1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGLoopInfo.h"
20#include "CGValue.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "EHScopeStack.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/ABI.h"
29#include "clang/Basic/CapturedStmt.h"
30#include "clang/Basic/OpenMPKinds.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Frontend/CodeGenOptions.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/Support/Debug.h"
38
39namespace llvm {
40class BasicBlock;
41class LLVMContext;
42class MDNode;
43class Module;
44class SwitchInst;
45class Twine;
46class Value;
47class CallSite;
48}
49
50namespace clang {
51class ASTContext;
52class BlockDecl;
53class CXXDestructorDecl;
54class CXXForRangeStmt;
55class CXXTryStmt;
56class Decl;
57class LabelDecl;
58class EnumConstantDecl;
59class FunctionDecl;
60class FunctionProtoType;
61class LabelStmt;
62class ObjCContainerDecl;
63class ObjCInterfaceDecl;
64class ObjCIvarDecl;
65class ObjCMethodDecl;
66class ObjCImplementationDecl;
67class ObjCPropertyImplDecl;
68class TargetInfo;
69class TargetCodeGenInfo;
70class VarDecl;
71class ObjCForCollectionStmt;
72class ObjCAtTryStmt;
73class ObjCAtThrowStmt;
74class ObjCAtSynchronizedStmt;
75class ObjCAutoreleasePoolStmt;
76
77namespace CodeGen {
78class CodeGenTypes;
79class CGFunctionInfo;
80class CGRecordLayout;
81class CGBlockInfo;
82class CGCXXABI;
83class BlockFlags;
84class BlockFieldFlags;
85
86/// The kind of evaluation to perform on values of a particular
87/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88/// CGExprAgg?
89///
90/// TODO: should vectors maybe be split out into their own thing?
91enum TypeEvaluationKind {
92  TEK_Scalar,
93  TEK_Complex,
94  TEK_Aggregate
95};
96
97/// CodeGenFunction - This class organizes the per-function state that is used
98/// while generating LLVM code.
99class CodeGenFunction : public CodeGenTypeCache {
100  CodeGenFunction(const CodeGenFunction &) = delete;
101  void operator=(const CodeGenFunction &) = delete;
102
103  friend class CGCXXABI;
104public:
105  /// A jump destination is an abstract label, branching to which may
106  /// require a jump out through normal cleanups.
107  struct JumpDest {
108    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
109    JumpDest(llvm::BasicBlock *Block,
110             EHScopeStack::stable_iterator Depth,
111             unsigned Index)
112      : Block(Block), ScopeDepth(Depth), Index(Index) {}
113
114    bool isValid() const { return Block != nullptr; }
115    llvm::BasicBlock *getBlock() const { return Block; }
116    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
117    unsigned getDestIndex() const { return Index; }
118
119    // This should be used cautiously.
120    void setScopeDepth(EHScopeStack::stable_iterator depth) {
121      ScopeDepth = depth;
122    }
123
124  private:
125    llvm::BasicBlock *Block;
126    EHScopeStack::stable_iterator ScopeDepth;
127    unsigned Index;
128  };
129
130  CodeGenModule &CGM;  // Per-module state.
131  const TargetInfo &Target;
132
133  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134  LoopInfoStack LoopStack;
135  CGBuilderTy Builder;
136
137  /// \brief CGBuilder insert helper. This function is called after an
138  /// instruction is created using Builder.
139  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                    llvm::BasicBlock *BB,
141                    llvm::BasicBlock::iterator InsertPt) const;
142
143  /// CurFuncDecl - Holds the Decl for the current outermost
144  /// non-closure context.
145  const Decl *CurFuncDecl;
146  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147  const Decl *CurCodeDecl;
148  const CGFunctionInfo *CurFnInfo;
149  QualType FnRetTy;
150  llvm::Function *CurFn;
151
152  /// CurGD - The GlobalDecl for the current function being compiled.
153  GlobalDecl CurGD;
154
155  /// PrologueCleanupDepth - The cleanup depth enclosing all the
156  /// cleanups associated with the parameters.
157  EHScopeStack::stable_iterator PrologueCleanupDepth;
158
159  /// ReturnBlock - Unified return block.
160  JumpDest ReturnBlock;
161
162  /// ReturnValue - The temporary alloca to hold the return value. This is null
163  /// iff the function has no return value.
164  llvm::Value *ReturnValue;
165
166  /// AllocaInsertPoint - This is an instruction in the entry block before which
167  /// we prefer to insert allocas.
168  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169
170  /// \brief API for captured statement code generation.
171  class CGCapturedStmtInfo {
172  public:
173    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
174        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175    explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                CapturedRegionKind K = CR_Default)
177      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178
179      RecordDecl::field_iterator Field =
180        S.getCapturedRecordDecl()->field_begin();
181      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                E = S.capture_end();
183           I != E; ++I, ++Field) {
184        if (I->capturesThis())
185          CXXThisFieldDecl = *Field;
186        else if (I->capturesVariable())
187          CaptureFields[I->getCapturedVar()] = *Field;
188      }
189    }
190
191    virtual ~CGCapturedStmtInfo();
192
193    CapturedRegionKind getKind() const { return Kind; }
194
195    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
196    // \brief Retrieve the value of the context parameter.
197    virtual llvm::Value *getContextValue() const { return ThisValue; }
198
199    /// \brief Lookup the captured field decl for a variable.
200    virtual const FieldDecl *lookup(const VarDecl *VD) const {
201      return CaptureFields.lookup(VD);
202    }
203
204    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
205    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206
207    static bool classof(const CGCapturedStmtInfo *) {
208      return true;
209    }
210
211    /// \brief Emit the captured statement body.
212    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
213      RegionCounter Cnt = CGF.getPGORegionCounter(S);
214      Cnt.beginRegion(CGF.Builder);
215      CGF.EmitStmt(S);
216    }
217
218    /// \brief Get the name of the capture helper.
219    virtual StringRef getHelperName() const { return "__captured_stmt"; }
220
221  private:
222    /// \brief The kind of captured statement being generated.
223    CapturedRegionKind Kind;
224
225    /// \brief Keep the map between VarDecl and FieldDecl.
226    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
227
228    /// \brief The base address of the captured record, passed in as the first
229    /// argument of the parallel region function.
230    llvm::Value *ThisValue;
231
232    /// \brief Captured 'this' type.
233    FieldDecl *CXXThisFieldDecl;
234  };
235  CGCapturedStmtInfo *CapturedStmtInfo;
236
237  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
238  /// potentially higher performance penalties.
239  unsigned char BoundsChecking;
240
241  /// \brief Sanitizers enabled for this function.
242  SanitizerSet SanOpts;
243
244  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
245  bool IsSanitizerScope;
246
247  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
248  class SanitizerScope {
249    CodeGenFunction *CGF;
250  public:
251    SanitizerScope(CodeGenFunction *CGF);
252    ~SanitizerScope();
253  };
254
255  /// In C++, whether we are code generating a thunk.  This controls whether we
256  /// should emit cleanups.
257  bool CurFuncIsThunk;
258
259  /// In ARC, whether we should autorelease the return value.
260  bool AutoreleaseResult;
261
262  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
263  /// potentially set the return value.
264  bool SawAsmBlock;
265
266  /// True if the current function is an outlined SEH helper. This can be a
267  /// finally block or filter expression.
268  bool IsOutlinedSEHHelper;
269
270  const CodeGen::CGBlockInfo *BlockInfo;
271  llvm::Value *BlockPointer;
272
273  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
274  FieldDecl *LambdaThisCaptureField;
275
276  /// \brief A mapping from NRVO variables to the flags used to indicate
277  /// when the NRVO has been applied to this variable.
278  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
279
280  EHScopeStack EHStack;
281  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
282  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
283
284  /// Header for data within LifetimeExtendedCleanupStack.
285  struct LifetimeExtendedCleanupHeader {
286    /// The size of the following cleanup object.
287    unsigned Size : 29;
288    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
289    unsigned Kind : 3;
290
291    size_t getSize() const { return size_t(Size); }
292    CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
293  };
294
295  /// i32s containing the indexes of the cleanup destinations.
296  llvm::AllocaInst *NormalCleanupDest;
297
298  unsigned NextCleanupDestIndex;
299
300  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
301  CGBlockInfo *FirstBlockInfo;
302
303  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
304  llvm::BasicBlock *EHResumeBlock;
305
306  /// The exception slot.  All landing pads write the current exception pointer
307  /// into this alloca.
308  llvm::Value *ExceptionSlot;
309
310  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
311  /// write the current selector value into this alloca.
312  llvm::AllocaInst *EHSelectorSlot;
313
314  llvm::AllocaInst *AbnormalTerminationSlot;
315
316  /// The implicit parameter to SEH filter functions of type
317  /// 'EXCEPTION_POINTERS*'.
318  ImplicitParamDecl *SEHPointersDecl;
319
320  /// Emits a landing pad for the current EH stack.
321  llvm::BasicBlock *EmitLandingPad();
322
323  llvm::BasicBlock *getInvokeDestImpl();
324
325  template <class T>
326  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
327    return DominatingValue<T>::save(*this, value);
328  }
329
330public:
331  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
332  /// rethrows.
333  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
334
335  /// A class controlling the emission of a finally block.
336  class FinallyInfo {
337    /// Where the catchall's edge through the cleanup should go.
338    JumpDest RethrowDest;
339
340    /// A function to call to enter the catch.
341    llvm::Constant *BeginCatchFn;
342
343    /// An i1 variable indicating whether or not the @finally is
344    /// running for an exception.
345    llvm::AllocaInst *ForEHVar;
346
347    /// An i8* variable into which the exception pointer to rethrow
348    /// has been saved.
349    llvm::AllocaInst *SavedExnVar;
350
351  public:
352    void enter(CodeGenFunction &CGF, const Stmt *Finally,
353               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
354               llvm::Constant *rethrowFn);
355    void exit(CodeGenFunction &CGF);
356  };
357
358  /// Returns true inside SEH __try blocks.
359  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
360
361  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
362  /// current full-expression.  Safe against the possibility that
363  /// we're currently inside a conditionally-evaluated expression.
364  template <class T, class... As>
365  void pushFullExprCleanup(CleanupKind kind, As... A) {
366    // If we're not in a conditional branch, or if none of the
367    // arguments requires saving, then use the unconditional cleanup.
368    if (!isInConditionalBranch())
369      return EHStack.pushCleanup<T>(kind, A...);
370
371    // Stash values in a tuple so we can guarantee the order of saves.
372    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
373    SavedTuple Saved{saveValueInCond(A)...};
374
375    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
376    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
377    initFullExprCleanup();
378  }
379
380  /// \brief Queue a cleanup to be pushed after finishing the current
381  /// full-expression.
382  template <class T, class... As>
383  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
384    assert(!isInConditionalBranch() && "can't defer conditional cleanup");
385
386    LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
387
388    size_t OldSize = LifetimeExtendedCleanupStack.size();
389    LifetimeExtendedCleanupStack.resize(
390        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
391
392    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
393    new (Buffer) LifetimeExtendedCleanupHeader(Header);
394    new (Buffer + sizeof(Header)) T(A...);
395  }
396
397  /// Set up the last cleaup that was pushed as a conditional
398  /// full-expression cleanup.
399  void initFullExprCleanup();
400
401  /// PushDestructorCleanup - Push a cleanup to call the
402  /// complete-object destructor of an object of the given type at the
403  /// given address.  Does nothing if T is not a C++ class type with a
404  /// non-trivial destructor.
405  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
406
407  /// PushDestructorCleanup - Push a cleanup to call the
408  /// complete-object variant of the given destructor on the object at
409  /// the given address.
410  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
411                             llvm::Value *Addr);
412
413  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
414  /// process all branch fixups.
415  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
416
417  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
418  /// The block cannot be reactivated.  Pops it if it's the top of the
419  /// stack.
