SemaOverload.cpp revision 1aae80b173e22fa5d649f114eb6607efac350d79
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              ForceRValue, UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (FunctionDecl *Fn
617               = ResolveAddressOfOverloadedFunction(From, ToType, false,
618                                                    AccessPair)) {
619    // Address of overloaded function (C++ [over.over]).
620    SCS.First = ICK_Function_To_Pointer;
621
622    // We were able to resolve the address of the overloaded function,
623    // so we can convert to the type of that function.
624    FromType = Fn->getType();
625    if (ToType->isLValueReferenceType())
626      FromType = Context.getLValueReferenceType(FromType);
627    else if (ToType->isRValueReferenceType())
628      FromType = Context.getRValueReferenceType(FromType);
629    else if (ToType->isMemberPointerType()) {
630      // Resolve address only succeeds if both sides are member pointers,
631      // but it doesn't have to be the same class. See DR 247.
632      // Note that this means that the type of &Derived::fn can be
633      // Ret (Base::*)(Args) if the fn overload actually found is from the
634      // base class, even if it was brought into the derived class via a
635      // using declaration. The standard isn't clear on this issue at all.
636      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
637      FromType = Context.getMemberPointerType(FromType,
638                    Context.getTypeDeclType(M->getParent()).getTypePtr());
639    } else
640      FromType = Context.getPointerType(FromType);
641  } else {
642    // We don't require any conversions for the first step.
643    SCS.First = ICK_Identity;
644  }
645  SCS.setToType(0, FromType);
646
647  // The second conversion can be an integral promotion, floating
648  // point promotion, integral conversion, floating point conversion,
649  // floating-integral conversion, pointer conversion,
650  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
651  // For overloading in C, this can also be a "compatible-type"
652  // conversion.
653  bool IncompatibleObjC = false;
654  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
655    // The unqualified versions of the types are the same: there's no
656    // conversion to do.
657    SCS.Second = ICK_Identity;
658  } else if (IsIntegralPromotion(From, FromType, ToType)) {
659    // Integral promotion (C++ 4.5).
660    SCS.Second = ICK_Integral_Promotion;
661    FromType = ToType.getUnqualifiedType();
662  } else if (IsFloatingPointPromotion(FromType, ToType)) {
663    // Floating point promotion (C++ 4.6).
664    SCS.Second = ICK_Floating_Promotion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (IsComplexPromotion(FromType, ToType)) {
667    // Complex promotion (Clang extension)
668    SCS.Second = ICK_Complex_Promotion;
669    FromType = ToType.getUnqualifiedType();
670  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
671           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
672    // Integral conversions (C++ 4.7).
673    SCS.Second = ICK_Integral_Conversion;
674    FromType = ToType.getUnqualifiedType();
675  } else if (FromType->isComplexType() && ToType->isComplexType()) {
676    // Complex conversions (C99 6.3.1.6)
677    SCS.Second = ICK_Complex_Conversion;
678    FromType = ToType.getUnqualifiedType();
679  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
680             (ToType->isComplexType() && FromType->isArithmeticType())) {
681    // Complex-real conversions (C99 6.3.1.7)
682    SCS.Second = ICK_Complex_Real;
683    FromType = ToType.getUnqualifiedType();
684  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
685    // Floating point conversions (C++ 4.8).
686    SCS.Second = ICK_Floating_Conversion;
687    FromType = ToType.getUnqualifiedType();
688  } else if ((FromType->isFloatingType() &&
689              ToType->isIntegralType() && (!ToType->isBooleanType() &&
690                                           !ToType->isEnumeralType())) ||
691             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
692              ToType->isFloatingType())) {
693    // Floating-integral conversions (C++ 4.9).
694    SCS.Second = ICK_Floating_Integral;
695    FromType = ToType.getUnqualifiedType();
696  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
697                                 FromType, IncompatibleObjC)) {
698    // Pointer conversions (C++ 4.10).
699    SCS.Second = ICK_Pointer_Conversion;
700    SCS.IncompatibleObjC = IncompatibleObjC;
701  } else if (IsMemberPointerConversion(From, FromType, ToType,
702                                       InOverloadResolution, FromType)) {
703    // Pointer to member conversions (4.11).
704    SCS.Second = ICK_Pointer_Member;
705  } else if (ToType->isBooleanType() &&
706             (FromType->isArithmeticType() ||
707              FromType->isEnumeralType() ||
708              FromType->isAnyPointerType() ||
709              FromType->isBlockPointerType() ||
710              FromType->isMemberPointerType() ||
711              FromType->isNullPtrType())) {
712    // Boolean conversions (C++ 4.12).
713    SCS.Second = ICK_Boolean_Conversion;
714    FromType = Context.BoolTy;
715  } else if (!getLangOptions().CPlusPlus &&
716             Context.typesAreCompatible(ToType, FromType)) {
717    // Compatible conversions (Clang extension for C function overloading)
718    SCS.Second = ICK_Compatible_Conversion;
719  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
720    // Treat a conversion that strips "noreturn" as an identity conversion.
721    SCS.Second = ICK_NoReturn_Adjustment;
722  } else {
723    // No second conversion required.
724    SCS.Second = ICK_Identity;
725  }
726  SCS.setToType(1, FromType);
727
728  QualType CanonFrom;
729  QualType CanonTo;
730  // The third conversion can be a qualification conversion (C++ 4p1).
731  if (IsQualificationConversion(FromType, ToType)) {
732    SCS.Third = ICK_Qualification;
733    FromType = ToType;
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736  } else {
737    // No conversion required
738    SCS.Third = ICK_Identity;
739
740    // C++ [over.best.ics]p6:
741    //   [...] Any difference in top-level cv-qualification is
742    //   subsumed by the initialization itself and does not constitute
743    //   a conversion. [...]
744    CanonFrom = Context.getCanonicalType(FromType);
745    CanonTo = Context.getCanonicalType(ToType);
746    if (CanonFrom.getLocalUnqualifiedType()
747                                       == CanonTo.getLocalUnqualifiedType() &&
748        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
749      FromType = ToType;
750      CanonFrom = CanonTo;
751    }
752  }
753  SCS.setToType(2, FromType);
754
755  // If we have not converted the argument type to the parameter type,
756  // this is a bad conversion sequence.
757  if (CanonFrom != CanonTo)
758    return false;
759
760  return true;
761}
762
763/// IsIntegralPromotion - Determines whether the conversion from the
764/// expression From (whose potentially-adjusted type is FromType) to
765/// ToType is an integral promotion (C++ 4.5). If so, returns true and
766/// sets PromotedType to the promoted type.
767bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
768  const BuiltinType *To = ToType->getAs<BuiltinType>();
769  // All integers are built-in.
770  if (!To) {
771    return false;
772  }
773
774  // An rvalue of type char, signed char, unsigned char, short int, or
775  // unsigned short int can be converted to an rvalue of type int if
776  // int can represent all the values of the source type; otherwise,
777  // the source rvalue can be converted to an rvalue of type unsigned
778  // int (C++ 4.5p1).
779  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
780      !FromType->isEnumeralType()) {
781    if (// We can promote any signed, promotable integer type to an int
782        (FromType->isSignedIntegerType() ||
783         // We can promote any unsigned integer type whose size is
784         // less than int to an int.
785         (!FromType->isSignedIntegerType() &&
786          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
787      return To->getKind() == BuiltinType::Int;
788    }
789
790    return To->getKind() == BuiltinType::UInt;
791  }
792
793  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
794  // can be converted to an rvalue of the first of the following types
795  // that can represent all the values of its underlying type: int,
796  // unsigned int, long, or unsigned long (C++ 4.5p2).
797
798  // We pre-calculate the promotion type for enum types.
799  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
800    if (ToType->isIntegerType())
801      return Context.hasSameUnqualifiedType(ToType,
802                                FromEnumType->getDecl()->getPromotionType());
803
804  if (FromType->isWideCharType() && ToType->isIntegerType()) {
805    // Determine whether the type we're converting from is signed or
806    // unsigned.
807    bool FromIsSigned;
808    uint64_t FromSize = Context.getTypeSize(FromType);
809
810    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
811    FromIsSigned = true;
812
813    // The types we'll try to promote to, in the appropriate
814    // order. Try each of these types.
815    QualType PromoteTypes[6] = {
816      Context.IntTy, Context.UnsignedIntTy,
817      Context.LongTy, Context.UnsignedLongTy ,
818      Context.LongLongTy, Context.UnsignedLongLongTy
819    };
820    for (int Idx = 0; Idx < 6; ++Idx) {
821      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
822      if (FromSize < ToSize ||
823          (FromSize == ToSize &&
824           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
825        // We found the type that we can promote to. If this is the
826        // type we wanted, we have a promotion. Otherwise, no
827        // promotion.
828        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
829      }
830    }
831  }
832
833  // An rvalue for an integral bit-field (9.6) can be converted to an
834  // rvalue of type int if int can represent all the values of the
835  // bit-field; otherwise, it can be converted to unsigned int if
836  // unsigned int can represent all the values of the bit-field. If
837  // the bit-field is larger yet, no integral promotion applies to
838  // it. If the bit-field has an enumerated type, it is treated as any
839  // other value of that type for promotion purposes (C++ 4.5p3).
840  // FIXME: We should delay checking of bit-fields until we actually perform the
841  // conversion.
842  using llvm::APSInt;
843  if (From)
844    if (FieldDecl *MemberDecl = From->getBitField()) {
845      APSInt BitWidth;
846      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
847          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
848        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
849        ToSize = Context.getTypeSize(ToType);
850
851        // Are we promoting to an int from a bitfield that fits in an int?
852        if (BitWidth < ToSize ||
853            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
854          return To->getKind() == BuiltinType::Int;
855        }
856
857        // Are we promoting to an unsigned int from an unsigned bitfield
858        // that fits into an unsigned int?
859        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
860          return To->getKind() == BuiltinType::UInt;
861        }
862
863        return false;
864      }
865    }
866
867  // An rvalue of type bool can be converted to an rvalue of type int,
868  // with false becoming zero and true becoming one (C++ 4.5p4).
869  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
870    return true;
871  }
872
873  return false;
874}
875
876/// IsFloatingPointPromotion - Determines whether the conversion from
877/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
878/// returns true and sets PromotedType to the promoted type.
879bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
880  /// An rvalue of type float can be converted to an rvalue of type
881  /// double. (C++ 4.6p1).
882  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
883    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
884      if (FromBuiltin->getKind() == BuiltinType::Float &&
885          ToBuiltin->getKind() == BuiltinType::Double)
886        return true;
887
888      // C99 6.3.1.5p1:
889      //   When a float is promoted to double or long double, or a
890      //   double is promoted to long double [...].
891      if (!getLangOptions().CPlusPlus &&
892          (FromBuiltin->getKind() == BuiltinType::Float ||
893           FromBuiltin->getKind() == BuiltinType::Double) &&
894          (ToBuiltin->getKind() == BuiltinType::LongDouble))
895        return true;
896    }
897
898  return false;
899}
900
901/// \brief Determine if a conversion is a complex promotion.
902///
903/// A complex promotion is defined as a complex -> complex conversion
904/// where the conversion between the underlying real types is a
905/// floating-point or integral promotion.
906bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
907  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
908  if (!FromComplex)
909    return false;
910
911  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
912  if (!ToComplex)
913    return false;
914
915  return IsFloatingPointPromotion(FromComplex->getElementType(),
916                                  ToComplex->getElementType()) ||
917    IsIntegralPromotion(0, FromComplex->getElementType(),
918                        ToComplex->getElementType());
919}
920
921/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
922/// the pointer type FromPtr to a pointer to type ToPointee, with the
923/// same type qualifiers as FromPtr has on its pointee type. ToType,
924/// if non-empty, will be a pointer to ToType that may or may not have
925/// the right set of qualifiers on its pointee.
926static QualType
927BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
928                                   QualType ToPointee, QualType ToType,
929                                   ASTContext &Context) {
930  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
931  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
932  Qualifiers Quals = CanonFromPointee.getQualifiers();
933
934  // Exact qualifier match -> return the pointer type we're converting to.
935  if (CanonToPointee.getLocalQualifiers() == Quals) {
936    // ToType is exactly what we need. Return it.
937    if (!ToType.isNull())
938      return ToType;
939
940    // Build a pointer to ToPointee. It has the right qualifiers
941    // already.
942    return Context.getPointerType(ToPointee);
943  }
944
945  // Just build a canonical type that has the right qualifiers.
946  return Context.getPointerType(
947         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
948                                  Quals));
949}
950
951/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
952/// the FromType, which is an objective-c pointer, to ToType, which may or may
953/// not have the right set of qualifiers.
954static QualType
955BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
956                                             QualType ToType,
957                                             ASTContext &Context) {
958  QualType CanonFromType = Context.getCanonicalType(FromType);
959  QualType CanonToType = Context.getCanonicalType(ToType);
960  Qualifiers Quals = CanonFromType.getQualifiers();
961
962  // Exact qualifier match -> return the pointer type we're converting to.
963  if (CanonToType.getLocalQualifiers() == Quals)
964    return ToType;
965
966  // Just build a canonical type that has the right qualifiers.
967  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
968}
969
970static bool isNullPointerConstantForConversion(Expr *Expr,
971                                               bool InOverloadResolution,
972                                               ASTContext &Context) {
973  // Handle value-dependent integral null pointer constants correctly.
974  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
975  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
976      Expr->getType()->isIntegralType())
977    return !InOverloadResolution;
978
979  return Expr->isNullPointerConstant(Context,
980                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
981                                        : Expr::NPC_ValueDependentIsNull);
982}
983
984/// IsPointerConversion - Determines whether the conversion of the
985/// expression From, which has the (possibly adjusted) type FromType,
986/// can be converted to the type ToType via a pointer conversion (C++
987/// 4.10). If so, returns true and places the converted type (that
988/// might differ from ToType in its cv-qualifiers at some level) into
989/// ConvertedType.
990///
991/// This routine also supports conversions to and from block pointers
992/// and conversions with Objective-C's 'id', 'id<protocols...>', and
993/// pointers to interfaces. FIXME: Once we've determined the
994/// appropriate overloading rules for Objective-C, we may want to
995/// split the Objective-C checks into a different routine; however,
996/// GCC seems to consider all of these conversions to be pointer
997/// conversions, so for now they live here. IncompatibleObjC will be
998/// set if the conversion is an allowed Objective-C conversion that
999/// should result in a warning.
1000bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1001                               bool InOverloadResolution,
1002                               QualType& ConvertedType,
1003                               bool &IncompatibleObjC) {
1004  IncompatibleObjC = false;
1005  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1006    return true;
1007
1008  // Conversion from a null pointer constant to any Objective-C pointer type.
1009  if (ToType->isObjCObjectPointerType() &&
1010      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1011    ConvertedType = ToType;
1012    return true;
1013  }
1014
1015  // Blocks: Block pointers can be converted to void*.
1016  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1017      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1018    ConvertedType = ToType;
1019    return true;
1020  }
1021  // Blocks: A null pointer constant can be converted to a block
1022  // pointer type.
1023  if (ToType->isBlockPointerType() &&
1024      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1025    ConvertedType = ToType;
1026    return true;
1027  }
1028
1029  // If the left-hand-side is nullptr_t, the right side can be a null
1030  // pointer constant.
1031  if (ToType->isNullPtrType() &&
1032      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1033    ConvertedType = ToType;
1034    return true;
1035  }
1036
1037  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1038  if (!ToTypePtr)
1039    return false;
1040
1041  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1042  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1043    ConvertedType = ToType;
1044    return true;
1045  }
1046
1047  // Beyond this point, both types need to be pointers
1048  // , including objective-c pointers.
1049  QualType ToPointeeType = ToTypePtr->getPointeeType();
1050  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1051    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1052                                                       ToType, Context);
1053    return true;
1054
1055  }
1056  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1057  if (!FromTypePtr)
1058    return false;
1059
1060  QualType FromPointeeType = FromTypePtr->getPointeeType();
1061
1062  // An rvalue of type "pointer to cv T," where T is an object type,
1063  // can be converted to an rvalue of type "pointer to cv void" (C++
1064  // 4.10p2).
1065  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1066    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1067                                                       ToPointeeType,
1068                                                       ToType, Context);
1069    return true;
1070  }
1071
1072  // When we're overloading in C, we allow a special kind of pointer
1073  // conversion for compatible-but-not-identical pointee types.
1074  if (!getLangOptions().CPlusPlus &&
1075      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1076    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1077                                                       ToPointeeType,
1078                                                       ToType, Context);
1079    return true;
1080  }
1081
1082  // C++ [conv.ptr]p3:
1083  //
1084  //   An rvalue of type "pointer to cv D," where D is a class type,
1085  //   can be converted to an rvalue of type "pointer to cv B," where
1086  //   B is a base class (clause 10) of D. If B is an inaccessible
1087  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1088  //   necessitates this conversion is ill-formed. The result of the
1089  //   conversion is a pointer to the base class sub-object of the
1090  //   derived class object. The null pointer value is converted to
1091  //   the null pointer value of the destination type.
1092  //
1093  // Note that we do not check for ambiguity or inaccessibility
1094  // here. That is handled by CheckPointerConversion.
1095  if (getLangOptions().CPlusPlus &&
1096      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1097      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1098      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1099      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1100    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1101                                                       ToPointeeType,
1102                                                       ToType, Context);
1103    return true;
1104  }
1105
1106  return false;
1107}
1108
1109/// isObjCPointerConversion - Determines whether this is an
1110/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1111/// with the same arguments and return values.
1112bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1113                                   QualType& ConvertedType,
1114                                   bool &IncompatibleObjC) {
1115  if (!getLangOptions().ObjC1)
1116    return false;
1117
1118  // First, we handle all conversions on ObjC object pointer types.
1119  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1120  const ObjCObjectPointerType *FromObjCPtr =
1121    FromType->getAs<ObjCObjectPointerType>();
1122
1123  if (ToObjCPtr && FromObjCPtr) {
1124    // Objective C++: We're able to convert between "id" or "Class" and a
1125    // pointer to any interface (in both directions).
1126    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1127      ConvertedType = ToType;
1128      return true;
1129    }
1130    // Conversions with Objective-C's id<...>.
1131    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1132         ToObjCPtr->isObjCQualifiedIdType()) &&
1133        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1134                                                  /*compare=*/false)) {
1135      ConvertedType = ToType;
1136      return true;
1137    }
1138    // Objective C++: We're able to convert from a pointer to an
1139    // interface to a pointer to a different interface.
1140    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1141      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1142      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1143      if (getLangOptions().CPlusPlus && LHS && RHS &&
1144          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1145                                                FromObjCPtr->getPointeeType()))
1146        return false;
1147      ConvertedType = ToType;
1148      return true;
1149    }
1150
1151    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1152      // Okay: this is some kind of implicit downcast of Objective-C
1153      // interfaces, which is permitted. However, we're going to
1154      // complain about it.
1155      IncompatibleObjC = true;
1156      ConvertedType = FromType;
1157      return true;
1158    }
1159  }
1160  // Beyond this point, both types need to be C pointers or block pointers.
1161  QualType ToPointeeType;
1162  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1163    ToPointeeType = ToCPtr->getPointeeType();
1164  else if (const BlockPointerType *ToBlockPtr =
1165            ToType->getAs<BlockPointerType>()) {
1166    // Objective C++: We're able to convert from a pointer to any object
1167    // to a block pointer type.
1168    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1169      ConvertedType = ToType;
1170      return true;
1171    }
1172    ToPointeeType = ToBlockPtr->getPointeeType();
1173  }
1174  else if (FromType->getAs<BlockPointerType>() &&
1175           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1176    // Objective C++: We're able to convert from a block pointer type to a
1177    // pointer to any object.
1178    ConvertedType = ToType;
1179    return true;
1180  }
1181  else
1182    return false;
1183
1184  QualType FromPointeeType;
1185  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1186    FromPointeeType = FromCPtr->getPointeeType();
1187  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1188    FromPointeeType = FromBlockPtr->getPointeeType();
1189  else
1190    return false;
1191
1192  // If we have pointers to pointers, recursively check whether this
1193  // is an Objective-C conversion.
1194  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1195      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1196                              IncompatibleObjC)) {
1197    // We always complain about this conversion.
1198    IncompatibleObjC = true;
1199    ConvertedType = ToType;
1200    return true;
1201  }
1202  // Allow conversion of pointee being objective-c pointer to another one;
1203  // as in I* to id.
1204  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1205      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1206      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1207                              IncompatibleObjC)) {
1208    ConvertedType = ToType;
1209    return true;
1210  }
1211
1212  // If we have pointers to functions or blocks, check whether the only
1213  // differences in the argument and result types are in Objective-C
1214  // pointer conversions. If so, we permit the conversion (but
1215  // complain about it).
1216  const FunctionProtoType *FromFunctionType
1217    = FromPointeeType->getAs<FunctionProtoType>();
1218  const FunctionProtoType *ToFunctionType
1219    = ToPointeeType->getAs<FunctionProtoType>();
1220  if (FromFunctionType && ToFunctionType) {
1221    // If the function types are exactly the same, this isn't an
1222    // Objective-C pointer conversion.
1223    if (Context.getCanonicalType(FromPointeeType)
1224          == Context.getCanonicalType(ToPointeeType))
1225      return false;
1226
1227    // Perform the quick checks that will tell us whether these
1228    // function types are obviously different.
1229    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1230        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1231        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1232      return false;
1233
1234    bool HasObjCConversion = false;
1235    if (Context.getCanonicalType(FromFunctionType->getResultType())
1236          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1237      // Okay, the types match exactly. Nothing to do.
1238    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1239                                       ToFunctionType->getResultType(),
1240                                       ConvertedType, IncompatibleObjC)) {
1241      // Okay, we have an Objective-C pointer conversion.
1242      HasObjCConversion = true;
1243    } else {
1244      // Function types are too different. Abort.
1245      return false;
1246    }
1247
1248    // Check argument types.
1249    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1250         ArgIdx != NumArgs; ++ArgIdx) {
1251      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1252      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1253      if (Context.getCanonicalType(FromArgType)
1254            == Context.getCanonicalType(ToArgType)) {
1255        // Okay, the types match exactly. Nothing to do.
1256      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1257                                         ConvertedType, IncompatibleObjC)) {
1258        // Okay, we have an Objective-C pointer conversion.
1259        HasObjCConversion = true;
1260      } else {
1261        // Argument types are too different. Abort.
1262        return false;
1263      }
1264    }
1265
1266    if (HasObjCConversion) {
1267      // We had an Objective-C conversion. Allow this pointer
1268      // conversion, but complain about it.
1269      ConvertedType = ToType;
1270      IncompatibleObjC = true;
1271      return true;
1272    }
1273  }
1274
1275  return false;
1276}
1277
1278/// CheckPointerConversion - Check the pointer conversion from the
1279/// expression From to the type ToType. This routine checks for
1280/// ambiguous or inaccessible derived-to-base pointer
1281/// conversions for which IsPointerConversion has already returned
1282/// true. It returns true and produces a diagnostic if there was an
1283/// error, or returns false otherwise.
1284bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1285                                  CastExpr::CastKind &Kind,
1286                                  bool IgnoreBaseAccess) {
1287  QualType FromType = From->getType();
1288
1289  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1290    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1291      QualType FromPointeeType = FromPtrType->getPointeeType(),
1292               ToPointeeType   = ToPtrType->getPointeeType();
1293
1294      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1295          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1296        // We must have a derived-to-base conversion. Check an
1297        // ambiguous or inaccessible conversion.
1298        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1299                                         From->getExprLoc(),
1300                                         From->getSourceRange(),
1301                                         IgnoreBaseAccess))
1302          return true;
1303
1304        // The conversion was successful.
1305        Kind = CastExpr::CK_DerivedToBase;
1306      }
1307    }
1308  if (const ObjCObjectPointerType *FromPtrType =
1309        FromType->getAs<ObjCObjectPointerType>())
1310    if (const ObjCObjectPointerType *ToPtrType =
1311          ToType->getAs<ObjCObjectPointerType>()) {
1312      // Objective-C++ conversions are always okay.
1313      // FIXME: We should have a different class of conversions for the
1314      // Objective-C++ implicit conversions.
1315      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1316        return false;
1317
1318  }
1319  return false;
1320}
1321
1322/// IsMemberPointerConversion - Determines whether the conversion of the
1323/// expression From, which has the (possibly adjusted) type FromType, can be
1324/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1325/// If so, returns true and places the converted type (that might differ from
1326/// ToType in its cv-qualifiers at some level) into ConvertedType.
1327bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1328                                     QualType ToType,
1329                                     bool InOverloadResolution,
1330                                     QualType &ConvertedType) {
1331  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1332  if (!ToTypePtr)
1333    return false;
1334
1335  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1336  if (From->isNullPointerConstant(Context,
1337                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1338                                        : Expr::NPC_ValueDependentIsNull)) {
1339    ConvertedType = ToType;
1340    return true;
1341  }
1342
1343  // Otherwise, both types have to be member pointers.
1344  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1345  if (!FromTypePtr)
1346    return false;
1347
1348  // A pointer to member of B can be converted to a pointer to member of D,
1349  // where D is derived from B (C++ 4.11p2).
1350  QualType FromClass(FromTypePtr->getClass(), 0);
1351  QualType ToClass(ToTypePtr->getClass(), 0);
1352  // FIXME: What happens when these are dependent? Is this function even called?
1353
1354  if (IsDerivedFrom(ToClass, FromClass)) {
1355    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1356                                                 ToClass.getTypePtr());
1357    return true;
1358  }
1359
1360  return false;
1361}
1362
1363/// CheckMemberPointerConversion - Check the member pointer conversion from the
1364/// expression From to the type ToType. This routine checks for ambiguous or
1365/// virtual or inaccessible base-to-derived member pointer conversions
1366/// for which IsMemberPointerConversion has already returned true. It returns
1367/// true and produces a diagnostic if there was an error, or returns false
1368/// otherwise.
1369bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1370                                        CastExpr::CastKind &Kind,
1371                                        bool IgnoreBaseAccess) {
1372  QualType FromType = From->getType();
1373  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1374  if (!FromPtrType) {
1375    // This must be a null pointer to member pointer conversion
1376    assert(From->isNullPointerConstant(Context,
1377                                       Expr::NPC_ValueDependentIsNull) &&
1378           "Expr must be null pointer constant!");
1379    Kind = CastExpr::CK_NullToMemberPointer;
1380    return false;
1381  }
1382
1383  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1384  assert(ToPtrType && "No member pointer cast has a target type "
1385                      "that is not a member pointer.");
1386
1387  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1388  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1389
1390  // FIXME: What about dependent types?
