SemaOverload.cpp revision 717e8910bb6444f744db78d8d1a020f8f57a83e1
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType()->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType();
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  OverloadCandidateSet Conversions;
451  OverloadingResult UserDefResult = OR_Success;
452  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
453    ICS.setStandard();
454  else if (getLangOptions().CPlusPlus &&
455           (UserDefResult = IsUserDefinedConversion(From, ToType,
456                                   ICS.UserDefined,
457                                   Conversions,
458                                   !SuppressUserConversions, AllowExplicit,
459				   ForceRValue, UserCast)) == OR_Success) {
460    ICS.setUserDefined();
461    // C++ [over.ics.user]p4:
462    //   A conversion of an expression of class type to the same class
463    //   type is given Exact Match rank, and a conversion of an
464    //   expression of class type to a base class of that type is
465    //   given Conversion rank, in spite of the fact that a copy
466    //   constructor (i.e., a user-defined conversion function) is
467    //   called for those cases.
468    if (CXXConstructorDecl *Constructor
469          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
470      QualType FromCanon
471        = Context.getCanonicalType(From->getType().getUnqualifiedType());
472      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
473      if (Constructor->isCopyConstructor() &&
474          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
475        // Turn this into a "standard" conversion sequence, so that it
476        // gets ranked with standard conversion sequences.
477        ICS.setStandard();
478        ICS.Standard.setAsIdentityConversion();
479        ICS.Standard.setFromType(From->getType());
480        ICS.Standard.setToType(ToType);
481        ICS.Standard.CopyConstructor = Constructor;
482        if (ToCanon != FromCanon)
483          ICS.Standard.Second = ICK_Derived_To_Base;
484      }
485    }
486
487    // C++ [over.best.ics]p4:
488    //   However, when considering the argument of a user-defined
489    //   conversion function that is a candidate by 13.3.1.3 when
490    //   invoked for the copying of the temporary in the second step
491    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
492    //   13.3.1.6 in all cases, only standard conversion sequences and
493    //   ellipsis conversion sequences are allowed.
494    if (SuppressUserConversions && ICS.isUserDefined()) {
495      ICS.setBad();
496      ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType);
497    }
498  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
499    ICS.setAmbiguous();
500    ICS.Ambiguous.setFromType(From->getType());
501    ICS.Ambiguous.setToType(ToType);
502    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
503         Cand != Conversions.end(); ++Cand)
504      if (Cand->Viable)
505        ICS.Ambiguous.addConversion(Cand->Function);
506  } else {
507    ICS.setBad();
508    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
509  }
510
511  return ICS;
512}
513
514/// \brief Determine whether the conversion from FromType to ToType is a valid
515/// conversion that strips "noreturn" off the nested function type.
516static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
517                                 QualType ToType, QualType &ResultTy) {
518  if (Context.hasSameUnqualifiedType(FromType, ToType))
519    return false;
520
521  // Strip the noreturn off the type we're converting from; noreturn can
522  // safely be removed.
523  FromType = Context.getNoReturnType(FromType, false);
524  if (!Context.hasSameUnqualifiedType(FromType, ToType))
525    return false;
526
527  ResultTy = FromType;
528  return true;
529}
530
531/// IsStandardConversion - Determines whether there is a standard
532/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
533/// expression From to the type ToType. Standard conversion sequences
534/// only consider non-class types; for conversions that involve class
535/// types, use TryImplicitConversion. If a conversion exists, SCS will
536/// contain the standard conversion sequence required to perform this
537/// conversion and this routine will return true. Otherwise, this
538/// routine will return false and the value of SCS is unspecified.
539bool
540Sema::IsStandardConversion(Expr* From, QualType ToType,
541                           bool InOverloadResolution,
542                           StandardConversionSequence &SCS) {
543  QualType FromType = From->getType();
544
545  // Standard conversions (C++ [conv])
546  SCS.setAsIdentityConversion();
547  SCS.Deprecated = false;
548  SCS.IncompatibleObjC = false;
549  SCS.setFromType(FromType);
550  SCS.CopyConstructor = 0;
551
552  // There are no standard conversions for class types in C++, so
553  // abort early. When overloading in C, however, we do permit
554  if (FromType->isRecordType() || ToType->isRecordType()) {
555    if (getLangOptions().CPlusPlus)
556      return false;
557
558    // When we're overloading in C, we allow, as standard conversions,
559  }
560
561  // The first conversion can be an lvalue-to-rvalue conversion,
562  // array-to-pointer conversion, or function-to-pointer conversion
563  // (C++ 4p1).
564
565  // Lvalue-to-rvalue conversion (C++ 4.1):
566  //   An lvalue (3.10) of a non-function, non-array type T can be
567  //   converted to an rvalue.
568  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
569  if (argIsLvalue == Expr::LV_Valid &&
570      !FromType->isFunctionType() && !FromType->isArrayType() &&
571      Context.getCanonicalType(FromType) != Context.OverloadTy) {
572    SCS.First = ICK_Lvalue_To_Rvalue;
573
574    // If T is a non-class type, the type of the rvalue is the
575    // cv-unqualified version of T. Otherwise, the type of the rvalue
576    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
577    // just strip the qualifiers because they don't matter.
578    FromType = FromType.getUnqualifiedType();
579  } else if (FromType->isArrayType()) {
580    // Array-to-pointer conversion (C++ 4.2)
581    SCS.First = ICK_Array_To_Pointer;
582
583    // An lvalue or rvalue of type "array of N T" or "array of unknown
584    // bound of T" can be converted to an rvalue of type "pointer to
585    // T" (C++ 4.2p1).
586    FromType = Context.getArrayDecayedType(FromType);
587
588    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
589      // This conversion is deprecated. (C++ D.4).
590      SCS.Deprecated = true;
591
592      // For the purpose of ranking in overload resolution
593      // (13.3.3.1.1), this conversion is considered an
594      // array-to-pointer conversion followed by a qualification
595      // conversion (4.4). (C++ 4.2p2)
596      SCS.Second = ICK_Identity;
597      SCS.Third = ICK_Qualification;
598      SCS.setToType(ToType);
599      return true;
600    }
601  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
602    // Function-to-pointer conversion (C++ 4.3).
603    SCS.First = ICK_Function_To_Pointer;
604
605    // An lvalue of function type T can be converted to an rvalue of
606    // type "pointer to T." The result is a pointer to the
607    // function. (C++ 4.3p1).
608    FromType = Context.getPointerType(FromType);
609  } else if (FunctionDecl *Fn
610               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
611    // Address of overloaded function (C++ [over.over]).
612    SCS.First = ICK_Function_To_Pointer;
613
614    // We were able to resolve the address of the overloaded function,
615    // so we can convert to the type of that function.
616    FromType = Fn->getType();
617    if (ToType->isLValueReferenceType())
618      FromType = Context.getLValueReferenceType(FromType);
619    else if (ToType->isRValueReferenceType())
620      FromType = Context.getRValueReferenceType(FromType);
621    else if (ToType->isMemberPointerType()) {
622      // Resolve address only succeeds if both sides are member pointers,
623      // but it doesn't have to be the same class. See DR 247.
624      // Note that this means that the type of &Derived::fn can be
625      // Ret (Base::*)(Args) if the fn overload actually found is from the
626      // base class, even if it was brought into the derived class via a
627      // using declaration. The standard isn't clear on this issue at all.
628      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
629      FromType = Context.getMemberPointerType(FromType,
630                    Context.getTypeDeclType(M->getParent()).getTypePtr());
631    } else
632      FromType = Context.getPointerType(FromType);
633  } else {
634    // We don't require any conversions for the first step.
635    SCS.First = ICK_Identity;
636  }
637
638  // The second conversion can be an integral promotion, floating
639  // point promotion, integral conversion, floating point conversion,
640  // floating-integral conversion, pointer conversion,
641  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
642  // For overloading in C, this can also be a "compatible-type"
643  // conversion.
644  bool IncompatibleObjC = false;
645  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
646    // The unqualified versions of the types are the same: there's no
647    // conversion to do.
648    SCS.Second = ICK_Identity;
649  } else if (IsIntegralPromotion(From, FromType, ToType)) {
650    // Integral promotion (C++ 4.5).
651    SCS.Second = ICK_Integral_Promotion;
652    FromType = ToType.getUnqualifiedType();
653  } else if (IsFloatingPointPromotion(FromType, ToType)) {
654    // Floating point promotion (C++ 4.6).
655    SCS.Second = ICK_Floating_Promotion;
656    FromType = ToType.getUnqualifiedType();
657  } else if (IsComplexPromotion(FromType, ToType)) {
658    // Complex promotion (Clang extension)
659    SCS.Second = ICK_Complex_Promotion;
660    FromType = ToType.getUnqualifiedType();
661  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
662           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
663    // Integral conversions (C++ 4.7).
664    SCS.Second = ICK_Integral_Conversion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
667    // Floating point conversions (C++ 4.8).
668    SCS.Second = ICK_Floating_Conversion;
669    FromType = ToType.getUnqualifiedType();
670  } else if (FromType->isComplexType() && ToType->isComplexType()) {
671    // Complex conversions (C99 6.3.1.6)
672    SCS.Second = ICK_Complex_Conversion;
673    FromType = ToType.getUnqualifiedType();
674  } else if ((FromType->isFloatingType() &&
675              ToType->isIntegralType() && (!ToType->isBooleanType() &&
676                                           !ToType->isEnumeralType())) ||
677             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
678              ToType->isFloatingType())) {
679    // Floating-integral conversions (C++ 4.9).
680    SCS.Second = ICK_Floating_Integral;
681    FromType = ToType.getUnqualifiedType();
682  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
683             (ToType->isComplexType() && FromType->isArithmeticType())) {
684    // Complex-real conversions (C99 6.3.1.7)
685    SCS.Second = ICK_Complex_Real;
686    FromType = ToType.getUnqualifiedType();
687  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
688                                 FromType, IncompatibleObjC)) {
689    // Pointer conversions (C++ 4.10).
690    SCS.Second = ICK_Pointer_Conversion;
691    SCS.IncompatibleObjC = IncompatibleObjC;
692  } else if (IsMemberPointerConversion(From, FromType, ToType,
693                                       InOverloadResolution, FromType)) {
694    // Pointer to member conversions (4.11).
695    SCS.Second = ICK_Pointer_Member;
696  } else if (ToType->isBooleanType() &&
697             (FromType->isArithmeticType() ||
698              FromType->isEnumeralType() ||
699              FromType->isAnyPointerType() ||
700              FromType->isBlockPointerType() ||
701              FromType->isMemberPointerType() ||
702              FromType->isNullPtrType())) {
703    // Boolean conversions (C++ 4.12).
704    SCS.Second = ICK_Boolean_Conversion;
705    FromType = Context.BoolTy;
706  } else if (!getLangOptions().CPlusPlus &&
707             Context.typesAreCompatible(ToType, FromType)) {
708    // Compatible conversions (Clang extension for C function overloading)
709    SCS.Second = ICK_Compatible_Conversion;
710  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
711    // Treat a conversion that strips "noreturn" as an identity conversion.
712    SCS.Second = ICK_NoReturn_Adjustment;
713  } else {
714    // No second conversion required.
