnon(Data);
2025}
2026
2027void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2028                                llvm::ArrayRef<llvm::Constant *> StaticArgs,
2029                                llvm::ArrayRef<llvm::Value *> DynamicArgs) {
2030  llvm::BasicBlock *Cont = createBasicBlock("cont");
2031
2032  // If -fcatch-undefined-behavior is not enabled, just emit a trap. This
2033  // happens when using -ftrapv.
2034  // FIXME: Should -ftrapv require the ubsan runtime library?
2035  if (!CatchUndefined) {
2036    // If we're optimizing, collapse all calls to trap down to just one per
2037    // function to save on code size.
2038    if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2039      TrapBB = createBasicBlock("trap");
2040      Builder.CreateCondBr(Checked, Cont, TrapBB);
2041      EmitBlock(TrapBB);
2042      llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2043      llvm::CallInst *TrapCall = Builder.CreateCall(F);
2044      TrapCall->setDoesNotReturn();
2045      TrapCall->setDoesNotThrow();
2046      Builder.CreateUnreachable();
2047    } else {
2048      Builder.CreateCondBr(Checked, Cont, TrapBB);
2049    }
2050
2051    EmitBlock(Cont);
2052    return;
2053  }
2054
2055  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2056  Builder.CreateCondBr(Checked, Cont, Handler);
2057  EmitBlock(Handler);
2058
2059  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2060  llvm::GlobalValue *InfoPtr =
2061      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true,
2062                               llvm::GlobalVariable::PrivateLinkage, Info);
2063  InfoPtr->setUnnamedAddr(true);
2064
2065  llvm::SmallVector<llvm::Value *, 4> Args;
2066  llvm::SmallVector<llvm::Type *, 4> ArgTypes;
2067  Args.reserve(DynamicArgs.size() + 1);
2068  ArgTypes.reserve(DynamicArgs.size() + 1);
2069
2070  // Handler functions take an i8* pointing to the (handler-specific) static
2071  // information block, followed by a sequence of intptr_t arguments
2072  // representing operand values.
2073  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2074  ArgTypes.push_back(Int8PtrTy);
2075  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2076    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2077    ArgTypes.push_back(IntPtrTy);
2078  }
2079
2080  llvm::FunctionType *FnType =
2081    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2082  llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType,
2083                                          ("__ubsan_handle_" + CheckName).str(),
2084                                              llvm::Attribute::NoReturn |
2085                                              llvm::Attribute::NoUnwind |
2086                                              llvm::Attribute::UWTable);
2087  llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args);
2088  HandlerCall->setDoesNotReturn();
2089  HandlerCall->setDoesNotThrow();
2090  Builder.CreateUnreachable();
2091
2092  EmitBlock(Cont);
2093}
2094
2095/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2096/// array to pointer, return the array subexpression.
2097static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2098  // If this isn't just an array->pointer decay, bail out.
2099  const CastExpr *CE = dyn_cast<CastExpr>(E);
2100  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2101    return 0;
2102
2103  // If this is a decay from variable width array, bail out.
2104  const Expr *SubExpr = CE->getSubExpr();
2105  if (SubExpr->getType()->isVariableArrayType())
2106    return 0;
2107
2108  return SubExpr;
2109}
2110
2111LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2112  // The index must always be an integer, which is not an aggregate.  Emit it.
2113  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2114  QualType IdxTy  = E->getIdx()->getType();
2115  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2116
2117  // If the base is a vector type, then we are forming a vector element lvalue
2118  // with this subscript.
2119  if (E->getBase()->getType()->isVectorType()) {
2120    // Emit the vector as an lvalue to get its address.
2121    LValue LHS = EmitLValue(E->getBase());
2122    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2123    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2124    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2125                                 E->getBase()->getType(), LHS.getAlignment());
2126  }
2127
2128  // Extend or truncate the index type to 32 or 64-bits.
2129  if (Idx->getType() != IntPtrTy)
2130    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2131
2132  // We know that the pointer points to a type of the correct size, unless the
2133  // size is a VLA or Objective-C interface.
2134  llvm::Value *Address = 0;
2135  CharUnits ArrayAlignment;
2136  if (const VariableArrayType *vla =
2137        getContext().getAsVariableArrayType(E->getType())) {
2138    // The base must be a pointer, which is not an aggregate.  Emit
2139    // it.  It needs to be emitted first in case it's what captures
2140    // the VLA bounds.
2141    Address = EmitScalarExpr(E->getBase());
2142
2143    // The element count here is the total number of non-VLA elements.
2144    llvm::Value *numElements = getVLASize(vla).first;
2145
2146    // Effectively, the multiply by the VLA size is part of the GEP.
2147    // GEP indexes are signed, and scaling an index isn't permitted to
2148    // signed-overflow, so we use the same semantics for our explicit
2149    // multiply.  We suppress this if overflow is not undefined behavior.
2150    if (getLangOpts().isSignedOverflowDefined()) {
2151      Idx = Builder.CreateMul(Idx, numElements);
2152      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2153    } else {
2154      Idx = Builder.CreateNSWMul(Idx, numElements);
2155      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2156    }
2157  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2158    // Indexing over an interface, as in "NSString *P; P[4];"
2159    llvm::Value *InterfaceSize =
2160      llvm::ConstantInt::get(Idx->getType(),
2161          getContext().getTypeSizeInChars(OIT).getQuantity());
2162
2163    Idx = Builder.CreateMul(Idx, InterfaceSize);
2164
2165    // The base must be a pointer, which is not an aggregate.  Emit it.
2166    llvm::Value *Base = EmitScalarExpr(E->getBase());
2167    Address = EmitCastToVoidPtr(Base);
2168    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2169    Address = Builder.CreateBitCast(Address, Base->getType());
2170  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2171    // If this is A[i] where A is an array, the frontend will have decayed the
2172    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2173    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2174    // "gep x, i" here.  Emit one "gep A, 0, i".
2175    assert(Array->getType()->isArrayType() &&
2176           "Array to pointer decay must have array source type!");
2177    LValue ArrayLV = EmitLValue(Array);
2178    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2179    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2180    llvm::Value *Args[] = { Zero, Idx };
2181
2182    // Propagate the alignment from the array itself to the result.
2183    ArrayAlignment = ArrayLV.getAlignment();
2184
2185    if (getContext().getLangOpts().isSignedOverflowDefined())
2186      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2187    else
2188      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2189  } else {
2190    // The base must be a pointer, which is not an aggregate.  Emit it.
2191    llvm::Value *Base = EmitScalarExpr(E->getBase());
2192    if (getContext().getLangOpts().isSignedOverflowDefined())
2193      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2194    else
2195      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2196  }
2197
2198  QualType T = E->getBase()->getType()->getPointeeType();
2199  assert(!T.isNull() &&
2200         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2201
2202
2203  // Limit the alignment to that of the result type.
