RewriteRope.cpp revision b9b309481369196b64bbf73e540d0c9b487e56a5
1//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the RewriteRope class, which is a powerful string.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Rewrite/RewriteRope.h"
15#include "llvm/Support/Casting.h"
16#include <algorithm>
17using namespace clang;
18using llvm::dyn_cast;
19using llvm::cast;
20
21/// RewriteRope is a "strong" string class, designed to make insertions and
22/// deletions in the middle of the string nearly constant time (really, they are
23/// O(log N), but with a very low constant factor).
24///
25/// The implementation of this datastructure is a conceptual linear sequence of
26/// RopePiece elements.  Each RopePiece represents a view on a separately
27/// allocated and reference counted string.  This means that splitting a very
28/// long string can be done in constant time by splitting a RopePiece that
29/// references the whole string into two rope pieces that reference each half.
30/// Once split, another string can be inserted in between the two halves by
31/// inserting a RopePiece in between the two others.  All of this is very
32/// inexpensive: it takes time proportional to the number of RopePieces, not the
33/// length of the strings they represent.
34///
35/// While a linear sequences of RopePieces is the conceptual model, the actual
36/// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
37/// is a tree that keeps the values in the leaves and has where each node
38/// contains a reasonable number of pointers to children/values) allows us to
39/// maintain efficient operation when the RewriteRope contains a *huge* number
40/// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
41/// the RopePiece corresponding to some offset very efficiently, and it
42/// automatically balances itself on insertions of RopePieces (which can happen
43/// for both insertions and erases of string ranges).
44///
45/// The one wrinkle on the theory is that we don't attempt to keep the tree
46/// properly balanced when erases happen.  Erases of string data can both insert
47/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
48/// which results in two rope pieces, which is just like an insert) or it can
49/// reduce the number of RopePieces maintained by the B+Tree.  In the case when
50/// the number of RopePieces is reduced, we don't attempt to maintain the
51/// standard 'invariant' that each node in the tree contains at least
52/// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
53/// matter.
54///
55/// The implementation below is primarily implemented in terms of three classes:
56///   RopePieceBTreeNode - Common base class for:
57///
58///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
59///          nodes.  This directly represents a chunk of the string with those
60///          RopePieces contatenated.
61///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
62///          up to '2*WidthFactor' other nodes in the tree.
63
64
65//===----------------------------------------------------------------------===//
66// RopePieceBTreeNode Class
67//===----------------------------------------------------------------------===//
68
69namespace {
70  /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
71  /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
72  /// and a flag that determines which subclass the instance is.  Also
73  /// important, this node knows the full extend of the node, including any
74  /// children that it has.  This allows efficient skipping over entire subtrees
75  /// when looking for an offset in the BTree.
76  class RopePieceBTreeNode {
77  protected:
78    /// WidthFactor - This controls the number of K/V slots held in the BTree:
79    /// how wide it is.  Each level of the BTree is guaranteed to have at least
80    /// 'WidthFactor' elements in it (either ropepieces or children), (except
81    /// the root, which may have less) and may have at most 2*WidthFactor
82    /// elements.
83    enum { WidthFactor = 8 };
84
85    /// Size - This is the number of bytes of file this node (including any
86    /// potential children) covers.
87    unsigned Size;
88
89    /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
90    /// is an instance of RopePieceBTreeInterior.
91    bool IsLeaf;
92
93    RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
94    ~RopePieceBTreeNode() {}
95  public:
96
97    bool isLeaf() const { return IsLeaf; }
98    unsigned size() const { return Size; }
99
100    void Destroy();
101
102    /// split - Split the range containing the specified offset so that we are
103    /// guaranteed that there is a place to do an insertion at the specified
104    /// offset.  The offset is relative, so "0" is the start of the node.
105    ///
106    /// If there is no space in this subtree for the extra piece, the extra tree
107    /// node is returned and must be inserted into a parent.
108    RopePieceBTreeNode *split(unsigned Offset);
109
110    /// insert - Insert the specified ropepiece into this tree node at the
111    /// specified offset.  The offset is relative, so "0" is the start of the
112    /// node.
113    ///
114    /// If there is no space in this subtree for the extra piece, the extra tree
115    /// node is returned and must be inserted into a parent.
116    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
117
118    /// erase - Remove NumBytes from this node at the specified offset.  We are
119    /// guaranteed that there is a split at Offset.
