SemaOverload.cpp revision 58e6f34e4d2c668562e1c391162ee9de7b05fbb2
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              ForceRValue, UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  // Lvalue-to-rvalue conversion (C++ 4.1):
571  //   An lvalue (3.10) of a non-function, non-array type T can be
572  //   converted to an rvalue.
573  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
574  if (argIsLvalue == Expr::LV_Valid &&
575      !FromType->isFunctionType() && !FromType->isArrayType() &&
576      Context.getCanonicalType(FromType) != Context.OverloadTy) {
577    SCS.First = ICK_Lvalue_To_Rvalue;
578
579    // If T is a non-class type, the type of the rvalue is the
580    // cv-unqualified version of T. Otherwise, the type of the rvalue
581    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
582    // just strip the qualifiers because they don't matter.
583    FromType = FromType.getUnqualifiedType();
584  } else if (FromType->isArrayType()) {
585    // Array-to-pointer conversion (C++ 4.2)
586    SCS.First = ICK_Array_To_Pointer;
587
588    // An lvalue or rvalue of type "array of N T" or "array of unknown
589    // bound of T" can be converted to an rvalue of type "pointer to
590    // T" (C++ 4.2p1).
591    FromType = Context.getArrayDecayedType(FromType);
592
593    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
594      // This conversion is deprecated. (C++ D.4).
595      SCS.DeprecatedStringLiteralToCharPtr = true;
596
597      // For the purpose of ranking in overload resolution
598      // (13.3.3.1.1), this conversion is considered an
599      // array-to-pointer conversion followed by a qualification
600      // conversion (4.4). (C++ 4.2p2)
601      SCS.Second = ICK_Identity;
602      SCS.Third = ICK_Qualification;
603      SCS.setAllToTypes(FromType);
604      return true;
605    }
606  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
607    // Function-to-pointer conversion (C++ 4.3).
608    SCS.First = ICK_Function_To_Pointer;
609
610    // An lvalue of function type T can be converted to an rvalue of
611    // type "pointer to T." The result is a pointer to the
612    // function. (C++ 4.3p1).
613    FromType = Context.getPointerType(FromType);
614  } else if (FunctionDecl *Fn
615               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
616    // Address of overloaded function (C++ [over.over]).
617    SCS.First = ICK_Function_To_Pointer;
618
619    // We were able to resolve the address of the overloaded function,
620    // so we can convert to the type of that function.
621    FromType = Fn->getType();
622    if (ToType->isLValueReferenceType())
623      FromType = Context.getLValueReferenceType(FromType);
624    else if (ToType->isRValueReferenceType())
625      FromType = Context.getRValueReferenceType(FromType);
626    else if (ToType->isMemberPointerType()) {
627      // Resolve address only succeeds if both sides are member pointers,
628      // but it doesn't have to be the same class. See DR 247.
629      // Note that this means that the type of &Derived::fn can be
630      // Ret (Base::*)(Args) if the fn overload actually found is from the
631      // base class, even if it was brought into the derived class via a
632      // using declaration. The standard isn't clear on this issue at all.
633      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
634      FromType = Context.getMemberPointerType(FromType,
635                    Context.getTypeDeclType(M->getParent()).getTypePtr());
636    } else
637      FromType = Context.getPointerType(FromType);
638  } else {
639    // We don't require any conversions for the first step.
640    SCS.First = ICK_Identity;
641  }
642  SCS.setToType(0, FromType);
643
644  // The second conversion can be an integral promotion, floating
645  // point promotion, integral conversion, floating point conversion,
646  // floating-integral conversion, pointer conversion,
647  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
648  // For overloading in C, this can also be a "compatible-type"
649  // conversion.
650  bool IncompatibleObjC = false;
651  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
652    // The unqualified versions of the types are the same: there's no
653    // conversion to do.
654    SCS.Second = ICK_Identity;
655  } else if (IsIntegralPromotion(From, FromType, ToType)) {
656    // Integral promotion (C++ 4.5).
657    SCS.Second = ICK_Integral_Promotion;
658    FromType = ToType.getUnqualifiedType();
659  } else if (IsFloatingPointPromotion(FromType, ToType)) {
660    // Floating point promotion (C++ 4.6).
661    SCS.Second = ICK_Floating_Promotion;
662    FromType = ToType.getUnqualifiedType();
663  } else if (IsComplexPromotion(FromType, ToType)) {
664    // Complex promotion (Clang extension)
665    SCS.Second = ICK_Complex_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
668           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
669    // Integral conversions (C++ 4.7).
670    SCS.Second = ICK_Integral_Conversion;
671    FromType = ToType.getUnqualifiedType();
672  } else if (FromType->isComplexType() && ToType->isComplexType()) {
673    // Complex conversions (C99 6.3.1.6)
674    SCS.Second = ICK_Complex_Conversion;
675    FromType = ToType.getUnqualifiedType();
676  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
677             (ToType->isComplexType() && FromType->isArithmeticType())) {
678    // Complex-real conversions (C99 6.3.1.7)
679    SCS.Second = ICK_Complex_Real;
680    FromType = ToType.getUnqualifiedType();
681  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
682    // Floating point conversions (C++ 4.8).
683    SCS.Second = ICK_Floating_Conversion;
684    FromType = ToType.getUnqualifiedType();
685  } else if ((FromType->isFloatingType() &&
686              ToType->isIntegralType() && (!ToType->isBooleanType() &&
687                                           !ToType->isEnumeralType())) ||
688             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
689              ToType->isFloatingType())) {
690    // Floating-integral conversions (C++ 4.9).
691    SCS.Second = ICK_Floating_Integral;
692    FromType = ToType.getUnqualifiedType();
693  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
694                                 FromType, IncompatibleObjC)) {
695    // Pointer conversions (C++ 4.10).
696    SCS.Second = ICK_Pointer_Conversion;
697    SCS.IncompatibleObjC = IncompatibleObjC;
698  } else if (IsMemberPointerConversion(From, FromType, ToType,
699                                       InOverloadResolution, FromType)) {
700    // Pointer to member conversions (4.11).
701    SCS.Second = ICK_Pointer_Member;
702  } else if (ToType->isBooleanType() &&
703             (FromType->isArithmeticType() ||
704              FromType->isEnumeralType() ||
705              FromType->isAnyPointerType() ||
706              FromType->isBlockPointerType() ||
707              FromType->isMemberPointerType() ||
708              FromType->isNullPtrType())) {
709    // Boolean conversions (C++ 4.12).
710    SCS.Second = ICK_Boolean_Conversion;
711    FromType = Context.BoolTy;
712  } else if (!getLangOptions().CPlusPlus &&
713             Context.typesAreCompatible(ToType, FromType)) {
714    // Compatible conversions (Clang extension for C function overloading)
715    SCS.Second = ICK_Compatible_Conversion;
716  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
717    // Treat a conversion that strips "noreturn" as an identity conversion.
718    SCS.Second = ICK_NoReturn_Adjustment;
719  } else {
720    // No second conversion required.
721    SCS.Second = ICK_Identity;
722  }
723  SCS.setToType(1, FromType);
724
725  QualType CanonFrom;
726  QualType CanonTo;
727  // The third conversion can be a qualification conversion (C++ 4p1).
728  if (IsQualificationConversion(FromType, ToType)) {
729    SCS.Third = ICK_Qualification;
730    FromType = ToType;
731    CanonFrom = Context.getCanonicalType(FromType);
732    CanonTo = Context.getCanonicalType(ToType);
733  } else {
734    // No conversion required
735    SCS.Third = ICK_Identity;
736
737    // C++ [over.best.ics]p6:
738    //   [...] Any difference in top-level cv-qualification is
739    //   subsumed by the initialization itself and does not constitute
740    //   a conversion. [...]
741    CanonFrom = Context.getCanonicalType(FromType);
742    CanonTo = Context.getCanonicalType(ToType);
743    if (CanonFrom.getLocalUnqualifiedType()
744                                       == CanonTo.getLocalUnqualifiedType() &&
745        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
746      FromType = ToType;
747      CanonFrom = CanonTo;
748    }
749  }
750  SCS.setToType(2, FromType);
751
752  // If we have not converted the argument type to the parameter type,
753  // this is a bad conversion sequence.
754  if (CanonFrom != CanonTo)
755    return false;
756
757  return true;
758}
759
760/// IsIntegralPromotion - Determines whether the conversion from the
761/// expression From (whose potentially-adjusted type is FromType) to
762/// ToType is an integral promotion (C++ 4.5). If so, returns true and
763/// sets PromotedType to the promoted type.
764bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
765  const BuiltinType *To = ToType->getAs<BuiltinType>();
766  // All integers are built-in.
767  if (!To) {
768    return false;
769  }
770
771  // An rvalue of type char, signed char, unsigned char, short int, or
772  // unsigned short int can be converted to an rvalue of type int if
773  // int can represent all the values of the source type; otherwise,
774  // the source rvalue can be converted to an rvalue of type unsigned
775  // int (C++ 4.5p1).
776  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
777      !FromType->isEnumeralType()) {
778    if (// We can promote any signed, promotable integer type to an int
779        (FromType->isSignedIntegerType() ||
780         // We can promote any unsigned integer type whose size is
781         // less than int to an int.
782         (!FromType->isSignedIntegerType() &&
783          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
784      return To->getKind() == BuiltinType::Int;
785    }
786
787    return To->getKind() == BuiltinType::UInt;
788  }
789
790  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
791  // can be converted to an rvalue of the first of the following types
792  // that can represent all the values of its underlying type: int,
793  // unsigned int, long, or unsigned long (C++ 4.5p2).
794
795  // We pre-calculate the promotion type for enum types.
796  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
797    if (ToType->isIntegerType())
798      return Context.hasSameUnqualifiedType(ToType,
799                                FromEnumType->getDecl()->getPromotionType());
800
801  if (FromType->isWideCharType() && ToType->isIntegerType()) {
802    // Determine whether the type we're converting from is signed or
803    // unsigned.
804    bool FromIsSigned;
805    uint64_t FromSize = Context.getTypeSize(FromType);
806
807    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
808    FromIsSigned = true;
809
810    // The types we'll try to promote to, in the appropriate
811    // order. Try each of these types.
812    QualType PromoteTypes[6] = {
813      Context.IntTy, Context.UnsignedIntTy,
814      Context.LongTy, Context.UnsignedLongTy ,
815      Context.LongLongTy, Context.UnsignedLongLongTy
816    };
817    for (int Idx = 0; Idx < 6; ++Idx) {
818      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
819      if (FromSize < ToSize ||
820          (FromSize == ToSize &&
821           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
822        // We found the type that we can promote to. If this is the
823        // type we wanted, we have a promotion. Otherwise, no
824        // promotion.
825        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
826      }
827    }
828  }
829
830  // An rvalue for an integral bit-field (9.6) can be converted to an
831  // rvalue of type int if int can represent all the values of the
832  // bit-field; otherwise, it can be converted to unsigned int if
833  // unsigned int can represent all the values of the bit-field. If
834  // the bit-field is larger yet, no integral promotion applies to
835  // it. If the bit-field has an enumerated type, it is treated as any
836  // other value of that type for promotion purposes (C++ 4.5p3).
837  // FIXME: We should delay checking of bit-fields until we actually perform the
838  // conversion.
839  using llvm::APSInt;
840  if (From)
841    if (FieldDecl *MemberDecl = From->getBitField()) {
842      APSInt BitWidth;
843      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
844          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
845        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
846        ToSize = Context.getTypeSize(ToType);
847
848        // Are we promoting to an int from a bitfield that fits in an int?
849        if (BitWidth < ToSize ||
850            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
851          return To->getKind() == BuiltinType::Int;
852        }
853
854        // Are we promoting to an unsigned int from an unsigned bitfield
855        // that fits into an unsigned int?
856        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
857          return To->getKind() == BuiltinType::UInt;
858        }
859
860        return false;
861      }
862    }
863
864  // An rvalue of type bool can be converted to an rvalue of type int,
865  // with false becoming zero and true becoming one (C++ 4.5p4).
866  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
867    return true;
868  }
869
870  return false;
871}
872
873/// IsFloatingPointPromotion - Determines whether the conversion from
874/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
875/// returns true and sets PromotedType to the promoted type.
876bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
877  /// An rvalue of type float can be converted to an rvalue of type
878  /// double. (C++ 4.6p1).
879  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
880    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
881      if (FromBuiltin->getKind() == BuiltinType::Float &&
882          ToBuiltin->getKind() == BuiltinType::Double)
883        return true;
884
885      // C99 6.3.1.5p1:
886      //   When a float is promoted to double or long double, or a
887      //   double is promoted to long double [...].
888      if (!getLangOptions().CPlusPlus &&
889          (FromBuiltin->getKind() == BuiltinType::Float ||
890           FromBuiltin->getKind() == BuiltinType::Double) &&
891          (ToBuiltin->getKind() == BuiltinType::LongDouble))
892        return true;
893    }
894
895  return false;
896}
897
898/// \brief Determine if a conversion is a complex promotion.
899///
900/// A complex promotion is defined as a complex -> complex conversion
901/// where the conversion between the underlying real types is a
902/// floating-point or integral promotion.
903bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
904  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
905  if (!FromComplex)
906    return false;
907
908  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
909  if (!ToComplex)
910    return false;
911
912  return IsFloatingPointPromotion(FromComplex->getElementType(),
913                                  ToComplex->getElementType()) ||
914    IsIntegralPromotion(0, FromComplex->getElementType(),
915                        ToComplex->getElementType());
916}
917
918/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
919/// the pointer type FromPtr to a pointer to type ToPointee, with the
920/// same type qualifiers as FromPtr has on its pointee type. ToType,
921/// if non-empty, will be a pointer to ToType that may or may not have
922/// the right set of qualifiers on its pointee.
923static QualType
924BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
925                                   QualType ToPointee, QualType ToType,
926                                   ASTContext &Context) {
927  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
928  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
929  Qualifiers Quals = CanonFromPointee.getQualifiers();
930
931  // Exact qualifier match -> return the pointer type we're converting to.
932  if (CanonToPointee.getLocalQualifiers() == Quals) {
933    // ToType is exactly what we need. Return it.
934    if (!ToType.isNull())
935      return ToType;
936
937    // Build a pointer to ToPointee. It has the right qualifiers
938    // already.
939    return Context.getPointerType(ToPointee);
940  }
941
942  // Just build a canonical type that has the right qualifiers.
943  return Context.getPointerType(
944         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
945                                  Quals));
946}
947
948/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
949/// the FromType, which is an objective-c pointer, to ToType, which may or may
950/// not have the right set of qualifiers.
951static QualType
952BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
953                                             QualType ToType,
954                                             ASTContext &Context) {
955  QualType CanonFromType = Context.getCanonicalType(FromType);
956  QualType CanonToType = Context.getCanonicalType(ToType);
957  Qualifiers Quals = CanonFromType.getQualifiers();
958
959  // Exact qualifier match -> return the pointer type we're converting to.
960  if (CanonToType.getLocalQualifiers() == Quals)
961    return ToType;
962
963  // Just build a canonical type that has the right qualifiers.
964  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
965}
966
967static bool isNullPointerConstantForConversion(Expr *Expr,
968                                               bool InOverloadResolution,
969                                               ASTContext &Context) {
970  // Handle value-dependent integral null pointer constants correctly.
971  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
972  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
973      Expr->getType()->isIntegralType())
974    return !InOverloadResolution;
975
976  return Expr->isNullPointerConstant(Context,
977                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
978                                        : Expr::NPC_ValueDependentIsNull);
979}
980
981/// IsPointerConversion - Determines whether the conversion of the
982/// expression From, which has the (possibly adjusted) type FromType,
983/// can be converted to the type ToType via a pointer conversion (C++
984/// 4.10). If so, returns true and places the converted type (that
985/// might differ from ToType in its cv-qualifiers at some level) into
986/// ConvertedType.
987///
988/// This routine also supports conversions to and from block pointers
989/// and conversions with Objective-C's 'id', 'id<protocols...>', and
990/// pointers to interfaces. FIXME: Once we've determined the
991/// appropriate overloading rules for Objective-C, we may want to
992/// split the Objective-C checks into a different routine; however,
993/// GCC seems to consider all of these conversions to be pointer
994/// conversions, so for now they live here. IncompatibleObjC will be
995/// set if the conversion is an allowed Objective-C conversion that
996/// should result in a warning.
997bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
998                               bool InOverloadResolution,
999                               QualType& ConvertedType,
1000                               bool &IncompatibleObjC) {
1001  IncompatibleObjC = false;
1002  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1003    return true;
1004
1005  // Conversion from a null pointer constant to any Objective-C pointer type.
1006  if (ToType->isObjCObjectPointerType() &&
1007      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1008    ConvertedType = ToType;
1009    return true;
1010  }
1011
1012  // Blocks: Block pointers can be converted to void*.
1013  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1014      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1015    ConvertedType = ToType;
1016    return true;
1017  }
1018  // Blocks: A null pointer constant can be converted to a block
1019  // pointer type.
1020  if (ToType->isBlockPointerType() &&
1021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1022    ConvertedType = ToType;
1023    return true;
1024  }
1025
1026  // If the left-hand-side is nullptr_t, the right side can be a null
1027  // pointer constant.
1028  if (ToType->isNullPtrType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1035  if (!ToTypePtr)
1036    return false;
1037
1038  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1039  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1040    ConvertedType = ToType;
1041    return true;
1042  }
1043
1044  // Beyond this point, both types need to be pointers
1045  // , including objective-c pointers.
1046  QualType ToPointeeType = ToTypePtr->getPointeeType();
1047  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1048    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1049                                                       ToType, Context);
1050    return true;
1051
1052  }
1053  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1054  if (!FromTypePtr)
1055    return false;
1056
1057  QualType FromPointeeType = FromTypePtr->getPointeeType();
1058
1059  // An rvalue of type "pointer to cv T," where T is an object type,
1060  // can be converted to an rvalue of type "pointer to cv void" (C++
1061  // 4.10p2).
1062  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1063    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1064                                                       ToPointeeType,
1065                                                       ToType, Context);
1066    return true;
1067  }
1068
1069  // When we're overloading in C, we allow a special kind of pointer
1070  // conversion for compatible-but-not-identical pointee types.
1071  if (!getLangOptions().CPlusPlus &&
1072      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1073    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1074                                                       ToPointeeType,
1075                                                       ToType, Context);
1076    return true;
1077  }
1078
1079  // C++ [conv.ptr]p3:
1080  //
1081  //   An rvalue of type "pointer to cv D," where D is a class type,
1082  //   can be converted to an rvalue of type "pointer to cv B," where
1083  //   B is a base class (clause 10) of D. If B is an inaccessible
1084  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1085  //   necessitates this conversion is ill-formed. The result of the
1086  //   conversion is a pointer to the base class sub-object of the
1087  //   derived class object. The null pointer value is converted to
1088  //   the null pointer value of the destination type.
1089  //
1090  // Note that we do not check for ambiguity or inaccessibility
1091  // here. That is handled by CheckPointerConversion.
1092  if (getLangOptions().CPlusPlus &&
1093      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1094      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1095      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1096      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1097    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1098                                                       ToPointeeType,
1099                                                       ToType, Context);
1100    return true;
1101  }
1102
1103  return false;
1104}
1105
1106/// isObjCPointerConversion - Determines whether this is an
1107/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1108/// with the same arguments and return values.
1109bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1110                                   QualType& ConvertedType,
1111                                   bool &IncompatibleObjC) {
1112  if (!getLangOptions().ObjC1)
1113    return false;
1114
1115  // First, we handle all conversions on ObjC object pointer types.
1116  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1117  const ObjCObjectPointerType *FromObjCPtr =
1118    FromType->getAs<ObjCObjectPointerType>();
1119
1120  if (ToObjCPtr && FromObjCPtr) {
1121    // Objective C++: We're able to convert between "id" or "Class" and a
1122    // pointer to any interface (in both directions).
1123    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1124      ConvertedType = ToType;
1125      return true;
1126    }
1127    // Conversions with Objective-C's id<...>.
1128    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1129         ToObjCPtr->isObjCQualifiedIdType()) &&
1130        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1131                                                  /*compare=*/false)) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Objective C++: We're able to convert from a pointer to an
1136    // interface to a pointer to a different interface.
1137    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1138      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1139      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1140      if (getLangOptions().CPlusPlus && LHS && RHS &&
1141          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1142                                                FromObjCPtr->getPointeeType()))
1143        return false;
1144      ConvertedType = ToType;
1145      return true;
1146    }
1147
1148    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1149      // Okay: this is some kind of implicit downcast of Objective-C
1150      // interfaces, which is permitted. However, we're going to
1151      // complain about it.
1152      IncompatibleObjC = true;
1153      ConvertedType = FromType;
1154      return true;
1155    }
1156  }
1157  // Beyond this point, both types need to be C pointers or block pointers.
1158  QualType ToPointeeType;
1159  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1160    ToPointeeType = ToCPtr->getPointeeType();
1161  else if (const BlockPointerType *ToBlockPtr =
1162            ToType->getAs<BlockPointerType>()) {
1163    // Objective C++: We're able to convert from a pointer to any object
1164    // to a block pointer type.
1165    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1166      ConvertedType = ToType;
1167      return true;
1168    }
1169    ToPointeeType = ToBlockPtr->getPointeeType();
1170  }
1171  else if (FromType->getAs<BlockPointerType>() &&
1172           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1173    // Objective C++: We're able to convert from a block pointer type to a
1174    // pointer to any object.
1175    ConvertedType = ToType;
1176    return true;
1177  }
1178  else
1179    return false;
1180
1181  QualType FromPointeeType;
1182  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1183    FromPointeeType = FromCPtr->getPointeeType();
1184  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1185    FromPointeeType = FromBlockPtr->getPointeeType();
1186  else
1187    return false;
1188
1189  // If we have pointers to pointers, recursively check whether this
1190  // is an Objective-C conversion.
1191  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1192      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1193                              IncompatibleObjC)) {
1194    // We always complain about this conversion.
1195    IncompatibleObjC = true;
1196    ConvertedType = ToType;
1197    return true;
1198  }
1199  // Allow conversion of pointee being objective-c pointer to another one;
1200  // as in I* to id.
1201  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1202      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1203      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1204                              IncompatibleObjC)) {
1205    ConvertedType = ToType;
1206    return true;
1207  }
1208
1209  // If we have pointers to functions or blocks, check whether the only
1210  // differences in the argument and result types are in Objective-C
1211  // pointer conversions. If so, we permit the conversion (but
1212  // complain about it).
1213  const FunctionProtoType *FromFunctionType
1214    = FromPointeeType->getAs<FunctionProtoType>();
1215  const FunctionProtoType *ToFunctionType
1216    = ToPointeeType->getAs<FunctionProtoType>();
1217  if (FromFunctionType && ToFunctionType) {
1218    // If the function types are exactly the same, this isn't an
1219    // Objective-C pointer conversion.
1220    if (Context.getCanonicalType(FromPointeeType)
1221          == Context.getCanonicalType(ToPointeeType))
1222      return false;
1223
1224    // Perform the quick checks that will tell us whether these
1225    // function types are obviously different.
1226    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1227        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1228        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1229      return false;
1230
1231    bool HasObjCConversion = false;
1232    if (Context.getCanonicalType(FromFunctionType->getResultType())
1233          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1234      // Okay, the types match exactly. Nothing to do.
1235    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1236                                       ToFunctionType->getResultType(),
1237                                       ConvertedType, IncompatibleObjC)) {
1238      // Okay, we have an Objective-C pointer conversion.
1239      HasObjCConversion = true;
1240    } else {
1241      // Function types are too different. Abort.
1242      return false;
1243    }
1244
1245    // Check argument types.
1246    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1247         ArgIdx != NumArgs; ++ArgIdx) {
1248      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1249      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1250      if (Context.getCanonicalType(FromArgType)
1251            == Context.getCanonicalType(ToArgType)) {
1252        // Okay, the types match exactly. Nothing to do.
1253      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1254                                         ConvertedType, IncompatibleObjC)) {
1255        // Okay, we have an Objective-C pointer conversion.
1256        HasObjCConversion = true;
1257      } else {
1258        // Argument types are too different. Abort.
1259        return false;
1260      }
1261    }
1262
1263    if (HasObjCConversion) {
1264      // We had an Objective-C conversion. Allow this pointer
1265      // conversion, but complain about it.
1266      ConvertedType = ToType;
1267      IncompatibleObjC = true;
1268      return true;
1269    }
1270  }
1271
1272  return false;
1273}
1274
1275/// CheckPointerConversion - Check the pointer conversion from the
1276/// expression From to the type ToType. This routine checks for
1277/// ambiguous or inaccessible derived-to-base pointer
1278/// conversions for which IsPointerConversion has already returned
1279/// true. It returns true and produces a diagnostic if there was an
1280/// error, or returns false otherwise.
1281bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1282                                  CastExpr::CastKind &Kind,
1283                                  bool IgnoreBaseAccess) {
1284  QualType FromType = From->getType();
1285
1286  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1287    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1288      QualType FromPointeeType = FromPtrType->getPointeeType(),
1289               ToPointeeType   = ToPtrType->getPointeeType();
1290
1291      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1292          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1293        // We must have a derived-to-base conversion. Check an
1294        // ambiguous or inaccessible conversion.
1295        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1296                                         From->getExprLoc(),
1297                                         From->getSourceRange(),
1298                                         IgnoreBaseAccess))
1299          return true;
1300
1301        // The conversion was successful.