2204  LValue LV;
2205  if (!ArrayAlignment.isZero()) {
2206    CharUnits Align = getContext().getTypeAlignInChars(T);
2207    ArrayAlignment = std::min(Align, ArrayAlignment);
2208    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2209  } else {
2210    LV = MakeNaturalAlignAddrLValue(Address, T);
2211  }
2212
2213  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2214
2215  if (getContext().getLangOpts().ObjC1 &&
2216      getContext().getLangOpts().getGC() != LangOptions::NonGC) {
2217    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2218    setObjCGCLValueClass(getContext(), E, LV);
2219  }
2220  return LV;
2221}
2222
2223static
2224llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2225                                       SmallVector<unsigned, 4> &Elts) {
2226  SmallVector<llvm::Constant*, 4> CElts;
2227  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2228    CElts.push_back(Builder.getInt32(Elts[i]));
2229
2230  return llvm::ConstantVector::get(CElts);
2231}
2232
2233LValue CodeGenFunction::
2234EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2235  // Emit the base vector as an l-value.
2236  LValue Base;
2237
2238  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2239  if (E->isArrow()) {
2240    // If it is a pointer to a vector, emit the address and form an lvalue with
2241    // it.
2242    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2243    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2244    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2245    Base.getQuals().removeObjCGCAttr();
2246  } else if (E->getBase()->isGLValue()) {
2247    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2248    // emit the base as an lvalue.
2249    assert(E->getBase()->getType()->isVectorType());
2250    Base = EmitLValue(E->getBase());
2251  } else {
2252    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2253    assert(E->getBase()->getType()->isVectorType() &&
2254           "Result must be a vector");
2255    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2256
2257    // Store the vector to memory (because LValue wants an address).
2258    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2259    Builder.CreateStore(Vec, VecMem);
2260    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2261  }
2262
2263  QualType type =
2264    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2265
2266  // Encode the element access list into a vector of unsigned indices.
2267  SmallVector<unsigned, 4> Indices;
2268  E->getEncodedElementAccess(Indices);
2269
2270  if (Base.isSimple()) {
2271    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2272    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2273                                    Base.getAlignment());
2274  }
2275  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2276
2277  llvm::Constant *BaseElts = Base.getExtVectorElts();
2278  SmallVector<llvm::Constant *, 4> CElts;
2279
2280  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2281    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2282  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2283  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2284                                  Base.getAlignment());
2285}
2286
2287LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2288  Expr *BaseExpr = E->getBase();
2289
2290  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2291  LValue BaseLV;
2292  if (E->isArrow()) {
2293    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2294    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2295    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2296    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2297  } else
2298    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2299
2300  NamedDecl *ND = E->getMemberDecl();
2301  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2302    LValue LV = EmitLValueForField(BaseLV, Field);
2303    setObjCGCLValueClass(getContext(), E, LV);
2304    return LV;
2305  }
2306
2307  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2308    return EmitGlobalVarDeclLValue(*this, E, VD);
2309
2310  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2311    return EmitFunctionDeclLValue(*this, E, FD);
2312
2313  llvm_unreachable("Unhandled member declaration!");
2314}
2315
2316LValue CodeGenFunction::EmitLValueForField(LValue base,
2317                                           const FieldDecl *field) {
2318  if (field->isBitField()) {
2319    const CGRecordLayout &RL =
2320      CGM.getTypes().getCGRecordLayout(field->getParent());
2321    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2322    QualType fieldType =
2323      field->getType().withCVRQualifiers(base.getVRQualifiers());
2324    return LValue::MakeBitfield(base.getAddress(), Info, fieldType,
2325                                base.getAlignment());
2326  }
2327
2328  const RecordDecl *rec = field->getParent();
2329  QualType type = field->getType();
2330  CharUnits alignment = getContext().getDeclAlign(field);
2331
2332  // FIXME: It should be impossible to have an LValue without alignment for a
2333  // complete type.
2334  if (!base.getAlignment().isZero())
2335    alignment = std::min(alignment, base.getAlignment());
2336
2337  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2338
2339  llvm::Value *addr = base.getAddress();
2340  unsigned cvr = base.getVRQualifiers();
2341  if (rec->isUnion()) {
2342    // For unions, there is no pointer adjustment.
2343    assert(!type->isReferenceType() && "union has reference member");
2344  } else {
2345    // For structs, we GEP to the field that the record layout suggests.
2346    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2347    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2348
2349    // If this is a reference field, load the reference right now.
2350    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2351      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2352      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2353      load->setAlignment(alignment.getQuantity());
2354
2355      if (CGM.shouldUseTBAA()) {
2356        llvm::MDNode *tbaa;
2357        if (mayAlias)
2358          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2359        else
2360          tbaa = CGM.getTBAAInfo(type);
2361        CGM.DecorateInstruction(load, tbaa);
2362      }
2363
2364      addr = load;
2365      mayAlias = false;
2366      type = refType->getPointeeType();
2367      if (type->isIncompleteType())
2368        alignment = CharUnits();
2369      else
2370        alignment = getContext().getTypeAlignInChars(type);
2371      cvr = 0; // qualifiers don't recursively apply to referencee
2372    }
2373  }
2374
2375  // Make sure that the address is pointing to the right type.  This is critical
2376  // for both unions and structs.  A union needs a bitcast, a struct element
2377  // will need a bitcast if the LLVM type laid out doesn't match the desired
2378  // type.
2379  addr = EmitBitCastOfLValueToProperType(*this, addr,
2380                                         CGM.getTypes().ConvertTypeForMem(type),
2381                                         field->getName());
2382
2383  if (field->hasAttr<AnnotateAttr>())
2384    addr = EmitFieldAnnotations(field, addr);
2385
2386  LValue LV = MakeAddrLValue(addr, type, alignment);
2387  LV.getQuals().addCVRQualifiers(cvr);
2388
2389  // __weak attribute on a field is ignored.
2390  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2391    LV.getQuals().removeObjCGCAttr();
2392
2393  // Fields of may_alias structs act like 'char' for TBAA purposes.
2394  // FIXME: this should get propagated down through anonymous structs
2395  // and unions.
2396  if (mayAlias && LV.getTBAAInfo())
2397    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2398
2399  return LV;
2400}
2401
2402LValue
2403CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2404                                                  const FieldDecl *Field) {
2405  QualType FieldType = Field->getType();
2406
2407  if (!FieldType->isReferenceType())
2408    return EmitLValueForField(Base, Field);
2409
2410  const CGRecordLayout &RL =
2411    CGM.getTypes().getCGRecordLayout(Field->getParent());
2412  unsigned idx = RL.getLLVMFieldNo(Field);
2413  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2414  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2415
2416  // Make sure that the address is pointing to the right type.  This is critical
2417  // for both unions and structs.  A union needs a bitcast, a struct element
2418  // will need a bitcast if the LLVM type laid out doesn't match the desired
2419  // type.