1391  assert(FromClass->isRecordType() && "Pointer into non-class.");
1392  assert(ToClass->isRecordType() && "Pointer into non-class.");
1393
1394  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1395                     /*DetectVirtual=*/true);
1396  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1397  assert(DerivationOkay &&
1398         "Should not have been called if derivation isn't OK.");
1399  (void)DerivationOkay;
1400
1401  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1402                                  getUnqualifiedType())) {
1403    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1404    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1405      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1406    return true;
1407  }
1408
1409  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1410    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1411      << FromClass << ToClass << QualType(VBase, 0)
1412      << From->getSourceRange();
1413    return true;
1414  }
1415
1416  if (!IgnoreBaseAccess)
1417    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1418                         Paths.front(),
1419                         diag::err_downcast_from_inaccessible_base);
1420
1421  // Must be a base to derived member conversion.
1422  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1423  return false;
1424}
1425
1426/// IsQualificationConversion - Determines whether the conversion from
1427/// an rvalue of type FromType to ToType is a qualification conversion
1428/// (C++ 4.4).
1429bool
1430Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1431  FromType = Context.getCanonicalType(FromType);
1432  ToType = Context.getCanonicalType(ToType);
1433
1434  // If FromType and ToType are the same type, this is not a
1435  // qualification conversion.
1436  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1437    return false;
1438
1439  // (C++ 4.4p4):
1440  //   A conversion can add cv-qualifiers at levels other than the first
1441  //   in multi-level pointers, subject to the following rules: [...]
1442  bool PreviousToQualsIncludeConst = true;
1443  bool UnwrappedAnyPointer = false;
1444  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1445    // Within each iteration of the loop, we check the qualifiers to
1446    // determine if this still looks like a qualification
1447    // conversion. Then, if all is well, we unwrap one more level of
1448    // pointers or pointers-to-members and do it all again
1449    // until there are no more pointers or pointers-to-members left to
1450    // unwrap.
1451    UnwrappedAnyPointer = true;
1452
1453    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1454    //      2,j, and similarly for volatile.
1455    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1456      return false;
1457
1458    //   -- if the cv 1,j and cv 2,j are different, then const is in
1459    //      every cv for 0 < k < j.
1460    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1461        && !PreviousToQualsIncludeConst)
1462      return false;
1463
1464    // Keep track of whether all prior cv-qualifiers in the "to" type
1465    // include const.
1466    PreviousToQualsIncludeConst
1467      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1468  }
1469
1470  // We are left with FromType and ToType being the pointee types
1471  // after unwrapping the original FromType and ToType the same number
1472  // of types. If we unwrapped any pointers, and if FromType and
1473  // ToType have the same unqualified type (since we checked
1474  // qualifiers above), then this is a qualification conversion.
1475  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1476}
1477
1478/// Determines whether there is a user-defined conversion sequence
1479/// (C++ [over.ics.user]) that converts expression From to the type
1480/// ToType. If such a conversion exists, User will contain the
1481/// user-defined conversion sequence that performs such a conversion
1482/// and this routine will return true. Otherwise, this routine returns
1483/// false and User is unspecified.
1484///
1485/// \param AllowConversionFunctions true if the conversion should
1486/// consider conversion functions at all. If false, only constructors
1487/// will be considered.
1488///
1489/// \param AllowExplicit  true if the conversion should consider C++0x
1490/// "explicit" conversion functions as well as non-explicit conversion
1491/// functions (C++0x [class.conv.fct]p2).
1492///
1493/// \param ForceRValue  true if the expression should be treated as an rvalue
1494/// for overload resolution.
1495/// \param UserCast true if looking for user defined conversion for a static
1496/// cast.
1497OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1498                                          UserDefinedConversionSequence& User,
1499                                            OverloadCandidateSet& CandidateSet,
1500                                                bool AllowConversionFunctions,
1501                                                bool AllowExplicit,
1502                                                bool ForceRValue,
1503                                                bool UserCast) {
1504  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1505    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1506      // We're not going to find any constructors.
1507    } else if (CXXRecordDecl *ToRecordDecl
1508                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1509      // C++ [over.match.ctor]p1:
1510      //   When objects of class type are direct-initialized (8.5), or
1511      //   copy-initialized from an expression of the same or a
1512      //   derived class type (8.5), overload resolution selects the
1513      //   constructor. [...] For copy-initialization, the candidate
1514      //   functions are all the converting constructors (12.3.1) of
1515      //   that class. The argument list is the expression-list within
1516      //   the parentheses of the initializer.
1517      bool SuppressUserConversions = !UserCast;
1518      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1519          IsDerivedFrom(From->getType(), ToType)) {
1520        SuppressUserConversions = false;
1521        AllowConversionFunctions = false;
1522      }
1523
1524      DeclarationName ConstructorName
1525        = Context.DeclarationNames.getCXXConstructorName(
1526                          Context.getCanonicalType(ToType).getUnqualifiedType());
1527      DeclContext::lookup_iterator Con, ConEnd;
1528      for (llvm::tie(Con, ConEnd)
1529             = ToRecordDecl->lookup(ConstructorName);
1530           Con != ConEnd; ++Con) {
1531        NamedDecl *D = *Con;
1532        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1533
1534        // Find the constructor (which may be a template).
1535        CXXConstructorDecl *Constructor = 0;
1536        FunctionTemplateDecl *ConstructorTmpl
1537          = dyn_cast<FunctionTemplateDecl>(D);
1538        if (ConstructorTmpl)
1539          Constructor
1540            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1541        else
1542          Constructor = cast<CXXConstructorDecl>(D);
1543
1544        if (!Constructor->isInvalidDecl() &&
1545            Constructor->isConvertingConstructor(AllowExplicit)) {
1546          if (ConstructorTmpl)
1547            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1548                                         /*ExplicitArgs*/ 0,
1549                                         &From, 1, CandidateSet,
1550                                         SuppressUserConversions, ForceRValue);
1551          else
1552            // Allow one user-defined conversion when user specifies a
1553            // From->ToType conversion via an static cast (c-style, etc).
1554            AddOverloadCandidate(Constructor, FoundDecl,
1555                                 &From, 1, CandidateSet,
1556                                 SuppressUserConversions, ForceRValue);
1557        }
1558      }
1559    }
1560  }
1561
1562  if (!AllowConversionFunctions) {
1563    // Don't allow any conversion functions to enter the overload set.
1564  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1565                                 PDiag(0)
1566                                   << From->getSourceRange())) {
1567    // No conversion functions from incomplete types.
1568  } else if (const RecordType *FromRecordType
1569               = From->getType()->getAs<RecordType>()) {
1570    if (CXXRecordDecl *FromRecordDecl
1571         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1572      // Add all of the conversion functions as candidates.
1573      const UnresolvedSetImpl *Conversions
1574        = FromRecordDecl->getVisibleConversionFunctions();
1575      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1576             E = Conversions->end(); I != E; ++I) {
1577        DeclAccessPair FoundDecl = I.getPair();
1578        NamedDecl *D = FoundDecl.getDecl();
1579        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1580        if (isa<UsingShadowDecl>(D))
1581          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1582
1583        CXXConversionDecl *Conv;
1584        FunctionTemplateDecl *ConvTemplate;
1585        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1586          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1587        else
1588          Conv = cast<CXXConversionDecl>(D);
1589
1590        if (AllowExplicit || !Conv->isExplicit()) {
1591          if (ConvTemplate)
1592            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1593                                           ActingContext, From, ToType,
1594                                           CandidateSet);
1595          else
1596            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1597                                   From, ToType, CandidateSet);
1598        }
1599      }
1600    }
1601  }
1602
1603  OverloadCandidateSet::iterator Best;
1604  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1605    case OR_Success:
1606      // Record the standard conversion we used and the conversion function.
1607      if (CXXConstructorDecl *Constructor
1608            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1609        // C++ [over.ics.user]p1:
1610        //   If the user-defined conversion is specified by a
1611        //   constructor (12.3.1), the initial standard conversion
1612        //   sequence converts the source type to the type required by
1613        //   the argument of the constructor.
1614        //
1615        QualType ThisType = Constructor->getThisType(Context);
1616        if (Best->Conversions[0].isEllipsis())
1617          User.EllipsisConversion = true;
1618        else {
1619          User.Before = Best->Conversions[0].Standard;
1620          User.EllipsisConversion = false;
1621        }
1622        User.ConversionFunction = Constructor;
1623        User.After.setAsIdentityConversion();
1624        User.After.setFromType(
1625          ThisType->getAs<PointerType>()->getPointeeType());
1626        User.After.setAllToTypes(ToType);
1627        return OR_Success;
1628      } else if (CXXConversionDecl *Conversion
1629                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1630        // C++ [over.ics.user]p1:
1631        //
1632        //   [...] If the user-defined conversion is specified by a
1633        //   conversion function (12.3.2), the initial standard
1634        //   conversion sequence converts the source type to the
1635        //   implicit object parameter of the conversion function.
1636        User.Before = Best->Conversions[0].Standard;
1637        User.ConversionFunction = Conversion;
1638        User.EllipsisConversion = false;
1639
1640        // C++ [over.ics.user]p2:
1641        //   The second standard conversion sequence converts the
1642        //   result of the user-defined conversion to the target type
1643        //   for the sequence. Since an implicit conversion sequence
1644        //   is an initialization, the special rules for
1645        //   initialization by user-defined conversion apply when
1646        //   selecting the best user-defined conversion for a
1647        //   user-defined conversion sequence (see 13.3.3 and
1648        //   13.3.3.1).
1649        User.After = Best->FinalConversion;
1650        return OR_Success;
1651      } else {
1652        assert(false && "Not a constructor or conversion function?");
1653        return OR_No_Viable_Function;
1654      }
1655
1656    case OR_No_Viable_Function:
1657      return OR_No_Viable_Function;
1658    case OR_Deleted:
1659      // No conversion here! We're done.
1660      return OR_Deleted;
1661
1662    case OR_Ambiguous:
1663      return OR_Ambiguous;
1664    }
1665
1666  return OR_No_Viable_Function;
1667}
1668
1669bool
1670Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1671  ImplicitConversionSequence ICS;
1672  OverloadCandidateSet CandidateSet(From->getExprLoc());
1673  OverloadingResult OvResult =
1674    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1675                            CandidateSet, true, false, false);
1676  if (OvResult == OR_Ambiguous)
1677    Diag(From->getSourceRange().getBegin(),
1678         diag::err_typecheck_ambiguous_condition)
1679          << From->getType() << ToType << From->getSourceRange();
1680  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1681    Diag(From->getSourceRange().getBegin(),
1682         diag::err_typecheck_nonviable_condition)
1683    << From->getType() << ToType << From->getSourceRange();
1684  else
1685    return false;
1686  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1687  return true;
1688}
1689
1690/// CompareImplicitConversionSequences - Compare two implicit
1691/// conversion sequences to determine whether one is better than the
1692/// other or if they are indistinguishable (C++ 13.3.3.2).
1693ImplicitConversionSequence::CompareKind
1694Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1695                                         const ImplicitConversionSequence& ICS2)
1696{
1697  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1698  // conversion sequences (as defined in 13.3.3.1)
1699  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1700  //      conversion sequence than a user-defined conversion sequence or
1701  //      an ellipsis conversion sequence, and
1702  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1703  //      conversion sequence than an ellipsis conversion sequence
1704  //      (13.3.3.1.3).
1705  //
1706  // C++0x [over.best.ics]p10:
1707  //   For the purpose of ranking implicit conversion sequences as
1708  //   described in 13.3.3.2, the ambiguous conversion sequence is
1709  //   treated as a user-defined sequence that is indistinguishable
1710  //   from any other user-defined conversion sequence.
1711  if (ICS1.getKind() < ICS2.getKind()) {
1712    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1713      return ImplicitConversionSequence::Better;
1714  } else if (ICS2.getKind() < ICS1.getKind()) {
1715    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1716      return ImplicitConversionSequence::Worse;
1717  }
1718
1719  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1720    return ImplicitConversionSequence::Indistinguishable;
1721
1722  // Two implicit conversion sequences of the same form are
1723  // indistinguishable conversion sequences unless one of the
1724  // following rules apply: (C++ 13.3.3.2p3):
1725  if (ICS1.isStandard())
1726    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1727  else if (ICS1.isUserDefined()) {
1728    // User-defined conversion sequence U1 is a better conversion
1729    // sequence than another user-defined conversion sequence U2 if
1730    // they contain the same user-defined conversion function or
1731    // constructor and if the second standard conversion sequence of
1732    // U1 is better than the second standard conversion sequence of
1733    // U2 (C++ 13.3.3.2p3).
1734    if (ICS1.UserDefined.ConversionFunction ==
1735          ICS2.UserDefined.ConversionFunction)
1736      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1737                                                ICS2.UserDefined.After);
1738  }
1739
1740  return ImplicitConversionSequence::Indistinguishable;
1741}
1742
1743// Per 13.3.3.2p3, compare the given standard conversion sequences to
1744// determine if one is a proper subset of the other.
1745static ImplicitConversionSequence::CompareKind
1746compareStandardConversionSubsets(ASTContext &Context,
1747                                 const StandardConversionSequence& SCS1,
1748                                 const StandardConversionSequence& SCS2) {
1749  ImplicitConversionSequence::CompareKind Result
1750    = ImplicitConversionSequence::Indistinguishable;
1751
1752  if (SCS1.Second != SCS2.Second) {
1753    if (SCS1.Second == ICK_Identity)
1754      Result = ImplicitConversionSequence::Better;
1755    else if (SCS2.Second == ICK_Identity)
1756      Result = ImplicitConversionSequence::Worse;
1757    else
1758      return ImplicitConversionSequence::Indistinguishable;
1759  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1760    return ImplicitConversionSequence::Indistinguishable;
1761
1762  if (SCS1.Third == SCS2.Third) {
1763    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1764                             : ImplicitConversionSequence::Indistinguishable;
1765  }
1766
1767  if (SCS1.Third == ICK_Identity)
1768    return Result == ImplicitConversionSequence::Worse
1769             ? ImplicitConversionSequence::Indistinguishable
1770             : ImplicitConversionSequence::Better;
1771
1772  if (SCS2.Third == ICK_Identity)
1773    return Result == ImplicitConversionSequence::Better
1774             ? ImplicitConversionSequence::Indistinguishable
1775             : ImplicitConversionSequence::Worse;
1776
1777  return ImplicitConversionSequence::Indistinguishable;
1778}
1779
1780/// CompareStandardConversionSequences - Compare two standard
1781/// conversion sequences to determine whether one is better than the
1782/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1783ImplicitConversionSequence::CompareKind
1784Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1785                                         const StandardConversionSequence& SCS2)
1786{
1787  // Standard conversion sequence S1 is a better conversion sequence
1788  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1789
1790  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1791  //     sequences in the canonical form defined by 13.3.3.1.1,
1792  //     excluding any Lvalue Transformation; the identity conversion
1793  //     sequence is considered to be a subsequence of any
1794  //     non-identity conversion sequence) or, if not that,
1795  if (ImplicitConversionSequence::CompareKind CK
1796        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1797    return CK;
1798
1799  //  -- the rank of S1 is better than the rank of S2 (by the rules
1800  //     defined below), or, if not that,
1801  ImplicitConversionRank Rank1 = SCS1.getRank();
1802  ImplicitConversionRank Rank2 = SCS2.getRank();
1803  if (Rank1 < Rank2)
1804    return ImplicitConversionSequence::Better;
1805  else if (Rank2 < Rank1)
1806    return ImplicitConversionSequence::Worse;
1807
1808  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1809  // are indistinguishable unless one of the following rules
1810  // applies:
1811
1812  //   A conversion that is not a conversion of a pointer, or
1813  //   pointer to member, to bool is better than another conversion
1814  //   that is such a conversion.
1815  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1816    return SCS2.isPointerConversionToBool()
1817             ? ImplicitConversionSequence::Better
1818             : ImplicitConversionSequence::Worse;
1819
1820  // C++ [over.ics.rank]p4b2:
1821  //
1822  //   If class B is derived directly or indirectly from class A,
1823  //   conversion of B* to A* is better than conversion of B* to
1824  //   void*, and conversion of A* to void* is better than conversion
1825  //   of B* to void*.
1826  bool SCS1ConvertsToVoid
1827    = SCS1.isPointerConversionToVoidPointer(Context);
1828  bool SCS2ConvertsToVoid
1829    = SCS2.isPointerConversionToVoidPointer(Context);
1830  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1831    // Exactly one of the conversion sequences is a conversion to
1832    // a void pointer; it's the worse conversion.
1833    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1834                              : ImplicitConversionSequence::Worse;
1835  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1836    // Neither conversion sequence converts to a void pointer; compare
1837    // their derived-to-base conversions.
1838    if (ImplicitConversionSequence::CompareKind DerivedCK
1839          = CompareDerivedToBaseConversions(SCS1, SCS2))
1840      return DerivedCK;
1841  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1842    // Both conversion sequences are conversions to void
1843    // pointers. Compare the source types to determine if there's an
1844    // inheritance relationship in their sources.
1845    QualType FromType1 = SCS1.getFromType();
1846    QualType FromType2 = SCS2.getFromType();
1847
1848    // Adjust the types we're converting from via the array-to-pointer
1849    // conversion, if we need to.
1850    if (SCS1.First == ICK_Array_To_Pointer)
1851      FromType1 = Context.getArrayDecayedType(FromType1);
1852    if (SCS2.First == ICK_Array_To_Pointer)
1853      FromType2 = Context.getArrayDecayedType(FromType2);
1854
1855    QualType FromPointee1
1856      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1857    QualType FromPointee2
1858      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1859
1860    if (IsDerivedFrom(FromPointee2, FromPointee1))
1861      return ImplicitConversionSequence::Better;
1862    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1863      return ImplicitConversionSequence::Worse;
1864
1865    // Objective-C++: If one interface is more specific than the
1866    // other, it is the better one.
1867    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1868    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1869    if (FromIface1 && FromIface1) {
1870      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1871        return ImplicitConversionSequence::Better;
1872      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1873        return ImplicitConversionSequence::Worse;
1874    }
1875  }
1876
1877  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1878  // bullet 3).
1879  if (ImplicitConversionSequence::CompareKind QualCK
1880        = CompareQualificationConversions(SCS1, SCS2))
1881    return QualCK;
1882
1883  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1884    // C++0x [over.ics.rank]p3b4:
1885    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1886    //      implicit object parameter of a non-static member function declared
1887    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1888    //      rvalue and S2 binds an lvalue reference.
1889    // FIXME: We don't know if we're dealing with the implicit object parameter,
1890    // or if the member function in this case has a ref qualifier.
1891    // (Of course, we don't have ref qualifiers yet.)
1892    if (SCS1.RRefBinding != SCS2.RRefBinding)
1893      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1894                              : ImplicitConversionSequence::Worse;
1895
1896    // C++ [over.ics.rank]p3b4:
1897    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1898    //      which the references refer are the same type except for
1899    //      top-level cv-qualifiers, and the type to which the reference
1900    //      initialized by S2 refers is more cv-qualified than the type
1901    //      to which the reference initialized by S1 refers.
1902    QualType T1 = SCS1.getToType(2);
1903    QualType T2 = SCS2.getToType(2);
1904    T1 = Context.getCanonicalType(T1);
1905    T2 = Context.getCanonicalType(T2);
1906    Qualifiers T1Quals, T2Quals;
1907    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1908    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1909    if (UnqualT1 == UnqualT2) {
1910      // If the type is an array type, promote the element qualifiers to the type
1911      // for comparison.
1912      if (isa<ArrayType>(T1) && T1Quals)
1913        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1914      if (isa<ArrayType>(T2) && T2Quals)
1915        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1916      if (T2.isMoreQualifiedThan(T1))
1917        return ImplicitConversionSequence::Better;
1918      else if (T1.isMoreQualifiedThan(T2))
1919        return ImplicitConversionSequence::Worse;
1920    }
1921  }
1922
1923  return ImplicitConversionSequence::Indistinguishable;
1924}
1925
1926/// CompareQualificationConversions - Compares two standard conversion
1927/// sequences to determine whether they can be ranked based on their
1928/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1929ImplicitConversionSequence::CompareKind
1930Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1931                                      const StandardConversionSequence& SCS2) {
1932  // C++ 13.3.3.2p3:
1933  //  -- S1 and S2 differ only in their qualification conversion and
1934  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1935  //     cv-qualification signature of type T1 is a proper subset of
1936  //     the cv-qualification signature of type T2, and S1 is not the
1937  //     deprecated string literal array-to-pointer conversion (4.2).
1938  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1939      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1940    return ImplicitConversionSequence::Indistinguishable;
1941
1942  // FIXME: the example in the standard doesn't use a qualification
1943  // conversion (!)
1944  QualType T1 = SCS1.getToType(2);
1945  QualType T2 = SCS2.getToType(2);
1946  T1 = Context.getCanonicalType(T1);
1947  T2 = Context.getCanonicalType(T2);
1948  Qualifiers T1Quals, T2Quals;
1949  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1950  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1951
1952  // If the types are the same, we won't learn anything by unwrapped
1953  // them.
1954  if (UnqualT1 == UnqualT2)
1955    return ImplicitConversionSequence::Indistinguishable;
1956
1957  // If the type is an array type, promote the element qualifiers to the type
1958  // for comparison.
1959  if (isa<ArrayType>(T1) && T1Quals)
1960    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1961  if (isa<ArrayType>(T2) && T2Quals)
1962    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1963
1964  ImplicitConversionSequence::CompareKind Result
1965    = ImplicitConversionSequence::Indistinguishable;
1966  while (UnwrapSimilarPointerTypes(T1, T2)) {
1967    // Within each iteration of the loop, we check the qualifiers to
1968    // determine if this still looks like a qualification
1969    // conversion. Then, if all is well, we unwrap one more level of
1970    // pointers or pointers-to-members and do it all again
1971    // until there are no more pointers or pointers-to-members left
1972    // to unwrap. This essentially mimics what
1973    // IsQualificationConversion does, but here we're checking for a
1974    // strict subset of qualifiers.
1975    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1976      // The qualifiers are the same, so this doesn't tell us anything
1977      // about how the sequences rank.
1978      ;
1979    else if (T2.isMoreQualifiedThan(T1)) {
1980      // T1 has fewer qualifiers, so it could be the better sequence.
1981      if (Result == ImplicitConversionSequence::Worse)
1982        // Neither has qualifiers that are a subset of the other's
1983        // qualifiers.
1984        return ImplicitConversionSequence::Indistinguishable;
1985
1986      Result = ImplicitConversionSequence::Better;
1987    } else if (T1.isMoreQualifiedThan(T2)) {
1988      // T2 has fewer qualifiers, so it could be the better sequence.
1989      if (Result == ImplicitConversionSequence::Better)
1990        // Neither has qualifiers that are a subset of the other's
1991        // qualifiers.
1992        return ImplicitConversionSequence::Indistinguishable;
1993
1994      Result = ImplicitConversionSequence::Worse;
1995    } else {
1996      // Qualifiers are disjoint.
1997      return ImplicitConversionSequence::Indistinguishable;
1998    }
1999
2000    // If the types after this point are equivalent, we're done.
2001    if (Context.hasSameUnqualifiedType(T1, T2))
2002      break;
2003  }
2004
2005  // Check that the winning standard conversion sequence isn't using
2006  // the deprecated string literal array to pointer conversion.
2007  switch (Result) {
2008  case ImplicitConversionSequence::Better:
2009    if (SCS1.DeprecatedStringLiteralToCharPtr)
2010      Result = ImplicitConversionSequence::Indistinguishable;
2011    break;
2012
2013  case ImplicitConversionSequence::Indistinguishable:
2014    break;
2015
2016  case ImplicitConversionSequence::Worse:
2017    if (SCS2.DeprecatedStringLiteralToCharPtr)
2018      Result = ImplicitConversionSequence::Indistinguishable;
2019    break;
2020  }
2021
2022  return Result;
2023}
2024
2025/// CompareDerivedToBaseConversions - Compares two standard conversion
2026/// sequences to determine whether they can be ranked based on their
2027/// various kinds of derived-to-base conversions (C++
2028/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2029/// conversions between Objective-C interface types.
2030ImplicitConversionSequence::CompareKind
2031Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2032                                      const StandardConversionSequence& SCS2) {
2033  QualType FromType1 = SCS1.getFromType();
2034  QualType ToType1 = SCS1.getToType(1);
2035  QualType FromType2 = SCS2.getFromType();
2036  QualType ToType2 = SCS2.getToType(1);
2037
2038  // Adjust the types we're converting from via the array-to-pointer
2039  // conversion, if we need to.
2040  if (SCS1.First == ICK_Array_To_Pointer)
2041    FromType1 = Context.getArrayDecayedType(FromType1);
2042  if (SCS2.First == ICK_Array_To_Pointer)
2043    FromType2 = Context.getArrayDecayedType(FromType2);
2044
2045  // Canonicalize all of the types.
2046  FromType1 = Context.getCanonicalType(FromType1);
2047  ToType1 = Context.getCanonicalType(ToType1);
2048  FromType2 = Context.getCanonicalType(FromType2);
2049  ToType2 = Context.getCanonicalType(ToType2);
2050
2051  // C++ [over.ics.rank]p4b3:
2052  //
2053  //   If class B is derived directly or indirectly from class A and
2054  //   class C is derived directly or indirectly from B,
2055  //
2056  // For Objective-C, we let A, B, and C also be Objective-C
2057  // interfaces.
2058
2059  // Compare based on pointer conversions.
2060  if (SCS1.Second == ICK_Pointer_Conversion &&
2061      SCS2.Second == ICK_Pointer_Conversion &&
2062      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2063      FromType1->isPointerType() && FromType2->isPointerType() &&
2064      ToType1->isPointerType() && ToType2->isPointerType()) {
2065    QualType FromPointee1
2066      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2067    QualType ToPointee1
2068      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2069    QualType FromPointee2
2070      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2071    QualType ToPointee2
2072      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2073
2074    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2075    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2076    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2077    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2078
2079    //   -- conversion of C* to B* is better than conversion of C* to A*,
2080    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2081      if (IsDerivedFrom(ToPointee1, ToPointee2))
2082        return ImplicitConversionSequence::Better;
2083      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2084        return ImplicitConversionSequence::Worse;
2085
2086      if (ToIface1 && ToIface2) {
2087        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2088          return ImplicitConversionSequence::Better;
2089        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2090          return ImplicitConversionSequence::Worse;
2091      }
2092    }
2093
2094    //   -- conversion of B* to A* is better than conversion of C* to A*,
2095    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2096      if (IsDerivedFrom(FromPointee2, FromPointee1))
2097        return ImplicitConversionSequence::Better;
2098      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2099        return ImplicitConversionSequence::Worse;
2100
2101      if (FromIface1 && FromIface2) {
2102        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2103          return ImplicitConversionSequence::Better;
2104        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2105          return ImplicitConversionSequence::Worse;
2106      }
2107    }
2108  }
2109
2110  // Ranking of member-pointer types.
