CGExpr.cpp revision e4330726b8070bb7094414507a1040972ee52474
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/DeclObjC.h" 23#include "clang/Frontend/CodeGenOptions.h" 24#include "llvm/Intrinsics.h" 25#include "llvm/Target/TargetData.h" 26using namespace clang; 27using namespace CodeGen; 28 29//===--------------------------------------------------------------------===// 30// Miscellaneous Helper Methods 31//===--------------------------------------------------------------------===// 32 33llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 34 unsigned addressSpace = 35 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 36 37 const llvm::PointerType *destType = Int8PtrTy; 38 if (addressSpace) 39 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 40 41 if (value->getType() == destType) return value; 42 return Builder.CreateBitCast(value, destType); 43} 44 45/// CreateTempAlloca - This creates a alloca and inserts it into the entry 46/// block. 47llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 48 const llvm::Twine &Name) { 49 if (!Builder.isNamePreserving()) 50 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 51 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 52} 53 54void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 55 llvm::Value *Init) { 56 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 57 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 58 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 59} 60 61llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 62 const llvm::Twine &Name) { 63 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 64 // FIXME: Should we prefer the preferred type alignment here? 65 CharUnits Align = getContext().getTypeAlignInChars(Ty); 66 Alloc->setAlignment(Align.getQuantity()); 67 return Alloc; 68} 69 70llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 71 const llvm::Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77} 78 79/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 80/// expression and compare the result against zero, returning an Int1Ty value. 81llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 82 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 83 llvm::Value *MemPtr = EmitScalarExpr(E); 84 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 85 } 86 87 QualType BoolTy = getContext().BoolTy; 88 if (!E->getType()->isAnyComplexType()) 89 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 90 91 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 92} 93 94/// EmitIgnoredExpr - Emit code to compute the specified expression, 95/// ignoring the result. 96void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 97 if (E->isRValue()) 98 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 99 100 // Just emit it as an l-value and drop the result. 101 EmitLValue(E); 102} 103 104/// EmitAnyExpr - Emit code to compute the specified expression which 105/// can have any type. The result is returned as an RValue struct. 106/// If this is an aggregate expression, AggSlot indicates where the 107/// result should be returned. 108RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 109 bool IgnoreResult) { 110 if (!hasAggregateLLVMType(E->getType())) 111 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 112 else if (E->getType()->isAnyComplexType()) 113 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 114 115 EmitAggExpr(E, AggSlot, IgnoreResult); 116 return AggSlot.asRValue(); 117} 118 119/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 120/// always be accessible even if no aggregate location is provided. 121RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 122 AggValueSlot AggSlot = AggValueSlot::ignored(); 123 124 if (hasAggregateLLVMType(E->getType()) && 125 !E->getType()->isAnyComplexType()) 126 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 127 return EmitAnyExpr(E, AggSlot); 128} 129 130/// EmitAnyExprToMem - Evaluate an expression into a given memory 131/// location. 132void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 133 llvm::Value *Location, 134 Qualifiers Quals, 135 bool IsInit) { 136 if (E->getType()->isAnyComplexType()) 137 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 138 else if (hasAggregateLLVMType(E->getType())) 139 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, IsInit)); 140 else { 141 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 142 LValue LV = MakeAddrLValue(Location, E->getType()); 143 EmitStoreThroughLValue(RV, LV); 144 } 145} 146 147namespace { 148/// \brief An adjustment to be made to the temporary created when emitting a 149/// reference binding, which accesses a particular subobject of that temporary. 150 struct SubobjectAdjustment { 151 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 152 153 union { 154 struct { 155 const CastExpr *BasePath; 156 const CXXRecordDecl *DerivedClass; 157 } DerivedToBase; 158 159 FieldDecl *Field; 160 }; 161 162 SubobjectAdjustment(const CastExpr *BasePath, 163 const CXXRecordDecl *DerivedClass) 164 : Kind(DerivedToBaseAdjustment) { 165 DerivedToBase.BasePath = BasePath; 166 DerivedToBase.DerivedClass = DerivedClass; 167 } 168 169 SubobjectAdjustment(FieldDecl *Field) 170 : Kind(FieldAdjustment) { 171 this->Field = Field; 172 } 173 }; 174} 175 176static llvm::Value * 177CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type, 178 const NamedDecl *InitializedDecl) { 179 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 180 if (VD->hasGlobalStorage()) { 181 llvm::SmallString<256> Name; 182 llvm::raw_svector_ostream Out(Name); 183 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 184 Out.flush(); 185 186 const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 187 188 // Create the reference temporary. 189 llvm::GlobalValue *RefTemp = 190 new llvm::GlobalVariable(CGF.CGM.getModule(), 191 RefTempTy, /*isConstant=*/false, 192 llvm::GlobalValue::InternalLinkage, 193 llvm::Constant::getNullValue(RefTempTy), 194 Name.str()); 195 return RefTemp; 196 } 197 } 198 199 return CGF.CreateMemTemp(Type, "ref.tmp"); 200} 201 202static llvm::Value * 203EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 204 llvm::Value *&ReferenceTemporary, 205 const CXXDestructorDecl *&ReferenceTemporaryDtor, 206 QualType &ObjCARCReferenceLifetimeType, 207 const NamedDecl *InitializedDecl) { 208 // Look through expressions for materialized temporaries (for now). 209 if (const MaterializeTemporaryExpr *M 210 = dyn_cast<MaterializeTemporaryExpr>(E)) { 211 // Objective-C++ ARC: 212 // If we are binding a reference to a temporary that has ownership, we 213 // need to perform retain/release operations on the temporary. 214 if (CGF.getContext().getLangOptions().ObjCAutoRefCount && 215 E->getType()->isObjCLifetimeType() && 216 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 217 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 218 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 219 ObjCARCReferenceLifetimeType = E->getType(); 220 221 E = M->GetTemporaryExpr(); 222 } 223 224 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 225 E = DAE->getExpr(); 226 227 if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) { 228 CodeGenFunction::RunCleanupsScope Scope(CGF); 229 230 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), 231 ReferenceTemporary, 232 ReferenceTemporaryDtor, 233 ObjCARCReferenceLifetimeType, 234 InitializedDecl); 235 } 236 237 if (const ObjCPropertyRefExpr *PRE = 238 dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts())) 239 if (PRE->getGetterResultType()->isReferenceType()) 240 E = PRE; 241 242 RValue RV; 243 if (E->isGLValue()) { 244 // Emit the expression as an lvalue. 245 LValue LV = CGF.EmitLValue(E); 246 if (LV.isPropertyRef()) { 247 RV = CGF.EmitLoadOfPropertyRefLValue(LV); 248 return RV.getScalarVal(); 249 } 250 if (LV.isSimple()) 251 return LV.getAddress(); 252 253 // We have to load the lvalue. 254 RV = CGF.EmitLoadOfLValue(LV); 255 } else { 256 if (!ObjCARCReferenceLifetimeType.isNull()) { 257 ReferenceTemporary = CreateReferenceTemporary(CGF, 258 ObjCARCReferenceLifetimeType, 259 InitializedDecl); 260 261 262 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 263 ObjCARCReferenceLifetimeType); 264 265 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 266 RefTempDst, false); 267 268 bool ExtendsLifeOfTemporary = false; 269 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 270 if (Var->extendsLifetimeOfTemporary()) 271 ExtendsLifeOfTemporary = true; 272 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 273 ExtendsLifeOfTemporary = true; 274 } 275 276 if (!ExtendsLifeOfTemporary) { 277 // Since the lifetime of this temporary isn't going to be extended, 278 // we need to clean it up ourselves at the end of the full expression. 279 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 280 case Qualifiers::OCL_None: 281 case Qualifiers::OCL_ExplicitNone: 282 case Qualifiers::OCL_Autoreleasing: 283 break; 284 285 case Qualifiers::OCL_Strong: 286 CGF.PushARCReleaseCleanup(CGF.getARCCleanupKind(), 287 ObjCARCReferenceLifetimeType, 288 ReferenceTemporary, 289 /*Precise lifetime=*/false, 290 /*For full expression=*/true); 291 break; 292 293 case Qualifiers::OCL_Weak: 294 CGF.PushARCWeakReleaseCleanup(NormalAndEHCleanup, 295 ObjCARCReferenceLifetimeType, 296 ReferenceTemporary, 297 /*For full expression=*/true); 298 break; 299 } 300 301 ObjCARCReferenceLifetimeType = QualType(); 302 } 303 304 return ReferenceTemporary; 305 } 306 307 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments; 308 while (true) { 309 E = E->IgnoreParens(); 310 311 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 312 if ((CE->getCastKind() == CK_DerivedToBase || 313 CE->getCastKind() == CK_UncheckedDerivedToBase) && 314 E->getType()->isRecordType()) { 315 E = CE->getSubExpr(); 316 CXXRecordDecl *Derived 317 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 318 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 319 continue; 320 } 321 322 if (CE->getCastKind() == CK_NoOp) { 323 E = CE->getSubExpr(); 324 continue; 325 } 326 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 327 if (!ME->isArrow() && ME->getBase()->isRValue()) { 328 assert(ME->getBase()->getType()->isRecordType()); 329 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 330 E = ME->getBase(); 331 Adjustments.push_back(SubobjectAdjustment(Field)); 332 continue; 333 } 334 } 335 } 336 337 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 338 if (opaque->getType()->isRecordType()) 339 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 340 341 // Nothing changed. 