715    SCS.Second = ICK_Identity;
716  }
717
718  QualType CanonFrom;
719  QualType CanonTo;
720  // The third conversion can be a qualification conversion (C++ 4p1).
721  if (IsQualificationConversion(FromType, ToType)) {
722    SCS.Third = ICK_Qualification;
723    FromType = ToType;
724    CanonFrom = Context.getCanonicalType(FromType);
725    CanonTo = Context.getCanonicalType(ToType);
726  } else {
727    // No conversion required
728    SCS.Third = ICK_Identity;
729
730    // C++ [over.best.ics]p6:
731    //   [...] Any difference in top-level cv-qualification is
732    //   subsumed by the initialization itself and does not constitute
733    //   a conversion. [...]
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736    if (CanonFrom.getLocalUnqualifiedType()
737                                       == CanonTo.getLocalUnqualifiedType() &&
738        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
739      FromType = ToType;
740      CanonFrom = CanonTo;
741    }
742  }
743
744  // If we have not converted the argument type to the parameter type,
745  // this is a bad conversion sequence.
746  if (CanonFrom != CanonTo)
747    return false;
748
749  SCS.setToType(FromType);
750  return true;
751}
752
753/// IsIntegralPromotion - Determines whether the conversion from the
754/// expression From (whose potentially-adjusted type is FromType) to
755/// ToType is an integral promotion (C++ 4.5). If so, returns true and
756/// sets PromotedType to the promoted type.
757bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
758  const BuiltinType *To = ToType->getAs<BuiltinType>();
759  // All integers are built-in.
760  if (!To) {
761    return false;
762  }
763
764  // An rvalue of type char, signed char, unsigned char, short int, or
765  // unsigned short int can be converted to an rvalue of type int if
766  // int can represent all the values of the source type; otherwise,
767  // the source rvalue can be converted to an rvalue of type unsigned
768  // int (C++ 4.5p1).
769  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
770    if (// We can promote any signed, promotable integer type to an int
771        (FromType->isSignedIntegerType() ||
772         // We can promote any unsigned integer type whose size is
773         // less than int to an int.
774         (!FromType->isSignedIntegerType() &&
775          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
776      return To->getKind() == BuiltinType::Int;
777    }
778
779    return To->getKind() == BuiltinType::UInt;
780  }
781
782  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
783  // can be converted to an rvalue of the first of the following types
784  // that can represent all the values of its underlying type: int,
785  // unsigned int, long, or unsigned long (C++ 4.5p2).
786
787  // We pre-calculate the promotion type for enum types.
788  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
789    if (ToType->isIntegerType())
790      return Context.hasSameUnqualifiedType(ToType,
791                                FromEnumType->getDecl()->getPromotionType());
792
793  if (FromType->isWideCharType() && ToType->isIntegerType()) {
794    // Determine whether the type we're converting from is signed or
795    // unsigned.
796    bool FromIsSigned;
797    uint64_t FromSize = Context.getTypeSize(FromType);
798
799    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
800    FromIsSigned = true;
801
802    // The types we'll try to promote to, in the appropriate
803    // order. Try each of these types.
804    QualType PromoteTypes[6] = {
805      Context.IntTy, Context.UnsignedIntTy,
806      Context.LongTy, Context.UnsignedLongTy ,
807      Context.LongLongTy, Context.UnsignedLongLongTy
808    };
809    for (int Idx = 0; Idx < 6; ++Idx) {
810      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
811      if (FromSize < ToSize ||
812          (FromSize == ToSize &&
813           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
814        // We found the type that we can promote to. If this is the
815        // type we wanted, we have a promotion. Otherwise, no
816        // promotion.
817        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
818      }
819    }
820  }
821
822  // An rvalue for an integral bit-field (9.6) can be converted to an
823  // rvalue of type int if int can represent all the values of the
824  // bit-field; otherwise, it can be converted to unsigned int if
825  // unsigned int can represent all the values of the bit-field. If
826  // the bit-field is larger yet, no integral promotion applies to
827  // it. If the bit-field has an enumerated type, it is treated as any
828  // other value of that type for promotion purposes (C++ 4.5p3).
829  // FIXME: We should delay checking of bit-fields until we actually perform the
830  // conversion.
831  using llvm::APSInt;
832  if (From)
833    if (FieldDecl *MemberDecl = From->getBitField()) {
834      APSInt BitWidth;
835      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
836          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
837        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
838        ToSize = Context.getTypeSize(ToType);
839
840        // Are we promoting to an int from a bitfield that fits in an int?
841        if (BitWidth < ToSize ||
842            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
843          return To->getKind() == BuiltinType::Int;
844        }
845
846        // Are we promoting to an unsigned int from an unsigned bitfield
847        // that fits into an unsigned int?
848        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
849          return To->getKind() == BuiltinType::UInt;
850        }
851
852        return false;
853      }
854    }
855
856  // An rvalue of type bool can be converted to an rvalue of type int,
857  // with false becoming zero and true becoming one (C++ 4.5p4).
858  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
859    return true;
860  }
861
862  return false;
863}
864
865/// IsFloatingPointPromotion - Determines whether the conversion from
866/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
867/// returns true and sets PromotedType to the promoted type.
868bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
869  /// An rvalue of type float can be converted to an rvalue of type
870  /// double. (C++ 4.6p1).
871  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
872    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
873      if (FromBuiltin->getKind() == BuiltinType::Float &&
874          ToBuiltin->getKind() == BuiltinType::Double)
875        return true;
876
877      // C99 6.3.1.5p1:
878      //   When a float is promoted to double or long double, or a
879      //   double is promoted to long double [...].
880      if (!getLangOptions().CPlusPlus &&
881          (FromBuiltin->getKind() == BuiltinType::Float ||
882           FromBuiltin->getKind() == BuiltinType::Double) &&
883          (ToBuiltin->getKind() == BuiltinType::LongDouble))
884        return true;
885    }
886
887  return false;
888}
889
890/// \brief Determine if a conversion is a complex promotion.
891///
892/// A complex promotion is defined as a complex -> complex conversion
893/// where the conversion between the underlying real types is a
894/// floating-point or integral promotion.
895bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
896  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
897  if (!FromComplex)
898    return false;
899
900  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
901  if (!ToComplex)
902    return false;
903
904  return IsFloatingPointPromotion(FromComplex->getElementType(),
905                                  ToComplex->getElementType()) ||
906    IsIntegralPromotion(0, FromComplex->getElementType(),
907                        ToComplex->getElementType());
908}
909
910/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
911/// the pointer type FromPtr to a pointer to type ToPointee, with the
912/// same type qualifiers as FromPtr has on its pointee type. ToType,
913/// if non-empty, will be a pointer to ToType that may or may not have
914/// the right set of qualifiers on its pointee.
915static QualType
916BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
917                                   QualType ToPointee, QualType ToType,
918                                   ASTContext &Context) {
919  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
920  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
921  Qualifiers Quals = CanonFromPointee.getQualifiers();
922
923  // Exact qualifier match -> return the pointer type we're converting to.
924  if (CanonToPointee.getLocalQualifiers() == Quals) {
925    // ToType is exactly what we need. Return it.
926    if (!ToType.isNull())
927      return ToType;
928
929    // Build a pointer to ToPointee. It has the right qualifiers
930    // already.
931    return Context.getPointerType(ToPointee);
932  }
933
934  // Just build a canonical type that has the right qualifiers.
935  return Context.getPointerType(
936         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
937                                  Quals));
938}
939
940/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
941/// the FromType, which is an objective-c pointer, to ToType, which may or may
942/// not have the right set of qualifiers.
943static QualType
944BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
945                                             QualType ToType,
946                                             ASTContext &Context) {
947  QualType CanonFromType = Context.getCanonicalType(FromType);
948  QualType CanonToType = Context.getCanonicalType(ToType);
949  Qualifiers Quals = CanonFromType.getQualifiers();
950
951  // Exact qualifier match -> return the pointer type we're converting to.
952  if (CanonToType.getLocalQualifiers() == Quals)
953    return ToType;
954
955  // Just build a canonical type that has the right qualifiers.
956  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
957}
958
959static bool isNullPointerConstantForConversion(Expr *Expr,
960                                               bool InOverloadResolution,
961                                               ASTContext &Context) {
962  // Handle value-dependent integral null pointer constants correctly.
963  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
964  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
965      Expr->getType()->isIntegralType())
966    return !InOverloadResolution;
967
968  return Expr->isNullPointerConstant(Context,
969                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
970                                        : Expr::NPC_ValueDependentIsNull);
971}
972
973/// IsPointerConversion - Determines whether the conversion of the
974/// expression From, which has the (possibly adjusted) type FromType,
975/// can be converted to the type ToType via a pointer conversion (C++
976/// 4.10). If so, returns true and places the converted type (that
977/// might differ from ToType in its cv-qualifiers at some level) into
978/// ConvertedType.
979///
980/// This routine also supports conversions to and from block pointers
981/// and conversions with Objective-C's 'id', 'id<protocols...>', and
982/// pointers to interfaces. FIXME: Once we've determined the
983/// appropriate overloading rules for Objective-C, we may want to
984/// split the Objective-C checks into a different routine; however,
985/// GCC seems to consider all of these conversions to be pointer
986/// conversions, so for now they live here. IncompatibleObjC will be
987/// set if the conversion is an allowed Objective-C conversion that
988/// should result in a warning.
989bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
990                               bool InOverloadResolution,
991                               QualType& ConvertedType,
992                               bool &IncompatibleObjC) {
993  IncompatibleObjC = false;
994  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
995    return true;
996
997  // Conversion from a null pointer constant to any Objective-C pointer type.
998  if (ToType->isObjCObjectPointerType() &&
999      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1000    ConvertedType = ToType;
1001    return true;
1002  }
1003
1004  // Blocks: Block pointers can be converted to void*.
1005  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1006      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1007    ConvertedType = ToType;
1008    return true;
1009  }
1010  // Blocks: A null pointer constant can be converted to a block
1011  // pointer type.
1012  if (ToType->isBlockPointerType() &&
1013      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1014    ConvertedType = ToType;
1015    return true;
1016  }
1017
1018  // If the left-hand-side is nullptr_t, the right side can be a null
1019  // pointer constant.
1020  if (ToType->isNullPtrType() &&
1021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1022    ConvertedType = ToType;
1023    return true;
1024  }
1025
1026  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1027  if (!ToTypePtr)
1028    return false;
1029
1030  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1031  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1032    ConvertedType = ToType;
1033    return true;
1034  }
1035
1036  // Beyond this point, both types need to be pointers
1037  // , including objective-c pointers.
1038  QualType ToPointeeType = ToTypePtr->getPointeeType();
1039  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1040    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1041                                                       ToType, Context);
1042    return true;
1043
1044  }
1045  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1046  if (!FromTypePtr)
1047    return false;
1048
1049  QualType FromPointeeType = FromTypePtr->getPointeeType();
1050
1051  // An rvalue of type "pointer to cv T," where T is an object type,
1052  // can be converted to an rvalue of type "pointer to cv void" (C++
1053  // 4.10p2).
1054  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1055    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1056                                                       ToPointeeType,
1057                                                       ToType, Context);
1058    return true;
1059  }
1060
1061  // When we're overloading in C, we allow a special kind of pointer
1062  // conversion for compatible-but-not-identical pointee types.