2111  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2112      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2113      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2114    const MemberPointerType * FromMemPointer1 =
2115                                        FromType1->getAs<MemberPointerType>();
2116    const MemberPointerType * ToMemPointer1 =
2117                                          ToType1->getAs<MemberPointerType>();
2118    const MemberPointerType * FromMemPointer2 =
2119                                          FromType2->getAs<MemberPointerType>();
2120    const MemberPointerType * ToMemPointer2 =
2121                                          ToType2->getAs<MemberPointerType>();
2122    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2123    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2124    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2125    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2126    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2127    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2128    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2129    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2130    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2131    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2132      if (IsDerivedFrom(ToPointee1, ToPointee2))
2133        return ImplicitConversionSequence::Worse;
2134      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2135        return ImplicitConversionSequence::Better;
2136    }
2137    // conversion of B::* to C::* is better than conversion of A::* to C::*
2138    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2139      if (IsDerivedFrom(FromPointee1, FromPointee2))
2140        return ImplicitConversionSequence::Better;
2141      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2142        return ImplicitConversionSequence::Worse;
2143    }
2144  }
2145
2146  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2147      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2148      SCS1.Second == ICK_Derived_To_Base) {
2149    //   -- conversion of C to B is better than conversion of C to A,
2150    //   -- binding of an expression of type C to a reference of type
2151    //      B& is better than binding an expression of type C to a
2152    //      reference of type A&,
2153    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2154        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2155      if (IsDerivedFrom(ToType1, ToType2))
2156        return ImplicitConversionSequence::Better;
2157      else if (IsDerivedFrom(ToType2, ToType1))
2158        return ImplicitConversionSequence::Worse;
2159    }
2160
2161    //   -- conversion of B to A is better than conversion of C to A.
2162    //   -- binding of an expression of type B to a reference of type
2163    //      A& is better than binding an expression of type C to a
2164    //      reference of type A&,
2165    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2166        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2167      if (IsDerivedFrom(FromType2, FromType1))
2168        return ImplicitConversionSequence::Better;
2169      else if (IsDerivedFrom(FromType1, FromType2))
2170        return ImplicitConversionSequence::Worse;
2171    }
2172  }
2173
2174  return ImplicitConversionSequence::Indistinguishable;
2175}
2176
2177/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2178/// determine whether they are reference-related,
2179/// reference-compatible, reference-compatible with added
2180/// qualification, or incompatible, for use in C++ initialization by
2181/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2182/// type, and the first type (T1) is the pointee type of the reference
2183/// type being initialized.
2184Sema::ReferenceCompareResult
2185Sema::CompareReferenceRelationship(SourceLocation Loc,
2186                                   QualType OrigT1, QualType OrigT2,
2187                                   bool& DerivedToBase) {
2188  assert(!OrigT1->isReferenceType() &&
2189    "T1 must be the pointee type of the reference type");
2190  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2191
2192  QualType T1 = Context.getCanonicalType(OrigT1);
2193  QualType T2 = Context.getCanonicalType(OrigT2);
2194  Qualifiers T1Quals, T2Quals;
2195  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2196  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2197
2198  // C++ [dcl.init.ref]p4:
2199  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2200  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2201  //   T1 is a base class of T2.
2202  if (UnqualT1 == UnqualT2)
2203    DerivedToBase = false;
2204  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2205           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2206           IsDerivedFrom(UnqualT2, UnqualT1))
2207    DerivedToBase = true;
2208  else
2209    return Ref_Incompatible;
2210
2211  // At this point, we know that T1 and T2 are reference-related (at
2212  // least).
2213
2214  // If the type is an array type, promote the element qualifiers to the type
2215  // for comparison.
2216  if (isa<ArrayType>(T1) && T1Quals)
2217    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2218  if (isa<ArrayType>(T2) && T2Quals)
2219    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2220
2221  // C++ [dcl.init.ref]p4:
2222  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2223  //   reference-related to T2 and cv1 is the same cv-qualification
2224  //   as, or greater cv-qualification than, cv2. For purposes of
2225  //   overload resolution, cases for which cv1 is greater
2226  //   cv-qualification than cv2 are identified as
2227  //   reference-compatible with added qualification (see 13.3.3.2).
2228  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2229    return Ref_Compatible;
2230  else if (T1.isMoreQualifiedThan(T2))
2231    return Ref_Compatible_With_Added_Qualification;
2232  else
2233    return Ref_Related;
2234}
2235
2236/// \brief Compute an implicit conversion sequence for reference
2237/// initialization.
2238static ImplicitConversionSequence
2239TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2240                 SourceLocation DeclLoc,
2241                 bool SuppressUserConversions,
2242                 bool AllowExplicit, bool ForceRValue) {
2243  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2244
2245  // Most paths end in a failed conversion.
2246  ImplicitConversionSequence ICS;
2247  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2248
2249  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2250  QualType T2 = Init->getType();
2251
2252  // If the initializer is the address of an overloaded function, try
2253  // to resolve the overloaded function. If all goes well, T2 is the
2254  // type of the resulting function.
2255  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2256    DeclAccessPair Found;
2257    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2258                                                                false, Found))
2259      T2 = Fn->getType();
2260  }
2261
2262  // Compute some basic properties of the types and the initializer.
2263  bool isRValRef = DeclType->isRValueReferenceType();
2264  bool DerivedToBase = false;
2265  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2266                                                  Init->isLvalue(S.Context);
2267  Sema::ReferenceCompareResult RefRelationship
2268    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2269
2270  // C++ [dcl.init.ref]p5:
2271  //   A reference to type "cv1 T1" is initialized by an expression
2272  //   of type "cv2 T2" as follows:
2273
2274  //     -- If the initializer expression
2275
2276  // C++ [over.ics.ref]p3:
2277  //   Except for an implicit object parameter, for which see 13.3.1,
2278  //   a standard conversion sequence cannot be formed if it requires
2279  //   binding an lvalue reference to non-const to an rvalue or
2280  //   binding an rvalue reference to an lvalue.
2281  if (isRValRef && InitLvalue == Expr::LV_Valid)
2282    return ICS;
2283
2284  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2285  //          reference-compatible with "cv2 T2," or
2286  //
2287  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2288  if (InitLvalue == Expr::LV_Valid &&
2289      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2290    // C++ [over.ics.ref]p1:
2291    //   When a parameter of reference type binds directly (8.5.3)
2292    //   to an argument expression, the implicit conversion sequence
2293    //   is the identity conversion, unless the argument expression
2294    //   has a type that is a derived class of the parameter type,
2295    //   in which case the implicit conversion sequence is a
2296    //   derived-to-base Conversion (13.3.3.1).
2297    ICS.setStandard();
2298    ICS.Standard.First = ICK_Identity;
2299    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2300    ICS.Standard.Third = ICK_Identity;
2301    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2302    ICS.Standard.setToType(0, T2);
2303    ICS.Standard.setToType(1, T1);
2304    ICS.Standard.setToType(2, T1);
2305    ICS.Standard.ReferenceBinding = true;
2306    ICS.Standard.DirectBinding = true;
2307    ICS.Standard.RRefBinding = false;
2308    ICS.Standard.CopyConstructor = 0;
2309
2310    // Nothing more to do: the inaccessibility/ambiguity check for
2311    // derived-to-base conversions is suppressed when we're
2312    // computing the implicit conversion sequence (C++
2313    // [over.best.ics]p2).
2314    return ICS;
2315  }
2316
2317  //       -- has a class type (i.e., T2 is a class type), where T1 is
2318  //          not reference-related to T2, and can be implicitly
2319  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2320  //          is reference-compatible with "cv3 T3" 92) (this
2321  //          conversion is selected by enumerating the applicable
2322  //          conversion functions (13.3.1.6) and choosing the best
2323  //          one through overload resolution (13.3)),
2324  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2325      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2326      RefRelationship == Sema::Ref_Incompatible) {
2327    CXXRecordDecl *T2RecordDecl
2328      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2329
2330    OverloadCandidateSet CandidateSet(DeclLoc);
2331    const UnresolvedSetImpl *Conversions
2332      = T2RecordDecl->getVisibleConversionFunctions();
2333    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2334           E = Conversions->end(); I != E; ++I) {
2335      NamedDecl *D = *I;
2336      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2337      if (isa<UsingShadowDecl>(D))
2338        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2339
2340      FunctionTemplateDecl *ConvTemplate
2341        = dyn_cast<FunctionTemplateDecl>(D);
2342      CXXConversionDecl *Conv;
2343      if (ConvTemplate)
2344        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2345      else
2346        Conv = cast<CXXConversionDecl>(D);
2347
2348      // If the conversion function doesn't return a reference type,
2349      // it can't be considered for this conversion.
2350      if (Conv->getConversionType()->isLValueReferenceType() &&
2351          (AllowExplicit || !Conv->isExplicit())) {
2352        if (ConvTemplate)
2353          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2354                                         Init, DeclType, CandidateSet);
2355        else
2356          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2357                                 DeclType, CandidateSet);
2358      }
2359    }
2360
2361    OverloadCandidateSet::iterator Best;
2362    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2363    case OR_Success:
2364      // C++ [over.ics.ref]p1:
2365      //
2366      //   [...] If the parameter binds directly to the result of
2367      //   applying a conversion function to the argument
2368      //   expression, the implicit conversion sequence is a
2369      //   user-defined conversion sequence (13.3.3.1.2), with the
2370      //   second standard conversion sequence either an identity
2371      //   conversion or, if the conversion function returns an
2372      //   entity of a type that is a derived class of the parameter
2373      //   type, a derived-to-base Conversion.
2374      if (!Best->FinalConversion.DirectBinding)
2375        break;
2376
2377      ICS.setUserDefined();
2378      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2379      ICS.UserDefined.After = Best->FinalConversion;
2380      ICS.UserDefined.ConversionFunction = Best->Function;
2381      ICS.UserDefined.EllipsisConversion = false;
2382      assert(ICS.UserDefined.After.ReferenceBinding &&
2383             ICS.UserDefined.After.DirectBinding &&
2384             "Expected a direct reference binding!");
2385      return ICS;
2386
2387    case OR_Ambiguous:
2388      ICS.setAmbiguous();
2389      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2390           Cand != CandidateSet.end(); ++Cand)
2391        if (Cand->Viable)
2392          ICS.Ambiguous.addConversion(Cand->Function);
2393      return ICS;
2394
2395    case OR_No_Viable_Function:
2396    case OR_Deleted:
2397      // There was no suitable conversion, or we found a deleted
2398      // conversion; continue with other checks.
2399      break;
2400    }
2401  }
2402
2403  //     -- Otherwise, the reference shall be to a non-volatile const
2404  //        type (i.e., cv1 shall be const), or the reference shall be an
2405  //        rvalue reference and the initializer expression shall be an rvalue.
2406  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const)
2407    return ICS;
2408
2409  //       -- If the initializer expression is an rvalue, with T2 a
2410  //          class type, and "cv1 T1" is reference-compatible with
2411  //          "cv2 T2," the reference is bound in one of the
2412  //          following ways (the choice is implementation-defined):
2413  //
2414  //          -- The reference is bound to the object represented by
2415  //             the rvalue (see 3.10) or to a sub-object within that
2416  //             object.
2417  //
2418  //          -- A temporary of type "cv1 T2" [sic] is created, and
2419  //             a constructor is called to copy the entire rvalue
2420  //             object into the temporary. The reference is bound to
2421  //             the temporary or to a sub-object within the
2422  //             temporary.
2423  //
2424  //          The constructor that would be used to make the copy
2425  //          shall be callable whether or not the copy is actually
2426  //          done.
2427  //
2428  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2429  // freedom, so we will always take the first option and never build
2430  // a temporary in this case.
2431  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2432      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2433    ICS.setStandard();
2434    ICS.Standard.First = ICK_Identity;
2435    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2436    ICS.Standard.Third = ICK_Identity;
2437    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2438    ICS.Standard.setToType(0, T2);
2439    ICS.Standard.setToType(1, T1);
2440    ICS.Standard.setToType(2, T1);
2441    ICS.Standard.ReferenceBinding = true;
2442    ICS.Standard.DirectBinding = false;
2443    ICS.Standard.RRefBinding = isRValRef;
2444    ICS.Standard.CopyConstructor = 0;
2445    return ICS;
2446  }
2447
2448  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2449  //          initialized from the initializer expression using the
2450  //          rules for a non-reference copy initialization (8.5). The
2451  //          reference is then bound to the temporary. If T1 is
2452  //          reference-related to T2, cv1 must be the same
2453  //          cv-qualification as, or greater cv-qualification than,
2454  //          cv2; otherwise, the program is ill-formed.
2455  if (RefRelationship == Sema::Ref_Related) {
2456    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2457    // we would be reference-compatible or reference-compatible with
2458    // added qualification. But that wasn't the case, so the reference
2459    // initialization fails.
2460    return ICS;
2461  }
2462
2463  // If at least one of the types is a class type, the types are not
2464  // related, and we aren't allowed any user conversions, the
2465  // reference binding fails. This case is important for breaking
2466  // recursion, since TryImplicitConversion below will attempt to
2467  // create a temporary through the use of a copy constructor.
2468  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2469      (T1->isRecordType() || T2->isRecordType()))
2470    return ICS;
2471
2472  // C++ [over.ics.ref]p2:
2473  //
2474  //   When a parameter of reference type is not bound directly to
2475  //   an argument expression, the conversion sequence is the one
2476  //   required to convert the argument expression to the
2477  //   underlying type of the reference according to
2478  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2479  //   to copy-initializing a temporary of the underlying type with
2480  //   the argument expression. Any difference in top-level
2481  //   cv-qualification is subsumed by the initialization itself
2482  //   and does not constitute a conversion.
2483  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2484                                /*AllowExplicit=*/false,
2485                                /*ForceRValue=*/false,
2486                                /*InOverloadResolution=*/false);
2487
2488  // Of course, that's still a reference binding.
2489  if (ICS.isStandard()) {
2490    ICS.Standard.ReferenceBinding = true;
2491    ICS.Standard.RRefBinding = isRValRef;
2492  } else if (ICS.isUserDefined()) {
2493    ICS.UserDefined.After.ReferenceBinding = true;
2494    ICS.UserDefined.After.RRefBinding = isRValRef;
2495  }
2496  return ICS;
2497}
2498
2499/// TryCopyInitialization - Try to copy-initialize a value of type
2500/// ToType from the expression From. Return the implicit conversion
2501/// sequence required to pass this argument, which may be a bad
2502/// conversion sequence (meaning that the argument cannot be passed to
2503/// a parameter of this type). If @p SuppressUserConversions, then we
2504/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2505/// then we treat @p From as an rvalue, even if it is an lvalue.
2506ImplicitConversionSequence
2507Sema::TryCopyInitialization(Expr *From, QualType ToType,
2508                            bool SuppressUserConversions, bool ForceRValue,
2509                            bool InOverloadResolution) {
2510  if (ToType->isReferenceType())
2511    return TryReferenceInit(*this, From, ToType,
2512                            /*FIXME:*/From->getLocStart(),
2513                            SuppressUserConversions,
2514                            /*AllowExplicit=*/false,
2515                            ForceRValue);
2516
2517  return TryImplicitConversion(From, ToType,
2518                               SuppressUserConversions,
2519                               /*AllowExplicit=*/false,
2520                               ForceRValue,
2521                               InOverloadResolution);
2522}
2523
2524/// TryObjectArgumentInitialization - Try to initialize the object
2525/// parameter of the given member function (@c Method) from the
2526/// expression @p From.
2527ImplicitConversionSequence
2528Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2529                                      CXXMethodDecl *Method,
2530                                      CXXRecordDecl *ActingContext) {
2531  QualType ClassType = Context.getTypeDeclType(ActingContext);
2532  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2533  //                 const volatile object.
2534  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2535    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2536  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2537
2538  // Set up the conversion sequence as a "bad" conversion, to allow us
2539  // to exit early.
2540  ImplicitConversionSequence ICS;
2541
2542  // We need to have an object of class type.
2543  QualType FromType = OrigFromType;
2544  if (const PointerType *PT = FromType->getAs<PointerType>())
2545    FromType = PT->getPointeeType();
2546
2547  assert(FromType->isRecordType());
2548
2549  // The implicit object parameter is has the type "reference to cv X",
2550  // where X is the class of which the function is a member
2551  // (C++ [over.match.funcs]p4). However, when finding an implicit
2552  // conversion sequence for the argument, we are not allowed to
2553  // create temporaries or perform user-defined conversions
2554  // (C++ [over.match.funcs]p5). We perform a simplified version of
2555  // reference binding here, that allows class rvalues to bind to
2556  // non-constant references.
2557
2558  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2559  // with the implicit object parameter (C++ [over.match.funcs]p5).
2560  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2561  if (ImplicitParamType.getCVRQualifiers()
2562                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2563      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2564    ICS.setBad(BadConversionSequence::bad_qualifiers,
2565               OrigFromType, ImplicitParamType);
2566    return ICS;
2567  }
2568
2569  // Check that we have either the same type or a derived type. It
2570  // affects the conversion rank.
2571  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2572  ImplicitConversionKind SecondKind;
2573  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2574    SecondKind = ICK_Identity;
2575  } else if (IsDerivedFrom(FromType, ClassType))
2576    SecondKind = ICK_Derived_To_Base;
2577  else {
2578    ICS.setBad(BadConversionSequence::unrelated_class,
2579               FromType, ImplicitParamType);
2580    return ICS;
2581  }
2582
2583  // Success. Mark this as a reference binding.
2584  ICS.setStandard();
2585  ICS.Standard.setAsIdentityConversion();
2586  ICS.Standard.Second = SecondKind;
2587  ICS.Standard.setFromType(FromType);
2588  ICS.Standard.setAllToTypes(ImplicitParamType);
2589  ICS.Standard.ReferenceBinding = true;
2590  ICS.Standard.DirectBinding = true;
2591  ICS.Standard.RRefBinding = false;
2592  return ICS;
2593}
2594
2595/// PerformObjectArgumentInitialization - Perform initialization of
2596/// the implicit object parameter for the given Method with the given
2597/// expression.
2598bool
2599Sema::PerformObjectArgumentInitialization(Expr *&From,
2600                                          NestedNameSpecifier *Qualifier,
2601                                          NamedDecl *FoundDecl,
2602                                          CXXMethodDecl *Method) {
2603  QualType FromRecordType, DestType;
2604  QualType ImplicitParamRecordType  =
2605    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2606
2607  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2608    FromRecordType = PT->getPointeeType();
2609    DestType = Method->getThisType(Context);
2610  } else {
2611    FromRecordType = From->getType();
2612    DestType = ImplicitParamRecordType;
2613  }
2614
2615  // Note that we always use the true parent context when performing
2616  // the actual argument initialization.
2617  ImplicitConversionSequence ICS
2618    = TryObjectArgumentInitialization(From->getType(), Method,
2619                                      Method->getParent());
2620  if (ICS.isBad())
2621    return Diag(From->getSourceRange().getBegin(),
2622                diag::err_implicit_object_parameter_init)
2623       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2624
2625  if (ICS.Standard.Second == ICK_Derived_To_Base)
2626    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2627
2628  if (!Context.hasSameType(From->getType(), DestType))
2629    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2630                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2631  return false;
2632}
2633
2634/// TryContextuallyConvertToBool - Attempt to contextually convert the
2635/// expression From to bool (C++0x [conv]p3).
2636ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2637  return TryImplicitConversion(From, Context.BoolTy,
2638                               // FIXME: Are these flags correct?
2639                               /*SuppressUserConversions=*/false,
2640                               /*AllowExplicit=*/true,
2641                               /*ForceRValue=*/false,
2642                               /*InOverloadResolution=*/false);
2643}
2644
2645/// PerformContextuallyConvertToBool - Perform a contextual conversion
2646/// of the expression From to bool (C++0x [conv]p3).
2647bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2648  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2649  if (!ICS.isBad())
2650    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2651
2652  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2653    return  Diag(From->getSourceRange().getBegin(),
2654                 diag::err_typecheck_bool_condition)
2655                  << From->getType() << From->getSourceRange();
2656  return true;
2657}
2658
2659/// AddOverloadCandidate - Adds the given function to the set of
2660/// candidate functions, using the given function call arguments.  If
2661/// @p SuppressUserConversions, then don't allow user-defined
2662/// conversions via constructors or conversion operators.
2663/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2664/// hacky way to implement the overloading rules for elidable copy
2665/// initialization in C++0x (C++0x 12.8p15).
2666///
2667/// \para PartialOverloading true if we are performing "partial" overloading
2668/// based on an incomplete set of function arguments. This feature is used by
2669/// code completion.
2670void
2671Sema::AddOverloadCandidate(FunctionDecl *Function,
2672                           DeclAccessPair FoundDecl,
2673                           Expr **Args, unsigned NumArgs,
2674                           OverloadCandidateSet& CandidateSet,
2675                           bool SuppressUserConversions,
2676                           bool ForceRValue,
2677                           bool PartialOverloading) {
2678  const FunctionProtoType* Proto
2679    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2680  assert(Proto && "Functions without a prototype cannot be overloaded");
2681  assert(!Function->getDescribedFunctionTemplate() &&
2682         "Use AddTemplateOverloadCandidate for function templates");
2683
2684  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2685    if (!isa<CXXConstructorDecl>(Method)) {
2686      // If we get here, it's because we're calling a member function
2687      // that is named without a member access expression (e.g.,
2688      // "this->f") that was either written explicitly or created
2689      // implicitly. This can happen with a qualified call to a member
2690      // function, e.g., X::f(). We use an empty type for the implied
2691      // object argument (C++ [over.call.func]p3), and the acting context
2692      // is irrelevant.
2693      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2694                         QualType(), Args, NumArgs, CandidateSet,
2695                         SuppressUserConversions, ForceRValue);
2696      return;
2697    }
2698    // We treat a constructor like a non-member function, since its object
2699    // argument doesn't participate in overload resolution.
2700  }
2701
2702  if (!CandidateSet.isNewCandidate(Function))
2703    return;
2704
2705  // Overload resolution is always an unevaluated context.
2706  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2707
2708  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2709    // C++ [class.copy]p3:
2710    //   A member function template is never instantiated to perform the copy
2711    //   of a class object to an object of its class type.
2712    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2713    if (NumArgs == 1 &&
2714        Constructor->isCopyConstructorLikeSpecialization() &&
2715        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2716         IsDerivedFrom(Args[0]->getType(), ClassType)))
2717      return;
2718  }
2719
2720  // Add this candidate
2721  CandidateSet.push_back(OverloadCandidate());
2722  OverloadCandidate& Candidate = CandidateSet.back();
2723  Candidate.FoundDecl = FoundDecl;
2724  Candidate.Function = Function;
2725  Candidate.Viable = true;
2726  Candidate.IsSurrogate = false;
2727  Candidate.IgnoreObjectArgument = false;
2728
2729  unsigned NumArgsInProto = Proto->getNumArgs();
2730
2731  // (C++ 13.3.2p2): A candidate function having fewer than m
2732  // parameters is viable only if it has an ellipsis in its parameter
2733  // list (8.3.5).
2734  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2735      !Proto->isVariadic()) {
2736    Candidate.Viable = false;
2737    Candidate.FailureKind = ovl_fail_too_many_arguments;
2738    return;
2739  }
2740
2741  // (C++ 13.3.2p2): A candidate function having more than m parameters
2742  // is viable only if the (m+1)st parameter has a default argument
2743  // (8.3.6). For the purposes of overload resolution, the
2744  // parameter list is truncated on the right, so that there are
2745  // exactly m parameters.
2746  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2747  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2748    // Not enough arguments.
2749    Candidate.Viable = false;
2750    Candidate.FailureKind = ovl_fail_too_few_arguments;
2751    return;
2752  }
2753
2754  // Determine the implicit conversion sequences for each of the
2755  // arguments.
2756  Candidate.Conversions.resize(NumArgs);
2757  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2758    if (ArgIdx < NumArgsInProto) {
2759      // (C++ 13.3.2p3): for F to be a viable function, there shall
2760      // exist for each argument an implicit conversion sequence
2761      // (13.3.3.1) that converts that argument to the corresponding
2762      // parameter of F.
2763      QualType ParamType = Proto->getArgType(ArgIdx);
2764      Candidate.Conversions[ArgIdx]
2765        = TryCopyInitialization(Args[ArgIdx], ParamType,
2766                                SuppressUserConversions, ForceRValue,
2767                                /*InOverloadResolution=*/true);
2768      if (Candidate.Conversions[ArgIdx].isBad()) {
2769        Candidate.Viable = false;
2770        Candidate.FailureKind = ovl_fail_bad_conversion;
2771        break;
2772      }
2773    } else {
2774      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2775      // argument for which there is no corresponding parameter is
2776      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2777      Candidate.Conversions[ArgIdx].setEllipsis();
2778    }
2779  }
2780}
2781
2782/// \brief Add all of the function declarations in the given function set to
2783/// the overload canddiate set.
2784void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2785                                 Expr **Args, unsigned NumArgs,
2786                                 OverloadCandidateSet& CandidateSet,
2787                                 bool SuppressUserConversions) {
2788  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2789    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2790    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2791      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2792        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2793                           cast<CXXMethodDecl>(FD)->getParent(),
2794                           Args[0]->getType(), Args + 1, NumArgs - 1,
2795                           CandidateSet, SuppressUserConversions);
2796      else
2797        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2798                             SuppressUserConversions);
2799    } else {
2800      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2801      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2802          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2803        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2804                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2805                                   /*FIXME: explicit args */ 0,
2806                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2807                                   CandidateSet,
2808                                   SuppressUserConversions);
2809      else
2810        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2811                                     /*FIXME: explicit args */ 0,
2812                                     Args, NumArgs, CandidateSet,
2813                                     SuppressUserConversions);
2814    }
2815  }
2816}
2817
2818/// AddMethodCandidate - Adds a named decl (which is some kind of
2819/// method) as a method candidate to the given overload set.