2420  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2421  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2422
2423  CharUnits Alignment = getContext().getDeclAlign(Field);
2424
2425  // FIXME: It should be impossible to have an LValue without alignment for a
2426  // complete type.
2427  if (!Base.getAlignment().isZero())
2428    Alignment = std::min(Alignment, Base.getAlignment());
2429
2430  return MakeAddrLValue(V, FieldType, Alignment);
2431}
2432
2433LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2434  if (E->isFileScope()) {
2435    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2436    return MakeAddrLValue(GlobalPtr, E->getType());
2437  }
2438  if (E->getType()->isVariablyModifiedType())
2439    // make sure to emit the VLA size.
2440    EmitVariablyModifiedType(E->getType());
2441
2442  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2443  const Expr *InitExpr = E->getInitializer();
2444  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2445
2446  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2447                   /*Init*/ true);
2448
2449  return Result;
2450}
2451
2452LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2453  if (!E->isGLValue())
2454    // Initializing an aggregate temporary in C++11: T{...}.
2455    return EmitAggExprToLValue(E);
2456
2457  // An lvalue initializer list must be initializing a reference.
2458  assert(E->getNumInits() == 1 && "reference init with multiple values");
2459  return EmitLValue(E->getInit(0));
2460}
2461
2462LValue CodeGenFunction::
2463EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2464  if (!expr->isGLValue()) {
2465    // ?: here should be an aggregate.
2466    assert((hasAggregateLLVMType(expr->getType()) &&
2467            !expr->getType()->isAnyComplexType()) &&
2468           "Unexpected conditional operator!");
2469    return EmitAggExprToLValue(expr);
2470  }
2471
2472  OpaqueValueMapping binding(*this, expr);
2473
2474  const Expr *condExpr = expr->getCond();
2475  bool CondExprBool;
2476  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2477    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2478    if (!CondExprBool) std::swap(live, dead);
2479
2480    if (!ContainsLabel(dead))
2481      return EmitLValue(live);
2482  }
2483
2484  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2485  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2486  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2487
2488  ConditionalEvaluation eval(*this);
2489  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2490
2491  // Any temporaries created here are conditional.
2492  EmitBlock(lhsBlock);
2493  eval.begin(*this);
2494  LValue lhs = EmitLValue(expr->getTrueExpr());
2495  eval.end(*this);
2496
2497  if (!lhs.isSimple())
2498    return EmitUnsupportedLValue(expr, "conditional operator");
2499
2500  lhsBlock = Builder.GetInsertBlock();
2501  Builder.CreateBr(contBlock);
2502
2503  // Any temporaries created here are conditional.
2504  EmitBlock(rhsBlock);
2505  eval.begin(*this);
2506  LValue rhs = EmitLValue(expr->getFalseExpr());
2507  eval.end(*this);
2508  if (!rhs.isSimple())
2509    return EmitUnsupportedLValue(expr, "conditional operator");
2510  rhsBlock = Builder.GetInsertBlock();
2511
2512  EmitBlock(contBlock);
2513
2514  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2515                                         "cond-lvalue");
2516  phi->addIncoming(lhs.getAddress(), lhsBlock);
2517  phi->addIncoming(rhs.getAddress(), rhsBlock);
2518  return MakeAddrLValue(phi, expr->getType());
2519}
2520
2521/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2522/// type. If the cast is to a reference, we can have the usual lvalue result,
2523/// otherwise if a cast is needed by the code generator in an lvalue context,
2524/// then it must mean that we need the address of an aggregate in order to
2525/// access one of its members.  This can happen for all the reasons that casts
2526/// are permitted with aggregate result, including noop aggregate casts, and
2527/// cast from scalar to union.
2528LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2529  switch (E->getCastKind()) {
2530  case CK_ToVoid:
2531    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2532
2533  case CK_Dependent:
2534    llvm_unreachable("dependent cast kind in IR gen!");
2535
2536  case CK_BuiltinFnToFnPtr:
2537    llvm_unreachable("builtin functions are handled elsewhere");
2538
2539  // These two casts are currently treated as no-ops, although they could
2540  // potentially be real operations depending on the target's ABI.
2541  case CK_NonAtomicToAtomic:
2542  case CK_AtomicToNonAtomic:
2543
2544  case CK_NoOp:
2545  case CK_LValueToRValue:
2546    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2547        || E->getType()->isRecordType())
2548      return EmitLValue(E->getSubExpr());
2549    // Fall through to synthesize a temporary.
2550
2551  case CK_BitCast:
2552  case CK_ArrayToPointerDecay:
2553  case CK_FunctionToPointerDecay:
2554  case CK_NullToMemberPointer:
2555  case CK_NullToPointer:
2556  case CK_IntegralToPointer:
2557  case CK_PointerToIntegral:
2558  case CK_PointerToBoolean:
2559  case CK_VectorSplat:
2560  case CK_IntegralCast:
2561  case CK_IntegralToBoolean:
2562  case CK_IntegralToFloating:
2563  case CK_FloatingToIntegral:
2564  case CK_FloatingToBoolean:
2565  case CK_FloatingCast:
2566  case CK_FloatingRealToComplex:
2567  case CK_FloatingComplexToReal:
2568  case CK_FloatingComplexToBoolean:
2569  case CK_FloatingComplexCast:
2570  case CK_FloatingComplexToIntegralComplex:
2571  case CK_IntegralRealToComplex:
2572  case CK_IntegralComplexToReal:
2573  case CK_IntegralComplexToBoolean:
2574  case CK_IntegralComplexCast:
2575  case CK_IntegralComplexToFloatingComplex:
2576  case CK_DerivedToBaseMemberPointer:
2577  case CK_BaseToDerivedMemberPointer:
2578  case CK_MemberPointerToBoolean:
2579  case CK_ReinterpretMemberPointer:
2580  case CK_AnyPointerToBlockPointerCast:
2581  case CK_ARCProduceObject:
2582  case CK_ARCConsumeObject:
2583  case CK_ARCReclaimReturnedObject:
2584  case CK_ARCExtendBlockObject:
2585  case CK_CopyAndAutoreleaseBlockObject: {
2586    // These casts only produce lvalues when we're binding a reference to a
2587    // temporary realized from a (converted) pure rvalue. Emit the expression
2588    // as a value, copy it into a temporary, and return an lvalue referring to
2589    // that temporary.