1063  if (!getLangOptions().CPlusPlus &&
1064      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1065    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1066                                                       ToPointeeType,
1067                                                       ToType, Context);
1068    return true;
1069  }
1070
1071  // C++ [conv.ptr]p3:
1072  //
1073  //   An rvalue of type "pointer to cv D," where D is a class type,
1074  //   can be converted to an rvalue of type "pointer to cv B," where
1075  //   B is a base class (clause 10) of D. If B is an inaccessible
1076  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1077  //   necessitates this conversion is ill-formed. The result of the
1078  //   conversion is a pointer to the base class sub-object of the
1079  //   derived class object. The null pointer value is converted to
1080  //   the null pointer value of the destination type.
1081  //
1082  // Note that we do not check for ambiguity or inaccessibility
1083  // here. That is handled by CheckPointerConversion.
1084  if (getLangOptions().CPlusPlus &&
1085      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1086      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1087      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1088    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1089                                                       ToPointeeType,
1090                                                       ToType, Context);
1091    return true;
1092  }
1093
1094  return false;
1095}
1096
1097/// isObjCPointerConversion - Determines whether this is an
1098/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1099/// with the same arguments and return values.
1100bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1101                                   QualType& ConvertedType,
1102                                   bool &IncompatibleObjC) {
1103  if (!getLangOptions().ObjC1)
1104    return false;
1105
1106  // First, we handle all conversions on ObjC object pointer types.
1107  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1108  const ObjCObjectPointerType *FromObjCPtr =
1109    FromType->getAs<ObjCObjectPointerType>();
1110
1111  if (ToObjCPtr && FromObjCPtr) {
1112    // Objective C++: We're able to convert between "id" or "Class" and a
1113    // pointer to any interface (in both directions).
1114    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1115      ConvertedType = ToType;
1116      return true;
1117    }
1118    // Conversions with Objective-C's id<...>.
1119    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1120         ToObjCPtr->isObjCQualifiedIdType()) &&
1121        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1122                                                  /*compare=*/false)) {
1123      ConvertedType = ToType;
1124      return true;
1125    }
1126    // Objective C++: We're able to convert from a pointer to an
1127    // interface to a pointer to a different interface.
1128    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1129      ConvertedType = ToType;
1130      return true;
1131    }
1132
1133    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1134      // Okay: this is some kind of implicit downcast of Objective-C
1135      // interfaces, which is permitted. However, we're going to
1136      // complain about it.
1137      IncompatibleObjC = true;
1138      ConvertedType = FromType;
1139      return true;
1140    }
1141  }
1142  // Beyond this point, both types need to be C pointers or block pointers.
1143  QualType ToPointeeType;
1144  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1145    ToPointeeType = ToCPtr->getPointeeType();
1146  else if (const BlockPointerType *ToBlockPtr =
1147            ToType->getAs<BlockPointerType>()) {
1148    // Objective C++: We're able to convert from a pointer to any object
1149    // to a block pointer type.
1150    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1151      ConvertedType = ToType;
1152      return true;
1153    }
1154    ToPointeeType = ToBlockPtr->getPointeeType();
1155  }
1156  else if (FromType->getAs<BlockPointerType>() &&
1157           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1158    // Objective C++: We're able to convert from a block pointer type to a
1159    // pointer to any object.
1160    ConvertedType = ToType;
1161    return true;
1162  }
1163  else
1164    return false;
1165
1166  QualType FromPointeeType;
1167  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1168    FromPointeeType = FromCPtr->getPointeeType();
1169  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1170    FromPointeeType = FromBlockPtr->getPointeeType();
1171  else
1172    return false;
1173
1174  // If we have pointers to pointers, recursively check whether this
1175  // is an Objective-C conversion.
1176  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1177      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1178                              IncompatibleObjC)) {
1179    // We always complain about this conversion.
1180    IncompatibleObjC = true;
1181    ConvertedType = ToType;
1182    return true;
1183  }
1184  // Allow conversion of pointee being objective-c pointer to another one;
1185  // as in I* to id.
1186  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1187      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1188      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1189                              IncompatibleObjC)) {
1190    ConvertedType = ToType;
1191    return true;
1192  }
1193
1194  // If we have pointers to functions or blocks, check whether the only
1195  // differences in the argument and result types are in Objective-C
1196  // pointer conversions. If so, we permit the conversion (but
1197  // complain about it).
1198  const FunctionProtoType *FromFunctionType
1199    = FromPointeeType->getAs<FunctionProtoType>();
1200  const FunctionProtoType *ToFunctionType
1201    = ToPointeeType->getAs<FunctionProtoType>();
1202  if (FromFunctionType && ToFunctionType) {
1203    // If the function types are exactly the same, this isn't an
1204    // Objective-C pointer conversion.
1205    if (Context.getCanonicalType(FromPointeeType)
1206          == Context.getCanonicalType(ToPointeeType))
1207      return false;
1208
1209    // Perform the quick checks that will tell us whether these
1210    // function types are obviously different.
1211    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1212        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1213        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1214      return false;
1215
1216    bool HasObjCConversion = false;
1217    if (Context.getCanonicalType(FromFunctionType->getResultType())
1218          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1219      // Okay, the types match exactly. Nothing to do.
1220    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1221                                       ToFunctionType->getResultType(),
1222                                       ConvertedType, IncompatibleObjC)) {
1223      // Okay, we have an Objective-C pointer conversion.
1224      HasObjCConversion = true;
1225    } else {
1226      // Function types are too different. Abort.
1227      return false;
1228    }
1229
1230    // Check argument types.
1231    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1232         ArgIdx != NumArgs; ++ArgIdx) {
1233      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1234      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1235      if (Context.getCanonicalType(FromArgType)
1236            == Context.getCanonicalType(ToArgType)) {
1237        // Okay, the types match exactly. Nothing to do.
1238      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1239                                         ConvertedType, IncompatibleObjC)) {
1240        // Okay, we have an Objective-C pointer conversion.
1241        HasObjCConversion = true;
1242      } else {
1243        // Argument types are too different. Abort.
1244        return false;
1245      }
1246    }
1247
1248    if (HasObjCConversion) {
1249      // We had an Objective-C conversion. Allow this pointer
1250      // conversion, but complain about it.
1251      ConvertedType = ToType;
1252      IncompatibleObjC = true;
1253      return true;
1254    }
1255  }
1256
1257  return false;
1258}
1259
1260/// CheckPointerConversion - Check the pointer conversion from the
1261/// expression From to the type ToType. This routine checks for
1262/// ambiguous or inaccessible derived-to-base pointer
1263/// conversions for which IsPointerConversion has already returned
1264/// true. It returns true and produces a diagnostic if there was an
1265/// error, or returns false otherwise.
1266bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1267                                  CastExpr::CastKind &Kind,
1268                                  bool IgnoreBaseAccess) {
1269  QualType FromType = From->getType();
1270
1271  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1272    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1273      QualType FromPointeeType = FromPtrType->getPointeeType(),
1274               ToPointeeType   = ToPtrType->getPointeeType();
1275
1276      if (FromPointeeType->isRecordType() &&
1277          ToPointeeType->isRecordType()) {
1278        // We must have a derived-to-base conversion. Check an
1279        // ambiguous or inaccessible conversion.
1280        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1281                                         From->getExprLoc(),
1282                                         From->getSourceRange(),
1283                                         IgnoreBaseAccess))
1284          return true;
1285
1286        // The conversion was successful.
1287        Kind = CastExpr::CK_DerivedToBase;
1288      }
1289    }
1290  if (const ObjCObjectPointerType *FromPtrType =
1291        FromType->getAs<ObjCObjectPointerType>())
1292    if (const ObjCObjectPointerType *ToPtrType =
1293          ToType->getAs<ObjCObjectPointerType>()) {
1294      // Objective-C++ conversions are always okay.
1295      // FIXME: We should have a different class of conversions for the
1296      // Objective-C++ implicit conversions.
1297      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1298        return false;
1299
1300  }
1301  return false;
1302}
1303
1304/// IsMemberPointerConversion - Determines whether the conversion of the
1305/// expression From, which has the (possibly adjusted) type FromType, can be
1306/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1307/// If so, returns true and places the converted type (that might differ from
1308/// ToType in its cv-qualifiers at some level) into ConvertedType.
1309bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1310                                     QualType ToType,
1311                                     bool InOverloadResolution,
1312                                     QualType &ConvertedType) {
1313  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1314  if (!ToTypePtr)
1315    return false;
1316
1317  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1318  if (From->isNullPointerConstant(Context,
1319                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1320                                        : Expr::NPC_ValueDependentIsNull)) {
1321    ConvertedType = ToType;
1322    return true;
1323  }
1324
1325  // Otherwise, both types have to be member pointers.
1326  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1327  if (!FromTypePtr)
1328    return false;
1329
1330  // A pointer to member of B can be converted to a pointer to member of D,
1331  // where D is derived from B (C++ 4.11p2).
1332  QualType FromClass(FromTypePtr->getClass(), 0);
1333  QualType ToClass(ToTypePtr->getClass(), 0);
1334  // FIXME: What happens when these are dependent? Is this function even called?
1335
1336  if (IsDerivedFrom(ToClass, FromClass)) {
1337    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1338                                                 ToClass.getTypePtr());
1339    return true;
1340  }
1341
1342  return false;
1343}
1344
1345/// CheckMemberPointerConversion - Check the member pointer conversion from the
1346/// expression From to the type ToType. This routine checks for ambiguous or
1347/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1348/// for which IsMemberPointerConversion has already returned true. It returns
1349/// true and produces a diagnostic if there was an error, or returns false
1350/// otherwise.
1351bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1352                                        CastExpr::CastKind &Kind,
1353                                        bool IgnoreBaseAccess) {
1354  (void)IgnoreBaseAccess;
1355  QualType FromType = From->getType();
1356  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1357  if (!FromPtrType) {
1358    // This must be a null pointer to member pointer conversion
1359    assert(From->isNullPointerConstant(Context,
1360                                       Expr::NPC_ValueDependentIsNull) &&
1361           "Expr must be null pointer constant!");
1362    Kind = CastExpr::CK_NullToMemberPointer;
1363    return false;
1364  }
1365
1366  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1367  assert(ToPtrType && "No member pointer cast has a target type "
1368                      "that is not a member pointer.");
1369
1370  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1371  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1372
1373  // FIXME: What about dependent types?
1374  assert(FromClass->isRecordType() && "Pointer into non-class.");
1375  assert(ToClass->isRecordType() && "Pointer into non-class.");
1376
1377  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1378                     /*DetectVirtual=*/true);
1379  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1380  assert(DerivationOkay &&
1381         "Should not have been called if derivation isn't OK.");
1382  (void)DerivationOkay;
1383
1384  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1385                                  getUnqualifiedType())) {
1386    // Derivation is ambiguous. Redo the check to find the exact paths.
1387    Paths.clear();
1388    Paths.setRecordingPaths(true);
1389    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1390    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1391    (void)StillOkay;
1392
1393    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1394    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1395      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1396    return true;
1397  }
1398
1399  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1400    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1401      << FromClass << ToClass << QualType(VBase, 0)
1402      << From->getSourceRange();
1403    return true;
1404  }
1405
1406  // Must be a base to derived member conversion.