2820void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2821                              QualType ObjectType,
2822                              Expr **Args, unsigned NumArgs,
2823                              OverloadCandidateSet& CandidateSet,
2824                              bool SuppressUserConversions, bool ForceRValue) {
2825  NamedDecl *Decl = FoundDecl.getDecl();
2826  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2827
2828  if (isa<UsingShadowDecl>(Decl))
2829    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2830
2831  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2832    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2833           "Expected a member function template");
2834    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2835                               /*ExplicitArgs*/ 0,
2836                               ObjectType, Args, NumArgs,
2837                               CandidateSet,
2838                               SuppressUserConversions,
2839                               ForceRValue);
2840  } else {
2841    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2842                       ObjectType, Args, NumArgs,
2843                       CandidateSet, SuppressUserConversions, ForceRValue);
2844  }
2845}
2846
2847/// AddMethodCandidate - Adds the given C++ member function to the set
2848/// of candidate functions, using the given function call arguments
2849/// and the object argument (@c Object). For example, in a call
2850/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2851/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2852/// allow user-defined conversions via constructors or conversion
2853/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2854/// a slightly hacky way to implement the overloading rules for elidable copy
2855/// initialization in C++0x (C++0x 12.8p15).
2856void
2857Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2858                         CXXRecordDecl *ActingContext, QualType ObjectType,
2859                         Expr **Args, unsigned NumArgs,
2860                         OverloadCandidateSet& CandidateSet,
2861                         bool SuppressUserConversions, bool ForceRValue) {
2862  const FunctionProtoType* Proto
2863    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2864  assert(Proto && "Methods without a prototype cannot be overloaded");
2865  assert(!isa<CXXConstructorDecl>(Method) &&
2866         "Use AddOverloadCandidate for constructors");
2867
2868  if (!CandidateSet.isNewCandidate(Method))
2869    return;
2870
2871  // Overload resolution is always an unevaluated context.
2872  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2873
2874  // Add this candidate
2875  CandidateSet.push_back(OverloadCandidate());
2876  OverloadCandidate& Candidate = CandidateSet.back();
2877  Candidate.FoundDecl = FoundDecl;
2878  Candidate.Function = Method;
2879  Candidate.IsSurrogate = false;
2880  Candidate.IgnoreObjectArgument = false;
2881
2882  unsigned NumArgsInProto = Proto->getNumArgs();
2883
2884  // (C++ 13.3.2p2): A candidate function having fewer than m
2885  // parameters is viable only if it has an ellipsis in its parameter
2886  // list (8.3.5).
2887  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2888    Candidate.Viable = false;
2889    Candidate.FailureKind = ovl_fail_too_many_arguments;
2890    return;
2891  }
2892
2893  // (C++ 13.3.2p2): A candidate function having more than m parameters
2894  // is viable only if the (m+1)st parameter has a default argument
2895  // (8.3.6). For the purposes of overload resolution, the
2896  // parameter list is truncated on the right, so that there are
2897  // exactly m parameters.
2898  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2899  if (NumArgs < MinRequiredArgs) {
2900    // Not enough arguments.
2901    Candidate.Viable = false;
2902    Candidate.FailureKind = ovl_fail_too_few_arguments;
2903    return;
2904  }
2905
2906  Candidate.Viable = true;
2907  Candidate.Conversions.resize(NumArgs + 1);
2908
2909  if (Method->isStatic() || ObjectType.isNull())
2910    // The implicit object argument is ignored.
2911    Candidate.IgnoreObjectArgument = true;
2912  else {
2913    // Determine the implicit conversion sequence for the object
2914    // parameter.
2915    Candidate.Conversions[0]
2916      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2917    if (Candidate.Conversions[0].isBad()) {
2918      Candidate.Viable = false;
2919      Candidate.FailureKind = ovl_fail_bad_conversion;
2920      return;
2921    }
2922  }
2923
2924  // Determine the implicit conversion sequences for each of the
2925  // arguments.
2926  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2927    if (ArgIdx < NumArgsInProto) {
2928      // (C++ 13.3.2p3): for F to be a viable function, there shall
2929      // exist for each argument an implicit conversion sequence
2930      // (13.3.3.1) that converts that argument to the corresponding
2931      // parameter of F.
2932      QualType ParamType = Proto->getArgType(ArgIdx);
2933      Candidate.Conversions[ArgIdx + 1]
2934        = TryCopyInitialization(Args[ArgIdx], ParamType,
2935                                SuppressUserConversions, ForceRValue,
2936                                /*InOverloadResolution=*/true);
2937      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2938        Candidate.Viable = false;
2939        Candidate.FailureKind = ovl_fail_bad_conversion;
2940        break;
2941      }
2942    } else {
2943      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2944      // argument for which there is no corresponding parameter is
2945      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2946      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2947    }
2948  }
2949}
2950
2951/// \brief Add a C++ member function template as a candidate to the candidate
2952/// set, using template argument deduction to produce an appropriate member
2953/// function template specialization.
2954void
2955Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2956                                 DeclAccessPair FoundDecl,
2957                                 CXXRecordDecl *ActingContext,
2958                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2959                                 QualType ObjectType,
2960                                 Expr **Args, unsigned NumArgs,
2961                                 OverloadCandidateSet& CandidateSet,
2962                                 bool SuppressUserConversions,
2963                                 bool ForceRValue) {
2964  if (!CandidateSet.isNewCandidate(MethodTmpl))
2965    return;
2966
2967  // C++ [over.match.funcs]p7:
2968  //   In each case where a candidate is a function template, candidate
2969  //   function template specializations are generated using template argument
2970  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2971  //   candidate functions in the usual way.113) A given name can refer to one
2972  //   or more function templates and also to a set of overloaded non-template
2973  //   functions. In such a case, the candidate functions generated from each
2974  //   function template are combined with the set of non-template candidate
2975  //   functions.
2976  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2977  FunctionDecl *Specialization = 0;
2978  if (TemplateDeductionResult Result
2979      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2980                                Args, NumArgs, Specialization, Info)) {
2981        // FIXME: Record what happened with template argument deduction, so
2982        // that we can give the user a beautiful diagnostic.
2983        (void)Result;
2984        return;
2985      }
2986
2987  // Add the function template specialization produced by template argument
2988  // deduction as a candidate.
2989  assert(Specialization && "Missing member function template specialization?");
2990  assert(isa<CXXMethodDecl>(Specialization) &&
2991         "Specialization is not a member function?");
2992  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2993                     ActingContext, ObjectType, Args, NumArgs,
2994                     CandidateSet, SuppressUserConversions, ForceRValue);
2995}
2996
2997/// \brief Add a C++ function template specialization as a candidate
2998/// in the candidate set, using template argument deduction to produce
2999/// an appropriate function template specialization.
3000void
3001Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3002                                   DeclAccessPair FoundDecl,
3003                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3004                                   Expr **Args, unsigned NumArgs,
3005                                   OverloadCandidateSet& CandidateSet,
3006                                   bool SuppressUserConversions,
3007                                   bool ForceRValue) {
3008  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3009    return;
3010
3011  // C++ [over.match.funcs]p7:
3012  //   In each case where a candidate is a function template, candidate
3013  //   function template specializations are generated using template argument
3014  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3015  //   candidate functions in the usual way.113) A given name can refer to one
3016  //   or more function templates and also to a set of overloaded non-template
3017  //   functions. In such a case, the candidate functions generated from each
3018  //   function template are combined with the set of non-template candidate
3019  //   functions.
3020  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3021  FunctionDecl *Specialization = 0;
3022  if (TemplateDeductionResult Result
3023        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3024                                  Args, NumArgs, Specialization, Info)) {
3025    CandidateSet.push_back(OverloadCandidate());
3026    OverloadCandidate &Candidate = CandidateSet.back();
3027    Candidate.FoundDecl = FoundDecl;
3028    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3029    Candidate.Viable = false;
3030    Candidate.FailureKind = ovl_fail_bad_deduction;
3031    Candidate.IsSurrogate = false;
3032    Candidate.IgnoreObjectArgument = false;
3033
3034    // TODO: record more information about failed template arguments
3035    Candidate.DeductionFailure.Result = Result;
3036    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3037    return;
3038  }
3039
3040  // Add the function template specialization produced by template argument
3041  // deduction as a candidate.
3042  assert(Specialization && "Missing function template specialization?");
3043  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3044                       SuppressUserConversions, ForceRValue);
3045}
3046
3047/// AddConversionCandidate - Add a C++ conversion function as a
3048/// candidate in the candidate set (C++ [over.match.conv],
3049/// C++ [over.match.copy]). From is the expression we're converting from,
3050/// and ToType is the type that we're eventually trying to convert to
3051/// (which may or may not be the same type as the type that the
3052/// conversion function produces).
3053void
3054Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3055                             DeclAccessPair FoundDecl,
3056                             CXXRecordDecl *ActingContext,
3057                             Expr *From, QualType ToType,
3058                             OverloadCandidateSet& CandidateSet) {
3059  assert(!Conversion->getDescribedFunctionTemplate() &&
3060         "Conversion function templates use AddTemplateConversionCandidate");
3061
3062  if (!CandidateSet.isNewCandidate(Conversion))
3063    return;
3064
3065  // Overload resolution is always an unevaluated context.
3066  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3067
3068  // Add this candidate
3069  CandidateSet.push_back(OverloadCandidate());
3070  OverloadCandidate& Candidate = CandidateSet.back();
3071  Candidate.FoundDecl = FoundDecl;
3072  Candidate.Function = Conversion;
3073  Candidate.IsSurrogate = false;
3074  Candidate.IgnoreObjectArgument = false;
3075  Candidate.FinalConversion.setAsIdentityConversion();
3076  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
3077  Candidate.FinalConversion.setAllToTypes(ToType);
3078
3079  // Determine the implicit conversion sequence for the implicit
3080  // object parameter.
3081  Candidate.Viable = true;
3082  Candidate.Conversions.resize(1);
3083  Candidate.Conversions[0]
3084    = TryObjectArgumentInitialization(From->getType(), Conversion,
3085                                      ActingContext);
3086  // Conversion functions to a different type in the base class is visible in
3087  // the derived class.  So, a derived to base conversion should not participate
3088  // in overload resolution.
3089  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3090    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3091  if (Candidate.Conversions[0].isBad()) {
3092    Candidate.Viable = false;
3093    Candidate.FailureKind = ovl_fail_bad_conversion;
3094    return;
3095  }
3096
3097  // We won't go through a user-define type conversion function to convert a
3098  // derived to base as such conversions are given Conversion Rank. They only
3099  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3100  QualType FromCanon
3101    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3102  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3103  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3104    Candidate.Viable = false;
3105    Candidate.FailureKind = ovl_fail_trivial_conversion;
3106    return;
3107  }
3108
3109
3110  // To determine what the conversion from the result of calling the
3111  // conversion function to the type we're eventually trying to
3112  // convert to (ToType), we need to synthesize a call to the
3113  // conversion function and attempt copy initialization from it. This
3114  // makes sure that we get the right semantics with respect to
3115  // lvalues/rvalues and the type. Fortunately, we can allocate this
3116  // call on the stack and we don't need its arguments to be
3117  // well-formed.
3118  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3119                            From->getLocStart());
3120  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3121                                CastExpr::CK_FunctionToPointerDecay,
3122                                &ConversionRef, false);
3123
3124  // Note that it is safe to allocate CallExpr on the stack here because
3125  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3126  // allocator).
3127  CallExpr Call(Context, &ConversionFn, 0, 0,
3128                Conversion->getConversionType().getNonReferenceType(),
3129                From->getLocStart());
3130  ImplicitConversionSequence ICS =
3131    TryCopyInitialization(&Call, ToType,
3132                          /*SuppressUserConversions=*/true,
3133                          /*ForceRValue=*/false,
3134                          /*InOverloadResolution=*/false);
3135
3136  switch (ICS.getKind()) {
3137  case ImplicitConversionSequence::StandardConversion:
3138    Candidate.FinalConversion = ICS.Standard;
3139
3140    // C++ [over.ics.user]p3:
3141    //   If the user-defined conversion is specified by a specialization of a
3142    //   conversion function template, the second standard conversion sequence
3143    //   shall have exact match rank.
3144    if (Conversion->getPrimaryTemplate() &&
3145        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3146      Candidate.Viable = false;
3147      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3148    }
3149
3150    break;
3151
3152  case ImplicitConversionSequence::BadConversion:
3153    Candidate.Viable = false;
3154    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3155    break;
3156
3157  default:
3158    assert(false &&
3159           "Can only end up with a standard conversion sequence or failure");
3160  }
3161}
3162
3163/// \brief Adds a conversion function template specialization
3164/// candidate to the overload set, using template argument deduction
3165/// to deduce the template arguments of the conversion function
3166/// template from the type that we are converting to (C++
3167/// [temp.deduct.conv]).
3168void
3169Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3170                                     DeclAccessPair FoundDecl,
3171                                     CXXRecordDecl *ActingDC,
3172                                     Expr *From, QualType ToType,
3173                                     OverloadCandidateSet &CandidateSet) {
3174  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3175         "Only conversion function templates permitted here");
3176
3177  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3178    return;
3179
3180  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3181  CXXConversionDecl *Specialization = 0;
3182  if (TemplateDeductionResult Result
3183        = DeduceTemplateArguments(FunctionTemplate, ToType,
3184                                  Specialization, Info)) {
3185    // FIXME: Record what happened with template argument deduction, so
3186    // that we can give the user a beautiful diagnostic.
3187    (void)Result;
3188    return;
3189  }
3190
3191  // Add the conversion function template specialization produced by
3192  // template argument deduction as a candidate.
3193  assert(Specialization && "Missing function template specialization?");
3194  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3195                         CandidateSet);
3196}
3197
3198/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3199/// converts the given @c Object to a function pointer via the
3200/// conversion function @c Conversion, and then attempts to call it
3201/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3202/// the type of function that we'll eventually be calling.
3203void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3204                                 DeclAccessPair FoundDecl,
3205                                 CXXRecordDecl *ActingContext,
3206                                 const FunctionProtoType *Proto,
3207                                 QualType ObjectType,
3208                                 Expr **Args, unsigned NumArgs,
3209                                 OverloadCandidateSet& CandidateSet) {
3210  if (!CandidateSet.isNewCandidate(Conversion))
3211    return;
3212
3213  // Overload resolution is always an unevaluated context.
3214  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3215
3216  CandidateSet.push_back(OverloadCandidate());
3217  OverloadCandidate& Candidate = CandidateSet.back();
3218  Candidate.FoundDecl = FoundDecl;
3219  Candidate.Function = 0;
3220  Candidate.Surrogate = Conversion;
3221  Candidate.Viable = true;
3222  Candidate.IsSurrogate = true;
3223  Candidate.IgnoreObjectArgument = false;
3224  Candidate.Conversions.resize(NumArgs + 1);
3225
3226  // Determine the implicit conversion sequence for the implicit
3227  // object parameter.
3228  ImplicitConversionSequence ObjectInit
3229    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3230  if (ObjectInit.isBad()) {
3231    Candidate.Viable = false;
3232    Candidate.FailureKind = ovl_fail_bad_conversion;
3233    Candidate.Conversions[0] = ObjectInit;
3234    return;
3235  }
3236
3237  // The first conversion is actually a user-defined conversion whose
3238  // first conversion is ObjectInit's standard conversion (which is
3239  // effectively a reference binding). Record it as such.
3240  Candidate.Conversions[0].setUserDefined();
3241  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3242  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3243  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3244  Candidate.Conversions[0].UserDefined.After
3245    = Candidate.Conversions[0].UserDefined.Before;
3246  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3247
3248  // Find the
3249  unsigned NumArgsInProto = Proto->getNumArgs();
3250
3251  // (C++ 13.3.2p2): A candidate function having fewer than m
3252  // parameters is viable only if it has an ellipsis in its parameter
3253  // list (8.3.5).
3254  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3255    Candidate.Viable = false;
3256    Candidate.FailureKind = ovl_fail_too_many_arguments;
3257    return;
3258  }
3259
3260  // Function types don't have any default arguments, so just check if
3261  // we have enough arguments.
3262  if (NumArgs < NumArgsInProto) {
3263    // Not enough arguments.
3264    Candidate.Viable = false;
3265    Candidate.FailureKind = ovl_fail_too_few_arguments;
3266    return;
3267  }
3268
3269  // Determine the implicit conversion sequences for each of the
3270  // arguments.
3271  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3272    if (ArgIdx < NumArgsInProto) {
3273      // (C++ 13.3.2p3): for F to be a viable function, there shall
3274      // exist for each argument an implicit conversion sequence
3275      // (13.3.3.1) that converts that argument to the corresponding
3276      // parameter of F.
3277      QualType ParamType = Proto->getArgType(ArgIdx);
3278      Candidate.Conversions[ArgIdx + 1]
3279        = TryCopyInitialization(Args[ArgIdx], ParamType,
3280                                /*SuppressUserConversions=*/false,
3281                                /*ForceRValue=*/false,
3282                                /*InOverloadResolution=*/false);
3283      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3284        Candidate.Viable = false;
3285        Candidate.FailureKind = ovl_fail_bad_conversion;
3286        break;
3287      }
3288    } else {
3289      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3290      // argument for which there is no corresponding parameter is
3291      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3292      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3293    }
3294  }
3295}
3296
3297// FIXME: This will eventually be removed, once we've migrated all of the
3298// operator overloading logic over to the scheme used by binary operators, which
3299// works for template instantiation.
3300void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3301                                 SourceLocation OpLoc,
3302                                 Expr **Args, unsigned NumArgs,
3303                                 OverloadCandidateSet& CandidateSet,
3304                                 SourceRange OpRange) {
3305  UnresolvedSet<16> Fns;
3306
3307  QualType T1 = Args[0]->getType();
3308  QualType T2;
3309  if (NumArgs > 1)
3310    T2 = Args[1]->getType();
3311
3312  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3313  if (S)
3314    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3315  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3316  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3317                                       CandidateSet);
3318  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3319  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3320}
3321
3322/// \brief Add overload candidates for overloaded operators that are
3323/// member functions.
3324///
3325/// Add the overloaded operator candidates that are member functions
3326/// for the operator Op that was used in an operator expression such
3327/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3328/// CandidateSet will store the added overload candidates. (C++
3329/// [over.match.oper]).
3330void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3331                                       SourceLocation OpLoc,
3332                                       Expr **Args, unsigned NumArgs,
3333                                       OverloadCandidateSet& CandidateSet,
3334                                       SourceRange OpRange) {
3335  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3336
3337  // C++ [over.match.oper]p3:
3338  //   For a unary operator @ with an operand of a type whose
3339  //   cv-unqualified version is T1, and for a binary operator @ with
3340  //   a left operand of a type whose cv-unqualified version is T1 and
3341  //   a right operand of a type whose cv-unqualified version is T2,
3342  //   three sets of candidate functions, designated member
3343  //   candidates, non-member candidates and built-in candidates, are
3344  //   constructed as follows:
3345  QualType T1 = Args[0]->getType();
3346  QualType T2;
3347  if (NumArgs > 1)
3348    T2 = Args[1]->getType();
3349
3350  //     -- If T1 is a class type, the set of member candidates is the
3351  //        result of the qualified lookup of T1::operator@
3352  //        (13.3.1.1.1); otherwise, the set of member candidates is
3353  //        empty.
3354  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3355    // Complete the type if it can be completed. Otherwise, we're done.
3356    if (RequireCompleteType(OpLoc, T1, PDiag()))
3357      return;
3358
3359    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3360    LookupQualifiedName(Operators, T1Rec->getDecl());
3361    Operators.suppressDiagnostics();
3362
3363    for (LookupResult::iterator Oper = Operators.begin(),
3364                             OperEnd = Operators.end();
3365         Oper != OperEnd;
3366         ++Oper)
3367      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3368                         Args + 1, NumArgs - 1, CandidateSet,
3369                         /* SuppressUserConversions = */ false);
3370  }
3371}
3372
3373/// AddBuiltinCandidate - Add a candidate for a built-in
3374/// operator. ResultTy and ParamTys are the result and parameter types
3375/// of the built-in candidate, respectively. Args and NumArgs are the
3376/// arguments being passed to the candidate. IsAssignmentOperator
3377/// should be true when this built-in candidate is an assignment
3378/// operator. NumContextualBoolArguments is the number of arguments
3379/// (at the beginning of the argument list) that will be contextually
3380/// converted to bool.
3381void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3382                               Expr **Args, unsigned NumArgs,
3383                               OverloadCandidateSet& CandidateSet,
3384                               bool IsAssignmentOperator,
3385                               unsigned NumContextualBoolArguments) {
3386  // Overload resolution is always an unevaluated context.
3387  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3388
3389  // Add this candidate
3390  CandidateSet.push_back(OverloadCandidate());
3391  OverloadCandidate& Candidate = CandidateSet.back();
3392  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3393  Candidate.Function = 0;
3394  Candidate.IsSurrogate = false;
3395  Candidate.IgnoreObjectArgument = false;
3396  Candidate.BuiltinTypes.ResultTy = ResultTy;
3397  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3398    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3399
3400  // Determine the implicit conversion sequences for each of the
3401  // arguments.
3402  Candidate.Viable = true;
3403  Candidate.Conversions.resize(NumArgs);
3404  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3405    // C++ [over.match.oper]p4:
3406    //   For the built-in assignment operators, conversions of the
3407    //   left operand are restricted as follows:
3408    //     -- no temporaries are introduced to hold the left operand, and
3409    //     -- no user-defined conversions are applied to the left
3410    //        operand to achieve a type match with the left-most
3411    //        parameter of a built-in candidate.
3412    //
3413    // We block these conversions by turning off user-defined
3414    // conversions, since that is the only way that initialization of
3415    // a reference to a non-class type can occur from something that
3416    // is not of the same type.
3417    if (ArgIdx < NumContextualBoolArguments) {
3418      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3419             "Contextual conversion to bool requires bool type");
3420      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3421    } else {
3422      Candidate.Conversions[ArgIdx]
3423        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3424                                ArgIdx == 0 && IsAssignmentOperator,
3425                                /*ForceRValue=*/false,
3426                                /*InOverloadResolution=*/false);
3427    }
3428    if (Candidate.Conversions[ArgIdx].isBad()) {
3429      Candidate.Viable = false;
3430      Candidate.FailureKind = ovl_fail_bad_conversion;
3431      break;
3432    }
3433  }
3434}
3435
3436/// BuiltinCandidateTypeSet - A set of types that will be used for the
3437/// candidate operator functions for built-in operators (C++
3438/// [over.built]). The types are separated into pointer types and
3439/// enumeration types.
3440class BuiltinCandidateTypeSet  {
3441  /// TypeSet - A set of types.
3442  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3443
3444  /// PointerTypes - The set of pointer types that will be used in the
3445  /// built-in candidates.
3446  TypeSet PointerTypes;
3447
3448  /// MemberPointerTypes - The set of member pointer types that will be
3449  /// used in the built-in candidates.
3450  TypeSet MemberPointerTypes;
3451
3452  /// EnumerationTypes - The set of enumeration types that will be
3453  /// used in the built-in candidates.
3454  TypeSet EnumerationTypes;
3455
3456  /// Sema - The semantic analysis instance where we are building the
3457  /// candidate type set.
3458  Sema &SemaRef;
3459
3460  /// Context - The AST context in which we will build the type sets.
3461  ASTContext &Context;
3462
3463  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3464                                               const Qualifiers &VisibleQuals);
3465  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3466
3467public:
3468  /// iterator - Iterates through the types that are part of the set.
3469  typedef TypeSet::iterator iterator;
3470
3471  BuiltinCandidateTypeSet(Sema &SemaRef)
3472    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3473
3474  void AddTypesConvertedFrom(QualType Ty,
3475                             SourceLocation Loc,
3476                             bool AllowUserConversions,
3477                             bool AllowExplicitConversions,
3478                             const Qualifiers &VisibleTypeConversionsQuals);
3479
3480  /// pointer_begin - First pointer type found;
3481  iterator pointer_begin() { return PointerTypes.begin(); }
3482
3483  /// pointer_end - Past the last pointer type found;
3484  iterator pointer_end() { return PointerTypes.end(); }
3485
3486  /// member_pointer_begin - First member pointer type found;
3487  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3488
3489  /// member_pointer_end - Past the last member pointer type found;
3490  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3491
3492  /// enumeration_begin - First enumeration type found;
3493  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3494
3495  /// enumeration_end - Past the last enumeration type found;
3496  iterator enumeration_end() { return EnumerationTypes.end(); }
3497};
3498
3499/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3500/// the set of pointer types along with any more-qualified variants of
3501/// that type. For example, if @p Ty is "int const *", this routine
3502/// will add "int const *", "int const volatile *", "int const
3503/// restrict *", and "int const volatile restrict *" to the set of
3504/// pointer types. Returns true if the add of @p Ty itself succeeded,
3505/// false otherwise.
3506///
3507/// FIXME: what to do about extended qualifiers?
3508bool
3509BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3510                                             const Qualifiers &VisibleQuals) {
3511
3512  // Insert this type.
3513  if (!PointerTypes.insert(Ty))
3514    return false;
3515
3516  const PointerType *PointerTy = Ty->getAs<PointerType>();
3517  assert(PointerTy && "type was not a pointer type!");
3518
3519  QualType PointeeTy = PointerTy->getPointeeType();
3520  // Don't add qualified variants of arrays. For one, they're not allowed
3521  // (the qualifier would sink to the element type), and for another, the
3522  // only overload situation where it matters is subscript or pointer +- int,
3523  // and those shouldn't have qualifier variants anyway.
3524  if (PointeeTy->isArrayType())
3525    return true;
3526  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3527  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3528    BaseCVR = Array->getElementType().getCVRQualifiers();
3529  bool hasVolatile = VisibleQuals.hasVolatile();
3530  bool hasRestrict = VisibleQuals.hasRestrict();
3531
3532  // Iterate through all strict supersets of BaseCVR.
3533  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3534    if ((CVR | BaseCVR) != CVR) continue;
3535    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3536    // in the types.
3537    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3538    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3539    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3540    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3541  }
3542
3543  return true;
3544}
3545
3546/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3547/// to the set of pointer types along with any more-qualified variants of
3548/// that type. For example, if @p Ty is "int const *", this routine
3549/// will add "int const *", "int const volatile *", "int const
3550/// restrict *", and "int const volatile restrict *" to the set of
3551/// pointer types. Returns true if the add of @p Ty itself succeeded,
3552/// false otherwise.
3553///
3554/// FIXME: what to do about extended qualifiers?