420  ///
421  /// \param DominatingIP - An instruction which is known to
422  ///   dominate the current IP (if set) and which lies along
423  ///   all paths of execution between the current IP and the
424  ///   the point at which the cleanup comes into scope.
425  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
426                              llvm::Instruction *DominatingIP);
427
428  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
429  /// Cannot be used to resurrect a deactivated cleanup.
430  ///
431  /// \param DominatingIP - An instruction which is known to
432  ///   dominate the current IP (if set) and which lies along
433  ///   all paths of execution between the current IP and the
434  ///   the point at which the cleanup comes into scope.
435  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
436                            llvm::Instruction *DominatingIP);
437
438  /// \brief Enters a new scope for capturing cleanups, all of which
439  /// will be executed once the scope is exited.
440  class RunCleanupsScope {
441    EHScopeStack::stable_iterator CleanupStackDepth;
442    size_t LifetimeExtendedCleanupStackSize;
443    bool OldDidCallStackSave;
444  protected:
445    bool PerformCleanup;
446  private:
447
448    RunCleanupsScope(const RunCleanupsScope &) = delete;
449    void operator=(const RunCleanupsScope &) = delete;
450
451  protected:
452    CodeGenFunction& CGF;
453
454  public:
455    /// \brief Enter a new cleanup scope.
456    explicit RunCleanupsScope(CodeGenFunction &CGF)
457      : PerformCleanup(true), CGF(CGF)
458    {
459      CleanupStackDepth = CGF.EHStack.stable_begin();
460      LifetimeExtendedCleanupStackSize =
461          CGF.LifetimeExtendedCleanupStack.size();
462      OldDidCallStackSave = CGF.DidCallStackSave;
463      CGF.DidCallStackSave = false;
464    }
465
466    /// \brief Exit this cleanup scope, emitting any accumulated
467    /// cleanups.
468    ~RunCleanupsScope() {
469      if (PerformCleanup) {
470        CGF.DidCallStackSave = OldDidCallStackSave;
471        CGF.PopCleanupBlocks(CleanupStackDepth,
472                             LifetimeExtendedCleanupStackSize);
473      }
474    }
475
476    /// \brief Determine whether this scope requires any cleanups.
477    bool requiresCleanups() const {
478      return CGF.EHStack.stable_begin() != CleanupStackDepth;
479    }
480
481    /// \brief Force the emission of cleanups now, instead of waiting
482    /// until this object is destroyed.
483    void ForceCleanup() {
484      assert(PerformCleanup && "Already forced cleanup");
485      CGF.DidCallStackSave = OldDidCallStackSave;
486      CGF.PopCleanupBlocks(CleanupStackDepth,
487                           LifetimeExtendedCleanupStackSize);
488      PerformCleanup = false;
489    }
490  };
491
492  class LexicalScope : public RunCleanupsScope {
493    SourceRange Range;
494    SmallVector<const LabelDecl*, 4> Labels;
495    LexicalScope *ParentScope;
496
497    LexicalScope(const LexicalScope &) = delete;
498    void operator=(const LexicalScope &) = delete;
499
500  public:
501    /// \brief Enter a new cleanup scope.
502    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
503      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
504      CGF.CurLexicalScope = this;
505      if (CGDebugInfo *DI = CGF.getDebugInfo())
506        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
507    }
508
509    void addLabel(const LabelDecl *label) {
510      assert(PerformCleanup && "adding label to dead scope?");
511      Labels.push_back(label);
512    }
513
514    /// \brief Exit this cleanup scope, emitting any accumulated
515    /// cleanups.
516    ~LexicalScope() {
517      if (CGDebugInfo *DI = CGF.getDebugInfo())
518        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
519
520      // If we should perform a cleanup, force them now.  Note that
521      // this ends the cleanup scope before rescoping any labels.
522      if (PerformCleanup) {
523        ApplyDebugLocation DL(CGF, Range.getEnd());
524        ForceCleanup();
525      }
526    }
527
528    /// \brief Force the emission of cleanups now, instead of waiting
529    /// until this object is destroyed.
530    void ForceCleanup() {
531      CGF.CurLexicalScope = ParentScope;
532      RunCleanupsScope::ForceCleanup();
533
534      if (!Labels.empty())
535        rescopeLabels();
536    }
537
538    void rescopeLabels();
539  };
540
541  /// \brief The scope used to remap some variables as private in the OpenMP
542  /// loop body (or other captured region emitted without outlining), and to
543  /// restore old vars back on exit.
544  class OMPPrivateScope : public RunCleanupsScope {
545    typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
546    VarDeclMapTy SavedLocals;
547    VarDeclMapTy SavedPrivates;
548
549  private:
550    OMPPrivateScope(const OMPPrivateScope &) = delete;
551    void operator=(const OMPPrivateScope &) = delete;
552
553  public:
554    /// \brief Enter a new OpenMP private scope.
555    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
556
557    /// \brief Registers \a LocalVD variable as a private and apply \a
558    /// PrivateGen function for it to generate corresponding private variable.
559    /// \a PrivateGen returns an address of the generated private variable.
560    /// \return true if the variable is registered as private, false if it has
561    /// been privatized already.
562    bool
563    addPrivate(const VarDecl *LocalVD,
564               const std::function<llvm::Value *()> &PrivateGen) {
565      assert(PerformCleanup && "adding private to dead scope");
566      if (SavedLocals.count(LocalVD) > 0) return false;
567      SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
568      CGF.LocalDeclMap.erase(LocalVD);
569      SavedPrivates[LocalVD] = PrivateGen();
570      CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
571      return true;
572    }
573
574    /// \brief Privatizes local variables previously registered as private.
575    /// Registration is separate from the actual privatization to allow
576    /// initializers use values of the original variables, not the private one.
577    /// This is important, for example, if the private variable is a class
578    /// variable initialized by a constructor that references other private
579    /// variables. But at initialization original variables must be used, not
580    /// private copies.
581    /// \return true if at least one variable was privatized, false otherwise.
582    bool Privatize() {
583      for (auto VDPair : SavedPrivates) {
584        CGF.LocalDeclMap[VDPair.first] = VDPair.second;
585      }
586      SavedPrivates.clear();
587      return !SavedLocals.empty();
588    }
589
590    void ForceCleanup() {
591      RunCleanupsScope::ForceCleanup();
592      // Remap vars back to the original values.
593      for (auto I : SavedLocals) {
594        CGF.LocalDeclMap[I.first] = I.second;
595      }
596      SavedLocals.clear();
597    }
598
599    /// \brief Exit scope - all the mapped variables are restored.
600    ~OMPPrivateScope() {
601      if (PerformCleanup)
602        ForceCleanup();
603    }
604  };
605
606  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
607  /// that have been added.
608  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
609
610  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
611  /// that have been added, then adds all lifetime-extended cleanups from
612  /// the given position to the stack.
613  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
614                        size_t OldLifetimeExtendedStackSize);
615
616  void ResolveBranchFixups(llvm::BasicBlock *Target);
617
618  /// The given basic block lies in the current EH scope, but may be a
619  /// target of a potentially scope-crossing jump; get a stable handle
620  /// to which we can perform this jump later.
621  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
622    return JumpDest(Target,
623                    EHStack.getInnermostNormalCleanup(),
624                    NextCleanupDestIndex++);
625  }
626
627  /// The given basic block lies in the current EH scope, but may be a
628  /// target of a potentially scope-crossing jump; get a stable handle
629  /// to which we can perform this jump later.
630  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
631    return getJumpDestInCurrentScope(createBasicBlock(Name));
632  }
633
634  /// EmitBranchThroughCleanup - Emit a branch from the current insert
635  /// block through the normal cleanup handling code (if any) and then
636  /// on to \arg Dest.
637  void EmitBranchThroughCleanup(JumpDest Dest);
638
639  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
640  /// specified destination obviously has no cleanups to run.  'false' is always
641  /// a conservatively correct answer for this method.
642  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
643
644  /// popCatchScope - Pops the catch scope at the top of the EHScope
645  /// stack, emitting any required code (other than the catch handlers
646  /// themselves).
647  void popCatchScope();
648
649  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
650  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
651
652  /// An object to manage conditionally-evaluated expressions.
653  class ConditionalEvaluation {
654    llvm::BasicBlock *StartBB;
655
656  public:
657    ConditionalEvaluation(CodeGenFunction &CGF)
658      : StartBB(CGF.Builder.GetInsertBlock()) {}
659
660    void begin(CodeGenFunction &CGF) {
661      assert(CGF.OutermostConditional != this);
662      if (!CGF.OutermostConditional)
663        CGF.OutermostConditional = this;
664    }
665
666    void end(CodeGenFunction &CGF) {
667      assert(CGF.OutermostConditional != nullptr);
668      if (CGF.OutermostConditional == this)
669        CGF.OutermostConditional = nullptr;
670    }
671
672    /// Returns a block which will be executed prior to each
673    /// evaluation of the conditional code.
674    llvm::BasicBlock *getStartingBlock() const {
675      return StartBB;
676    }
677  };
678
679  /// isInConditionalBranch - Return true if we're currently emitting
680  /// one branch or the other of a conditional expression.
681  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
682
683  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
684    assert(isInConditionalBranch());
685    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
686    new llvm::StoreInst(value, addr, &block->back());
687  }
688
689  /// An RAII object to record that we're evaluating a statement
690  /// expression.
691  class StmtExprEvaluation {
692    CodeGenFunction &CGF;
693
694    /// We have to save the outermost conditional: cleanups in a
695    /// statement expression aren't conditional just because the
696    /// StmtExpr is.
697    ConditionalEvaluation *SavedOutermostConditional;
698
699  public:
700    StmtExprEvaluation(CodeGenFunction &CGF)
701      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
702      CGF.OutermostConditional = nullptr;
703    }
704
705    ~StmtExprEvaluation() {
706      CGF.OutermostConditional = SavedOutermostConditional;
707      CGF.EnsureInsertPoint();
708    }
709  };
710
711  /// An object which temporarily prevents a value from being
712  /// destroyed by aggressive peephole optimizations that assume that
713  /// all uses of a value have been realized in the IR.
714  class PeepholeProtection {
715    llvm::Instruction *Inst;
716    friend class CodeGenFunction;
717
718  public:
719    PeepholeProtection() : Inst(nullptr) {}
720  };
721
722  /// A non-RAII class containing all the information about a bound
723  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
724  /// this which makes individual mappings very simple; using this
725  /// class directly is useful when you have a variable number of
726  /// opaque values or don't want the RAII functionality for some
727  /// reason.
728  class OpaqueValueMappingData {
729    const OpaqueValueExpr *OpaqueValue;
730    bool BoundLValue;
731    CodeGenFunction::PeepholeProtection Protection;
732
733    OpaqueValueMappingData(const OpaqueValueExpr *ov,
734                           bool boundLValue)
735      : OpaqueValue(ov), BoundLValue(boundLValue) {}
736  public:
737    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
738
739    static bool shouldBindAsLValue(const Expr *expr) {
740      // gl-values should be bound as l-values for obvious reasons.
741      // Records should be bound as l-values because IR generation
742      // always keeps them in memory.  Expressions of function type
743      // act exactly like l-values but are formally required to be
744      // r-values in C.
745      return expr->isGLValue() ||
746             expr->getType()->isFunctionType() ||
747             hasAggregateEvaluationKind(expr->getType());
748    }
749
750    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
751                                       const OpaqueValueExpr *ov,
752                                       const Expr *e) {
753      if (shouldBindAsLValue(ov))
754        return bind(CGF, ov, CGF.EmitLValue(e));
755      return bind(CGF, ov, CGF.EmitAnyExpr(e));
756    }
757
758    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
759                                       const OpaqueValueExpr *ov,
760                                       const LValue &lv) {
761      assert(shouldBindAsLValue(ov));
762      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
763      return OpaqueValueMappingData(ov, true);
764    }
765
766    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
767                                       const OpaqueValueExpr *ov,
768                                       const RValue &rv) {
769      assert(!shouldBindAsLValue(ov));
770      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
771
772      OpaqueValueMappingData data(ov, false);
773
774      // Work around an extremely aggressive peephole optimization in
775      // EmitScalarConversion which assumes that all other uses of a
776      // value are extant.