1302        Kind = CastExpr::CK_DerivedToBase;
1303      }
1304    }
1305  if (const ObjCObjectPointerType *FromPtrType =
1306        FromType->getAs<ObjCObjectPointerType>())
1307    if (const ObjCObjectPointerType *ToPtrType =
1308          ToType->getAs<ObjCObjectPointerType>()) {
1309      // Objective-C++ conversions are always okay.
1310      // FIXME: We should have a different class of conversions for the
1311      // Objective-C++ implicit conversions.
1312      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1313        return false;
1314
1315  }
1316  return false;
1317}
1318
1319/// IsMemberPointerConversion - Determines whether the conversion of the
1320/// expression From, which has the (possibly adjusted) type FromType, can be
1321/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1322/// If so, returns true and places the converted type (that might differ from
1323/// ToType in its cv-qualifiers at some level) into ConvertedType.
1324bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1325                                     QualType ToType,
1326                                     bool InOverloadResolution,
1327                                     QualType &ConvertedType) {
1328  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1329  if (!ToTypePtr)
1330    return false;
1331
1332  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1333  if (From->isNullPointerConstant(Context,
1334                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1335                                        : Expr::NPC_ValueDependentIsNull)) {
1336    ConvertedType = ToType;
1337    return true;
1338  }
1339
1340  // Otherwise, both types have to be member pointers.
1341  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1342  if (!FromTypePtr)
1343    return false;
1344
1345  // A pointer to member of B can be converted to a pointer to member of D,
1346  // where D is derived from B (C++ 4.11p2).
1347  QualType FromClass(FromTypePtr->getClass(), 0);
1348  QualType ToClass(ToTypePtr->getClass(), 0);
1349  // FIXME: What happens when these are dependent? Is this function even called?
1350
1351  if (IsDerivedFrom(ToClass, FromClass)) {
1352    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1353                                                 ToClass.getTypePtr());
1354    return true;
1355  }
1356
1357  return false;
1358}
1359
1360/// CheckMemberPointerConversion - Check the member pointer conversion from the
1361/// expression From to the type ToType. This routine checks for ambiguous or
1362/// virtual or inaccessible base-to-derived member pointer conversions
1363/// for which IsMemberPointerConversion has already returned true. It returns
1364/// true and produces a diagnostic if there was an error, or returns false
1365/// otherwise.
1366bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1367                                        CastExpr::CastKind &Kind,
1368                                        bool IgnoreBaseAccess) {
1369  QualType FromType = From->getType();
1370  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1371  if (!FromPtrType) {
1372    // This must be a null pointer to member pointer conversion
1373    assert(From->isNullPointerConstant(Context,
1374                                       Expr::NPC_ValueDependentIsNull) &&
1375           "Expr must be null pointer constant!");
1376    Kind = CastExpr::CK_NullToMemberPointer;
1377    return false;
1378  }
1379
1380  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1381  assert(ToPtrType && "No member pointer cast has a target type "
1382                      "that is not a member pointer.");
1383
1384  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1385  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1386
1387  // FIXME: What about dependent types?
1388  assert(FromClass->isRecordType() && "Pointer into non-class.");
1389  assert(ToClass->isRecordType() && "Pointer into non-class.");
1390
1391  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1392                     /*DetectVirtual=*/true);
1393  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1394  assert(DerivationOkay &&
1395         "Should not have been called if derivation isn't OK.");
1396  (void)DerivationOkay;
1397
1398  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1399                                  getUnqualifiedType())) {
1400    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1401    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1402      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1403    return true;
1404  }
1405
1406  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1407    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1408      << FromClass << ToClass << QualType(VBase, 0)
1409      << From->getSourceRange();
1410    return true;
1411  }
1412
1413  if (!IgnoreBaseAccess)
1414    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1415                         Paths.front(),
1416                         diag::err_downcast_from_inaccessible_base);
1417
1418  // Must be a base to derived member conversion.
1419  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1420  return false;
1421}
1422
1423/// IsQualificationConversion - Determines whether the conversion from
1424/// an rvalue of type FromType to ToType is a qualification conversion
1425/// (C++ 4.4).
1426bool
1427Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1428  FromType = Context.getCanonicalType(FromType);
1429  ToType = Context.getCanonicalType(ToType);
1430
1431  // If FromType and ToType are the same type, this is not a
1432  // qualification conversion.
1433  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1434    return false;
1435
1436  // (C++ 4.4p4):
1437  //   A conversion can add cv-qualifiers at levels other than the first
1438  //   in multi-level pointers, subject to the following rules: [...]
1439  bool PreviousToQualsIncludeConst = true;
1440  bool UnwrappedAnyPointer = false;
1441  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1442    // Within each iteration of the loop, we check the qualifiers to
1443    // determine if this still looks like a qualification
1444    // conversion. Then, if all is well, we unwrap one more level of
1445    // pointers or pointers-to-members and do it all again
1446    // until there are no more pointers or pointers-to-members left to
1447    // unwrap.
1448    UnwrappedAnyPointer = true;
1449
1450    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1451    //      2,j, and similarly for volatile.
1452    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1453      return false;
1454
1455    //   -- if the cv 1,j and cv 2,j are different, then const is in
1456    //      every cv for 0 < k < j.
1457    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1458        && !PreviousToQualsIncludeConst)
1459      return false;
1460
1461    // Keep track of whether all prior cv-qualifiers in the "to" type
1462    // include const.
1463    PreviousToQualsIncludeConst
1464      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1465  }
1466
1467  // We are left with FromType and ToType being the pointee types
1468  // after unwrapping the original FromType and ToType the same number
1469  // of types. If we unwrapped any pointers, and if FromType and
1470  // ToType have the same unqualified type (since we checked
1471  // qualifiers above), then this is a qualification conversion.
1472  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1473}
1474
1475/// Determines whether there is a user-defined conversion sequence
1476/// (C++ [over.ics.user]) that converts expression From to the type
1477/// ToType. If such a conversion exists, User will contain the
1478/// user-defined conversion sequence that performs such a conversion
1479/// and this routine will return true. Otherwise, this routine returns
1480/// false and User is unspecified.
1481///
1482/// \param AllowConversionFunctions true if the conversion should
1483/// consider conversion functions at all. If false, only constructors
1484/// will be considered.
1485///
1486/// \param AllowExplicit  true if the conversion should consider C++0x
1487/// "explicit" conversion functions as well as non-explicit conversion
1488/// functions (C++0x [class.conv.fct]p2).
1489///
1490/// \param ForceRValue  true if the expression should be treated as an rvalue
1491/// for overload resolution.
1492/// \param UserCast true if looking for user defined conversion for a static
1493/// cast.
1494OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1495                                          UserDefinedConversionSequence& User,
1496                                            OverloadCandidateSet& CandidateSet,
1497                                                bool AllowConversionFunctions,
1498                                                bool AllowExplicit,
1499                                                bool ForceRValue,
1500                                                bool UserCast) {
1501  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1502    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1503      // We're not going to find any constructors.
1504    } else if (CXXRecordDecl *ToRecordDecl
1505                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1506      // C++ [over.match.ctor]p1:
1507      //   When objects of class type are direct-initialized (8.5), or
1508      //   copy-initialized from an expression of the same or a
1509      //   derived class type (8.5), overload resolution selects the
1510      //   constructor. [...] For copy-initialization, the candidate
1511      //   functions are all the converting constructors (12.3.1) of
1512      //   that class. The argument list is the expression-list within
1513      //   the parentheses of the initializer.
1514      bool SuppressUserConversions = !UserCast;
1515      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1516          IsDerivedFrom(From->getType(), ToType)) {
1517        SuppressUserConversions = false;
1518        AllowConversionFunctions = false;
1519      }
1520
1521      DeclarationName ConstructorName
1522        = Context.DeclarationNames.getCXXConstructorName(
1523                          Context.getCanonicalType(ToType).getUnqualifiedType());
1524      DeclContext::lookup_iterator Con, ConEnd;
1525      for (llvm::tie(Con, ConEnd)
1526             = ToRecordDecl->lookup(ConstructorName);
1527           Con != ConEnd; ++Con) {
1528        // Find the constructor (which may be a template).
1529        CXXConstructorDecl *Constructor = 0;
1530        FunctionTemplateDecl *ConstructorTmpl
1531          = dyn_cast<FunctionTemplateDecl>(*Con);
1532        if (ConstructorTmpl)
1533          Constructor
1534            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1535        else
1536          Constructor = cast<CXXConstructorDecl>(*Con);
1537
1538        if (!Constructor->isInvalidDecl() &&
1539            Constructor->isConvertingConstructor(AllowExplicit)) {
1540          if (ConstructorTmpl)
1541            AddTemplateOverloadCandidate(ConstructorTmpl,
1542                                         ConstructorTmpl->getAccess(),
1543                                         /*ExplicitArgs*/ 0,
1544                                         &From, 1, CandidateSet,
1545                                         SuppressUserConversions, ForceRValue);
1546          else
1547            // Allow one user-defined conversion when user specifies a
1548            // From->ToType conversion via an static cast (c-style, etc).
1549            AddOverloadCandidate(Constructor, Constructor->getAccess(),
1550                                 &From, 1, CandidateSet,
1551                                 SuppressUserConversions, ForceRValue);
1552        }
1553      }
1554    }
1555  }
1556
1557  if (!AllowConversionFunctions) {
1558    // Don't allow any conversion functions to enter the overload set.
1559  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1560                                 PDiag(0)
1561                                   << From->getSourceRange())) {
1562    // No conversion functions from incomplete types.
1563  } else if (const RecordType *FromRecordType
1564               = From->getType()->getAs<RecordType>()) {
1565    if (CXXRecordDecl *FromRecordDecl
1566         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1567      // Add all of the conversion functions as candidates.
1568      const UnresolvedSetImpl *Conversions
1569        = FromRecordDecl->getVisibleConversionFunctions();
1570      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1571             E = Conversions->end(); I != E; ++I) {
1572        NamedDecl *D = *I;
1573        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1574        if (isa<UsingShadowDecl>(D))
1575          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1576
1577        CXXConversionDecl *Conv;
1578        FunctionTemplateDecl *ConvTemplate;
1579        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1580          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1581        else
1582          Conv = dyn_cast<CXXConversionDecl>(*I);
1583
1584        if (AllowExplicit || !Conv->isExplicit()) {
1585          if (ConvTemplate)
1586            AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
1587                                           ActingContext, From, ToType,
1588                                           CandidateSet);
1589          else
1590            AddConversionCandidate(Conv, I.getAccess(), ActingContext,
1591                                   From, ToType, CandidateSet);
1592        }
1593      }
1594    }
1595  }
1596
1597  OverloadCandidateSet::iterator Best;
1598  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1599    case OR_Success:
1600      // Record the standard conversion we used and the conversion function.
1601      if (CXXConstructorDecl *Constructor
1602            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1603        // C++ [over.ics.user]p1:
1604        //   If the user-defined conversion is specified by a
1605        //   constructor (12.3.1), the initial standard conversion
1606        //   sequence converts the source type to the type required by
1607        //   the argument of the constructor.
1608        //
1609        QualType ThisType = Constructor->getThisType(Context);
1610        if (Best->Conversions[0].isEllipsis())
1611          User.EllipsisConversion = true;
1612        else {
1613          User.Before = Best->Conversions[0].Standard;
1614          User.EllipsisConversion = false;
1615        }
1616        User.ConversionFunction = Constructor;
1617        User.After.setAsIdentityConversion();
1618        User.After.setFromType(
1619          ThisType->getAs<PointerType>()->getPointeeType());
1620        User.After.setAllToTypes(ToType);
1621        return OR_Success;
1622      } else if (CXXConversionDecl *Conversion
1623                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1624        // C++ [over.ics.user]p1:
1625        //
1626        //   [...] If the user-defined conversion is specified by a
1627        //   conversion function (12.3.2), the initial standard
1628        //   conversion sequence converts the source type to the
1629        //   implicit object parameter of the conversion function.
1630        User.Before = Best->Conversions[0].Standard;
1631        User.ConversionFunction = Conversion;
1632        User.EllipsisConversion = false;
1633
1634        // C++ [over.ics.user]p2:
1635        //   The second standard conversion sequence converts the
1636        //   result of the user-defined conversion to the target type
1637        //   for the sequence. Since an implicit conversion sequence
1638        //   is an initialization, the special rules for
1639        //   initialization by user-defined conversion apply when
1640        //   selecting the best user-defined conversion for a
1641        //   user-defined conversion sequence (see 13.3.3 and
1642        //   13.3.3.1).
1643        User.After = Best->FinalConversion;
1644        return OR_Success;
1645      } else {
1646        assert(false && "Not a constructor or conversion function?");
1647        return OR_No_Viable_Function;
1648      }
1649
1650    case OR_No_Viable_Function:
1651      return OR_No_Viable_Function;
1652    case OR_Deleted:
1653      // No conversion here! We're done.
1654      return OR_Deleted;
1655
1656    case OR_Ambiguous:
1657      return OR_Ambiguous;
1658    }
1659
1660  return OR_No_Viable_Function;
1661}
1662
1663bool
1664Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1665  ImplicitConversionSequence ICS;
1666  OverloadCandidateSet CandidateSet(From->getExprLoc());
1667  OverloadingResult OvResult =
1668    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1669                            CandidateSet, true, false, false);
1670  if (OvResult == OR_Ambiguous)
1671    Diag(From->getSourceRange().getBegin(),
1672         diag::err_typecheck_ambiguous_condition)
1673          << From->getType() << ToType << From->getSourceRange();
1674  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1675    Diag(From->getSourceRange().getBegin(),
1676         diag::err_typecheck_nonviable_condition)
1677    << From->getType() << ToType << From->getSourceRange();
1678  else
1679    return false;
1680  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1681  return true;
1682}
1683
1684/// CompareImplicitConversionSequences - Compare two implicit
1685/// conversion sequences to determine whether one is better than the
1686/// other or if they are indistinguishable (C++ 13.3.3.2).
1687ImplicitConversionSequence::CompareKind
1688Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1689                                         const ImplicitConversionSequence& ICS2)
1690{
1691  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1692  // conversion sequences (as defined in 13.3.3.1)
1693  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1694  //      conversion sequence than a user-defined conversion sequence or
1695  //      an ellipsis conversion sequence, and
1696  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1697  //      conversion sequence than an ellipsis conversion sequence
1698  //      (13.3.3.1.3).
1699  //
1700  // C++0x [over.best.ics]p10:
1701  //   For the purpose of ranking implicit conversion sequences as
1702  //   described in 13.3.3.2, the ambiguous conversion sequence is
1703  //   treated as a user-defined sequence that is indistinguishable
1704  //   from any other user-defined conversion sequence.
1705  if (ICS1.getKind() < ICS2.getKind()) {
1706    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1707      return ImplicitConversionSequence::Better;
1708  } else if (ICS2.getKind() < ICS1.getKind()) {
1709    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1710      return ImplicitConversionSequence::Worse;
1711  }
1712
1713  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1714    return ImplicitConversionSequence::Indistinguishable;
1715
1716  // Two implicit conversion sequences of the same form are
1717  // indistinguishable conversion sequences unless one of the
1718  // following rules apply: (C++ 13.3.3.2p3):
1719  if (ICS1.isStandard())
1720    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1721  else if (ICS1.isUserDefined()) {
1722    // User-defined conversion sequence U1 is a better conversion
1723    // sequence than another user-defined conversion sequence U2 if
1724    // they contain the same user-defined conversion function or
1725    // constructor and if the second standard conversion sequence of
1726    // U1 is better than the second standard conversion sequence of
1727    // U2 (C++ 13.3.3.2p3).
1728    if (ICS1.UserDefined.ConversionFunction ==
1729          ICS2.UserDefined.ConversionFunction)
1730      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1731                                                ICS2.UserDefined.After);
1732  }
1733
1734  return ImplicitConversionSequence::Indistinguishable;
1735}
1736
1737// Per 13.3.3.2p3, compare the given standard conversion sequences to
1738// determine if one is a proper subset of the other.
1739static ImplicitConversionSequence::CompareKind
1740compareStandardConversionSubsets(ASTContext &Context,
1741                                 const StandardConversionSequence& SCS1,
1742                                 const StandardConversionSequence& SCS2) {
1743  ImplicitConversionSequence::CompareKind Result
1744    = ImplicitConversionSequence::Indistinguishable;
1745
1746  if (SCS1.Second != SCS2.Second) {
1747    if (SCS1.Second == ICK_Identity)
1748      Result = ImplicitConversionSequence::Better;
1749    else if (SCS2.Second == ICK_Identity)
1750      Result = ImplicitConversionSequence::Worse;
1751    else
1752      return ImplicitConversionSequence::Indistinguishable;
1753  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1754    return ImplicitConversionSequence::Indistinguishable;
1755
1756  if (SCS1.Third == SCS2.Third) {
1757    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1758                             : ImplicitConversionSequence::Indistinguishable;
1759  }
1760
1761  if (SCS1.Third == ICK_Identity)
1762    return Result == ImplicitConversionSequence::Worse
1763             ? ImplicitConversionSequence::Indistinguishable
1764             : ImplicitConversionSequence::Better;
1765
1766  if (SCS2.Third == ICK_Identity)
1767    return Result == ImplicitConversionSequence::Better
1768             ? ImplicitConversionSequence::Indistinguishable
1769             : ImplicitConversionSequence::Worse;
1770
1771  return ImplicitConversionSequence::Indistinguishable;
1772}
1773
1774/// CompareStandardConversionSequences - Compare two standard
1775/// conversion sequences to determine whether one is better than the
1776/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1777ImplicitConversionSequence::CompareKind
1778Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1779                                         const StandardConversionSequence& SCS2)
1780{
1781  // Standard conversion sequence S1 is a better conversion sequence
1782  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1783
1784  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1785  //     sequences in the canonical form defined by 13.3.3.1.1,
1786  //     excluding any Lvalue Transformation; the identity conversion
1787  //     sequence is considered to be a subsequence of any
1788  //     non-identity conversion sequence) or, if not that,
1789  if (ImplicitConversionSequence::CompareKind CK
1790        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1791    return CK;
1792
1793  //  -- the rank of S1 is better than the rank of S2 (by the rules
1794  //     defined below), or, if not that,
1795  ImplicitConversionRank Rank1 = SCS1.getRank();
1796  ImplicitConversionRank Rank2 = SCS2.getRank();
1797  if (Rank1 < Rank2)
1798    return ImplicitConversionSequence::Better;
1799  else if (Rank2 < Rank1)
1800    return ImplicitConversionSequence::Worse;
1801
1802  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1803  // are indistinguishable unless one of the following rules
1804  // applies:
1805
1806  //   A conversion that is not a conversion of a pointer, or
1807  //   pointer to member, to bool is better than another conversion
1808  //   that is such a conversion.
1809  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1810    return SCS2.isPointerConversionToBool()
1811             ? ImplicitConversionSequence::Better
1812             : ImplicitConversionSequence::Worse;
1813
1814  // C++ [over.ics.rank]p4b2:
1815  //
1816  //   If class B is derived directly or indirectly from class A,
1817  //   conversion of B* to A* is better than conversion of B* to
1818  //   void*, and conversion of A* to void* is better than conversion
1819  //   of B* to void*.
1820  bool SCS1ConvertsToVoid
1821    = SCS1.isPointerConversionToVoidPointer(Context);
1822  bool SCS2ConvertsToVoid
1823    = SCS2.isPointerConversionToVoidPointer(Context);
1824  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1825    // Exactly one of the conversion sequences is a conversion to
1826    // a void pointer; it's the worse conversion.
1827    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1828                              : ImplicitConversionSequence::Worse;
1829  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1830    // Neither conversion sequence converts to a void pointer; compare
1831    // their derived-to-base conversions.
1832    if (ImplicitConversionSequence::CompareKind DerivedCK
1833          = CompareDerivedToBaseConversions(SCS1, SCS2))
1834      return DerivedCK;
1835  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1836    // Both conversion sequences are conversions to void
1837    // pointers. Compare the source types to determine if there's an
1838    // inheritance relationship in their sources.
1839    QualType FromType1 = SCS1.getFromType();
1840    QualType FromType2 = SCS2.getFromType();
1841
1842    // Adjust the types we're converting from via the array-to-pointer
1843    // conversion, if we need to.
1844    if (SCS1.First == ICK_Array_To_Pointer)
1845      FromType1 = Context.getArrayDecayedType(FromType1);
1846    if (SCS2.First == ICK_Array_To_Pointer)
1847      FromType2 = Context.getArrayDecayedType(FromType2);
1848
1849    QualType FromPointee1
1850      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1851    QualType FromPointee2
1852      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1853
1854    if (IsDerivedFrom(FromPointee2, FromPointee1))
1855      return ImplicitConversionSequence::Better;
1856    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1857      return ImplicitConversionSequence::Worse;
1858
1859    // Objective-C++: If one interface is more specific than the
1860    // other, it is the better one.
1861    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1862    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1863    if (FromIface1 && FromIface1) {
1864      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1865        return ImplicitConversionSequence::Better;
1866      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1867        return ImplicitConversionSequence::Worse;
1868    }
1869  }
1870
1871  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1872  // bullet 3).
1873  if (ImplicitConversionSequence::CompareKind QualCK
1874        = CompareQualificationConversions(SCS1, SCS2))
1875    return QualCK;
1876
1877  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1878    // C++0x [over.ics.rank]p3b4:
1879    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1880    //      implicit object parameter of a non-static member function declared
1881    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1882    //      rvalue and S2 binds an lvalue reference.
1883    // FIXME: We don't know if we're dealing with the implicit object parameter,
1884    // or if the member function in this case has a ref qualifier.
1885    // (Of course, we don't have ref qualifiers yet.)
1886    if (SCS1.RRefBinding != SCS2.RRefBinding)
1887      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1888                              : ImplicitConversionSequence::Worse;
1889
1890    // C++ [over.ics.rank]p3b4:
1891    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1892    //      which the references refer are the same type except for
1893    //      top-level cv-qualifiers, and the type to which the reference
1894    //      initialized by S2 refers is more cv-qualified than the type
1895    //      to which the reference initialized by S1 refers.
1896    QualType T1 = SCS1.getToType(2);
1897    QualType T2 = SCS2.getToType(2);
1898    T1 = Context.getCanonicalType(T1);
1899    T2 = Context.getCanonicalType(T2);
1900    Qualifiers T1Quals, T2Quals;
1901    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1902    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1903    if (UnqualT1 == UnqualT2) {
1904      // If the type is an array type, promote the element qualifiers to the type
1905      // for comparison.
1906      if (isa<ArrayType>(T1) && T1Quals)
1907        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1908      if (isa<ArrayType>(T2) && T2Quals)
1909        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1910      if (T2.isMoreQualifiedThan(T1))
1911        return ImplicitConversionSequence::Better;
1912      else if (T1.isMoreQualifiedThan(T2))
1913        return ImplicitConversionSequence::Worse;
1914    }
1915  }
1916
1917  return ImplicitConversionSequence::Indistinguishable;
1918}
1919
1920/// CompareQualificationConversions - Compares two standard conversion
1921/// sequences to determine whether they can be ranked based on their
1922/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1923ImplicitConversionSequence::CompareKind
1924Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1925                                      const StandardConversionSequence& SCS2) {
1926  // C++ 13.3.3.2p3:
1927  //  -- S1 and S2 differ only in their qualification conversion and
1928  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1929  //     cv-qualification signature of type T1 is a proper subset of
1930  //     the cv-qualification signature of type T2, and S1 is not the
1931  //     deprecated string literal array-to-pointer conversion (4.2).
1932  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1933      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1934    return ImplicitConversionSequence::Indistinguishable;
1935
1936  // FIXME: the example in the standard doesn't use a qualification
1937  // conversion (!)
1938  QualType T1 = SCS1.getToType(2);
1939  QualType T2 = SCS2.getToType(2);
1940  T1 = Context.getCanonicalType(T1);
1941  T2 = Context.getCanonicalType(T2);
1942  Qualifiers T1Quals, T2Quals;
1943  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1944  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1945
1946  // If the types are the same, we won't learn anything by unwrapped
1947  // them.
1948  if (UnqualT1 == UnqualT2)
1949    return ImplicitConversionSequence::Indistinguishable;
1950
1951  // If the type is an array type, promote the element qualifiers to the type
1952  // for comparison.
1953  if (isa<ArrayType>(T1) && T1Quals)
1954    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1955  if (isa<ArrayType>(T2) && T2Quals)
1956    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1957
1958  ImplicitConversionSequence::CompareKind Result
1959    = ImplicitConversionSequence::Indistinguishable;
1960  while (UnwrapSimilarPointerTypes(T1, T2)) {
1961    // Within each iteration of the loop, we check the qualifiers to
1962    // determine if this still looks like a qualification
1963    // conversion. Then, if all is well, we unwrap one more level of
1964    // pointers or pointers-to-members and do it all again
1965    // until there are no more pointers or pointers-to-members left
1966    // to unwrap. This essentially mimics what
1967    // IsQualificationConversion does, but here we're checking for a
1968    // strict subset of qualifiers.
1969    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1970      // The qualifiers are the same, so this doesn't tell us anything
1971      // about how the sequences rank.
1972      ;
1973    else if (T2.isMoreQualifiedThan(T1)) {
1974      // T1 has fewer qualifiers, so it could be the better sequence.