120    void erase(unsigned Offset, unsigned NumBytes);
121
122    static inline bool classof(const RopePieceBTreeNode *) { return true; }
123
124  };
125} // end anonymous namespace
126
127//===----------------------------------------------------------------------===//
128// RopePieceBTreeLeaf Class
129//===----------------------------------------------------------------------===//
130
131namespace {
132  /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
133  /// nodes.  This directly represents a chunk of the string with those
134  /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
135  /// instances of RopePiece) are stored in leaves like this.  To make iteration
136  /// over the leaves efficient, they maintain a singly linked list through the
137  /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
138  /// time for all increments.
139  class RopePieceBTreeLeaf : public RopePieceBTreeNode {
140    /// NumPieces - This holds the number of rope pieces currently active in the
141    /// Pieces array.
142    unsigned char NumPieces;
143
144    /// Pieces - This tracks the file chunks currently in this leaf.
145    ///
146    RopePiece Pieces[2*WidthFactor];
147
148    /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
149    /// efficient in-order forward iteration of the tree without traversal.
150    const RopePieceBTreeLeaf *NextLeaf;
151  public:
152    RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0), NextLeaf(0){}
153
154    bool isFull() const { return NumPieces == 2*WidthFactor; }
155
156    /// clear - Remove all rope pieces from this leaf.
157    void clear() {
158      while (NumPieces)
159        Pieces[--NumPieces] = RopePiece();
160      Size = 0;
161    }
162
163    unsigned getNumPieces() const { return NumPieces; }
164
165    const RopePiece &getPiece(unsigned i) const {
166      assert(i < getNumPieces() && "Invalid piece ID");
167      return Pieces[i];
168    }
169
170    const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
171    void setNextLeafInOrder(const RopePieceBTreeLeaf *NL) { NextLeaf = NL; }
172
173    /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
174    /// summing the size of all RopePieces.
175    void FullRecomputeSizeLocally() {
176      Size = 0;
177      for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
178        Size += getPiece(i).size();
179    }
180
181    /// split - Split the range containing the specified offset so that we are
182    /// guaranteed that there is a place to do an insertion at the specified
183    /// offset.  The offset is relative, so "0" is the start of the node.
184    ///
185    /// If there is no space in this subtree for the extra piece, the extra tree
186    /// node is returned and must be inserted into a parent.
187    RopePieceBTreeNode *split(unsigned Offset);
188
189    /// insert - Insert the specified ropepiece into this tree node at the
190    /// specified offset.  The offset is relative, so "0" is the start of the
191    /// node.
192    ///
193    /// If there is no space in this subtree for the extra piece, the extra tree
194    /// node is returned and must be inserted into a parent.
195    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
196
197
198    /// erase - Remove NumBytes from this node at the specified offset.  We are
199    /// guaranteed that there is a split at Offset.
200    void erase(unsigned Offset, unsigned NumBytes);
201
202    static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
203    static inline bool classof(const RopePieceBTreeNode *N) {
204      return N->isLeaf();
205    }
206  };
207} // end anonymous namespace
208
209/// split - Split the range containing the specified offset so that we are
210/// guaranteed that there is a place to do an insertion at the specified
211/// offset.  The offset is relative, so "0" is the start of the node.
212///
213/// If there is no space in this subtree for the extra piece, the extra tree
214/// node is returned and must be inserted into a parent.
215RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
216  // Find the insertion point.  We are guaranteed that there is a split at the
217  // specified offset so find it.
218  if (Offset == 0 || Offset == size()) {
219    // Fastpath for a common case.  There is already a splitpoint at the end.
220    return 0;
221  }
222
223  // Find the piece that this offset lands in.
224  unsigned PieceOffs = 0;
225  unsigned i = 0;
226  while (Offset >= PieceOffs+Pieces[i].size()) {
227    PieceOffs += Pieces[i].size();
228    ++i;
229  }
230
231  // If there is already a split point at the specified offset, just return
232  // success.
233  if (PieceOffs == Offset)
234    return 0;
235
236  // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
237  // to being Piece relative.
238  unsigned IntraPieceOffset = Offset-PieceOffs;
239
240  // We do this by shrinking the RopePiece and then doing an insert of the tail.
241  RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
242                 Pieces[i].EndOffs);
243  Size -= Pieces[i].size();
244  Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
245  Size += Pieces[i].size();
246
247  return insert(Offset, Tail);
248}
249
250
251/// insert - Insert the specified RopePiece into this tree node at the
252/// specified offset.  The offset is relative, so "0" is the start of the node.