2590    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2591    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2592    return MakeAddrLValue(V, E->getType());
2593  }
2594
2595  case CK_Dynamic: {
2596    LValue LV = EmitLValue(E->getSubExpr());
2597    llvm::Value *V = LV.getAddress();
2598    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2599    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2600  }
2601
2602  case CK_ConstructorConversion:
2603  case CK_UserDefinedConversion:
2604  case CK_CPointerToObjCPointerCast:
2605  case CK_BlockPointerToObjCPointerCast:
2606    return EmitLValue(E->getSubExpr());
2607
2608  case CK_UncheckedDerivedToBase:
2609  case CK_DerivedToBase: {
2610    const RecordType *DerivedClassTy =
2611      E->getSubExpr()->getType()->getAs<RecordType>();
2612    CXXRecordDecl *DerivedClassDecl =
2613      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2614
2615    LValue LV = EmitLValue(E->getSubExpr());
2616    llvm::Value *This = LV.getAddress();
2617
2618    // Perform the derived-to-base conversion
2619    llvm::Value *Base =
2620      GetAddressOfBaseClass(This, DerivedClassDecl,
2621                            E->path_begin(), E->path_end(),
2622                            /*NullCheckValue=*/false);
2623
2624    return MakeAddrLValue(Base, E->getType());
2625  }
2626  case CK_ToUnion:
2627    return EmitAggExprToLValue(E);
2628  case CK_BaseToDerived: {
2629    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2630    CXXRecordDecl *DerivedClassDecl =
2631      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2632
2633    LValue LV = EmitLValue(E->getSubExpr());
2634
2635    // Perform the base-to-derived conversion
2636    llvm::Value *Derived =
2637      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2638                               E->path_begin(), E->path_end(),
2639                               /*NullCheckValue=*/false);
2640
2641    return MakeAddrLValue(Derived, E->getType());
2642  }
2643  case CK_LValueBitCast: {
2644    // This must be a reinterpret_cast (or c-style equivalent).
2645    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2646
2647    LValue LV = EmitLValue(E->getSubExpr());
2648    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2649                                           ConvertType(CE->getTypeAsWritten()));
2650    return MakeAddrLValue(V, E->getType());
2651  }
2652  case CK_ObjCObjectLValueCast: {
2653    LValue LV = EmitLValue(E->getSubExpr());
2654    QualType ToType = getContext().getLValueReferenceType(E->getType());
2655    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2656                                           ConvertType(ToType));
2657    return MakeAddrLValue(V, E->getType());
2658  }
2659  }
2660
2661  llvm_unreachable("Unhandled lvalue cast kind?");
2662}
2663
2664LValue CodeGenFunction::EmitNullInitializationLValue(
2665                                              const CXXScalarValueInitExpr *E) {
2666  QualType Ty = E->getType();
2667  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2668  EmitNullInitialization(LV.getAddress(), Ty);
2669  return LV;
2670}
2671
2672LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2673  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2674  return getOpaqueLValueMapping(e);
2675}
2676
2677LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2678                                           const MaterializeTemporaryExpr *E) {
2679  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2680  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2681}
2682
2683RValue CodeGenFunction::EmitRValueForField(LValue LV,
2684                                           const FieldDecl *FD) {
2685  QualType FT = FD->getType();
2686  LValue FieldLV = EmitLValueForField(LV, FD);
2687  if (FT->isAnyComplexType())
2688    return RValue::getComplex(
2689        LoadComplexFromAddr(FieldLV.getAddress(),
2690                            FieldLV.isVolatileQualified()));
2691  else if (CodeGenFunction::hasAggregateLLVMType(FT))
2692    return FieldLV.asAggregateRValue();
2693
2694  return EmitLoadOfLValue(FieldLV);
2695}
2696
2697//===--------------------------------------------------------------------===//
2698//                             Expression Emission
2699//===--------------------------------------------------------------------===//
2700
2701RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2702                                     ReturnValueSlot ReturnValue) {
2703  if (CGDebugInfo *DI = getDebugInfo())
2704    DI->EmitLocation(Builder, E->getLocStart());
2705
2706  // Builtins never have block type.
2707  if (E->getCallee()->getType()->isBlockPointerType())
2708    return EmitBlockCallExpr(E, ReturnValue);
2709
2710  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2711    return EmitCXXMemberCallExpr(CE, ReturnValue);
2712
2713  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2714    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2715
2716  const Decl *TargetDecl = E->getCalleeDecl();
2717  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2718    if (unsigned builtinID = FD->getBuiltinID())
2719      return EmitBuiltinExpr(FD, builtinID, E);
2720  }
2721
2722  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2723    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2724      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2725
2726  if (const CXXPseudoDestructorExpr *PseudoDtor
2727          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2728    QualType DestroyedType = PseudoDtor->getDestroyedType();
2729    if (getContext().getLangOpts().ObjCAutoRefCount &&
2730        DestroyedType->isObjCLifetimeType() &&
2731        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2732         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2733      // Automatic Reference Counting:
2734      //   If the pseudo-expression names a retainable object with weak or
2735      //   strong lifetime, the object shall be released.
2736      Expr *BaseExpr = PseudoDtor->getBase();
2737      llvm::Value *BaseValue = NULL;
2738      Qualifiers BaseQuals;
2739
2740      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2741      if (PseudoDtor->isArrow()) {
2742        BaseValue = EmitScalarExpr(BaseExpr);
2743        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2744        BaseQuals = PTy->getPointeeType().getQualifiers();
2745      } else {
2746        LValue BaseLV = EmitLValue(BaseExpr);
2747        BaseValue = BaseLV.getAddress();
2748        QualType BaseTy = BaseExpr->getType();
2749        BaseQuals = BaseTy.getQualifiers();
2750      }
2751
2752      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2753      case Qualifiers::OCL_None:
2754      case Qualifiers::OCL_ExplicitNone:
2755      case Qualifiers::OCL_Autoreleasing:
2756        break;
2757
2758      case Qualifiers::OCL_Strong:
2759        EmitARCRelease(Builder.CreateLoad(BaseValue,
2760                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2761                       /*precise*/ true);
2762        break;
2763
2764      case Qualifiers::OCL_Weak:
2765        EmitARCDestroyWeak(BaseValue);
2766        break;
2767      }
2768    } else {
2769      // C++ [expr.pseudo]p1:
2770      //   The result shall only be used as the operand for the function call
2771      //   operator (), and the result of such a call has type void. The only
2772      //   effect is the evaluation of the postfix-expression before the dot or
2773      //   arrow.