1975      if (Result == ImplicitConversionSequence::Worse)
1976        // Neither has qualifiers that are a subset of the other's
1977        // qualifiers.
1978        return ImplicitConversionSequence::Indistinguishable;
1979
1980      Result = ImplicitConversionSequence::Better;
1981    } else if (T1.isMoreQualifiedThan(T2)) {
1982      // T2 has fewer qualifiers, so it could be the better sequence.
1983      if (Result == ImplicitConversionSequence::Better)
1984        // Neither has qualifiers that are a subset of the other's
1985        // qualifiers.
1986        return ImplicitConversionSequence::Indistinguishable;
1987
1988      Result = ImplicitConversionSequence::Worse;
1989    } else {
1990      // Qualifiers are disjoint.
1991      return ImplicitConversionSequence::Indistinguishable;
1992    }
1993
1994    // If the types after this point are equivalent, we're done.
1995    if (Context.hasSameUnqualifiedType(T1, T2))
1996      break;
1997  }
1998
1999  // Check that the winning standard conversion sequence isn't using
2000  // the deprecated string literal array to pointer conversion.
2001  switch (Result) {
2002  case ImplicitConversionSequence::Better:
2003    if (SCS1.DeprecatedStringLiteralToCharPtr)
2004      Result = ImplicitConversionSequence::Indistinguishable;
2005    break;
2006
2007  case ImplicitConversionSequence::Indistinguishable:
2008    break;
2009
2010  case ImplicitConversionSequence::Worse:
2011    if (SCS2.DeprecatedStringLiteralToCharPtr)
2012      Result = ImplicitConversionSequence::Indistinguishable;
2013    break;
2014  }
2015
2016  return Result;
2017}
2018
2019/// CompareDerivedToBaseConversions - Compares two standard conversion
2020/// sequences to determine whether they can be ranked based on their
2021/// various kinds of derived-to-base conversions (C++
2022/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2023/// conversions between Objective-C interface types.
2024ImplicitConversionSequence::CompareKind
2025Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2026                                      const StandardConversionSequence& SCS2) {
2027  QualType FromType1 = SCS1.getFromType();
2028  QualType ToType1 = SCS1.getToType(1);
2029  QualType FromType2 = SCS2.getFromType();
2030  QualType ToType2 = SCS2.getToType(1);
2031
2032  // Adjust the types we're converting from via the array-to-pointer
2033  // conversion, if we need to.
2034  if (SCS1.First == ICK_Array_To_Pointer)
2035    FromType1 = Context.getArrayDecayedType(FromType1);
2036  if (SCS2.First == ICK_Array_To_Pointer)
2037    FromType2 = Context.getArrayDecayedType(FromType2);
2038
2039  // Canonicalize all of the types.
2040  FromType1 = Context.getCanonicalType(FromType1);
2041  ToType1 = Context.getCanonicalType(ToType1);
2042  FromType2 = Context.getCanonicalType(FromType2);
2043  ToType2 = Context.getCanonicalType(ToType2);
2044
2045  // C++ [over.ics.rank]p4b3:
2046  //
2047  //   If class B is derived directly or indirectly from class A and
2048  //   class C is derived directly or indirectly from B,
2049  //
2050  // For Objective-C, we let A, B, and C also be Objective-C
2051  // interfaces.
2052
2053  // Compare based on pointer conversions.
2054  if (SCS1.Second == ICK_Pointer_Conversion &&
2055      SCS2.Second == ICK_Pointer_Conversion &&
2056      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2057      FromType1->isPointerType() && FromType2->isPointerType() &&
2058      ToType1->isPointerType() && ToType2->isPointerType()) {
2059    QualType FromPointee1
2060      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2061    QualType ToPointee1
2062      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2063    QualType FromPointee2
2064      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2065    QualType ToPointee2
2066      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2067
2068    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2069    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2070    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2071    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2072
2073    //   -- conversion of C* to B* is better than conversion of C* to A*,
2074    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2075      if (IsDerivedFrom(ToPointee1, ToPointee2))
2076        return ImplicitConversionSequence::Better;
2077      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2078        return ImplicitConversionSequence::Worse;
2079
2080      if (ToIface1 && ToIface2) {
2081        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2082          return ImplicitConversionSequence::Better;
2083        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2084          return ImplicitConversionSequence::Worse;
2085      }
2086    }
2087
2088    //   -- conversion of B* to A* is better than conversion of C* to A*,
2089    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2090      if (IsDerivedFrom(FromPointee2, FromPointee1))
2091        return ImplicitConversionSequence::Better;
2092      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2093        return ImplicitConversionSequence::Worse;
2094
2095      if (FromIface1 && FromIface2) {
2096        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2097          return ImplicitConversionSequence::Better;
2098        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2099          return ImplicitConversionSequence::Worse;
2100      }
2101    }
2102  }
2103
2104  // Ranking of member-pointer types.
2105  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2106      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2107      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2108    const MemberPointerType * FromMemPointer1 =
2109                                        FromType1->getAs<MemberPointerType>();
2110    const MemberPointerType * ToMemPointer1 =
2111                                          ToType1->getAs<MemberPointerType>();
2112    const MemberPointerType * FromMemPointer2 =
2113                                          FromType2->getAs<MemberPointerType>();
2114    const MemberPointerType * ToMemPointer2 =
2115                                          ToType2->getAs<MemberPointerType>();
2116    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2117    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2118    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2119    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2120    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2121    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2122    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2123    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2124    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2125    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2126      if (IsDerivedFrom(ToPointee1, ToPointee2))
2127        return ImplicitConversionSequence::Worse;
2128      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2129        return ImplicitConversionSequence::Better;
2130    }
2131    // conversion of B::* to C::* is better than conversion of A::* to C::*
2132    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2133      if (IsDerivedFrom(FromPointee1, FromPointee2))
2134        return ImplicitConversionSequence::Better;
2135      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2136        return ImplicitConversionSequence::Worse;
2137    }
2138  }
2139
2140  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2141      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2142      SCS1.Second == ICK_Derived_To_Base) {
2143    //   -- conversion of C to B is better than conversion of C to A,
2144    //   -- binding of an expression of type C to a reference of type
2145    //      B& is better than binding an expression of type C to a
2146    //      reference of type A&,
2147    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2148        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2149      if (IsDerivedFrom(ToType1, ToType2))
2150        return ImplicitConversionSequence::Better;
2151      else if (IsDerivedFrom(ToType2, ToType1))
2152        return ImplicitConversionSequence::Worse;
2153    }
2154
2155    //   -- conversion of B to A is better than conversion of C to A.
2156    //   -- binding of an expression of type B to a reference of type
2157    //      A& is better than binding an expression of type C to a
2158    //      reference of type A&,
2159    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2160        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2161      if (IsDerivedFrom(FromType2, FromType1))
2162        return ImplicitConversionSequence::Better;
2163      else if (IsDerivedFrom(FromType1, FromType2))
2164        return ImplicitConversionSequence::Worse;
2165    }
2166  }
2167
2168  return ImplicitConversionSequence::Indistinguishable;
2169}
2170
2171/// TryCopyInitialization - Try to copy-initialize a value of type
2172/// ToType from the expression From. Return the implicit conversion
2173/// sequence required to pass this argument, which may be a bad
2174/// conversion sequence (meaning that the argument cannot be passed to
2175/// a parameter of this type). If @p SuppressUserConversions, then we
2176/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2177/// then we treat @p From as an rvalue, even if it is an lvalue.
2178ImplicitConversionSequence
2179Sema::TryCopyInitialization(Expr *From, QualType ToType,
2180                            bool SuppressUserConversions, bool ForceRValue,
2181                            bool InOverloadResolution) {
2182  if (ToType->isReferenceType()) {
2183    ImplicitConversionSequence ICS;
2184    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
2185    CheckReferenceInit(From, ToType,
2186                       /*FIXME:*/From->getLocStart(),
2187                       SuppressUserConversions,
2188                       /*AllowExplicit=*/false,
2189                       ForceRValue,
2190                       &ICS);
2191    return ICS;
2192  } else {
2193    return TryImplicitConversion(From, ToType,
2194                                 SuppressUserConversions,
2195                                 /*AllowExplicit=*/false,
2196                                 ForceRValue,
2197                                 InOverloadResolution);
2198  }
2199}
2200
2201/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2202/// the expression @p From. Returns true (and emits a diagnostic) if there was
2203/// an error, returns false if the initialization succeeded. Elidable should
2204/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2205/// differently in C++0x for this case.
2206bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2207                                     AssignmentAction Action, bool Elidable) {
2208  if (!getLangOptions().CPlusPlus) {
2209    // In C, argument passing is the same as performing an assignment.
2210    QualType FromType = From->getType();
2211
2212    AssignConvertType ConvTy =
2213      CheckSingleAssignmentConstraints(ToType, From);
2214    if (ConvTy != Compatible &&
2215        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2216      ConvTy = Compatible;
2217
2218    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2219                                    FromType, From, Action);
2220  }
2221
2222  if (ToType->isReferenceType())
2223    return CheckReferenceInit(From, ToType,
2224                              /*FIXME:*/From->getLocStart(),
2225                              /*SuppressUserConversions=*/false,
2226                              /*AllowExplicit=*/false,
2227                              /*ForceRValue=*/false);
2228
2229  if (!PerformImplicitConversion(From, ToType, Action,
2230                                 /*AllowExplicit=*/false, Elidable))
2231    return false;
2232  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2233    return Diag(From->getSourceRange().getBegin(),
2234                diag::err_typecheck_convert_incompatible)
2235      << ToType << From->getType() << Action << From->getSourceRange();
2236  return true;
2237}
2238
2239/// TryObjectArgumentInitialization - Try to initialize the object
2240/// parameter of the given member function (@c Method) from the
2241/// expression @p From.
2242ImplicitConversionSequence
2243Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2244                                      CXXMethodDecl *Method,
2245                                      CXXRecordDecl *ActingContext) {
2246  QualType ClassType = Context.getTypeDeclType(ActingContext);
2247  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2248  //                 const volatile object.
2249  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2250    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2251  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2252
2253  // Set up the conversion sequence as a "bad" conversion, to allow us
2254  // to exit early.
2255  ImplicitConversionSequence ICS;
2256
2257  // We need to have an object of class type.
2258  QualType FromType = OrigFromType;
2259  if (const PointerType *PT = FromType->getAs<PointerType>())
2260    FromType = PT->getPointeeType();
2261
2262  assert(FromType->isRecordType());
2263
2264  // The implicit object parameter is has the type "reference to cv X",
2265  // where X is the class of which the function is a member
2266  // (C++ [over.match.funcs]p4). However, when finding an implicit
2267  // conversion sequence for the argument, we are not allowed to
2268  // create temporaries or perform user-defined conversions
2269  // (C++ [over.match.funcs]p5). We perform a simplified version of
2270  // reference binding here, that allows class rvalues to bind to
2271  // non-constant references.
2272
2273  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2274  // with the implicit object parameter (C++ [over.match.funcs]p5).
2275  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2276  if (ImplicitParamType.getCVRQualifiers()
2277                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2278      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2279    ICS.setBad(BadConversionSequence::bad_qualifiers,
2280               OrigFromType, ImplicitParamType);
2281    return ICS;
2282  }
2283
2284  // Check that we have either the same type or a derived type. It
2285  // affects the conversion rank.
2286  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2287  ImplicitConversionKind SecondKind;
2288  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2289    SecondKind = ICK_Identity;
2290  } else if (IsDerivedFrom(FromType, ClassType))
2291    SecondKind = ICK_Derived_To_Base;
2292  else {
2293    ICS.setBad(BadConversionSequence::unrelated_class,
2294               FromType, ImplicitParamType);
2295    return ICS;
2296  }
2297
2298  // Success. Mark this as a reference binding.
2299  ICS.setStandard();
2300  ICS.Standard.setAsIdentityConversion();
2301  ICS.Standard.Second = SecondKind;
2302  ICS.Standard.setFromType(FromType);
2303  ICS.Standard.setAllToTypes(ImplicitParamType);
2304  ICS.Standard.ReferenceBinding = true;
2305  ICS.Standard.DirectBinding = true;
2306  ICS.Standard.RRefBinding = false;
2307  return ICS;
2308}
2309
2310/// PerformObjectArgumentInitialization - Perform initialization of
2311/// the implicit object parameter for the given Method with the given
2312/// expression.
2313bool
2314Sema::PerformObjectArgumentInitialization(Expr *&From,
2315                                          NestedNameSpecifier *Qualifier,
2316                                          CXXMethodDecl *Method) {
2317  QualType FromRecordType, DestType;
2318  QualType ImplicitParamRecordType  =
2319    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2320
2321  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2322    FromRecordType = PT->getPointeeType();
2323    DestType = Method->getThisType(Context);
2324  } else {
2325    FromRecordType = From->getType();
2326    DestType = ImplicitParamRecordType;
2327  }
2328
2329  // Note that we always use the true parent context when performing
2330  // the actual argument initialization.
2331  ImplicitConversionSequence ICS
2332    = TryObjectArgumentInitialization(From->getType(), Method,
2333                                      Method->getParent());
2334  if (ICS.isBad())
2335    return Diag(From->getSourceRange().getBegin(),
2336                diag::err_implicit_object_parameter_init)
2337       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2338
2339  if (ICS.Standard.Second == ICK_Derived_To_Base)
2340    return PerformObjectMemberConversion(From, Qualifier, Method);
2341
2342  if (!Context.hasSameType(From->getType(), DestType))
2343    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2344                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2345  return false;
2346}
2347
2348/// TryContextuallyConvertToBool - Attempt to contextually convert the
2349/// expression From to bool (C++0x [conv]p3).
2350ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2351  return TryImplicitConversion(From, Context.BoolTy,
2352                               // FIXME: Are these flags correct?
2353                               /*SuppressUserConversions=*/false,
2354                               /*AllowExplicit=*/true,
2355                               /*ForceRValue=*/false,
2356                               /*InOverloadResolution=*/false);
2357}
2358
2359/// PerformContextuallyConvertToBool - Perform a contextual conversion
2360/// of the expression From to bool (C++0x [conv]p3).
2361bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2362  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2363  if (!ICS.isBad())
2364    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2365
2366  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2367    return  Diag(From->getSourceRange().getBegin(),
2368                 diag::err_typecheck_bool_condition)
2369                  << From->getType() << From->getSourceRange();
2370  return true;
2371}
2372
2373/// AddOverloadCandidate - Adds the given function to the set of
2374/// candidate functions, using the given function call arguments.  If
2375/// @p SuppressUserConversions, then don't allow user-defined
2376/// conversions via constructors or conversion operators.
2377/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2378/// hacky way to implement the overloading rules for elidable copy
2379/// initialization in C++0x (C++0x 12.8p15).
2380///
2381/// \para PartialOverloading true if we are performing "partial" overloading
2382/// based on an incomplete set of function arguments. This feature is used by
2383/// code completion.
2384void
2385Sema::AddOverloadCandidate(FunctionDecl *Function,
2386                           AccessSpecifier Access,
2387                           Expr **Args, unsigned NumArgs,
2388                           OverloadCandidateSet& CandidateSet,
2389                           bool SuppressUserConversions,
2390                           bool ForceRValue,
2391                           bool PartialOverloading) {
2392  const FunctionProtoType* Proto
2393    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2394  assert(Proto && "Functions without a prototype cannot be overloaded");
2395  assert(!Function->getDescribedFunctionTemplate() &&
2396         "Use AddTemplateOverloadCandidate for function templates");
2397
2398  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2399    if (!isa<CXXConstructorDecl>(Method)) {
2400      // If we get here, it's because we're calling a member function
2401      // that is named without a member access expression (e.g.,
2402      // "this->f") that was either written explicitly or created
2403      // implicitly. This can happen with a qualified call to a member
2404      // function, e.g., X::f(). We use an empty type for the implied
2405      // object argument (C++ [over.call.func]p3), and the acting context
2406      // is irrelevant.
2407      AddMethodCandidate(Method, Access, Method->getParent(),
2408                         QualType(), Args, NumArgs, CandidateSet,
2409                         SuppressUserConversions, ForceRValue);
2410      return;
2411    }
2412    // We treat a constructor like a non-member function, since its object
2413    // argument doesn't participate in overload resolution.
2414  }
2415
2416  if (!CandidateSet.isNewCandidate(Function))
2417    return;
2418
2419  // Overload resolution is always an unevaluated context.
2420  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2421
2422  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2423    // C++ [class.copy]p3:
2424    //   A member function template is never instantiated to perform the copy
2425    //   of a class object to an object of its class type.
2426    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2427    if (NumArgs == 1 &&
2428        Constructor->isCopyConstructorLikeSpecialization() &&
2429        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2430         IsDerivedFrom(Args[0]->getType(), ClassType)))
2431      return;
2432  }
2433
2434  // Add this candidate
2435  CandidateSet.push_back(OverloadCandidate());
2436  OverloadCandidate& Candidate = CandidateSet.back();
2437  Candidate.Function = Function;
2438  Candidate.Access = Access;
2439  Candidate.Viable = true;
2440  Candidate.IsSurrogate = false;
2441  Candidate.IgnoreObjectArgument = false;
2442
2443  unsigned NumArgsInProto = Proto->getNumArgs();
2444
2445  // (C++ 13.3.2p2): A candidate function having fewer than m
2446  // parameters is viable only if it has an ellipsis in its parameter
2447  // list (8.3.5).
2448  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2449      !Proto->isVariadic()) {
2450    Candidate.Viable = false;
2451    Candidate.FailureKind = ovl_fail_too_many_arguments;
2452    return;
2453  }
2454
2455  // (C++ 13.3.2p2): A candidate function having more than m parameters
2456  // is viable only if the (m+1)st parameter has a default argument
2457  // (8.3.6). For the purposes of overload resolution, the
2458  // parameter list is truncated on the right, so that there are
2459  // exactly m parameters.
2460  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2461  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2462    // Not enough arguments.
2463    Candidate.Viable = false;
2464    Candidate.FailureKind = ovl_fail_too_few_arguments;
2465    return;
2466  }
2467
2468  // Determine the implicit conversion sequences for each of the
2469  // arguments.
2470  Candidate.Conversions.resize(NumArgs);
2471  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2472    if (ArgIdx < NumArgsInProto) {
2473      // (C++ 13.3.2p3): for F to be a viable function, there shall
2474      // exist for each argument an implicit conversion sequence
2475      // (13.3.3.1) that converts that argument to the corresponding
2476      // parameter of F.
2477      QualType ParamType = Proto->getArgType(ArgIdx);
2478      Candidate.Conversions[ArgIdx]
2479        = TryCopyInitialization(Args[ArgIdx], ParamType,
2480                                SuppressUserConversions, ForceRValue,
2481                                /*InOverloadResolution=*/true);
2482      if (Candidate.Conversions[ArgIdx].isBad()) {
2483        Candidate.Viable = false;
2484        Candidate.FailureKind = ovl_fail_bad_conversion;
2485        break;
2486      }
2487    } else {
2488      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2489      // argument for which there is no corresponding parameter is
2490      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2491      Candidate.Conversions[ArgIdx].setEllipsis();
2492    }
2493  }
2494}
2495
2496/// \brief Add all of the function declarations in the given function set to
2497/// the overload canddiate set.
2498void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2499                                 Expr **Args, unsigned NumArgs,
2500                                 OverloadCandidateSet& CandidateSet,
2501                                 bool SuppressUserConversions) {
2502  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2503    // FIXME: using declarations
2504    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2505      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2506        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
2507                           cast<CXXMethodDecl>(FD)->getParent(),
2508                           Args[0]->getType(), Args + 1, NumArgs - 1,
2509                           CandidateSet, SuppressUserConversions);
2510      else
2511        AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
2512                             SuppressUserConversions);
2513    } else {
2514      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2515      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2516          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2517        AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
2518                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2519                                   /*FIXME: explicit args */ 0,
2520                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2521                                   CandidateSet,
2522                                   SuppressUserConversions);
2523      else
2524        AddTemplateOverloadCandidate(FunTmpl, AS_none,
2525                                     /*FIXME: explicit args */ 0,
2526                                     Args, NumArgs, CandidateSet,
2527                                     SuppressUserConversions);
2528    }
2529  }
2530}
2531
2532/// AddMethodCandidate - Adds a named decl (which is some kind of
2533/// method) as a method candidate to the given overload set.
2534void Sema::AddMethodCandidate(NamedDecl *Decl,
2535                              AccessSpecifier Access,
2536                              QualType ObjectType,
2537                              Expr **Args, unsigned NumArgs,
2538                              OverloadCandidateSet& CandidateSet,
2539                              bool SuppressUserConversions, bool ForceRValue) {
2540  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2541
2542  if (isa<UsingShadowDecl>(Decl))
2543    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2544
2545  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2546    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2547           "Expected a member function template");
2548    AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
2549                               ObjectType, Args, NumArgs,
2550                               CandidateSet,
2551                               SuppressUserConversions,
2552                               ForceRValue);
2553  } else {
2554    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
2555                       ObjectType, Args, NumArgs,
2556                       CandidateSet, SuppressUserConversions, ForceRValue);
2557  }
2558}
2559
2560/// AddMethodCandidate - Adds the given C++ member function to the set
2561/// of candidate functions, using the given function call arguments
2562/// and the object argument (@c Object). For example, in a call
2563/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2564/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2565/// allow user-defined conversions via constructors or conversion
2566/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2567/// a slightly hacky way to implement the overloading rules for elidable copy
2568/// initialization in C++0x (C++0x 12.8p15).
2569void
2570Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
2571                         CXXRecordDecl *ActingContext, QualType ObjectType,
2572                         Expr **Args, unsigned NumArgs,
2573                         OverloadCandidateSet& CandidateSet,
2574                         bool SuppressUserConversions, bool ForceRValue) {
2575  const FunctionProtoType* Proto
2576    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2577  assert(Proto && "Methods without a prototype cannot be overloaded");
2578  assert(!isa<CXXConstructorDecl>(Method) &&
2579         "Use AddOverloadCandidate for constructors");
2580
2581  if (!CandidateSet.isNewCandidate(Method))
2582    return;
2583
2584  // Overload resolution is always an unevaluated context.
2585  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2586
2587  // Add this candidate
2588  CandidateSet.push_back(OverloadCandidate());
2589  OverloadCandidate& Candidate = CandidateSet.back();
2590  Candidate.Function = Method;
2591  Candidate.Access = Access;
2592  Candidate.IsSurrogate = false;
2593  Candidate.IgnoreObjectArgument = false;
2594
2595  unsigned NumArgsInProto = Proto->getNumArgs();
2596
2597  // (C++ 13.3.2p2): A candidate function having fewer than m
2598  // parameters is viable only if it has an ellipsis in its parameter
2599  // list (8.3.5).
2600  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2601    Candidate.Viable = false;
2602    Candidate.FailureKind = ovl_fail_too_many_arguments;
2603    return;
2604  }
2605
2606  // (C++ 13.3.2p2): A candidate function having more than m parameters
2607  // is viable only if the (m+1)st parameter has a default argument
2608  // (8.3.6). For the purposes of overload resolution, the
2609  // parameter list is truncated on the right, so that there are
2610  // exactly m parameters.
2611  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2612  if (NumArgs < MinRequiredArgs) {
2613    // Not enough arguments.
2614    Candidate.Viable = false;
2615    Candidate.FailureKind = ovl_fail_too_few_arguments;
2616    return;
2617  }
2618
2619  Candidate.Viable = true;
2620  Candidate.Conversions.resize(NumArgs + 1);
2621
2622  if (Method->isStatic() || ObjectType.isNull())
2623    // The implicit object argument is ignored.
2624    Candidate.IgnoreObjectArgument = true;
2625  else {
2626    // Determine the implicit conversion sequence for the object
2627    // parameter.
2628    Candidate.Conversions[0]
2629      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2630    if (Candidate.Conversions[0].isBad()) {
2631      Candidate.Viable = false;
2632      Candidate.FailureKind = ovl_fail_bad_conversion;
2633      return;
2634    }
2635  }
2636
2637  // Determine the implicit conversion sequences for each of the
2638  // arguments.
2639  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2640    if (ArgIdx < NumArgsInProto) {
2641      // (C++ 13.3.2p3): for F to be a viable function, there shall
2642      // exist for each argument an implicit conversion sequence
2643      // (13.3.3.1) that converts that argument to the corresponding
2644      // parameter of F.
2645      QualType ParamType = Proto->getArgType(ArgIdx);
2646      Candidate.Conversions[ArgIdx + 1]
2647        = TryCopyInitialization(Args[ArgIdx], ParamType,
2648                                SuppressUserConversions, ForceRValue,
2649                                /*InOverloadResolution=*/true);
2650      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2651        Candidate.Viable = false;
2652        Candidate.FailureKind = ovl_fail_bad_conversion;
2653        break;
2654      }
2655    } else {
2656      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2657      // argument for which there is no corresponding parameter is
2658      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2659      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2660    }
2661  }
2662}
2663
2664/// \brief Add a C++ member function template as a candidate to the candidate
2665/// set, using template argument deduction to produce an appropriate member
2666/// function template specialization.