253///
254/// If there is no space in this subtree for the extra piece, the extra tree
255/// node is returned and must be inserted into a parent.
256RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
257                                               const RopePiece &R) {
258  // If this node is not full, insert the piece.
259  if (!isFull()) {
260    // Find the insertion point.  We are guaranteed that there is a split at the
261    // specified offset so find it.
262    unsigned i = 0, e = getNumPieces();
263    if (Offset == size()) {
264      // Fastpath for a common case.
265      i = e;
266    } else {
267      unsigned SlotOffs = 0;
268      for (; Offset > SlotOffs; ++i)
269        SlotOffs += getPiece(i).size();
270      assert(SlotOffs == Offset && "Split didn't occur before insertion!");
271    }
272
273    // For an insertion into a non-full leaf node, just insert the value in
274    // its sorted position.  This requires moving later values over.
275    for (; i != e; --e)
276      Pieces[e] = Pieces[e-1];
277    Pieces[i] = R;
278    ++NumPieces;
279    Size += R.size();
280    return 0;
281  }
282
283  // Otherwise, if this is leaf is full, split it in two halves.  Since this
284  // node is full, it contains 2*WidthFactor values.  We move the first
285  // 'WidthFactor' values to the LHS child (which we leave in this node) and
286  // move the last 'WidthFactor' values into the RHS child.
287
288  // Create the new node.
289  RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
290
291  // Move over the last 'WidthFactor' values from here to NewNode.
292  std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
293            &NewNode->Pieces[0]);
294  // Replace old pieces with null RopePieces to drop refcounts.
295  std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
296
297  // Decrease the number of values in the two nodes.
298  NewNode->NumPieces = NumPieces = WidthFactor;
299
300  // Recompute the two nodes' size.
301  NewNode->FullRecomputeSizeLocally();
302  FullRecomputeSizeLocally();
303
304  // Update the list of leaves.
305  NewNode->setNextLeafInOrder(this->getNextLeafInOrder());
306  this->setNextLeafInOrder(NewNode);
307
308  // These insertions can't fail.
309  if (this->size() >= Offset)
310    this->insert(Offset, R);
311  else
312    NewNode->insert(Offset - this->size(), R);
313  return NewNode;
314}
315
316/// erase - Remove NumBytes from this node at the specified offset.  We are
317/// guaranteed that there is a split at Offset.
318void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
319  // Since we are guaranteed that there is a split at Offset, we start by
320  // finding the Piece that starts there.
321  unsigned PieceOffs = 0;
322  unsigned i = 0;
323  for (; Offset > PieceOffs; ++i)
324    PieceOffs += getPiece(i).size();
325  assert(PieceOffs == Offset && "Split didn't occur before erase!");
326
327  unsigned StartPiece = i;
328
329  // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
330  // all of them.
331  for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
332    PieceOffs += getPiece(i).size();
333
334  // If we exactly include the last one, include it in the region to delete.
335  if (Offset+NumBytes == PieceOffs+getPiece(i).size())
336    PieceOffs += getPiece(i).size(), ++i;
337
338  // If we completely cover some RopePieces, erase them now.
339  if (i != StartPiece) {
340    unsigned NumDeleted = i-StartPiece;
341    for (; i != getNumPieces(); ++i)
342      Pieces[i-NumDeleted] = Pieces[i];
343
344    // Drop references to dead rope pieces.
345    std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
346              RopePiece());
347    NumPieces -= NumDeleted;
348
349    unsigned CoverBytes = PieceOffs-Offset;
350    NumBytes -= CoverBytes;
351    Size -= CoverBytes;
352  }
353
354  // If we completely removed some stuff, we could be done.
355  if (NumBytes == 0) return;
356
357  // Okay, now might be erasing part of some Piece.  If this is the case, then
358  // move the start point of the piece.
359  assert(getPiece(StartPiece).size() > NumBytes);
360  Pieces[StartPiece].StartOffs += NumBytes;
361
362  // The size of this node just shrunk by NumBytes.
363  Size -= NumBytes;
364}
365
366//===----------------------------------------------------------------------===//
367// RopePieceBTreeInterior Class
368//===----------------------------------------------------------------------===//
369
370namespace {
371  /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
372  /// which holds up to 2*WidthFactor pointers to child nodes.
373  class RopePieceBTreeInterior : public RopePieceBTreeNode {
374    /// NumChildren - This holds the number of children currently active in the
375    /// Children array.