3555bool
3556BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3557    QualType Ty) {
3558  // Insert this type.
3559  if (!MemberPointerTypes.insert(Ty))
3560    return false;
3561
3562  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3563  assert(PointerTy && "type was not a member pointer type!");
3564
3565  QualType PointeeTy = PointerTy->getPointeeType();
3566  // Don't add qualified variants of arrays. For one, they're not allowed
3567  // (the qualifier would sink to the element type), and for another, the
3568  // only overload situation where it matters is subscript or pointer +- int,
3569  // and those shouldn't have qualifier variants anyway.
3570  if (PointeeTy->isArrayType())
3571    return true;
3572  const Type *ClassTy = PointerTy->getClass();
3573
3574  // Iterate through all strict supersets of the pointee type's CVR
3575  // qualifiers.
3576  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3577  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3578    if ((CVR | BaseCVR) != CVR) continue;
3579
3580    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3581    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3582  }
3583
3584  return true;
3585}
3586
3587/// AddTypesConvertedFrom - Add each of the types to which the type @p
3588/// Ty can be implicit converted to the given set of @p Types. We're
3589/// primarily interested in pointer types and enumeration types. We also
3590/// take member pointer types, for the conditional operator.
3591/// AllowUserConversions is true if we should look at the conversion
3592/// functions of a class type, and AllowExplicitConversions if we
3593/// should also include the explicit conversion functions of a class
3594/// type.
3595void
3596BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3597                                               SourceLocation Loc,
3598                                               bool AllowUserConversions,
3599                                               bool AllowExplicitConversions,
3600                                               const Qualifiers &VisibleQuals) {
3601  // Only deal with canonical types.
3602  Ty = Context.getCanonicalType(Ty);
3603
3604  // Look through reference types; they aren't part of the type of an
3605  // expression for the purposes of conversions.
3606  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3607    Ty = RefTy->getPointeeType();
3608
3609  // We don't care about qualifiers on the type.
3610  Ty = Ty.getLocalUnqualifiedType();
3611
3612  // If we're dealing with an array type, decay to the pointer.
3613  if (Ty->isArrayType())
3614    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3615
3616  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3617    QualType PointeeTy = PointerTy->getPointeeType();
3618
3619    // Insert our type, and its more-qualified variants, into the set
3620    // of types.
3621    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3622      return;
3623  } else if (Ty->isMemberPointerType()) {
3624    // Member pointers are far easier, since the pointee can't be converted.
3625    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3626      return;
3627  } else if (Ty->isEnumeralType()) {
3628    EnumerationTypes.insert(Ty);
3629  } else if (AllowUserConversions) {
3630    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3631      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3632        // No conversion functions in incomplete types.
3633        return;
3634      }
3635
3636      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3637      const UnresolvedSetImpl *Conversions
3638        = ClassDecl->getVisibleConversionFunctions();
3639      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3640             E = Conversions->end(); I != E; ++I) {
3641        NamedDecl *D = I.getDecl();
3642        if (isa<UsingShadowDecl>(D))
3643          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3644
3645        // Skip conversion function templates; they don't tell us anything
3646        // about which builtin types we can convert to.
3647        if (isa<FunctionTemplateDecl>(D))
3648          continue;
3649
3650        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3651        if (AllowExplicitConversions || !Conv->isExplicit()) {
3652          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3653                                VisibleQuals);
3654        }
3655      }
3656    }
3657  }
3658}
3659
3660/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3661/// the volatile- and non-volatile-qualified assignment operators for the
3662/// given type to the candidate set.
3663static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3664                                                   QualType T,
3665                                                   Expr **Args,
3666                                                   unsigned NumArgs,
3667                                    OverloadCandidateSet &CandidateSet) {
3668  QualType ParamTypes[2];
3669
3670  // T& operator=(T&, T)
3671  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3672  ParamTypes[1] = T;
3673  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3674                        /*IsAssignmentOperator=*/true);
3675
3676  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3677    // volatile T& operator=(volatile T&, T)
3678    ParamTypes[0]
3679      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3680    ParamTypes[1] = T;
3681    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3682                          /*IsAssignmentOperator=*/true);
3683  }
3684}
3685
3686/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3687/// if any, found in visible type conversion functions found in ArgExpr's type.
3688static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3689    Qualifiers VRQuals;
3690    const RecordType *TyRec;
3691    if (const MemberPointerType *RHSMPType =
3692        ArgExpr->getType()->getAs<MemberPointerType>())
3693      TyRec = cast<RecordType>(RHSMPType->getClass());
3694    else
3695      TyRec = ArgExpr->getType()->getAs<RecordType>();
3696    if (!TyRec) {
3697      // Just to be safe, assume the worst case.
3698      VRQuals.addVolatile();
3699      VRQuals.addRestrict();
3700      return VRQuals;
3701    }
3702
3703    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3704    if (!ClassDecl->hasDefinition())
3705      return VRQuals;
3706
3707    const UnresolvedSetImpl *Conversions =
3708      ClassDecl->getVisibleConversionFunctions();
3709
3710    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3711           E = Conversions->end(); I != E; ++I) {
3712      NamedDecl *D = I.getDecl();
3713      if (isa<UsingShadowDecl>(D))
3714        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3715      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3716        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3717        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3718          CanTy = ResTypeRef->getPointeeType();
3719        // Need to go down the pointer/mempointer chain and add qualifiers
3720        // as see them.
3721        bool done = false;
3722        while (!done) {
3723          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3724            CanTy = ResTypePtr->getPointeeType();
3725          else if (const MemberPointerType *ResTypeMPtr =
3726                CanTy->getAs<MemberPointerType>())
3727            CanTy = ResTypeMPtr->getPointeeType();
3728          else
3729            done = true;
3730          if (CanTy.isVolatileQualified())
3731            VRQuals.addVolatile();
3732          if (CanTy.isRestrictQualified())
3733            VRQuals.addRestrict();
3734          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3735            return VRQuals;
3736        }
3737      }
3738    }
3739    return VRQuals;
3740}
3741
3742/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3743/// operator overloads to the candidate set (C++ [over.built]), based
3744/// on the operator @p Op and the arguments given. For example, if the
3745/// operator is a binary '+', this routine might add "int
3746/// operator+(int, int)" to cover integer addition.
3747void
3748Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3749                                   SourceLocation OpLoc,
3750                                   Expr **Args, unsigned NumArgs,
3751                                   OverloadCandidateSet& CandidateSet) {
3752  // The set of "promoted arithmetic types", which are the arithmetic
3753  // types are that preserved by promotion (C++ [over.built]p2). Note
3754  // that the first few of these types are the promoted integral
3755  // types; these types need to be first.
3756  // FIXME: What about complex?
3757  const unsigned FirstIntegralType = 0;
3758  const unsigned LastIntegralType = 13;
3759  const unsigned FirstPromotedIntegralType = 7,
3760                 LastPromotedIntegralType = 13;
3761  const unsigned FirstPromotedArithmeticType = 7,
3762                 LastPromotedArithmeticType = 16;
3763  const unsigned NumArithmeticTypes = 16;
3764  QualType ArithmeticTypes[NumArithmeticTypes] = {
3765    Context.BoolTy, Context.CharTy, Context.WCharTy,
3766// FIXME:   Context.Char16Ty, Context.Char32Ty,
3767    Context.SignedCharTy, Context.ShortTy,
3768    Context.UnsignedCharTy, Context.UnsignedShortTy,
3769    Context.IntTy, Context.LongTy, Context.LongLongTy,
3770    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3771    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3772  };
3773  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3774         "Invalid first promoted integral type");
3775  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3776           == Context.UnsignedLongLongTy &&
3777         "Invalid last promoted integral type");
3778  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3779         "Invalid first promoted arithmetic type");
3780  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3781            == Context.LongDoubleTy &&
3782         "Invalid last promoted arithmetic type");
3783
3784  // Find all of the types that the arguments can convert to, but only
3785  // if the operator we're looking at has built-in operator candidates
3786  // that make use of these types.
3787  Qualifiers VisibleTypeConversionsQuals;
3788  VisibleTypeConversionsQuals.addConst();
3789  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3790    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3791
3792  BuiltinCandidateTypeSet CandidateTypes(*this);
3793  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3794      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3795      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3796      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3797      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3798      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3799    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3800      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3801                                           OpLoc,
3802                                           true,
3803                                           (Op == OO_Exclaim ||
3804                                            Op == OO_AmpAmp ||
3805                                            Op == OO_PipePipe),
3806                                           VisibleTypeConversionsQuals);
3807  }
3808
3809  bool isComparison = false;
3810  switch (Op) {
3811  case OO_None:
3812  case NUM_OVERLOADED_OPERATORS:
3813    assert(false && "Expected an overloaded operator");
3814    break;
3815
3816  case OO_Star: // '*' is either unary or binary
3817    if (NumArgs == 1)
3818      goto UnaryStar;
3819    else
3820      goto BinaryStar;
3821    break;
3822
3823  case OO_Plus: // '+' is either unary or binary
3824    if (NumArgs == 1)
3825      goto UnaryPlus;
3826    else
3827      goto BinaryPlus;
3828    break;
3829
3830  case OO_Minus: // '-' is either unary or binary
3831    if (NumArgs == 1)
3832      goto UnaryMinus;
3833    else
3834      goto BinaryMinus;
3835    break;
3836
3837  case OO_Amp: // '&' is either unary or binary
3838    if (NumArgs == 1)
3839      goto UnaryAmp;
3840    else
3841      goto BinaryAmp;
3842
3843  case OO_PlusPlus:
3844  case OO_MinusMinus:
3845    // C++ [over.built]p3:
3846    //
3847    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3848    //   is either volatile or empty, there exist candidate operator
3849    //   functions of the form
3850    //
3851    //       VQ T&      operator++(VQ T&);
3852    //       T          operator++(VQ T&, int);
3853    //
3854    // C++ [over.built]p4:
3855    //
3856    //   For every pair (T, VQ), where T is an arithmetic type other
3857    //   than bool, and VQ is either volatile or empty, there exist
3858    //   candidate operator functions of the form
3859    //
3860    //       VQ T&      operator--(VQ T&);
3861    //       T          operator--(VQ T&, int);
3862    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3863         Arith < NumArithmeticTypes; ++Arith) {
3864      QualType ArithTy = ArithmeticTypes[Arith];
3865      QualType ParamTypes[2]
3866        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3867
3868      // Non-volatile version.
3869      if (NumArgs == 1)
3870        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3871      else
3872        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3873      // heuristic to reduce number of builtin candidates in the set.
3874      // Add volatile version only if there are conversions to a volatile type.
3875      if (VisibleTypeConversionsQuals.hasVolatile()) {
3876        // Volatile version
3877        ParamTypes[0]
3878          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3879        if (NumArgs == 1)
3880          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3881        else
3882          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3883      }
3884    }
3885
3886    // C++ [over.built]p5:
3887    //
3888    //   For every pair (T, VQ), where T is a cv-qualified or
3889    //   cv-unqualified object type, and VQ is either volatile or
3890    //   empty, there exist candidate operator functions of the form
3891    //
3892    //       T*VQ&      operator++(T*VQ&);
3893    //       T*VQ&      operator--(T*VQ&);
3894    //       T*         operator++(T*VQ&, int);
3895    //       T*         operator--(T*VQ&, int);
3896    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3897         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3898      // Skip pointer types that aren't pointers to object types.
3899      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3900        continue;
3901
3902      QualType ParamTypes[2] = {
3903        Context.getLValueReferenceType(*Ptr), Context.IntTy
3904      };
3905
3906      // Without volatile
3907      if (NumArgs == 1)
3908        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3909      else
3910        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3911
3912      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3913          VisibleTypeConversionsQuals.hasVolatile()) {
3914        // With volatile
3915        ParamTypes[0]
3916          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3917        if (NumArgs == 1)
3918          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3919        else
3920          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3921      }
3922    }
3923    break;
3924
3925  UnaryStar:
3926    // C++ [over.built]p6:
3927    //   For every cv-qualified or cv-unqualified object type T, there
3928    //   exist candidate operator functions of the form
3929    //
3930    //       T&         operator*(T*);
3931    //
3932    // C++ [over.built]p7:
3933    //   For every function type T, there exist candidate operator
3934    //   functions of the form
3935    //       T&         operator*(T*);
3936    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3937         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3938      QualType ParamTy = *Ptr;
3939      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3940      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3941                          &ParamTy, Args, 1, CandidateSet);
3942    }
3943    break;
3944
3945  UnaryPlus:
3946    // C++ [over.built]p8:
3947    //   For every type T, there exist candidate operator functions of
3948    //   the form
3949    //
3950    //       T*         operator+(T*);
3951    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3952         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3953      QualType ParamTy = *Ptr;
3954      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3955    }
3956
3957    // Fall through
3958
3959  UnaryMinus:
3960    // C++ [over.built]p9:
3961    //  For every promoted arithmetic type T, there exist candidate
3962    //  operator functions of the form
3963    //
3964    //       T         operator+(T);
3965    //       T         operator-(T);
3966    for (unsigned Arith = FirstPromotedArithmeticType;
3967         Arith < LastPromotedArithmeticType; ++Arith) {
3968      QualType ArithTy = ArithmeticTypes[Arith];
3969      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3970    }
3971    break;
3972
3973  case OO_Tilde:
3974    // C++ [over.built]p10:
3975    //   For every promoted integral type T, there exist candidate
3976    //   operator functions of the form
3977    //
3978    //        T         operator~(T);
3979    for (unsigned Int = FirstPromotedIntegralType;
3980         Int < LastPromotedIntegralType; ++Int) {
3981      QualType IntTy = ArithmeticTypes[Int];
3982      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3983    }
3984    break;
3985
3986  case OO_New:
3987  case OO_Delete:
3988  case OO_Array_New:
3989  case OO_Array_Delete:
3990  case OO_Call:
3991    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3992    break;
3993
3994  case OO_Comma:
3995  UnaryAmp:
3996  case OO_Arrow:
3997    // C++ [over.match.oper]p3:
3998    //   -- For the operator ',', the unary operator '&', or the
3999    //      operator '->', the built-in candidates set is empty.
4000    break;
4001
4002  case OO_EqualEqual:
4003  case OO_ExclaimEqual:
4004    // C++ [over.match.oper]p16:
4005    //   For every pointer to member type T, there exist candidate operator
4006    //   functions of the form
4007    //
4008    //        bool operator==(T,T);
4009    //        bool operator!=(T,T);
4010    for (BuiltinCandidateTypeSet::iterator
4011           MemPtr = CandidateTypes.member_pointer_begin(),
4012           MemPtrEnd = CandidateTypes.member_pointer_end();
4013         MemPtr != MemPtrEnd;
4014         ++MemPtr) {
4015      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4016      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4017    }
4018
4019    // Fall through
4020
4021  case OO_Less:
4022  case OO_Greater:
4023  case OO_LessEqual:
4024  case OO_GreaterEqual:
4025    // C++ [over.built]p15:
4026    //
4027    //   For every pointer or enumeration type T, there exist
4028    //   candidate operator functions of the form
4029    //
4030    //        bool       operator<(T, T);
4031    //        bool       operator>(T, T);
4032    //        bool       operator<=(T, T);
4033    //        bool       operator>=(T, T);
4034    //        bool       operator==(T, T);
4035    //        bool       operator!=(T, T);
4036    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4037         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4038      QualType ParamTypes[2] = { *Ptr, *Ptr };
4039      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4040    }
4041    for (BuiltinCandidateTypeSet::iterator Enum
4042           = CandidateTypes.enumeration_begin();
4043         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4044      QualType ParamTypes[2] = { *Enum, *Enum };
4045      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4046    }
4047
4048    // Fall through.
4049    isComparison = true;
4050
4051  BinaryPlus:
4052  BinaryMinus:
4053    if (!isComparison) {
4054      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4055
4056      // C++ [over.built]p13:
4057      //
4058      //   For every cv-qualified or cv-unqualified object type T
4059      //   there exist candidate operator functions of the form
4060      //
4061      //      T*         operator+(T*, ptrdiff_t);
4062      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4063      //      T*         operator-(T*, ptrdiff_t);
4064      //      T*         operator+(ptrdiff_t, T*);
4065      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4066      //
4067      // C++ [over.built]p14:
4068      //
4069      //   For every T, where T is a pointer to object type, there
4070      //   exist candidate operator functions of the form
4071      //
4072      //      ptrdiff_t  operator-(T, T);
4073      for (BuiltinCandidateTypeSet::iterator Ptr
4074             = CandidateTypes.pointer_begin();
4075           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4076        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4077
4078        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4079        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4080
4081        if (Op == OO_Plus) {
4082          // T* operator+(ptrdiff_t, T*);
4083          ParamTypes[0] = ParamTypes[1];
4084          ParamTypes[1] = *Ptr;
4085          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4086        } else {
4087          // ptrdiff_t operator-(T, T);
4088          ParamTypes[1] = *Ptr;
4089          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4090                              Args, 2, CandidateSet);
4091        }
4092      }
4093    }
4094    // Fall through
4095
4096  case OO_Slash:
4097  BinaryStar:
4098  Conditional:
4099    // C++ [over.built]p12:
4100    //
4101    //   For every pair of promoted arithmetic types L and R, there
4102    //   exist candidate operator functions of the form
4103    //
4104    //        LR         operator*(L, R);
4105    //        LR         operator/(L, R);
4106    //        LR         operator+(L, R);
4107    //        LR         operator-(L, R);
4108    //        bool       operator<(L, R);
4109    //        bool       operator>(L, R);
4110    //        bool       operator<=(L, R);
4111    //        bool       operator>=(L, R);
4112    //        bool       operator==(L, R);
4113    //        bool       operator!=(L, R);
4114    //
4115    //   where LR is the result of the usual arithmetic conversions
4116    //   between types L and R.
4117    //
4118    // C++ [over.built]p24:
4119    //
4120    //   For every pair of promoted arithmetic types L and R, there exist
4121    //   candidate operator functions of the form
4122    //
4123    //        LR       operator?(bool, L, R);
4124    //
4125    //   where LR is the result of the usual arithmetic conversions
4126    //   between types L and R.
4127    // Our candidates ignore the first parameter.
4128    for (unsigned Left = FirstPromotedArithmeticType;
4129         Left < LastPromotedArithmeticType; ++Left) {
4130      for (unsigned Right = FirstPromotedArithmeticType;
4131           Right < LastPromotedArithmeticType; ++Right) {
4132        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4133        QualType Result
4134          = isComparison
4135          ? Context.BoolTy
4136          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4137        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4138      }
4139    }
4140    break;
4141
4142  case OO_Percent:
4143  BinaryAmp:
4144  case OO_Caret:
4145  case OO_Pipe:
4146  case OO_LessLess:
4147  case OO_GreaterGreater:
4148    // C++ [over.built]p17:
4149    //
4150    //   For every pair of promoted integral types L and R, there
4151    //   exist candidate operator functions of the form
4152    //
4153    //      LR         operator%(L, R);
4154    //      LR         operator&(L, R);
4155    //      LR         operator^(L, R);
4156    //      LR         operator|(L, R);
4157    //      L          operator<<(L, R);
4158    //      L          operator>>(L, R);
4159    //
4160    //   where LR is the result of the usual arithmetic conversions
4161    //   between types L and R.
4162    for (unsigned Left = FirstPromotedIntegralType;
4163         Left < LastPromotedIntegralType; ++Left) {
4164      for (unsigned Right = FirstPromotedIntegralType;
4165           Right < LastPromotedIntegralType; ++Right) {
4166        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4167        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4168            ? LandR[0]
4169            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4170        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4171      }
4172    }
4173    break;
4174
4175  case OO_Equal:
4176    // C++ [over.built]p20:
4177    //
4178    //   For every pair (T, VQ), where T is an enumeration or
4179    //   pointer to member type and VQ is either volatile or
4180    //   empty, there exist candidate operator functions of the form
4181    //
4182    //        VQ T&      operator=(VQ T&, T);
4183    for (BuiltinCandidateTypeSet::iterator
4184           Enum = CandidateTypes.enumeration_begin(),
4185           EnumEnd = CandidateTypes.enumeration_end();
4186         Enum != EnumEnd; ++Enum)
4187      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4188                                             CandidateSet);
4189    for (BuiltinCandidateTypeSet::iterator
4190           MemPtr = CandidateTypes.member_pointer_begin(),
4191         MemPtrEnd = CandidateTypes.member_pointer_end();
4192         MemPtr != MemPtrEnd; ++MemPtr)
4193      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4194                                             CandidateSet);
4195      // Fall through.
4196
4197  case OO_PlusEqual:
4198  case OO_MinusEqual:
4199    // C++ [over.built]p19:
4200    //
4201    //   For every pair (T, VQ), where T is any type and VQ is either
4202    //   volatile or empty, there exist candidate operator functions
4203    //   of the form
4204    //
4205    //        T*VQ&      operator=(T*VQ&, T*);
4206    //
4207    // C++ [over.built]p21:
4208    //
4209    //   For every pair (T, VQ), where T is a cv-qualified or
4210    //   cv-unqualified object type and VQ is either volatile or
4211    //   empty, there exist candidate operator functions of the form
4212    //
4213    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4214    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4215    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4216         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4217      QualType ParamTypes[2];
4218      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4219
4220      // non-volatile version
4221      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4222      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4223                          /*IsAssigmentOperator=*/Op == OO_Equal);
4224
4225      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4226          VisibleTypeConversionsQuals.hasVolatile()) {
4227        // volatile version
4228        ParamTypes[0]
4229          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4230        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4231                            /*IsAssigmentOperator=*/Op == OO_Equal);
4232      }
4233    }
4234    // Fall through.
4235
4236  case OO_StarEqual:
4237  case OO_SlashEqual:
4238    // C++ [over.built]p18:
4239    //
4240    //   For every triple (L, VQ, R), where L is an arithmetic type,
4241    //   VQ is either volatile or empty, and R is a promoted
4242    //   arithmetic type, there exist candidate operator functions of
4243    //   the form
4244    //
4245    //        VQ L&      operator=(VQ L&, R);
4246    //        VQ L&      operator*=(VQ L&, R);
4247    //        VQ L&      operator/=(VQ L&, R);
4248    //        VQ L&      operator+=(VQ L&, R);
4249    //        VQ L&      operator-=(VQ L&, R);
4250    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4251      for (unsigned Right = FirstPromotedArithmeticType;
4252           Right < LastPromotedArithmeticType; ++Right) {
4253        QualType ParamTypes[2];
4254        ParamTypes[1] = ArithmeticTypes[Right];
4255
4256        // Add this built-in operator as a candidate (VQ is empty).
4257        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4258        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4259                            /*IsAssigmentOperator=*/Op == OO_Equal);
4260
4261        // Add this built-in operator as a candidate (VQ is 'volatile').
4262        if (VisibleTypeConversionsQuals.hasVolatile()) {
4263          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4264          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4265          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4266                              /*IsAssigmentOperator=*/Op == OO_Equal);
4267        }
4268      }
4269    }
4270    break;
4271
4272  case OO_PercentEqual:
4273  case OO_LessLessEqual:
4274  case OO_GreaterGreaterEqual:
4275  case OO_AmpEqual:
4276  case OO_CaretEqual:
4277  case OO_PipeEqual:
4278    // C++ [over.built]p22:
4279    //
4280    //   For every triple (L, VQ, R), where L is an integral type, VQ
4281    //   is either volatile or empty, and R is a promoted integral
4282    //   type, there exist candidate operator functions of the form
4283    //
4284    //        VQ L&       operator%=(VQ L&, R);
4285    //        VQ L&       operator<<=(VQ L&, R);
4286    //        VQ L&       operator>>=(VQ L&, R);
4287    //        VQ L&       operator&=(VQ L&, R);
4288    //        VQ L&       operator^=(VQ L&, R);
4289    //        VQ L&       operator|=(VQ L&, R);
4290    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4291      for (unsigned Right = FirstPromotedIntegralType;
4292           Right < LastPromotedIntegralType; ++Right) {
4293        QualType ParamTypes[2];
4294        ParamTypes[1] = ArithmeticTypes[Right];
4295
4296        // Add this built-in operator as a candidate (VQ is empty).
4297        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4298        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4299        if (VisibleTypeConversionsQuals.hasVolatile()) {
4300          // Add this built-in operator as a candidate (VQ is 'volatile').
4301          ParamTypes[0] = ArithmeticTypes[Left];
4302          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4303          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4304          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4305        }
4306      }
4307    }
4308    break;
4309
4310  case OO_Exclaim: {
4311    // C++ [over.operator]p23:
4312    //
4313    //   There also exist candidate operator functions of the form
4314    //
4315    //        bool        operator!(bool);
4316    //        bool        operator&&(bool, bool);     [BELOW]
4317    //        bool        operator||(bool, bool);     [BELOW]
4318    QualType ParamTy = Context.BoolTy;
4319    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4320                        /*IsAssignmentOperator=*/false,
4321                        /*NumContextualBoolArguments=*/1);
4322    break;
4323  }
4324
4325  case OO_AmpAmp:
4326  case OO_PipePipe: {
4327    // C++ [over.operator]p23:
4328    //
4329    //   There also exist candidate operator functions of the form
4330    //
4331    //        bool        operator!(bool);            [ABOVE]
4332    //        bool        operator&&(bool, bool);
4333    //        bool        operator||(bool, bool);
4334    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4335    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4336                        /*IsAssignmentOperator=*/false,
4337                        /*NumContextualBoolArguments=*/2);
4338    break;
4339  }
4340
4341  case OO_Subscript:
4342    // C++ [over.built]p13:
4343    //
4344    //   For every cv-qualified or cv-unqualified object type T there
4345    //   exist candidate operator functions of the form
4346    //
4347    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4348    //        T&         operator[](T*, ptrdiff_t);
4349    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4350    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4351    //        T&         operator[](ptrdiff_t, T*);
4352    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4353         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4354      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4355      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4356      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4357
4358      // T& operator[](T*, ptrdiff_t)
4359      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4360
4361      // T& operator[](ptrdiff_t, T*);
4362      ParamTypes[0] = ParamTypes[1];
4363      ParamTypes[1] = *Ptr;
4364      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4365    }
4366    break;
4367
4368  case OO_ArrowStar:
4369    // C++ [over.built]p11:
4370    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4371    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4372    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4373    //    there exist candidate operator functions of the form
4374    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4375    //    where CV12 is the union of CV1 and CV2.