777      data.Protection = CGF.protectFromPeepholes(rv);
778
779      return data;
780    }
781
782    bool isValid() const { return OpaqueValue != nullptr; }
783    void clear() { OpaqueValue = nullptr; }
784
785    void unbind(CodeGenFunction &CGF) {
786      assert(OpaqueValue && "no data to unbind!");
787
788      if (BoundLValue) {
789        CGF.OpaqueLValues.erase(OpaqueValue);
790      } else {
791        CGF.OpaqueRValues.erase(OpaqueValue);
792        CGF.unprotectFromPeepholes(Protection);
793      }
794    }
795  };
796
797  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
798  class OpaqueValueMapping {
799    CodeGenFunction &CGF;
800    OpaqueValueMappingData Data;
801
802  public:
803    static bool shouldBindAsLValue(const Expr *expr) {
804      return OpaqueValueMappingData::shouldBindAsLValue(expr);
805    }
806
807    /// Build the opaque value mapping for the given conditional
808    /// operator if it's the GNU ?: extension.  This is a common
809    /// enough pattern that the convenience operator is really
810    /// helpful.
811    ///
812    OpaqueValueMapping(CodeGenFunction &CGF,
813                       const AbstractConditionalOperator *op) : CGF(CGF) {
814      if (isa<ConditionalOperator>(op))
815        // Leave Data empty.
816        return;
817
818      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
819      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
820                                          e->getCommon());
821    }
822
823    OpaqueValueMapping(CodeGenFunction &CGF,
824                       const OpaqueValueExpr *opaqueValue,
825                       LValue lvalue)
826      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
827    }
828
829    OpaqueValueMapping(CodeGenFunction &CGF,
830                       const OpaqueValueExpr *opaqueValue,
831                       RValue rvalue)
832      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
833    }
834
835    void pop() {
836      Data.unbind(CGF);
837      Data.clear();
838    }
839
840    ~OpaqueValueMapping() {
841      if (Data.isValid()) Data.unbind(CGF);
842    }
843  };
844
845  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
846  /// number that holds the value.
847  std::pair<llvm::Type *, unsigned>
848  getByRefValueLLVMField(const ValueDecl *VD) const;
849
850  /// BuildBlockByrefAddress - Computes address location of the
851  /// variable which is declared as __block.
852  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
853                                      const VarDecl *V);
854private:
855  CGDebugInfo *DebugInfo;
856  bool DisableDebugInfo;
857
858  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
859  /// calling llvm.stacksave for multiple VLAs in the same scope.
860  bool DidCallStackSave;
861
862  /// IndirectBranch - The first time an indirect goto is seen we create a block
863  /// with an indirect branch.  Every time we see the address of a label taken,
864  /// we add the label to the indirect goto.  Every subsequent indirect goto is
865  /// codegen'd as a jump to the IndirectBranch's basic block.
866  llvm::IndirectBrInst *IndirectBranch;
867
868  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
869  /// decls.
870  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
871  DeclMapTy LocalDeclMap;
872
873  /// Track escaped local variables with auto storage. Used during SEH
874  /// outlining to produce a call to llvm.frameescape.
875  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
876
877  /// LabelMap - This keeps track of the LLVM basic block for each C label.
878  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
879
880  // BreakContinueStack - This keeps track of where break and continue
881  // statements should jump to.
882  struct BreakContinue {
883    BreakContinue(JumpDest Break, JumpDest Continue)
884      : BreakBlock(Break), ContinueBlock(Continue) {}
885
886    JumpDest BreakBlock;
887    JumpDest ContinueBlock;
888  };
889  SmallVector<BreakContinue, 8> BreakContinueStack;
890
891  CodeGenPGO PGO;
892
893public:
894  /// Get a counter for instrumentation of the region associated with the given
895  /// statement.
896  RegionCounter getPGORegionCounter(const Stmt *S) {
897    return RegionCounter(PGO, S);
898  }
899private:
900
901  /// SwitchInsn - This is nearest current switch instruction. It is null if
902  /// current context is not in a switch.
903  llvm::SwitchInst *SwitchInsn;
904  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
905  SmallVector<uint64_t, 16> *SwitchWeights;
906
907  /// CaseRangeBlock - This block holds if condition check for last case
908  /// statement range in current switch instruction.
909  llvm::BasicBlock *CaseRangeBlock;
910
911  /// OpaqueLValues - Keeps track of the current set of opaque value
912  /// expressions.
913  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
914  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
915
916  // VLASizeMap - This keeps track of the associated size for each VLA type.
917  // We track this by the size expression rather than the type itself because
918  // in certain situations, like a const qualifier applied to an VLA typedef,
919  // multiple VLA types can share the same size expression.
920  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
921  // enter/leave scopes.
922  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
923
924  /// A block containing a single 'unreachable' instruction.  Created
925  /// lazily by getUnreachableBlock().
926  llvm::BasicBlock *UnreachableBlock;
927
928  /// Counts of the number return expressions in the function.
929  unsigned NumReturnExprs;
930
931  /// Count the number of simple (constant) return expressions in the function.
932  unsigned NumSimpleReturnExprs;
933
934  /// The last regular (non-return) debug location (breakpoint) in the function.
935  SourceLocation LastStopPoint;
936
937public:
938  /// A scope within which we are constructing the fields of an object which
939  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
940  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
941  class FieldConstructionScope {
942  public:
943    FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
944        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
945      CGF.CXXDefaultInitExprThis = This;
946    }
947    ~FieldConstructionScope() {
948      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
949    }
950
951  private:
952    CodeGenFunction &CGF;
953    llvm::Value *OldCXXDefaultInitExprThis;
954  };
955
956  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
957  /// is overridden to be the object under construction.
958  class CXXDefaultInitExprScope {
959  public:
960    CXXDefaultInitExprScope(CodeGenFunction &CGF)
961        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
962      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
963    }
964    ~CXXDefaultInitExprScope() {
965      CGF.CXXThisValue = OldCXXThisValue;
966    }
967
968  public:
969    CodeGenFunction &CGF;
970    llvm::Value *OldCXXThisValue;
971  };
972
973private:
974  /// CXXThisDecl - When generating code for a C++ member function,
975  /// this will hold the implicit 'this' declaration.
976  ImplicitParamDecl *CXXABIThisDecl;
977  llvm::Value *CXXABIThisValue;
978  llvm::Value *CXXThisValue;
979
980  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
981  /// this expression.
982  llvm::Value *CXXDefaultInitExprThis;
983
984  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
985  /// destructor, this will hold the implicit argument (e.g. VTT).
986  ImplicitParamDecl *CXXStructorImplicitParamDecl;
987  llvm::Value *CXXStructorImplicitParamValue;
988
989  /// OutermostConditional - Points to the outermost active
990  /// conditional control.  This is used so that we know if a
991  /// temporary should be destroyed conditionally.
992  ConditionalEvaluation *OutermostConditional;
993
994  /// The current lexical scope.
995  LexicalScope *CurLexicalScope;
996
997  /// The current source location that should be used for exception
998  /// handling code.
999  SourceLocation CurEHLocation;
1000
1001  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1002  /// type as well as the field number that contains the actual data.
1003  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1004                                              unsigned> > ByRefValueInfo;
1005
1006  llvm::BasicBlock *TerminateLandingPad;
1007  llvm::BasicBlock *TerminateHandler;
1008  llvm::BasicBlock *TrapBB;
1009
1010  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1011  /// In the kernel metadata node, reference the kernel function and metadata
1012  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1013  /// - A node for the vec_type_hint(<type>) qualifier contains string
1014  ///   "vec_type_hint", an undefined value of the <type> data type,
1015  ///   and a Boolean that is true if the <type> is integer and signed.
1016  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1017  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1018  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1019  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1020  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1021                                llvm::Function *Fn);
1022
1023public:
1024  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1025  ~CodeGenFunction();
1026
1027  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1028  ASTContext &getContext() const { return CGM.getContext(); }
1029  CGDebugInfo *getDebugInfo() {
1030    if (DisableDebugInfo)
1031      return nullptr;
1032    return DebugInfo;
1033  }
1034  void disableDebugInfo() { DisableDebugInfo = true; }
1035  void enableDebugInfo() { DisableDebugInfo = false; }
1036
1037  bool shouldUseFusedARCCalls() {
1038    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1039  }
1040
1041  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1042
1043  /// Returns a pointer to the function's exception object and selector slot,
1044  /// which is assigned in every landing pad.
1045  llvm::Value *getExceptionSlot();
1046  llvm::Value *getEHSelectorSlot();
1047
1048  /// Returns the contents of the function's exception object and selector
1049  /// slots.
1050  llvm::Value *getExceptionFromSlot();
1051  llvm::Value *getSelectorFromSlot();
1052
1053  llvm::Value *getNormalCleanupDestSlot();
1054
1055  llvm::BasicBlock *getUnreachableBlock() {
1056    if (!UnreachableBlock) {
1057      UnreachableBlock = createBasicBlock("unreachable");
1058      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1059    }
1060    return UnreachableBlock;
1061  }
1062
1063  llvm::BasicBlock *getInvokeDest() {
1064    if (!EHStack.requiresLandingPad()) return nullptr;
1065    return getInvokeDestImpl();
1066  }
1067
1068  bool currentFunctionUsesSEHTry() const {
1069    const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1070    return FD && FD->usesSEHTry();
1071  }
1072
1073  const TargetInfo &getTarget() const { return Target; }
1074  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1075
1076  //===--------------------------------------------------------------------===//
1077  //                                  Cleanups
1078  //===--------------------------------------------------------------------===//
1079
1080  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1081
1082  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1083                                        llvm::Value *arrayEndPointer,
1084                                        QualType elementType,
1085                                        Destroyer *destroyer);
1086  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1087                                      llvm::Value *arrayEnd,
1088                                      QualType elementType,
1089                                      Destroyer *destroyer);
1090
1091  void pushDestroy(QualType::DestructionKind dtorKind,
1092                   llvm::Value *addr, QualType type);
1093  void pushEHDestroy(QualType::DestructionKind dtorKind,
1094                     llvm::Value *addr, QualType type);
1095  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1096                   Destroyer *destroyer, bool useEHCleanupForArray);
1097  void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1098                                   QualType type, Destroyer *destroyer,
1099                                   bool useEHCleanupForArray);
1100  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1101                                   llvm::Value *CompletePtr,
1102                                   QualType ElementType);
1103  void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1104  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1105                   bool useEHCleanupForArray);
1106  llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1107                                        Destroyer *destroyer,
1108                                        bool useEHCleanupForArray,
1109                                        const VarDecl *VD);
1110  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1111                        QualType type, Destroyer *destroyer,
1112                        bool checkZeroLength, bool useEHCleanup);
1113
1114  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1115
1116  /// Determines whether an EH cleanup is required to destroy a type
1117  /// with the given destruction kind.
1118  bool needsEHCleanup(QualType::DestructionKind kind) {
1119    switch (kind) {
1120    case QualType::DK_none:
1121      return false;
1122    case QualType::DK_cxx_destructor:
1123    case QualType::DK_objc_weak_lifetime:
1124      return getLangOpts().Exceptions;
1125    case QualType::DK_objc_strong_lifetime:
1126      return getLangOpts().Exceptions &&
1127             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1128    }
1129    llvm_unreachable("bad destruction kind");
1130  }
1131
1132  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1133    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1134  }
1135
1136  //===--------------------------------------------------------------------===//
1137  //                                  Objective-C
1138  //===--------------------------------------------------------------------===//
1139
1140  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1141
1142  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1143
1144  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1145  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1146                          const ObjCPropertyImplDecl *PID);
1147  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1148                              const ObjCPropertyImplDecl *propImpl,
1149                              const ObjCMethodDecl *GetterMothodDecl,
1150                              llvm::Constant *AtomicHelperFn);
1151
1152  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1153                                  ObjCMethodDecl *MD, bool ctor);
1154
1155  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1156  /// for the given property.