2667void
2668Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2669                                 AccessSpecifier Access,
2670                                 CXXRecordDecl *ActingContext,
2671                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2672                                 QualType ObjectType,
2673                                 Expr **Args, unsigned NumArgs,
2674                                 OverloadCandidateSet& CandidateSet,
2675                                 bool SuppressUserConversions,
2676                                 bool ForceRValue) {
2677  if (!CandidateSet.isNewCandidate(MethodTmpl))
2678    return;
2679
2680  // C++ [over.match.funcs]p7:
2681  //   In each case where a candidate is a function template, candidate
2682  //   function template specializations are generated using template argument
2683  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2684  //   candidate functions in the usual way.113) A given name can refer to one
2685  //   or more function templates and also to a set of overloaded non-template
2686  //   functions. In such a case, the candidate functions generated from each
2687  //   function template are combined with the set of non-template candidate
2688  //   functions.
2689  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2690  FunctionDecl *Specialization = 0;
2691  if (TemplateDeductionResult Result
2692      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2693                                Args, NumArgs, Specialization, Info)) {
2694        // FIXME: Record what happened with template argument deduction, so
2695        // that we can give the user a beautiful diagnostic.
2696        (void)Result;
2697        return;
2698      }
2699
2700  // Add the function template specialization produced by template argument
2701  // deduction as a candidate.
2702  assert(Specialization && "Missing member function template specialization?");
2703  assert(isa<CXXMethodDecl>(Specialization) &&
2704         "Specialization is not a member function?");
2705  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
2706                     ActingContext, ObjectType, Args, NumArgs,
2707                     CandidateSet, SuppressUserConversions, ForceRValue);
2708}
2709
2710/// \brief Add a C++ function template specialization as a candidate
2711/// in the candidate set, using template argument deduction to produce
2712/// an appropriate function template specialization.
2713void
2714Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2715                                   AccessSpecifier Access,
2716                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2717                                   Expr **Args, unsigned NumArgs,
2718                                   OverloadCandidateSet& CandidateSet,
2719                                   bool SuppressUserConversions,
2720                                   bool ForceRValue) {
2721  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2722    return;
2723
2724  // C++ [over.match.funcs]p7:
2725  //   In each case where a candidate is a function template, candidate
2726  //   function template specializations are generated using template argument
2727  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2728  //   candidate functions in the usual way.113) A given name can refer to one
2729  //   or more function templates and also to a set of overloaded non-template
2730  //   functions. In such a case, the candidate functions generated from each
2731  //   function template are combined with the set of non-template candidate
2732  //   functions.
2733  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2734  FunctionDecl *Specialization = 0;
2735  if (TemplateDeductionResult Result
2736        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2737                                  Args, NumArgs, Specialization, Info)) {
2738    CandidateSet.push_back(OverloadCandidate());
2739    OverloadCandidate &Candidate = CandidateSet.back();
2740    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2741    Candidate.Access = Access;
2742    Candidate.Viable = false;
2743    Candidate.FailureKind = ovl_fail_bad_deduction;
2744    Candidate.IsSurrogate = false;
2745    Candidate.IgnoreObjectArgument = false;
2746
2747    // TODO: record more information about failed template arguments
2748    Candidate.DeductionFailure.Result = Result;
2749    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2750    return;
2751  }
2752
2753  // Add the function template specialization produced by template argument
2754  // deduction as a candidate.
2755  assert(Specialization && "Missing function template specialization?");
2756  AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
2757                       SuppressUserConversions, ForceRValue);
2758}
2759
2760/// AddConversionCandidate - Add a C++ conversion function as a
2761/// candidate in the candidate set (C++ [over.match.conv],
2762/// C++ [over.match.copy]). From is the expression we're converting from,
2763/// and ToType is the type that we're eventually trying to convert to
2764/// (which may or may not be the same type as the type that the
2765/// conversion function produces).
2766void
2767Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2768                             AccessSpecifier Access,
2769                             CXXRecordDecl *ActingContext,
2770                             Expr *From, QualType ToType,
2771                             OverloadCandidateSet& CandidateSet) {
2772  assert(!Conversion->getDescribedFunctionTemplate() &&
2773         "Conversion function templates use AddTemplateConversionCandidate");
2774
2775  if (!CandidateSet.isNewCandidate(Conversion))
2776    return;
2777
2778  // Overload resolution is always an unevaluated context.
2779  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2780
2781  // Add this candidate
2782  CandidateSet.push_back(OverloadCandidate());
2783  OverloadCandidate& Candidate = CandidateSet.back();
2784  Candidate.Function = Conversion;
2785  Candidate.Access = Access;
2786  Candidate.IsSurrogate = false;
2787  Candidate.IgnoreObjectArgument = false;
2788  Candidate.FinalConversion.setAsIdentityConversion();
2789  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2790  Candidate.FinalConversion.setAllToTypes(ToType);
2791
2792  // Determine the implicit conversion sequence for the implicit
2793  // object parameter.
2794  Candidate.Viable = true;
2795  Candidate.Conversions.resize(1);
2796  Candidate.Conversions[0]
2797    = TryObjectArgumentInitialization(From->getType(), Conversion,
2798                                      ActingContext);
2799  // Conversion functions to a different type in the base class is visible in
2800  // the derived class.  So, a derived to base conversion should not participate
2801  // in overload resolution.
2802  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2803    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2804  if (Candidate.Conversions[0].isBad()) {
2805    Candidate.Viable = false;
2806    Candidate.FailureKind = ovl_fail_bad_conversion;
2807    return;
2808  }
2809
2810  // We won't go through a user-define type conversion function to convert a
2811  // derived to base as such conversions are given Conversion Rank. They only
2812  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2813  QualType FromCanon
2814    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2815  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2816  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2817    Candidate.Viable = false;
2818    Candidate.FailureKind = ovl_fail_trivial_conversion;
2819    return;
2820  }
2821
2822
2823  // To determine what the conversion from the result of calling the
2824  // conversion function to the type we're eventually trying to
2825  // convert to (ToType), we need to synthesize a call to the
2826  // conversion function and attempt copy initialization from it. This
2827  // makes sure that we get the right semantics with respect to
2828  // lvalues/rvalues and the type. Fortunately, we can allocate this
2829  // call on the stack and we don't need its arguments to be
2830  // well-formed.
2831  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2832                            From->getLocStart());
2833  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2834                                CastExpr::CK_FunctionToPointerDecay,
2835                                &ConversionRef, false);
2836
2837  // Note that it is safe to allocate CallExpr on the stack here because
2838  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2839  // allocator).
2840  CallExpr Call(Context, &ConversionFn, 0, 0,
2841                Conversion->getConversionType().getNonReferenceType(),
2842                From->getLocStart());
2843  ImplicitConversionSequence ICS =
2844    TryCopyInitialization(&Call, ToType,
2845                          /*SuppressUserConversions=*/true,
2846                          /*ForceRValue=*/false,
2847                          /*InOverloadResolution=*/false);
2848
2849  switch (ICS.getKind()) {
2850  case ImplicitConversionSequence::StandardConversion:
2851    Candidate.FinalConversion = ICS.Standard;
2852    break;
2853
2854  case ImplicitConversionSequence::BadConversion:
2855    Candidate.Viable = false;
2856    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2857    break;
2858
2859  default:
2860    assert(false &&
2861           "Can only end up with a standard conversion sequence or failure");
2862  }
2863}
2864
2865/// \brief Adds a conversion function template specialization
2866/// candidate to the overload set, using template argument deduction
2867/// to deduce the template arguments of the conversion function
2868/// template from the type that we are converting to (C++
2869/// [temp.deduct.conv]).
2870void
2871Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2872                                     AccessSpecifier Access,
2873                                     CXXRecordDecl *ActingDC,
2874                                     Expr *From, QualType ToType,
2875                                     OverloadCandidateSet &CandidateSet) {
2876  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2877         "Only conversion function templates permitted here");
2878
2879  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2880    return;
2881
2882  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2883  CXXConversionDecl *Specialization = 0;
2884  if (TemplateDeductionResult Result
2885        = DeduceTemplateArguments(FunctionTemplate, ToType,
2886                                  Specialization, Info)) {
2887    // FIXME: Record what happened with template argument deduction, so
2888    // that we can give the user a beautiful diagnostic.
2889    (void)Result;
2890    return;
2891  }
2892
2893  // Add the conversion function template specialization produced by
2894  // template argument deduction as a candidate.
2895  assert(Specialization && "Missing function template specialization?");
2896  AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
2897                         CandidateSet);
2898}
2899
2900/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2901/// converts the given @c Object to a function pointer via the
2902/// conversion function @c Conversion, and then attempts to call it
2903/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2904/// the type of function that we'll eventually be calling.
2905void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2906                                 AccessSpecifier Access,
2907                                 CXXRecordDecl *ActingContext,
2908                                 const FunctionProtoType *Proto,
2909                                 QualType ObjectType,
2910                                 Expr **Args, unsigned NumArgs,
2911                                 OverloadCandidateSet& CandidateSet) {
2912  if (!CandidateSet.isNewCandidate(Conversion))
2913    return;
2914
2915  // Overload resolution is always an unevaluated context.
2916  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2917
2918  CandidateSet.push_back(OverloadCandidate());
2919  OverloadCandidate& Candidate = CandidateSet.back();
2920  Candidate.Function = 0;
2921  Candidate.Access = Access;
2922  Candidate.Surrogate = Conversion;
2923  Candidate.Viable = true;
2924  Candidate.IsSurrogate = true;
2925  Candidate.IgnoreObjectArgument = false;
2926  Candidate.Conversions.resize(NumArgs + 1);
2927
2928  // Determine the implicit conversion sequence for the implicit
2929  // object parameter.
2930  ImplicitConversionSequence ObjectInit
2931    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2932  if (ObjectInit.isBad()) {
2933    Candidate.Viable = false;
2934    Candidate.FailureKind = ovl_fail_bad_conversion;
2935    Candidate.Conversions[0] = ObjectInit;
2936    return;
2937  }
2938
2939  // The first conversion is actually a user-defined conversion whose
2940  // first conversion is ObjectInit's standard conversion (which is
2941  // effectively a reference binding). Record it as such.
2942  Candidate.Conversions[0].setUserDefined();
2943  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2944  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2945  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2946  Candidate.Conversions[0].UserDefined.After
2947    = Candidate.Conversions[0].UserDefined.Before;
2948  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2949
2950  // Find the
2951  unsigned NumArgsInProto = Proto->getNumArgs();
2952
2953  // (C++ 13.3.2p2): A candidate function having fewer than m
2954  // parameters is viable only if it has an ellipsis in its parameter
2955  // list (8.3.5).
2956  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2957    Candidate.Viable = false;
2958    Candidate.FailureKind = ovl_fail_too_many_arguments;
2959    return;
2960  }
2961
2962  // Function types don't have any default arguments, so just check if
2963  // we have enough arguments.
2964  if (NumArgs < NumArgsInProto) {
2965    // Not enough arguments.
2966    Candidate.Viable = false;
2967    Candidate.FailureKind = ovl_fail_too_few_arguments;
2968    return;
2969  }
2970
2971  // Determine the implicit conversion sequences for each of the
2972  // arguments.
2973  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2974    if (ArgIdx < NumArgsInProto) {
2975      // (C++ 13.3.2p3): for F to be a viable function, there shall
2976      // exist for each argument an implicit conversion sequence
2977      // (13.3.3.1) that converts that argument to the corresponding
2978      // parameter of F.
2979      QualType ParamType = Proto->getArgType(ArgIdx);
2980      Candidate.Conversions[ArgIdx + 1]
2981        = TryCopyInitialization(Args[ArgIdx], ParamType,
2982                                /*SuppressUserConversions=*/false,
2983                                /*ForceRValue=*/false,
2984                                /*InOverloadResolution=*/false);
2985      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2986        Candidate.Viable = false;
2987        Candidate.FailureKind = ovl_fail_bad_conversion;
2988        break;
2989      }
2990    } else {
2991      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2992      // argument for which there is no corresponding parameter is
2993      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2994      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2995    }
2996  }
2997}
2998
2999// FIXME: This will eventually be removed, once we've migrated all of the
3000// operator overloading logic over to the scheme used by binary operators, which
3001// works for template instantiation.
3002void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3003                                 SourceLocation OpLoc,
3004                                 Expr **Args, unsigned NumArgs,
3005                                 OverloadCandidateSet& CandidateSet,
3006                                 SourceRange OpRange) {
3007  UnresolvedSet<16> Fns;
3008
3009  QualType T1 = Args[0]->getType();
3010  QualType T2;
3011  if (NumArgs > 1)
3012    T2 = Args[1]->getType();
3013
3014  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3015  if (S)
3016    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3017  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3018  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3019                                       CandidateSet);
3020  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3021  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3022}
3023
3024/// \brief Add overload candidates for overloaded operators that are
3025/// member functions.
3026///
3027/// Add the overloaded operator candidates that are member functions
3028/// for the operator Op that was used in an operator expression such
3029/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3030/// CandidateSet will store the added overload candidates. (C++
3031/// [over.match.oper]).
3032void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3033                                       SourceLocation OpLoc,
3034                                       Expr **Args, unsigned NumArgs,
3035                                       OverloadCandidateSet& CandidateSet,
3036                                       SourceRange OpRange) {
3037  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3038
3039  // C++ [over.match.oper]p3:
3040  //   For a unary operator @ with an operand of a type whose
3041  //   cv-unqualified version is T1, and for a binary operator @ with
3042  //   a left operand of a type whose cv-unqualified version is T1 and
3043  //   a right operand of a type whose cv-unqualified version is T2,
3044  //   three sets of candidate functions, designated member
3045  //   candidates, non-member candidates and built-in candidates, are
3046  //   constructed as follows:
3047  QualType T1 = Args[0]->getType();
3048  QualType T2;
3049  if (NumArgs > 1)
3050    T2 = Args[1]->getType();
3051
3052  //     -- If T1 is a class type, the set of member candidates is the
3053  //        result of the qualified lookup of T1::operator@
3054  //        (13.3.1.1.1); otherwise, the set of member candidates is
3055  //        empty.
3056  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3057    // Complete the type if it can be completed. Otherwise, we're done.
3058    if (RequireCompleteType(OpLoc, T1, PDiag()))
3059      return;
3060
3061    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3062    LookupQualifiedName(Operators, T1Rec->getDecl());
3063    Operators.suppressDiagnostics();
3064
3065    for (LookupResult::iterator Oper = Operators.begin(),
3066                             OperEnd = Operators.end();
3067         Oper != OperEnd;
3068         ++Oper)
3069      AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
3070                         Args + 1, NumArgs - 1, CandidateSet,
3071                         /* SuppressUserConversions = */ false);
3072  }
3073}
3074
3075/// AddBuiltinCandidate - Add a candidate for a built-in
3076/// operator. ResultTy and ParamTys are the result and parameter types
3077/// of the built-in candidate, respectively. Args and NumArgs are the
3078/// arguments being passed to the candidate. IsAssignmentOperator
3079/// should be true when this built-in candidate is an assignment
3080/// operator. NumContextualBoolArguments is the number of arguments
3081/// (at the beginning of the argument list) that will be contextually
3082/// converted to bool.
3083void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3084                               Expr **Args, unsigned NumArgs,
3085                               OverloadCandidateSet& CandidateSet,
3086                               bool IsAssignmentOperator,
3087                               unsigned NumContextualBoolArguments) {
3088  // Overload resolution is always an unevaluated context.
3089  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3090
3091  // Add this candidate
3092  CandidateSet.push_back(OverloadCandidate());
3093  OverloadCandidate& Candidate = CandidateSet.back();
3094  Candidate.Function = 0;
3095  Candidate.Access = AS_none;
3096  Candidate.IsSurrogate = false;
3097  Candidate.IgnoreObjectArgument = false;
3098  Candidate.BuiltinTypes.ResultTy = ResultTy;
3099  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3100    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3101
3102  // Determine the implicit conversion sequences for each of the
3103  // arguments.
3104  Candidate.Viable = true;
3105  Candidate.Conversions.resize(NumArgs);
3106  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3107    // C++ [over.match.oper]p4:
3108    //   For the built-in assignment operators, conversions of the
3109    //   left operand are restricted as follows:
3110    //     -- no temporaries are introduced to hold the left operand, and
3111    //     -- no user-defined conversions are applied to the left
3112    //        operand to achieve a type match with the left-most
3113    //        parameter of a built-in candidate.
3114    //
3115    // We block these conversions by turning off user-defined
3116    // conversions, since that is the only way that initialization of
3117    // a reference to a non-class type can occur from something that
3118    // is not of the same type.
3119    if (ArgIdx < NumContextualBoolArguments) {
3120      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3121             "Contextual conversion to bool requires bool type");
3122      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3123    } else {
3124      Candidate.Conversions[ArgIdx]
3125        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3126                                ArgIdx == 0 && IsAssignmentOperator,
3127                                /*ForceRValue=*/false,
3128                                /*InOverloadResolution=*/false);
3129    }
3130    if (Candidate.Conversions[ArgIdx].isBad()) {
3131      Candidate.Viable = false;
3132      Candidate.FailureKind = ovl_fail_bad_conversion;
3133      break;
3134    }
3135  }
3136}
3137
3138/// BuiltinCandidateTypeSet - A set of types that will be used for the
3139/// candidate operator functions for built-in operators (C++
3140/// [over.built]). The types are separated into pointer types and
3141/// enumeration types.
3142class BuiltinCandidateTypeSet  {
3143  /// TypeSet - A set of types.
3144  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3145
3146  /// PointerTypes - The set of pointer types that will be used in the
3147  /// built-in candidates.
3148  TypeSet PointerTypes;
3149
3150  /// MemberPointerTypes - The set of member pointer types that will be
3151  /// used in the built-in candidates.
3152  TypeSet MemberPointerTypes;
3153
3154  /// EnumerationTypes - The set of enumeration types that will be
3155  /// used in the built-in candidates.
3156  TypeSet EnumerationTypes;
3157
3158  /// Sema - The semantic analysis instance where we are building the
3159  /// candidate type set.
3160  Sema &SemaRef;
3161
3162  /// Context - The AST context in which we will build the type sets.
3163  ASTContext &Context;
3164
3165  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3166                                               const Qualifiers &VisibleQuals);
3167  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3168
3169public:
3170  /// iterator - Iterates through the types that are part of the set.
3171  typedef TypeSet::iterator iterator;
3172
3173  BuiltinCandidateTypeSet(Sema &SemaRef)
3174    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3175
3176  void AddTypesConvertedFrom(QualType Ty,
3177                             SourceLocation Loc,
3178                             bool AllowUserConversions,
3179                             bool AllowExplicitConversions,
3180                             const Qualifiers &VisibleTypeConversionsQuals);
3181
3182  /// pointer_begin - First pointer type found;
3183  iterator pointer_begin() { return PointerTypes.begin(); }
3184
3185  /// pointer_end - Past the last pointer type found;
3186  iterator pointer_end() { return PointerTypes.end(); }
3187
3188  /// member_pointer_begin - First member pointer type found;
3189  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3190
3191  /// member_pointer_end - Past the last member pointer type found;
3192  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3193
3194  /// enumeration_begin - First enumeration type found;
3195  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3196
3197  /// enumeration_end - Past the last enumeration type found;
3198  iterator enumeration_end() { return EnumerationTypes.end(); }
3199};
3200
3201/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3202/// the set of pointer types along with any more-qualified variants of
3203/// that type. For example, if @p Ty is "int const *", this routine
3204/// will add "int const *", "int const volatile *", "int const
3205/// restrict *", and "int const volatile restrict *" to the set of
3206/// pointer types. Returns true if the add of @p Ty itself succeeded,
3207/// false otherwise.
3208///
3209/// FIXME: what to do about extended qualifiers?
3210bool
3211BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3212                                             const Qualifiers &VisibleQuals) {
3213
3214  // Insert this type.
3215  if (!PointerTypes.insert(Ty))
3216    return false;
3217
3218  const PointerType *PointerTy = Ty->getAs<PointerType>();
3219  assert(PointerTy && "type was not a pointer type!");
3220
3221  QualType PointeeTy = PointerTy->getPointeeType();
3222  // Don't add qualified variants of arrays. For one, they're not allowed
3223  // (the qualifier would sink to the element type), and for another, the
3224  // only overload situation where it matters is subscript or pointer +- int,
3225  // and those shouldn't have qualifier variants anyway.
3226  if (PointeeTy->isArrayType())
3227    return true;
3228  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3229  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3230    BaseCVR = Array->getElementType().getCVRQualifiers();
3231  bool hasVolatile = VisibleQuals.hasVolatile();
3232  bool hasRestrict = VisibleQuals.hasRestrict();
3233
3234  // Iterate through all strict supersets of BaseCVR.
3235  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3236    if ((CVR | BaseCVR) != CVR) continue;
3237    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3238    // in the types.
3239    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3240    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3241    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3242    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3243  }
3244
3245  return true;
3246}
3247
3248/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3249/// to the set of pointer types along with any more-qualified variants of
3250/// that type. For example, if @p Ty is "int const *", this routine
3251/// will add "int const *", "int const volatile *", "int const
3252/// restrict *", and "int const volatile restrict *" to the set of
3253/// pointer types. Returns true if the add of @p Ty itself succeeded,
3254/// false otherwise.
3255///
3256/// FIXME: what to do about extended qualifiers?
3257bool
3258BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3259    QualType Ty) {
3260  // Insert this type.
3261  if (!MemberPointerTypes.insert(Ty))
3262    return false;
3263
3264  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3265  assert(PointerTy && "type was not a member pointer type!");
3266
3267  QualType PointeeTy = PointerTy->getPointeeType();
3268  // Don't add qualified variants of arrays. For one, they're not allowed
3269  // (the qualifier would sink to the element type), and for another, the
3270  // only overload situation where it matters is subscript or pointer +- int,
3271  // and those shouldn't have qualifier variants anyway.
3272  if (PointeeTy->isArrayType())
3273    return true;
3274  const Type *ClassTy = PointerTy->getClass();
3275
3276  // Iterate through all strict supersets of the pointee type's CVR
3277  // qualifiers.
3278  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3279  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3280    if ((CVR | BaseCVR) != CVR) continue;
3281
3282    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3283    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3284  }
3285
3286  return true;
3287}
3288
3289/// AddTypesConvertedFrom - Add each of the types to which the type @p
3290/// Ty can be implicit converted to the given set of @p Types. We're
3291/// primarily interested in pointer types and enumeration types. We also
3292/// take member pointer types, for the conditional operator.
3293/// AllowUserConversions is true if we should look at the conversion
3294/// functions of a class type, and AllowExplicitConversions if we
3295/// should also include the explicit conversion functions of a class
3296/// type.
3297void
3298BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3299                                               SourceLocation Loc,
3300                                               bool AllowUserConversions,
3301                                               bool AllowExplicitConversions,
3302                                               const Qualifiers &VisibleQuals) {
3303  // Only deal with canonical types.
3304  Ty = Context.getCanonicalType(Ty);
3305
3306  // Look through reference types; they aren't part of the type of an
3307  // expression for the purposes of conversions.
3308  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3309    Ty = RefTy->getPointeeType();
3310
3311  // We don't care about qualifiers on the type.
3312  Ty = Ty.getLocalUnqualifiedType();
3313
3314  // If we're dealing with an array type, decay to the pointer.
3315  if (Ty->isArrayType())
3316    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3317
3318  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3319    QualType PointeeTy = PointerTy->getPointeeType();
3320
3321    // Insert our type, and its more-qualified variants, into the set
3322    // of types.
3323    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3324      return;
3325  } else if (Ty->isMemberPointerType()) {
3326    // Member pointers are far easier, since the pointee can't be converted.
3327    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3328      return;
3329  } else if (Ty->isEnumeralType()) {
3330    EnumerationTypes.insert(Ty);
3331  } else if (AllowUserConversions) {
3332    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3333      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3334        // No conversion functions in incomplete types.
3335        return;
3336      }
3337
3338      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3339      const UnresolvedSetImpl *Conversions
3340        = ClassDecl->getVisibleConversionFunctions();
3341      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3342             E = Conversions->end(); I != E; ++I) {
3343
3344        // Skip conversion function templates; they don't tell us anything
3345        // about which builtin types we can convert to.
3346        if (isa<FunctionTemplateDecl>(*I))
3347          continue;
3348
3349        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3350        if (AllowExplicitConversions || !Conv->isExplicit()) {
3351          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3352                                VisibleQuals);
3353        }
3354      }
3355    }
3356  }
3357}
3358
3359/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3360/// the volatile- and non-volatile-qualified assignment operators for the
3361/// given type to the candidate set.
3362static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3363                                                   QualType T,
3364                                                   Expr **Args,
3365                                                   unsigned NumArgs,
3366                                    OverloadCandidateSet &CandidateSet) {
3367  QualType ParamTypes[2];
3368
3369  // T& operator=(T&, T)
3370  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3371  ParamTypes[1] = T;
3372  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3373                        /*IsAssignmentOperator=*/true);
3374
3375  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3376    // volatile T& operator=(volatile T&, T)
3377    ParamTypes[0]
3378      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3379    ParamTypes[1] = T;
3380    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3381                          /*IsAssignmentOperator=*/true);
3382  }
3383}
3384
3385/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3386/// if any, found in visible type conversion functions found in ArgExpr's type.
3387static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3388    Qualifiers VRQuals;
3389    const RecordType *TyRec;
3390    if (const MemberPointerType *RHSMPType =
3391        ArgExpr->getType()->getAs<MemberPointerType>())
3392      TyRec = cast<RecordType>(RHSMPType->getClass());
3393    else
3394      TyRec = ArgExpr->getType()->getAs<RecordType>();
3395    if (!TyRec) {
3396      // Just to be safe, assume the worst case.