376    unsigned char NumChildren;
377    RopePieceBTreeNode *Children[2*WidthFactor];
378  public:
379    RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
380
381    RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
382    : RopePieceBTreeNode(false) {
383      Children[0] = LHS;
384      Children[1] = RHS;
385      NumChildren = 2;
386      Size = LHS->size() + RHS->size();
387    }
388
389    bool isFull() const { return NumChildren == 2*WidthFactor; }
390
391    unsigned getNumChildren() const { return NumChildren; }
392    const RopePieceBTreeNode *getChild(unsigned i) const {
393      assert(i < NumChildren && "invalid child #");
394      return Children[i];
395    }
396    RopePieceBTreeNode *getChild(unsigned i) {
397      assert(i < NumChildren && "invalid child #");
398      return Children[i];
399    }
400
401    /// FullRecomputeSizeLocally - Recompute the Size field of this node by
402    /// summing up the sizes of the child nodes.
403    void FullRecomputeSizeLocally() {
404      Size = 0;
405      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
406        Size += getChild(i)->size();
407    }
408
409
410    /// split - Split the range containing the specified offset so that we are
411    /// guaranteed that there is a place to do an insertion at the specified
412    /// offset.  The offset is relative, so "0" is the start of the node.
413    ///
414    /// If there is no space in this subtree for the extra piece, the extra tree
415    /// node is returned and must be inserted into a parent.
416    RopePieceBTreeNode *split(unsigned Offset);
417
418
419    /// insert - Insert the specified ropepiece into this tree node at the
420    /// specified offset.  The offset is relative, so "0" is the start of the
421    /// node.
422    ///
423    /// If there is no space in this subtree for the extra piece, the extra tree
424    /// node is returned and must be inserted into a parent.
425    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
426
427    /// HandleChildPiece - A child propagated an insertion result up to us.
428    /// Insert the new child, and/or propagate the result further up the tree.
429    RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
430
431    /// erase - Remove NumBytes from this node at the specified offset.  We are
432    /// guaranteed that there is a split at Offset.
433    void erase(unsigned Offset, unsigned NumBytes);
434
435    static inline bool classof(const RopePieceBTreeInterior *) { return true; }
436    static inline bool classof(const RopePieceBTreeNode *N) {
437      return !N->isLeaf();
438    }
439  };
440} // end anonymous namespace
441
442/// split - Split the range containing the specified offset so that we are
443/// guaranteed that there is a place to do an insertion at the specified
444/// offset.  The offset is relative, so "0" is the start of the node.
445///
446/// If there is no space in this subtree for the extra piece, the extra tree
447/// node is returned and must be inserted into a parent.
448RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
449  // Figure out which child to split.
450  if (Offset == 0 || Offset == size())
451    return 0;  // If we have an exact offset, we're already split.
452
453  unsigned ChildOffset = 0;
454  unsigned i = 0;
455  for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
456    ChildOffset += getChild(i)->size();
457
458  // If already split there, we're done.
459  if (ChildOffset == Offset)
460    return 0;
461
462  // Otherwise, recursively split the child.
463  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
464    return HandleChildPiece(i, RHS);
465  return 0;  // Done!
466}
467
468/// insert - Insert the specified ropepiece into this tree node at the
469/// specified offset.  The offset is relative, so "0" is the start of the
470/// node.
471///
472/// If there is no space in this subtree for the extra piece, the extra tree
473/// node is returned and must be inserted into a parent.
474RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
475                                                   const RopePiece &R) {
476  // Find the insertion point.  We are guaranteed that there is a split at the
477  // specified offset so find it.
478  unsigned i = 0, e = getNumChildren();
479
480  unsigned ChildOffs = 0;
481  if (Offset == size()) {
482    // Fastpath for a common case.  Insert at end of last child.
483    i = e-1;
484    ChildOffs = size()-getChild(i)->size();
485  } else {
486    for (; Offset > ChildOffs+getChild(i)->size(); ++i)
487      ChildOffs += getChild(i)->size();
488  }
489
490  Size += R.size();
491
492  // Insert at the end of this child.
493  if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
494    return HandleChildPiece(i, RHS);
495
496  return 0;
497}
498
499/// HandleChildPiece - A child propagated an insertion result up to us.
500/// Insert the new child, and/or propagate the result further up the tree.
501RopePieceBTreeNode *
502RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
503  // Otherwise the child propagated a subtree up to us as a new child.  See if
504  // we have space for it here.
505  if (!isFull()) {
506    // Insert RHS after child 'i'.