1157  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1158                          const ObjCPropertyImplDecl *PID);
1159  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1160                              const ObjCPropertyImplDecl *propImpl,
1161                              llvm::Constant *AtomicHelperFn);
1162  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1163  bool IvarTypeWithAggrGCObjects(QualType Ty);
1164
1165  //===--------------------------------------------------------------------===//
1166  //                                  Block Bits
1167  //===--------------------------------------------------------------------===//
1168
1169  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1170  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1171  static void destroyBlockInfos(CGBlockInfo *info);
1172  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1173                                           const CGBlockInfo &Info,
1174                                           llvm::StructType *,
1175                                           llvm::Constant *BlockVarLayout);
1176
1177  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1178                                        const CGBlockInfo &Info,
1179                                        const DeclMapTy &ldm,
1180                                        bool IsLambdaConversionToBlock);
1181
1182  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1183  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1184  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1185                                             const ObjCPropertyImplDecl *PID);
1186  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1187                                             const ObjCPropertyImplDecl *PID);
1188  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1189
1190  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1191
1192  class AutoVarEmission;
1193
1194  void emitByrefStructureInit(const AutoVarEmission &emission);
1195  void enterByrefCleanup(const AutoVarEmission &emission);
1196
1197  llvm::Value *LoadBlockStruct() {
1198    assert(BlockPointer && "no block pointer set!");
1199    return BlockPointer;
1200  }
1201
1202  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1203  void AllocateBlockDecl(const DeclRefExpr *E);
1204  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1205  llvm::Type *BuildByRefType(const VarDecl *var);
1206
1207  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1208                    const CGFunctionInfo &FnInfo);
1209  /// \brief Emit code for the start of a function.
1210  /// \param Loc       The location to be associated with the function.
1211  /// \param StartLoc  The location of the function body.
1212  void StartFunction(GlobalDecl GD,
1213                     QualType RetTy,
1214                     llvm::Function *Fn,
1215                     const CGFunctionInfo &FnInfo,
1216                     const FunctionArgList &Args,
1217                     SourceLocation Loc = SourceLocation(),
1218                     SourceLocation StartLoc = SourceLocation());
1219
1220  void EmitConstructorBody(FunctionArgList &Args);
1221  void EmitDestructorBody(FunctionArgList &Args);
1222  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1223  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1224  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1225
1226  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1227                                  CallArgList &CallArgs);
1228  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1229  void EmitLambdaBlockInvokeBody();
1230  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1231  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1232  void EmitAsanPrologueOrEpilogue(bool Prologue);
1233
1234  /// \brief Emit the unified return block, trying to avoid its emission when
1235  /// possible.
1236  /// \return The debug location of the user written return statement if the
1237  /// return block is is avoided.
1238  llvm::DebugLoc EmitReturnBlock();
1239
1240  /// FinishFunction - Complete IR generation of the current function. It is
1241  /// legal to call this function even if there is no current insertion point.
1242  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1243
1244  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1245                  const CGFunctionInfo &FnInfo);
1246
1247  void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1248
1249  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1250  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1251                         llvm::Value *Callee);
1252
1253  /// GenerateThunk - Generate a thunk for the given method.
1254  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1255                     GlobalDecl GD, const ThunkInfo &Thunk);
1256
1257  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1258                            GlobalDecl GD, const ThunkInfo &Thunk);
1259
1260  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1261                        FunctionArgList &Args);
1262
1263  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1264                               ArrayRef<VarDecl *> ArrayIndexes);
1265
1266  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1267  /// subobject.
1268  ///
1269  void InitializeVTablePointer(BaseSubobject Base,
1270                               const CXXRecordDecl *NearestVBase,
1271                               CharUnits OffsetFromNearestVBase,
1272                               const CXXRecordDecl *VTableClass);
1273
1274  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1275  void InitializeVTablePointers(BaseSubobject Base,
1276                                const CXXRecordDecl *NearestVBase,
1277                                CharUnits OffsetFromNearestVBase,
1278                                bool BaseIsNonVirtualPrimaryBase,
1279                                const CXXRecordDecl *VTableClass,
1280                                VisitedVirtualBasesSetTy& VBases);
1281
1282  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1283
1284  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1285  /// to by This.
1286  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1287
1288  /// \brief Derived is the presumed address of an object of type T after a
1289  /// cast. If T is a polymorphic class type, emit a check that the virtual
1290  /// table for Derived belongs to a class derived from T.
1291  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1292                                 bool MayBeNull);
1293
1294  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1295  /// If vptr CFI is enabled, emit a check that VTable is valid.
1296  void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable);
1297
1298  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1299  /// RD using llvm.bitset.test.
1300  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable);
1301
1302  /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1303  /// expr can be devirtualized.
1304  bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1305                                         const CXXMethodDecl *MD);
1306
1307  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1308  /// given phase of destruction for a destructor.  The end result
1309  /// should call destructors on members and base classes in reverse
1310  /// order of their construction.
1311  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1312
1313  /// ShouldInstrumentFunction - Return true if the current function should be
1314  /// instrumented with __cyg_profile_func_* calls
1315  bool ShouldInstrumentFunction();
1316
1317  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1318  /// instrumentation function with the current function and the call site, if
1319  /// function instrumentation is enabled.
1320  void EmitFunctionInstrumentation(const char *Fn);
1321
1322  /// EmitMCountInstrumentation - Emit call to .mcount.
1323  void EmitMCountInstrumentation();
1324
1325  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1326  /// arguments for the given function. This is also responsible for naming the
1327  /// LLVM function arguments.
1328  void EmitFunctionProlog(const CGFunctionInfo &FI,
1329                          llvm::Function *Fn,
1330                          const FunctionArgList &Args);
1331
1332  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1333  /// given temporary.
1334  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1335                          SourceLocation EndLoc);
1336
1337  /// EmitStartEHSpec - Emit the start of the exception spec.
1338  void EmitStartEHSpec(const Decl *D);
1339
1340  /// EmitEndEHSpec - Emit the end of the exception spec.
1341  void EmitEndEHSpec(const Decl *D);
1342
1343  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1344  llvm::BasicBlock *getTerminateLandingPad();
1345
1346  /// getTerminateHandler - Return a handler (not a landing pad, just
1347  /// a catch handler) that just calls terminate.  This is used when
1348  /// a terminate scope encloses a try.
1349  llvm::BasicBlock *getTerminateHandler();
1350
1351  llvm::Type *ConvertTypeForMem(QualType T);
1352  llvm::Type *ConvertType(QualType T);
1353  llvm::Type *ConvertType(const TypeDecl *T) {
1354    return ConvertType(getContext().getTypeDeclType(T));
1355  }
1356
1357  /// LoadObjCSelf - Load the value of self. This function is only valid while
1358  /// generating code for an Objective-C method.
1359  llvm::Value *LoadObjCSelf();
1360
1361  /// TypeOfSelfObject - Return type of object that this self represents.
1362  QualType TypeOfSelfObject();
1363
1364  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1365  /// an aggregate LLVM type or is void.
1366  static TypeEvaluationKind getEvaluationKind(QualType T);
1367
1368  static bool hasScalarEvaluationKind(QualType T) {
1369    return getEvaluationKind(T) == TEK_Scalar;
1370  }
1371
1372  static bool hasAggregateEvaluationKind(QualType T) {
1373    return getEvaluationKind(T) == TEK_Aggregate;
1374  }
1375
1376  /// createBasicBlock - Create an LLVM basic block.
1377  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1378                                     llvm::Function *parent = nullptr,
1379                                     llvm::BasicBlock *before = nullptr) {
1380#ifdef NDEBUG
1381    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1382#else
1383    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1384#endif
1385  }
1386
1387  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1388  /// label maps to.
1389  JumpDest getJumpDestForLabel(const LabelDecl *S);
1390
1391  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1392  /// another basic block, simplify it. This assumes that no other code could
1393  /// potentially reference the basic block.
1394  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1395
1396  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1397  /// adding a fall-through branch from the current insert block if
1398  /// necessary. It is legal to call this function even if there is no current
1399  /// insertion point.
1400  ///
1401  /// IsFinished - If true, indicates that the caller has finished emitting
1402  /// branches to the given block and does not expect to emit code into it. This
1403  /// means the block can be ignored if it is unreachable.
1404  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1405
1406  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1407  /// near its uses, and leave the insertion point in it.
1408  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1409
1410  /// EmitBranch - Emit a branch to the specified basic block from the current
1411  /// insert block, taking care to avoid creation of branches from dummy
1412  /// blocks. It is legal to call this function even if there is no current
1413  /// insertion point.
1414  ///
1415  /// This function clears the current insertion point. The caller should follow
1416  /// calls to this function with calls to Emit*Block prior to generation new
1417  /// code.
1418  void EmitBranch(llvm::BasicBlock *Block);
1419
1420  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1421  /// indicates that the current code being emitted is unreachable.
1422  bool HaveInsertPoint() const {
1423    return Builder.GetInsertBlock() != nullptr;
1424  }
1425
1426  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1427  /// emitted IR has a place to go. Note that by definition, if this function
1428  /// creates a block then that block is unreachable; callers may do better to
1429  /// detect when no insertion point is defined and simply skip IR generation.
1430  void EnsureInsertPoint() {
1431    if (!HaveInsertPoint())
1432      EmitBlock(createBasicBlock());
1433  }
1434
1435  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1436  /// specified stmt yet.
1437  void ErrorUnsupported(const Stmt *S, const char *Type);
1438
1439  //===--------------------------------------------------------------------===//
1440  //                                  Helpers
1441  //===--------------------------------------------------------------------===//
1442
1443  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1444                        CharUnits Alignment = CharUnits()) {
1445    return LValue::MakeAddr(V, T, Alignment, getContext(),
1446                            CGM.getTBAAInfo(T));
1447  }
1448
1449  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1450
1451  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1452  /// block. The caller is responsible for setting an appropriate alignment on
1453  /// the alloca.
1454  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1455                                     const Twine &Name = "tmp");
1456
1457  /// InitTempAlloca - Provide an initial value for the given alloca.
1458  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1459
1460  /// CreateIRTemp - Create a temporary IR object of the given type, with
1461  /// appropriate alignment. This routine should only be used when an temporary
1462  /// value needs to be stored into an alloca (for example, to avoid explicit
1463  /// PHI construction), but the type is the IR type, not the type appropriate
1464  /// for storing in memory.
1465  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1466
1467  /// CreateMemTemp - Create a temporary memory object of the given type, with
1468  /// appropriate alignment.
1469  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1470
1471  /// CreateAggTemp - Create a temporary memory object for the given
1472  /// aggregate type.
1473  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1474    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1475    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1476                                 T.getQualifiers(),
1477                                 AggValueSlot::IsNotDestructed,
1478                                 AggValueSlot::DoesNotNeedGCBarriers,
1479                                 AggValueSlot::IsNotAliased);
1480  }
1481
1482  /// CreateInAllocaTmp - Create a temporary memory object for the given
1483  /// aggregate type.
1484  AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1485
1486  /// Emit a cast to void* in the appropriate address space.
1487  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1488
1489  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1490  /// expression and compare the result against zero, returning an Int1Ty value.
1491  llvm::Value *EvaluateExprAsBool(const Expr *E);
1492
1493  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1494  void EmitIgnoredExpr(const Expr *E);
1495
1496  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1497  /// any type.  The result is returned as an RValue struct.  If this is an
1498  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1499  /// the result should be returned.
1500  ///
1501  /// \param ignoreResult True if the resulting value isn't used.
1502  RValue EmitAnyExpr(const Expr *E,
1503                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1504                     bool ignoreResult = false);
1505
1506  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1507  // or the value of the expression, depending on how va_list is defined.