1407  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1408  return false;
1409}
1410
1411/// IsQualificationConversion - Determines whether the conversion from
1412/// an rvalue of type FromType to ToType is a qualification conversion
1413/// (C++ 4.4).
1414bool
1415Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1416  FromType = Context.getCanonicalType(FromType);
1417  ToType = Context.getCanonicalType(ToType);
1418
1419  // If FromType and ToType are the same type, this is not a
1420  // qualification conversion.
1421  if (FromType == ToType)
1422    return false;
1423
1424  // (C++ 4.4p4):
1425  //   A conversion can add cv-qualifiers at levels other than the first
1426  //   in multi-level pointers, subject to the following rules: [...]
1427  bool PreviousToQualsIncludeConst = true;
1428  bool UnwrappedAnyPointer = false;
1429  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1430    // Within each iteration of the loop, we check the qualifiers to
1431    // determine if this still looks like a qualification
1432    // conversion. Then, if all is well, we unwrap one more level of
1433    // pointers or pointers-to-members and do it all again
1434    // until there are no more pointers or pointers-to-members left to
1435    // unwrap.
1436    UnwrappedAnyPointer = true;
1437
1438    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1439    //      2,j, and similarly for volatile.
1440    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1441      return false;
1442
1443    //   -- if the cv 1,j and cv 2,j are different, then const is in
1444    //      every cv for 0 < k < j.
1445    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1446        && !PreviousToQualsIncludeConst)
1447      return false;
1448
1449    // Keep track of whether all prior cv-qualifiers in the "to" type
1450    // include const.
1451    PreviousToQualsIncludeConst
1452      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1453  }
1454
1455  // We are left with FromType and ToType being the pointee types
1456  // after unwrapping the original FromType and ToType the same number
1457  // of types. If we unwrapped any pointers, and if FromType and
1458  // ToType have the same unqualified type (since we checked
1459  // qualifiers above), then this is a qualification conversion.
1460  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1461}
1462
1463/// Determines whether there is a user-defined conversion sequence
1464/// (C++ [over.ics.user]) that converts expression From to the type
1465/// ToType. If such a conversion exists, User will contain the
1466/// user-defined conversion sequence that performs such a conversion
1467/// and this routine will return true. Otherwise, this routine returns
1468/// false and User is unspecified.
1469///
1470/// \param AllowConversionFunctions true if the conversion should
1471/// consider conversion functions at all. If false, only constructors
1472/// will be considered.
1473///
1474/// \param AllowExplicit  true if the conversion should consider C++0x
1475/// "explicit" conversion functions as well as non-explicit conversion
1476/// functions (C++0x [class.conv.fct]p2).
1477///
1478/// \param ForceRValue  true if the expression should be treated as an rvalue
1479/// for overload resolution.
1480/// \param UserCast true if looking for user defined conversion for a static
1481/// cast.
1482OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1483                                          UserDefinedConversionSequence& User,
1484                                            OverloadCandidateSet& CandidateSet,
1485                                                bool AllowConversionFunctions,
1486                                                bool AllowExplicit,
1487                                                bool ForceRValue,
1488                                                bool UserCast) {
1489  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1490    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1491      // We're not going to find any constructors.
1492    } else if (CXXRecordDecl *ToRecordDecl
1493                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1494      // C++ [over.match.ctor]p1:
1495      //   When objects of class type are direct-initialized (8.5), or
1496      //   copy-initialized from an expression of the same or a
1497      //   derived class type (8.5), overload resolution selects the
1498      //   constructor. [...] For copy-initialization, the candidate
1499      //   functions are all the converting constructors (12.3.1) of
1500      //   that class. The argument list is the expression-list within
1501      //   the parentheses of the initializer.
1502      bool SuppressUserConversions = !UserCast;
1503      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1504          IsDerivedFrom(From->getType(), ToType)) {
1505        SuppressUserConversions = false;
1506        AllowConversionFunctions = false;
1507      }
1508
1509      DeclarationName ConstructorName
1510        = Context.DeclarationNames.getCXXConstructorName(
1511                          Context.getCanonicalType(ToType).getUnqualifiedType());
1512      DeclContext::lookup_iterator Con, ConEnd;
1513      for (llvm::tie(Con, ConEnd)
1514             = ToRecordDecl->lookup(ConstructorName);
1515           Con != ConEnd; ++Con) {
1516        // Find the constructor (which may be a template).
1517        CXXConstructorDecl *Constructor = 0;
1518        FunctionTemplateDecl *ConstructorTmpl
1519          = dyn_cast<FunctionTemplateDecl>(*Con);
1520        if (ConstructorTmpl)
1521          Constructor
1522            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1523        else
1524          Constructor = cast<CXXConstructorDecl>(*Con);
1525
1526        if (!Constructor->isInvalidDecl() &&
1527            Constructor->isConvertingConstructor(AllowExplicit)) {
1528          if (ConstructorTmpl)
1529            AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
1530                                         &From, 1, CandidateSet,
1531                                         SuppressUserConversions, ForceRValue);
1532          else
1533            // Allow one user-defined conversion when user specifies a
1534            // From->ToType conversion via an static cast (c-style, etc).
1535            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1536                                 SuppressUserConversions, ForceRValue);
1537        }
1538      }
1539    }
1540  }
1541
1542  if (!AllowConversionFunctions) {
1543    // Don't allow any conversion functions to enter the overload set.
1544  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1545                                 PDiag(0)
1546                                   << From->getSourceRange())) {
1547    // No conversion functions from incomplete types.
1548  } else if (const RecordType *FromRecordType
1549               = From->getType()->getAs<RecordType>()) {
1550    if (CXXRecordDecl *FromRecordDecl
1551         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1552      // Add all of the conversion functions as candidates.
1553      const UnresolvedSetImpl *Conversions
1554        = FromRecordDecl->getVisibleConversionFunctions();
1555      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1556             E = Conversions->end(); I != E; ++I) {
1557        NamedDecl *D = *I;
1558        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1559        if (isa<UsingShadowDecl>(D))
1560          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1561
1562        CXXConversionDecl *Conv;
1563        FunctionTemplateDecl *ConvTemplate;
1564        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1565          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1566        else
1567          Conv = dyn_cast<CXXConversionDecl>(*I);
1568
1569        if (AllowExplicit || !Conv->isExplicit()) {
1570          if (ConvTemplate)
1571            AddTemplateConversionCandidate(ConvTemplate, ActingContext,
1572                                           From, ToType, CandidateSet);
1573          else
1574            AddConversionCandidate(Conv, ActingContext, From, ToType,
1575                                   CandidateSet);
1576        }
1577      }
1578    }
1579  }
1580
1581  OverloadCandidateSet::iterator Best;
1582  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1583    case OR_Success:
1584      // Record the standard conversion we used and the conversion function.
1585      if (CXXConstructorDecl *Constructor
1586            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1587        // C++ [over.ics.user]p1:
1588        //   If the user-defined conversion is specified by a
1589        //   constructor (12.3.1), the initial standard conversion
1590        //   sequence converts the source type to the type required by
1591        //   the argument of the constructor.
1592        //
1593        QualType ThisType = Constructor->getThisType(Context);
1594        if (Best->Conversions[0].isEllipsis())
1595          User.EllipsisConversion = true;
1596        else {
1597          User.Before = Best->Conversions[0].Standard;
1598          User.EllipsisConversion = false;
1599        }
1600        User.ConversionFunction = Constructor;
1601        User.After.setAsIdentityConversion();
1602        User.After.setFromType(
1603          ThisType->getAs<PointerType>()->getPointeeType());
1604        User.After.setToType(ToType);
1605        return OR_Success;
1606      } else if (CXXConversionDecl *Conversion
1607                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1608        // C++ [over.ics.user]p1:
1609        //
1610        //   [...] If the user-defined conversion is specified by a
1611        //   conversion function (12.3.2), the initial standard
1612        //   conversion sequence converts the source type to the
1613        //   implicit object parameter of the conversion function.
1614        User.Before = Best->Conversions[0].Standard;
1615        User.ConversionFunction = Conversion;
1616        User.EllipsisConversion = false;
1617
1618        // C++ [over.ics.user]p2:
1619        //   The second standard conversion sequence converts the
1620        //   result of the user-defined conversion to the target type
1621        //   for the sequence. Since an implicit conversion sequence
1622        //   is an initialization, the special rules for
1623        //   initialization by user-defined conversion apply when
1624        //   selecting the best user-defined conversion for a
1625        //   user-defined conversion sequence (see 13.3.3 and
1626        //   13.3.3.1).
1627        User.After = Best->FinalConversion;
1628        return OR_Success;
1629      } else {
1630        assert(false && "Not a constructor or conversion function?");
1631        return OR_No_Viable_Function;
1632      }
1633
1634    case OR_No_Viable_Function:
1635      return OR_No_Viable_Function;
1636    case OR_Deleted:
1637      // No conversion here! We're done.
1638      return OR_Deleted;
1639
1640    case OR_Ambiguous:
1641      return OR_Ambiguous;
1642    }
1643
1644  return OR_No_Viable_Function;
1645}
1646
1647bool
1648Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1649  ImplicitConversionSequence ICS;
1650  OverloadCandidateSet CandidateSet;
1651  OverloadingResult OvResult =
1652    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1653                            CandidateSet, true, false, false);
1654  if (OvResult == OR_Ambiguous)
1655    Diag(From->getSourceRange().getBegin(),
1656         diag::err_typecheck_ambiguous_condition)
1657          << From->getType() << ToType << From->getSourceRange();
1658  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1659    Diag(From->getSourceRange().getBegin(),
1660         diag::err_typecheck_nonviable_condition)
1661    << From->getType() << ToType << From->getSourceRange();
1662  else
1663    return false;
1664  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1665  return true;
1666}
1667
1668/// CompareImplicitConversionSequences - Compare two implicit
1669/// conversion sequences to determine whether one is better than the
1670/// other or if they are indistinguishable (C++ 13.3.3.2).
1671ImplicitConversionSequence::CompareKind
1672Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1673                                         const ImplicitConversionSequence& ICS2)
1674{
1675  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1676  // conversion sequences (as defined in 13.3.3.1)
1677  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1678  //      conversion sequence than a user-defined conversion sequence or
1679  //      an ellipsis conversion sequence, and
1680  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1681  //      conversion sequence than an ellipsis conversion sequence
1682  //      (13.3.3.1.3).
1683  //
1684  // C++0x [over.best.ics]p10:
1685  //   For the purpose of ranking implicit conversion sequences as
1686  //   described in 13.3.3.2, the ambiguous conversion sequence is
1687  //   treated as a user-defined sequence that is indistinguishable
1688  //   from any other user-defined conversion sequence.
1689  if (ICS1.getKind() < ICS2.getKind()) {
1690    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1691      return ImplicitConversionSequence::Better;
1692  } else if (ICS2.getKind() < ICS1.getKind()) {
1693    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1694      return ImplicitConversionSequence::Worse;
1695  }
1696
1697  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1698    return ImplicitConversionSequence::Indistinguishable;
1699
1700  // Two implicit conversion sequences of the same form are
1701  // indistinguishable conversion sequences unless one of the
1702  // following rules apply: (C++ 13.3.3.2p3):
1703  if (ICS1.isStandard())
1704    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1705  else if (ICS1.isUserDefined()) {
1706    // User-defined conversion sequence U1 is a better conversion
1707    // sequence than another user-defined conversion sequence U2 if
1708    // they contain the same user-defined conversion function or
1709    // constructor and if the second standard conversion sequence of
1710    // U1 is better than the second standard conversion sequence of
1711    // U2 (C++ 13.3.3.2p3).