2774      EmitScalarExpr(E->getCallee());
2775    }
2776
2777    return RValue::get(0);
2778  }
2779
2780  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2781  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2782                  E->arg_begin(), E->arg_end(), TargetDecl);
2783}
2784
2785LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2786  // Comma expressions just emit their LHS then their RHS as an l-value.
2787  if (E->getOpcode() == BO_Comma) {
2788    EmitIgnoredExpr(E->getLHS());
2789    EnsureInsertPoint();
2790    return EmitLValue(E->getRHS());
2791  }
2792
2793  if (E->getOpcode() == BO_PtrMemD ||
2794      E->getOpcode() == BO_PtrMemI)
2795    return EmitPointerToDataMemberBinaryExpr(E);
2796
2797  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2798
2799  // Note that in all of these cases, __block variables need the RHS
2800  // evaluated first just in case the variable gets moved by the RHS.
2801
2802  if (!hasAggregateLLVMType(E->getType())) {
2803    switch (E->getLHS()->getType().getObjCLifetime()) {
2804    case Qualifiers::OCL_Strong:
2805      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2806
2807    case Qualifiers::OCL_Autoreleasing:
2808      return EmitARCStoreAutoreleasing(E).first;
2809
2810    // No reason to do any of these differently.
2811    case Qualifiers::OCL_None:
2812    case Qualifiers::OCL_ExplicitNone:
2813    case Qualifiers::OCL_Weak:
2814      break;
2815    }
2816
2817    RValue RV = EmitAnyExpr(E->getRHS());
2818    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2819    EmitStoreThroughLValue(RV, LV);
2820    return LV;
2821  }
2822
2823  if (E->getType()->isAnyComplexType())
2824    return EmitComplexAssignmentLValue(E);
2825
2826  return EmitAggExprToLValue(E);
2827}
2828
2829LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2830  RValue RV = EmitCallExpr(E);
2831
2832  if (!RV.isScalar())
2833    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2834
2835  assert(E->getCallReturnType()->isReferenceType() &&
2836         "Can't have a scalar return unless the return type is a "
2837         "reference type!");
2838
2839  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2840}
2841
2842LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2843  // FIXME: This shouldn't require another copy.
2844  return EmitAggExprToLValue(E);
2845}
2846
2847LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2848  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2849         && "binding l-value to type which needs a temporary");
2850  AggValueSlot Slot = CreateAggTemp(E->getType());
2851  EmitCXXConstructExpr(E, Slot);
2852  return MakeAddrLValue(Slot.getAddr(), E->getType());
2853}
2854
2855LValue
2856CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2857  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2858}
2859
2860LValue
2861CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2862  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2863  Slot.setExternallyDestructed();
2864  EmitAggExpr(E->getSubExpr(), Slot);
2865  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2866  return MakeAddrLValue(Slot.getAddr(), E->getType());
2867}
2868
2869LValue
2870CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2871  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2872  EmitLambdaExpr(E, Slot);
2873  return MakeAddrLValue(Slot.getAddr(), E->getType());
2874}
2875
2876LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2877  RValue RV = EmitObjCMessageExpr(E);
2878
2879  if (!RV.isScalar())
2880    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2881
2882  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2883         "Can't have a scalar return unless the return type is a "
2884         "reference type!");
2885
2886  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2887}
2888
2889LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2890  llvm::Value *V =
2891    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2892  return MakeAddrLValue(V, E->getType());
2893}
2894
2895llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2896                                             const ObjCIvarDecl *Ivar) {
2897  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2898}
2899
2900LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2901                                          llvm::Value *BaseValue,
2902                                          const ObjCIvarDecl *Ivar,
2903                                          unsigned CVRQualifiers) {
2904  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2905                                                   Ivar, CVRQualifiers);
2906}
2907
2908LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2909  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2910  llvm::Value *BaseValue = 0;
2911  const Expr *BaseExpr = E->getBase();
2912  Qualifiers BaseQuals;
2913  QualType ObjectTy;
2914  if (E->isArrow()) {
2915    BaseValue = EmitScalarExpr(BaseExpr);
2916    ObjectTy = BaseExpr->getType()->getPointeeType();
2917    BaseQuals = ObjectTy.getQualifiers();
2918  } else {
2919    LValue BaseLV = EmitLValue(BaseExpr);
2920    // FIXME: this isn't right for bitfields.
2921    BaseValue = BaseLV.getAddress();
2922    ObjectTy = BaseExpr->getType();
2923    BaseQuals = ObjectTy.getQualifiers();
2924  }
2925
2926  LValue LV =
2927    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2928                      BaseQuals.getCVRQualifiers());
2929  setObjCGCLValueClass(getContext(), E, LV);
2930  return LV;
2931}
2932
2933LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2934  // Can only get l-value for message expression returning aggregate type
2935  RValue RV = EmitAnyExprToTemp(E);
2936  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2937}
2938
2939RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2940                                 ReturnValueSlot ReturnValue,
2941                                 CallExpr::const_arg_iterator ArgBeg,
2942                                 CallExpr::const_arg_iterator ArgEnd,
2943                                 const Decl *TargetDecl) {
2944  // Get the actual function type. The callee type will always be a pointer to
2945  // function type or a block pointer type.
2946  assert(CalleeType->isFunctionPointerType() &&
2947         "Call must have function pointer type!");
2948
2949  CalleeType = getContext().getCanonicalType(CalleeType);
2950
2951  const FunctionType *FnType
2952    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2953
2954  CallArgList Args;
2955  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2956
2957  const CGFunctionInfo &FnInfo =
2958    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2959
2960  // C99 6.5.2.2p6:
2961  //   If the expression that denotes the called function has a type
2962  //   that does not include a prototype, [the default argument
2963  //   promotions are performed]. If the number of arguments does not
2964  //   equal the number of parameters, the behavior is undefined. If
2965  //   the function is defined with a type that includes a prototype,
2966  //   and either the prototype ends with an ellipsis (, ...) or the
2967  //   types of the arguments after promotion are not compatible with
2968  //   the types of the parameters, the behavior is undefined. If the
2969  //   function is defined with a type that does not include a
2970  //   prototype, and the types of the arguments after promotion are
2971  //   not compatible with those of the parameters after promotion,
2972  //   the behavior is undefined [except in some trivial cases].
2973  // That is, in the general case, we should assume that a call
2974  // through an unprototyped function type works like a *non-variadic*
2975  // call.  The way we make this work is to cast to the exact type
2976  // of the promoted arguments.