1508  llvm::Value *EmitVAListRef(const Expr *E);
1509
1510  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1511  /// always be accessible even if no aggregate location is provided.
1512  RValue EmitAnyExprToTemp(const Expr *E);
1513
1514  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1515  /// arbitrary expression into the given memory location.
1516  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1517                        Qualifiers Quals, bool IsInitializer);
1518
1519  void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
1520
1521  /// EmitExprAsInit - Emits the code necessary to initialize a
1522  /// location in memory with the given initializer.
1523  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1524                      bool capturedByInit);
1525
1526  /// hasVolatileMember - returns true if aggregate type has a volatile
1527  /// member.
1528  bool hasVolatileMember(QualType T) {
1529    if (const RecordType *RT = T->getAs<RecordType>()) {
1530      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1531      return RD->hasVolatileMember();
1532    }
1533    return false;
1534  }
1535  /// EmitAggregateCopy - Emit an aggregate assignment.
1536  ///
1537  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1538  /// This is required for correctness when assigning non-POD structures in C++.
1539  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1540                           QualType EltTy) {
1541    bool IsVolatile = hasVolatileMember(EltTy);
1542    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1543                      true);
1544  }
1545
1546  void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1547                           QualType DestTy, QualType SrcTy) {
1548    CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
1549    CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
1550    EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1551                      std::min(DestTypeAlign, SrcTypeAlign),
1552                      /*IsAssignment=*/false);
1553  }
1554
1555  /// EmitAggregateCopy - Emit an aggregate copy.
1556  ///
1557  /// \param isVolatile - True iff either the source or the destination is
1558  /// volatile.
1559  /// \param isAssignment - If false, allow padding to be copied.  This often
1560  /// yields more efficient.
1561  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1562                         QualType EltTy, bool isVolatile=false,
1563                         CharUnits Alignment = CharUnits::Zero(),
1564                         bool isAssignment = false);
1565
1566  /// StartBlock - Start new block named N. If insert block is a dummy block
1567  /// then reuse it.
1568  void StartBlock(const char *N);
1569
1570  /// GetAddrOfLocalVar - Return the address of a local variable.
1571  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1572    llvm::Value *Res = LocalDeclMap[VD];
1573    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1574    return Res;
1575  }
1576
1577  /// getOpaqueLValueMapping - Given an opaque value expression (which
1578  /// must be mapped to an l-value), return its mapping.
1579  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1580    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1581
1582    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1583      it = OpaqueLValues.find(e);
1584    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1585    return it->second;
1586  }
1587
1588  /// getOpaqueRValueMapping - Given an opaque value expression (which
1589  /// must be mapped to an r-value), return its mapping.
1590  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1591    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1592
1593    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1594      it = OpaqueRValues.find(e);
1595    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1596    return it->second;
1597  }
1598
1599  /// getAccessedFieldNo - Given an encoded value and a result number, return
1600  /// the input field number being accessed.
1601  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1602
1603  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1604  llvm::BasicBlock *GetIndirectGotoBlock();
1605
1606  /// EmitNullInitialization - Generate code to set a value of the given type to
1607  /// null, If the type contains data member pointers, they will be initialized
1608  /// to -1 in accordance with the Itanium C++ ABI.
1609  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1610
1611  // EmitVAArg - Generate code to get an argument from the passed in pointer
1612  // and update it accordingly. The return value is a pointer to the argument.
1613  // FIXME: We should be able to get rid of this method and use the va_arg
1614  // instruction in LLVM instead once it works well enough.
1615  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1616
1617  /// emitArrayLength - Compute the length of an array, even if it's a
1618  /// VLA, and drill down to the base element type.
1619  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1620                               QualType &baseType,
1621                               llvm::Value *&addr);
1622
1623  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1624  /// the given variably-modified type and store them in the VLASizeMap.
1625  ///
1626  /// This function can be called with a null (unreachable) insert point.
1627  void EmitVariablyModifiedType(QualType Ty);
1628
1629  /// getVLASize - Returns an LLVM value that corresponds to the size,
1630  /// in non-variably-sized elements, of a variable length array type,
1631  /// plus that largest non-variably-sized element type.  Assumes that
1632  /// the type has already been emitted with EmitVariablyModifiedType.
1633  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1634  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1635
1636  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1637  /// generating code for an C++ member function.
1638  llvm::Value *LoadCXXThis() {
1639    assert(CXXThisValue && "no 'this' value for this function");
1640    return CXXThisValue;
1641  }
1642
1643  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1644  /// virtual bases.
1645  // FIXME: Every place that calls LoadCXXVTT is something
1646  // that needs to be abstracted properly.
1647  llvm::Value *LoadCXXVTT() {
1648    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1649    return CXXStructorImplicitParamValue;
1650  }
1651
1652  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1653  /// for a constructor/destructor.
1654  llvm::Value *LoadCXXStructorImplicitParam() {
1655    assert(CXXStructorImplicitParamValue &&
1656           "no implicit argument value for this function");
1657    return CXXStructorImplicitParamValue;
1658  }
1659
1660  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1661  /// complete class to the given direct base.
1662  llvm::Value *
1663  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1664                                        const CXXRecordDecl *Derived,
1665                                        const CXXRecordDecl *Base,
1666                                        bool BaseIsVirtual);
1667
1668  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1669  /// load of 'this' and returns address of the base class.
1670  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1671                                     const CXXRecordDecl *Derived,
1672                                     CastExpr::path_const_iterator PathBegin,
1673                                     CastExpr::path_const_iterator PathEnd,
1674                                     bool NullCheckValue, SourceLocation Loc);
1675
1676  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1677                                        const CXXRecordDecl *Derived,
1678                                        CastExpr::path_const_iterator PathBegin,
1679                                        CastExpr::path_const_iterator PathEnd,
1680                                        bool NullCheckValue);
1681
1682  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1683  /// base constructor/destructor with virtual bases.
1684  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1685  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1686  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1687                               bool Delegating);
1688
1689  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1690                                      CXXCtorType CtorType,
1691                                      const FunctionArgList &Args,
1692                                      SourceLocation Loc);
1693  // It's important not to confuse this and the previous function. Delegating
1694  // constructors are the C++0x feature. The constructor delegate optimization
1695  // is used to reduce duplication in the base and complete consturctors where
1696  // they are substantially the same.
1697  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1698                                        const FunctionArgList &Args);
1699  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1700                              bool ForVirtualBase, bool Delegating,
1701                              llvm::Value *This, const CXXConstructExpr *E);
1702
1703  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1704                              llvm::Value *This, llvm::Value *Src,
1705                              const CXXConstructExpr *E);
1706
1707  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1708                                  const ConstantArrayType *ArrayTy,
1709                                  llvm::Value *ArrayPtr,
1710                                  const CXXConstructExpr *E,
1711                                  bool ZeroInitialization = false);
1712
1713  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1714                                  llvm::Value *NumElements,
1715                                  llvm::Value *ArrayPtr,
1716                                  const CXXConstructExpr *E,
1717                                  bool ZeroInitialization = false);
1718
1719  static Destroyer destroyCXXObject;
1720
1721  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1722                             bool ForVirtualBase, bool Delegating,
1723                             llvm::Value *This);
1724
1725  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1726                               llvm::Type *ElementTy, llvm::Value *NewPtr,
1727                               llvm::Value *NumElements,
1728                               llvm::Value *AllocSizeWithoutCookie);
1729
1730  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1731                        llvm::Value *Ptr);
1732
1733  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1734  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1735
1736  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1737                      QualType DeleteTy);
1738
1739  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1740                                  const Expr *Arg, bool IsDelete);
1741
1742  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1743  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1744  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1745
1746  /// \brief Situations in which we might emit a check for the suitability of a
1747  ///        pointer or glvalue.
1748  enum TypeCheckKind {
1749    /// Checking the operand of a load. Must be suitably sized and aligned.
1750    TCK_Load,
1751    /// Checking the destination of a store. Must be suitably sized and aligned.
1752    TCK_Store,
1753    /// Checking the bound value in a reference binding. Must be suitably sized
1754    /// and aligned, but is not required to refer to an object (until the
1755    /// reference is used), per core issue 453.
1756    TCK_ReferenceBinding,
1757    /// Checking the object expression in a non-static data member access. Must
1758    /// be an object within its lifetime.
1759    TCK_MemberAccess,
1760    /// Checking the 'this' pointer for a call to a non-static member function.
1761    /// Must be an object within its lifetime.
1762    TCK_MemberCall,
1763    /// Checking the 'this' pointer for a constructor call.
1764    TCK_ConstructorCall,
1765    /// Checking the operand of a static_cast to a derived pointer type. Must be
1766    /// null or an object within its lifetime.
1767    TCK_DowncastPointer,
1768    /// Checking the operand of a static_cast to a derived reference type. Must
1769    /// be an object within its lifetime.
1770    TCK_DowncastReference,
1771    /// Checking the operand of a cast to a base object. Must be suitably sized
1772    /// and aligned.
1773    TCK_Upcast,
1774    /// Checking the operand of a cast to a virtual base object. Must be an
1775    /// object within its lifetime.
1776    TCK_UpcastToVirtualBase
1777  };
1778
1779  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1780  /// calls to EmitTypeCheck can be skipped.
1781  bool sanitizePerformTypeCheck() const;
1782
1783  /// \brief Emit a check that \p V is the address of storage of the
1784  /// appropriate size and alignment for an object of type \p Type.
1785  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1786                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
1787                     bool SkipNullCheck = false);
1788
1789  /// \brief Emit a check that \p Base points into an array object, which
1790  /// we can access at index \p Index. \p Accessed should be \c false if we
1791  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1792  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1793                       QualType IndexType, bool Accessed);
1794
1795  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1796                                       bool isInc, bool isPre);
1797  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1798                                         bool isInc, bool isPre);
1799
1800  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1801                               llvm::Value *OffsetValue = nullptr) {
1802    Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1803                                      OffsetValue);
1804  }
1805
1806  //===--------------------------------------------------------------------===//
1807  //                            Declaration Emission
1808  //===--------------------------------------------------------------------===//
1809
1810  /// EmitDecl - Emit a declaration.
1811  ///
1812  /// This function can be called with a null (unreachable) insert point.
1813  void EmitDecl(const Decl &D);
1814
1815  /// EmitVarDecl - Emit a local variable declaration.
1816  ///
1817  /// This function can be called with a null (unreachable) insert point.
1818  void EmitVarDecl(const VarDecl &D);
1819
1820  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1821                      bool capturedByInit);
1822  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1823
1824  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1825                             llvm::Value *Address);
1826
1827  /// \brief Determine whether the given initializer is trivial in the sense
1828  /// that it requires no code to be generated.
1829  bool isTrivialInitializer(const Expr *Init);
1830
1831  /// EmitAutoVarDecl - Emit an auto variable declaration.
1832  ///
1833  /// This function can be called with a null (unreachable) insert point.
1834  void EmitAutoVarDecl(const VarDecl &D);
1835
1836  class AutoVarEmission {
1837    friend class CodeGenFunction;
1838
1839    const VarDecl *Variable;
1840
1841    /// The alignment of the variable.
1842    CharUnits Alignment;
1843
1844    /// The address of the alloca.  Null if the variable was emitted
1845    /// as a global constant.
1846    llvm::Value *Address;
1847
1848    llvm::Value *NRVOFlag;
1849
1850    /// True if the variable is a __block variable.
1851    bool IsByRef;
1852
1853    /// True if the variable is of aggregate type and has a constant
1854    /// initializer.
1855    bool IsConstantAggregate;
1856
1857    /// Non-null if we should use lifetime annotations.