1712    if (ICS1.UserDefined.ConversionFunction ==
1713          ICS2.UserDefined.ConversionFunction)
1714      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1715                                                ICS2.UserDefined.After);
1716  }
1717
1718  return ImplicitConversionSequence::Indistinguishable;
1719}
1720
1721/// CompareStandardConversionSequences - Compare two standard
1722/// conversion sequences to determine whether one is better than the
1723/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1724ImplicitConversionSequence::CompareKind
1725Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1726                                         const StandardConversionSequence& SCS2)
1727{
1728  // Standard conversion sequence S1 is a better conversion sequence
1729  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1730
1731  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1732  //     sequences in the canonical form defined by 13.3.3.1.1,
1733  //     excluding any Lvalue Transformation; the identity conversion
1734  //     sequence is considered to be a subsequence of any
1735  //     non-identity conversion sequence) or, if not that,
1736  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1737    // Neither is a proper subsequence of the other. Do nothing.
1738    ;
1739  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1740           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1741           (SCS1.Second == ICK_Identity &&
1742            SCS1.Third == ICK_Identity))
1743    // SCS1 is a proper subsequence of SCS2.
1744    return ImplicitConversionSequence::Better;
1745  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1746           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1747           (SCS2.Second == ICK_Identity &&
1748            SCS2.Third == ICK_Identity))
1749    // SCS2 is a proper subsequence of SCS1.
1750    return ImplicitConversionSequence::Worse;
1751
1752  //  -- the rank of S1 is better than the rank of S2 (by the rules
1753  //     defined below), or, if not that,
1754  ImplicitConversionRank Rank1 = SCS1.getRank();
1755  ImplicitConversionRank Rank2 = SCS2.getRank();
1756  if (Rank1 < Rank2)
1757    return ImplicitConversionSequence::Better;
1758  else if (Rank2 < Rank1)
1759    return ImplicitConversionSequence::Worse;
1760
1761  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1762  // are indistinguishable unless one of the following rules
1763  // applies:
1764
1765  //   A conversion that is not a conversion of a pointer, or
1766  //   pointer to member, to bool is better than another conversion
1767  //   that is such a conversion.
1768  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1769    return SCS2.isPointerConversionToBool()
1770             ? ImplicitConversionSequence::Better
1771             : ImplicitConversionSequence::Worse;
1772
1773  // C++ [over.ics.rank]p4b2:
1774  //
1775  //   If class B is derived directly or indirectly from class A,
1776  //   conversion of B* to A* is better than conversion of B* to
1777  //   void*, and conversion of A* to void* is better than conversion
1778  //   of B* to void*.
1779  bool SCS1ConvertsToVoid
1780    = SCS1.isPointerConversionToVoidPointer(Context);
1781  bool SCS2ConvertsToVoid
1782    = SCS2.isPointerConversionToVoidPointer(Context);
1783  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1784    // Exactly one of the conversion sequences is a conversion to
1785    // a void pointer; it's the worse conversion.
1786    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1787                              : ImplicitConversionSequence::Worse;
1788  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1789    // Neither conversion sequence converts to a void pointer; compare
1790    // their derived-to-base conversions.
1791    if (ImplicitConversionSequence::CompareKind DerivedCK
1792          = CompareDerivedToBaseConversions(SCS1, SCS2))
1793      return DerivedCK;
1794  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1795    // Both conversion sequences are conversions to void
1796    // pointers. Compare the source types to determine if there's an
1797    // inheritance relationship in their sources.
1798    QualType FromType1 = SCS1.getFromType();
1799    QualType FromType2 = SCS2.getFromType();
1800
1801    // Adjust the types we're converting from via the array-to-pointer
1802    // conversion, if we need to.
1803    if (SCS1.First == ICK_Array_To_Pointer)
1804      FromType1 = Context.getArrayDecayedType(FromType1);
1805    if (SCS2.First == ICK_Array_To_Pointer)
1806      FromType2 = Context.getArrayDecayedType(FromType2);
1807
1808    QualType FromPointee1
1809      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1810    QualType FromPointee2
1811      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1812
1813    if (IsDerivedFrom(FromPointee2, FromPointee1))
1814      return ImplicitConversionSequence::Better;
1815    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1816      return ImplicitConversionSequence::Worse;
1817
1818    // Objective-C++: If one interface is more specific than the
1819    // other, it is the better one.
1820    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1821    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1822    if (FromIface1 && FromIface1) {
1823      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1824        return ImplicitConversionSequence::Better;
1825      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1826        return ImplicitConversionSequence::Worse;
1827    }
1828  }
1829
1830  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1831  // bullet 3).
1832  if (ImplicitConversionSequence::CompareKind QualCK
1833        = CompareQualificationConversions(SCS1, SCS2))
1834    return QualCK;
1835
1836  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1837    // C++0x [over.ics.rank]p3b4:
1838    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1839    //      implicit object parameter of a non-static member function declared
1840    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1841    //      rvalue and S2 binds an lvalue reference.
1842    // FIXME: We don't know if we're dealing with the implicit object parameter,
1843    // or if the member function in this case has a ref qualifier.
1844    // (Of course, we don't have ref qualifiers yet.)
1845    if (SCS1.RRefBinding != SCS2.RRefBinding)
1846      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1847                              : ImplicitConversionSequence::Worse;
1848
1849    // C++ [over.ics.rank]p3b4:
1850    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1851    //      which the references refer are the same type except for
1852    //      top-level cv-qualifiers, and the type to which the reference
1853    //      initialized by S2 refers is more cv-qualified than the type
1854    //      to which the reference initialized by S1 refers.
1855    QualType T1 = SCS1.getToType();
1856    QualType T2 = SCS2.getToType();
1857    T1 = Context.getCanonicalType(T1);
1858    T2 = Context.getCanonicalType(T2);
1859    Qualifiers T1Quals, T2Quals;
1860    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1861    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1862    if (UnqualT1 == UnqualT2) {
1863      // If the type is an array type, promote the element qualifiers to the type
1864      // for comparison.
1865      if (isa<ArrayType>(T1) && T1Quals)
1866        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1867      if (isa<ArrayType>(T2) && T2Quals)
1868        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1869      if (T2.isMoreQualifiedThan(T1))
1870        return ImplicitConversionSequence::Better;
1871      else if (T1.isMoreQualifiedThan(T2))
1872        return ImplicitConversionSequence::Worse;
1873    }
1874  }
1875
1876  return ImplicitConversionSequence::Indistinguishable;
1877}
1878
1879/// CompareQualificationConversions - Compares two standard conversion
1880/// sequences to determine whether they can be ranked based on their
1881/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1882ImplicitConversionSequence::CompareKind
1883Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1884                                      const StandardConversionSequence& SCS2) {
1885  // C++ 13.3.3.2p3:
1886  //  -- S1 and S2 differ only in their qualification conversion and
1887  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1888  //     cv-qualification signature of type T1 is a proper subset of
1889  //     the cv-qualification signature of type T2, and S1 is not the
1890  //     deprecated string literal array-to-pointer conversion (4.2).
1891  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1892      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1893    return ImplicitConversionSequence::Indistinguishable;
1894
1895  // FIXME: the example in the standard doesn't use a qualification
1896  // conversion (!)
1897  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1898  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1899  T1 = Context.getCanonicalType(T1);
1900  T2 = Context.getCanonicalType(T2);
1901  Qualifiers T1Quals, T2Quals;
1902  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1903  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1904
1905  // If the types are the same, we won't learn anything by unwrapped
1906  // them.
1907  if (UnqualT1 == UnqualT2)
1908    return ImplicitConversionSequence::Indistinguishable;
1909
1910  // If the type is an array type, promote the element qualifiers to the type
1911  // for comparison.
1912  if (isa<ArrayType>(T1) && T1Quals)
1913    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1914  if (isa<ArrayType>(T2) && T2Quals)
1915    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1916
1917  ImplicitConversionSequence::CompareKind Result
1918    = ImplicitConversionSequence::Indistinguishable;
1919  while (UnwrapSimilarPointerTypes(T1, T2)) {
1920    // Within each iteration of the loop, we check the qualifiers to
1921    // determine if this still looks like a qualification
1922    // conversion. Then, if all is well, we unwrap one more level of
1923    // pointers or pointers-to-members and do it all again
1924    // until there are no more pointers or pointers-to-members left
1925    // to unwrap. This essentially mimics what
1926    // IsQualificationConversion does, but here we're checking for a
1927    // strict subset of qualifiers.
1928    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1929      // The qualifiers are the same, so this doesn't tell us anything
1930      // about how the sequences rank.
1931      ;
1932    else if (T2.isMoreQualifiedThan(T1)) {
1933      // T1 has fewer qualifiers, so it could be the better sequence.
1934      if (Result == ImplicitConversionSequence::Worse)
1935        // Neither has qualifiers that are a subset of the other's
1936        // qualifiers.
1937        return ImplicitConversionSequence::Indistinguishable;
1938
1939      Result = ImplicitConversionSequence::Better;
1940    } else if (T1.isMoreQualifiedThan(T2)) {
1941      // T2 has fewer qualifiers, so it could be the better sequence.
1942      if (Result == ImplicitConversionSequence::Better)
1943        // Neither has qualifiers that are a subset of the other's
1944        // qualifiers.
1945        return ImplicitConversionSequence::Indistinguishable;
1946
1947      Result = ImplicitConversionSequence::Worse;
1948    } else {
1949      // Qualifiers are disjoint.
1950      return ImplicitConversionSequence::Indistinguishable;
1951    }
1952
1953    // If the types after this point are equivalent, we're done.
1954    if (Context.hasSameUnqualifiedType(T1, T2))
1955      break;
1956  }
1957
1958  // Check that the winning standard conversion sequence isn't using
1959  // the deprecated string literal array to pointer conversion.
1960  switch (Result) {
1961  case ImplicitConversionSequence::Better:
1962    if (SCS1.Deprecated)
1963      Result = ImplicitConversionSequence::Indistinguishable;
1964    break;
1965
1966  case ImplicitConversionSequence::Indistinguishable:
1967    break;
1968
1969  case ImplicitConversionSequence::Worse:
1970    if (SCS2.Deprecated)
1971      Result = ImplicitConversionSequence::Indistinguishable;
1972    break;
1973  }
1974
1975  return Result;
1976}
1977
1978/// CompareDerivedToBaseConversions - Compares two standard conversion
1979/// sequences to determine whether they can be ranked based on their
1980/// various kinds of derived-to-base conversions (C++
1981/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1982/// conversions between Objective-C interface types.
1983ImplicitConversionSequence::CompareKind
1984Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1985                                      const StandardConversionSequence& SCS2) {
1986  QualType FromType1 = SCS1.getFromType();
1987  QualType ToType1 = SCS1.getToType();
1988  QualType FromType2 = SCS2.getFromType();
1989  QualType ToType2 = SCS2.getToType();
1990
1991  // Adjust the types we're converting from via the array-to-pointer
1992  // conversion, if we need to.