2977  if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2978    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2979    CalleeTy = CalleeTy->getPointerTo();
2980    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2981  }
2982
2983  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2984}
2985
2986LValue CodeGenFunction::
2987EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2988  llvm::Value *BaseV;
2989  if (E->getOpcode() == BO_PtrMemI)
2990    BaseV = EmitScalarExpr(E->getLHS());
2991  else
2992    BaseV = EmitLValue(E->getLHS()).getAddress();
2993
2994  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2995
2996  const MemberPointerType *MPT
2997    = E->getRHS()->getType()->getAs<MemberPointerType>();
2998
2999  llvm::Value *AddV =
3000    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3001
3002  return MakeAddrLValue(AddV, MPT->getPointeeType());
3003}
3004
3005static void
3006EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
3007             llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
3008             uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
3009  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
3010  llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
3011
3012  switch (E->getOp()) {
3013  case AtomicExpr::AO__c11_atomic_init:
3014    llvm_unreachable("Already handled!");
3015
3016  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3017  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3018  case AtomicExpr::AO__atomic_compare_exchange:
3019  case AtomicExpr::AO__atomic_compare_exchange_n: {
3020    // Note that cmpxchg only supports specifying one ordering and
3021    // doesn't support weak cmpxchg, at least at the moment.
3022    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3023    LoadVal1->setAlignment(Align);
3024    llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
3025    LoadVal2->setAlignment(Align);
3026    llvm::AtomicCmpXchgInst *CXI =
3027        CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
3028    CXI->setVolatile(E->isVolatile());
3029    llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
3030    StoreVal1->setAlignment(Align);
3031    llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
3032    CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
3033    return;
3034  }
3035
3036  case AtomicExpr::AO__c11_atomic_load:
3037  case AtomicExpr::AO__atomic_load_n:
3038  case AtomicExpr::AO__atomic_load: {
3039    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
3040    Load->setAtomic(Order);
3041    Load->setAlignment(Size);
3042    Load->setVolatile(E->isVolatile());
3043    llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
3044    StoreDest->setAlignment(Align);
3045    return;
3046  }
3047
3048  case AtomicExpr::AO__c11_atomic_store:
3049  case AtomicExpr::AO__atomic_store:
3050  case AtomicExpr::AO__atomic_store_n: {
3051    assert(!Dest && "Store does not return a value");
3052    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3053    LoadVal1->setAlignment(Align);
3054    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
3055    Store->setAtomic(Order);
3056    Store->setAlignment(Size);
3057    Store->setVolatile(E->isVolatile());
3058    return;
3059  }
3060
3061  case AtomicExpr::AO__c11_atomic_exchange:
3062  case AtomicExpr::AO__atomic_exchange_n:
3063  case AtomicExpr::AO__atomic_exchange:
3064    Op = llvm::AtomicRMWInst::Xchg;
3065    break;
3066
3067  case AtomicExpr::AO__atomic_add_fetch:
3068    PostOp = llvm::Instruction::Add;
3069    // Fall through.
3070  case AtomicExpr::AO__c11_atomic_fetch_add:
3071  case AtomicExpr::AO__atomic_fetch_add:
3072    Op = llvm::AtomicRMWInst::Add;
3073    break;
3074
3075  case AtomicExpr::AO__atomic_sub_fetch:
3076    PostOp = llvm::Instruction::Sub;
3077    // Fall through.
3078  case AtomicExpr::AO__c11_atomic_fetch_sub:
3079  case AtomicExpr::AO__atomic_fetch_sub:
3080    Op = llvm::AtomicRMWInst::Sub;
3081    break;
3082
3083  case AtomicExpr::AO__atomic_and_fetch:
3084    PostOp = llvm::Instruction::And;
3085    // Fall through.
3086  case AtomicExpr::AO__c11_atomic_fetch_and:
3087  case AtomicExpr::AO__atomic_fetch_and:
3088    Op = llvm::AtomicRMWInst::And;
3089    break;
3090
3091  case AtomicExpr::AO__atomic_or_fetch:
3092    PostOp = llvm::Instruction::Or;
3093    // Fall through.
3094  case AtomicExpr::AO__c11_atomic_fetch_or:
3095  case AtomicExpr::AO__atomic_fetch_or:
3096    Op = llvm::AtomicRMWInst::Or;
3097    break;
3098
3099  case AtomicExpr::AO__atomic_xor_fetch:
3100    PostOp = llvm::Instruction::Xor;
3101    // Fall through.
3102  case AtomicExpr::AO__c11_atomic_fetch_xor:
3103  case AtomicExpr::AO__atomic_fetch_xor:
3104    Op = llvm::AtomicRMWInst::Xor;
3105    break;
3106
3107  case AtomicExpr::AO__atomic_nand_fetch:
3108    PostOp = llvm::Instruction::And;
3109    // Fall through.
3110  case AtomicExpr::AO__atomic_fetch_nand:
3111    Op = llvm::AtomicRMWInst::Nand;
3112    break;
3113  }
3114
3115  llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3116  LoadVal1->setAlignment(Align);
3117  llvm::AtomicRMWInst *RMWI =
3118      CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
3119  RMWI->setVolatile(E->isVolatile());
3120
3121  // For __atomic_*_fetch operations, perform the operation again to
3122  // determine the value which was written.
3123  llvm::Value *Result = RMWI;
3124  if (PostOp)
3125    Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
3126  if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
3127    Result = CGF.Builder.CreateNot(Result);
3128  llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
3129  StoreDest->setAlignment(Align);
3130}
3131
3132// This function emits any expression (scalar, complex, or aggregate)
3133// into a temporary alloca.