1858    llvm::Value *SizeForLifetimeMarkers;
1859
1860    struct Invalid {};
1861    AutoVarEmission(Invalid) : Variable(nullptr) {}
1862
1863    AutoVarEmission(const VarDecl &variable)
1864      : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1865        IsByRef(false), IsConstantAggregate(false),
1866        SizeForLifetimeMarkers(nullptr) {}
1867
1868    bool wasEmittedAsGlobal() const { return Address == nullptr; }
1869
1870  public:
1871    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1872
1873    bool useLifetimeMarkers() const {
1874      return SizeForLifetimeMarkers != nullptr;
1875    }
1876    llvm::Value *getSizeForLifetimeMarkers() const {
1877      assert(useLifetimeMarkers());
1878      return SizeForLifetimeMarkers;
1879    }
1880
1881    /// Returns the raw, allocated address, which is not necessarily
1882    /// the address of the object itself.
1883    llvm::Value *getAllocatedAddress() const {
1884      return Address;
1885    }
1886
1887    /// Returns the address of the object within this declaration.
1888    /// Note that this does not chase the forwarding pointer for
1889    /// __block decls.
1890    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1891      if (!IsByRef) return Address;
1892
1893      auto F = CGF.getByRefValueLLVMField(Variable);
1894      return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
1895                                         Variable->getNameAsString());
1896    }
1897  };
1898  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1899  void EmitAutoVarInit(const AutoVarEmission &emission);
1900  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1901  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1902                              QualType::DestructionKind dtorKind);
1903
1904  void EmitStaticVarDecl(const VarDecl &D,
1905                         llvm::GlobalValue::LinkageTypes Linkage);
1906
1907  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1908  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1909                    unsigned ArgNo);
1910
1911  /// protectFromPeepholes - Protect a value that we're intending to
1912  /// store to the side, but which will probably be used later, from
1913  /// aggressive peepholing optimizations that might delete it.
1914  ///
1915  /// Pass the result to unprotectFromPeepholes to declare that
1916  /// protection is no longer required.
1917  ///
1918  /// There's no particular reason why this shouldn't apply to
1919  /// l-values, it's just that no existing peepholes work on pointers.
1920  PeepholeProtection protectFromPeepholes(RValue rvalue);
1921  void unprotectFromPeepholes(PeepholeProtection protection);
1922
1923  //===--------------------------------------------------------------------===//
1924  //                             Statement Emission
1925  //===--------------------------------------------------------------------===//
1926
1927  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1928  void EmitStopPoint(const Stmt *S);
1929
1930  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1931  /// this function even if there is no current insertion point.
1932  ///
1933  /// This function may clear the current insertion point; callers should use
1934  /// EnsureInsertPoint if they wish to subsequently generate code without first
1935  /// calling EmitBlock, EmitBranch, or EmitStmt.
1936  void EmitStmt(const Stmt *S);
1937
1938  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1939  /// necessarily require an insertion point or debug information; typically
1940  /// because the statement amounts to a jump or a container of other
1941  /// statements.
1942  ///
1943  /// \return True if the statement was handled.
1944  bool EmitSimpleStmt(const Stmt *S);
1945
1946  llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1947                                AggValueSlot AVS = AggValueSlot::ignored());
1948  llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1949                                            bool GetLast = false,
1950                                            AggValueSlot AVS =
1951                                                AggValueSlot::ignored());
1952
1953  /// EmitLabel - Emit the block for the given label. It is legal to call this
1954  /// function even if there is no current insertion point.
1955  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1956
1957  void EmitLabelStmt(const LabelStmt &S);
1958  void EmitAttributedStmt(const AttributedStmt &S);
1959  void EmitGotoStmt(const GotoStmt &S);
1960  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1961  void EmitIfStmt(const IfStmt &S);
1962
1963  void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1964                       ArrayRef<const Attr *> Attrs);
1965  void EmitWhileStmt(const WhileStmt &S,
1966                     ArrayRef<const Attr *> Attrs = None);
1967  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
1968  void EmitForStmt(const ForStmt &S,
1969                   ArrayRef<const Attr *> Attrs = None);
1970  void EmitReturnStmt(const ReturnStmt &S);
1971  void EmitDeclStmt(const DeclStmt &S);
1972  void EmitBreakStmt(const BreakStmt &S);
1973  void EmitContinueStmt(const ContinueStmt &S);
1974  void EmitSwitchStmt(const SwitchStmt &S);
1975  void EmitDefaultStmt(const DefaultStmt &S);
1976  void EmitCaseStmt(const CaseStmt &S);
1977  void EmitCaseStmtRange(const CaseStmt &S);
1978  void EmitAsmStmt(const AsmStmt &S);
1979
1980  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1981  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1982  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1983  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1984  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1985
1986  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1987  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1988
1989  void EmitCXXTryStmt(const CXXTryStmt &S);
1990  void EmitSEHTryStmt(const SEHTryStmt &S);
1991  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
1992  void EnterSEHTryStmt(const SEHTryStmt &S);
1993  void ExitSEHTryStmt(const SEHTryStmt &S);
1994
1995  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name,
1996                              QualType RetTy, FunctionArgList &Args,
1997                              const Stmt *OutlinedStmt);
1998
1999  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2000                                            const SEHExceptStmt &Except);
2001
2002  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2003                                             const SEHFinallyStmt &Finally);
2004
2005  void EmitSEHExceptionCodeSave();
2006  llvm::Value *EmitSEHExceptionCode();
2007  llvm::Value *EmitSEHExceptionInfo();
2008  llvm::Value *EmitSEHAbnormalTermination();
2009
2010  /// Scan the outlined statement for captures from the parent function. For
2011  /// each capture, mark the capture as escaped and emit a call to
2012  /// llvm.framerecover. Insert the framerecover result into the LocalDeclMap.
2013  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2014                          llvm::Value *ParentFP);
2015
2016  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2017                           ArrayRef<const Attr *> Attrs = None);
2018
2019  LValue InitCapturedStruct(const CapturedStmt &S);
2020  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2021  void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2022  llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2023  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2024  llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2025  /// \brief Perform element by element copying of arrays with type \a
2026  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2027  /// generated by \a CopyGen.
2028  ///
2029  /// \param DestAddr Address of the destination array.
2030  /// \param SrcAddr Address of the source array.
2031  /// \param OriginalType Type of destination and source arrays.
2032  /// \param CopyGen Copying procedure that copies value of single array element
2033  /// to another single array element.
2034  void EmitOMPAggregateAssign(
2035      llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
2036      const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
2037  /// \brief Emit proper copying of data from one variable to another.
2038  ///
2039  /// \param OriginalType Original type of the copied variables.
2040  /// \param DestAddr Destination address.
2041  /// \param SrcAddr Source address.
2042  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2043  /// type of the base array element).
2044  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2045  /// the base array element).
2046  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2047  /// DestVD.
2048  void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
2049                   llvm::Value *DestAddr, llvm::Value *SrcAddr,
2050                   const VarDecl *DestVD, const VarDecl *SrcVD,
2051                   const Expr *Copy);
2052  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2053  /// \a X = \a E \a BO \a E.
2054  ///
2055  /// \param X Value to be updated.
2056  /// \param E Update value.
2057  /// \param BO Binary operation for update operation.
2058  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2059  /// expression, false otherwise.
2060  /// \param AO Atomic ordering of the generated atomic instructions.
2061  /// \param CommonGen Code generator for complex expressions that cannot be
2062  /// expressed through atomicrmw instruction.
2063  void EmitOMPAtomicSimpleUpdateExpr(
2064      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2065      llvm::AtomicOrdering AO, SourceLocation Loc,
2066      const llvm::function_ref<RValue(RValue)> &CommonGen);
2067  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2068                                 OMPPrivateScope &PrivateScope);
2069  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2070                            OMPPrivateScope &PrivateScope);
2071  /// \brief Emit code for copyin clause in \a D directive. The next code is
2072  /// generated at the start of outlined functions for directives:
2073  /// \code
2074  /// threadprivate_var1 = master_threadprivate_var1;
2075  /// operator=(threadprivate_var2, master_threadprivate_var2);
2076  /// ...
2077  /// __kmpc_barrier(&loc, global_tid);
2078  /// \endcode
2079  ///
2080  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2081  /// \returns true if at least one copyin variable is found, false otherwise.
2082  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2083  /// \brief Emit initial code for lastprivate variables. If some variable is
2084  /// not also firstprivate, then the default initialization is used. Otherwise
2085  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2086  /// method.
2087  ///
2088  /// \param D Directive that may have 'lastprivate' directives.
2089  /// \param PrivateScope Private scope for capturing lastprivate variables for
2090  /// proper codegen in internal captured statement.
2091  ///
2092  /// \returns true if there is at least one lastprivate variable, false
2093  /// otherwise.
2094  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2095                                    OMPPrivateScope &PrivateScope);
2096  /// \brief Emit final copying of lastprivate values to original variables at
2097  /// the end of the worksharing or simd directive.
2098  ///
2099  /// \param D Directive that has at least one 'lastprivate' directives.
2100  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2101  /// it is the last iteration of the loop code in associated directive, or to
2102  /// 'i1 false' otherwise.
2103  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2104                                     llvm::Value *IsLastIterCond);
2105  /// \brief Emit initial code for reduction variables. Creates reduction copies
2106  /// and initializes them with the values according to OpenMP standard.
2107  ///
2108  /// \param D Directive (possibly) with the 'reduction' clause.
2109  /// \param PrivateScope Private scope for capturing reduction variables for
2110  /// proper codegen in internal captured statement.
2111  ///
2112  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2113                                  OMPPrivateScope &PrivateScope);
2114  /// \brief Emit final update of reduction values to original variables at
2115  /// the end of the directive.
2116  ///
2117  /// \param D Directive that has at least one 'reduction' directives.
2118  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2119
2120  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2121  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2122  void EmitOMPForDirective(const OMPForDirective &S);
2123  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2124  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2125  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2126  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2127  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2128  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2129  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2130  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2131  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2132  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2133  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2134  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2135  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2136  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2137  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2138  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2139  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2140  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2141
2142  void
2143  EmitOMPInnerLoop(const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2144                   const Expr *IncExpr,
2145                   const llvm::function_ref<void(CodeGenFunction &)> &BodyGen);
2146
2147private:
2148
2149  /// Helpers for the OpenMP loop directives.
2150  void EmitOMPLoopBody(const OMPLoopDirective &Directive,
2151                       bool SeparateIter = false);
2152  void EmitOMPSimdFinal(const OMPLoopDirective &S);
2153  /// \brief Emit code for the worksharing loop-based directive.
2154  /// \return true, if this construct has any lastprivate clause, false -
2155  /// otherwise.
2156  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2157  void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2158                           const OMPLoopDirective &S,
2159                           OMPPrivateScope &LoopScope, llvm::Value *LB,
2160                           llvm::Value *UB, llvm::Value *ST, llvm::Value *IL,
2161                           llvm::Value *Chunk);
2162
2163public:
2164
2165  //===--------------------------------------------------------------------===//
2166  //                         LValue Expression Emission
2167  //===--------------------------------------------------------------------===//
2168
2169  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2170  RValue GetUndefRValue(QualType Ty);
2171
2172  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2173  /// and issue an ErrorUnsupported style diagnostic (using the
2174  /// provided Name).
2175  RValue EmitUnsupportedRValue(const Expr *E,
2176                               const char *Name);
2177
2178  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2179  /// an ErrorUnsupported style diagnostic (using the provided Name).
2180  LValue EmitUnsupportedLValue(const Expr *E,
2181                               const char *Name);
2182
2183  /// EmitLValue - Emit code to compute a designator that specifies the location
2184  /// of the expression.
2185  ///
2186  /// This can return one of two things: a simple address or a bitfield
2187  /// reference.  In either case, the LLVM Value* in the LValue structure is
2188  /// guaranteed to be an LLVM pointer type.
2189  ///
2190  /// If this returns a bitfield reference, nothing about the pointee type of
2191  /// the LLVM value is known: For example, it may not be a pointer to an
2192  /// integer.
2193  ///
2194  /// If this returns a normal address, and if the lvalue's C type is fixed
2195  /// size, this method guarantees that the returned pointer type will point to
2196  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2197  /// variable length type, this is not possible.