3397      VRQuals.addVolatile();
3398      VRQuals.addRestrict();
3399      return VRQuals;
3400    }
3401
3402    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3403    if (!ClassDecl->hasDefinition())
3404      return VRQuals;
3405
3406    const UnresolvedSetImpl *Conversions =
3407      ClassDecl->getVisibleConversionFunctions();
3408
3409    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3410           E = Conversions->end(); I != E; ++I) {
3411      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3412        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3413        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3414          CanTy = ResTypeRef->getPointeeType();
3415        // Need to go down the pointer/mempointer chain and add qualifiers
3416        // as see them.
3417        bool done = false;
3418        while (!done) {
3419          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3420            CanTy = ResTypePtr->getPointeeType();
3421          else if (const MemberPointerType *ResTypeMPtr =
3422                CanTy->getAs<MemberPointerType>())
3423            CanTy = ResTypeMPtr->getPointeeType();
3424          else
3425            done = true;
3426          if (CanTy.isVolatileQualified())
3427            VRQuals.addVolatile();
3428          if (CanTy.isRestrictQualified())
3429            VRQuals.addRestrict();
3430          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3431            return VRQuals;
3432        }
3433      }
3434    }
3435    return VRQuals;
3436}
3437
3438/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3439/// operator overloads to the candidate set (C++ [over.built]), based
3440/// on the operator @p Op and the arguments given. For example, if the
3441/// operator is a binary '+', this routine might add "int
3442/// operator+(int, int)" to cover integer addition.
3443void
3444Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3445                                   SourceLocation OpLoc,
3446                                   Expr **Args, unsigned NumArgs,
3447                                   OverloadCandidateSet& CandidateSet) {
3448  // The set of "promoted arithmetic types", which are the arithmetic
3449  // types are that preserved by promotion (C++ [over.built]p2). Note
3450  // that the first few of these types are the promoted integral
3451  // types; these types need to be first.
3452  // FIXME: What about complex?
3453  const unsigned FirstIntegralType = 0;
3454  const unsigned LastIntegralType = 13;
3455  const unsigned FirstPromotedIntegralType = 7,
3456                 LastPromotedIntegralType = 13;
3457  const unsigned FirstPromotedArithmeticType = 7,
3458                 LastPromotedArithmeticType = 16;
3459  const unsigned NumArithmeticTypes = 16;
3460  QualType ArithmeticTypes[NumArithmeticTypes] = {
3461    Context.BoolTy, Context.CharTy, Context.WCharTy,
3462// FIXME:   Context.Char16Ty, Context.Char32Ty,
3463    Context.SignedCharTy, Context.ShortTy,
3464    Context.UnsignedCharTy, Context.UnsignedShortTy,
3465    Context.IntTy, Context.LongTy, Context.LongLongTy,
3466    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3467    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3468  };
3469  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3470         "Invalid first promoted integral type");
3471  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3472           == Context.UnsignedLongLongTy &&
3473         "Invalid last promoted integral type");
3474  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3475         "Invalid first promoted arithmetic type");
3476  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3477            == Context.LongDoubleTy &&
3478         "Invalid last promoted arithmetic type");
3479
3480  // Find all of the types that the arguments can convert to, but only
3481  // if the operator we're looking at has built-in operator candidates
3482  // that make use of these types.
3483  Qualifiers VisibleTypeConversionsQuals;
3484  VisibleTypeConversionsQuals.addConst();
3485  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3486    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3487
3488  BuiltinCandidateTypeSet CandidateTypes(*this);
3489  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3490      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3491      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3492      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3493      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3494      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3495    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3496      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3497                                           OpLoc,
3498                                           true,
3499                                           (Op == OO_Exclaim ||
3500                                            Op == OO_AmpAmp ||
3501                                            Op == OO_PipePipe),
3502                                           VisibleTypeConversionsQuals);
3503  }
3504
3505  bool isComparison = false;
3506  switch (Op) {
3507  case OO_None:
3508  case NUM_OVERLOADED_OPERATORS:
3509    assert(false && "Expected an overloaded operator");
3510    break;
3511
3512  case OO_Star: // '*' is either unary or binary
3513    if (NumArgs == 1)
3514      goto UnaryStar;
3515    else
3516      goto BinaryStar;
3517    break;
3518
3519  case OO_Plus: // '+' is either unary or binary
3520    if (NumArgs == 1)
3521      goto UnaryPlus;
3522    else
3523      goto BinaryPlus;
3524    break;
3525
3526  case OO_Minus: // '-' is either unary or binary
3527    if (NumArgs == 1)
3528      goto UnaryMinus;
3529    else
3530      goto BinaryMinus;
3531    break;
3532
3533  case OO_Amp: // '&' is either unary or binary
3534    if (NumArgs == 1)
3535      goto UnaryAmp;
3536    else
3537      goto BinaryAmp;
3538
3539  case OO_PlusPlus:
3540  case OO_MinusMinus:
3541    // C++ [over.built]p3:
3542    //
3543    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3544    //   is either volatile or empty, there exist candidate operator
3545    //   functions of the form
3546    //
3547    //       VQ T&      operator++(VQ T&);
3548    //       T          operator++(VQ T&, int);
3549    //
3550    // C++ [over.built]p4:
3551    //
3552    //   For every pair (T, VQ), where T is an arithmetic type other
3553    //   than bool, and VQ is either volatile or empty, there exist
3554    //   candidate operator functions of the form
3555    //
3556    //       VQ T&      operator--(VQ T&);
3557    //       T          operator--(VQ T&, int);
3558    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3559         Arith < NumArithmeticTypes; ++Arith) {
3560      QualType ArithTy = ArithmeticTypes[Arith];
3561      QualType ParamTypes[2]
3562        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3563
3564      // Non-volatile version.
3565      if (NumArgs == 1)
3566        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3567      else
3568        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3569      // heuristic to reduce number of builtin candidates in the set.
3570      // Add volatile version only if there are conversions to a volatile type.
3571      if (VisibleTypeConversionsQuals.hasVolatile()) {
3572        // Volatile version
3573        ParamTypes[0]
3574          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3575        if (NumArgs == 1)
3576          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3577        else
3578          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3579      }
3580    }
3581
3582    // C++ [over.built]p5:
3583    //
3584    //   For every pair (T, VQ), where T is a cv-qualified or
3585    //   cv-unqualified object type, and VQ is either volatile or
3586    //   empty, there exist candidate operator functions of the form
3587    //
3588    //       T*VQ&      operator++(T*VQ&);
3589    //       T*VQ&      operator--(T*VQ&);
3590    //       T*         operator++(T*VQ&, int);
3591    //       T*         operator--(T*VQ&, int);
3592    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3593         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3594      // Skip pointer types that aren't pointers to object types.
3595      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3596        continue;
3597
3598      QualType ParamTypes[2] = {
3599        Context.getLValueReferenceType(*Ptr), Context.IntTy
3600      };
3601
3602      // Without volatile
3603      if (NumArgs == 1)
3604        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3605      else
3606        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3607
3608      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3609          VisibleTypeConversionsQuals.hasVolatile()) {
3610        // With volatile
3611        ParamTypes[0]
3612          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3613        if (NumArgs == 1)
3614          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3615        else
3616          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3617      }
3618    }
3619    break;
3620
3621  UnaryStar:
3622    // C++ [over.built]p6:
3623    //   For every cv-qualified or cv-unqualified object type T, there
3624    //   exist candidate operator functions of the form
3625    //
3626    //       T&         operator*(T*);
3627    //
3628    // C++ [over.built]p7:
3629    //   For every function type T, there exist candidate operator
3630    //   functions of the form
3631    //       T&         operator*(T*);
3632    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3633         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3634      QualType ParamTy = *Ptr;
3635      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3636      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3637                          &ParamTy, Args, 1, CandidateSet);
3638    }
3639    break;
3640
3641  UnaryPlus:
3642    // C++ [over.built]p8:
3643    //   For every type T, there exist candidate operator functions of
3644    //   the form
3645    //
3646    //       T*         operator+(T*);
3647    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3648         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3649      QualType ParamTy = *Ptr;
3650      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3651    }
3652
3653    // Fall through
3654
3655  UnaryMinus:
3656    // C++ [over.built]p9:
3657    //  For every promoted arithmetic type T, there exist candidate
3658    //  operator functions of the form
3659    //
3660    //       T         operator+(T);
3661    //       T         operator-(T);
3662    for (unsigned Arith = FirstPromotedArithmeticType;
3663         Arith < LastPromotedArithmeticType; ++Arith) {
3664      QualType ArithTy = ArithmeticTypes[Arith];
3665      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3666    }
3667    break;
3668
3669  case OO_Tilde:
3670    // C++ [over.built]p10:
3671    //   For every promoted integral type T, there exist candidate
3672    //   operator functions of the form
3673    //
3674    //        T         operator~(T);
3675    for (unsigned Int = FirstPromotedIntegralType;
3676         Int < LastPromotedIntegralType; ++Int) {
3677      QualType IntTy = ArithmeticTypes[Int];
3678      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3679    }
3680    break;
3681
3682  case OO_New:
3683  case OO_Delete:
3684  case OO_Array_New:
3685  case OO_Array_Delete:
3686  case OO_Call:
3687    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3688    break;
3689
3690  case OO_Comma:
3691  UnaryAmp:
3692  case OO_Arrow:
3693    // C++ [over.match.oper]p3:
3694    //   -- For the operator ',', the unary operator '&', or the
3695    //      operator '->', the built-in candidates set is empty.
3696    break;
3697
3698  case OO_EqualEqual:
3699  case OO_ExclaimEqual:
3700    // C++ [over.match.oper]p16:
3701    //   For every pointer to member type T, there exist candidate operator
3702    //   functions of the form
3703    //
3704    //        bool operator==(T,T);
3705    //        bool operator!=(T,T);
3706    for (BuiltinCandidateTypeSet::iterator
3707           MemPtr = CandidateTypes.member_pointer_begin(),
3708           MemPtrEnd = CandidateTypes.member_pointer_end();
3709         MemPtr != MemPtrEnd;
3710         ++MemPtr) {
3711      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3712      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3713    }
3714
3715    // Fall through
3716
3717  case OO_Less:
3718  case OO_Greater:
3719  case OO_LessEqual:
3720  case OO_GreaterEqual:
3721    // C++ [over.built]p15:
3722    //
3723    //   For every pointer or enumeration type T, there exist
3724    //   candidate operator functions of the form
3725    //
3726    //        bool       operator<(T, T);
3727    //        bool       operator>(T, T);
3728    //        bool       operator<=(T, T);
3729    //        bool       operator>=(T, T);
3730    //        bool       operator==(T, T);
3731    //        bool       operator!=(T, T);
3732    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3733         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3734      QualType ParamTypes[2] = { *Ptr, *Ptr };
3735      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3736    }
3737    for (BuiltinCandidateTypeSet::iterator Enum
3738           = CandidateTypes.enumeration_begin();
3739         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3740      QualType ParamTypes[2] = { *Enum, *Enum };
3741      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3742    }
3743
3744    // Fall through.
3745    isComparison = true;
3746
3747  BinaryPlus:
3748  BinaryMinus:
3749    if (!isComparison) {
3750      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3751
3752      // C++ [over.built]p13:
3753      //
3754      //   For every cv-qualified or cv-unqualified object type T
3755      //   there exist candidate operator functions of the form
3756      //
3757      //      T*         operator+(T*, ptrdiff_t);
3758      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3759      //      T*         operator-(T*, ptrdiff_t);
3760      //      T*         operator+(ptrdiff_t, T*);
3761      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3762      //
3763      // C++ [over.built]p14:
3764      //
3765      //   For every T, where T is a pointer to object type, there
3766      //   exist candidate operator functions of the form
3767      //
3768      //      ptrdiff_t  operator-(T, T);
3769      for (BuiltinCandidateTypeSet::iterator Ptr
3770             = CandidateTypes.pointer_begin();
3771           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3772        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3773
3774        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3775        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3776
3777        if (Op == OO_Plus) {
3778          // T* operator+(ptrdiff_t, T*);
3779          ParamTypes[0] = ParamTypes[1];
3780          ParamTypes[1] = *Ptr;
3781          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3782        } else {
3783          // ptrdiff_t operator-(T, T);
3784          ParamTypes[1] = *Ptr;
3785          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3786                              Args, 2, CandidateSet);
3787        }
3788      }
3789    }
3790    // Fall through
3791
3792  case OO_Slash:
3793  BinaryStar:
3794  Conditional:
3795    // C++ [over.built]p12:
3796    //
3797    //   For every pair of promoted arithmetic types L and R, there
3798    //   exist candidate operator functions of the form
3799    //
3800    //        LR         operator*(L, R);
3801    //        LR         operator/(L, R);
3802    //        LR         operator+(L, R);
3803    //        LR         operator-(L, R);
3804    //        bool       operator<(L, R);
3805    //        bool       operator>(L, R);
3806    //        bool       operator<=(L, R);
3807    //        bool       operator>=(L, R);
3808    //        bool       operator==(L, R);
3809    //        bool       operator!=(L, R);
3810    //
3811    //   where LR is the result of the usual arithmetic conversions
3812    //   between types L and R.
3813    //
3814    // C++ [over.built]p24:
3815    //
3816    //   For every pair of promoted arithmetic types L and R, there exist
3817    //   candidate operator functions of the form
3818    //
3819    //        LR       operator?(bool, L, R);
3820    //
3821    //   where LR is the result of the usual arithmetic conversions
3822    //   between types L and R.
3823    // Our candidates ignore the first parameter.
3824    for (unsigned Left = FirstPromotedArithmeticType;
3825         Left < LastPromotedArithmeticType; ++Left) {
3826      for (unsigned Right = FirstPromotedArithmeticType;
3827           Right < LastPromotedArithmeticType; ++Right) {
3828        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3829        QualType Result
3830          = isComparison
3831          ? Context.BoolTy
3832          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3833        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3834      }
3835    }
3836    break;
3837
3838  case OO_Percent:
3839  BinaryAmp:
3840  case OO_Caret:
3841  case OO_Pipe:
3842  case OO_LessLess:
3843  case OO_GreaterGreater:
3844    // C++ [over.built]p17:
3845    //
3846    //   For every pair of promoted integral types L and R, there
3847    //   exist candidate operator functions of the form
3848    //
3849    //      LR         operator%(L, R);
3850    //      LR         operator&(L, R);
3851    //      LR         operator^(L, R);
3852    //      LR         operator|(L, R);
3853    //      L          operator<<(L, R);
3854    //      L          operator>>(L, R);
3855    //
3856    //   where LR is the result of the usual arithmetic conversions
3857    //   between types L and R.
3858    for (unsigned Left = FirstPromotedIntegralType;
3859         Left < LastPromotedIntegralType; ++Left) {
3860      for (unsigned Right = FirstPromotedIntegralType;
3861           Right < LastPromotedIntegralType; ++Right) {
3862        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3863        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3864            ? LandR[0]
3865            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3866        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3867      }
3868    }
3869    break;
3870
3871  case OO_Equal:
3872    // C++ [over.built]p20:
3873    //
3874    //   For every pair (T, VQ), where T is an enumeration or
3875    //   pointer to member type and VQ is either volatile or
3876    //   empty, there exist candidate operator functions of the form
3877    //
3878    //        VQ T&      operator=(VQ T&, T);
3879    for (BuiltinCandidateTypeSet::iterator
3880           Enum = CandidateTypes.enumeration_begin(),
3881           EnumEnd = CandidateTypes.enumeration_end();
3882         Enum != EnumEnd; ++Enum)
3883      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3884                                             CandidateSet);
3885    for (BuiltinCandidateTypeSet::iterator
3886           MemPtr = CandidateTypes.member_pointer_begin(),
3887         MemPtrEnd = CandidateTypes.member_pointer_end();
3888         MemPtr != MemPtrEnd; ++MemPtr)
3889      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3890                                             CandidateSet);
3891      // Fall through.
3892
3893  case OO_PlusEqual:
3894  case OO_MinusEqual:
3895    // C++ [over.built]p19:
3896    //
3897    //   For every pair (T, VQ), where T is any type and VQ is either
3898    //   volatile or empty, there exist candidate operator functions
3899    //   of the form
3900    //
3901    //        T*VQ&      operator=(T*VQ&, T*);
3902    //
3903    // C++ [over.built]p21:
3904    //
3905    //   For every pair (T, VQ), where T is a cv-qualified or
3906    //   cv-unqualified object type and VQ is either volatile or
3907    //   empty, there exist candidate operator functions of the form
3908    //
3909    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3910    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3911    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3912         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3913      QualType ParamTypes[2];
3914      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3915
3916      // non-volatile version
3917      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3918      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3919                          /*IsAssigmentOperator=*/Op == OO_Equal);
3920
3921      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3922          VisibleTypeConversionsQuals.hasVolatile()) {
3923        // volatile version
3924        ParamTypes[0]
3925          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3926        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3927                            /*IsAssigmentOperator=*/Op == OO_Equal);
3928      }
3929    }
3930    // Fall through.
3931
3932  case OO_StarEqual:
3933  case OO_SlashEqual:
3934    // C++ [over.built]p18:
3935    //
3936    //   For every triple (L, VQ, R), where L is an arithmetic type,
3937    //   VQ is either volatile or empty, and R is a promoted
3938    //   arithmetic type, there exist candidate operator functions of
3939    //   the form
3940    //
3941    //        VQ L&      operator=(VQ L&, R);
3942    //        VQ L&      operator*=(VQ L&, R);
3943    //        VQ L&      operator/=(VQ L&, R);
3944    //        VQ L&      operator+=(VQ L&, R);
3945    //        VQ L&      operator-=(VQ L&, R);
3946    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3947      for (unsigned Right = FirstPromotedArithmeticType;
3948           Right < LastPromotedArithmeticType; ++Right) {
3949        QualType ParamTypes[2];
3950        ParamTypes[1] = ArithmeticTypes[Right];
3951
3952        // Add this built-in operator as a candidate (VQ is empty).
3953        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3954        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3955                            /*IsAssigmentOperator=*/Op == OO_Equal);
3956
3957        // Add this built-in operator as a candidate (VQ is 'volatile').
3958        if (VisibleTypeConversionsQuals.hasVolatile()) {
3959          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3960          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3961          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3962                              /*IsAssigmentOperator=*/Op == OO_Equal);
3963        }
3964      }
3965    }
3966    break;
3967
3968  case OO_PercentEqual:
3969  case OO_LessLessEqual:
3970  case OO_GreaterGreaterEqual:
3971  case OO_AmpEqual:
3972  case OO_CaretEqual:
3973  case OO_PipeEqual:
3974    // C++ [over.built]p22:
3975    //
3976    //   For every triple (L, VQ, R), where L is an integral type, VQ
3977    //   is either volatile or empty, and R is a promoted integral
3978    //   type, there exist candidate operator functions of the form
3979    //
3980    //        VQ L&       operator%=(VQ L&, R);
3981    //        VQ L&       operator<<=(VQ L&, R);
3982    //        VQ L&       operator>>=(VQ L&, R);
3983    //        VQ L&       operator&=(VQ L&, R);
3984    //        VQ L&       operator^=(VQ L&, R);
3985    //        VQ L&       operator|=(VQ L&, R);
3986    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3987      for (unsigned Right = FirstPromotedIntegralType;
3988           Right < LastPromotedIntegralType; ++Right) {
3989        QualType ParamTypes[2];
3990        ParamTypes[1] = ArithmeticTypes[Right];
3991
3992        // Add this built-in operator as a candidate (VQ is empty).
3993        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3994        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3995        if (VisibleTypeConversionsQuals.hasVolatile()) {
3996          // Add this built-in operator as a candidate (VQ is 'volatile').
3997          ParamTypes[0] = ArithmeticTypes[Left];
3998          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3999          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4000          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4001        }
4002      }
4003    }
4004    break;
4005
4006  case OO_Exclaim: {
4007    // C++ [over.operator]p23:
4008    //
4009    //   There also exist candidate operator functions of the form
4010    //
4011    //        bool        operator!(bool);
4012    //        bool        operator&&(bool, bool);     [BELOW]
4013    //        bool        operator||(bool, bool);     [BELOW]
4014    QualType ParamTy = Context.BoolTy;
4015    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4016                        /*IsAssignmentOperator=*/false,
4017                        /*NumContextualBoolArguments=*/1);
4018    break;
4019  }
4020
4021  case OO_AmpAmp:
4022  case OO_PipePipe: {
4023    // C++ [over.operator]p23:
4024    //
4025    //   There also exist candidate operator functions of the form
4026    //
4027    //        bool        operator!(bool);            [ABOVE]
4028    //        bool        operator&&(bool, bool);
4029    //        bool        operator||(bool, bool);
4030    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4031    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4032                        /*IsAssignmentOperator=*/false,
4033                        /*NumContextualBoolArguments=*/2);
4034    break;
4035  }
4036
4037  case OO_Subscript:
4038    // C++ [over.built]p13:
4039    //
4040    //   For every cv-qualified or cv-unqualified object type T there
4041    //   exist candidate operator functions of the form
4042    //
4043    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4044    //        T&         operator[](T*, ptrdiff_t);
4045    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4046    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4047    //        T&         operator[](ptrdiff_t, T*);
4048    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4049         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4050      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4051      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4052      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4053
4054      // T& operator[](T*, ptrdiff_t)
4055      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4056
4057      // T& operator[](ptrdiff_t, T*);
4058      ParamTypes[0] = ParamTypes[1];
4059      ParamTypes[1] = *Ptr;
4060      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4061    }
4062    break;
4063
4064  case OO_ArrowStar:
4065    // C++ [over.built]p11:
4066    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4067    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4068    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4069    //    there exist candidate operator functions of the form
4070    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4071    //    where CV12 is the union of CV1 and CV2.
4072    {
4073      for (BuiltinCandidateTypeSet::iterator Ptr =
4074             CandidateTypes.pointer_begin();
4075           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4076        QualType C1Ty = (*Ptr);
4077        QualType C1;
4078        QualifierCollector Q1;
4079        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4080          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4081          if (!isa<RecordType>(C1))
4082            continue;
4083          // heuristic to reduce number of builtin candidates in the set.
4084          // Add volatile/restrict version only if there are conversions to a
4085          // volatile/restrict type.
4086          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4087            continue;
4088          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4089            continue;
4090        }
4091        for (BuiltinCandidateTypeSet::iterator
4092             MemPtr = CandidateTypes.member_pointer_begin(),
4093             MemPtrEnd = CandidateTypes.member_pointer_end();
4094             MemPtr != MemPtrEnd; ++MemPtr) {
4095          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4096          QualType C2 = QualType(mptr->getClass(), 0);
4097          C2 = C2.getUnqualifiedType();
4098          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4099            break;
4100          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4101          // build CV12 T&
4102          QualType T = mptr->getPointeeType();
4103          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4104              T.isVolatileQualified())
4105            continue;
4106          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4107              T.isRestrictQualified())
4108            continue;
4109          T = Q1.apply(T);
4110          QualType ResultTy = Context.getLValueReferenceType(T);
4111          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4112        }
4113      }
4114    }
4115    break;
4116
4117  case OO_Conditional:
4118    // Note that we don't consider the first argument, since it has been
4119    // contextually converted to bool long ago. The candidates below are
4120    // therefore added as binary.
4121    //
4122    // C++ [over.built]p24:
4123    //   For every type T, where T is a pointer or pointer-to-member type,
4124    //   there exist candidate operator functions of the form
4125    //
4126    //        T        operator?(bool, T, T);
4127    //
4128    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4129         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4130      QualType ParamTypes[2] = { *Ptr, *Ptr };
4131      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4132    }
4133    for (BuiltinCandidateTypeSet::iterator Ptr =
4134           CandidateTypes.member_pointer_begin(),
4135         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4136      QualType ParamTypes[2] = { *Ptr, *Ptr };
4137      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4138    }
4139    goto Conditional;
4140  }
4141}
4142
4143/// \brief Add function candidates found via argument-dependent lookup
4144/// to the set of overloading candidates.
4145///
4146/// This routine performs argument-dependent name lookup based on the
4147/// given function name (which may also be an operator name) and adds
4148/// all of the overload candidates found by ADL to the overload
4149/// candidate set (C++ [basic.lookup.argdep]).
4150void
4151Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4152                                           bool Operator,
4153                                           Expr **Args, unsigned NumArgs,
4154                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4155                                           OverloadCandidateSet& CandidateSet,
4156                                           bool PartialOverloading) {
4157  ADLResult Fns;
4158
4159  // FIXME: This approach for uniquing ADL results (and removing
4160  // redundant candidates from the set) relies on pointer-equality,
4161  // which means we need to key off the canonical decl.  However,
4162  // always going back to the canonical decl might not get us the
4163  // right set of default arguments.  What default arguments are
4164  // we supposed to consider on ADL candidates, anyway?
4165
4166  // FIXME: Pass in the explicit template arguments?
4167  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4168
4169  // Erase all of the candidates we already knew about.
4170  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4171                                   CandEnd = CandidateSet.end();
4172       Cand != CandEnd; ++Cand)
4173    if (Cand->Function) {
4174      Fns.erase(Cand->Function);
4175      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4176        Fns.erase(FunTmpl);
4177    }
4178
4179  // For each of the ADL candidates we found, add it to the overload
4180  // set.