3134static llvm::Value *
3135EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
3136  llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
3137  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3138                       /*Init*/ true);
3139  return DeclPtr;
3140}
3141
3142static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3143                                  llvm::Value *Dest) {
3144  if (Ty->isAnyComplexType())
3145    return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3146  if (CGF.hasAggregateLLVMType(Ty))
3147    return RValue::getAggregate(Dest);
3148  return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3149}
3150
3151RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3152  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3153  QualType MemTy = AtomicTy;
3154  if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3155    MemTy = AT->getValueType();
3156  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3157  uint64_t Size = sizeChars.getQuantity();
3158  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3159  unsigned Align = alignChars.getQuantity();
3160  unsigned MaxInlineWidth =
3161      getContext().getTargetInfo().getMaxAtomicInlineWidth();
3162  bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
3163
3164
3165
3166  llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3167  Ptr = EmitScalarExpr(E->getPtr());
3168
3169  if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3170    assert(!Dest && "Init does not return a value");
3171    if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3172      QualType PointeeType
3173        = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3174      EmitScalarInit(EmitScalarExpr(E->getVal1()),
3175                     LValue::MakeAddr(Ptr, PointeeType, alignChars,
3176                                      getContext()));
3177    } else if (E->getType()->isAnyComplexType()) {
3178      EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3179    } else {
3180      AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3181                                        AtomicTy.getQualifiers(),
3182                                        AggValueSlot::IsNotDestructed,
3183                                        AggValueSlot::DoesNotNeedGCBarriers,
3184                                        AggValueSlot::IsNotAliased);
3185      EmitAggExpr(E->getVal1(), Slot);
3186    }
3187    return RValue::get(0);
3188  }
3189
3190  Order = EmitScalarExpr(E->getOrder());
3191
3192  switch (E->getOp()) {
3193  case AtomicExpr::AO__c11_atomic_init:
3194    llvm_unreachable("Already handled!");
3195
3196  case AtomicExpr::AO__c11_atomic_load:
3197  case AtomicExpr::AO__atomic_load_n:
3198    break;
3199
3200  case AtomicExpr::AO__atomic_load:
3201    Dest = EmitScalarExpr(E->getVal1());
3202    break;
3203
3204  case AtomicExpr::AO__atomic_store:
3205    Val1 = EmitScalarExpr(E->getVal1());
3206    break;
3207
3208  case AtomicExpr::AO__atomic_exchange:
3209    Val1 = EmitScalarExpr(E->getVal1());
3210    Dest = EmitScalarExpr(E->getVal2());
3211    break;
3212
3213  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3214  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3215  case AtomicExpr::AO__atomic_compare_exchange_n:
3216  case AtomicExpr::AO__atomic_compare_exchange:
3217    Val1 = EmitScalarExpr(E->getVal1());
3218    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3219      Val2 = EmitScalarExpr(E->getVal2());
3220    else
3221      Val2 = EmitValToTemp(*this, E->getVal2());
3222    OrderFail = EmitScalarExpr(E->getOrderFail());
3223    // Evaluate and discard the 'weak' argument.
3224    if (E->getNumSubExprs() == 6)
3225      EmitScalarExpr(E->getWeak());
3226    break;
3227
3228  case AtomicExpr::AO__c11_atomic_fetch_add:
3229  case AtomicExpr::AO__c11_atomic_fetch_sub:
3230    if (MemTy->isPointerType()) {
3231      // For pointer arithmetic, we're required to do a bit of math:
3232      // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3233      // ... but only for the C11 builtins. The GNU builtins expect the
3234      // user to multiply by sizeof(T).
3235      QualType Val1Ty = E->getVal1()->getType();
3236      llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3237      CharUnits PointeeIncAmt =
3238          getContext().getTypeSizeInChars(MemTy->getPointeeType());
3239      Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3240      Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3241      EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3242      break;
3243    }
3244    // Fall through.
3245  case AtomicExpr::AO__atomic_fetch_add:
3246  case AtomicExpr::AO__atomic_fetch_sub:
3247  case AtomicExpr::AO__atomic_add_fetch:
3248  case AtomicExpr::AO__atomic_sub_fetch:
3249  case AtomicExpr::AO__c11_atomic_store:
3250  case AtomicExpr::AO__c11_atomic_exchange:
3251  case AtomicExpr::AO__atomic_store_n:
3252  case AtomicExpr::AO__atomic_exchange_n:
3253  case AtomicExpr::AO__c11_atomic_fetch_and:
3254  case AtomicExpr::AO__c11_atomic_fetch_or:
3255  case AtomicExpr::AO__c11_atomic_fetch_xor:
3256  case AtomicExpr::AO__atomic_fetch_and:
3257  case AtomicExpr::AO__atomic_fetch_or:
3258  case AtomicExpr::AO__atomic_fetch_xor:
3259  case AtomicExpr::AO__atomic_fetch_nand:
3260  case AtomicExpr::AO__atomic_and_fetch:
3261  case AtomicExpr::AO__atomic_or_fetch:
3262  case AtomicExpr::AO__atomic_xor_fetch:
3263  case AtomicExpr::AO__atomic_nand_fetch:
3264    Val1 = EmitValToTemp(*this, E->getVal1());
3265    break;
3266  }
3267
3268  if (!E->getType()->isVoidType() && !Dest)
3269    Dest = CreateMemTemp(E->getType(), ".atomicdst");
3270
3271  // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3272  if (UseLibcall) {
3273
3274    llvm::SmallVector<QualType, 5> Params;
3275    CallArgList Args;
3276    // Size is always the first parameter
3277    Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3278             getContext().getSizeType());
3279    // Atomic address is always the second parameter
3280    Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3281             getContext().VoidPtrTy);
3282
3283    const char* LibCallName;
3284    QualType RetTy = getContext().VoidTy;
3285    switch (E->getOp()) {
3286    // There is only one libcall for compare an exchange, because there is no
3287    // optimisation benefit possible from a libcall version of a weak compare
3288    // and exchange.
3289    // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3290    //                                void *desired, int success, int failure)
3291    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3292    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3293    case AtomicExpr::AO__atomic_compare_exchange:
3294    case AtomicExpr::AO__atomic_compare_exchange_n:
3295      LibCallName = "__atomic_compare_exchange";
3296      RetTy = getContext().BoolTy;
3297      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3298               getContext().VoidPtrTy);
3299      Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3300               getContext().VoidPtrTy);
3301      Args.add(RValue::get(Order),
3302               getContext().IntTy);
3303      Order = OrderFail;
3304      break;
3305    // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3306    //                        int order)
3307    case AtomicExpr::AO__c11_atomic_exchange:
3308    case AtomicExpr::AO__atomic_exchange_n:
3309    case AtomicExpr::AO__atomic_exchange:
3310      LibCallName = "__atomic_exchange";
3311      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3312               getContext().VoidPtrTy);
3313      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3314               getContext().VoidPtrTy);
3315      break;
3316    // void __atomic_store(size_t size, void *mem, void *val, int order)
3317    case AtomicExpr::AO__c11_atomic_store:
3318    case AtomicExpr::AO__atomic_store:
3319    case AtomicExpr::AO__atomic_store_n:
3320      LibCallName = "__atomic_store";
3321      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3322               getContext().VoidPtrTy);
3323      break;
3324    // void __atomic_load(size_t size, void *mem, void *return, int order)
3325    case AtomicExpr::AO__c11_atomic_load:
3326    case AtomicExpr::AO__atomic_load:
3327    case AtomicExpr::AO__atomic_load_n:
3328      LibCallName = "__atomic_load";
3329      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3330               getContext().VoidPtrTy);
3331      break;
3332#if 0
3333    // These are only defined for 1-16 byte integers.  It is not clear what
3334    // their semantics would be on anything else...