2198  ///
2199  LValue EmitLValue(const Expr *E);
2200
2201  /// \brief Same as EmitLValue but additionally we generate checking code to
2202  /// guard against undefined behavior.  This is only suitable when we know
2203  /// that the address will be used to access the object.
2204  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2205
2206  RValue convertTempToRValue(llvm::Value *addr, QualType type,
2207                             SourceLocation Loc);
2208
2209  void EmitAtomicInit(Expr *E, LValue lvalue);
2210
2211  bool LValueIsSuitableForInlineAtomic(LValue Src);
2212  bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2213
2214  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2215                        AggValueSlot Slot = AggValueSlot::ignored());
2216
2217  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2218                        llvm::AtomicOrdering AO, bool IsVolatile = false,
2219                        AggValueSlot slot = AggValueSlot::ignored());
2220
2221  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2222
2223  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2224                       bool IsVolatile, bool isInit);
2225
2226  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2227      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2228      llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2229      llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2230      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2231
2232  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2233                        const std::function<RValue(RValue)> &UpdateOp,
2234                        bool IsVolatile);
2235
2236  /// EmitToMemory - Change a scalar value from its value
2237  /// representation to its in-memory representation.
2238  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2239
2240  /// EmitFromMemory - Change a scalar value from its memory
2241  /// representation to its value representation.
2242  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2243
2244  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2245  /// care to appropriately convert from the memory representation to
2246  /// the LLVM value representation.
2247  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2248                                unsigned Alignment, QualType Ty,
2249                                SourceLocation Loc,
2250                                llvm::MDNode *TBAAInfo = nullptr,
2251                                QualType TBAABaseTy = QualType(),
2252                                uint64_t TBAAOffset = 0);
2253
2254  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2255  /// care to appropriately convert from the memory representation to
2256  /// the LLVM value representation.  The l-value must be a simple
2257  /// l-value.
2258  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2259
2260  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2261  /// care to appropriately convert from the memory representation to
2262  /// the LLVM value representation.
2263  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2264                         bool Volatile, unsigned Alignment, QualType Ty,
2265                         llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2266                         QualType TBAABaseTy = QualType(),
2267                         uint64_t TBAAOffset = 0);
2268
2269  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2270  /// care to appropriately convert from the memory representation to
2271  /// the LLVM value representation.  The l-value must be a simple
2272  /// l-value.  The isInit flag indicates whether this is an initialization.
2273  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2274  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2275
2276  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2277  /// this method emits the address of the lvalue, then loads the result as an
2278  /// rvalue, returning the rvalue.
2279  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2280  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2281  RValue EmitLoadOfBitfieldLValue(LValue LV);
2282  RValue EmitLoadOfGlobalRegLValue(LValue LV);
2283
2284  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2285  /// lvalue, where both are guaranteed to the have the same type, and that type
2286  /// is 'Ty'.
2287  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2288  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2289  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2290
2291  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2292  /// as EmitStoreThroughLValue.
2293  ///
2294  /// \param Result [out] - If non-null, this will be set to a Value* for the
2295  /// bit-field contents after the store, appropriate for use as the result of
2296  /// an assignment to the bit-field.
2297  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2298                                      llvm::Value **Result=nullptr);
2299
2300  /// Emit an l-value for an assignment (simple or compound) of complex type.
2301  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2302  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2303  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2304                                             llvm::Value *&Result);
2305
2306  // Note: only available for agg return types
2307  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2308  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2309  // Note: only available for agg return types
2310  LValue EmitCallExprLValue(const CallExpr *E);
2311  // Note: only available for agg return types
2312  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2313  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2314  LValue EmitReadRegister(const VarDecl *VD);
2315  LValue EmitStringLiteralLValue(const StringLiteral *E);
2316  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2317  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2318  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2319  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2320                                bool Accessed = false);
2321  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2322  LValue EmitMemberExpr(const MemberExpr *E);
2323  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2324  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2325  LValue EmitInitListLValue(const InitListExpr *E);
2326  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2327  LValue EmitCastLValue(const CastExpr *E);
2328  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2329  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2330
2331  llvm::Value *EmitExtVectorElementLValue(LValue V);
2332
2333  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2334
2335  class ConstantEmission {
2336    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2337    ConstantEmission(llvm::Constant *C, bool isReference)
2338      : ValueAndIsReference(C, isReference) {}
2339  public:
2340    ConstantEmission() {}
2341    static ConstantEmission forReference(llvm::Constant *C) {
2342      return ConstantEmission(C, true);
2343    }
2344    static ConstantEmission forValue(llvm::Constant *C) {
2345      return ConstantEmission(C, false);
2346    }
2347
2348    explicit operator bool() const {
2349      return ValueAndIsReference.getOpaqueValue() != nullptr;
2350    }
2351
2352    bool isReference() const { return ValueAndIsReference.getInt(); }
2353    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2354      assert(isReference());
2355      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2356                                            refExpr->getType());
2357    }
2358
2359    llvm::Constant *getValue() const {
2360      assert(!isReference());
2361      return ValueAndIsReference.getPointer();
2362    }
2363  };
2364
2365  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2366
2367  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2368                                AggValueSlot slot = AggValueSlot::ignored());
2369  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2370
2371  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2372                              const ObjCIvarDecl *Ivar);
2373  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2374  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2375
2376  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2377  /// if the Field is a reference, this will return the address of the reference
2378  /// and not the address of the value stored in the reference.
2379  LValue EmitLValueForFieldInitialization(LValue Base,
2380                                          const FieldDecl* Field);
2381
2382  LValue EmitLValueForIvar(QualType ObjectTy,
2383                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2384                           unsigned CVRQualifiers);
2385
2386  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2387  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2388  LValue EmitLambdaLValue(const LambdaExpr *E);
2389  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2390  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2391
2392  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2393  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2394  LValue EmitStmtExprLValue(const StmtExpr *E);
2395  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2396  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2397  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2398
2399  //===--------------------------------------------------------------------===//
2400  //                         Scalar Expression Emission
2401  //===--------------------------------------------------------------------===//
2402
2403  /// EmitCall - Generate a call of the given function, expecting the given
2404  /// result type, and using the given argument list which specifies both the
2405  /// LLVM arguments and the types they were derived from.
2406  ///
2407  /// \param TargetDecl - If given, the decl of the function in a direct call;
2408  /// used to set attributes on the call (noreturn, etc.).
2409  RValue EmitCall(const CGFunctionInfo &FnInfo,
2410                  llvm::Value *Callee,
2411                  ReturnValueSlot ReturnValue,
2412                  const CallArgList &Args,
2413                  const Decl *TargetDecl = nullptr,
2414                  llvm::Instruction **callOrInvoke = nullptr);
2415
2416  RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2417                  ReturnValueSlot ReturnValue,
2418                  const Decl *TargetDecl = nullptr,
2419                  llvm::Value *Chain = nullptr);
2420  RValue EmitCallExpr(const CallExpr *E,
2421                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2422
2423  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2424                                  const Twine &name = "");
2425  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2426                                  ArrayRef<llvm::Value*> args,
2427                                  const Twine &name = "");
2428  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2429                                          const Twine &name = "");
2430  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2431                                          ArrayRef<llvm::Value*> args,
2432                                          const Twine &name = "");
2433
2434  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2435                                  ArrayRef<llvm::Value *> Args,
2436                                  const Twine &Name = "");
2437  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2438                                  const Twine &Name = "");
2439  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2440                                         ArrayRef<llvm::Value*> args,
2441                                         const Twine &name = "");
2442  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2443                                         const Twine &name = "");
2444  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2445                                       ArrayRef<llvm::Value*> args);
2446
2447  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2448                                         NestedNameSpecifier *Qual,
2449                                         llvm::Type *Ty);
2450
2451  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2452                                                   CXXDtorType Type,
2453                                                   const CXXRecordDecl *RD);
2454
2455  RValue
2456  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2457                              ReturnValueSlot ReturnValue, llvm::Value *This,
2458                              llvm::Value *ImplicitParam,
2459                              QualType ImplicitParamTy, const CallExpr *E);
2460  RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2461                             ReturnValueSlot ReturnValue, llvm::Value *This,
2462                             llvm::Value *ImplicitParam,
2463                             QualType ImplicitParamTy, const CallExpr *E,
2464                             StructorType Type);
2465  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2466                               ReturnValueSlot ReturnValue);
2467  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2468                                               const CXXMethodDecl *MD,
2469                                               ReturnValueSlot ReturnValue,
2470                                               bool HasQualifier,
2471                                               NestedNameSpecifier *Qualifier,
2472                                               bool IsArrow, const Expr *Base);
2473  // Compute the object pointer.
2474  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2475                                      ReturnValueSlot ReturnValue);
2476
2477  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2478                                       const CXXMethodDecl *MD,
2479                                       ReturnValueSlot ReturnValue);
2480
2481  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2482                                ReturnValueSlot ReturnValue);
2483
2484
2485  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2486                         unsigned BuiltinID, const CallExpr *E,
2487                         ReturnValueSlot ReturnValue);
2488
2489  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2490
2491  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2492  /// is unhandled by the current target.
2493  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2494
2495  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2496                                             const llvm::CmpInst::Predicate Fp,
2497                                             const llvm::CmpInst::Predicate Ip,
2498                                             const llvm::Twine &Name = "");
2499  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2500
2501  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2502                                         unsigned LLVMIntrinsic,
2503                                         unsigned AltLLVMIntrinsic,
2504                                         const char *NameHint,
2505                                         unsigned Modifier,
2506                                         const CallExpr *E,
2507                                         SmallVectorImpl<llvm::Value *> &Ops,
2508                                         llvm::Value *Align = nullptr);
2509  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2510                                          unsigned Modifier, llvm::Type *ArgTy,
2511                                          const CallExpr *E);
2512  llvm::Value *EmitNeonCall(llvm::Function *F,
2513                            SmallVectorImpl<llvm::Value*> &O,
2514                            const char *name,
2515                            unsigned shift = 0, bool rightshift = false);
2516  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2517  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2518                                   bool negateForRightShift);
2519  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2520                                 llvm::Type *Ty, bool usgn, const char *name);
2521  // Helper functions for EmitAArch64BuiltinExpr.
2522  llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2523  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2524  llvm::Value *emitVectorWrappedScalar8Intrinsic(
2525      unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2526  llvm::Value *emitVectorWrappedScalar16Intrinsic(
2527      unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2528  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2529  llvm::Value *EmitNeon64Call(llvm::Function *F,
2530                              llvm::SmallVectorImpl<llvm::Value *> &O,
2531                              const char *name);
2532
2533  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2534  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2535  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2536  llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2537  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2538
2539  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2540  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2541  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2542  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2543  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2544  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2545                                const ObjCMethodDecl *MethodWithObjects);
2546  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2547  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2548                             ReturnValueSlot Return = ReturnValueSlot());
2549
2550  /// Retrieves the default cleanup kind for an ARC cleanup.
2551  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2552  CleanupKind getARCCleanupKind() {
2553    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2554             ? NormalAndEHCleanup : NormalCleanup;
2555  }
2556
2557  // ARC primitives.
2558  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2559  void EmitARCDestroyWeak(llvm::Value *addr);
2560  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2561  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2562  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2563                                bool ignored);
2564  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2565  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2566  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2567  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2568  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2569                                  bool resultIgnored);
2570  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2571                                      bool resultIgnored);
2572  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2573  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2574  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2575  void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2576  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2577  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2578  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2579  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2580  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2581
2582  std::pair<LValue,llvm::Value*>
2583  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2584  std::pair<LValue,llvm::Value*>
2585  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2586
2587  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2588
2589  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2590  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2591  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2592
2593  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2594  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2595  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2596
2597  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2598
2599  static Destroyer destroyARCStrongImprecise;
2600  static Destroyer destroyARCStrongPrecise;
2601  static Destroyer destroyARCWeak;
2602
2603  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2604  llvm::Value *EmitObjCAutoreleasePoolPush();
2605  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2606  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2607  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2608
2609  /// \brief Emits a reference binding to the passed in expression.