4181  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4182    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4183      if (ExplicitTemplateArgs)
4184        continue;
4185
4186      AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
4187                           false, false, PartialOverloading);
4188    } else
4189      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4190                                   AS_none, ExplicitTemplateArgs,
4191                                   Args, NumArgs, CandidateSet);
4192  }
4193}
4194
4195/// isBetterOverloadCandidate - Determines whether the first overload
4196/// candidate is a better candidate than the second (C++ 13.3.3p1).
4197bool
4198Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4199                                const OverloadCandidate& Cand2,
4200                                SourceLocation Loc) {
4201  // Define viable functions to be better candidates than non-viable
4202  // functions.
4203  if (!Cand2.Viable)
4204    return Cand1.Viable;
4205  else if (!Cand1.Viable)
4206    return false;
4207
4208  // C++ [over.match.best]p1:
4209  //
4210  //   -- if F is a static member function, ICS1(F) is defined such
4211  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4212  //      any function G, and, symmetrically, ICS1(G) is neither
4213  //      better nor worse than ICS1(F).
4214  unsigned StartArg = 0;
4215  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4216    StartArg = 1;
4217
4218  // C++ [over.match.best]p1:
4219  //   A viable function F1 is defined to be a better function than another
4220  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4221  //   conversion sequence than ICSi(F2), and then...
4222  unsigned NumArgs = Cand1.Conversions.size();
4223  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4224  bool HasBetterConversion = false;
4225  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4226    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4227                                               Cand2.Conversions[ArgIdx])) {
4228    case ImplicitConversionSequence::Better:
4229      // Cand1 has a better conversion sequence.
4230      HasBetterConversion = true;
4231      break;
4232
4233    case ImplicitConversionSequence::Worse:
4234      // Cand1 can't be better than Cand2.
4235      return false;
4236
4237    case ImplicitConversionSequence::Indistinguishable:
4238      // Do nothing.
4239      break;
4240    }
4241  }
4242
4243  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4244  //       ICSj(F2), or, if not that,
4245  if (HasBetterConversion)
4246    return true;
4247
4248  //     - F1 is a non-template function and F2 is a function template
4249  //       specialization, or, if not that,
4250  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4251      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4252    return true;
4253
4254  //   -- F1 and F2 are function template specializations, and the function
4255  //      template for F1 is more specialized than the template for F2
4256  //      according to the partial ordering rules described in 14.5.5.2, or,
4257  //      if not that,
4258  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4259      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4260    if (FunctionTemplateDecl *BetterTemplate
4261          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4262                                       Cand2.Function->getPrimaryTemplate(),
4263                                       Loc,
4264                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4265                                                             : TPOC_Call))
4266      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4267
4268  //   -- the context is an initialization by user-defined conversion
4269  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4270  //      from the return type of F1 to the destination type (i.e.,
4271  //      the type of the entity being initialized) is a better
4272  //      conversion sequence than the standard conversion sequence
4273  //      from the return type of F2 to the destination type.
4274  if (Cand1.Function && Cand2.Function &&
4275      isa<CXXConversionDecl>(Cand1.Function) &&
4276      isa<CXXConversionDecl>(Cand2.Function)) {
4277    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4278                                               Cand2.FinalConversion)) {
4279    case ImplicitConversionSequence::Better:
4280      // Cand1 has a better conversion sequence.
4281      return true;
4282
4283    case ImplicitConversionSequence::Worse:
4284      // Cand1 can't be better than Cand2.
4285      return false;
4286
4287    case ImplicitConversionSequence::Indistinguishable:
4288      // Do nothing
4289      break;
4290    }
4291  }
4292
4293  return false;
4294}
4295
4296/// \brief Computes the best viable function (C++ 13.3.3)
4297/// within an overload candidate set.
4298///
4299/// \param CandidateSet the set of candidate functions.
4300///
4301/// \param Loc the location of the function name (or operator symbol) for
4302/// which overload resolution occurs.
4303///
4304/// \param Best f overload resolution was successful or found a deleted
4305/// function, Best points to the candidate function found.
4306///
4307/// \returns The result of overload resolution.
4308OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4309                                           SourceLocation Loc,
4310                                        OverloadCandidateSet::iterator& Best) {
4311  // Find the best viable function.
4312  Best = CandidateSet.end();
4313  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4314       Cand != CandidateSet.end(); ++Cand) {
4315    if (Cand->Viable) {
4316      if (Best == CandidateSet.end() ||
4317          isBetterOverloadCandidate(*Cand, *Best, Loc))
4318        Best = Cand;
4319    }
4320  }
4321
4322  // If we didn't find any viable functions, abort.
4323  if (Best == CandidateSet.end())
4324    return OR_No_Viable_Function;
4325
4326  // Make sure that this function is better than every other viable
4327  // function. If not, we have an ambiguity.
4328  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4329       Cand != CandidateSet.end(); ++Cand) {
4330    if (Cand->Viable &&
4331        Cand != Best &&
4332        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4333      Best = CandidateSet.end();
4334      return OR_Ambiguous;
4335    }
4336  }
4337
4338  // Best is the best viable function.
4339  if (Best->Function &&
4340      (Best->Function->isDeleted() ||
4341       Best->Function->getAttr<UnavailableAttr>()))
4342    return OR_Deleted;
4343
4344  // C++ [basic.def.odr]p2:
4345  //   An overloaded function is used if it is selected by overload resolution
4346  //   when referred to from a potentially-evaluated expression. [Note: this
4347  //   covers calls to named functions (5.2.2), operator overloading
4348  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4349  //   placement new (5.3.4), as well as non-default initialization (8.5).
4350  if (Best->Function)
4351    MarkDeclarationReferenced(Loc, Best->Function);
4352  return OR_Success;
4353}
4354
4355namespace {
4356
4357enum OverloadCandidateKind {
4358  oc_function,
4359  oc_method,
4360  oc_constructor,
4361  oc_function_template,
4362  oc_method_template,
4363  oc_constructor_template,
4364  oc_implicit_default_constructor,
4365  oc_implicit_copy_constructor,
4366  oc_implicit_copy_assignment
4367};
4368
4369OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4370                                                FunctionDecl *Fn,
4371                                                std::string &Description) {
4372  bool isTemplate = false;
4373
4374  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4375    isTemplate = true;
4376    Description = S.getTemplateArgumentBindingsText(
4377      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4378  }
4379
4380  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4381    if (!Ctor->isImplicit())
4382      return isTemplate ? oc_constructor_template : oc_constructor;
4383
4384    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4385                                     : oc_implicit_default_constructor;
4386  }
4387
4388  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4389    // This actually gets spelled 'candidate function' for now, but
4390    // it doesn't hurt to split it out.
4391    if (!Meth->isImplicit())
4392      return isTemplate ? oc_method_template : oc_method;
4393
4394    assert(Meth->isCopyAssignment()
4395           && "implicit method is not copy assignment operator?");
4396    return oc_implicit_copy_assignment;
4397  }
4398
4399  return isTemplate ? oc_function_template : oc_function;
4400}
4401
4402} // end anonymous namespace
4403
4404// Notes the location of an overload candidate.
4405void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4406  std::string FnDesc;
4407  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4408  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4409    << (unsigned) K << FnDesc;
4410}
4411
4412/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4413/// "lead" diagnostic; it will be given two arguments, the source and
4414/// target types of the conversion.
4415void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4416                                       SourceLocation CaretLoc,
4417                                       const PartialDiagnostic &PDiag) {
4418  Diag(CaretLoc, PDiag)
4419    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4420  for (AmbiguousConversionSequence::const_iterator
4421         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4422    NoteOverloadCandidate(*I);
4423  }
4424}
4425
4426namespace {
4427
4428void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4429  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4430  assert(Conv.isBad());
4431  assert(Cand->Function && "for now, candidate must be a function");
4432  FunctionDecl *Fn = Cand->Function;
4433
4434  // There's a conversion slot for the object argument if this is a
4435  // non-constructor method.  Note that 'I' corresponds the
4436  // conversion-slot index.
4437  bool isObjectArgument = false;
4438  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4439    if (I == 0)
4440      isObjectArgument = true;
4441    else
4442      I--;
4443  }
4444
4445  std::string FnDesc;
4446  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4447
4448  Expr *FromExpr = Conv.Bad.FromExpr;
4449  QualType FromTy = Conv.Bad.getFromType();
4450  QualType ToTy = Conv.Bad.getToType();
4451
4452  if (FromTy == S.Context.OverloadTy) {
4453    assert(FromExpr && "overload set argument came from implicit argument?");
4454    Expr *E = FromExpr->IgnoreParens();
4455    if (isa<UnaryOperator>(E))
4456      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4457    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4458
4459    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4460      << (unsigned) FnKind << FnDesc
4461      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4462      << ToTy << Name << I+1;
4463    return;
4464  }
4465
4466  // Do some hand-waving analysis to see if the non-viability is due
4467  // to a qualifier mismatch.
4468  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4469  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4470  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4471    CToTy = RT->getPointeeType();
4472  else {
4473    // TODO: detect and diagnose the full richness of const mismatches.
4474    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4475      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4476        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4477  }
4478
4479  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4480      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4481    // It is dumb that we have to do this here.
4482    while (isa<ArrayType>(CFromTy))
4483      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4484    while (isa<ArrayType>(CToTy))
4485      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4486
4487    Qualifiers FromQs = CFromTy.getQualifiers();
4488    Qualifiers ToQs = CToTy.getQualifiers();
4489
4490    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4491      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4492        << (unsigned) FnKind << FnDesc
4493        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4494        << FromTy
4495        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4496        << (unsigned) isObjectArgument << I+1;
4497      return;
4498    }
4499
4500    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4501    assert(CVR && "unexpected qualifiers mismatch");
4502
4503    if (isObjectArgument) {
4504      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4505        << (unsigned) FnKind << FnDesc
4506        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4507        << FromTy << (CVR - 1);
4508    } else {
4509      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4510        << (unsigned) FnKind << FnDesc
4511        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4512        << FromTy << (CVR - 1) << I+1;
4513    }
4514    return;
4515  }
4516
4517  // Diagnose references or pointers to incomplete types differently,
4518  // since it's far from impossible that the incompleteness triggered
4519  // the failure.
4520  QualType TempFromTy = FromTy.getNonReferenceType();
4521  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4522    TempFromTy = PTy->getPointeeType();
4523  if (TempFromTy->isIncompleteType()) {
4524    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4525      << (unsigned) FnKind << FnDesc
4526      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4527      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4528    return;
4529  }
4530
4531  // TODO: specialize more based on the kind of mismatch
4532  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4533    << (unsigned) FnKind << FnDesc
4534    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4535    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4536}
4537
4538void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4539                           unsigned NumFormalArgs) {
4540  // TODO: treat calls to a missing default constructor as a special case
4541
4542  FunctionDecl *Fn = Cand->Function;
4543  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4544
4545  unsigned MinParams = Fn->getMinRequiredArguments();
4546
4547  // at least / at most / exactly
4548  unsigned mode, modeCount;
4549  if (NumFormalArgs < MinParams) {
4550    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4551    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4552      mode = 0; // "at least"
4553    else
4554      mode = 2; // "exactly"
4555    modeCount = MinParams;
4556  } else {
4557    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4558    if (MinParams != FnTy->getNumArgs())
4559      mode = 1; // "at most"
4560    else
4561      mode = 2; // "exactly"
4562    modeCount = FnTy->getNumArgs();
4563  }
4564
4565  std::string Description;
4566  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4567
4568  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4569    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4570}
4571
4572/// Diagnose a failed template-argument deduction.
4573void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4574                          Expr **Args, unsigned NumArgs) {
4575  FunctionDecl *Fn = Cand->Function; // pattern
4576
4577  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4578                                   Cand->DeductionFailure.TemplateParameter);
4579
4580  switch (Cand->DeductionFailure.Result) {
4581  case Sema::TDK_Success:
4582    llvm_unreachable("TDK_success while diagnosing bad deduction");
4583
4584  case Sema::TDK_Incomplete: {
4585    NamedDecl *ParamD;
4586    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4587    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4588    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4589    assert(ParamD && "no parameter found for incomplete deduction result");
4590    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4591      << ParamD->getDeclName();
4592    return;
4593  }
4594
4595  // TODO: diagnose these individually, then kill off
4596  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4597  case Sema::TDK_InstantiationDepth:
4598  case Sema::TDK_Inconsistent:
4599  case Sema::TDK_InconsistentQuals:
4600  case Sema::TDK_SubstitutionFailure:
4601  case Sema::TDK_NonDeducedMismatch:
4602  case Sema::TDK_TooManyArguments:
4603  case Sema::TDK_TooFewArguments:
4604  case Sema::TDK_InvalidExplicitArguments:
4605  case Sema::TDK_FailedOverloadResolution:
4606    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4607    return;
4608  }
4609}
4610
4611/// Generates a 'note' diagnostic for an overload candidate.  We've
4612/// already generated a primary error at the call site.
4613///
4614/// It really does need to be a single diagnostic with its caret
4615/// pointed at the candidate declaration.  Yes, this creates some
4616/// major challenges of technical writing.  Yes, this makes pointing
4617/// out problems with specific arguments quite awkward.  It's still
4618/// better than generating twenty screens of text for every failed
4619/// overload.
4620///
4621/// It would be great to be able to express per-candidate problems
4622/// more richly for those diagnostic clients that cared, but we'd
4623/// still have to be just as careful with the default diagnostics.
4624void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4625                           Expr **Args, unsigned NumArgs) {
4626  FunctionDecl *Fn = Cand->Function;
4627
4628  // Note deleted candidates, but only if they're viable.
4629  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4630    std::string FnDesc;
4631    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4632
4633    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4634      << FnKind << FnDesc << Fn->isDeleted();
4635    return;
4636  }
4637
4638  // We don't really have anything else to say about viable candidates.
4639  if (Cand->Viable) {
4640    S.NoteOverloadCandidate(Fn);
4641    return;
4642  }
4643
4644  switch (Cand->FailureKind) {
4645  case ovl_fail_too_many_arguments:
4646  case ovl_fail_too_few_arguments:
4647    return DiagnoseArityMismatch(S, Cand, NumArgs);
4648
4649  case ovl_fail_bad_deduction:
4650    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4651
4652  case ovl_fail_trivial_conversion:
4653  case ovl_fail_bad_final_conversion:
4654    return S.NoteOverloadCandidate(Fn);
4655
4656  case ovl_fail_bad_conversion: {
4657    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4658    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4659      if (Cand->Conversions[I].isBad())
4660        return DiagnoseBadConversion(S, Cand, I);
4661
4662    // FIXME: this currently happens when we're called from SemaInit
4663    // when user-conversion overload fails.  Figure out how to handle
4664    // those conditions and diagnose them well.
4665    return S.NoteOverloadCandidate(Fn);
4666  }
4667  }
4668}
4669
4670void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4671  // Desugar the type of the surrogate down to a function type,
4672  // retaining as many typedefs as possible while still showing
4673  // the function type (and, therefore, its parameter types).
4674  QualType FnType = Cand->Surrogate->getConversionType();
4675  bool isLValueReference = false;
4676  bool isRValueReference = false;
4677  bool isPointer = false;
4678  if (const LValueReferenceType *FnTypeRef =
4679        FnType->getAs<LValueReferenceType>()) {
4680    FnType = FnTypeRef->getPointeeType();
4681    isLValueReference = true;
4682  } else if (const RValueReferenceType *FnTypeRef =
4683               FnType->getAs<RValueReferenceType>()) {
4684    FnType = FnTypeRef->getPointeeType();
4685    isRValueReference = true;
4686  }
4687  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4688    FnType = FnTypePtr->getPointeeType();
4689    isPointer = true;
4690  }
4691  // Desugar down to a function type.
4692  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4693  // Reconstruct the pointer/reference as appropriate.
4694  if (isPointer) FnType = S.Context.getPointerType(FnType);
4695  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4696  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4697
4698  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4699    << FnType;
4700}
4701
4702void NoteBuiltinOperatorCandidate(Sema &S,
4703                                  const char *Opc,
4704                                  SourceLocation OpLoc,
4705                                  OverloadCandidate *Cand) {
4706  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4707  std::string TypeStr("operator");
4708  TypeStr += Opc;
4709  TypeStr += "(";
4710  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4711  if (Cand->Conversions.size() == 1) {
4712    TypeStr += ")";
4713    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4714  } else {
4715    TypeStr += ", ";
4716    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4717    TypeStr += ")";
4718    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4719  }
4720}
4721
4722void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4723                                  OverloadCandidate *Cand) {
4724  unsigned NoOperands = Cand->Conversions.size();
4725  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4726    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4727    if (ICS.isBad()) break; // all meaningless after first invalid
4728    if (!ICS.isAmbiguous()) continue;
4729
4730    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4731                              PDiag(diag::note_ambiguous_type_conversion));
4732  }
4733}
4734
4735SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4736  if (Cand->Function)
4737    return Cand->Function->getLocation();
4738  if (Cand->IsSurrogate)
4739    return Cand->Surrogate->getLocation();
4740  return SourceLocation();
4741}
4742
4743struct CompareOverloadCandidatesForDisplay {
4744  Sema &S;
4745  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4746
4747  bool operator()(const OverloadCandidate *L,
4748                  const OverloadCandidate *R) {
4749    // Fast-path this check.
4750    if (L == R) return false;
4751
4752    // Order first by viability.
4753    if (L->Viable) {
4754      if (!R->Viable) return true;
4755
4756      // TODO: introduce a tri-valued comparison for overload
4757      // candidates.  Would be more worthwhile if we had a sort
4758      // that could exploit it.
4759      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4760      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4761    } else if (R->Viable)
4762      return false;
4763
4764    assert(L->Viable == R->Viable);
4765
4766    // Criteria by which we can sort non-viable candidates:
4767    if (!L->Viable) {
4768      // 1. Arity mismatches come after other candidates.
4769      if (L->FailureKind == ovl_fail_too_many_arguments ||
4770          L->FailureKind == ovl_fail_too_few_arguments)
4771        return false;
4772      if (R->FailureKind == ovl_fail_too_many_arguments ||
4773          R->FailureKind == ovl_fail_too_few_arguments)
4774        return true;
4775
4776      // 2. Bad conversions come first and are ordered by the number
4777      // of bad conversions and quality of good conversions.
4778      if (L->FailureKind == ovl_fail_bad_conversion) {
4779        if (R->FailureKind != ovl_fail_bad_conversion)
4780          return true;
4781
4782        // If there's any ordering between the defined conversions...
4783        // FIXME: this might not be transitive.
4784        assert(L->Conversions.size() == R->Conversions.size());
4785
4786        int leftBetter = 0;
4787        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
4788        for (unsigned E = L->Conversions.size(); I != E; ++I) {
4789          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4790                                                       R->Conversions[I])) {
4791          case ImplicitConversionSequence::Better:
4792            leftBetter++;
4793            break;
4794
4795          case ImplicitConversionSequence::Worse:
4796            leftBetter--;
4797            break;
4798
4799          case ImplicitConversionSequence::Indistinguishable:
4800            break;
4801          }
4802        }
4803        if (leftBetter > 0) return true;
4804        if (leftBetter < 0) return false;
4805
4806      } else if (R->FailureKind == ovl_fail_bad_conversion)
4807        return false;
4808
4809      // TODO: others?
4810    }
4811
4812    // Sort everything else by location.
4813    SourceLocation LLoc = GetLocationForCandidate(L);
4814    SourceLocation RLoc = GetLocationForCandidate(R);
4815
4816    // Put candidates without locations (e.g. builtins) at the end.
4817    if (LLoc.isInvalid()) return false;
4818    if (RLoc.isInvalid()) return true;
4819
4820    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4821  }
4822};
4823
4824/// CompleteNonViableCandidate - Normally, overload resolution only
4825/// computes up to the first
4826void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4827                                Expr **Args, unsigned NumArgs) {
4828  assert(!Cand->Viable);
4829
4830  // Don't do anything on failures other than bad conversion.
4831  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4832
4833  // Skip forward to the first bad conversion.
4834  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
4835  unsigned ConvCount = Cand->Conversions.size();
4836  while (true) {
4837    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4838    ConvIdx++;
4839    if (Cand->Conversions[ConvIdx - 1].isBad())
4840      break;
4841  }
4842
4843  if (ConvIdx == ConvCount)
4844    return;
4845
4846  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
4847         "remaining conversion is initialized?");
4848
4849  // FIXME: these should probably be preserved from the overload
4850  // operation somehow.
4851  bool SuppressUserConversions = false;
4852  bool ForceRValue = false;
4853
4854  const FunctionProtoType* Proto;
4855  unsigned ArgIdx = ConvIdx;
4856
4857  if (Cand->IsSurrogate) {
4858    QualType ConvType
4859      = Cand->Surrogate->getConversionType().getNonReferenceType();
4860    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4861      ConvType = ConvPtrType->getPointeeType();
4862    Proto = ConvType->getAs<FunctionProtoType>();
4863    ArgIdx--;
4864  } else if (Cand->Function) {
4865    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4866    if (isa<CXXMethodDecl>(Cand->Function) &&
4867        !isa<CXXConstructorDecl>(Cand->Function))
4868      ArgIdx--;
4869  } else {
4870    // Builtin binary operator with a bad first conversion.
4871    assert(ConvCount <= 3);
4872    for (; ConvIdx != ConvCount; ++ConvIdx)
4873      Cand->Conversions[ConvIdx]
4874        = S.TryCopyInitialization(Args[ConvIdx],
4875                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4876                                  SuppressUserConversions, ForceRValue,
4877                                  /*InOverloadResolution*/ true);
4878    return;
4879  }
4880
4881  // Fill in the rest of the conversions.
4882  unsigned NumArgsInProto = Proto->getNumArgs();
4883  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4884    if (ArgIdx < NumArgsInProto)
4885      Cand->Conversions[ConvIdx]
4886        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4887                                  SuppressUserConversions, ForceRValue,
4888                                  /*InOverloadResolution=*/true);
4889    else
4890      Cand->Conversions[ConvIdx].setEllipsis();
4891  }
4892}
4893
4894} // end anonymous namespace
4895
4896/// PrintOverloadCandidates - When overload resolution fails, prints
4897/// diagnostic messages containing the candidates in the candidate
4898/// set.
4899void
4900Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4901                              OverloadCandidateDisplayKind OCD,
4902                              Expr **Args, unsigned NumArgs,
4903                              const char *Opc,
4904                              SourceLocation OpLoc) {
4905  // Sort the candidates by viability and position.  Sorting directly would
4906  // be prohibitive, so we make a set of pointers and sort those.
4907  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4908  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4909  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4910                                  LastCand = CandidateSet.end();
4911       Cand != LastCand; ++Cand) {
4912    if (Cand->Viable)
4913      Cands.push_back(Cand);
4914    else if (OCD == OCD_AllCandidates) {
4915      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4916      Cands.push_back(Cand);
4917    }
4918  }
4919
4920  std::sort(Cands.begin(), Cands.end(),
4921            CompareOverloadCandidatesForDisplay(*this));
4922
4923  bool ReportedAmbiguousConversions = false;
4924
4925  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4926  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4927    OverloadCandidate *Cand = *I;
4928
4929    if (Cand->Function)
4930      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4931    else if (Cand->IsSurrogate)
4932      NoteSurrogateCandidate(*this, Cand);
4933
4934    // This a builtin candidate.  We do not, in general, want to list
4935    // every possible builtin candidate.
4936    else if (Cand->Viable) {
4937      // Generally we only see ambiguities including viable builtin
4938      // operators if overload resolution got screwed up by an
4939      // ambiguous user-defined conversion.
4940      //
4941      // FIXME: It's quite possible for different conversions to see
4942      // different ambiguities, though.
4943      if (!ReportedAmbiguousConversions) {
4944        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4945        ReportedAmbiguousConversions = true;
4946      }
4947
4948      // If this is a viable builtin, print it.
4949      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4950    }
4951  }
4952}
4953
4954static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D,
4955                                  AccessSpecifier AS) {
4956  if (isa<UnresolvedLookupExpr>(E))
4957    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);
4958
4959  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
4960}
4961
4962/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4963/// an overloaded function (C++ [over.over]), where @p From is an
4964/// expression with overloaded function type and @p ToType is the type
4965/// we're trying to resolve to. For example:
4966///
4967/// @code
4968/// int f(double);
4969/// int f(int);
4970///
4971/// int (*pfd)(double) = f; // selects f(double)
4972/// @endcode
4973///
4974/// This routine returns the resulting FunctionDecl if it could be
4975/// resolved, and NULL otherwise. When @p Complain is true, this
4976/// routine will emit diagnostics if there is an error.
4977FunctionDecl *
4978Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4979                                         bool Complain) {
4980  QualType FunctionType = ToType;
4981  bool IsMember = false;
4982  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4983    FunctionType = ToTypePtr->getPointeeType();
4984  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4985    FunctionType = ToTypeRef->getPointeeType();
4986  else if (const MemberPointerType *MemTypePtr =
4987                    ToType->getAs<MemberPointerType>()) {
4988    FunctionType = MemTypePtr->getPointeeType();
4989    IsMember = true;
4990  }
4991
4992  // We only look at pointers or references to functions.
4993  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4994  if (!FunctionType->isFunctionType())
4995    return 0;
4996
4997  // Find the actual overloaded function declaration.