3335    case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3336    case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3337    case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3338    case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3339    case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3340#endif
3341    default: return EmitUnsupportedRValue(E, "atomic library call");
3342    }
3343    // order is always the last parameter
3344    Args.add(RValue::get(Order),
3345             getContext().IntTy);
3346
3347    const CGFunctionInfo &FuncInfo =
3348        CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3349            FunctionType::ExtInfo(), RequiredArgs::All);
3350    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3351    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3352    RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3353    if (E->isCmpXChg())
3354      return Res;
3355    if (E->getType()->isVoidType())
3356      return RValue::get(0);
3357    return ConvertTempToRValue(*this, E->getType(), Dest);
3358  }
3359
3360  llvm::Type *IPtrTy =
3361      llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3362  llvm::Value *OrigDest = Dest;
3363  Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3364  if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3365  if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3366  if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3367
3368  if (isa<llvm::ConstantInt>(Order)) {
3369    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3370    switch (ord) {
3371    case 0:  // memory_order_relaxed
3372      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3373                   llvm::Monotonic);
3374      break;
3375    case 1:  // memory_order_consume
3376    case 2:  // memory_order_acquire
3377      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3378                   llvm::Acquire);
3379      break;
3380    case 3:  // memory_order_release
3381      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3382                   llvm::Release);
3383      break;
3384    case 4:  // memory_order_acq_rel
3385      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3386                   llvm::AcquireRelease);
3387      break;
3388    case 5:  // memory_order_seq_cst
3389      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3390                   llvm::SequentiallyConsistent);
3391      break;
3392    default: // invalid order
3393      // We should not ever get here normally, but it's hard to
3394      // enforce that in general.
3395      break;
3396    }
3397    if (E->getType()->isVoidType())
3398      return RValue::get(0);
3399    return ConvertTempToRValue(*this, E->getType(), OrigDest);
3400  }
3401
3402  // Long case, when Order isn't obviously constant.
3403
3404  bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3405                 E->getOp() == AtomicExpr::AO__atomic_store ||
3406                 E->getOp() == AtomicExpr::AO__atomic_store_n;
3407  bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3408                E->getOp() == AtomicExpr::AO__atomic_load ||
3409                E->getOp() == AtomicExpr::AO__atomic_load_n;
3410
3411  // Create all the relevant BB's
3412  llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3413                   *AcqRelBB = 0, *SeqCstBB = 0;
3414  MonotonicBB = createBasicBlock("monotonic", CurFn);
3415  if (!IsStore)
3416    AcquireBB = createBasicBlock("acquire", CurFn);
3417  if (!IsLoad)
3418    ReleaseBB = createBasicBlock("release", CurFn);
3419  if (!IsLoad && !IsStore)
3420    AcqRelBB = createBasicBlock("acqrel", CurFn);
3421  SeqCstBB = createBasicBlock("seqcst", CurFn);
3422  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3423
3424  // Create the switch for the split
3425  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3426  // doesn't matter unless someone is crazy enough to use something that
3427  // doesn't fold to a constant for the ordering.
3428  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3429  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3430
3431  // Emit all the different atomics
3432  Builder.SetInsertPoint(MonotonicBB);
3433  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3434               llvm::Monotonic);
3435  Builder.CreateBr(ContBB);
3436  if (!IsStore) {
3437    Builder.SetInsertPoint(AcquireBB);
3438    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3439                 llvm::Acquire);
3440    Builder.CreateBr(ContBB);
3441    SI->addCase(Builder.getInt32(1), AcquireBB);
3442    SI->addCase(Builder.getInt32(2), AcquireBB);
3443  }
3444  if (!IsLoad) {
3445    Builder.SetInsertPoint(ReleaseBB);
3446    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3447                 llvm::Release);
3448    Builder.CreateBr(ContBB);
3449    SI->addCase(Builder.getInt32(3), ReleaseBB);
3450  }
3451  if (!IsLoad && !IsStore) {
3452    Builder.SetInsertPoint(AcqRelBB);
3453    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3454                 llvm::AcquireRelease);
3455    Builder.CreateBr(ContBB);
3456    SI->addCase(Builder.getInt32(4), AcqRelBB);
3457  }
3458  Builder.SetInsertPoint(SeqCstBB);
3459  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3460               llvm::SequentiallyConsistent);
3461  Builder.CreateBr(ContBB);
3462  SI->addCase(Builder.getInt32(5), SeqCstBB);
3463
3464  // Cleanup and return
3465  Builder.SetInsertPoint(ContBB);
3466  if (E->getType()->isVoidType())
3467    return RValue::get(0);
3468  return ConvertTempToRValue(*this, E->getType(), OrigDest);
3469}
3470
3471void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3472  assert(Val->getType()->isFPOrFPVectorTy());
3473  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3474    return;
3475
3476  llvm::MDBuilder MDHelper(getLLVMContext());
3477  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3478
3479  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3480}
3481
3482namespace {
3483  struct LValueOrRValue {
3484    LValue LV;
3485    RValue RV;
3486  };
3487}
3488
3489static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3490                                           const PseudoObjectExpr *E,
3491                                           bool forLValue,
3492                                           AggValueSlot slot) {
3493  llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3494
3495  // Find the result expression, if any.
3496  const Expr *resultExpr = E->getResultExpr();
3497  LValueOrRValue result;
3498
3499  for (PseudoObjectExpr::const_semantics_iterator
3500         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3501    const Expr *semantic = *i;
3502
3503    // If this semantic expression is an opaque value, bind it
3504    // to the result of its source expression.
3505    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3506
3507      // If this is the result expression, we may need to evaluate
3508      // directly into the slot.
3509      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3510      OVMA opaqueData;
3511      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3512          CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3513          !ov->getType()->isAnyComplexType()) {
3514        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3515
3516        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3517        opaqueData = OVMA::bind(CGF, ov, LV);
3518        result.RV = slot.asRValue();
3519
3520      // Otherwise, emit as normal.
3521      } else {
3522        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3523
3524        // If this is the result, also evaluate the result now.
3525        if (ov == resultExpr) {
3526          if (forLValue)
3527            result.LV = CGF.EmitLValue(ov);
3528          else
3529            result.RV = CGF.EmitAnyExpr(ov, slot);
3530        }
3531      }
3532
3533      opaques.push_back(opaqueData);
3534
3535    // Otherwise, if the expression is the result, evaluate it
3536    // and remember the result.
3537    } else if (semantic == resultExpr) {
3538      if (forLValue)
3539        result.LV = CGF.EmitLValue(semantic);
3540      else
3541        result.RV = CGF.EmitAnyExpr(semantic, slot);
3542
3543    // Otherwise, evaluate the expression in an ignored context.
3544    } else {
3545      CGF.EmitIgnoredExpr(semantic);
3546    }
3547  }
3548
3549  // Unbind all the opaques now.
3550  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3551    opaques[i].unbind(CGF);
3552
3553  return result;
3554}
3555
3556RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3557                                               AggValueSlot slot) {
3558  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3559}
3560
3561LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3562  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3563}
3564