342 break; 343 } 344 345 // Create a reference temporary if necessary. 346 AggValueSlot AggSlot = AggValueSlot::ignored(); 347 if (CGF.hasAggregateLLVMType(E->getType()) && 348 !E->getType()->isAnyComplexType()) { 349 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 350 InitializedDecl); 351 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(), 352 InitializedDecl != 0); 353 } 354 355 if (InitializedDecl) { 356 // Get the destructor for the reference temporary. 357 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 358 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 359 if (!ClassDecl->hasTrivialDestructor()) 360 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 361 } 362 } 363 364 RV = CGF.EmitAnyExpr(E, AggSlot); 365 366 // Check if need to perform derived-to-base casts and/or field accesses, to 367 // get from the temporary object we created (and, potentially, for which we 368 // extended the lifetime) to the subobject we're binding the reference to. 369 if (!Adjustments.empty()) { 370 llvm::Value *Object = RV.getAggregateAddr(); 371 for (unsigned I = Adjustments.size(); I != 0; --I) { 372 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 373 switch (Adjustment.Kind) { 374 case SubobjectAdjustment::DerivedToBaseAdjustment: 375 Object = 376 CGF.GetAddressOfBaseClass(Object, 377 Adjustment.DerivedToBase.DerivedClass, 378 Adjustment.DerivedToBase.BasePath->path_begin(), 379 Adjustment.DerivedToBase.BasePath->path_end(), 380 /*NullCheckValue=*/false); 381 break; 382 383 case SubobjectAdjustment::FieldAdjustment: { 384 LValue LV = 385 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 386 if (LV.isSimple()) { 387 Object = LV.getAddress(); 388 break; 389 } 390 391 // For non-simple lvalues, we actually have to create a copy of 392 // the object we're binding to. 393 QualType T = Adjustment.Field->getType().getNonReferenceType() 394 .getUnqualifiedType(); 395 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 396 LValue TempLV = CGF.MakeAddrLValue(Object, 397 Adjustment.Field->getType()); 398 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 399 break; 400 } 401 402 } 403 } 404 405 return Object; 406 } 407 } 408 409 if (RV.isAggregate()) 410 return RV.getAggregateAddr(); 411 412 // Create a temporary variable that we can bind the reference to. 413 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 414 InitializedDecl); 415 416 417 unsigned Alignment = 418 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 419 if (RV.isScalar()) 420 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 421 /*Volatile=*/false, Alignment, E->getType()); 422 else 423 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 424 /*Volatile=*/false); 425 return ReferenceTemporary; 426} 427 428RValue 429CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 430 const NamedDecl *InitializedDecl) { 431 llvm::Value *ReferenceTemporary = 0; 432 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 433 QualType ObjCARCReferenceLifetimeType; 434 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 435 ReferenceTemporaryDtor, 436 ObjCARCReferenceLifetimeType, 437 InitializedDecl); 438 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 439 return RValue::get(Value); 440 441 // Make sure to call the destructor for the reference temporary. 442 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 443 if (VD && VD->hasGlobalStorage()) { 444 if (ReferenceTemporaryDtor) { 445 llvm::Constant *DtorFn = 446 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 447 EmitCXXGlobalDtorRegistration(DtorFn, 448 cast<llvm::Constant>(ReferenceTemporary)); 449 } else { 450 assert(!ObjCARCReferenceLifetimeType.isNull()); 451 // Note: We intentionally do not register a global "destructor" to 452 // release the object. 453 } 454 455 return RValue::get(Value); 456 } 457 458 if (ReferenceTemporaryDtor) 459 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 460 else { 461 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 462 case Qualifiers::OCL_None: 463 llvm_unreachable("Not a reference temporary that needs to be deallocated"); 464 break; 465 466 case Qualifiers::OCL_ExplicitNone: 467 case Qualifiers::OCL_Autoreleasing: 468 // Nothing to do. 469 break; 470 471 case Qualifiers::OCL_Strong: 472 PushARCReleaseCleanup(getARCCleanupKind(), ObjCARCReferenceLifetimeType, 473 ReferenceTemporary, 474 VD && VD->hasAttr<ObjCPreciseLifetimeAttr>()); 475 break; 476 477 case Qualifiers::OCL_Weak: 478 // __weak objects always get EH cleanups; otherwise, exceptions 479 // could cause really nasty crashes instead of mere leaks. 480 PushARCWeakReleaseCleanup(NormalAndEHCleanup, 481 ObjCARCReferenceLifetimeType, 482 ReferenceTemporary); 483 break; 484 } 485 } 486 487 return RValue::get(Value); 488} 489 490 491/// getAccessedFieldNo - Given an encoded value and a result number, return the 492/// input field number being accessed. 493unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 494 const llvm::Constant *Elts) { 495 if (isa<llvm::ConstantAggregateZero>(Elts)) 496 return 0; 497 498 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 499} 500 501void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 502 if (!CatchUndefined) 503 return; 504 505 // This needs to be to the standard address space. 506 Address = Builder.CreateBitCast(Address, Int8PtrTy); 507 508 const llvm::Type *IntPtrT = IntPtrTy; 509 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1); 510 511 // In time, people may want to control this and use a 1 here. 512 llvm::Value *Arg = Builder.getFalse(); 513 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 514 llvm::BasicBlock *Cont = createBasicBlock(); 515 llvm::BasicBlock *Check = createBasicBlock(); 516 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 517 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 518 519 EmitBlock(Check); 520 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 521 llvm::ConstantInt::get(IntPtrTy, Size)), 522 Cont, getTrapBB()); 523 EmitBlock(Cont); 524} 525 526 527CodeGenFunction::ComplexPairTy CodeGenFunction:: 528EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 529 bool isInc, bool isPre) { 530 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 531 LV.isVolatileQualified()); 532 533 llvm::Value *NextVal; 534 if (isa<llvm::IntegerType>(InVal.first->getType())) { 535 uint64_t AmountVal = isInc ? 1 : -1; 536 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 537 538 // Add the inc/dec to the real part. 539 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 540 } else { 541 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 542 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 543 if (!isInc) 544 FVal.changeSign(); 545 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 546 547 // Add the inc/dec to the real part. 548 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 549 } 550 551 ComplexPairTy IncVal(NextVal, InVal.second); 552 553 // Store the updated result through the lvalue. 554 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 555 556 // If this is a postinc, return the value read from memory, otherwise use the 557 // updated value. 558 return isPre ? IncVal : InVal; 559} 560 561 562//===----------------------------------------------------------------------===// 563// LValue Expression Emission 564//===----------------------------------------------------------------------===// 565 566RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 567 if (Ty->isVoidType()) 568 return RValue::get(0); 569 570 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 571 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 572 llvm::Value *U = llvm::UndefValue::get(EltTy); 573 return RValue::getComplex(std::make_pair(U, U)); 574 } 575 576 // If this is a use of an undefined aggregate type, the aggregate must have an 577 // identifiable address. Just because the contents of the value are undefined 578 // doesn't mean that the address can't be taken and compared. 579 if (hasAggregateLLVMType(Ty)) { 580 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 581 return RValue::getAggregate(DestPtr); 582 } 583 584 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 585} 586 587RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 588 const char *Name) { 589 ErrorUnsupported(E, Name); 590 return GetUndefRValue(E->getType()); 591} 592 593LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 594 const char *Name) { 595 ErrorUnsupported(E, Name); 596 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 597 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 598} 599 600LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 601 LValue LV = EmitLValue(E); 602 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 603 EmitCheck(LV.getAddress(), 604 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 605 return LV; 606} 607 608/// EmitLValue - Emit code to compute a designator that specifies the location 609/// of the expression. 610/// 611/// This can return one of two things: a simple address or a bitfield reference. 612/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 613/// an LLVM pointer type. 614/// 615/// If this returns a bitfield reference, nothing about the pointee type of the 616/// LLVM value is known: For example, it may not be a pointer to an integer. 617/// 618/// If this returns a normal address, and if the lvalue's C type is fixed size, 619/// this method guarantees that the returned pointer type will point to an LLVM 620/// type of the same size of the lvalue's type. If the lvalue has a variable 621/// length type, this is not possible. 