4998  if (From->getType() != Context.OverloadTy)
4999    return 0;
5000
5001  // C++ [over.over]p1:
5002  //   [...] [Note: any redundant set of parentheses surrounding the
5003  //   overloaded function name is ignored (5.1). ]
5004  // C++ [over.over]p1:
5005  //   [...] The overloaded function name can be preceded by the &
5006  //   operator.
5007  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5008  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5009  if (OvlExpr->hasExplicitTemplateArgs()) {
5010    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5011    ExplicitTemplateArgs = &ETABuffer;
5012  }
5013
5014  // Look through all of the overloaded functions, searching for one
5015  // whose type matches exactly.
5016  UnresolvedSet<4> Matches;  // contains only FunctionDecls
5017  bool FoundNonTemplateFunction = false;
5018  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5019         E = OvlExpr->decls_end(); I != E; ++I) {
5020    // Look through any using declarations to find the underlying function.
5021    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5022
5023    // C++ [over.over]p3:
5024    //   Non-member functions and static member functions match
5025    //   targets of type "pointer-to-function" or "reference-to-function."
5026    //   Nonstatic member functions match targets of
5027    //   type "pointer-to-member-function."
5028    // Note that according to DR 247, the containing class does not matter.
5029
5030    if (FunctionTemplateDecl *FunctionTemplate
5031          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5032      if (CXXMethodDecl *Method
5033            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5034        // Skip non-static function templates when converting to pointer, and
5035        // static when converting to member pointer.
5036        if (Method->isStatic() == IsMember)
5037          continue;
5038      } else if (IsMember)
5039        continue;
5040
5041      // C++ [over.over]p2:
5042      //   If the name is a function template, template argument deduction is
5043      //   done (14.8.2.2), and if the argument deduction succeeds, the
5044      //   resulting template argument list is used to generate a single
5045      //   function template specialization, which is added to the set of
5046      //   overloaded functions considered.
5047      // FIXME: We don't really want to build the specialization here, do we?
5048      FunctionDecl *Specialization = 0;
5049      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5050      if (TemplateDeductionResult Result
5051            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5052                                      FunctionType, Specialization, Info)) {
5053        // FIXME: make a note of the failed deduction for diagnostics.
5054        (void)Result;
5055      } else {
5056        // FIXME: If the match isn't exact, shouldn't we just drop this as
5057        // a candidate? Find a testcase before changing the code.
5058        assert(FunctionType
5059                 == Context.getCanonicalType(Specialization->getType()));
5060        Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
5061                        I.getAccess());
5062      }
5063
5064      continue;
5065    }
5066
5067    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5068      // Skip non-static functions when converting to pointer, and static
5069      // when converting to member pointer.
5070      if (Method->isStatic() == IsMember)
5071        continue;
5072
5073      // If we have explicit template arguments, skip non-templates.
5074      if (OvlExpr->hasExplicitTemplateArgs())
5075        continue;
5076    } else if (IsMember)
5077      continue;
5078
5079    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5080      QualType ResultTy;
5081      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5082          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5083                               ResultTy)) {
5084        Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
5085                        I.getAccess());
5086        FoundNonTemplateFunction = true;
5087      }
5088    }
5089  }
5090
5091  // If there were 0 or 1 matches, we're done.
5092  if (Matches.empty())
5093    return 0;
5094  else if (Matches.size() == 1) {
5095    FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
5096    MarkDeclarationReferenced(From->getLocStart(), Result);
5097    if (Complain)
5098      CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
5099    return Result;
5100  }
5101
5102  // C++ [over.over]p4:
5103  //   If more than one function is selected, [...]
5104  if (!FoundNonTemplateFunction) {
5105    //   [...] and any given function template specialization F1 is
5106    //   eliminated if the set contains a second function template
5107    //   specialization whose function template is more specialized
5108    //   than the function template of F1 according to the partial
5109    //   ordering rules of 14.5.5.2.
5110
5111    // The algorithm specified above is quadratic. We instead use a
5112    // two-pass algorithm (similar to the one used to identify the
5113    // best viable function in an overload set) that identifies the
5114    // best function template (if it exists).
5115
5116    UnresolvedSetIterator Result =
5117        getMostSpecialized(Matches.begin(), Matches.end(),
5118                           TPOC_Other, From->getLocStart(),
5119                           PDiag(),
5120                           PDiag(diag::err_addr_ovl_ambiguous)
5121                               << Matches[0]->getDeclName(),
5122                           PDiag(diag::note_ovl_candidate)
5123                               << (unsigned) oc_function_template);
5124    assert(Result != Matches.end() && "no most-specialized template");
5125    MarkDeclarationReferenced(From->getLocStart(), *Result);
5126    if (Complain)
5127      CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
5128    return cast<FunctionDecl>(*Result);
5129  }
5130
5131  //   [...] any function template specializations in the set are
5132  //   eliminated if the set also contains a non-template function, [...]
5133  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5134    if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
5135      ++I;
5136    else {
5137      Matches.erase(I);
5138      --N;
5139    }
5140  }
5141
5142  // [...] After such eliminations, if any, there shall remain exactly one
5143  // selected function.
5144  if (Matches.size() == 1) {
5145    UnresolvedSetIterator Match = Matches.begin();
5146    MarkDeclarationReferenced(From->getLocStart(), *Match);
5147    if (Complain)
5148      CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
5149    return cast<FunctionDecl>(*Match);
5150  }
5151
5152  // FIXME: We should probably return the same thing that BestViableFunction
5153  // returns (even if we issue the diagnostics here).
5154  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5155    << Matches[0]->getDeclName();
5156  for (UnresolvedSetIterator I = Matches.begin(),
5157         E = Matches.end(); I != E; ++I)
5158    NoteOverloadCandidate(cast<FunctionDecl>(*I));
5159  return 0;
5160}
5161
5162/// \brief Given an expression that refers to an overloaded function, try to
5163/// resolve that overloaded function expression down to a single function.
5164///
5165/// This routine can only resolve template-ids that refer to a single function
5166/// template, where that template-id refers to a single template whose template
5167/// arguments are either provided by the template-id or have defaults,
5168/// as described in C++0x [temp.arg.explicit]p3.
5169FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5170  // C++ [over.over]p1:
5171  //   [...] [Note: any redundant set of parentheses surrounding the
5172  //   overloaded function name is ignored (5.1). ]
5173  // C++ [over.over]p1:
5174  //   [...] The overloaded function name can be preceded by the &
5175  //   operator.
5176
5177  if (From->getType() != Context.OverloadTy)
5178    return 0;
5179
5180  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5181
5182  // If we didn't actually find any template-ids, we're done.
5183  if (!OvlExpr->hasExplicitTemplateArgs())
5184    return 0;
5185
5186  TemplateArgumentListInfo ExplicitTemplateArgs;
5187  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5188
5189  // Look through all of the overloaded functions, searching for one
5190  // whose type matches exactly.
5191  FunctionDecl *Matched = 0;
5192  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5193         E = OvlExpr->decls_end(); I != E; ++I) {
5194    // C++0x [temp.arg.explicit]p3:
5195    //   [...] In contexts where deduction is done and fails, or in contexts
5196    //   where deduction is not done, if a template argument list is
5197    //   specified and it, along with any default template arguments,
5198    //   identifies a single function template specialization, then the
5199    //   template-id is an lvalue for the function template specialization.
5200    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5201
5202    // C++ [over.over]p2:
5203    //   If the name is a function template, template argument deduction is
5204    //   done (14.8.2.2), and if the argument deduction succeeds, the
5205    //   resulting template argument list is used to generate a single
5206    //   function template specialization, which is added to the set of
5207    //   overloaded functions considered.
5208    FunctionDecl *Specialization = 0;
5209    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5210    if (TemplateDeductionResult Result
5211          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5212                                    Specialization, Info)) {
5213      // FIXME: make a note of the failed deduction for diagnostics.
5214      (void)Result;
5215      continue;
5216    }
5217
5218    // Multiple matches; we can't resolve to a single declaration.
5219    if (Matched)
5220      return 0;
5221
5222    Matched = Specialization;
5223  }
5224
5225  return Matched;
5226}
5227
5228/// \brief Add a single candidate to the overload set.
5229static void AddOverloadedCallCandidate(Sema &S,
5230                                       NamedDecl *Callee,
5231                                       AccessSpecifier Access,
5232                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5233                                       Expr **Args, unsigned NumArgs,
5234                                       OverloadCandidateSet &CandidateSet,
5235                                       bool PartialOverloading) {
5236  if (isa<UsingShadowDecl>(Callee))
5237    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5238
5239  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5240    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5241    S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
5242                           false, false, PartialOverloading);
5243    return;
5244  }
5245
5246  if (FunctionTemplateDecl *FuncTemplate
5247      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5248    S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
5249                                   Args, NumArgs, CandidateSet);
5250    return;
5251  }
5252
5253  assert(false && "unhandled case in overloaded call candidate");
5254
5255  // do nothing?
5256}
5257
5258/// \brief Add the overload candidates named by callee and/or found by argument
5259/// dependent lookup to the given overload set.
5260void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5261                                       Expr **Args, unsigned NumArgs,
5262                                       OverloadCandidateSet &CandidateSet,
5263                                       bool PartialOverloading) {
5264
5265#ifndef NDEBUG
5266  // Verify that ArgumentDependentLookup is consistent with the rules
5267  // in C++0x [basic.lookup.argdep]p3:
5268  //
5269  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5270  //   and let Y be the lookup set produced by argument dependent
5271  //   lookup (defined as follows). If X contains
5272  //
5273  //     -- a declaration of a class member, or
5274  //
5275  //     -- a block-scope function declaration that is not a
5276  //        using-declaration, or
5277  //
5278  //     -- a declaration that is neither a function or a function
5279  //        template
5280  //
5281  //   then Y is empty.
5282
5283  if (ULE->requiresADL()) {
5284    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5285           E = ULE->decls_end(); I != E; ++I) {
5286      assert(!(*I)->getDeclContext()->isRecord());
5287      assert(isa<UsingShadowDecl>(*I) ||
5288             !(*I)->getDeclContext()->isFunctionOrMethod());
5289      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5290    }
5291  }
5292#endif
5293
5294  // It would be nice to avoid this copy.
5295  TemplateArgumentListInfo TABuffer;
5296  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5297  if (ULE->hasExplicitTemplateArgs()) {
5298    ULE->copyTemplateArgumentsInto(TABuffer);
5299    ExplicitTemplateArgs = &TABuffer;
5300  }
5301
5302  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5303         E = ULE->decls_end(); I != E; ++I)
5304    AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
5305                               Args, NumArgs, CandidateSet,
5306                               PartialOverloading);
5307
5308  if (ULE->requiresADL())
5309    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5310                                         Args, NumArgs,
5311                                         ExplicitTemplateArgs,
5312                                         CandidateSet,
5313                                         PartialOverloading);
5314}
5315
5316static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5317                                      Expr **Args, unsigned NumArgs) {
5318  Fn->Destroy(SemaRef.Context);
5319  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5320    Args[Arg]->Destroy(SemaRef.Context);
5321  return SemaRef.ExprError();
5322}
5323
5324/// Attempts to recover from a call where no functions were found.
5325///
5326/// Returns true if new candidates were found.
5327static Sema::OwningExprResult
5328BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5329                      UnresolvedLookupExpr *ULE,
5330                      SourceLocation LParenLoc,
5331                      Expr **Args, unsigned NumArgs,
5332                      SourceLocation *CommaLocs,
5333                      SourceLocation RParenLoc) {
5334
5335  CXXScopeSpec SS;
5336  if (ULE->getQualifier()) {
5337    SS.setScopeRep(ULE->getQualifier());
5338    SS.setRange(ULE->getQualifierRange());
5339  }
5340
5341  TemplateArgumentListInfo TABuffer;
5342  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5343  if (ULE->hasExplicitTemplateArgs()) {
5344    ULE->copyTemplateArgumentsInto(TABuffer);
5345    ExplicitTemplateArgs = &TABuffer;
5346  }
5347
5348  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5349                 Sema::LookupOrdinaryName);
5350  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5351    return Destroy(SemaRef, Fn, Args, NumArgs);
5352
5353  assert(!R.empty() && "lookup results empty despite recovery");
5354
5355  // Build an implicit member call if appropriate.  Just drop the
5356  // casts and such from the call, we don't really care.
5357  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5358  if ((*R.begin())->isCXXClassMember())
5359    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5360  else if (ExplicitTemplateArgs)
5361    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5362  else
5363    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5364
5365  if (NewFn.isInvalid())
5366    return Destroy(SemaRef, Fn, Args, NumArgs);
5367
5368  Fn->Destroy(SemaRef.Context);
5369
5370  // This shouldn't cause an infinite loop because we're giving it
5371  // an expression with non-empty lookup results, which should never
5372  // end up here.
5373  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5374                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5375                               CommaLocs, RParenLoc);
5376}
5377
5378/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5379/// (which eventually refers to the declaration Func) and the call
5380/// arguments Args/NumArgs, attempt to resolve the function call down
5381/// to a specific function. If overload resolution succeeds, returns
5382/// the function declaration produced by overload
5383/// resolution. Otherwise, emits diagnostics, deletes all of the
5384/// arguments and Fn, and returns NULL.
5385Sema::OwningExprResult
5386Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5387                              SourceLocation LParenLoc,
5388                              Expr **Args, unsigned NumArgs,
5389                              SourceLocation *CommaLocs,
5390                              SourceLocation RParenLoc) {
5391#ifndef NDEBUG
5392  if (ULE->requiresADL()) {
5393    // To do ADL, we must have found an unqualified name.
5394    assert(!ULE->getQualifier() && "qualified name with ADL");
5395
5396    // We don't perform ADL for implicit declarations of builtins.
5397    // Verify that this was correctly set up.
5398    FunctionDecl *F;
5399    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5400        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5401        F->getBuiltinID() && F->isImplicit())
5402      assert(0 && "performing ADL for builtin");
5403
5404    // We don't perform ADL in C.
5405    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5406  }
5407#endif
5408
5409  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5410
5411  // Add the functions denoted by the callee to the set of candidate
5412  // functions, including those from argument-dependent lookup.
5413  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5414
5415  // If we found nothing, try to recover.
5416  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5417  // bailout out if it fails.
5418  if (CandidateSet.empty())
5419    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5420                                 CommaLocs, RParenLoc);
5421
5422  OverloadCandidateSet::iterator Best;
5423  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5424  case OR_Success: {
5425    FunctionDecl *FDecl = Best->Function;
5426    CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
5427    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5428    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5429  }
5430
5431  case OR_No_Viable_Function:
5432    Diag(Fn->getSourceRange().getBegin(),
5433         diag::err_ovl_no_viable_function_in_call)
5434      << ULE->getName() << Fn->getSourceRange();
5435    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5436    break;
5437
5438  case OR_Ambiguous:
5439    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5440      << ULE->getName() << Fn->getSourceRange();
5441    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5442    break;
5443
5444  case OR_Deleted:
5445    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5446      << Best->Function->isDeleted()
5447      << ULE->getName()
5448      << Fn->getSourceRange();
5449    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5450    break;
5451  }
5452
5453  // Overload resolution failed. Destroy all of the subexpressions and
5454  // return NULL.
5455  Fn->Destroy(Context);
5456  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5457    Args[Arg]->Destroy(Context);
5458  return ExprError();
5459}
5460
5461static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5462  return Functions.size() > 1 ||
5463    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5464}
5465
5466/// \brief Create a unary operation that may resolve to an overloaded
5467/// operator.
5468///
5469/// \param OpLoc The location of the operator itself (e.g., '*').
5470///
5471/// \param OpcIn The UnaryOperator::Opcode that describes this
5472/// operator.
5473///
5474/// \param Functions The set of non-member functions that will be
5475/// considered by overload resolution. The caller needs to build this
5476/// set based on the context using, e.g.,
5477/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5478/// set should not contain any member functions; those will be added
5479/// by CreateOverloadedUnaryOp().
5480///
5481/// \param input The input argument.
5482Sema::OwningExprResult
5483Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5484                              const UnresolvedSetImpl &Fns,
5485                              ExprArg input) {
5486  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5487  Expr *Input = (Expr *)input.get();
5488
5489  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5490  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5491  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5492
5493  Expr *Args[2] = { Input, 0 };
5494  unsigned NumArgs = 1;
5495
5496  // For post-increment and post-decrement, add the implicit '0' as
5497  // the second argument, so that we know this is a post-increment or
5498  // post-decrement.
5499  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5500    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5501    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5502                                           SourceLocation());
5503    NumArgs = 2;
5504  }
5505
5506  if (Input->isTypeDependent()) {
5507    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5508    UnresolvedLookupExpr *Fn
5509      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5510                                     0, SourceRange(), OpName, OpLoc,
5511                                     /*ADL*/ true, IsOverloaded(Fns));
5512    Fn->addDecls(Fns.begin(), Fns.end());
5513
5514    input.release();
5515    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5516                                                   &Args[0], NumArgs,
5517                                                   Context.DependentTy,
5518                                                   OpLoc));
5519  }
5520
5521  // Build an empty overload set.
5522  OverloadCandidateSet CandidateSet(OpLoc);
5523
5524  // Add the candidates from the given function set.
5525  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5526
5527  // Add operator candidates that are member functions.
5528  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5529
5530  // Add candidates from ADL.
5531  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5532                                       Args, NumArgs,
5533                                       /*ExplicitTemplateArgs*/ 0,
5534                                       CandidateSet);
5535
5536  // Add builtin operator candidates.
5537  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5538
5539  // Perform overload resolution.
5540  OverloadCandidateSet::iterator Best;
5541  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5542  case OR_Success: {
5543    // We found a built-in operator or an overloaded operator.
5544    FunctionDecl *FnDecl = Best->Function;
5545
5546    if (FnDecl) {
5547      // We matched an overloaded operator. Build a call to that
5548      // operator.
5549
5550      // Convert the arguments.
5551      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5552        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Method, Best->getAccess());
5553
5554        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, Method))
5555          return ExprError();
5556      } else {
5557        // Convert the arguments.
5558        OwningExprResult InputInit
5559          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5560                                                      FnDecl->getParamDecl(0)),
5561                                      SourceLocation(),
5562                                      move(input));
5563        if (InputInit.isInvalid())
5564          return ExprError();
5565
5566        input = move(InputInit);
5567        Input = (Expr *)input.get();
5568      }
5569
5570      // Determine the result type
5571      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5572
5573      // Build the actual expression node.
5574      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5575                                               SourceLocation());
5576      UsualUnaryConversions(FnExpr);
5577
5578      input.release();
5579      Args[0] = Input;
5580      ExprOwningPtr<CallExpr> TheCall(this,
5581        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5582                                          Args, NumArgs, ResultTy, OpLoc));
5583
5584      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5585                              FnDecl))
5586        return ExprError();
5587
5588      return MaybeBindToTemporary(TheCall.release());
5589    } else {
5590      // We matched a built-in operator. Convert the arguments, then
5591      // break out so that we will build the appropriate built-in
5592      // operator node.
5593        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5594                                      Best->Conversions[0], AA_Passing))
5595          return ExprError();
5596
5597        break;
5598      }
5599    }
5600
5601    case OR_No_Viable_Function:
5602      // No viable function; fall through to handling this as a
5603      // built-in operator, which will produce an error message for us.
5604      break;
5605
5606    case OR_Ambiguous:
5607      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5608          << UnaryOperator::getOpcodeStr(Opc)
5609          << Input->getSourceRange();
5610      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5611                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5612      return ExprError();
5613
5614    case OR_Deleted:
5615      Diag(OpLoc, diag::err_ovl_deleted_oper)
5616        << Best->Function->isDeleted()
5617        << UnaryOperator::getOpcodeStr(Opc)
5618        << Input->getSourceRange();
5619      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5620      return ExprError();
5621    }
5622
5623  // Either we found no viable overloaded operator or we matched a
5624  // built-in operator. In either case, fall through to trying to
5625  // build a built-in operation.
5626  input.release();
5627  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5628}
5629
5630/// \brief Create a binary operation that may resolve to an overloaded
5631/// operator.
5632///
5633/// \param OpLoc The location of the operator itself (e.g., '+').
5634///
5635/// \param OpcIn The BinaryOperator::Opcode that describes this
5636/// operator.
5637///
5638/// \param Functions The set of non-member functions that will be
5639/// considered by overload resolution. The caller needs to build this
5640/// set based on the context using, e.g.,
5641/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5642/// set should not contain any member functions; those will be added
5643/// by CreateOverloadedBinOp().
5644///
5645/// \param LHS Left-hand argument.
5646/// \param RHS Right-hand argument.
5647Sema::OwningExprResult
5648Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5649                            unsigned OpcIn,
5650                            const UnresolvedSetImpl &Fns,
5651                            Expr *LHS, Expr *RHS) {
5652  Expr *Args[2] = { LHS, RHS };
5653  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5654
5655  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5656  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5657  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5658
5659  // If either side is type-dependent, create an appropriate dependent
5660  // expression.
5661  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5662    if (Fns.empty()) {
5663      // If there are no functions to store, just build a dependent
5664      // BinaryOperator or CompoundAssignment.
5665      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5666        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5667                                                  Context.DependentTy, OpLoc));
5668
5669      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5670                                                        Context.DependentTy,
5671                                                        Context.DependentTy,
5672                                                        Context.DependentTy,
5673                                                        OpLoc));
5674    }
5675
5676    // FIXME: save results of ADL from here?
5677    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5678    UnresolvedLookupExpr *Fn
5679      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5680                                     0, SourceRange(), OpName, OpLoc,
5681                                     /*ADL*/ true, IsOverloaded(Fns));
5682
5683    Fn->addDecls(Fns.begin(), Fns.end());
5684    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5685                                                   Args, 2,
5686                                                   Context.DependentTy,
5687                                                   OpLoc));
5688  }
5689
5690  // If this is the .* operator, which is not overloadable, just
5691  // create a built-in binary operator.
5692  if (Opc == BinaryOperator::PtrMemD)
5693    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5694
5695  // If this is the assignment operator, we only perform overload resolution
5696  // if the left-hand side is a class or enumeration type. This is actually
5697  // a hack. The standard requires that we do overload resolution between the
5698  // various built-in candidates, but as DR507 points out, this can lead to
5699  // problems. So we do it this way, which pretty much follows what GCC does.
5700  // Note that we go the traditional code path for compound assignment forms.
5701  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5702    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5703
5704  // Build an empty overload set.
5705  OverloadCandidateSet CandidateSet(OpLoc);
5706
5707  // Add the candidates from the given function set.
5708  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5709
5710  // Add operator candidates that are member functions.
5711  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5712
5713  // Add candidates from ADL.
5714  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5715                                       Args, 2,
5716                                       /*ExplicitTemplateArgs*/ 0,
5717                                       CandidateSet);
5718
5719  // Add builtin operator candidates.
5720  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5721
5722  // Perform overload resolution.
5723  OverloadCandidateSet::iterator Best;
5724  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5725    case OR_Success: {
5726      // We found a built-in operator or an overloaded operator.
5727      FunctionDecl *FnDecl = Best->Function;
5728
5729      if (FnDecl) {
5730        // We matched an overloaded operator. Build a call to that
5731        // operator.
5732
5733        // Convert the arguments.
5734        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5735          // Best->Access is only meaningful for class members.
5736          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Method,
5737                                    Best->getAccess());
5738
5739          OwningExprResult Arg1
5740            = PerformCopyInitialization(
5741                                        InitializedEntity::InitializeParameter(
5742                                                        FnDecl->getParamDecl(0)),
5743                                        SourceLocation(),
5744                                        Owned(Args[1]));
5745          if (Arg1.isInvalid())
5746            return ExprError();
5747
5748          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5749                                                  Method))
5750            return ExprError();
5751
5752          Args[1] = RHS = Arg1.takeAs<Expr>();
5753        } else {
5754          // Convert the arguments.
5755          OwningExprResult Arg0
5756            = PerformCopyInitialization(
5757                                        InitializedEntity::InitializeParameter(
5758                                                        FnDecl->getParamDecl(0)),
5759                                        SourceLocation(),
5760                                        Owned(Args[0]));
5761          if (Arg0.isInvalid())
5762            return ExprError();
5763
5764          OwningExprResult Arg1
5765            = PerformCopyInitialization(
5766                                        InitializedEntity::InitializeParameter(
5767                                                        FnDecl->getParamDecl(1)),
5768                                        SourceLocation(),
5769                                        Owned(Args[1]));
5770          if (Arg1.isInvalid())
5771            return ExprError();
5772          Args[0] = LHS = Arg0.takeAs<Expr>();
5773          Args[1] = RHS = Arg1.takeAs<Expr>();
5774        }
5775
5776        // Determine the result type
5777        QualType ResultTy
5778          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5779        ResultTy = ResultTy.getNonReferenceType();
5780
5781        // Build the actual expression node.
5782        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5783                                                 OpLoc);
5784        UsualUnaryConversions(FnExpr);
5785
5786        ExprOwningPtr<CXXOperatorCallExpr>
5787          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5788                                                          Args, 2, ResultTy,
5789                                                          OpLoc));
5790
5791        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5792                                FnDecl))
5793          return ExprError();
5794
5795        return MaybeBindToTemporary(TheCall.release());
5796      } else {
5797        // We matched a built-in operator. Convert the arguments, then
5798        // break out so that we will build the appropriate built-in
5799        // operator node.