1993  if (SCS1.First == ICK_Array_To_Pointer)
1994    FromType1 = Context.getArrayDecayedType(FromType1);
1995  if (SCS2.First == ICK_Array_To_Pointer)
1996    FromType2 = Context.getArrayDecayedType(FromType2);
1997
1998  // Canonicalize all of the types.
1999  FromType1 = Context.getCanonicalType(FromType1);
2000  ToType1 = Context.getCanonicalType(ToType1);
2001  FromType2 = Context.getCanonicalType(FromType2);
2002  ToType2 = Context.getCanonicalType(ToType2);
2003
2004  // C++ [over.ics.rank]p4b3:
2005  //
2006  //   If class B is derived directly or indirectly from class A and
2007  //   class C is derived directly or indirectly from B,
2008  //
2009  // For Objective-C, we let A, B, and C also be Objective-C
2010  // interfaces.
2011
2012  // Compare based on pointer conversions.
2013  if (SCS1.Second == ICK_Pointer_Conversion &&
2014      SCS2.Second == ICK_Pointer_Conversion &&
2015      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2016      FromType1->isPointerType() && FromType2->isPointerType() &&
2017      ToType1->isPointerType() && ToType2->isPointerType()) {
2018    QualType FromPointee1
2019      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2020    QualType ToPointee1
2021      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2022    QualType FromPointee2
2023      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2024    QualType ToPointee2
2025      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2026
2027    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2028    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2029    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2030    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2031
2032    //   -- conversion of C* to B* is better than conversion of C* to A*,
2033    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2034      if (IsDerivedFrom(ToPointee1, ToPointee2))
2035        return ImplicitConversionSequence::Better;
2036      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2037        return ImplicitConversionSequence::Worse;
2038
2039      if (ToIface1 && ToIface2) {
2040        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2041          return ImplicitConversionSequence::Better;
2042        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2043          return ImplicitConversionSequence::Worse;
2044      }
2045    }
2046
2047    //   -- conversion of B* to A* is better than conversion of C* to A*,
2048    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2049      if (IsDerivedFrom(FromPointee2, FromPointee1))
2050        return ImplicitConversionSequence::Better;
2051      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2052        return ImplicitConversionSequence::Worse;
2053
2054      if (FromIface1 && FromIface2) {
2055        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2056          return ImplicitConversionSequence::Better;
2057        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2058          return ImplicitConversionSequence::Worse;
2059      }
2060    }
2061  }
2062
2063  // Compare based on reference bindings.
2064  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
2065      SCS1.Second == ICK_Derived_To_Base) {
2066    //   -- binding of an expression of type C to a reference of type
2067    //      B& is better than binding an expression of type C to a
2068    //      reference of type A&,
2069    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2070        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2071      if (IsDerivedFrom(ToType1, ToType2))
2072        return ImplicitConversionSequence::Better;
2073      else if (IsDerivedFrom(ToType2, ToType1))
2074        return ImplicitConversionSequence::Worse;
2075    }
2076
2077    //   -- binding of an expression of type B to a reference of type
2078    //      A& is better than binding an expression of type C to a
2079    //      reference of type A&,
2080    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2081        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2082      if (IsDerivedFrom(FromType2, FromType1))
2083        return ImplicitConversionSequence::Better;
2084      else if (IsDerivedFrom(FromType1, FromType2))
2085        return ImplicitConversionSequence::Worse;
2086    }
2087  }
2088
2089  // Ranking of member-pointer types.
2090  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2091      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2092      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2093    const MemberPointerType * FromMemPointer1 =
2094                                        FromType1->getAs<MemberPointerType>();
2095    const MemberPointerType * ToMemPointer1 =
2096                                          ToType1->getAs<MemberPointerType>();
2097    const MemberPointerType * FromMemPointer2 =
2098                                          FromType2->getAs<MemberPointerType>();
2099    const MemberPointerType * ToMemPointer2 =
2100                                          ToType2->getAs<MemberPointerType>();
2101    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2102    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2103    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2104    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2105    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2106    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2107    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2108    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2109    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2110    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2111      if (IsDerivedFrom(ToPointee1, ToPointee2))
2112        return ImplicitConversionSequence::Worse;
2113      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2114        return ImplicitConversionSequence::Better;
2115    }
2116    // conversion of B::* to C::* is better than conversion of A::* to C::*
2117    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2118      if (IsDerivedFrom(FromPointee1, FromPointee2))
2119        return ImplicitConversionSequence::Better;
2120      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2121        return ImplicitConversionSequence::Worse;
2122    }
2123  }
2124
2125  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2126      SCS1.Second == ICK_Derived_To_Base) {
2127    //   -- conversion of C to B is better than conversion of C to A,
2128    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2129        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2130      if (IsDerivedFrom(ToType1, ToType2))
2131        return ImplicitConversionSequence::Better;
2132      else if (IsDerivedFrom(ToType2, ToType1))
2133        return ImplicitConversionSequence::Worse;
2134    }
2135
2136    //   -- conversion of B to A is better than conversion of C to A.
2137    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2138        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2139      if (IsDerivedFrom(FromType2, FromType1))
2140        return ImplicitConversionSequence::Better;
2141      else if (IsDerivedFrom(FromType1, FromType2))
2142        return ImplicitConversionSequence::Worse;
2143    }
2144  }
2145
2146  return ImplicitConversionSequence::Indistinguishable;
2147}
2148
2149/// TryCopyInitialization - Try to copy-initialize a value of type
2150/// ToType from the expression From. Return the implicit conversion
2151/// sequence required to pass this argument, which may be a bad
2152/// conversion sequence (meaning that the argument cannot be passed to
2153/// a parameter of this type). If @p SuppressUserConversions, then we
2154/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2155/// then we treat @p From as an rvalue, even if it is an lvalue.
2156ImplicitConversionSequence
2157Sema::TryCopyInitialization(Expr *From, QualType ToType,
2158                            bool SuppressUserConversions, bool ForceRValue,
2159                            bool InOverloadResolution) {
2160  if (ToType->isReferenceType()) {
2161    ImplicitConversionSequence ICS;
2162    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
2163    CheckReferenceInit(From, ToType,
2164                       /*FIXME:*/From->getLocStart(),
2165                       SuppressUserConversions,
2166                       /*AllowExplicit=*/false,
2167                       ForceRValue,
2168                       &ICS);
2169    return ICS;
2170  } else {
2171    return TryImplicitConversion(From, ToType,
2172                                 SuppressUserConversions,
2173                                 /*AllowExplicit=*/false,
2174                                 ForceRValue,
2175                                 InOverloadResolution);
2176  }
2177}
2178
2179/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2180/// the expression @p From. Returns true (and emits a diagnostic) if there was
2181/// an error, returns false if the initialization succeeded. Elidable should
2182/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2183/// differently in C++0x for this case.
2184bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2185                                     AssignmentAction Action, bool Elidable) {
2186  if (!getLangOptions().CPlusPlus) {
2187    // In C, argument passing is the same as performing an assignment.
2188    QualType FromType = From->getType();
2189
2190    AssignConvertType ConvTy =
2191      CheckSingleAssignmentConstraints(ToType, From);
2192    if (ConvTy != Compatible &&
2193        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2194      ConvTy = Compatible;
2195
2196    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2197                                    FromType, From, Action);
2198  }
2199
2200  if (ToType->isReferenceType())
2201    return CheckReferenceInit(From, ToType,
2202                              /*FIXME:*/From->getLocStart(),
2203                              /*SuppressUserConversions=*/false,
2204                              /*AllowExplicit=*/false,
2205                              /*ForceRValue=*/false);
2206
2207  if (!PerformImplicitConversion(From, ToType, Action,
2208                                 /*AllowExplicit=*/false, Elidable))
2209    return false;
2210  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2211    return Diag(From->getSourceRange().getBegin(),
2212                diag::err_typecheck_convert_incompatible)
2213      << ToType << From->getType() << Action << From->getSourceRange();
2214  return true;
2215}
2216
2217/// TryObjectArgumentInitialization - Try to initialize the object
2218/// parameter of the given member function (@c Method) from the
2219/// expression @p From.
2220ImplicitConversionSequence
2221Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2222                                      CXXMethodDecl *Method,
2223                                      CXXRecordDecl *ActingContext) {
2224  QualType ClassType = Context.getTypeDeclType(ActingContext);
2225  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2226  //                 const volatile object.
2227  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2228    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2229  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2230
2231  // Set up the conversion sequence as a "bad" conversion, to allow us
2232  // to exit early.
2233  ImplicitConversionSequence ICS;
2234  ICS.Standard.setAsIdentityConversion();
2235  ICS.setBad();
2236
2237  // We need to have an object of class type.
2238  QualType FromType = OrigFromType;
2239  if (const PointerType *PT = FromType->getAs<PointerType>())
2240    FromType = PT->getPointeeType();
2241
2242  assert(FromType->isRecordType());
2243
2244  // The implicit object parameter is has the type "reference to cv X",
2245  // where X is the class of which the function is a member
2246  // (C++ [over.match.funcs]p4). However, when finding an implicit
2247  // conversion sequence for the argument, we are not allowed to
2248  // create temporaries or perform user-defined conversions
2249  // (C++ [over.match.funcs]p5). We perform a simplified version of
2250  // reference binding here, that allows class rvalues to bind to
2251  // non-constant references.
2252
2253  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2254  // with the implicit object parameter (C++ [over.match.funcs]p5).
2255  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2256  if (ImplicitParamType.getCVRQualifiers()
2257                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2258      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2259    ICS.Bad.init(BadConversionSequence::bad_qualifiers,
2260                 OrigFromType, ImplicitParamType);
2261    return ICS;
2262  }
2263
2264  // Check that we have either the same type or a derived type. It
2265  // affects the conversion rank.
2266  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2267  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2268    ICS.Standard.Second = ICK_Identity;
2269  else if (IsDerivedFrom(FromType, ClassType))
2270    ICS.Standard.Second = ICK_Derived_To_Base;
2271  else {
2272    ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType);
2273    return ICS;
2274  }
2275
2276  // Success. Mark this as a reference binding.
2277  ICS.setStandard();
2278  ICS.Standard.setFromType(FromType);
2279  ICS.Standard.setToType(ImplicitParamType);
2280  ICS.Standard.ReferenceBinding = true;
2281  ICS.Standard.DirectBinding = true;
2282  ICS.Standard.RRefBinding = false;
2283  return ICS;
2284}
2285
2286/// PerformObjectArgumentInitialization - Perform initialization of
2287/// the implicit object parameter for the given Method with the given
2288/// expression.
2289bool
2290Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2291  QualType FromRecordType, DestType;
2292  QualType ImplicitParamRecordType  =
2293    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2294
2295  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2296    FromRecordType = PT->getPointeeType();
2297    DestType = Method->getThisType(Context);
2298  } else {
2299    FromRecordType = From->getType();
2300    DestType = ImplicitParamRecordType;
2301  }
2302
2303  // Note that we always use the true parent context when performing
2304  // the actual argument initialization.