4376    {
4377      for (BuiltinCandidateTypeSet::iterator Ptr =
4378             CandidateTypes.pointer_begin();
4379           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4380        QualType C1Ty = (*Ptr);
4381        QualType C1;
4382        QualifierCollector Q1;
4383        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4384          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4385          if (!isa<RecordType>(C1))
4386            continue;
4387          // heuristic to reduce number of builtin candidates in the set.
4388          // Add volatile/restrict version only if there are conversions to a
4389          // volatile/restrict type.
4390          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4391            continue;
4392          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4393            continue;
4394        }
4395        for (BuiltinCandidateTypeSet::iterator
4396             MemPtr = CandidateTypes.member_pointer_begin(),
4397             MemPtrEnd = CandidateTypes.member_pointer_end();
4398             MemPtr != MemPtrEnd; ++MemPtr) {
4399          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4400          QualType C2 = QualType(mptr->getClass(), 0);
4401          C2 = C2.getUnqualifiedType();
4402          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4403            break;
4404          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4405          // build CV12 T&
4406          QualType T = mptr->getPointeeType();
4407          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4408              T.isVolatileQualified())
4409            continue;
4410          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4411              T.isRestrictQualified())
4412            continue;
4413          T = Q1.apply(T);
4414          QualType ResultTy = Context.getLValueReferenceType(T);
4415          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4416        }
4417      }
4418    }
4419    break;
4420
4421  case OO_Conditional:
4422    // Note that we don't consider the first argument, since it has been
4423    // contextually converted to bool long ago. The candidates below are
4424    // therefore added as binary.
4425    //
4426    // C++ [over.built]p24:
4427    //   For every type T, where T is a pointer or pointer-to-member type,
4428    //   there exist candidate operator functions of the form
4429    //
4430    //        T        operator?(bool, T, T);
4431    //
4432    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4433         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4434      QualType ParamTypes[2] = { *Ptr, *Ptr };
4435      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4436    }
4437    for (BuiltinCandidateTypeSet::iterator Ptr =
4438           CandidateTypes.member_pointer_begin(),
4439         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4440      QualType ParamTypes[2] = { *Ptr, *Ptr };
4441      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4442    }
4443    goto Conditional;
4444  }
4445}
4446
4447/// \brief Add function candidates found via argument-dependent lookup
4448/// to the set of overloading candidates.
4449///
4450/// This routine performs argument-dependent name lookup based on the
4451/// given function name (which may also be an operator name) and adds
4452/// all of the overload candidates found by ADL to the overload
4453/// candidate set (C++ [basic.lookup.argdep]).
4454void
4455Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4456                                           bool Operator,
4457                                           Expr **Args, unsigned NumArgs,
4458                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4459                                           OverloadCandidateSet& CandidateSet,
4460                                           bool PartialOverloading) {
4461  ADLResult Fns;
4462
4463  // FIXME: This approach for uniquing ADL results (and removing
4464  // redundant candidates from the set) relies on pointer-equality,
4465  // which means we need to key off the canonical decl.  However,
4466  // always going back to the canonical decl might not get us the
4467  // right set of default arguments.  What default arguments are
4468  // we supposed to consider on ADL candidates, anyway?
4469
4470  // FIXME: Pass in the explicit template arguments?
4471  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4472
4473  // Erase all of the candidates we already knew about.
4474  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4475                                   CandEnd = CandidateSet.end();
4476       Cand != CandEnd; ++Cand)
4477    if (Cand->Function) {
4478      Fns.erase(Cand->Function);
4479      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4480        Fns.erase(FunTmpl);
4481    }
4482
4483  // For each of the ADL candidates we found, add it to the overload
4484  // set.
4485  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4486    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4487    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4488      if (ExplicitTemplateArgs)
4489        continue;
4490
4491      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4492                           false, false, PartialOverloading);
4493    } else
4494      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4495                                   FoundDecl, ExplicitTemplateArgs,
4496                                   Args, NumArgs, CandidateSet);
4497  }
4498}
4499
4500/// isBetterOverloadCandidate - Determines whether the first overload
4501/// candidate is a better candidate than the second (C++ 13.3.3p1).
4502bool
4503Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4504                                const OverloadCandidate& Cand2,
4505                                SourceLocation Loc) {
4506  // Define viable functions to be better candidates than non-viable
4507  // functions.
4508  if (!Cand2.Viable)
4509    return Cand1.Viable;
4510  else if (!Cand1.Viable)
4511    return false;
4512
4513  // C++ [over.match.best]p1:
4514  //
4515  //   -- if F is a static member function, ICS1(F) is defined such
4516  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4517  //      any function G, and, symmetrically, ICS1(G) is neither
4518  //      better nor worse than ICS1(F).
4519  unsigned StartArg = 0;
4520  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4521    StartArg = 1;
4522
4523  // C++ [over.match.best]p1:
4524  //   A viable function F1 is defined to be a better function than another
4525  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4526  //   conversion sequence than ICSi(F2), and then...
4527  unsigned NumArgs = Cand1.Conversions.size();
4528  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4529  bool HasBetterConversion = false;
4530  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4531    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4532                                               Cand2.Conversions[ArgIdx])) {
4533    case ImplicitConversionSequence::Better:
4534      // Cand1 has a better conversion sequence.
4535      HasBetterConversion = true;
4536      break;
4537
4538    case ImplicitConversionSequence::Worse:
4539      // Cand1 can't be better than Cand2.
4540      return false;
4541
4542    case ImplicitConversionSequence::Indistinguishable:
4543      // Do nothing.
4544      break;
4545    }
4546  }
4547
4548  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4549  //       ICSj(F2), or, if not that,
4550  if (HasBetterConversion)
4551    return true;
4552
4553  //     - F1 is a non-template function and F2 is a function template
4554  //       specialization, or, if not that,
4555  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4556      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4557    return true;
4558
4559  //   -- F1 and F2 are function template specializations, and the function
4560  //      template for F1 is more specialized than the template for F2
4561  //      according to the partial ordering rules described in 14.5.5.2, or,
4562  //      if not that,
4563  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4564      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4565    if (FunctionTemplateDecl *BetterTemplate
4566          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4567                                       Cand2.Function->getPrimaryTemplate(),
4568                                       Loc,
4569                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4570                                                             : TPOC_Call))
4571      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4572
4573  //   -- the context is an initialization by user-defined conversion
4574  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4575  //      from the return type of F1 to the destination type (i.e.,
4576  //      the type of the entity being initialized) is a better
4577  //      conversion sequence than the standard conversion sequence
4578  //      from the return type of F2 to the destination type.
4579  if (Cand1.Function && Cand2.Function &&
4580      isa<CXXConversionDecl>(Cand1.Function) &&
4581      isa<CXXConversionDecl>(Cand2.Function)) {
4582    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4583                                               Cand2.FinalConversion)) {
4584    case ImplicitConversionSequence::Better:
4585      // Cand1 has a better conversion sequence.
4586      return true;
4587
4588    case ImplicitConversionSequence::Worse:
4589      // Cand1 can't be better than Cand2.
4590      return false;
4591
4592    case ImplicitConversionSequence::Indistinguishable:
4593      // Do nothing
4594      break;
4595    }
4596  }
4597
4598  return false;
4599}
4600
4601/// \brief Computes the best viable function (C++ 13.3.3)
4602/// within an overload candidate set.
4603///
4604/// \param CandidateSet the set of candidate functions.
4605///
4606/// \param Loc the location of the function name (or operator symbol) for
4607/// which overload resolution occurs.
4608///
4609/// \param Best f overload resolution was successful or found a deleted
4610/// function, Best points to the candidate function found.
4611///
4612/// \returns The result of overload resolution.
4613OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4614                                           SourceLocation Loc,
4615                                        OverloadCandidateSet::iterator& Best) {
4616  // Find the best viable function.
4617  Best = CandidateSet.end();
4618  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4619       Cand != CandidateSet.end(); ++Cand) {
4620    if (Cand->Viable) {
4621      if (Best == CandidateSet.end() ||
4622          isBetterOverloadCandidate(*Cand, *Best, Loc))
4623        Best = Cand;
4624    }
4625  }
4626
4627  // If we didn't find any viable functions, abort.
4628  if (Best == CandidateSet.end())
4629    return OR_No_Viable_Function;
4630
4631  // Make sure that this function is better than every other viable
4632  // function. If not, we have an ambiguity.
4633  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4634       Cand != CandidateSet.end(); ++Cand) {
4635    if (Cand->Viable &&
4636        Cand != Best &&
4637        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4638      Best = CandidateSet.end();
4639      return OR_Ambiguous;
4640    }
4641  }
4642
4643  // Best is the best viable function.
4644  if (Best->Function &&
4645      (Best->Function->isDeleted() ||
4646       Best->Function->getAttr<UnavailableAttr>()))
4647    return OR_Deleted;
4648
4649  // C++ [basic.def.odr]p2:
4650  //   An overloaded function is used if it is selected by overload resolution
4651  //   when referred to from a potentially-evaluated expression. [Note: this
4652  //   covers calls to named functions (5.2.2), operator overloading
4653  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4654  //   placement new (5.3.4), as well as non-default initialization (8.5).
4655  if (Best->Function)
4656    MarkDeclarationReferenced(Loc, Best->Function);
4657  return OR_Success;
4658}
4659
4660namespace {
4661
4662enum OverloadCandidateKind {
4663  oc_function,
4664  oc_method,
4665  oc_constructor,
4666  oc_function_template,
4667  oc_method_template,
4668  oc_constructor_template,
4669  oc_implicit_default_constructor,
4670  oc_implicit_copy_constructor,
4671  oc_implicit_copy_assignment
4672};
4673
4674OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4675                                                FunctionDecl *Fn,
4676                                                std::string &Description) {
4677  bool isTemplate = false;
4678
4679  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4680    isTemplate = true;
4681    Description = S.getTemplateArgumentBindingsText(
4682      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4683  }
4684
4685  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4686    if (!Ctor->isImplicit())
4687      return isTemplate ? oc_constructor_template : oc_constructor;
4688
4689    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4690                                     : oc_implicit_default_constructor;
4691  }
4692
4693  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4694    // This actually gets spelled 'candidate function' for now, but
4695    // it doesn't hurt to split it out.
4696    if (!Meth->isImplicit())
4697      return isTemplate ? oc_method_template : oc_method;
4698
4699    assert(Meth->isCopyAssignment()
4700           && "implicit method is not copy assignment operator?");
4701    return oc_implicit_copy_assignment;
4702  }
4703
4704  return isTemplate ? oc_function_template : oc_function;
4705}
4706
4707} // end anonymous namespace
4708
4709// Notes the location of an overload candidate.
4710void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4711  std::string FnDesc;
4712  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4713  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4714    << (unsigned) K << FnDesc;
4715}
4716
4717/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4718/// "lead" diagnostic; it will be given two arguments, the source and
4719/// target types of the conversion.
4720void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4721                                       SourceLocation CaretLoc,
4722                                       const PartialDiagnostic &PDiag) {
4723  Diag(CaretLoc, PDiag)
4724    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4725  for (AmbiguousConversionSequence::const_iterator
4726         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4727    NoteOverloadCandidate(*I);
4728  }
4729}
4730
4731namespace {
4732
4733void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4734  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4735  assert(Conv.isBad());
4736  assert(Cand->Function && "for now, candidate must be a function");
4737  FunctionDecl *Fn = Cand->Function;
4738
4739  // There's a conversion slot for the object argument if this is a
4740  // non-constructor method.  Note that 'I' corresponds the
4741  // conversion-slot index.
4742  bool isObjectArgument = false;
4743  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4744    if (I == 0)
4745      isObjectArgument = true;
4746    else
4747      I--;
4748  }
4749
4750  std::string FnDesc;
4751  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4752
4753  Expr *FromExpr = Conv.Bad.FromExpr;
4754  QualType FromTy = Conv.Bad.getFromType();
4755  QualType ToTy = Conv.Bad.getToType();
4756
4757  if (FromTy == S.Context.OverloadTy) {
4758    assert(FromExpr && "overload set argument came from implicit argument?");
4759    Expr *E = FromExpr->IgnoreParens();
4760    if (isa<UnaryOperator>(E))
4761      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4762    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4763
4764    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4765      << (unsigned) FnKind << FnDesc
4766      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4767      << ToTy << Name << I+1;
4768    return;
4769  }
4770
4771  // Do some hand-waving analysis to see if the non-viability is due
4772  // to a qualifier mismatch.
4773  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4774  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4775  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4776    CToTy = RT->getPointeeType();
4777  else {
4778    // TODO: detect and diagnose the full richness of const mismatches.
4779    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4780      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4781        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4782  }
4783
4784  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4785      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4786    // It is dumb that we have to do this here.
4787    while (isa<ArrayType>(CFromTy))
4788      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4789    while (isa<ArrayType>(CToTy))
4790      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4791
4792    Qualifiers FromQs = CFromTy.getQualifiers();
4793    Qualifiers ToQs = CToTy.getQualifiers();
4794
4795    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4796      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4797        << (unsigned) FnKind << FnDesc
4798        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4799        << FromTy
4800        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4801        << (unsigned) isObjectArgument << I+1;
4802      return;
4803    }
4804
4805    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4806    assert(CVR && "unexpected qualifiers mismatch");
4807
4808    if (isObjectArgument) {
4809      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4810        << (unsigned) FnKind << FnDesc
4811        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4812        << FromTy << (CVR - 1);
4813    } else {
4814      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4815        << (unsigned) FnKind << FnDesc
4816        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4817        << FromTy << (CVR - 1) << I+1;
4818    }
4819    return;
4820  }
4821
4822  // Diagnose references or pointers to incomplete types differently,
4823  // since it's far from impossible that the incompleteness triggered
4824  // the failure.
4825  QualType TempFromTy = FromTy.getNonReferenceType();
4826  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4827    TempFromTy = PTy->getPointeeType();
4828  if (TempFromTy->isIncompleteType()) {
4829    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4830      << (unsigned) FnKind << FnDesc
4831      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4832      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4833    return;
4834  }
4835
4836  // TODO: specialize more based on the kind of mismatch
4837  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4838    << (unsigned) FnKind << FnDesc
4839    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4840    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4841}
4842
4843void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4844                           unsigned NumFormalArgs) {
4845  // TODO: treat calls to a missing default constructor as a special case
4846
4847  FunctionDecl *Fn = Cand->Function;
4848  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4849
4850  unsigned MinParams = Fn->getMinRequiredArguments();
4851
4852  // at least / at most / exactly
4853  unsigned mode, modeCount;
4854  if (NumFormalArgs < MinParams) {
4855    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4856    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4857      mode = 0; // "at least"
4858    else
4859      mode = 2; // "exactly"
4860    modeCount = MinParams;
4861  } else {
4862    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4863    if (MinParams != FnTy->getNumArgs())
4864      mode = 1; // "at most"
4865    else
4866      mode = 2; // "exactly"
4867    modeCount = FnTy->getNumArgs();
4868  }
4869
4870  std::string Description;
4871  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4872
4873  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4874    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4875}
4876
4877/// Diagnose a failed template-argument deduction.
4878void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4879                          Expr **Args, unsigned NumArgs) {
4880  FunctionDecl *Fn = Cand->Function; // pattern
4881
4882  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4883                                   Cand->DeductionFailure.TemplateParameter);
4884
4885  switch (Cand->DeductionFailure.Result) {
4886  case Sema::TDK_Success:
4887    llvm_unreachable("TDK_success while diagnosing bad deduction");
4888
4889  case Sema::TDK_Incomplete: {
4890    NamedDecl *ParamD;
4891    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4892    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4893    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4894    assert(ParamD && "no parameter found for incomplete deduction result");
4895    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4896      << ParamD->getDeclName();
4897    return;
4898  }
4899
4900  // TODO: diagnose these individually, then kill off
4901  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4902  case Sema::TDK_InstantiationDepth:
4903  case Sema::TDK_Inconsistent:
4904  case Sema::TDK_InconsistentQuals:
4905  case Sema::TDK_SubstitutionFailure:
4906  case Sema::TDK_NonDeducedMismatch:
4907  case Sema::TDK_TooManyArguments:
4908  case Sema::TDK_TooFewArguments:
4909  case Sema::TDK_InvalidExplicitArguments:
4910  case Sema::TDK_FailedOverloadResolution:
4911    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4912    return;
4913  }
4914}
4915
4916/// Generates a 'note' diagnostic for an overload candidate.  We've
4917/// already generated a primary error at the call site.
4918///
4919/// It really does need to be a single diagnostic with its caret
4920/// pointed at the candidate declaration.  Yes, this creates some
4921/// major challenges of technical writing.  Yes, this makes pointing
4922/// out problems with specific arguments quite awkward.  It's still
4923/// better than generating twenty screens of text for every failed
4924/// overload.
4925///
4926/// It would be great to be able to express per-candidate problems
4927/// more richly for those diagnostic clients that cared, but we'd
4928/// still have to be just as careful with the default diagnostics.
4929void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4930                           Expr **Args, unsigned NumArgs) {
4931  FunctionDecl *Fn = Cand->Function;
4932
4933  // Note deleted candidates, but only if they're viable.
4934  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4935    std::string FnDesc;
4936    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4937
4938    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4939      << FnKind << FnDesc << Fn->isDeleted();
4940    return;
4941  }
4942
4943  // We don't really have anything else to say about viable candidates.
4944  if (Cand->Viable) {
4945    S.NoteOverloadCandidate(Fn);
4946    return;
4947  }
4948
4949  switch (Cand->FailureKind) {
4950  case ovl_fail_too_many_arguments:
4951  case ovl_fail_too_few_arguments:
4952    return DiagnoseArityMismatch(S, Cand, NumArgs);
4953
4954  case ovl_fail_bad_deduction:
4955    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4956
4957  case ovl_fail_trivial_conversion:
4958  case ovl_fail_bad_final_conversion:
4959  case ovl_fail_final_conversion_not_exact:
4960    return S.NoteOverloadCandidate(Fn);
4961
4962  case ovl_fail_bad_conversion: {
4963    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4964    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4965      if (Cand->Conversions[I].isBad())
4966        return DiagnoseBadConversion(S, Cand, I);
4967
4968    // FIXME: this currently happens when we're called from SemaInit
4969    // when user-conversion overload fails.  Figure out how to handle
4970    // those conditions and diagnose them well.
4971    return S.NoteOverloadCandidate(Fn);
4972  }
4973  }
4974}
4975
4976void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4977  // Desugar the type of the surrogate down to a function type,
4978  // retaining as many typedefs as possible while still showing
4979  // the function type (and, therefore, its parameter types).
4980  QualType FnType = Cand->Surrogate->getConversionType();
4981  bool isLValueReference = false;
4982  bool isRValueReference = false;
4983  bool isPointer = false;
4984  if (const LValueReferenceType *FnTypeRef =
4985        FnType->getAs<LValueReferenceType>()) {
4986    FnType = FnTypeRef->getPointeeType();
4987    isLValueReference = true;
4988  } else if (const RValueReferenceType *FnTypeRef =
4989               FnType->getAs<RValueReferenceType>()) {
4990    FnType = FnTypeRef->getPointeeType();
4991    isRValueReference = true;
4992  }
4993  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4994    FnType = FnTypePtr->getPointeeType();
4995    isPointer = true;
4996  }
4997  // Desugar down to a function type.
4998  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4999  // Reconstruct the pointer/reference as appropriate.
5000  if (isPointer) FnType = S.Context.getPointerType(FnType);
5001  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5002  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5003
5004  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5005    << FnType;
5006}
5007
5008void NoteBuiltinOperatorCandidate(Sema &S,
5009                                  const char *Opc,
5010                                  SourceLocation OpLoc,
5011                                  OverloadCandidate *Cand) {
5012  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5013  std::string TypeStr("operator");
5014  TypeStr += Opc;
5015  TypeStr += "(";
5016  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5017  if (Cand->Conversions.size() == 1) {
5018    TypeStr += ")";
5019    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5020  } else {
5021    TypeStr += ", ";
5022    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5023    TypeStr += ")";
5024    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5025  }
5026}
5027
5028void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5029                                  OverloadCandidate *Cand) {
5030  unsigned NoOperands = Cand->Conversions.size();
5031  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5032    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5033    if (ICS.isBad()) break; // all meaningless after first invalid
5034    if (!ICS.isAmbiguous()) continue;
5035
5036    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5037                              S.PDiag(diag::note_ambiguous_type_conversion));
5038  }
5039}
5040
5041SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5042  if (Cand->Function)
5043    return Cand->Function->getLocation();
5044  if (Cand->IsSurrogate)
5045    return Cand->Surrogate->getLocation();
5046  return SourceLocation();
5047}
5048
5049struct CompareOverloadCandidatesForDisplay {
5050  Sema &S;
5051  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5052
5053  bool operator()(const OverloadCandidate *L,
5054                  const OverloadCandidate *R) {
5055    // Fast-path this check.
5056    if (L == R) return false;
5057
5058    // Order first by viability.
5059    if (L->Viable) {
5060      if (!R->Viable) return true;
5061
5062      // TODO: introduce a tri-valued comparison for overload
5063      // candidates.  Would be more worthwhile if we had a sort
5064      // that could exploit it.
5065      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5066      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5067    } else if (R->Viable)
5068      return false;
5069
5070    assert(L->Viable == R->Viable);
5071
5072    // Criteria by which we can sort non-viable candidates:
5073    if (!L->Viable) {
5074      // 1. Arity mismatches come after other candidates.
5075      if (L->FailureKind == ovl_fail_too_many_arguments ||
5076          L->FailureKind == ovl_fail_too_few_arguments)
5077        return false;
5078      if (R->FailureKind == ovl_fail_too_many_arguments ||
5079          R->FailureKind == ovl_fail_too_few_arguments)
5080        return true;
5081
5082      // 2. Bad conversions come first and are ordered by the number
5083      // of bad conversions and quality of good conversions.
5084      if (L->FailureKind == ovl_fail_bad_conversion) {
5085        if (R->FailureKind != ovl_fail_bad_conversion)
5086          return true;
5087
5088        // If there's any ordering between the defined conversions...
5089        // FIXME: this might not be transitive.
5090        assert(L->Conversions.size() == R->Conversions.size());
5091
5092        int leftBetter = 0;
5093        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5094        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5095          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5096                                                       R->Conversions[I])) {
5097          case ImplicitConversionSequence::Better:
5098            leftBetter++;
5099            break;
5100
5101          case ImplicitConversionSequence::Worse:
5102            leftBetter--;
5103            break;
5104
5105          case ImplicitConversionSequence::Indistinguishable:
5106            break;
5107          }
5108        }
5109        if (leftBetter > 0) return true;
5110        if (leftBetter < 0) return false;
5111
5112      } else if (R->FailureKind == ovl_fail_bad_conversion)
5113        return false;
5114
5115      // TODO: others?
5116    }
5117
5118    // Sort everything else by location.
5119    SourceLocation LLoc = GetLocationForCandidate(L);
5120    SourceLocation RLoc = GetLocationForCandidate(R);
5121
5122    // Put candidates without locations (e.g. builtins) at the end.
5123    if (LLoc.isInvalid()) return false;
5124    if (RLoc.isInvalid()) return true;
5125
5126    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5127  }
5128};
5129
5130/// CompleteNonViableCandidate - Normally, overload resolution only
5131/// computes up to the first
5132void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5133                                Expr **Args, unsigned NumArgs) {
5134  assert(!Cand->Viable);
5135
5136  // Don't do anything on failures other than bad conversion.
5137  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5138
5139  // Skip forward to the first bad conversion.
5140  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5141  unsigned ConvCount = Cand->Conversions.size();
5142  while (true) {
5143    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5144    ConvIdx++;
5145    if (Cand->Conversions[ConvIdx - 1].isBad())
5146      break;
5147  }
5148
5149  if (ConvIdx == ConvCount)
5150    return;
5151
5152  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5153         "remaining conversion is initialized?");
5154
5155  // FIXME: these should probably be preserved from the overload
5156  // operation somehow.
5157  bool SuppressUserConversions = false;
5158  bool ForceRValue = false;
5159
5160  const FunctionProtoType* Proto;
5161  unsigned ArgIdx = ConvIdx;
5162
5163  if (Cand->IsSurrogate) {
5164    QualType ConvType
5165      = Cand->Surrogate->getConversionType().getNonReferenceType();
5166    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5167      ConvType = ConvPtrType->getPointeeType();
5168    Proto = ConvType->getAs<FunctionProtoType>();
5169    ArgIdx--;
5170  } else if (Cand->Function) {
5171    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5172    if (isa<CXXMethodDecl>(Cand->Function) &&
5173        !isa<CXXConstructorDecl>(Cand->Function))
5174      ArgIdx--;
5175  } else {
5176    // Builtin binary operator with a bad first conversion.
5177    assert(ConvCount <= 3);
5178    for (; ConvIdx != ConvCount; ++ConvIdx)
5179      Cand->Conversions[ConvIdx]
5180        = S.TryCopyInitialization(Args[ConvIdx],
5181                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
5182                                  SuppressUserConversions, ForceRValue,
5183                                  /*InOverloadResolution*/ true);
5184    return;
5185  }
5186
5187  // Fill in the rest of the conversions.
5188  unsigned NumArgsInProto = Proto->getNumArgs();
5189  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5190    if (ArgIdx < NumArgsInProto)
5191      Cand->Conversions[ConvIdx]
5192        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
5193                                  SuppressUserConversions, ForceRValue,
5194                                  /*InOverloadResolution=*/true);
5195    else
5196      Cand->Conversions[ConvIdx].setEllipsis();
5197  }
5198}
5199
5200} // end anonymous namespace
5201
5202/// PrintOverloadCandidates - When overload resolution fails, prints
5203/// diagnostic messages containing the candidates in the candidate
5204/// set.
5205void
5206Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5207                              OverloadCandidateDisplayKind OCD,
5208                              Expr **Args, unsigned NumArgs,
5209                              const char *Opc,
5210                              SourceLocation OpLoc) {
5211  // Sort the candidates by viability and position.  Sorting directly would
5212  // be prohibitive, so we make a set of pointers and sort those.
5213  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5214  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5215  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5216                                  LastCand = CandidateSet.end();
5217       Cand != LastCand; ++Cand) {
5218    if (Cand->Viable)
5219      Cands.push_back(Cand);
5220    else if (OCD == OCD_AllCandidates) {
5221      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5222      Cands.push_back(Cand);
5223    }
5224  }
5225
5226  std::sort(Cands.begin(), Cands.end(),
5227            CompareOverloadCandidatesForDisplay(*this));
5228
5229  bool ReportedAmbiguousConversions = false;
5230
5231  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5232  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5233    OverloadCandidate *Cand = *I;
5234
5235    if (Cand->Function)
5236      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5237    else if (Cand->IsSurrogate)
5238      NoteSurrogateCandidate(*this, Cand);
5239
5240    // This a builtin candidate.  We do not, in general, want to list
5241    // every possible builtin candidate.