2610  RValue EmitReferenceBindingToExpr(const Expr *E);
2611
2612  //===--------------------------------------------------------------------===//
2613  //                           Expression Emission
2614  //===--------------------------------------------------------------------===//
2615
2616  // Expressions are broken into three classes: scalar, complex, aggregate.
2617
2618  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2619  /// scalar type, returning the result.
2620  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2621
2622  /// EmitScalarConversion - Emit a conversion from the specified type to the
2623  /// specified destination type, both of which are LLVM scalar types.
2624  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2625                                    QualType DstTy);
2626
2627  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2628  /// complex type to the specified destination type, where the destination type
2629  /// is an LLVM scalar type.
2630  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2631                                             QualType DstTy);
2632
2633
2634  /// EmitAggExpr - Emit the computation of the specified expression
2635  /// of aggregate type.  The result is computed into the given slot,
2636  /// which may be null to indicate that the value is not needed.
2637  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2638
2639  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2640  /// aggregate type into a temporary LValue.
2641  LValue EmitAggExprToLValue(const Expr *E);
2642
2643  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2644  /// pointers.
2645  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2646                                QualType Ty);
2647
2648  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2649  /// make sure it survives garbage collection until this point.
2650  void EmitExtendGCLifetime(llvm::Value *object);
2651
2652  /// EmitComplexExpr - Emit the computation of the specified expression of
2653  /// complex type, returning the result.
2654  ComplexPairTy EmitComplexExpr(const Expr *E,
2655                                bool IgnoreReal = false,
2656                                bool IgnoreImag = false);
2657
2658  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2659  /// type and place its result into the specified l-value.
2660  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2661
2662  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2663  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2664
2665  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2666  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2667
2668  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2669  /// global variable that has already been created for it.  If the initializer
2670  /// has a different type than GV does, this may free GV and return a different
2671  /// one.  Otherwise it just returns GV.
2672  llvm::GlobalVariable *
2673  AddInitializerToStaticVarDecl(const VarDecl &D,
2674                                llvm::GlobalVariable *GV);
2675
2676
2677  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2678  /// variable with global storage.
2679  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2680                                bool PerformInit);
2681
2682  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2683                                   llvm::Constant *Addr);
2684
2685  /// Call atexit() with a function that passes the given argument to
2686  /// the given function.
2687  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2688                                    llvm::Constant *addr);
2689
2690  /// Emit code in this function to perform a guarded variable
2691  /// initialization.  Guarded initializations are used when it's not
2692  /// possible to prove that an initialization will be done exactly
2693  /// once, e.g. with a static local variable or a static data member
2694  /// of a class template.
2695  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2696                          bool PerformInit);
2697
2698  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2699  /// variables.
2700  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2701                                 ArrayRef<llvm::Function *> CXXThreadLocals,
2702                                 llvm::GlobalVariable *Guard = nullptr);
2703
2704  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2705  /// variables.
2706  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2707                                  const std::vector<std::pair<llvm::WeakVH,
2708                                  llvm::Constant*> > &DtorsAndObjects);
2709
2710  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2711                                        const VarDecl *D,
2712                                        llvm::GlobalVariable *Addr,
2713                                        bool PerformInit);
2714
2715  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2716
2717  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2718                                  const Expr *Exp);
2719
2720  void enterFullExpression(const ExprWithCleanups *E) {
2721    if (E->getNumObjects() == 0) return;
2722    enterNonTrivialFullExpression(E);
2723  }
2724  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2725
2726  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2727
2728  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2729
2730  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2731
2732  //===--------------------------------------------------------------------===//
2733  //                         Annotations Emission
2734  //===--------------------------------------------------------------------===//
2735
2736  /// Emit an annotation call (intrinsic or builtin).
2737  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2738                                  llvm::Value *AnnotatedVal,
2739                                  StringRef AnnotationStr,
2740                                  SourceLocation Location);
2741
2742  /// Emit local annotations for the local variable V, declared by D.
2743  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2744
2745  /// Emit field annotations for the given field & value. Returns the
2746  /// annotation result.
2747  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2748
2749  //===--------------------------------------------------------------------===//
2750  //                             Internal Helpers
2751  //===--------------------------------------------------------------------===//
2752
2753  /// ContainsLabel - Return true if the statement contains a label in it.  If
2754  /// this statement is not executed normally, it not containing a label means
2755  /// that we can just remove the code.
2756  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2757
2758  /// containsBreak - Return true if the statement contains a break out of it.
2759  /// If the statement (recursively) contains a switch or loop with a break
2760  /// inside of it, this is fine.
2761  static bool containsBreak(const Stmt *S);
2762
2763  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2764  /// to a constant, or if it does but contains a label, return false.  If it
2765  /// constant folds return true and set the boolean result in Result.
2766  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2767
2768  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2769  /// to a constant, or if it does but contains a label, return false.  If it
2770  /// constant folds return true and set the folded value.
2771  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2772
2773  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2774  /// if statement) to the specified blocks.  Based on the condition, this might
2775  /// try to simplify the codegen of the conditional based on the branch.
2776  /// TrueCount should be the number of times we expect the condition to
2777  /// evaluate to true based on PGO data.
2778  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2779                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2780
2781  /// \brief Emit a description of a type in a format suitable for passing to
2782  /// a runtime sanitizer handler.
2783  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2784
2785  /// \brief Convert a value into a format suitable for passing to a runtime
2786  /// sanitizer handler.
2787  llvm::Value *EmitCheckValue(llvm::Value *V);
2788
2789  /// \brief Emit a description of a source location in a format suitable for
2790  /// passing to a runtime sanitizer handler.
2791  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2792
2793  /// \brief Create a basic block that will call a handler function in a
2794  /// sanitizer runtime with the provided arguments, and create a conditional
2795  /// branch to it.
2796  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2797                 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2798                 ArrayRef<llvm::Value *> DynamicArgs);
2799
2800  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2801  /// conditional branch to it, for the -ftrapv checks.
2802  void EmitTrapCheck(llvm::Value *Checked);
2803
2804  /// EmitCallArg - Emit a single call argument.
2805  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2806
2807  /// EmitDelegateCallArg - We are performing a delegate call; that
2808  /// is, the current function is delegating to another one.  Produce
2809  /// a r-value suitable for passing the given parameter.
2810  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2811                           SourceLocation loc);
2812
2813  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2814  /// point operation, expressed as the maximum relative error in ulp.
2815  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2816
2817private:
2818  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2819  void EmitReturnOfRValue(RValue RV, QualType Ty);
2820
2821  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2822
2823  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2824  DeferredReplacements;
2825
2826  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2827  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2828  ///
2829  /// \param AI - The first function argument of the expansion.
2830  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2831                          SmallVectorImpl<llvm::Argument *>::iterator &AI);
2832
2833  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2834  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2835  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2836  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2837                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
2838                        unsigned &IRCallArgPos);
2839
2840  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2841                            const Expr *InputExpr, std::string &ConstraintStr);
2842
2843  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2844                                  LValue InputValue, QualType InputType,
2845                                  std::string &ConstraintStr,
2846                                  SourceLocation Loc);
2847
2848public:
2849  /// EmitCallArgs - Emit call arguments for a function.
2850  template <typename T>
2851  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2852                    CallExpr::const_arg_iterator ArgBeg,
2853                    CallExpr::const_arg_iterator ArgEnd,
2854                    const FunctionDecl *CalleeDecl = nullptr,
2855                    unsigned ParamsToSkip = 0) {
2856    SmallVector<QualType, 16> ArgTypes;
2857    CallExpr::const_arg_iterator Arg = ArgBeg;
2858
2859    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2860           "Can't skip parameters if type info is not provided");
2861    if (CallArgTypeInfo) {
2862      // First, use the argument types that the type info knows about
2863      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2864                E = CallArgTypeInfo->param_type_end();
2865           I != E; ++I, ++Arg) {
2866        assert(Arg != ArgEnd && "Running over edge of argument list!");
2867        assert(
2868            ((*I)->isVariablyModifiedType() ||
2869             getContext()
2870                     .getCanonicalType((*I).getNonReferenceType())
2871                     .getTypePtr() ==
2872                 getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
2873            "type mismatch in call argument!");
2874        ArgTypes.push_back(*I);
2875      }
2876    }
2877
2878    // Either we've emitted all the call args, or we have a call to variadic
2879    // function.
2880    assert(
2881        (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
2882        "Extra arguments in non-variadic function!");
2883
2884    // If we still have any arguments, emit them using the type of the argument.
2885    for (; Arg != ArgEnd; ++Arg)
2886      ArgTypes.push_back(getVarArgType(*Arg));
2887
2888    EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
2889  }
2890
2891  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2892                    CallExpr::const_arg_iterator ArgBeg,
2893                    CallExpr::const_arg_iterator ArgEnd,
2894                    const FunctionDecl *CalleeDecl = nullptr,
2895                    unsigned ParamsToSkip = 0);
2896
2897private:
2898  QualType getVarArgType(const Expr *Arg);
2899
2900  const TargetCodeGenInfo &getTargetHooks() const {
2901    return CGM.getTargetCodeGenInfo();
2902  }
2903
2904  void EmitDeclMetadata();
2905
2906  CodeGenModule::ByrefHelpers *
2907  buildByrefHelpers(llvm::StructType &byrefType,
2908                    const AutoVarEmission &emission);
2909
2910  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2911
2912  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2913  /// value and compute our best estimate of the alignment of the pointee.
2914  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2915
2916  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
2917};
2918
2919/// Helper class with most of the code for saving a value for a
2920/// conditional expression cleanup.
2921struct DominatingLLVMValue {
2922  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2923
2924  /// Answer whether the given value needs extra work to be saved.
2925  static bool needsSaving(llvm::Value *value) {
2926    // If it's not an instruction, we don't need to save.
2927    if (!isa<llvm::Instruction>(value)) return false;
2928
2929    // If it's an instruction in the entry block, we don't need to save.
2930    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2931    return (block != &block->getParent()->getEntryBlock());
2932  }
2933
2934  /// Try to save the given value.
2935  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2936    if (!needsSaving(value)) return saved_type(value, false);
2937
2938    // Otherwise we need an alloca.
2939    llvm::Value *alloca =
2940      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2941    CGF.Builder.CreateStore(value, alloca);
2942
2943    return saved_type(alloca, true);
2944  }
2945
2946  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2947    if (!value.getInt()) return value.getPointer();
2948    return CGF.Builder.CreateLoad(value.getPointer());
2949  }
2950};
2951
2952/// A partial specialization of DominatingValue for llvm::Values that
2953/// might be llvm::Instructions.
2954template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2955  typedef T *type;
2956  static type restore(CodeGenFunction &CGF, saved_type value) {
2957    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2958  }
2959};
2960
2961/// A specialization of DominatingValue for RValue.
2962template <> struct DominatingValue<RValue> {
2963  typedef RValue type;
2964  class saved_type {
2965    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2966                AggregateAddress, ComplexAddress };
2967
2968    llvm::Value *Value;
2969    Kind K;
2970    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2971
2972  public:
2973    static bool needsSaving(RValue value);
2974    static saved_type save(CodeGenFunction &CGF, RValue value);
2975    RValue restore(CodeGenFunction &CGF);
2976
2977    // implementations in CGExprCXX.cpp
2978  };
2979
2980  static bool needsSaving(type value) {
2981    return saved_type::needsSaving(value);
2982  }
2983  static saved_type save(CodeGenFunction &CGF, type value) {
2984    return saved_type::save(CGF, value);
2985  }
2986  static type restore(CodeGenFunction &CGF, saved_type value) {
2987    return value.restore(CGF);
2988  }
2989};
2990
2991}  // end namespace CodeGen
2992}  // end namespace clang
2993
2994#endif
2995