622/// 623LValue CodeGenFunction::EmitLValue(const Expr *E) { 624 switch (E->getStmtClass()) { 625 default: return EmitUnsupportedLValue(E, "l-value expression"); 626 627 case Expr::ObjCSelectorExprClass: 628 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 629 case Expr::ObjCIsaExprClass: 630 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 631 case Expr::BinaryOperatorClass: 632 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 633 case Expr::CompoundAssignOperatorClass: 634 if (!E->getType()->isAnyComplexType()) 635 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 636 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 637 case Expr::CallExprClass: 638 case Expr::CXXMemberCallExprClass: 639 case Expr::CXXOperatorCallExprClass: 640 return EmitCallExprLValue(cast<CallExpr>(E)); 641 case Expr::VAArgExprClass: 642 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 643 case Expr::DeclRefExprClass: 644 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 645 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 646 case Expr::GenericSelectionExprClass: 647 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 648 case Expr::PredefinedExprClass: 649 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 650 case Expr::StringLiteralClass: 651 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 652 case Expr::ObjCEncodeExprClass: 653 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 654 655 case Expr::BlockDeclRefExprClass: 656 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 657 658 case Expr::CXXTemporaryObjectExprClass: 659 case Expr::CXXConstructExprClass: 660 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 661 case Expr::CXXBindTemporaryExprClass: 662 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 663 case Expr::ExprWithCleanupsClass: 664 return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E)); 665 case Expr::CXXScalarValueInitExprClass: 666 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 667 case Expr::CXXDefaultArgExprClass: 668 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 669 case Expr::CXXTypeidExprClass: 670 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 671 672 case Expr::ObjCMessageExprClass: 673 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 674 case Expr::ObjCIvarRefExprClass: 675 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 676 case Expr::ObjCPropertyRefExprClass: 677 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 678 case Expr::StmtExprClass: 679 return EmitStmtExprLValue(cast<StmtExpr>(E)); 680 case Expr::UnaryOperatorClass: 681 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 682 case Expr::ArraySubscriptExprClass: 683 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 684 case Expr::ExtVectorElementExprClass: 685 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 686 case Expr::MemberExprClass: 687 return EmitMemberExpr(cast<MemberExpr>(E)); 688 case Expr::CompoundLiteralExprClass: 689 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 690 case Expr::ConditionalOperatorClass: 691 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 692 case Expr::BinaryConditionalOperatorClass: 693 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 694 case Expr::ChooseExprClass: 695 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 696 case Expr::OpaqueValueExprClass: 697 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 698 case Expr::ImplicitCastExprClass: 699 case Expr::CStyleCastExprClass: 700 case Expr::CXXFunctionalCastExprClass: 701 case Expr::CXXStaticCastExprClass: 702 case Expr::CXXDynamicCastExprClass: 703 case Expr::CXXReinterpretCastExprClass: 704 case Expr::CXXConstCastExprClass: 705 case Expr::ObjCBridgedCastExprClass: 706 return EmitCastLValue(cast<CastExpr>(E)); 707 708 case Expr::MaterializeTemporaryExprClass: 709 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 710 } 711} 712 713llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 714 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 715 lvalue.getAlignment(), lvalue.getType(), 716 lvalue.getTBAAInfo()); 717} 718 719llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 720 unsigned Alignment, QualType Ty, 721 llvm::MDNode *TBAAInfo) { 722 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); 723 if (Volatile) 724 Load->setVolatile(true); 725 if (Alignment) 726 Load->setAlignment(Alignment); 727 if (TBAAInfo) 728 CGM.DecorateInstruction(Load, TBAAInfo); 729 730 return EmitFromMemory(Load, Ty); 731} 732 733static bool isBooleanUnderlyingType(QualType Ty) { 734 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 735 return ET->getDecl()->getIntegerType()->isBooleanType(); 736 return false; 737} 738 739llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 740 // Bool has a different representation in memory than in registers. 741 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 742 // This should really always be an i1, but sometimes it's already 743 // an i8, and it's awkward to track those cases down. 744 if (Value->getType()->isIntegerTy(1)) 745 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 746 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 747 } 748 749 return Value; 750} 751 752llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 753 // Bool has a different representation in memory than in registers. 754 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 755 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 756 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 757 } 758 759 return Value; 760} 761 762void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 763 bool Volatile, unsigned Alignment, 764 QualType Ty, 765 llvm::MDNode *TBAAInfo) { 766 Value = EmitToMemory(Value, Ty); 767 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 768 if (Alignment) 769 Store->setAlignment(Alignment); 770 if (TBAAInfo) 771 CGM.DecorateInstruction(Store, TBAAInfo); 772} 773 774void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) { 775 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 776 lvalue.getAlignment(), lvalue.getType(), 777 lvalue.getTBAAInfo()); 778} 779 780/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 781/// method emits the address of the lvalue, then loads the result as an rvalue, 782/// returning the rvalue. 783RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 784 if (LV.isObjCWeak()) { 785 // load of a __weak object. 786 llvm::Value *AddrWeakObj = LV.getAddress(); 787 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 788 AddrWeakObj)); 789 } 790 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 791 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 792 793 if (LV.isSimple()) { 794 assert(!LV.getType()->isFunctionType()); 795 796 // Everything needs a load. 797 return RValue::get(EmitLoadOfScalar(LV)); 798 } 799 800 if (LV.isVectorElt()) { 801 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 802 LV.isVolatileQualified(), "tmp"); 803 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 804 "vecext")); 805 } 806 807 // If this is a reference to a subset of the elements of a vector, either 808 // shuffle the input or extract/insert them as appropriate. 809 if (LV.isExtVectorElt()) 810 return EmitLoadOfExtVectorElementLValue(LV); 811 812 if (LV.isBitField()) 813 return EmitLoadOfBitfieldLValue(LV); 814 815 assert(LV.isPropertyRef() && "Unknown LValue type!"); 816 return EmitLoadOfPropertyRefLValue(LV); 817} 818 819RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 820 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 821 822 // Get the output type. 823 const llvm::Type *ResLTy = ConvertType(LV.getType()); 824 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 825 826 // Compute the result as an OR of all of the individual component accesses. 827 llvm::Value *Res = 0; 828 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 829 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 830 831 // Get the field pointer. 832 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 833 834 // Only offset by the field index if used, so that incoming values are not 835 // required to be structures. 836 if (AI.FieldIndex) 837 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 838 839 // Offset by the byte offset, if used. 840 if (!AI.FieldByteOffset.isZero()) { 841 Ptr = EmitCastToVoidPtr(Ptr); 842 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 843 "bf.field.offs"); 844 } 845 846 // Cast to the access type. 847 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 848 AI.AccessWidth, 849 CGM.getContext().getTargetAddressSpace(LV.getType())); 850 Ptr = Builder.CreateBitCast(Ptr, PTy); 851 852 // Perform the load. 853 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 854 if (!AI.AccessAlignment.isZero()) 855 Load->setAlignment(AI.AccessAlignment.getQuantity()); 856 857 // Shift out unused low bits and mask out unused high bits. 858 llvm::Value *Val = Load; 859 if (AI.FieldBitStart) 860 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 861 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 862 AI.TargetBitWidth), 863 "bf.clear"); 864 865 // Extend or truncate to the target size. 866 if (AI.AccessWidth < ResSizeInBits) 867 Val = Builder.CreateZExt(Val, ResLTy); 868 else if (AI.AccessWidth > ResSizeInBits) 869 Val = Builder.CreateTrunc(Val, ResLTy); 870 871 // Shift into place, and OR into the result. 872 if (AI.TargetBitOffset) 873 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 874 Res = Res ? Builder.CreateOr(Res, Val) : Val; 875 } 876 877 // If the bit-field is signed, perform the sign-extension. 878 // 879 // FIXME: This can easily be folded into the load of the high bits, which 880 // could also eliminate the mask of high bits in some situations. 881 if (Info.isSigned()) { 882 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 883 if (ExtraBits) 884 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 885 ExtraBits, "bf.val.sext"); 886 } 887 888 return RValue::get(Res); 889} 890 891// If this is a reference to a subset of the elements of a vector, create an 892// appropriate shufflevector. 893RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 894 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 895 LV.isVolatileQualified(), "tmp"); 896 897 const llvm::Constant *Elts = LV.getExtVectorElts(); 898 899 // If the result of the expression is a non-vector type, we must be extracting 900 // a single element. Just codegen as an extractelement. 901 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 902 if (!ExprVT) { 903 unsigned InIdx = getAccessedFieldNo(0, Elts); 904 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 905 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 906 } 907 908 // Always use shuffle vector to try to retain the original program structure 909 unsigned NumResultElts = ExprVT->getNumElements(); 910 911 llvm::SmallVector<llvm::Constant*, 4> Mask; 912 for (unsigned i = 0; i != NumResultElts; ++i) { 913 unsigned InIdx = getAccessedFieldNo(i, Elts); 914 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 915 } 916 917 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 918 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 919 MaskV, "tmp"); 920 return RValue::get(Vec); 921} 922 923 924 925/// EmitStoreThroughLValue - Store the specified rvalue into the specified 926/// lvalue, where both are guaranteed to the have the same type, and that type 927/// is 'Ty'. 