5242    else if (Cand->Viable) {
5243      // Generally we only see ambiguities including viable builtin
5244      // operators if overload resolution got screwed up by an
5245      // ambiguous user-defined conversion.
5246      //
5247      // FIXME: It's quite possible for different conversions to see
5248      // different ambiguities, though.
5249      if (!ReportedAmbiguousConversions) {
5250        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5251        ReportedAmbiguousConversions = true;
5252      }
5253
5254      // If this is a viable builtin, print it.
5255      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5256    }
5257  }
5258}
5259
5260static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5261  if (isa<UnresolvedLookupExpr>(E))
5262    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5263
5264  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5265}
5266
5267/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5268/// an overloaded function (C++ [over.over]), where @p From is an
5269/// expression with overloaded function type and @p ToType is the type
5270/// we're trying to resolve to. For example:
5271///
5272/// @code
5273/// int f(double);
5274/// int f(int);
5275///
5276/// int (*pfd)(double) = f; // selects f(double)
5277/// @endcode
5278///
5279/// This routine returns the resulting FunctionDecl if it could be
5280/// resolved, and NULL otherwise. When @p Complain is true, this
5281/// routine will emit diagnostics if there is an error.
5282FunctionDecl *
5283Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5284                                         bool Complain,
5285                                         DeclAccessPair &FoundResult) {
5286  QualType FunctionType = ToType;
5287  bool IsMember = false;
5288  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5289    FunctionType = ToTypePtr->getPointeeType();
5290  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5291    FunctionType = ToTypeRef->getPointeeType();
5292  else if (const MemberPointerType *MemTypePtr =
5293                    ToType->getAs<MemberPointerType>()) {
5294    FunctionType = MemTypePtr->getPointeeType();
5295    IsMember = true;
5296  }
5297
5298  // We only look at pointers or references to functions.
5299  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5300  if (!FunctionType->isFunctionType())
5301    return 0;
5302
5303  // Find the actual overloaded function declaration.
5304  if (From->getType() != Context.OverloadTy)
5305    return 0;
5306
5307  // C++ [over.over]p1:
5308  //   [...] [Note: any redundant set of parentheses surrounding the
5309  //   overloaded function name is ignored (5.1). ]
5310  // C++ [over.over]p1:
5311  //   [...] The overloaded function name can be preceded by the &
5312  //   operator.
5313  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5314  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5315  if (OvlExpr->hasExplicitTemplateArgs()) {
5316    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5317    ExplicitTemplateArgs = &ETABuffer;
5318  }
5319
5320  // Look through all of the overloaded functions, searching for one
5321  // whose type matches exactly.
5322  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5323  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5324
5325  bool FoundNonTemplateFunction = false;
5326  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5327         E = OvlExpr->decls_end(); I != E; ++I) {
5328    // Look through any using declarations to find the underlying function.
5329    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5330
5331    // C++ [over.over]p3:
5332    //   Non-member functions and static member functions match
5333    //   targets of type "pointer-to-function" or "reference-to-function."
5334    //   Nonstatic member functions match targets of
5335    //   type "pointer-to-member-function."
5336    // Note that according to DR 247, the containing class does not matter.
5337
5338    if (FunctionTemplateDecl *FunctionTemplate
5339          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5340      if (CXXMethodDecl *Method
5341            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5342        // Skip non-static function templates when converting to pointer, and
5343        // static when converting to member pointer.
5344        if (Method->isStatic() == IsMember)
5345          continue;
5346      } else if (IsMember)
5347        continue;
5348
5349      // C++ [over.over]p2:
5350      //   If the name is a function template, template argument deduction is
5351      //   done (14.8.2.2), and if the argument deduction succeeds, the
5352      //   resulting template argument list is used to generate a single
5353      //   function template specialization, which is added to the set of
5354      //   overloaded functions considered.
5355      // FIXME: We don't really want to build the specialization here, do we?
5356      FunctionDecl *Specialization = 0;
5357      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5358      if (TemplateDeductionResult Result
5359            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5360                                      FunctionType, Specialization, Info)) {
5361        // FIXME: make a note of the failed deduction for diagnostics.
5362        (void)Result;
5363      } else {
5364        // FIXME: If the match isn't exact, shouldn't we just drop this as
5365        // a candidate? Find a testcase before changing the code.
5366        assert(FunctionType
5367                 == Context.getCanonicalType(Specialization->getType()));
5368        Matches.push_back(std::make_pair(I.getPair(),
5369                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5370      }
5371
5372      continue;
5373    }
5374
5375    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5376      // Skip non-static functions when converting to pointer, and static
5377      // when converting to member pointer.
5378      if (Method->isStatic() == IsMember)
5379        continue;
5380
5381      // If we have explicit template arguments, skip non-templates.
5382      if (OvlExpr->hasExplicitTemplateArgs())
5383        continue;
5384    } else if (IsMember)
5385      continue;
5386
5387    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5388      QualType ResultTy;
5389      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5390          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5391                               ResultTy)) {
5392        Matches.push_back(std::make_pair(I.getPair(),
5393                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5394        FoundNonTemplateFunction = true;
5395      }
5396    }
5397  }
5398
5399  // If there were 0 or 1 matches, we're done.
5400  if (Matches.empty())
5401    return 0;
5402  else if (Matches.size() == 1) {
5403    FunctionDecl *Result = Matches[0].second;
5404    FoundResult = Matches[0].first;
5405    MarkDeclarationReferenced(From->getLocStart(), Result);
5406    if (Complain)
5407      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5408    return Result;
5409  }
5410
5411  // C++ [over.over]p4:
5412  //   If more than one function is selected, [...]
5413  if (!FoundNonTemplateFunction) {
5414    //   [...] and any given function template specialization F1 is
5415    //   eliminated if the set contains a second function template
5416    //   specialization whose function template is more specialized
5417    //   than the function template of F1 according to the partial
5418    //   ordering rules of 14.5.5.2.
5419
5420    // The algorithm specified above is quadratic. We instead use a
5421    // two-pass algorithm (similar to the one used to identify the
5422    // best viable function in an overload set) that identifies the
5423    // best function template (if it exists).
5424
5425    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5426    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5427      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5428
5429    UnresolvedSetIterator Result =
5430        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5431                           TPOC_Other, From->getLocStart(),
5432                           PDiag(),
5433                           PDiag(diag::err_addr_ovl_ambiguous)
5434                               << Matches[0].second->getDeclName(),
5435                           PDiag(diag::note_ovl_candidate)
5436                               << (unsigned) oc_function_template);
5437    assert(Result != MatchesCopy.end() && "no most-specialized template");
5438    MarkDeclarationReferenced(From->getLocStart(), *Result);
5439    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5440    if (Complain)
5441      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5442    return cast<FunctionDecl>(*Result);
5443  }
5444
5445  //   [...] any function template specializations in the set are
5446  //   eliminated if the set also contains a non-template function, [...]
5447  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5448    if (Matches[I].second->getPrimaryTemplate() == 0)
5449      ++I;
5450    else {
5451      Matches[I] = Matches[--N];
5452      Matches.set_size(N);
5453    }
5454  }
5455
5456  // [...] After such eliminations, if any, there shall remain exactly one
5457  // selected function.
5458  if (Matches.size() == 1) {
5459    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5460    FoundResult = Matches[0].first;
5461    if (Complain)
5462      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5463    return cast<FunctionDecl>(Matches[0].second);
5464  }
5465
5466  // FIXME: We should probably return the same thing that BestViableFunction
5467  // returns (even if we issue the diagnostics here).
5468  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5469    << Matches[0].second->getDeclName();
5470  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5471    NoteOverloadCandidate(Matches[I].second);
5472  return 0;
5473}
5474
5475/// \brief Given an expression that refers to an overloaded function, try to
5476/// resolve that overloaded function expression down to a single function.
5477///
5478/// This routine can only resolve template-ids that refer to a single function
5479/// template, where that template-id refers to a single template whose template
5480/// arguments are either provided by the template-id or have defaults,
5481/// as described in C++0x [temp.arg.explicit]p3.
5482FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5483  // C++ [over.over]p1:
5484  //   [...] [Note: any redundant set of parentheses surrounding the
5485  //   overloaded function name is ignored (5.1). ]
5486  // C++ [over.over]p1:
5487  //   [...] The overloaded function name can be preceded by the &
5488  //   operator.
5489
5490  if (From->getType() != Context.OverloadTy)
5491    return 0;
5492
5493  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5494
5495  // If we didn't actually find any template-ids, we're done.
5496  if (!OvlExpr->hasExplicitTemplateArgs())
5497    return 0;
5498
5499  TemplateArgumentListInfo ExplicitTemplateArgs;
5500  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5501
5502  // Look through all of the overloaded functions, searching for one
5503  // whose type matches exactly.
5504  FunctionDecl *Matched = 0;
5505  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5506         E = OvlExpr->decls_end(); I != E; ++I) {
5507    // C++0x [temp.arg.explicit]p3:
5508    //   [...] In contexts where deduction is done and fails, or in contexts
5509    //   where deduction is not done, if a template argument list is
5510    //   specified and it, along with any default template arguments,
5511    //   identifies a single function template specialization, then the
5512    //   template-id is an lvalue for the function template specialization.
5513    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5514
5515    // C++ [over.over]p2:
5516    //   If the name is a function template, template argument deduction is
5517    //   done (14.8.2.2), and if the argument deduction succeeds, the
5518    //   resulting template argument list is used to generate a single
5519    //   function template specialization, which is added to the set of
5520    //   overloaded functions considered.
5521    FunctionDecl *Specialization = 0;
5522    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5523    if (TemplateDeductionResult Result
5524          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5525                                    Specialization, Info)) {
5526      // FIXME: make a note of the failed deduction for diagnostics.
5527      (void)Result;
5528      continue;
5529    }
5530
5531    // Multiple matches; we can't resolve to a single declaration.
5532    if (Matched)
5533      return 0;
5534
5535    Matched = Specialization;
5536  }
5537
5538  return Matched;
5539}
5540
5541/// \brief Add a single candidate to the overload set.
5542static void AddOverloadedCallCandidate(Sema &S,
5543                                       DeclAccessPair FoundDecl,
5544                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5545                                       Expr **Args, unsigned NumArgs,
5546                                       OverloadCandidateSet &CandidateSet,
5547                                       bool PartialOverloading) {
5548  NamedDecl *Callee = FoundDecl.getDecl();
5549  if (isa<UsingShadowDecl>(Callee))
5550    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5551
5552  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5553    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5554    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5555                           false, false, PartialOverloading);
5556    return;
5557  }
5558
5559  if (FunctionTemplateDecl *FuncTemplate
5560      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5561    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5562                                   ExplicitTemplateArgs,
5563                                   Args, NumArgs, CandidateSet);
5564    return;
5565  }
5566
5567  assert(false && "unhandled case in overloaded call candidate");
5568
5569  // do nothing?
5570}
5571
5572/// \brief Add the overload candidates named by callee and/or found by argument
5573/// dependent lookup to the given overload set.
5574void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5575                                       Expr **Args, unsigned NumArgs,
5576                                       OverloadCandidateSet &CandidateSet,
5577                                       bool PartialOverloading) {
5578
5579#ifndef NDEBUG
5580  // Verify that ArgumentDependentLookup is consistent with the rules
5581  // in C++0x [basic.lookup.argdep]p3:
5582  //
5583  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5584  //   and let Y be the lookup set produced by argument dependent
5585  //   lookup (defined as follows). If X contains
5586  //
5587  //     -- a declaration of a class member, or
5588  //
5589  //     -- a block-scope function declaration that is not a
5590  //        using-declaration, or
5591  //
5592  //     -- a declaration that is neither a function or a function
5593  //        template
5594  //
5595  //   then Y is empty.
5596
5597  if (ULE->requiresADL()) {
5598    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5599           E = ULE->decls_end(); I != E; ++I) {
5600      assert(!(*I)->getDeclContext()->isRecord());
5601      assert(isa<UsingShadowDecl>(*I) ||
5602             !(*I)->getDeclContext()->isFunctionOrMethod());
5603      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5604    }
5605  }
5606#endif
5607
5608  // It would be nice to avoid this copy.
5609  TemplateArgumentListInfo TABuffer;
5610  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5611  if (ULE->hasExplicitTemplateArgs()) {
5612    ULE->copyTemplateArgumentsInto(TABuffer);
5613    ExplicitTemplateArgs = &TABuffer;
5614  }
5615
5616  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5617         E = ULE->decls_end(); I != E; ++I)
5618    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5619                               Args, NumArgs, CandidateSet,
5620                               PartialOverloading);
5621
5622  if (ULE->requiresADL())
5623    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5624                                         Args, NumArgs,
5625                                         ExplicitTemplateArgs,
5626                                         CandidateSet,
5627                                         PartialOverloading);
5628}
5629
5630static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5631                                      Expr **Args, unsigned NumArgs) {
5632  Fn->Destroy(SemaRef.Context);
5633  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5634    Args[Arg]->Destroy(SemaRef.Context);
5635  return SemaRef.ExprError();
5636}
5637
5638/// Attempts to recover from a call where no functions were found.
5639///
5640/// Returns true if new candidates were found.
5641static Sema::OwningExprResult
5642BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5643                      UnresolvedLookupExpr *ULE,
5644                      SourceLocation LParenLoc,
5645                      Expr **Args, unsigned NumArgs,
5646                      SourceLocation *CommaLocs,
5647                      SourceLocation RParenLoc) {
5648
5649  CXXScopeSpec SS;
5650  if (ULE->getQualifier()) {
5651    SS.setScopeRep(ULE->getQualifier());
5652    SS.setRange(ULE->getQualifierRange());
5653  }
5654
5655  TemplateArgumentListInfo TABuffer;
5656  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5657  if (ULE->hasExplicitTemplateArgs()) {
5658    ULE->copyTemplateArgumentsInto(TABuffer);
5659    ExplicitTemplateArgs = &TABuffer;
5660  }
5661
5662  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5663                 Sema::LookupOrdinaryName);
5664  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5665    return Destroy(SemaRef, Fn, Args, NumArgs);
5666
5667  assert(!R.empty() && "lookup results empty despite recovery");
5668
5669  // Build an implicit member call if appropriate.  Just drop the
5670  // casts and such from the call, we don't really care.
5671  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5672  if ((*R.begin())->isCXXClassMember())
5673    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5674  else if (ExplicitTemplateArgs)
5675    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5676  else
5677    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5678
5679  if (NewFn.isInvalid())
5680    return Destroy(SemaRef, Fn, Args, NumArgs);
5681
5682  Fn->Destroy(SemaRef.Context);
5683
5684  // This shouldn't cause an infinite loop because we're giving it
5685  // an expression with non-empty lookup results, which should never
5686  // end up here.
5687  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5688                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5689                               CommaLocs, RParenLoc);
5690}
5691
5692/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5693/// (which eventually refers to the declaration Func) and the call
5694/// arguments Args/NumArgs, attempt to resolve the function call down
5695/// to a specific function. If overload resolution succeeds, returns
5696/// the function declaration produced by overload
5697/// resolution. Otherwise, emits diagnostics, deletes all of the
5698/// arguments and Fn, and returns NULL.
5699Sema::OwningExprResult
5700Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5701                              SourceLocation LParenLoc,
5702                              Expr **Args, unsigned NumArgs,
5703                              SourceLocation *CommaLocs,
5704                              SourceLocation RParenLoc) {
5705#ifndef NDEBUG
5706  if (ULE->requiresADL()) {
5707    // To do ADL, we must have found an unqualified name.
5708    assert(!ULE->getQualifier() && "qualified name with ADL");
5709
5710    // We don't perform ADL for implicit declarations of builtins.
5711    // Verify that this was correctly set up.
5712    FunctionDecl *F;
5713    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5714        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5715        F->getBuiltinID() && F->isImplicit())
5716      assert(0 && "performing ADL for builtin");
5717
5718    // We don't perform ADL in C.
5719    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5720  }
5721#endif
5722
5723  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5724
5725  // Add the functions denoted by the callee to the set of candidate
5726  // functions, including those from argument-dependent lookup.
5727  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5728
5729  // If we found nothing, try to recover.
5730  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5731  // bailout out if it fails.
5732  if (CandidateSet.empty())
5733    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5734                                 CommaLocs, RParenLoc);
5735
5736  OverloadCandidateSet::iterator Best;
5737  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5738  case OR_Success: {
5739    FunctionDecl *FDecl = Best->Function;
5740    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5741    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5742    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5743  }
5744
5745  case OR_No_Viable_Function:
5746    Diag(Fn->getSourceRange().getBegin(),
5747         diag::err_ovl_no_viable_function_in_call)
5748      << ULE->getName() << Fn->getSourceRange();
5749    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5750    break;
5751
5752  case OR_Ambiguous:
5753    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5754      << ULE->getName() << Fn->getSourceRange();
5755    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5756    break;
5757
5758  case OR_Deleted:
5759    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5760      << Best->Function->isDeleted()
5761      << ULE->getName()
5762      << Fn->getSourceRange();
5763    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5764    break;
5765  }
5766
5767  // Overload resolution failed. Destroy all of the subexpressions and
5768  // return NULL.
5769  Fn->Destroy(Context);
5770  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5771    Args[Arg]->Destroy(Context);
5772  return ExprError();
5773}
5774
5775static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5776  return Functions.size() > 1 ||
5777    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5778}
5779
5780/// \brief Create a unary operation that may resolve to an overloaded
5781/// operator.
5782///
5783/// \param OpLoc The location of the operator itself (e.g., '*').
5784///
5785/// \param OpcIn The UnaryOperator::Opcode that describes this
5786/// operator.
5787///
5788/// \param Functions The set of non-member functions that will be
5789/// considered by overload resolution. The caller needs to build this
5790/// set based on the context using, e.g.,
5791/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5792/// set should not contain any member functions; those will be added
5793/// by CreateOverloadedUnaryOp().
5794///
5795/// \param input The input argument.
5796Sema::OwningExprResult
5797Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5798                              const UnresolvedSetImpl &Fns,
5799                              ExprArg input) {
5800  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5801  Expr *Input = (Expr *)input.get();
5802
5803  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5804  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5805  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5806
5807  Expr *Args[2] = { Input, 0 };
5808  unsigned NumArgs = 1;
5809
5810  // For post-increment and post-decrement, add the implicit '0' as
5811  // the second argument, so that we know this is a post-increment or
5812  // post-decrement.
5813  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5814    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5815    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5816                                           SourceLocation());
5817    NumArgs = 2;
5818  }
5819
5820  if (Input->isTypeDependent()) {
5821    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5822    UnresolvedLookupExpr *Fn
5823      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5824                                     0, SourceRange(), OpName, OpLoc,
5825                                     /*ADL*/ true, IsOverloaded(Fns));
5826    Fn->addDecls(Fns.begin(), Fns.end());
5827
5828    input.release();
5829    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5830                                                   &Args[0], NumArgs,
5831                                                   Context.DependentTy,
5832                                                   OpLoc));
5833  }
5834
5835  // Build an empty overload set.
5836  OverloadCandidateSet CandidateSet(OpLoc);
5837
5838  // Add the candidates from the given function set.
5839  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5840
5841  // Add operator candidates that are member functions.
5842  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5843
5844  // Add candidates from ADL.
5845  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5846                                       Args, NumArgs,
5847                                       /*ExplicitTemplateArgs*/ 0,
5848                                       CandidateSet);
5849
5850  // Add builtin operator candidates.
5851  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5852
5853  // Perform overload resolution.
5854  OverloadCandidateSet::iterator Best;
5855  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5856  case OR_Success: {
5857    // We found a built-in operator or an overloaded operator.
5858    FunctionDecl *FnDecl = Best->Function;
5859
5860    if (FnDecl) {
5861      // We matched an overloaded operator. Build a call to that
5862      // operator.
5863
5864      // Convert the arguments.
5865      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5866        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5867
5868        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5869                                                Best->FoundDecl, Method))
5870          return ExprError();
5871      } else {
5872        // Convert the arguments.
5873        OwningExprResult InputInit
5874          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5875                                                      FnDecl->getParamDecl(0)),
5876                                      SourceLocation(),
5877                                      move(input));
5878        if (InputInit.isInvalid())
5879          return ExprError();
5880
5881        input = move(InputInit);
5882        Input = (Expr *)input.get();
5883      }
5884
5885      // Determine the result type
5886      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5887
5888      // Build the actual expression node.
5889      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5890                                               SourceLocation());
5891      UsualUnaryConversions(FnExpr);
5892
5893      input.release();
5894      Args[0] = Input;
5895      ExprOwningPtr<CallExpr> TheCall(this,
5896        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5897                                          Args, NumArgs, ResultTy, OpLoc));
5898
5899      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5900                              FnDecl))
5901        return ExprError();
5902
5903      return MaybeBindToTemporary(TheCall.release());
5904    } else {
5905      // We matched a built-in operator. Convert the arguments, then
5906      // break out so that we will build the appropriate built-in
5907      // operator node.
5908        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5909                                      Best->Conversions[0], AA_Passing))
5910          return ExprError();
5911
5912        break;
5913      }
5914    }
5915
5916    case OR_No_Viable_Function:
5917      // No viable function; fall through to handling this as a
5918      // built-in operator, which will produce an error message for us.
5919      break;
5920
5921    case OR_Ambiguous:
5922      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5923          << UnaryOperator::getOpcodeStr(Opc)
5924          << Input->getSourceRange();
5925      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5926                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5927      return ExprError();
5928
5929    case OR_Deleted:
5930      Diag(OpLoc, diag::err_ovl_deleted_oper)
5931        << Best->Function->isDeleted()
5932        << UnaryOperator::getOpcodeStr(Opc)
5933        << Input->getSourceRange();
5934      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5935      return ExprError();
5936    }
5937
5938  // Either we found no viable overloaded operator or we matched a
5939  // built-in operator. In either case, fall through to trying to
5940  // build a built-in operation.
5941  input.release();
5942  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5943}
5944
5945/// \brief Create a binary operation that may resolve to an overloaded
5946/// operator.
5947///
5948/// \param OpLoc The location of the operator itself (e.g., '+').
5949///
5950/// \param OpcIn The BinaryOperator::Opcode that describes this
5951/// operator.
5952///
5953/// \param Functions The set of non-member functions that will be
5954/// considered by overload resolution. The caller needs to build this
5955/// set based on the context using, e.g.,
5956/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5957/// set should not contain any member functions; those will be added
5958/// by CreateOverloadedBinOp().
5959///
5960/// \param LHS Left-hand argument.
5961/// \param RHS Right-hand argument.
5962Sema::OwningExprResult
5963Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5964                            unsigned OpcIn,
5965                            const UnresolvedSetImpl &Fns,
5966                            Expr *LHS, Expr *RHS) {
5967  Expr *Args[2] = { LHS, RHS };
5968  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5969
5970  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5971  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5972  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5973
5974  // If either side is type-dependent, create an appropriate dependent
5975  // expression.
5976  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5977    if (Fns.empty()) {
5978      // If there are no functions to store, just build a dependent
5979      // BinaryOperator or CompoundAssignment.
5980      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5981        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5982                                                  Context.DependentTy, OpLoc));
5983
5984      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5985                                                        Context.DependentTy,
5986                                                        Context.DependentTy,
5987                                                        Context.DependentTy,
5988                                                        OpLoc));
5989    }
5990
5991    // FIXME: save results of ADL from here?
5992    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5993    UnresolvedLookupExpr *Fn
5994      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5995                                     0, SourceRange(), OpName, OpLoc,
5996                                     /*ADL*/ true, IsOverloaded(Fns));
5997
5998    Fn->addDecls(Fns.begin(), Fns.end());
5999    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6000                                                   Args, 2,
6001                                                   Context.DependentTy,
6002                                                   OpLoc));
6003  }
6004
6005  // If this is the .* operator, which is not overloadable, just
6006  // create a built-in binary operator.
6007  if (Opc == BinaryOperator::PtrMemD)
6008    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6009
6010  // If this is the assignment operator, we only perform overload resolution
6011  // if the left-hand side is a class or enumeration type. This is actually
6012  // a hack. The standard requires that we do overload resolution between the
6013  // various built-in candidates, but as DR507 points out, this can lead to
6014  // problems. So we do it this way, which pretty much follows what GCC does.
6015  // Note that we go the traditional code path for compound assignment forms.
6016  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6017    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6018
6019  // Build an empty overload set.
6020  OverloadCandidateSet CandidateSet(OpLoc);
6021
6022  // Add the candidates from the given function set.
6023  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6024
6025  // Add operator candidates that are member functions.
6026  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6027
6028  // Add candidates from ADL.
6029  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6030                                       Args, 2,
6031                                       /*ExplicitTemplateArgs*/ 0,
6032                                       CandidateSet);
6033
6034  // Add builtin operator candidates.
6035  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6036
6037  // Perform overload resolution.
6038  OverloadCandidateSet::iterator Best;
6039  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6040    case OR_Success: {
6041      // We found a built-in operator or an overloaded operator.
6042      FunctionDecl *FnDecl = Best->Function;
6043
6044      if (FnDecl) {
6045        // We matched an overloaded operator. Build a call to that
6046        // operator.
6047
6048        // Convert the arguments.
6049        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6050          // Best->Access is only meaningful for class members.
6051          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6052
6053          OwningExprResult Arg1
6054            = PerformCopyInitialization(
6055                                        InitializedEntity::InitializeParameter(
6056                                                        FnDecl->getParamDecl(0)),
6057                                        SourceLocation(),
6058                                        Owned(Args[1]));
6059          if (Arg1.isInvalid())
6060            return ExprError();
6061
6062          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6063                                                  Best->FoundDecl, Method))
6064            return ExprError();
6065
6066          Args[1] = RHS = Arg1.takeAs<Expr>();
6067        } else {
6068          // Convert the arguments.