2305  ImplicitConversionSequence ICS
2306    = TryObjectArgumentInitialization(From->getType(), Method,
2307                                      Method->getParent());
2308  if (ICS.isBad())
2309    return Diag(From->getSourceRange().getBegin(),
2310                diag::err_implicit_object_parameter_init)
2311       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2312
2313  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2314      CheckDerivedToBaseConversion(FromRecordType,
2315                                   ImplicitParamRecordType,
2316                                   From->getSourceRange().getBegin(),
2317                                   From->getSourceRange()))
2318    return true;
2319
2320  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2321                    /*isLvalue=*/true);
2322  return false;
2323}
2324
2325/// TryContextuallyConvertToBool - Attempt to contextually convert the
2326/// expression From to bool (C++0x [conv]p3).
2327ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2328  return TryImplicitConversion(From, Context.BoolTy,
2329                               // FIXME: Are these flags correct?
2330                               /*SuppressUserConversions=*/false,
2331                               /*AllowExplicit=*/true,
2332                               /*ForceRValue=*/false,
2333                               /*InOverloadResolution=*/false);
2334}
2335
2336/// PerformContextuallyConvertToBool - Perform a contextual conversion
2337/// of the expression From to bool (C++0x [conv]p3).
2338bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2339  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2340  if (!ICS.isBad())
2341    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2342
2343  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2344    return  Diag(From->getSourceRange().getBegin(),
2345                 diag::err_typecheck_bool_condition)
2346                  << From->getType() << From->getSourceRange();
2347  return true;
2348}
2349
2350/// AddOverloadCandidate - Adds the given function to the set of
2351/// candidate functions, using the given function call arguments.  If
2352/// @p SuppressUserConversions, then don't allow user-defined
2353/// conversions via constructors or conversion operators.
2354/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2355/// hacky way to implement the overloading rules for elidable copy
2356/// initialization in C++0x (C++0x 12.8p15).
2357///
2358/// \para PartialOverloading true if we are performing "partial" overloading
2359/// based on an incomplete set of function arguments. This feature is used by
2360/// code completion.
2361void
2362Sema::AddOverloadCandidate(FunctionDecl *Function,
2363                           Expr **Args, unsigned NumArgs,
2364                           OverloadCandidateSet& CandidateSet,
2365                           bool SuppressUserConversions,
2366                           bool ForceRValue,
2367                           bool PartialOverloading) {
2368  const FunctionProtoType* Proto
2369    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2370  assert(Proto && "Functions without a prototype cannot be overloaded");
2371  assert(!Function->getDescribedFunctionTemplate() &&
2372         "Use AddTemplateOverloadCandidate for function templates");
2373
2374  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2375    if (!isa<CXXConstructorDecl>(Method)) {
2376      // If we get here, it's because we're calling a member function
2377      // that is named without a member access expression (e.g.,
2378      // "this->f") that was either written explicitly or created
2379      // implicitly. This can happen with a qualified call to a member
2380      // function, e.g., X::f(). We use an empty type for the implied
2381      // object argument (C++ [over.call.func]p3), and the acting context
2382      // is irrelevant.
2383      AddMethodCandidate(Method, Method->getParent(),
2384                         QualType(), Args, NumArgs, CandidateSet,
2385                         SuppressUserConversions, ForceRValue);
2386      return;
2387    }
2388    // We treat a constructor like a non-member function, since its object
2389    // argument doesn't participate in overload resolution.
2390  }
2391
2392  if (!CandidateSet.isNewCandidate(Function))
2393    return;
2394
2395  // Overload resolution is always an unevaluated context.
2396  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2397
2398  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2399    // C++ [class.copy]p3:
2400    //   A member function template is never instantiated to perform the copy
2401    //   of a class object to an object of its class type.
2402    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2403    if (NumArgs == 1 &&
2404        Constructor->isCopyConstructorLikeSpecialization() &&
2405        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2406      return;
2407  }
2408
2409  // Add this candidate
2410  CandidateSet.push_back(OverloadCandidate());
2411  OverloadCandidate& Candidate = CandidateSet.back();
2412  Candidate.Function = Function;
2413  Candidate.Viable = true;
2414  Candidate.IsSurrogate = false;
2415  Candidate.IgnoreObjectArgument = false;
2416
2417  unsigned NumArgsInProto = Proto->getNumArgs();
2418
2419  // (C++ 13.3.2p2): A candidate function having fewer than m
2420  // parameters is viable only if it has an ellipsis in its parameter
2421  // list (8.3.5).
2422  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2423      !Proto->isVariadic()) {
2424    Candidate.Viable = false;
2425    Candidate.FailureKind = ovl_fail_too_many_arguments;
2426    return;
2427  }
2428
2429  // (C++ 13.3.2p2): A candidate function having more than m parameters
2430  // is viable only if the (m+1)st parameter has a default argument
2431  // (8.3.6). For the purposes of overload resolution, the
2432  // parameter list is truncated on the right, so that there are
2433  // exactly m parameters.
2434  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2435  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2436    // Not enough arguments.
2437    Candidate.Viable = false;
2438    Candidate.FailureKind = ovl_fail_too_few_arguments;
2439    return;
2440  }
2441
2442  // Determine the implicit conversion sequences for each of the
2443  // arguments.
2444  Candidate.Conversions.resize(NumArgs);
2445  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2446    if (ArgIdx < NumArgsInProto) {
2447      // (C++ 13.3.2p3): for F to be a viable function, there shall
2448      // exist for each argument an implicit conversion sequence
2449      // (13.3.3.1) that converts that argument to the corresponding
2450      // parameter of F.
2451      QualType ParamType = Proto->getArgType(ArgIdx);
2452      Candidate.Conversions[ArgIdx]
2453        = TryCopyInitialization(Args[ArgIdx], ParamType,
2454                                SuppressUserConversions, ForceRValue,
2455                                /*InOverloadResolution=*/true);
2456      if (Candidate.Conversions[ArgIdx].isBad()) {
2457        Candidate.Viable = false;
2458        Candidate.FailureKind = ovl_fail_bad_conversion;
2459        break;
2460      }
2461    } else {
2462      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2463      // argument for which there is no corresponding parameter is
2464      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2465      Candidate.Conversions[ArgIdx].setEllipsis();
2466    }
2467  }
2468}
2469
2470/// \brief Add all of the function declarations in the given function set to
2471/// the overload canddiate set.
2472void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2473                                 Expr **Args, unsigned NumArgs,
2474                                 OverloadCandidateSet& CandidateSet,
2475                                 bool SuppressUserConversions) {
2476  for (FunctionSet::const_iterator F = Functions.begin(),
2477                                FEnd = Functions.end();
2478       F != FEnd; ++F) {
2479    // FIXME: using declarations
2480    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2481      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2482        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2483                           cast<CXXMethodDecl>(FD)->getParent(),
2484                           Args[0]->getType(), Args + 1, NumArgs - 1,
2485                           CandidateSet, SuppressUserConversions);
2486      else
2487        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2488                             SuppressUserConversions);
2489    } else {
2490      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2491      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2492          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2493        AddMethodTemplateCandidate(FunTmpl,
2494                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2495                                   /*FIXME: explicit args */ 0,
2496                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2497                                   CandidateSet,
2498                                   SuppressUserConversions);
2499      else
2500        AddTemplateOverloadCandidate(FunTmpl,
2501                                     /*FIXME: explicit args */ 0,
2502                                     Args, NumArgs, CandidateSet,
2503                                     SuppressUserConversions);
2504    }
2505  }
2506}
2507
2508/// AddMethodCandidate - Adds a named decl (which is some kind of
2509/// method) as a method candidate to the given overload set.
2510void Sema::AddMethodCandidate(NamedDecl *Decl,
2511                              QualType ObjectType,
2512                              Expr **Args, unsigned NumArgs,
2513                              OverloadCandidateSet& CandidateSet,
2514                              bool SuppressUserConversions, bool ForceRValue) {
2515  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2516
2517  if (isa<UsingShadowDecl>(Decl))
2518    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2519
2520  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2521    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2522           "Expected a member function template");
2523    AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0,
2524                               ObjectType, Args, NumArgs,
2525                               CandidateSet,
2526                               SuppressUserConversions,
2527                               ForceRValue);
2528  } else {
2529    AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext,
2530                       ObjectType, Args, NumArgs,
2531                       CandidateSet, SuppressUserConversions, ForceRValue);
2532  }
2533}
2534
2535/// AddMethodCandidate - Adds the given C++ member function to the set
2536/// of candidate functions, using the given function call arguments
2537/// and the object argument (@c Object). For example, in a call
2538/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2539/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2540/// allow user-defined conversions via constructors or conversion
2541/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2542/// a slightly hacky way to implement the overloading rules for elidable copy
2543/// initialization in C++0x (C++0x 12.8p15).
2544void
2545Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext,
2546                         QualType ObjectType, Expr **Args, unsigned NumArgs,
2547                         OverloadCandidateSet& CandidateSet,
2548                         bool SuppressUserConversions, bool ForceRValue) {
2549  const FunctionProtoType* Proto
2550    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2551  assert(Proto && "Methods without a prototype cannot be overloaded");
2552  assert(!isa<CXXConstructorDecl>(Method) &&
2553         "Use AddOverloadCandidate for constructors");
2554
2555  if (!CandidateSet.isNewCandidate(Method))
2556    return;
2557
2558  // Overload resolution is always an unevaluated context.
2559  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2560
2561  // Add this candidate
2562  CandidateSet.push_back(OverloadCandidate());
2563  OverloadCandidate& Candidate = CandidateSet.back();
2564  Candidate.Function = Method;
2565  Candidate.IsSurrogate = false;
2566  Candidate.IgnoreObjectArgument = false;
2567
2568  unsigned NumArgsInProto = Proto->getNumArgs();
2569
2570  // (C++ 13.3.2p2): A candidate function having fewer than m
2571  // parameters is viable only if it has an ellipsis in its parameter
2572  // list (8.3.5).
2573  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2574    Candidate.Viable = false;
2575    Candidate.FailureKind = ovl_fail_too_many_arguments;
2576    return;
2577  }
2578
2579  // (C++ 13.3.2p2): A candidate function having more than m parameters
2580  // is viable only if the (m+1)st parameter has a default argument
2581  // (8.3.6). For the purposes of overload resolution, the
2582  // parameter list is truncated on the right, so that there are
2583  // exactly m parameters.
2584  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2585  if (NumArgs < MinRequiredArgs) {
2586    // Not enough arguments.
2587    Candidate.Viable = false;
2588    Candidate.FailureKind = ovl_fail_too_few_arguments;
2589    return;
2590  }
2591
2592  Candidate.Viable = true;
2593  Candidate.Conversions.resize(NumArgs + 1);
2594
2595  if (Method->isStatic() || ObjectType.isNull())
2596    // The implicit object argument is ignored.
2597    Candidate.IgnoreObjectArgument = true;
2598  else {
2599    // Determine the implicit conversion sequence for the object
2600    // parameter.
2601    Candidate.Conversions[0]
2602      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2603    if (Candidate.Conversions[0].isBad()) {
2604      Candidate.Viable = false;
2605      Candidate.FailureKind = ovl_fail_bad_conversion;
2606      return;
2607    }
2608  }
2609
2610  // Determine the implicit conversion sequences for each of the
2611  // arguments.
2612  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2613    if (ArgIdx < NumArgsInProto) {
2614      // (C++ 13.3.2p3): for F to be a viable function, there shall
2615      // exist for each argument an implicit conversion sequence
2616      // (13.3.3.1) that converts that argument to the corresponding
2617      // parameter of F.