928void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) { 929 if (!Dst.isSimple()) { 930 if (Dst.isVectorElt()) { 931 // Read/modify/write the vector, inserting the new element. 932 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 933 Dst.isVolatileQualified(), "tmp"); 934 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 935 Dst.getVectorIdx(), "vecins"); 936 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 937 return; 938 } 939 940 // If this is an update of extended vector elements, insert them as 941 // appropriate. 942 if (Dst.isExtVectorElt()) 943 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 944 945 if (Dst.isBitField()) 946 return EmitStoreThroughBitfieldLValue(Src, Dst); 947 948 assert(Dst.isPropertyRef() && "Unknown LValue type"); 949 return EmitStoreThroughPropertyRefLValue(Src, Dst); 950 } 951 952 // There's special magic for assigning into an ARC-qualified l-value. 953 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 954 switch (Lifetime) { 955 case Qualifiers::OCL_None: 956 llvm_unreachable("present but none"); 957 958 case Qualifiers::OCL_ExplicitNone: 959 // nothing special 960 break; 961 962 case Qualifiers::OCL_Strong: 963 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 964 return; 965 966 case Qualifiers::OCL_Weak: 967 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 968 return; 969 970 case Qualifiers::OCL_Autoreleasing: 971 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 972 Src.getScalarVal())); 973 // fall into the normal path 974 break; 975 } 976 } 977 978 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 979 // load of a __weak object. 980 llvm::Value *LvalueDst = Dst.getAddress(); 981 llvm::Value *src = Src.getScalarVal(); 982 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 983 return; 984 } 985 986 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 987 // load of a __strong object. 988 llvm::Value *LvalueDst = Dst.getAddress(); 989 llvm::Value *src = Src.getScalarVal(); 990 if (Dst.isObjCIvar()) { 991 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 992 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 993 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 994 llvm::Value *dst = RHS; 995 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 996 llvm::Value *LHS = 997 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 998 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 999 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1000 BytesBetween); 1001 } else if (Dst.isGlobalObjCRef()) { 1002 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1003 Dst.isThreadLocalRef()); 1004 } 1005 else 1006 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1007 return; 1008 } 1009 1010 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1011 EmitStoreOfScalar(Src.getScalarVal(), Dst); 1012} 1013 1014void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1015 llvm::Value **Result) { 1016 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1017 1018 // Get the output type. 1019 const llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1020 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1021 1022 // Get the source value, truncated to the width of the bit-field. 1023 llvm::Value *SrcVal = Src.getScalarVal(); 1024 1025 if (Dst.getType()->isBooleanType()) 1026 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1027 1028 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1029 Info.getSize()), 1030 "bf.value"); 1031 1032 // Return the new value of the bit-field, if requested. 1033 if (Result) { 1034 // Cast back to the proper type for result. 1035 const llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1036 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1037 "bf.reload.val"); 1038 1039 // Sign extend if necessary. 1040 if (Info.isSigned()) { 1041 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1042 if (ExtraBits) 1043 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1044 ExtraBits, "bf.reload.sext"); 1045 } 1046 1047 *Result = ReloadVal; 1048 } 1049 1050 // Iterate over the components, writing each piece to memory. 1051 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1052 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1053 1054 // Get the field pointer. 1055 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1056 unsigned addressSpace = 1057 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1058 1059 // Only offset by the field index if used, so that incoming values are not 1060 // required to be structures. 1061 if (AI.FieldIndex) 1062 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1063 1064 // Offset by the byte offset, if used. 1065 if (!AI.FieldByteOffset.isZero()) { 1066 Ptr = EmitCastToVoidPtr(Ptr); 1067 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1068 "bf.field.offs"); 1069 } 1070 1071 // Cast to the access type. 1072 const llvm::Type *AccessLTy = 1073 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1074 1075 const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1076 Ptr = Builder.CreateBitCast(Ptr, PTy); 1077 1078 // Extract the piece of the bit-field value to write in this access, limited 1079 // to the values that are part of this access. 1080 llvm::Value *Val = SrcVal; 1081 if (AI.TargetBitOffset) 1082 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1083 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1084 AI.TargetBitWidth)); 1085 1086 // Extend or truncate to the access size. 1087 if (ResSizeInBits < AI.AccessWidth) 1088 Val = Builder.CreateZExt(Val, AccessLTy); 1089 else if (ResSizeInBits > AI.AccessWidth) 1090 Val = Builder.CreateTrunc(Val, AccessLTy); 1091 1092 // Shift into the position in memory. 1093 if (AI.FieldBitStart) 1094 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1095 1096 // If necessary, load and OR in bits that are outside of the bit-field. 1097 if (AI.TargetBitWidth != AI.AccessWidth) { 1098 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1099 if (!AI.AccessAlignment.isZero()) 1100 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1101 1102 // Compute the mask for zeroing the bits that are part of the bit-field. 1103 llvm::APInt InvMask = 1104 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1105 AI.FieldBitStart + AI.TargetBitWidth); 1106 1107 // Apply the mask and OR in to the value to write. 1108 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1109 } 1110 1111 // Write the value. 1112 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1113 Dst.isVolatileQualified()); 1114 if (!AI.AccessAlignment.isZero()) 1115 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1116 } 1117} 1118 1119void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1120 LValue Dst) { 1121 // This access turns into a read/modify/write of the vector. Load the input 1122 // value now. 1123 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1124 Dst.isVolatileQualified(), "tmp"); 1125 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1126 1127 llvm::Value *SrcVal = Src.getScalarVal(); 1128 1129 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1130 unsigned NumSrcElts = VTy->getNumElements(); 1131 unsigned NumDstElts = 1132 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1133 if (NumDstElts == NumSrcElts) { 1134 // Use shuffle vector is the src and destination are the same number of 1135 // elements and restore the vector mask since it is on the side it will be 1136 // stored. 1137 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1138 for (unsigned i = 0; i != NumSrcElts; ++i) { 1139 unsigned InIdx = getAccessedFieldNo(i, Elts); 1140 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 1141 } 1142 1143 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1144 Vec = Builder.CreateShuffleVector(SrcVal, 1145 llvm::UndefValue::get(Vec->getType()), 1146 MaskV, "tmp"); 1147 } else if (NumDstElts > NumSrcElts) { 1148 // Extended the source vector to the same length and then shuffle it 1149 // into the destination. 1150 // FIXME: since we're shuffling with undef, can we just use the indices 1151 // into that? This could be simpler. 1152 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 1153 unsigned i; 1154 for (i = 0; i != NumSrcElts; ++i) 1155 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1156 for (; i != NumDstElts; ++i) 1157 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 1158 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1159 llvm::Value *ExtSrcVal = 1160 Builder.CreateShuffleVector(SrcVal, 1161 llvm::UndefValue::get(SrcVal->getType()), 1162 ExtMaskV, "tmp"); 1163 // build identity 1164 llvm::SmallVector<llvm::Constant*, 4> Mask; 1165 for (unsigned i = 0; i != NumDstElts; ++i) 1166 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1167 1168 // modify when what gets shuffled in 1169 for (unsigned i = 0; i != NumSrcElts; ++i) { 1170 unsigned Idx = getAccessedFieldNo(i, Elts); 1171 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1172 } 1173 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1174 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 1175 } else { 1176 // We should never shorten the vector 1177 assert(0 && "unexpected shorten vector length"); 1178 } 1179 } else { 1180 // If the Src is a scalar (not a vector) it must be updating one element. 1181 unsigned InIdx = getAccessedFieldNo(0, Elts); 1182 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1183 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 1184 } 1185 1186 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1187} 1188 1189// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1190// generating write-barries API. It is currently a global, ivar, 1191// or neither. 1192static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1193 LValue &LV) { 1194 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 1195 return; 1196 1197 if (isa<ObjCIvarRefExpr>(E)) { 1198 LV.setObjCIvar(true); 1199 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1200 LV.setBaseIvarExp(Exp->getBase()); 1201 LV.setObjCArray(E->getType()->isArrayType()); 1202 return; 1203 } 1204 1205 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1206 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1207 if (VD->hasGlobalStorage()) { 1208 LV.setGlobalObjCRef(true); 1209 LV.setThreadLocalRef(VD->isThreadSpecified()); 1210 } 1211 } 1212 LV.setObjCArray(E->getType()->isArrayType()); 1213 return; 1214 } 1215 1216 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1217 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1218 return; 1219 } 1220 1221 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1222 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1223 if (LV.isObjCIvar()) { 1224 // If cast is to a structure pointer, follow gcc's behavior and make it 1225 // a non-ivar write-barrier. 