6069          OwningExprResult Arg0
6070            = PerformCopyInitialization(
6071                                        InitializedEntity::InitializeParameter(
6072                                                        FnDecl->getParamDecl(0)),
6073                                        SourceLocation(),
6074                                        Owned(Args[0]));
6075          if (Arg0.isInvalid())
6076            return ExprError();
6077
6078          OwningExprResult Arg1
6079            = PerformCopyInitialization(
6080                                        InitializedEntity::InitializeParameter(
6081                                                        FnDecl->getParamDecl(1)),
6082                                        SourceLocation(),
6083                                        Owned(Args[1]));
6084          if (Arg1.isInvalid())
6085            return ExprError();
6086          Args[0] = LHS = Arg0.takeAs<Expr>();
6087          Args[1] = RHS = Arg1.takeAs<Expr>();
6088        }
6089
6090        // Determine the result type
6091        QualType ResultTy
6092          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6093        ResultTy = ResultTy.getNonReferenceType();
6094
6095        // Build the actual expression node.
6096        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6097                                                 OpLoc);
6098        UsualUnaryConversions(FnExpr);
6099
6100        ExprOwningPtr<CXXOperatorCallExpr>
6101          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6102                                                          Args, 2, ResultTy,
6103                                                          OpLoc));
6104
6105        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6106                                FnDecl))
6107          return ExprError();
6108
6109        return MaybeBindToTemporary(TheCall.release());
6110      } else {
6111        // We matched a built-in operator. Convert the arguments, then
6112        // break out so that we will build the appropriate built-in
6113        // operator node.
6114        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6115                                      Best->Conversions[0], AA_Passing) ||
6116            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6117                                      Best->Conversions[1], AA_Passing))
6118          return ExprError();
6119
6120        break;
6121      }
6122    }
6123
6124    case OR_No_Viable_Function: {
6125      // C++ [over.match.oper]p9:
6126      //   If the operator is the operator , [...] and there are no
6127      //   viable functions, then the operator is assumed to be the
6128      //   built-in operator and interpreted according to clause 5.
6129      if (Opc == BinaryOperator::Comma)
6130        break;
6131
6132      // For class as left operand for assignment or compound assigment operator
6133      // do not fall through to handling in built-in, but report that no overloaded
6134      // assignment operator found
6135      OwningExprResult Result = ExprError();
6136      if (Args[0]->getType()->isRecordType() &&
6137          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6138        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6139             << BinaryOperator::getOpcodeStr(Opc)
6140             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6141      } else {
6142        // No viable function; try to create a built-in operation, which will
6143        // produce an error. Then, show the non-viable candidates.
6144        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6145      }
6146      assert(Result.isInvalid() &&
6147             "C++ binary operator overloading is missing candidates!");
6148      if (Result.isInvalid())
6149        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6150                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6151      return move(Result);
6152    }
6153
6154    case OR_Ambiguous:
6155      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6156          << BinaryOperator::getOpcodeStr(Opc)
6157          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6158      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6159                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6160      return ExprError();
6161
6162    case OR_Deleted:
6163      Diag(OpLoc, diag::err_ovl_deleted_oper)
6164        << Best->Function->isDeleted()
6165        << BinaryOperator::getOpcodeStr(Opc)
6166        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6167      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6168      return ExprError();
6169  }
6170
6171  // We matched a built-in operator; build it.
6172  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6173}
6174
6175Action::OwningExprResult
6176Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6177                                         SourceLocation RLoc,
6178                                         ExprArg Base, ExprArg Idx) {
6179  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6180                    static_cast<Expr*>(Idx.get()) };
6181  DeclarationName OpName =
6182      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6183
6184  // If either side is type-dependent, create an appropriate dependent
6185  // expression.
6186  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6187
6188    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6189    UnresolvedLookupExpr *Fn
6190      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6191                                     0, SourceRange(), OpName, LLoc,
6192                                     /*ADL*/ true, /*Overloaded*/ false);
6193    // Can't add any actual overloads yet
6194
6195    Base.release();
6196    Idx.release();
6197    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6198                                                   Args, 2,
6199                                                   Context.DependentTy,
6200                                                   RLoc));
6201  }
6202
6203  // Build an empty overload set.
6204  OverloadCandidateSet CandidateSet(LLoc);
6205
6206  // Subscript can only be overloaded as a member function.
6207
6208  // Add operator candidates that are member functions.
6209  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6210
6211  // Add builtin operator candidates.
6212  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6213
6214  // Perform overload resolution.
6215  OverloadCandidateSet::iterator Best;
6216  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6217    case OR_Success: {
6218      // We found a built-in operator or an overloaded operator.
6219      FunctionDecl *FnDecl = Best->Function;
6220
6221      if (FnDecl) {
6222        // We matched an overloaded operator. Build a call to that
6223        // operator.
6224
6225        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6226
6227        // Convert the arguments.
6228        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6229        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6230                                                Best->FoundDecl, Method))
6231          return ExprError();
6232
6233        // Convert the arguments.
6234        OwningExprResult InputInit
6235          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6236                                                      FnDecl->getParamDecl(0)),
6237                                      SourceLocation(),
6238                                      Owned(Args[1]));
6239        if (InputInit.isInvalid())
6240          return ExprError();
6241
6242        Args[1] = InputInit.takeAs<Expr>();
6243
6244        // Determine the result type
6245        QualType ResultTy
6246          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6247        ResultTy = ResultTy.getNonReferenceType();
6248
6249        // Build the actual expression node.
6250        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6251                                                 LLoc);
6252        UsualUnaryConversions(FnExpr);
6253
6254        Base.release();
6255        Idx.release();
6256        ExprOwningPtr<CXXOperatorCallExpr>
6257          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6258                                                          FnExpr, Args, 2,
6259                                                          ResultTy, RLoc));
6260
6261        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6262                                FnDecl))
6263          return ExprError();
6264
6265        return MaybeBindToTemporary(TheCall.release());
6266      } else {
6267        // We matched a built-in operator. Convert the arguments, then
6268        // break out so that we will build the appropriate built-in
6269        // operator node.
6270        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6271                                      Best->Conversions[0], AA_Passing) ||
6272            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6273                                      Best->Conversions[1], AA_Passing))
6274          return ExprError();
6275
6276        break;
6277      }
6278    }
6279
6280    case OR_No_Viable_Function: {
6281      if (CandidateSet.empty())
6282        Diag(LLoc, diag::err_ovl_no_oper)
6283          << Args[0]->getType() << /*subscript*/ 0
6284          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6285      else
6286        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6287          << Args[0]->getType()
6288          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6289      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6290                              "[]", LLoc);
6291      return ExprError();
6292    }
6293
6294    case OR_Ambiguous:
6295      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6296          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6297      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6298                              "[]", LLoc);
6299      return ExprError();
6300
6301    case OR_Deleted:
6302      Diag(LLoc, diag::err_ovl_deleted_oper)
6303        << Best->Function->isDeleted() << "[]"
6304        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6305      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6306                              "[]", LLoc);
6307      return ExprError();
6308    }
6309
6310  // We matched a built-in operator; build it.
6311  Base.release();
6312  Idx.release();
6313  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6314                                         Owned(Args[1]), RLoc);
6315}
6316
6317/// BuildCallToMemberFunction - Build a call to a member
6318/// function. MemExpr is the expression that refers to the member
6319/// function (and includes the object parameter), Args/NumArgs are the
6320/// arguments to the function call (not including the object
6321/// parameter). The caller needs to validate that the member
6322/// expression refers to a member function or an overloaded member
6323/// function.
6324Sema::OwningExprResult
6325Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6326                                SourceLocation LParenLoc, Expr **Args,
6327                                unsigned NumArgs, SourceLocation *CommaLocs,
6328                                SourceLocation RParenLoc) {
6329  // Dig out the member expression. This holds both the object
6330  // argument and the member function we're referring to.
6331  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6332
6333  MemberExpr *MemExpr;
6334  CXXMethodDecl *Method = 0;
6335  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6336  NestedNameSpecifier *Qualifier = 0;
6337  if (isa<MemberExpr>(NakedMemExpr)) {
6338    MemExpr = cast<MemberExpr>(NakedMemExpr);
6339    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6340    FoundDecl = MemExpr->getFoundDecl();
6341    Qualifier = MemExpr->getQualifier();
6342  } else {
6343    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6344    Qualifier = UnresExpr->getQualifier();
6345
6346    QualType ObjectType = UnresExpr->getBaseType();
6347
6348    // Add overload candidates
6349    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6350
6351    // FIXME: avoid copy.
6352    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6353    if (UnresExpr->hasExplicitTemplateArgs()) {
6354      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6355      TemplateArgs = &TemplateArgsBuffer;
6356    }
6357
6358    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6359           E = UnresExpr->decls_end(); I != E; ++I) {
6360
6361      NamedDecl *Func = *I;
6362      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6363      if (isa<UsingShadowDecl>(Func))
6364        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6365
6366      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6367        // If explicit template arguments were provided, we can't call a
6368        // non-template member function.
6369        if (TemplateArgs)
6370          continue;
6371
6372        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6373                           Args, NumArgs,
6374                           CandidateSet, /*SuppressUserConversions=*/false);
6375      } else {
6376        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6377                                   I.getPair(), ActingDC, TemplateArgs,
6378                                   ObjectType, Args, NumArgs,
6379                                   CandidateSet,
6380                                   /*SuppressUsedConversions=*/false);
6381      }
6382    }
6383
6384    DeclarationName DeclName = UnresExpr->getMemberName();
6385
6386    OverloadCandidateSet::iterator Best;
6387    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6388    case OR_Success:
6389      Method = cast<CXXMethodDecl>(Best->Function);
6390      FoundDecl = Best->FoundDecl;
6391      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6392      break;
6393
6394    case OR_No_Viable_Function:
6395      Diag(UnresExpr->getMemberLoc(),
6396           diag::err_ovl_no_viable_member_function_in_call)
6397        << DeclName << MemExprE->getSourceRange();
6398      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6399      // FIXME: Leaking incoming expressions!
6400      return ExprError();
6401
6402    case OR_Ambiguous:
6403      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6404        << DeclName << MemExprE->getSourceRange();
6405      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6406      // FIXME: Leaking incoming expressions!
6407      return ExprError();
6408
6409    case OR_Deleted:
6410      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6411        << Best->Function->isDeleted()
6412        << DeclName << MemExprE->getSourceRange();
6413      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6414      // FIXME: Leaking incoming expressions!
6415      return ExprError();
6416    }
6417
6418    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6419
6420    // If overload resolution picked a static member, build a
6421    // non-member call based on that function.
6422    if (Method->isStatic()) {
6423      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6424                                   Args, NumArgs, RParenLoc);
6425    }
6426
6427    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6428  }
6429
6430  assert(Method && "Member call to something that isn't a method?");
6431  ExprOwningPtr<CXXMemberCallExpr>
6432    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6433                                                  NumArgs,
6434                                  Method->getResultType().getNonReferenceType(),
6435                                  RParenLoc));
6436
6437  // Check for a valid return type.
6438  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6439                          TheCall.get(), Method))
6440    return ExprError();
6441
6442  // Convert the object argument (for a non-static member function call).
6443  // We only need to do this if there was actually an overload; otherwise
6444  // it was done at lookup.
6445  Expr *ObjectArg = MemExpr->getBase();
6446  if (!Method->isStatic() &&
6447      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6448                                          FoundDecl, Method))
6449    return ExprError();
6450  MemExpr->setBase(ObjectArg);
6451
6452  // Convert the rest of the arguments
6453  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6454  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6455                              RParenLoc))
6456    return ExprError();
6457
6458  if (CheckFunctionCall(Method, TheCall.get()))
6459    return ExprError();
6460
6461  return MaybeBindToTemporary(TheCall.release());
6462}
6463
6464/// BuildCallToObjectOfClassType - Build a call to an object of class
6465/// type (C++ [over.call.object]), which can end up invoking an
6466/// overloaded function call operator (@c operator()) or performing a
6467/// user-defined conversion on the object argument.
6468Sema::ExprResult
6469Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6470                                   SourceLocation LParenLoc,
6471                                   Expr **Args, unsigned NumArgs,
6472                                   SourceLocation *CommaLocs,
6473                                   SourceLocation RParenLoc) {
6474  assert(Object->getType()->isRecordType() && "Requires object type argument");
6475  const RecordType *Record = Object->getType()->getAs<RecordType>();
6476
6477  // C++ [over.call.object]p1:
6478  //  If the primary-expression E in the function call syntax
6479  //  evaluates to a class object of type "cv T", then the set of
6480  //  candidate functions includes at least the function call
6481  //  operators of T. The function call operators of T are obtained by
6482  //  ordinary lookup of the name operator() in the context of
6483  //  (E).operator().
6484  OverloadCandidateSet CandidateSet(LParenLoc);
6485  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6486
6487  if (RequireCompleteType(LParenLoc, Object->getType(),
6488                          PDiag(diag::err_incomplete_object_call)
6489                          << Object->getSourceRange()))
6490    return true;
6491
6492  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6493  LookupQualifiedName(R, Record->getDecl());
6494  R.suppressDiagnostics();
6495
6496  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6497       Oper != OperEnd; ++Oper) {
6498    AddMethodCandidate(Oper.getPair(), Object->getType(),
6499                       Args, NumArgs, CandidateSet,
6500                       /*SuppressUserConversions=*/ false);
6501  }
6502
6503  // C++ [over.call.object]p2:
6504  //   In addition, for each conversion function declared in T of the
6505  //   form
6506  //
6507  //        operator conversion-type-id () cv-qualifier;
6508  //
6509  //   where cv-qualifier is the same cv-qualification as, or a
6510  //   greater cv-qualification than, cv, and where conversion-type-id
6511  //   denotes the type "pointer to function of (P1,...,Pn) returning
6512  //   R", or the type "reference to pointer to function of
6513  //   (P1,...,Pn) returning R", or the type "reference to function
6514  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6515  //   is also considered as a candidate function. Similarly,
6516  //   surrogate call functions are added to the set of candidate
6517  //   functions for each conversion function declared in an
6518  //   accessible base class provided the function is not hidden
6519  //   within T by another intervening declaration.
6520  const UnresolvedSetImpl *Conversions
6521    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6522  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6523         E = Conversions->end(); I != E; ++I) {
6524    NamedDecl *D = *I;
6525    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6526    if (isa<UsingShadowDecl>(D))
6527      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6528
6529    // Skip over templated conversion functions; they aren't
6530    // surrogates.
6531    if (isa<FunctionTemplateDecl>(D))
6532      continue;
6533
6534    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6535
6536    // Strip the reference type (if any) and then the pointer type (if
6537    // any) to get down to what might be a function type.
6538    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6539    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6540      ConvType = ConvPtrType->getPointeeType();
6541
6542    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6543      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6544                            Object->getType(), Args, NumArgs,
6545                            CandidateSet);
6546  }
6547
6548  // Perform overload resolution.
6549  OverloadCandidateSet::iterator Best;
6550  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6551  case OR_Success:
6552    // Overload resolution succeeded; we'll build the appropriate call
6553    // below.
6554    break;
6555
6556  case OR_No_Viable_Function:
6557    if (CandidateSet.empty())
6558      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6559        << Object->getType() << /*call*/ 1
6560        << Object->getSourceRange();
6561    else
6562      Diag(Object->getSourceRange().getBegin(),
6563           diag::err_ovl_no_viable_object_call)
6564        << Object->getType() << Object->getSourceRange();
6565    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6566    break;
6567
6568  case OR_Ambiguous:
6569    Diag(Object->getSourceRange().getBegin(),
6570         diag::err_ovl_ambiguous_object_call)
6571      << Object->getType() << Object->getSourceRange();
6572    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6573    break;
6574
6575  case OR_Deleted:
6576    Diag(Object->getSourceRange().getBegin(),
6577         diag::err_ovl_deleted_object_call)
6578      << Best->Function->isDeleted()
6579      << Object->getType() << Object->getSourceRange();
6580    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6581    break;
6582  }
6583
6584  if (Best == CandidateSet.end()) {
6585    // We had an error; delete all of the subexpressions and return
6586    // the error.
6587    Object->Destroy(Context);
6588    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6589      Args[ArgIdx]->Destroy(Context);
6590    return true;
6591  }
6592
6593  if (Best->Function == 0) {
6594    // Since there is no function declaration, this is one of the
6595    // surrogate candidates. Dig out the conversion function.
6596    CXXConversionDecl *Conv
6597      = cast<CXXConversionDecl>(
6598                         Best->Conversions[0].UserDefined.ConversionFunction);
6599
6600    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6601
6602    // We selected one of the surrogate functions that converts the
6603    // object parameter to a function pointer. Perform the conversion
6604    // on the object argument, then let ActOnCallExpr finish the job.
6605
6606    // Create an implicit member expr to refer to the conversion operator.
6607    // and then call it.
6608    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6609                                                   Conv);
6610
6611    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6612                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6613                         CommaLocs, RParenLoc).result();
6614  }
6615
6616  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6617
6618  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6619  // that calls this method, using Object for the implicit object
6620  // parameter and passing along the remaining arguments.
6621  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6622  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6623
6624  unsigned NumArgsInProto = Proto->getNumArgs();
6625  unsigned NumArgsToCheck = NumArgs;
6626
6627  // Build the full argument list for the method call (the
6628  // implicit object parameter is placed at the beginning of the
6629  // list).
6630  Expr **MethodArgs;
6631  if (NumArgs < NumArgsInProto) {
6632    NumArgsToCheck = NumArgsInProto;
6633    MethodArgs = new Expr*[NumArgsInProto + 1];
6634  } else {
6635    MethodArgs = new Expr*[NumArgs + 1];
6636  }
6637  MethodArgs[0] = Object;
6638  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6639    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6640
6641  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6642                                          SourceLocation());
6643  UsualUnaryConversions(NewFn);
6644
6645  // Once we've built TheCall, all of the expressions are properly
6646  // owned.
6647  QualType ResultTy = Method->getResultType().getNonReferenceType();
6648  ExprOwningPtr<CXXOperatorCallExpr>
6649    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6650                                                    MethodArgs, NumArgs + 1,
6651                                                    ResultTy, RParenLoc));
6652  delete [] MethodArgs;
6653
6654  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6655                          Method))
6656    return true;
6657
6658  // We may have default arguments. If so, we need to allocate more
6659  // slots in the call for them.
6660  if (NumArgs < NumArgsInProto)
6661    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6662  else if (NumArgs > NumArgsInProto)
6663    NumArgsToCheck = NumArgsInProto;
6664
6665  bool IsError = false;
6666
6667  // Initialize the implicit object parameter.
6668  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6669                                                 Best->FoundDecl, Method);
6670  TheCall->setArg(0, Object);
6671
6672
6673  // Check the argument types.
6674  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6675    Expr *Arg;
6676    if (i < NumArgs) {
6677      Arg = Args[i];
6678
6679      // Pass the argument.
6680
6681      OwningExprResult InputInit
6682        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6683                                                    Method->getParamDecl(i)),
6684                                    SourceLocation(), Owned(Arg));
6685
6686      IsError |= InputInit.isInvalid();
6687      Arg = InputInit.takeAs<Expr>();
6688    } else {
6689      OwningExprResult DefArg
6690        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6691      if (DefArg.isInvalid()) {
6692        IsError = true;
6693        break;
6694      }
6695
6696      Arg = DefArg.takeAs<Expr>();
6697    }
6698
6699    TheCall->setArg(i + 1, Arg);
6700  }
6701
6702  // If this is a variadic call, handle args passed through "...".
6703  if (Proto->isVariadic()) {
6704    // Promote the arguments (C99 6.5.2.2p7).
6705    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6706      Expr *Arg = Args[i];
6707      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6708      TheCall->setArg(i + 1, Arg);
6709    }
6710  }
6711
6712  if (IsError) return true;
6713
6714  if (CheckFunctionCall(Method, TheCall.get()))
6715    return true;
6716
6717  return MaybeBindToTemporary(TheCall.release()).result();
6718}
6719
6720/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6721///  (if one exists), where @c Base is an expression of class type and
6722/// @c Member is the name of the member we're trying to find.
6723Sema::OwningExprResult
6724Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6725  Expr *Base = static_cast<Expr *>(BaseIn.get());
6726  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6727
6728  SourceLocation Loc = Base->getExprLoc();
6729
6730  // C++ [over.ref]p1:
6731  //
6732  //   [...] An expression x->m is interpreted as (x.operator->())->m
6733  //   for a class object x of type T if T::operator->() exists and if
6734  //   the operator is selected as the best match function by the
6735  //   overload resolution mechanism (13.3).
6736  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6737  OverloadCandidateSet CandidateSet(Loc);
6738  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6739
6740  if (RequireCompleteType(Loc, Base->getType(),
6741                          PDiag(diag::err_typecheck_incomplete_tag)
6742                            << Base->getSourceRange()))
6743    return ExprError();
6744
6745  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6746  LookupQualifiedName(R, BaseRecord->getDecl());
6747  R.suppressDiagnostics();
6748
6749  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6750       Oper != OperEnd; ++Oper) {
6751    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6752                       /*SuppressUserConversions=*/false);
6753  }
6754
6755  // Perform overload resolution.
6756  OverloadCandidateSet::iterator Best;
6757  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6758  case OR_Success:
6759    // Overload resolution succeeded; we'll build the call below.
6760    break;
6761
6762  case OR_No_Viable_Function:
6763    if (CandidateSet.empty())
6764      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6765        << Base->getType() << Base->getSourceRange();
6766    else
6767      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6768        << "operator->" << Base->getSourceRange();
6769    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6770    return ExprError();
6771
6772  case OR_Ambiguous:
6773    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6774      << "->" << Base->getSourceRange();
6775    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6776    return ExprError();
6777
6778  case OR_Deleted:
6779    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6780      << Best->Function->isDeleted()
6781      << "->" << Base->getSourceRange();
6782    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6783    return ExprError();
6784  }
6785
6786  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6787
6788  // Convert the object parameter.
6789  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6790  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6791                                          Best->FoundDecl, Method))
6792    return ExprError();
6793
6794  // No concerns about early exits now.
6795  BaseIn.release();
6796
6797  // Build the operator call.
6798  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6799                                           SourceLocation());
6800  UsualUnaryConversions(FnExpr);
6801
6802  QualType ResultTy = Method->getResultType().getNonReferenceType();
6803  ExprOwningPtr<CXXOperatorCallExpr>
6804    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6805                                                    &Base, 1, ResultTy, OpLoc));
6806
6807  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6808                          Method))
6809          return ExprError();
6810  return move(TheCall);
6811}
6812
6813/// FixOverloadedFunctionReference - E is an expression that refers to
6814/// a C++ overloaded function (possibly with some parentheses and
6815/// perhaps a '&' around it). We have resolved the overloaded function
6816/// to the function declaration Fn, so patch up the expression E to
6817/// refer (possibly indirectly) to Fn. Returns the new expr.
6818Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6819                                           FunctionDecl *Fn) {
6820  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6821    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6822                                                   Found, Fn);
6823    if (SubExpr == PE->getSubExpr())
6824      return PE->Retain();
6825
6826    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6827  }
6828
6829  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6830    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6831                                                   Found, Fn);
6832    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6833                               SubExpr->getType()) &&
6834           "Implicit cast type cannot be determined from overload");
6835    if (SubExpr == ICE->getSubExpr())
6836      return ICE->Retain();
6837
6838    return new (Context) ImplicitCastExpr(ICE->getType(),
6839                                          ICE->getCastKind(),
6840                                          SubExpr,
6841                                          ICE->isLvalueCast());
6842  }
6843
6844  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6845    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6846           "Can only take the address of an overloaded function");
6847    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6848      if (Method->isStatic()) {
6849        // Do nothing: static member functions aren't any different
6850        // from non-member functions.
6851      } else {
6852        // Fix the sub expression, which really has to be an
6853        // UnresolvedLookupExpr holding an overloaded member function
6854        // or template.
6855        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6856                                                       Found, Fn);
6857        if (SubExpr == UnOp->getSubExpr())
6858          return UnOp->Retain();
6859
6860        assert(isa<DeclRefExpr>(SubExpr)
6861               && "fixed to something other than a decl ref");
6862        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6863               && "fixed to a member ref with no nested name qualifier");
6864
6865        // We have taken the address of a pointer to member
6866        // function. Perform the computation here so that we get the
6867        // appropriate pointer to member type.
6868        QualType ClassType
6869          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6870        QualType MemPtrType
6871          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6872
6873        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6874                                           MemPtrType, UnOp->getOperatorLoc());
6875      }
6876    }
6877    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6878                                                   Found, Fn);
6879    if (SubExpr == UnOp->getSubExpr())
6880      return UnOp->Retain();
6881
6882    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6883                                     Context.getPointerType(SubExpr->getType()),
6884                                       UnOp->getOperatorLoc());
6885  }
6886
6887  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6888    // FIXME: avoid copy.
6889    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6890    if (ULE->hasExplicitTemplateArgs()) {
6891      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6892      TemplateArgs = &TemplateArgsBuffer;
6893    }
6894
6895    return DeclRefExpr::Create(Context,
6896                               ULE->getQualifier(),
6897                               ULE->getQualifierRange(),
6898                               Fn,
6899                               ULE->getNameLoc(),
6900                               Fn->getType(),
6901                               TemplateArgs);
6902  }
6903
6904  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6905    // FIXME: avoid copy.
6906    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6907    if (MemExpr->hasExplicitTemplateArgs()) {
6908      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6909      TemplateArgs = &TemplateArgsBuffer;
6910    }
6911
6912    Expr *Base;
6913
6914    // If we're filling in
6915    if (MemExpr->isImplicitAccess()) {
6916      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6917        return DeclRefExpr::Create(Context,
6918                                   MemExpr->getQualifier(),
6919                                   MemExpr->getQualifierRange(),
6920                                   Fn,
6921                                   MemExpr->getMemberLoc(),
6922                                   Fn->getType(),
6923                                   TemplateArgs);
6924      } else {
6925        SourceLocation Loc = MemExpr->getMemberLoc();
6926        if (MemExpr->getQualifier())
6927          Loc = MemExpr->getQualifierRange().getBegin();
6928        Base = new (Context) CXXThisExpr(Loc,
6929                                         MemExpr->getBaseType(),
6930                                         /*isImplicit=*/true);
6931      }
6932    } else
6933      Base = MemExpr->getBase()->Retain();
6934
6935    return MemberExpr::Create(Context, Base,
6936                              MemExpr->isArrow(),
6937                              MemExpr->getQualifier(),
6938                              MemExpr->getQualifierRange(),
6939                              Fn,
6940                              Found,
6941                              MemExpr->getMemberLoc(),
6942                              TemplateArgs,
6943                              Fn->getType());
6944  }
6945
6946  assert(false && "Invalid reference to overloaded function");
6947  return E->Retain();
6948}
6949
6950Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6951                                                          DeclAccessPair Found,
6952                                                            FunctionDecl *Fn) {
6953  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6954}
6955
6956} // end namespace clang
6957