5800        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5801                                      Best->Conversions[0], AA_Passing) ||
5802            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5803                                      Best->Conversions[1], AA_Passing))
5804          return ExprError();
5805
5806        break;
5807      }
5808    }
5809
5810    case OR_No_Viable_Function: {
5811      // C++ [over.match.oper]p9:
5812      //   If the operator is the operator , [...] and there are no
5813      //   viable functions, then the operator is assumed to be the
5814      //   built-in operator and interpreted according to clause 5.
5815      if (Opc == BinaryOperator::Comma)
5816        break;
5817
5818      // For class as left operand for assignment or compound assigment operator
5819      // do not fall through to handling in built-in, but report that no overloaded
5820      // assignment operator found
5821      OwningExprResult Result = ExprError();
5822      if (Args[0]->getType()->isRecordType() &&
5823          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5824        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5825             << BinaryOperator::getOpcodeStr(Opc)
5826             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5827      } else {
5828        // No viable function; try to create a built-in operation, which will
5829        // produce an error. Then, show the non-viable candidates.
5830        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5831      }
5832      assert(Result.isInvalid() &&
5833             "C++ binary operator overloading is missing candidates!");
5834      if (Result.isInvalid())
5835        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5836                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5837      return move(Result);
5838    }
5839
5840    case OR_Ambiguous:
5841      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5842          << BinaryOperator::getOpcodeStr(Opc)
5843          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5844      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5845                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5846      return ExprError();
5847
5848    case OR_Deleted:
5849      Diag(OpLoc, diag::err_ovl_deleted_oper)
5850        << Best->Function->isDeleted()
5851        << BinaryOperator::getOpcodeStr(Opc)
5852        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5853      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5854      return ExprError();
5855  }
5856
5857  // We matched a built-in operator; build it.
5858  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5859}
5860
5861Action::OwningExprResult
5862Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5863                                         SourceLocation RLoc,
5864                                         ExprArg Base, ExprArg Idx) {
5865  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5866                    static_cast<Expr*>(Idx.get()) };
5867  DeclarationName OpName =
5868      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5869
5870  // If either side is type-dependent, create an appropriate dependent
5871  // expression.
5872  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5873
5874    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5875    UnresolvedLookupExpr *Fn
5876      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5877                                     0, SourceRange(), OpName, LLoc,
5878                                     /*ADL*/ true, /*Overloaded*/ false);
5879    // Can't add any actual overloads yet
5880
5881    Base.release();
5882    Idx.release();
5883    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5884                                                   Args, 2,
5885                                                   Context.DependentTy,
5886                                                   RLoc));
5887  }
5888
5889  // Build an empty overload set.
5890  OverloadCandidateSet CandidateSet(LLoc);
5891
5892  // Subscript can only be overloaded as a member function.
5893
5894  // Add operator candidates that are member functions.
5895  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5896
5897  // Add builtin operator candidates.
5898  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5899
5900  // Perform overload resolution.
5901  OverloadCandidateSet::iterator Best;
5902  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5903    case OR_Success: {
5904      // We found a built-in operator or an overloaded operator.
5905      FunctionDecl *FnDecl = Best->Function;
5906
5907      if (FnDecl) {
5908        // We matched an overloaded operator. Build a call to that
5909        // operator.
5910
5911        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], FnDecl,
5912                                  Best->getAccess());
5913
5914        // Convert the arguments.
5915        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5916        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5917                                                Method))
5918          return ExprError();
5919
5920        // Convert the arguments.
5921        OwningExprResult InputInit
5922          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5923                                                      FnDecl->getParamDecl(0)),
5924                                      SourceLocation(),
5925                                      Owned(Args[1]));
5926        if (InputInit.isInvalid())
5927          return ExprError();
5928
5929        Args[1] = InputInit.takeAs<Expr>();
5930
5931        // Determine the result type
5932        QualType ResultTy
5933          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5934        ResultTy = ResultTy.getNonReferenceType();
5935
5936        // Build the actual expression node.
5937        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5938                                                 LLoc);
5939        UsualUnaryConversions(FnExpr);
5940
5941        Base.release();
5942        Idx.release();
5943        ExprOwningPtr<CXXOperatorCallExpr>
5944          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5945                                                          FnExpr, Args, 2,
5946                                                          ResultTy, RLoc));
5947
5948        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5949                                FnDecl))
5950          return ExprError();
5951
5952        return MaybeBindToTemporary(TheCall.release());
5953      } else {
5954        // We matched a built-in operator. Convert the arguments, then
5955        // break out so that we will build the appropriate built-in
5956        // operator node.
5957        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5958                                      Best->Conversions[0], AA_Passing) ||
5959            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5960                                      Best->Conversions[1], AA_Passing))
5961          return ExprError();
5962
5963        break;
5964      }
5965    }
5966
5967    case OR_No_Viable_Function: {
5968      if (CandidateSet.empty())
5969        Diag(LLoc, diag::err_ovl_no_oper)
5970          << Args[0]->getType() << /*subscript*/ 0
5971          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5972      else
5973        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5974          << Args[0]->getType()
5975          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5976      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5977                              "[]", LLoc);
5978      return ExprError();
5979    }
5980
5981    case OR_Ambiguous:
5982      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5983          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5984      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5985                              "[]", LLoc);
5986      return ExprError();
5987
5988    case OR_Deleted:
5989      Diag(LLoc, diag::err_ovl_deleted_oper)
5990        << Best->Function->isDeleted() << "[]"
5991        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5992      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5993                              "[]", LLoc);
5994      return ExprError();
5995    }
5996
5997  // We matched a built-in operator; build it.
5998  Base.release();
5999  Idx.release();
6000  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6001                                         Owned(Args[1]), RLoc);
6002}
6003
6004/// BuildCallToMemberFunction - Build a call to a member
6005/// function. MemExpr is the expression that refers to the member
6006/// function (and includes the object parameter), Args/NumArgs are the
6007/// arguments to the function call (not including the object
6008/// parameter). The caller needs to validate that the member
6009/// expression refers to a member function or an overloaded member
6010/// function.
6011Sema::OwningExprResult
6012Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6013                                SourceLocation LParenLoc, Expr **Args,
6014                                unsigned NumArgs, SourceLocation *CommaLocs,
6015                                SourceLocation RParenLoc) {
6016  // Dig out the member expression. This holds both the object
6017  // argument and the member function we're referring to.
6018  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6019
6020  MemberExpr *MemExpr;
6021  CXXMethodDecl *Method = 0;
6022  NestedNameSpecifier *Qualifier = 0;
6023  if (isa<MemberExpr>(NakedMemExpr)) {
6024    MemExpr = cast<MemberExpr>(NakedMemExpr);
6025    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6026    Qualifier = MemExpr->getQualifier();
6027  } else {
6028    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6029    Qualifier = UnresExpr->getQualifier();
6030
6031    QualType ObjectType = UnresExpr->getBaseType();
6032
6033    // Add overload candidates
6034    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6035
6036    // FIXME: avoid copy.
6037    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6038    if (UnresExpr->hasExplicitTemplateArgs()) {
6039      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6040      TemplateArgs = &TemplateArgsBuffer;
6041    }
6042
6043    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6044           E = UnresExpr->decls_end(); I != E; ++I) {
6045
6046      NamedDecl *Func = *I;
6047      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6048      if (isa<UsingShadowDecl>(Func))
6049        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6050
6051      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6052        // If explicit template arguments were provided, we can't call a
6053        // non-template member function.
6054        if (TemplateArgs)
6055          continue;
6056
6057        AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
6058                           Args, NumArgs,
6059                           CandidateSet, /*SuppressUserConversions=*/false);
6060      } else {
6061        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6062                                   I.getAccess(), ActingDC, TemplateArgs,
6063                                   ObjectType, Args, NumArgs,
6064                                   CandidateSet,
6065                                   /*SuppressUsedConversions=*/false);
6066      }
6067    }
6068
6069    DeclarationName DeclName = UnresExpr->getMemberName();
6070
6071    OverloadCandidateSet::iterator Best;
6072    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6073    case OR_Success:
6074      Method = cast<CXXMethodDecl>(Best->Function);
6075      CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
6076      break;
6077
6078    case OR_No_Viable_Function:
6079      Diag(UnresExpr->getMemberLoc(),
6080           diag::err_ovl_no_viable_member_function_in_call)
6081        << DeclName << MemExprE->getSourceRange();
6082      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6083      // FIXME: Leaking incoming expressions!
6084      return ExprError();
6085
6086    case OR_Ambiguous:
6087      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6088        << DeclName << MemExprE->getSourceRange();
6089      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6090      // FIXME: Leaking incoming expressions!
6091      return ExprError();
6092
6093    case OR_Deleted:
6094      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6095        << Best->Function->isDeleted()
6096        << DeclName << MemExprE->getSourceRange();
6097      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6098      // FIXME: Leaking incoming expressions!
6099      return ExprError();
6100    }
6101
6102    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6103
6104    // If overload resolution picked a static member, build a
6105    // non-member call based on that function.
6106    if (Method->isStatic()) {
6107      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6108                                   Args, NumArgs, RParenLoc);
6109    }
6110
6111    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6112  }
6113
6114  assert(Method && "Member call to something that isn't a method?");
6115  ExprOwningPtr<CXXMemberCallExpr>
6116    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6117                                                  NumArgs,
6118                                  Method->getResultType().getNonReferenceType(),
6119                                  RParenLoc));
6120
6121  // Check for a valid return type.
6122  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6123                          TheCall.get(), Method))
6124    return ExprError();
6125
6126  // Convert the object argument (for a non-static member function call).
6127  Expr *ObjectArg = MemExpr->getBase();
6128  if (!Method->isStatic() &&
6129      PerformObjectArgumentInitialization(ObjectArg, Qualifier, Method))
6130    return ExprError();
6131  MemExpr->setBase(ObjectArg);
6132
6133  // Convert the rest of the arguments
6134  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6135  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6136                              RParenLoc))
6137    return ExprError();
6138
6139  if (CheckFunctionCall(Method, TheCall.get()))
6140    return ExprError();
6141
6142  return MaybeBindToTemporary(TheCall.release());
6143}
6144
6145/// BuildCallToObjectOfClassType - Build a call to an object of class
6146/// type (C++ [over.call.object]), which can end up invoking an
6147/// overloaded function call operator (@c operator()) or performing a
6148/// user-defined conversion on the object argument.
6149Sema::ExprResult
6150Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6151                                   SourceLocation LParenLoc,
6152                                   Expr **Args, unsigned NumArgs,
6153                                   SourceLocation *CommaLocs,
6154                                   SourceLocation RParenLoc) {
6155  assert(Object->getType()->isRecordType() && "Requires object type argument");
6156  const RecordType *Record = Object->getType()->getAs<RecordType>();
6157
6158  // C++ [over.call.object]p1:
6159  //  If the primary-expression E in the function call syntax
6160  //  evaluates to a class object of type "cv T", then the set of
6161  //  candidate functions includes at least the function call
6162  //  operators of T. The function call operators of T are obtained by
6163  //  ordinary lookup of the name operator() in the context of
6164  //  (E).operator().
6165  OverloadCandidateSet CandidateSet(LParenLoc);
6166  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6167
6168  if (RequireCompleteType(LParenLoc, Object->getType(),
6169                          PartialDiagnostic(diag::err_incomplete_object_call)
6170                          << Object->getSourceRange()))
6171    return true;
6172
6173  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6174  LookupQualifiedName(R, Record->getDecl());
6175  R.suppressDiagnostics();
6176
6177  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6178       Oper != OperEnd; ++Oper) {
6179    AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
6180                       Args, NumArgs, CandidateSet,
6181                       /*SuppressUserConversions=*/ false);
6182  }
6183
6184  // C++ [over.call.object]p2:
6185  //   In addition, for each conversion function declared in T of the
6186  //   form
6187  //
6188  //        operator conversion-type-id () cv-qualifier;
6189  //
6190  //   where cv-qualifier is the same cv-qualification as, or a
6191  //   greater cv-qualification than, cv, and where conversion-type-id
6192  //   denotes the type "pointer to function of (P1,...,Pn) returning
6193  //   R", or the type "reference to pointer to function of
6194  //   (P1,...,Pn) returning R", or the type "reference to function
6195  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6196  //   is also considered as a candidate function. Similarly,
6197  //   surrogate call functions are added to the set of candidate
6198  //   functions for each conversion function declared in an
6199  //   accessible base class provided the function is not hidden
6200  //   within T by another intervening declaration.
6201  const UnresolvedSetImpl *Conversions
6202    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6203  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6204         E = Conversions->end(); I != E; ++I) {
6205    NamedDecl *D = *I;
6206    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6207    if (isa<UsingShadowDecl>(D))
6208      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6209
6210    // Skip over templated conversion functions; they aren't
6211    // surrogates.
6212    if (isa<FunctionTemplateDecl>(D))
6213      continue;
6214
6215    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6216
6217    // Strip the reference type (if any) and then the pointer type (if
6218    // any) to get down to what might be a function type.
6219    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6220    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6221      ConvType = ConvPtrType->getPointeeType();
6222
6223    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6224      AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
6225                            Object->getType(), Args, NumArgs,
6226                            CandidateSet);
6227  }
6228
6229  // Perform overload resolution.
6230  OverloadCandidateSet::iterator Best;
6231  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6232  case OR_Success:
6233    // Overload resolution succeeded; we'll build the appropriate call
6234    // below.
6235    break;
6236
6237  case OR_No_Viable_Function:
6238    if (CandidateSet.empty())
6239      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6240        << Object->getType() << /*call*/ 1
6241        << Object->getSourceRange();
6242    else
6243      Diag(Object->getSourceRange().getBegin(),
6244           diag::err_ovl_no_viable_object_call)
6245        << Object->getType() << Object->getSourceRange();
6246    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6247    break;
6248
6249  case OR_Ambiguous:
6250    Diag(Object->getSourceRange().getBegin(),
6251         diag::err_ovl_ambiguous_object_call)
6252      << Object->getType() << Object->getSourceRange();
6253    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6254    break;
6255
6256  case OR_Deleted:
6257    Diag(Object->getSourceRange().getBegin(),
6258         diag::err_ovl_deleted_object_call)
6259      << Best->Function->isDeleted()
6260      << Object->getType() << Object->getSourceRange();
6261    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6262    break;
6263  }
6264
6265  if (Best == CandidateSet.end()) {
6266    // We had an error; delete all of the subexpressions and return
6267    // the error.
6268    Object->Destroy(Context);
6269    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6270      Args[ArgIdx]->Destroy(Context);
6271    return true;
6272  }
6273
6274  if (Best->Function == 0) {
6275    // Since there is no function declaration, this is one of the
6276    // surrogate candidates. Dig out the conversion function.
6277    CXXConversionDecl *Conv
6278      = cast<CXXConversionDecl>(
6279                         Best->Conversions[0].UserDefined.ConversionFunction);
6280
6281    CheckMemberOperatorAccess(LParenLoc, Object, 0, Conv, Best->getAccess());
6282
6283    // We selected one of the surrogate functions that converts the
6284    // object parameter to a function pointer. Perform the conversion
6285    // on the object argument, then let ActOnCallExpr finish the job.
6286
6287    // Create an implicit member expr to refer to the conversion operator.
6288    // and then call it.
6289    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6290
6291    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6292                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6293                         CommaLocs, RParenLoc).release();
6294  }
6295
6296  CheckMemberOperatorAccess(LParenLoc, Object, 0,
6297                            Best->Function, Best->getAccess());
6298
6299  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6300  // that calls this method, using Object for the implicit object
6301  // parameter and passing along the remaining arguments.
6302  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6303  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6304
6305  unsigned NumArgsInProto = Proto->getNumArgs();
6306  unsigned NumArgsToCheck = NumArgs;
6307
6308  // Build the full argument list for the method call (the
6309  // implicit object parameter is placed at the beginning of the
6310  // list).
6311  Expr **MethodArgs;
6312  if (NumArgs < NumArgsInProto) {
6313    NumArgsToCheck = NumArgsInProto;
6314    MethodArgs = new Expr*[NumArgsInProto + 1];
6315  } else {
6316    MethodArgs = new Expr*[NumArgs + 1];
6317  }
6318  MethodArgs[0] = Object;
6319  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6320    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6321
6322  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6323                                          SourceLocation());
6324  UsualUnaryConversions(NewFn);
6325
6326  // Once we've built TheCall, all of the expressions are properly
6327  // owned.
6328  QualType ResultTy = Method->getResultType().getNonReferenceType();
6329  ExprOwningPtr<CXXOperatorCallExpr>
6330    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6331                                                    MethodArgs, NumArgs + 1,
6332                                                    ResultTy, RParenLoc));
6333  delete [] MethodArgs;
6334
6335  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6336                          Method))
6337    return true;
6338
6339  // We may have default arguments. If so, we need to allocate more
6340  // slots in the call for them.
6341  if (NumArgs < NumArgsInProto)
6342    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6343  else if (NumArgs > NumArgsInProto)
6344    NumArgsToCheck = NumArgsInProto;
6345
6346  bool IsError = false;
6347
6348  // Initialize the implicit object parameter.
6349  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6350                                                 Method);
6351  TheCall->setArg(0, Object);
6352
6353
6354  // Check the argument types.
6355  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6356    Expr *Arg;
6357    if (i < NumArgs) {
6358      Arg = Args[i];
6359
6360      // Pass the argument.
6361
6362      OwningExprResult InputInit
6363        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6364                                                    Method->getParamDecl(i)),
6365                                    SourceLocation(), Owned(Arg));
6366
6367      IsError |= InputInit.isInvalid();
6368      Arg = InputInit.takeAs<Expr>();
6369    } else {
6370      OwningExprResult DefArg
6371        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6372      if (DefArg.isInvalid()) {
6373        IsError = true;
6374        break;
6375      }
6376
6377      Arg = DefArg.takeAs<Expr>();
6378    }
6379
6380    TheCall->setArg(i + 1, Arg);
6381  }
6382
6383  // If this is a variadic call, handle args passed through "...".
6384  if (Proto->isVariadic()) {
6385    // Promote the arguments (C99 6.5.2.2p7).
6386    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6387      Expr *Arg = Args[i];
6388      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6389      TheCall->setArg(i + 1, Arg);
6390    }
6391  }
6392
6393  if (IsError) return true;
6394
6395  if (CheckFunctionCall(Method, TheCall.get()))
6396    return true;
6397
6398  return MaybeBindToTemporary(TheCall.release()).release();
6399}
6400
6401/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6402///  (if one exists), where @c Base is an expression of class type and
6403/// @c Member is the name of the member we're trying to find.
6404Sema::OwningExprResult
6405Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6406  Expr *Base = static_cast<Expr *>(BaseIn.get());
6407  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6408
6409  SourceLocation Loc = Base->getExprLoc();
6410
6411  // C++ [over.ref]p1:
6412  //
6413  //   [...] An expression x->m is interpreted as (x.operator->())->m
6414  //   for a class object x of type T if T::operator->() exists and if
6415  //   the operator is selected as the best match function by the
6416  //   overload resolution mechanism (13.3).
6417  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6418  OverloadCandidateSet CandidateSet(Loc);
6419  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6420
6421  if (RequireCompleteType(Loc, Base->getType(),
6422                          PDiag(diag::err_typecheck_incomplete_tag)
6423                            << Base->getSourceRange()))
6424    return ExprError();
6425
6426  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6427  LookupQualifiedName(R, BaseRecord->getDecl());
6428  R.suppressDiagnostics();
6429
6430  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6431       Oper != OperEnd; ++Oper) {
6432    NamedDecl *D = *Oper;
6433    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6434    if (isa<UsingShadowDecl>(D))
6435      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6436
6437    AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
6438                       Base->getType(), 0, 0, CandidateSet,
6439                       /*SuppressUserConversions=*/false);
6440  }
6441
6442  // Perform overload resolution.
6443  OverloadCandidateSet::iterator Best;
6444  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6445  case OR_Success:
6446    // Overload resolution succeeded; we'll build the call below.
6447    break;
6448
6449  case OR_No_Viable_Function:
6450    if (CandidateSet.empty())
6451      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6452        << Base->getType() << Base->getSourceRange();
6453    else
6454      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6455        << "operator->" << Base->getSourceRange();
6456    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6457    return ExprError();
6458
6459  case OR_Ambiguous:
6460    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6461      << "->" << Base->getSourceRange();
6462    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6463    return ExprError();
6464
6465  case OR_Deleted:
6466    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6467      << Best->Function->isDeleted()
6468      << "->" << Base->getSourceRange();
6469    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6470    return ExprError();
6471  }
6472
6473  // Convert the object parameter.
6474  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6475  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, Method))
6476    return ExprError();
6477
6478  // No concerns about early exits now.
6479  BaseIn.release();
6480
6481  // Build the operator call.
6482  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6483                                           SourceLocation());
6484  UsualUnaryConversions(FnExpr);
6485
6486  QualType ResultTy = Method->getResultType().getNonReferenceType();
6487  ExprOwningPtr<CXXOperatorCallExpr>
6488    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6489                                                    &Base, 1, ResultTy, OpLoc));
6490
6491  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6492                          Method))
6493          return ExprError();
6494  return move(TheCall);
6495}
6496
6497/// FixOverloadedFunctionReference - E is an expression that refers to
6498/// a C++ overloaded function (possibly with some parentheses and
6499/// perhaps a '&' around it). We have resolved the overloaded function
6500/// to the function declaration Fn, so patch up the expression E to
6501/// refer (possibly indirectly) to Fn. Returns the new expr.
6502Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6503  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6504    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6505    if (SubExpr == PE->getSubExpr())
6506      return PE->Retain();
6507
6508    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6509  }
6510
6511  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6512    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6513    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6514                               SubExpr->getType()) &&
6515           "Implicit cast type cannot be determined from overload");
6516    if (SubExpr == ICE->getSubExpr())
6517      return ICE->Retain();
6518
6519    return new (Context) ImplicitCastExpr(ICE->getType(),
6520                                          ICE->getCastKind(),
6521                                          SubExpr,
6522                                          ICE->isLvalueCast());
6523  }
6524
6525  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6526    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6527           "Can only take the address of an overloaded function");
6528    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6529      if (Method->isStatic()) {
6530        // Do nothing: static member functions aren't any different
6531        // from non-member functions.
6532      } else {
6533        // Fix the sub expression, which really has to be an
6534        // UnresolvedLookupExpr holding an overloaded member function
6535        // or template.
6536        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6537        if (SubExpr == UnOp->getSubExpr())
6538          return UnOp->Retain();
6539
6540        assert(isa<DeclRefExpr>(SubExpr)
6541               && "fixed to something other than a decl ref");
6542        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6543               && "fixed to a member ref with no nested name qualifier");
6544
6545        // We have taken the address of a pointer to member
6546        // function. Perform the computation here so that we get the
6547        // appropriate pointer to member type.
6548        QualType ClassType
6549          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6550        QualType MemPtrType
6551          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6552
6553        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6554                                           MemPtrType, UnOp->getOperatorLoc());
6555      }
6556    }
6557    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6558    if (SubExpr == UnOp->getSubExpr())
6559      return UnOp->Retain();
6560
6561    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6562                                     Context.getPointerType(SubExpr->getType()),
6563                                       UnOp->getOperatorLoc());
6564  }
6565
6566  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6567    // FIXME: avoid copy.
6568    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6569    if (ULE->hasExplicitTemplateArgs()) {
6570      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6571      TemplateArgs = &TemplateArgsBuffer;
6572    }
6573
6574    return DeclRefExpr::Create(Context,
6575                               ULE->getQualifier(),
6576                               ULE->getQualifierRange(),
6577                               Fn,
6578                               ULE->getNameLoc(),
6579                               Fn->getType(),
6580                               TemplateArgs);
6581  }
6582
6583  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6584    // FIXME: avoid copy.
6585    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6586    if (MemExpr->hasExplicitTemplateArgs()) {
6587      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6588      TemplateArgs = &TemplateArgsBuffer;
6589    }
6590
6591    Expr *Base;
6592
6593    // If we're filling in
6594    if (MemExpr->isImplicitAccess()) {
6595      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6596        return DeclRefExpr::Create(Context,
6597                                   MemExpr->getQualifier(),
6598                                   MemExpr->getQualifierRange(),
6599                                   Fn,
6600                                   MemExpr->getMemberLoc(),
6601                                   Fn->getType(),
6602                                   TemplateArgs);
6603      } else {
6604        SourceLocation Loc = MemExpr->getMemberLoc();
6605        if (MemExpr->getQualifier())
6606          Loc = MemExpr->getQualifierRange().getBegin();
6607        Base = new (Context) CXXThisExpr(Loc,
6608                                         MemExpr->getBaseType(),
6609                                         /*isImplicit=*/true);
6610      }
6611    } else
6612      Base = MemExpr->getBase()->Retain();
6613
6614    return MemberExpr::Create(Context, Base,
6615                              MemExpr->isArrow(),
6616                              MemExpr->getQualifier(),
6617                              MemExpr->getQualifierRange(),
6618                              Fn,
6619                              MemExpr->getMemberLoc(),
6620                              TemplateArgs,
6621                              Fn->getType());
6622  }
6623
6624  assert(false && "Invalid reference to overloaded function");
6625  return E->Retain();
6626}
6627
6628Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6629                                                            FunctionDecl *Fn) {
6630  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6631}
6632
6633} // end namespace clang
6634