1226 QualType ExpTy = E->getType(); 1227 if (ExpTy->isPointerType()) 1228 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1229 if (ExpTy->isRecordType()) 1230 LV.setObjCIvar(false); 1231 } 1232 return; 1233 } 1234 1235 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1236 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1237 return; 1238 } 1239 1240 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1241 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1242 return; 1243 } 1244 1245 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1246 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1247 return; 1248 } 1249 1250 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1252 return; 1253 } 1254 1255 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1256 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1257 if (LV.isObjCIvar() && !LV.isObjCArray()) 1258 // Using array syntax to assigning to what an ivar points to is not 1259 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1260 LV.setObjCIvar(false); 1261 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1262 // Using array syntax to assigning to what global points to is not 1263 // same as assigning to the global itself. {id *G;} G[i] = 0; 1264 LV.setGlobalObjCRef(false); 1265 return; 1266 } 1267 1268 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1269 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1270 // We don't know if member is an 'ivar', but this flag is looked at 1271 // only in the context of LV.isObjCIvar(). 1272 LV.setObjCArray(E->getType()->isArrayType()); 1273 return; 1274 } 1275} 1276 1277static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1278 const Expr *E, const VarDecl *VD) { 1279 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1280 "Var decl must have external storage or be a file var decl!"); 1281 1282 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1283 if (VD->getType()->isReferenceType()) 1284 V = CGF.Builder.CreateLoad(V, "tmp"); 1285 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); 1286 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1287 setObjCGCLValueClass(CGF.getContext(), E, LV); 1288 return LV; 1289} 1290 1291static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1292 const Expr *E, const FunctionDecl *FD) { 1293 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1294 if (!FD->hasPrototype()) { 1295 if (const FunctionProtoType *Proto = 1296 FD->getType()->getAs<FunctionProtoType>()) { 1297 // Ugly case: for a K&R-style definition, the type of the definition 1298 // isn't the same as the type of a use. Correct for this with a 1299 // bitcast. 1300 QualType NoProtoType = 1301 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1302 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1303 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); 1304 } 1305 } 1306 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); 1307 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1308} 1309 1310LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1311 const NamedDecl *ND = E->getDecl(); 1312 unsigned Alignment = getContext().getDeclAlign(ND).getQuantity(); 1313 1314 if (ND->hasAttr<WeakRefAttr>()) { 1315 const ValueDecl *VD = cast<ValueDecl>(ND); 1316 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1317 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1318 } 1319 1320 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1321 1322 // Check if this is a global variable. 1323 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1324 return EmitGlobalVarDeclLValue(*this, E, VD); 1325 1326 bool NonGCable = VD->hasLocalStorage() && 1327 !VD->getType()->isReferenceType() && 1328 !VD->hasAttr<BlocksAttr>(); 1329 1330 llvm::Value *V = LocalDeclMap[VD]; 1331 if (!V && VD->isStaticLocal()) 1332 V = CGM.getStaticLocalDeclAddress(VD); 1333 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1334 1335 if (VD->hasAttr<BlocksAttr>()) 1336 V = BuildBlockByrefAddress(V, VD); 1337 1338 if (VD->getType()->isReferenceType()) 1339 V = Builder.CreateLoad(V, "tmp"); 1340 1341 LValue LV = MakeAddrLValue(V, E->getType(), Alignment); 1342 if (NonGCable) { 1343 LV.getQuals().removeObjCGCAttr(); 1344 LV.setNonGC(true); 1345 } 1346 setObjCGCLValueClass(getContext(), E, LV); 1347 return LV; 1348 } 1349 1350 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1351 return EmitFunctionDeclLValue(*this, E, fn); 1352 1353 assert(false && "Unhandled DeclRefExpr"); 1354 1355 // an invalid LValue, but the assert will 1356 // ensure that this point is never reached. 1357 return LValue(); 1358} 1359 1360LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1361 unsigned Alignment = 1362 getContext().getDeclAlign(E->getDecl()).getQuantity(); 1363 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1364} 1365 1366LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1367 // __extension__ doesn't affect lvalue-ness. 1368 if (E->getOpcode() == UO_Extension) 1369 return EmitLValue(E->getSubExpr()); 1370 1371 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1372 switch (E->getOpcode()) { 1373 default: assert(0 && "Unknown unary operator lvalue!"); 1374 case UO_Deref: { 1375 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1376 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1377 1378 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1379 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1380 1381 // We should not generate __weak write barrier on indirect reference 1382 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1383 // But, we continue to generate __strong write barrier on indirect write 1384 // into a pointer to object. 1385 if (getContext().getLangOptions().ObjC1 && 1386 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 1387 LV.isObjCWeak()) 1388 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1389 return LV; 1390 } 1391 case UO_Real: 1392 case UO_Imag: { 1393 LValue LV = EmitLValue(E->getSubExpr()); 1394 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1395 llvm::Value *Addr = LV.getAddress(); 1396 1397 // real and imag are valid on scalars. This is a faster way of 1398 // testing that. 1399 if (!cast<llvm::PointerType>(Addr->getType()) 1400 ->getElementType()->isStructTy()) { 1401 assert(E->getSubExpr()->getType()->isArithmeticType()); 1402 return LV; 1403 } 1404 1405 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1406 1407 unsigned Idx = E->getOpcode() == UO_Imag; 1408 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1409 Idx, "idx"), 1410 ExprTy); 1411 } 1412 case UO_PreInc: 1413 case UO_PreDec: { 1414 LValue LV = EmitLValue(E->getSubExpr()); 1415 bool isInc = E->getOpcode() == UO_PreInc; 1416 1417 if (E->getType()->isAnyComplexType()) 1418 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1419 else 1420 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1421 return LV; 1422 } 1423 } 1424} 1425 1426LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1427 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1428 E->getType()); 1429} 1430 1431LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1432 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1433 E->getType()); 1434} 1435 1436 1437LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1438 switch (E->getIdentType()) { 1439 default: 1440 return EmitUnsupportedLValue(E, "predefined expression"); 1441 1442 case PredefinedExpr::Func: 1443 case PredefinedExpr::Function: 1444 case PredefinedExpr::PrettyFunction: { 1445 unsigned Type = E->getIdentType(); 1446 std::string GlobalVarName; 1447 1448 switch (Type) { 1449 default: assert(0 && "Invalid type"); 1450 case PredefinedExpr::Func: 1451 GlobalVarName = "__func__."; 1452 break; 1453 case PredefinedExpr::Function: 1454 GlobalVarName = "__FUNCTION__."; 1455 break; 1456 case PredefinedExpr::PrettyFunction: 1457 GlobalVarName = "__PRETTY_FUNCTION__."; 1458 break; 1459 } 1460 1461 llvm::StringRef FnName = CurFn->getName(); 1462 if (FnName.startswith("\01")) 1463 FnName = FnName.substr(1); 1464 GlobalVarName += FnName; 1465 1466 const Decl *CurDecl = CurCodeDecl; 1467 if (CurDecl == 0) 1468 CurDecl = getContext().getTranslationUnitDecl(); 1469 1470 std::string FunctionName = 1471 (isa<BlockDecl>(CurDecl) 1472 ? FnName.str() 1473 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1474 1475 llvm::Constant *C = 1476 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1477 return MakeAddrLValue(C, E->getType()); 1478 } 1479 } 1480} 1481 1482llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1483 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1484 1485 // If we are not optimzing, don't collapse all calls to trap in the function 1486 // to the same call, that way, in the debugger they can see which operation 1487 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1488 // to just one per function to save on codesize. 1489 if (GCO.OptimizationLevel && TrapBB) 1490 return TrapBB; 1491 1492 llvm::BasicBlock *Cont = 0; 1493 if (HaveInsertPoint()) { 1494 Cont = createBasicBlock("cont"); 1495 EmitBranch(Cont); 1496 } 1497 TrapBB = createBasicBlock("trap"); 1498 EmitBlock(TrapBB); 1499 1500 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0); 1501 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1502 TrapCall->setDoesNotReturn(); 1503 TrapCall->setDoesNotThrow(); 1504 Builder.CreateUnreachable(); 1505 1506 if (Cont) 1507 EmitBlock(Cont); 1508 return TrapBB; 1509} 1510 1511/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1512/// array to pointer, return the array subexpression. 