507    if (i + 1 != getNumChildren())
508      memmove(&Children[i+2], &Children[i+1],
509              (getNumChildren()-i-1)*sizeof(Children[0]));
510    Children[i+1] = RHS;
511    ++NumChildren;
512    return false;
513  }
514
515  // Okay, this node is full.  Split it in half, moving WidthFactor children to
516  // a newly allocated interior node.
517
518  // Create the new node.
519  RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
520
521  // Move over the last 'WidthFactor' values from here to NewNode.
522  memcpy(&NewNode->Children[0], &Children[WidthFactor],
523         WidthFactor*sizeof(Children[0]));
524
525  // Decrease the number of values in the two nodes.
526  NewNode->NumChildren = NumChildren = WidthFactor;
527
528  // Finally, insert the two new children in the side the can (now) hold them.
529  // These insertions can't fail.
530  if (i < WidthFactor)
531    this->HandleChildPiece(i, RHS);
532  else
533    NewNode->HandleChildPiece(i-WidthFactor, RHS);
534
535  // Recompute the two nodes' size.
536  NewNode->FullRecomputeSizeLocally();
537  FullRecomputeSizeLocally();
538  return NewNode;
539}
540
541/// erase - Remove NumBytes from this node at the specified offset.  We are
542/// guaranteed that there is a split at Offset.
543void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
544  // This will shrink this node by NumBytes.
545  Size -= NumBytes;
546
547  // Find the first child that overlaps with Offset.
548  unsigned i = 0;
549  for (; Offset >= getChild(i)->size(); ++i)
550    Offset -= getChild(i)->size();
551
552  // Propagate the delete request into overlapping children, or completely
553  // delete the children as appropriate.
554  while (NumBytes) {
555    RopePieceBTreeNode *CurChild = getChild(i);
556
557    // If we are deleting something contained entirely in the child, pass on the
558    // request.
559    if (Offset+NumBytes < CurChild->size()) {
560      CurChild->erase(Offset, NumBytes);
561      return;
562    }
563
564    // If this deletion request starts somewhere in the middle of the child, it
565    // must be deleting to the end of the child.
566    if (Offset) {
567      unsigned BytesFromChild = CurChild->size()-Offset;
568      CurChild->erase(Offset, BytesFromChild);
569      NumBytes -= BytesFromChild;
570      ++i;
571      continue;
572    }
573
574    // If the deletion request completely covers the child, delete it and move
575    // the rest down.
576    NumBytes -= CurChild->size();
577    CurChild->Destroy();
578    --NumChildren;
579    if (i+1 != getNumChildren())
580      memmove(&Children[i], &Children[i+1],
581              (getNumChildren()-i)*sizeof(Children[0]));
582  }
583}
584
585//===----------------------------------------------------------------------===//
586// RopePieceBTreeNode Implementation
587//===----------------------------------------------------------------------===//
588
589void RopePieceBTreeNode::Destroy() {
590  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
591    delete Leaf;
592  else
593    delete cast<RopePieceBTreeInterior>(this);
594}
595
596/// split - Split the range containing the specified offset so that we are
597/// guaranteed that there is a place to do an insertion at the specified
598/// offset.  The offset is relative, so "0" is the start of the node.
599///
600/// If there is no space in this subtree for the extra piece, the extra tree
601/// node is returned and must be inserted into a parent.
602RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
603  assert(Offset <= size() && "Invalid offset to split!");
604  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
605    return Leaf->split(Offset);
606  return cast<RopePieceBTreeInterior>(this)->split(Offset);
607}
608
609/// insert - Insert the specified ropepiece into this tree node at the
610/// specified offset.  The offset is relative, so "0" is the start of the
611/// node.
612///
613/// If there is no space in this subtree for the extra piece, the extra tree
614/// node is returned and must be inserted into a parent.
615RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
616                                               const RopePiece &R) {
617  assert(Offset <= size() && "Invalid offset to insert!");
618  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
619    return Leaf->insert(Offset, R);
620  return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
621}
622
623/// erase - Remove NumBytes from this node at the specified offset.  We are
624/// guaranteed that there is a split at Offset.
625void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
626  assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
627  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
628    return Leaf->erase(Offset, NumBytes);
629  return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
630}
631
632
633//===----------------------------------------------------------------------===//
634// RopePieceBTreeIterator Implementation
635//===----------------------------------------------------------------------===//
636
637static const RopePieceBTreeLeaf *getCN(const void *P) {
638  return static_cast<const RopePieceBTreeLeaf*>(P);
639}
640
641// begin iterator.
642RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
643  const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
644
645  // Walk down the left side of the tree until we get to a leaf.
646  while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
647    N = IN->getChild(0);
648
649  // We must have at least one leaf.
650  CurNode = cast<RopePieceBTreeLeaf>(N);
651
652  // If we found a leaf that happens to be empty, skip over it until we get
653  // to something full.
654  while (CurNode && getCN(CurNode)->getNumPieces() == 0)
655    CurNode = getCN(CurNode)->getNextLeafInOrder();
656
657  if (CurNode != 0)
658    CurPiece = &getCN(CurNode)->getPiece(0);
659  else  // Empty tree, this is an end() iterator.
660    CurPiece = 0;
661  CurChar = 0;
662}
663
664void RopePieceBTreeIterator::MoveToNextPiece() {
665  if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
666    CurChar = 0;
667    ++CurPiece;
668    return;
669  }
670
671  // Find the next non-empty leaf node.
672  do
673    CurNode = getCN(CurNode)->getNextLeafInOrder();
674  while (CurNode && getCN(CurNode)->getNumPieces() == 0);
675
676  if (CurNode != 0)
677    CurPiece = &getCN(CurNode)->getPiece(0);
678  else // Hit end().
679    CurPiece = 0;
680  CurChar = 0;
681}
682
683//===----------------------------------------------------------------------===//
684// RopePieceBTree Implementation
685//===----------------------------------------------------------------------===//
686
687static RopePieceBTreeNode *getRoot(void *P) {
688  return static_cast<RopePieceBTreeNode*>(P);
689}
690
691RopePieceBTree::RopePieceBTree() {
692  Root = new RopePieceBTreeLeaf();
693}
694RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
695  assert(RHS.empty() && "Can't copy non-empty tree yet");
696  Root = new RopePieceBTreeLeaf();
697}
698RopePieceBTree::~RopePieceBTree() {
699  getRoot(Root)->Destroy();
700}
701
702unsigned RopePieceBTree::size() const {
703  return getRoot(Root)->size();
704}
705
706void RopePieceBTree::clear() {
707  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
708    Leaf->clear();
709  else {
710    getRoot(Root)->Destroy();
711    Root = new RopePieceBTreeLeaf();
712  }
713}
714
715void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
716  // #1. Split at Offset.
717  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
718    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
719
720  // #2. Do the insertion.
721  if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
722    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
723}
724
725void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
726  // #1. Split at Offset.
727  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
728    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
729
730  // #2. Do the erasing.
731  getRoot(Root)->erase(Offset, NumBytes);
732}
733
734//===----------------------------------------------------------------------===//
735// RewriteRope Implementation
736//===----------------------------------------------------------------------===//
737
738/// MakeRopeString - This copies the specified byte range into some instance of
739/// RopeRefCountString, and return a RopePiece that represents it.  This uses
740/// the AllocBuffer object to aggregate requests for small strings into one
741/// allocation instead of doing tons of tiny allocations.
742RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
743  unsigned Len = End-Start;
744
745  // If we have space for this string in the current alloc buffer, use it.
746  if (AllocOffs+Len <= AllocChunkSize) {
747    memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
748    AllocOffs += Len;
749    return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
750  }
751
752  // If we don't have enough room because this specific allocation is huge,
753  // just allocate a new rope piece for it alone.
754  if (Len > AllocChunkSize) {
755    unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
756    RopeRefCountString *Res =
757      reinterpret_cast<RopeRefCountString *>(new char[Size]);
758    Res->RefCount = 0;
759    memcpy(Res->Data, Start, End-Start);
760    return RopePiece(Res, 0, End-Start);
761  }
762
763  // Otherwise, this was a small request but we just don't have space for it
764  // Make a new chunk and share it with later allocations.
765
766  // If we had an old allocation, drop our reference to it.
767  if (AllocBuffer && --AllocBuffer->RefCount == 0)
768    delete [] (char*)AllocBuffer;
769
770  unsigned AllocSize = sizeof(RopeRefCountString)-1+AllocChunkSize;
771  AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
772  AllocBuffer->RefCount = 0;
773  memcpy(AllocBuffer->Data, Start, Len);
774  AllocOffs = Len;
775
776  // Start out the new allocation with a refcount of 1, since we have an
777  // internal reference to it.
778  AllocBuffer->addRef();
779  return RopePiece(AllocBuffer, 0, Len);
780}
781
782
783