1513static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1514 // If this isn't just an array->pointer decay, bail out. 1515 const CastExpr *CE = dyn_cast<CastExpr>(E); 1516 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1517 return 0; 1518 1519 // If this is a decay from variable width array, bail out. 1520 const Expr *SubExpr = CE->getSubExpr(); 1521 if (SubExpr->getType()->isVariableArrayType()) 1522 return 0; 1523 1524 return SubExpr; 1525} 1526 1527LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1528 // The index must always be an integer, which is not an aggregate. Emit it. 1529 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1530 QualType IdxTy = E->getIdx()->getType(); 1531 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1532 1533 // If the base is a vector type, then we are forming a vector element lvalue 1534 // with this subscript. 1535 if (E->getBase()->getType()->isVectorType()) { 1536 // Emit the vector as an lvalue to get its address. 1537 LValue LHS = EmitLValue(E->getBase()); 1538 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1539 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1540 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1541 E->getBase()->getType()); 1542 } 1543 1544 // Extend or truncate the index type to 32 or 64-bits. 1545 if (Idx->getType() != IntPtrTy) 1546 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1547 1548 // FIXME: As llvm implements the object size checking, this can come out. 1549 if (CatchUndefined) { 1550 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1551 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1552 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1553 if (const ConstantArrayType *CAT 1554 = getContext().getAsConstantArrayType(DRE->getType())) { 1555 llvm::APInt Size = CAT->getSize(); 1556 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1557 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1558 llvm::ConstantInt::get(Idx->getType(), Size)), 1559 Cont, getTrapBB()); 1560 EmitBlock(Cont); 1561 } 1562 } 1563 } 1564 } 1565 } 1566 1567 // We know that the pointer points to a type of the correct size, unless the 1568 // size is a VLA or Objective-C interface. 1569 llvm::Value *Address = 0; 1570 unsigned ArrayAlignment = 0; 1571 if (const VariableArrayType *vla = 1572 getContext().getAsVariableArrayType(E->getType())) { 1573 // The base must be a pointer, which is not an aggregate. Emit 1574 // it. It needs to be emitted first in case it's what captures 1575 // the VLA bounds. 1576 Address = EmitScalarExpr(E->getBase()); 1577 1578 // The element count here is the total number of non-VLA elements. 1579 llvm::Value *numElements = getVLASize(vla).first; 1580 1581 // Effectively, the multiply by the VLA size is part of the GEP. 1582 // GEP indexes are signed, and scaling an index isn't permitted to 1583 // signed-overflow, so we use the same semantics for our explicit 1584 // multiply. We suppress this if overflow is not undefined behavior. 1585 if (getLangOptions().isSignedOverflowDefined()) { 1586 Idx = Builder.CreateMul(Idx, numElements); 1587 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1588 } else { 1589 Idx = Builder.CreateNSWMul(Idx, numElements); 1590 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1591 } 1592 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1593 // Indexing over an interface, as in "NSString *P; P[4];" 1594 llvm::Value *InterfaceSize = 1595 llvm::ConstantInt::get(Idx->getType(), 1596 getContext().getTypeSizeInChars(OIT).getQuantity()); 1597 1598 Idx = Builder.CreateMul(Idx, InterfaceSize); 1599 1600 // The base must be a pointer, which is not an aggregate. Emit it. 1601 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1602 Address = EmitCastToVoidPtr(Base); 1603 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1604 Address = Builder.CreateBitCast(Address, Base->getType()); 1605 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1606 // If this is A[i] where A is an array, the frontend will have decayed the 1607 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1608 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1609 // "gep x, i" here. Emit one "gep A, 0, i". 1610 assert(Array->getType()->isArrayType() && 1611 "Array to pointer decay must have array source type!"); 1612 LValue ArrayLV = EmitLValue(Array); 1613 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1614 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1615 llvm::Value *Args[] = { Zero, Idx }; 1616 1617 // Propagate the alignment from the array itself to the result. 1618 ArrayAlignment = ArrayLV.getAlignment(); 1619 1620 if (getContext().getLangOptions().isSignedOverflowDefined()) 1621 Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1622 else 1623 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1624 } else { 1625 // The base must be a pointer, which is not an aggregate. Emit it. 1626 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1627 if (getContext().getLangOptions().isSignedOverflowDefined()) 1628 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1629 else 1630 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1631 } 1632 1633 QualType T = E->getBase()->getType()->getPointeeType(); 1634 assert(!T.isNull() && 1635 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1636 1637 // Limit the alignment to that of the result type. 1638 if (ArrayAlignment) { 1639 unsigned Align = getContext().getTypeAlignInChars(T).getQuantity(); 1640 ArrayAlignment = std::min(Align, ArrayAlignment); 1641 } 1642 1643 LValue LV = MakeAddrLValue(Address, T, ArrayAlignment); 1644 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1645 1646 if (getContext().getLangOptions().ObjC1 && 1647 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1648 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1649 setObjCGCLValueClass(getContext(), E, LV); 1650 } 1651 return LV; 1652} 1653 1654static 1655llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1656 llvm::SmallVector<unsigned, 4> &Elts) { 1657 llvm::SmallVector<llvm::Constant*, 4> CElts; 1658 1659 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1660 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1661 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1662 1663 return llvm::ConstantVector::get(CElts); 1664} 1665 1666LValue CodeGenFunction:: 1667EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1668 // Emit the base vector as an l-value. 1669 LValue Base; 1670 1671 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1672 if (E->isArrow()) { 1673 // If it is a pointer to a vector, emit the address and form an lvalue with 1674 // it. 1675 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1676 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1677 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1678 Base.getQuals().removeObjCGCAttr(); 1679 } else if (E->getBase()->isGLValue()) { 1680 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1681 // emit the base as an lvalue. 1682 assert(E->getBase()->getType()->isVectorType()); 1683 Base = EmitLValue(E->getBase()); 1684 } else { 1685 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1686 assert(E->getBase()->getType()->isVectorType() && 1687 "Result must be a vector"); 1688 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1689 1690 // Store the vector to memory (because LValue wants an address). 1691 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1692 Builder.CreateStore(Vec, VecMem); 1693 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1694 } 1695 1696 QualType type = 1697 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1698 1699 // Encode the element access list into a vector of unsigned indices. 1700 llvm::SmallVector<unsigned, 4> Indices; 1701 E->getEncodedElementAccess(Indices); 1702 1703 if (Base.isSimple()) { 1704 llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices); 1705 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1706 } 1707 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1708 1709 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1710 llvm::SmallVector<llvm::Constant *, 4> CElts; 1711 1712 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1713 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1714 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1715 else 1716 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1717 } 1718 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1719 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1720} 1721 1722LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1723 bool isNonGC = false; 1724 Expr *BaseExpr = E->getBase(); 1725 llvm::Value *BaseValue = NULL; 1726 Qualifiers BaseQuals; 1727 1728 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1729 if (E->isArrow()) { 1730 BaseValue = EmitScalarExpr(BaseExpr); 1731 const PointerType *PTy = 1732 BaseExpr->getType()->getAs<PointerType>(); 1733 BaseQuals = PTy->getPointeeType().getQualifiers(); 1734 } else { 1735 LValue BaseLV = EmitLValue(BaseExpr); 1736 if (BaseLV.isNonGC()) 1737 isNonGC = true; 1738 // FIXME: this isn't right for bitfields. 1739 BaseValue = BaseLV.getAddress(); 1740 QualType BaseTy = BaseExpr->getType(); 1741 BaseQuals = BaseTy.getQualifiers(); 1742 } 1743 1744 NamedDecl *ND = E->getMemberDecl(); 1745 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1746 LValue LV = EmitLValueForField(BaseValue, Field, 1747 BaseQuals.getCVRQualifiers()); 1748 LV.setNonGC(isNonGC); 1749 setObjCGCLValueClass(getContext(), E, LV); 1750 return LV; 1751 } 1752 1753 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1754 return EmitGlobalVarDeclLValue(*this, E, VD); 1755 1756 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1757 return EmitFunctionDeclLValue(*this, E, FD); 1758 1759 assert(false && "Unhandled member declaration!"); 1760 return LValue(); 1761} 1762 1763LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1764 const FieldDecl *Field, 1765 unsigned CVRQualifiers) { 1766 const CGRecordLayout &RL = 1767 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1768 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1769 return LValue::MakeBitfield(BaseValue, Info, 1770 Field->getType().withCVRQualifiers(CVRQualifiers)); 1771} 1772 1773/// EmitLValueForAnonRecordField - Given that the field is a member of 1774/// an anonymous struct or union buried inside a record, and given 1775/// that the base value is a pointer to the enclosing record, derive 1776/// an lvalue for the ultimate field. 1777LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1778 const IndirectFieldDecl *Field, 1779 unsigned CVRQualifiers) { 1780 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1781 IEnd = Field->chain_end(); 1782 while (true) { 1783 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1784 CVRQualifiers); 1785 if (++I == IEnd) return LV; 1786 1787 assert(LV.isSimple()); 1788 BaseValue = LV.getAddress(); 1789 CVRQualifiers |= LV.getVRQualifiers(); 1790 } 1791} 1792 1793LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1794 const FieldDecl *field, 1795 unsigned cvr) { 1796 if (field->isBitField()) 1797 return EmitLValueForBitfield(baseAddr, field, cvr); 1798 1799 const RecordDecl *rec = field->getParent(); 1800 QualType type = field->getType(); 1801 1802 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1803 1804 llvm::Value *addr; 1805 if (rec->isUnion()) { 1806 // For unions, we just cast to the appropriate type. 1807 assert(!type->isReferenceType() && "union has reference member"); 1808 1809 const llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(type); 1810 unsigned AS = 1811 cast<llvm::PointerType>(baseAddr->getType())->getAddressSpace(); 1812 addr = Builder.CreateBitCast(baseAddr, llvmType->getPointerTo(AS), 1813 field->getName()); 1814 } else { 1815 // For structs, we GEP to the field that the record layout suggests. 1816 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1817 addr = Builder.CreateStructGEP(baseAddr, idx, field->getName()); 1818 1819 // If this is a reference field, load the reference right now. 1820 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1821 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1822 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1823 1824 if (CGM.shouldUseTBAA()) { 1825 llvm::MDNode *tbaa; 1826 if (mayAlias) 1827 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1828 else 1829 tbaa = CGM.getTBAAInfo(type); 1830 CGM.DecorateInstruction(load, tbaa); 1831 } 1832 1833 addr = load; 1834 mayAlias = false; 1835 type = refType->getPointeeType(); 1836 cvr = 0; // qualifiers don't recursively apply to referencee 1837 } 1838 } 1839 1840 unsigned alignment = getContext().getDeclAlign(field).getQuantity(); 1841 LValue LV = MakeAddrLValue(addr, type, alignment); 1842 LV.getQuals().addCVRQualifiers(cvr); 1843 1844 // __weak attribute on a field is ignored. 1845 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1846 LV.getQuals().removeObjCGCAttr(); 1847 1848 // Fields of may_alias structs act like 'char' for TBAA purposes. 1849 // FIXME: this should get propagated down through anonymous structs 1850 // and unions. 1851 if (mayAlias && LV.getTBAAInfo()) 1852 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1853 1854 return LV; 1855} 1856 1857LValue 1858CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1859 const FieldDecl *Field, 1860 unsigned CVRQualifiers) { 1861 QualType FieldType = Field->getType(); 1862 1863 if (!FieldType->isReferenceType()) 1864 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1865 1866 const CGRecordLayout &RL = 1867 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1868 unsigned idx = RL.getLLVMFieldNo(Field); 1869 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1870 1871 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1872 1873 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1874 return MakeAddrLValue(V, FieldType, Alignment); 1875} 1876 1877LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1878 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1879 const Expr *InitExpr = E->getInitializer(); 1880 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1881 1882 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 1883 /*Init*/ true); 1884 1885 return Result; 1886} 1887 1888LValue CodeGenFunction:: 1889EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1890 if (!expr->isGLValue()) { 1891 // ?: here should be an aggregate. 1892 assert((hasAggregateLLVMType(expr->getType()) && 1893 !expr->getType()->isAnyComplexType()) && 1894 "Unexpected conditional operator!"); 1895 return EmitAggExprToLValue(expr); 1896 } 1897 1898 const Expr *condExpr = expr->getCond(); 1899 bool CondExprBool; 1900 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1901 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1902 if (!CondExprBool) std::swap(live, dead); 1903 1904 if (!ContainsLabel(dead)) 1905 return EmitLValue(live); 1906 } 1907 1908 OpaqueValueMapping binding(*this, expr); 1909 1910 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 1911 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 1912 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 1913 1914 ConditionalEvaluation eval(*this); 1915 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 1916 1917 // Any temporaries created here are conditional. 1918 EmitBlock(lhsBlock); 1919 eval.begin(*this); 1920 LValue lhs = EmitLValue(expr->getTrueExpr()); 1921 eval.end(*this); 1922 1923 if (!lhs.isSimple()) 1924 return EmitUnsupportedLValue(expr, "conditional operator"); 1925 1926 lhsBlock = Builder.GetInsertBlock(); 1927 Builder.CreateBr(contBlock); 1928 1929 // Any temporaries created here are conditional. 1930 EmitBlock(rhsBlock); 1931 eval.begin(*this); 1932 LValue rhs = EmitLValue(expr->getFalseExpr()); 1933 eval.end(*this); 1934 if (!rhs.isSimple()) 1935 return EmitUnsupportedLValue(expr, "conditional operator"); 1936 rhsBlock = Builder.GetInsertBlock(); 1937 1938 EmitBlock(contBlock); 1939 1940 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 1941 "cond-lvalue"); 1942 phi->addIncoming(lhs.getAddress(), lhsBlock); 1943 phi->addIncoming(rhs.getAddress(), rhsBlock); 1944 return MakeAddrLValue(phi, expr->getType()); 1945} 1946 1947/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1948/// If the cast is a dynamic_cast, we can have the usual lvalue result, 1949/// otherwise if a cast is needed by the code generator in an lvalue context, 1950/// then it must mean that we need the address of an aggregate in order to 1951/// access one of its fields. This can happen for all the reasons that casts 1952/// are permitted with aggregate result, including noop aggregate casts, and 1953/// cast from scalar to union. 1954LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1955 switch (E->getCastKind()) { 1956 case CK_ToVoid: 1957 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1958 1959 case CK_Dependent: 1960 llvm_unreachable("dependent cast kind in IR gen!"); 1961 1962 case CK_GetObjCProperty: { 1963 LValue LV = EmitLValue(E->getSubExpr()); 1964 assert(LV.isPropertyRef()); 1965 RValue RV = EmitLoadOfPropertyRefLValue(LV); 1966 1967 // Property is an aggregate r-value. 1968 if (RV.isAggregate()) { 1969 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1970 } 1971 1972 // Implicit property returns an l-value. 1973 assert(RV.isScalar()); 1974 return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType()); 1975 } 1976 1977 case CK_NoOp: 1978 case CK_LValueToRValue: 1979 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 1980 || E->getType()->isRecordType()) 1981 return EmitLValue(E->getSubExpr()); 1982 // Fall through to synthesize a temporary. 1983 1984 case CK_BitCast: 1985 case CK_ArrayToPointerDecay: 1986 case CK_FunctionToPointerDecay: 1987 case CK_NullToMemberPointer: 1988 case CK_NullToPointer: 1989 case CK_IntegralToPointer: 1990 case CK_PointerToIntegral: 1991 case CK_PointerToBoolean: 1992 case CK_VectorSplat: 1993 case CK_IntegralCast: 1994 case CK_IntegralToBoolean: 1995 case CK_IntegralToFloating: 1996 case CK_FloatingToIntegral: 1997 case CK_FloatingToBoolean: 1998 case CK_FloatingCast: 1999 case CK_FloatingRealToComplex: 2000 case CK_FloatingComplexToReal: 2001 case CK_FloatingComplexToBoolean: 2002 case CK_FloatingComplexCast: 2003 case CK_FloatingComplexToIntegralComplex: 2004 case CK_IntegralRealToComplex: 2005 case CK_IntegralComplexToReal: 2006 case CK_IntegralComplexToBoolean: 2007 case CK_IntegralComplexCast: 2008 case CK_IntegralComplexToFloatingComplex: 2009 case CK_DerivedToBaseMemberPointer: 2010 case CK_BaseToDerivedMemberPointer: 2011 case CK_MemberPointerToBoolean: 2012 case CK_AnyPointerToBlockPointerCast: 2013 case CK_ObjCProduceObject: 2014 case CK_ObjCConsumeObject: { 2015 // These casts only produce lvalues when we're binding a reference to a 2016 // temporary realized from a (converted) pure rvalue. Emit the expression 2017 // as a value, copy it into a temporary, and return an lvalue referring to 2018 // that temporary. 2019 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2020 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2021 return MakeAddrLValue(V, E->getType()); 2022 } 2023 2024 case CK_Dynamic: { 2025 LValue LV = EmitLValue(E->getSubExpr()); 2026 llvm::Value *V = LV.getAddress(); 2027 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2028 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2029 } 2030 2031 case CK_ConstructorConversion: 2032 case CK_UserDefinedConversion: 2033 case CK_AnyPointerToObjCPointerCast: 2034 return EmitLValue(E->getSubExpr()); 2035 2036 case CK_UncheckedDerivedToBase: 2037 case CK_DerivedToBase: { 2038 const RecordType *DerivedClassTy = 2039 E->getSubExpr()->getType()->getAs<RecordType>(); 2040 CXXRecordDecl *DerivedClassDecl = 2041 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2042 2043 LValue LV = EmitLValue(E->getSubExpr()); 2044 llvm::Value *This = LV.getAddress(); 2045 2046 // Perform the derived-to-base conversion 2047 llvm::Value *Base = 2048 GetAddressOfBaseClass(This, DerivedClassDecl, 2049 E->path_begin(), E->path_end(), 2050 /*NullCheckValue=*/false); 2051 2052 return MakeAddrLValue(Base, E->getType()); 2053 } 2054 case CK_ToUnion: 2055 return EmitAggExprToLValue(E); 2056 case CK_BaseToDerived: { 2057 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2058 CXXRecordDecl *DerivedClassDecl = 2059 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2060 2061 LValue LV = EmitLValue(E->getSubExpr()); 2062 2063 // Perform the base-to-derived conversion 2064 llvm::Value *Derived = 2065 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2066 E->path_begin(), E->path_end(), 2067 /*NullCheckValue=*/false); 2068 2069 return MakeAddrLValue(Derived, E->getType()); 2070 } 2071 case CK_LValueBitCast: { 2072 // This must be a reinterpret_cast (or c-style equivalent). 2073 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2074 2075 LValue LV = EmitLValue(E->getSubExpr()); 2076 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2077 ConvertType(CE->getTypeAsWritten())); 2078 return MakeAddrLValue(V, E->getType()); 2079 } 2080 case CK_ObjCObjectLValueCast: { 2081 LValue LV = EmitLValue(E->getSubExpr()); 2082 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2083 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2084 ConvertType(ToType)); 2085 return MakeAddrLValue(V, E->getType()); 2086 } 2087 } 2088 2089 llvm_unreachable("Unhandled lvalue cast kind?"); 2090} 2091 2092LValue CodeGenFunction::EmitNullInitializationLValue( 2093 const CXXScalarValueInitExpr *E) { 2094 QualType Ty = E->getType(); 2095 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2096 EmitNullInitialization(LV.getAddress(), Ty); 2097 return LV; 2098} 2099 2100LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2101 assert(e->isGLValue() || e->getType()->isRecordType()); 2102 return getOpaqueLValueMapping(e); 2103} 2104 2105LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2106 const MaterializeTemporaryExpr *E) { 2107 RValue RV = EmitReferenceBindingToExpr(E->GetTemporaryExpr(), 2108 /*InitializedDecl=*/0); 2109 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2110} 2111 2112 2113//===--------------------------------------------------------------------===// 2114// Expression Emission 2115//===--------------------------------------------------------------------===// 2116 2117RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2118 ReturnValueSlot ReturnValue) { 2119 if (CGDebugInfo *DI = getDebugInfo()) { 2120 DI->setLocation(E->getLocStart()); 2121 DI->UpdateLineDirectiveRegion(Builder); 2122 DI->EmitStopPoint(Builder); 2123 } 2124 2125 // Builtins never have block type. 2126 if (E->getCallee()->getType()->isBlockPointerType()) 2127 return EmitBlockCallExpr(E, ReturnValue); 2128 2129 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2130 return EmitCXXMemberCallExpr(CE, ReturnValue); 2131 2132 const Decl *TargetDecl = 0; 2133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 2134 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 2135 TargetDecl = DRE->getDecl(); 2136 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 2137 if (unsigned builtinID = FD->getBuiltinID()) 2138 return EmitBuiltinExpr(FD, builtinID, E); 2139 } 2140 } 2141 2142 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2143 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2144 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2145 2146 if (const CXXPseudoDestructorExpr *PseudoDtor 2147 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2148 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2149 if (getContext().getLangOptions().ObjCAutoRefCount && 2150 DestroyedType->isObjCLifetimeType() && 2151 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2152 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2153 // Automatic Reference Counting: 2154 // If the pseudo-expression names a retainable object with weak or 2155 // strong lifetime, the object shall be released. 2156 Expr *BaseExpr = PseudoDtor->getBase(); 2157 llvm::Value *BaseValue = NULL; 2158 Qualifiers BaseQuals; 2159 2160 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2161 if (PseudoDtor->isArrow()) { 2162 BaseValue = EmitScalarExpr(BaseExpr); 2163 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2164 BaseQuals = PTy->getPointeeType().getQualifiers(); 2165 } else { 2166 LValue BaseLV = EmitLValue(BaseExpr); 2167 BaseValue = BaseLV.getAddress(); 2168 QualType BaseTy = BaseExpr->getType(); 2169 BaseQuals = BaseTy.getQualifiers(); 2170 } 2171 2172 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2173 case Qualifiers::OCL_None: 2174 case Qualifiers::OCL_ExplicitNone: 2175 case Qualifiers::OCL_Autoreleasing: 2176 break; 2177 2178 case Qualifiers::OCL_Strong: 2179 EmitARCRelease(Builder.CreateLoad(BaseValue, 2180 PseudoDtor->getDestroyedType().isVolatileQualified()), 2181 /*precise*/ true); 2182 break; 2183 2184 case Qualifiers::OCL_Weak: 2185 EmitARCDestroyWeak(BaseValue); 2186 break; 2187 } 2188 } else { 2189 // C++ [expr.pseudo]p1: 2190 // The result shall only be used as the operand for the function call 2191 // operator (), and the result of such a call has type void. The only 2192 // effect is the evaluation of the postfix-expression before the dot or 2193 // arrow. 2194 EmitScalarExpr(E->getCallee()); 2195 } 2196 2197 return RValue::get(0); 2198 } 2199 2200 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2201 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2202 E->arg_begin(), E->arg_end(), TargetDecl); 2203} 2204 2205LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2206 // Comma expressions just emit their LHS then their RHS as an l-value. 2207 if (E->getOpcode() == BO_Comma) { 2208 EmitIgnoredExpr(E->getLHS()); 2209 EnsureInsertPoint(); 2210 return EmitLValue(E->getRHS()); 2211 } 2212 2213 if (E->getOpcode() == BO_PtrMemD || 2214 E->getOpcode() == BO_PtrMemI) 2215 return EmitPointerToDataMemberBinaryExpr(E); 2216 2217 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2218 2219 // Note that in all of these cases, __block variables need the RHS 2220 // evaluated first just in case the variable gets moved by the RHS. 2221 2222 if (!hasAggregateLLVMType(E->getType())) { 2223 switch (E->getLHS()->getType().getObjCLifetime()) { 2224 case Qualifiers::OCL_Strong: 2225 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2226 2227 case Qualifiers::OCL_Autoreleasing: 2228 return EmitARCStoreAutoreleasing(E).first; 2229 2230 // No reason to do any of these differently. 2231 case Qualifiers::OCL_None: 2232 case Qualifiers::OCL_ExplicitNone: 2233 case Qualifiers::OCL_Weak: 2234 break; 2235 } 2236 2237 RValue RV = EmitAnyExpr(E->getRHS()); 2238 LValue LV = EmitLValue(E->getLHS()); 2239 EmitStoreThroughLValue(RV, LV); 2240 return LV; 2241 } 2242 2243 if (E->getType()->isAnyComplexType()) 2244 return EmitComplexAssignmentLValue(E); 2245 2246 return EmitAggExprToLValue(E); 2247} 2248 2249LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2250 RValue RV = EmitCallExpr(E); 2251 2252 if (!RV.isScalar()) 2253 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2254 2255 assert(E->getCallReturnType()->isReferenceType() && 2256 "Can't have a scalar return unless the return type is a " 2257 "reference type!"); 2258 2259 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2260} 2261 2262LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2263 // FIXME: This shouldn't require another copy. 2264 return EmitAggExprToLValue(E); 2265} 2266 2267LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2268 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2269 && "binding l-value to type which needs a temporary"); 2270 AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp"); 2271 EmitCXXConstructExpr(E, Slot); 2272 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2273} 2274 2275LValue 2276CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2277 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2278} 2279 2280LValue 2281CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2282 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2283 Slot.setLifetimeExternallyManaged(); 2284 EmitAggExpr(E->getSubExpr(), Slot); 2285 EmitCXXTemporary(E->getTemporary(), Slot.getAddr()); 2286 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2287} 2288 2289LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2290 RValue RV = EmitObjCMessageExpr(E); 2291 2292 if (!RV.isScalar()) 2293 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2294 2295 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2296 "Can't have a scalar return unless the return type is a " 2297 "reference type!"); 2298 2299 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2300} 2301 2302LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2303 llvm::Value *V = 2304 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2305 return MakeAddrLValue(V, E->getType()); 2306} 2307 2308llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2309 const ObjCIvarDecl *Ivar) { 2310 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2311} 2312 2313LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2314 llvm::Value *BaseValue, 2315 const ObjCIvarDecl *Ivar, 2316 unsigned CVRQualifiers) { 2317 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2318 Ivar, CVRQualifiers); 2319} 2320 2321LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2322 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2323 llvm::Value *BaseValue = 0; 2324 const Expr *BaseExpr = E->getBase(); 2325 Qualifiers BaseQuals; 2326 QualType ObjectTy; 2327 if (E->isArrow()) { 2328 BaseValue = EmitScalarExpr(BaseExpr); 2329 ObjectTy = BaseExpr->getType()->getPointeeType(); 2330 BaseQuals = ObjectTy.getQualifiers(); 2331 } else { 2332 LValue BaseLV = EmitLValue(BaseExpr); 2333 // FIXME: this isn't right for bitfields. 2334 BaseValue = BaseLV.getAddress(); 2335 ObjectTy = BaseExpr->getType(); 2336 BaseQuals = ObjectTy.getQualifiers(); 2337 } 2338 2339 LValue LV = 2340 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2341 BaseQuals.getCVRQualifiers()); 2342 setObjCGCLValueClass(getContext(), E, LV); 2343 return LV; 2344} 2345 2346LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2347 // Can only get l-value for message expression returning aggregate type 2348 RValue RV = EmitAnyExprToTemp(E); 2349 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2350} 2351 2352RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2353 ReturnValueSlot ReturnValue, 2354 CallExpr::const_arg_iterator ArgBeg, 2355 CallExpr::const_arg_iterator ArgEnd, 2356 const Decl *TargetDecl) { 2357 // Get the actual function type. The callee type will always be a pointer to 2358 // function type or a block pointer type. 2359 assert(CalleeType->isFunctionPointerType() && 2360 "Call must have function pointer type!"); 2361 2362 CalleeType = getContext().getCanonicalType(CalleeType); 2363 2364 const FunctionType *FnType 2365 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2366 2367 CallArgList Args; 2368 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2369 2370 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), 2371 Callee, ReturnValue, Args, TargetDecl); 2372} 2373 2374LValue CodeGenFunction:: 2375EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2376 llvm::Value *BaseV; 2377 if (E->getOpcode() == BO_PtrMemI) 2378 BaseV = EmitScalarExpr(E->getLHS()); 2379 else 2380 BaseV = EmitLValue(E->getLHS()).getAddress(); 2381 2382 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2383 2384 const MemberPointerType *MPT 2385 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2386 2387 llvm::Value *AddV = 2388 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2389 2390 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2391} 2392