2618      QualType ParamType = Proto->getArgType(ArgIdx);
2619      Candidate.Conversions[ArgIdx + 1]
2620        = TryCopyInitialization(Args[ArgIdx], ParamType,
2621                                SuppressUserConversions, ForceRValue,
2622                                /*InOverloadResolution=*/true);
2623      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2624        Candidate.Viable = false;
2625        Candidate.FailureKind = ovl_fail_bad_conversion;
2626        break;
2627      }
2628    } else {
2629      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2630      // argument for which there is no corresponding parameter is
2631      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2632      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2633    }
2634  }
2635}
2636
2637/// \brief Add a C++ member function template as a candidate to the candidate
2638/// set, using template argument deduction to produce an appropriate member
2639/// function template specialization.
2640void
2641Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2642                                 CXXRecordDecl *ActingContext,
2643                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2644                                 QualType ObjectType,
2645                                 Expr **Args, unsigned NumArgs,
2646                                 OverloadCandidateSet& CandidateSet,
2647                                 bool SuppressUserConversions,
2648                                 bool ForceRValue) {
2649  if (!CandidateSet.isNewCandidate(MethodTmpl))
2650    return;
2651
2652  // C++ [over.match.funcs]p7:
2653  //   In each case where a candidate is a function template, candidate
2654  //   function template specializations are generated using template argument
2655  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2656  //   candidate functions in the usual way.113) A given name can refer to one
2657  //   or more function templates and also to a set of overloaded non-template
2658  //   functions. In such a case, the candidate functions generated from each
2659  //   function template are combined with the set of non-template candidate
2660  //   functions.
2661  TemplateDeductionInfo Info(Context);
2662  FunctionDecl *Specialization = 0;
2663  if (TemplateDeductionResult Result
2664      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2665                                Args, NumArgs, Specialization, Info)) {
2666        // FIXME: Record what happened with template argument deduction, so
2667        // that we can give the user a beautiful diagnostic.
2668        (void)Result;
2669        return;
2670      }
2671
2672  // Add the function template specialization produced by template argument
2673  // deduction as a candidate.
2674  assert(Specialization && "Missing member function template specialization?");
2675  assert(isa<CXXMethodDecl>(Specialization) &&
2676         "Specialization is not a member function?");
2677  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext,
2678                     ObjectType, Args, NumArgs,
2679                     CandidateSet, SuppressUserConversions, ForceRValue);
2680}
2681
2682/// \brief Add a C++ function template specialization as a candidate
2683/// in the candidate set, using template argument deduction to produce
2684/// an appropriate function template specialization.
2685void
2686Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2687                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2688                                   Expr **Args, unsigned NumArgs,
2689                                   OverloadCandidateSet& CandidateSet,
2690                                   bool SuppressUserConversions,
2691                                   bool ForceRValue) {
2692  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2693    return;
2694
2695  // C++ [over.match.funcs]p7:
2696  //   In each case where a candidate is a function template, candidate
2697  //   function template specializations are generated using template argument
2698  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2699  //   candidate functions in the usual way.113) A given name can refer to one
2700  //   or more function templates and also to a set of overloaded non-template
2701  //   functions. In such a case, the candidate functions generated from each
2702  //   function template are combined with the set of non-template candidate
2703  //   functions.
2704  TemplateDeductionInfo Info(Context);
2705  FunctionDecl *Specialization = 0;
2706  if (TemplateDeductionResult Result
2707        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2708                                  Args, NumArgs, Specialization, Info)) {
2709    // FIXME: Record what happened with template argument deduction, so
2710    // that we can give the user a beautiful diagnostic.
2711    (void) Result;
2712
2713    CandidateSet.push_back(OverloadCandidate());
2714    OverloadCandidate &Candidate = CandidateSet.back();
2715    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2716    Candidate.Viable = false;
2717    Candidate.FailureKind = ovl_fail_bad_deduction;
2718    Candidate.IsSurrogate = false;
2719    Candidate.IgnoreObjectArgument = false;
2720    return;
2721  }
2722
2723  // Add the function template specialization produced by template argument
2724  // deduction as a candidate.
2725  assert(Specialization && "Missing function template specialization?");
2726  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2727                       SuppressUserConversions, ForceRValue);
2728}
2729
2730/// AddConversionCandidate - Add a C++ conversion function as a
2731/// candidate in the candidate set (C++ [over.match.conv],
2732/// C++ [over.match.copy]). From is the expression we're converting from,
2733/// and ToType is the type that we're eventually trying to convert to
2734/// (which may or may not be the same type as the type that the
2735/// conversion function produces).
2736void
2737Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2738                             CXXRecordDecl *ActingContext,
2739                             Expr *From, QualType ToType,
2740                             OverloadCandidateSet& CandidateSet) {
2741  assert(!Conversion->getDescribedFunctionTemplate() &&
2742         "Conversion function templates use AddTemplateConversionCandidate");
2743
2744  if (!CandidateSet.isNewCandidate(Conversion))
2745    return;
2746
2747  // Overload resolution is always an unevaluated context.
2748  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2749
2750  // Add this candidate
2751  CandidateSet.push_back(OverloadCandidate());
2752  OverloadCandidate& Candidate = CandidateSet.back();
2753  Candidate.Function = Conversion;
2754  Candidate.IsSurrogate = false;
2755  Candidate.IgnoreObjectArgument = false;
2756  Candidate.FinalConversion.setAsIdentityConversion();
2757  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2758  Candidate.FinalConversion.setToType(ToType);
2759
2760  // Determine the implicit conversion sequence for the implicit
2761  // object parameter.
2762  Candidate.Viable = true;
2763  Candidate.Conversions.resize(1);
2764  Candidate.Conversions[0]
2765    = TryObjectArgumentInitialization(From->getType(), Conversion,
2766                                      ActingContext);
2767  // Conversion functions to a different type in the base class is visible in
2768  // the derived class.  So, a derived to base conversion should not participate
2769  // in overload resolution.
2770  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2771    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2772  if (Candidate.Conversions[0].isBad()) {
2773    Candidate.Viable = false;
2774    Candidate.FailureKind = ovl_fail_bad_conversion;
2775    return;
2776  }
2777
2778  // We won't go through a user-define type conversion function to convert a
2779  // derived to base as such conversions are given Conversion Rank. They only
2780  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2781  QualType FromCanon
2782    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2783  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2784  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2785    Candidate.Viable = false;
2786    Candidate.FailureKind = ovl_fail_trivial_conversion;
2787    return;
2788  }
2789
2790
2791  // To determine what the conversion from the result of calling the
2792  // conversion function to the type we're eventually trying to
2793  // convert to (ToType), we need to synthesize a call to the
2794  // conversion function and attempt copy initialization from it. This
2795  // makes sure that we get the right semantics with respect to
2796  // lvalues/rvalues and the type. Fortunately, we can allocate this
2797  // call on the stack and we don't need its arguments to be
2798  // well-formed.
2799  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2800                            From->getLocStart());
2801  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2802                                CastExpr::CK_FunctionToPointerDecay,
2803                                &ConversionRef, false);
2804
2805  // Note that it is safe to allocate CallExpr on the stack here because
2806  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2807  // allocator).
2808  CallExpr Call(Context, &ConversionFn, 0, 0,
2809                Conversion->getConversionType().getNonReferenceType(),
2810                From->getLocStart());
2811  ImplicitConversionSequence ICS =
2812    TryCopyInitialization(&Call, ToType,
2813                          /*SuppressUserConversions=*/true,
2814                          /*ForceRValue=*/false,
2815                          /*InOverloadResolution=*/false);
2816
2817  switch (ICS.getKind()) {
2818  case ImplicitConversionSequence::StandardConversion:
2819    Candidate.FinalConversion = ICS.Standard;
2820    break;
2821
2822  case ImplicitConversionSequence::BadConversion:
2823    Candidate.Viable = false;
2824    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2825    break;
2826
2827  default:
2828    assert(false &&
2829           "Can only end up with a standard conversion sequence or failure");
2830  }
2831}
2832
2833/// \brief Adds a conversion function template specialization
2834/// candidate to the overload set, using template argument deduction
2835/// to deduce the template arguments of the conversion function
2836/// template from the type that we are converting to (C++
2837/// [temp.deduct.conv]).
2838void
2839Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2840                                     CXXRecordDecl *ActingDC,
2841                                     Expr *From, QualType ToType,
2842                                     OverloadCandidateSet &CandidateSet) {
2843  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2844         "Only conversion function templates permitted here");
2845
2846  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2847    return;
2848
2849  TemplateDeductionInfo Info(Context);
2850  CXXConversionDecl *Specialization = 0;
2851  if (TemplateDeductionResult Result
2852        = DeduceTemplateArguments(FunctionTemplate, ToType,
2853                                  Specialization, Info)) {
2854    // FIXME: Record what happened with template argument deduction, so
2855    // that we can give the user a beautiful diagnostic.
2856    (void)Result;
2857    return;
2858  }
2859
2860  // Add the conversion function template specialization produced by
2861  // template argument deduction as a candidate.
2862  assert(Specialization && "Missing function template specialization?");
2863  AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet);
2864}
2865
2866/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2867/// converts the given @c Object to a function pointer via the
2868/// conversion function @c Conversion, and then attempts to call it
2869/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2870/// the type of function that we'll eventually be calling.
2871void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2872                                 CXXRecordDecl *ActingContext,
2873                                 const FunctionProtoType *Proto,
2874                                 QualType ObjectType,
2875                                 Expr **Args, unsigned NumArgs,
2876                                 OverloadCandidateSet& CandidateSet) {
2877  if (!CandidateSet.isNewCandidate(Conversion))
2878    return;
2879
2880  // Overload resolution is always an unevaluated context.
2881  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2882
2883  CandidateSet.push_back(OverloadCandidate());
2884  OverloadCandidate& Candidate = CandidateSet.back();
2885  Candidate.Function = 0;
2886  Candidate.Surrogate = Conversion;
2887  Candidate.Viable = true;
2888  Candidate.IsSurrogate = true;
2889  Candidate.IgnoreObjectArgument = false;
2890  Candidate.Conversions.resize(NumArgs + 1);
2891
2892  // Determine the implicit conversion sequence for the implicit
2893  // object parameter.
2894  ImplicitConversionSequence ObjectInit
2895    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2896  if (ObjectInit.isBad()) {
2897    Candidate.Viable = false;
2898    Candidate.FailureKind = ovl_fail_bad_conversion;
2899    Candidate.Conversions[0] = ObjectInit;
2900    return;
2901  }
2902
2903  // The first conversion is actually a user-defined conversion whose
2904  // first conversion is ObjectInit's standard conversion (which is
2905  // effectively a reference binding). Record it as such.
2906  Candidate.Conversions[0].setUserDefined();
2907  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2908  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2909  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2910  Candidate.Conversions[0].UserDefined.After
2911    = Candidate.Conversions[0].UserDefined.Before;
2912  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2913
2914  // Find the
2915  unsigned NumArgsInProto = Proto->getNumArgs();
2916
2917  // (C++ 13.3.2p2): A candidate function having fewer than m
2918  // parameters is viable only if it has an ellipsis in its parameter
2919  // list (8.3.5).
2920  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2921    Candidate.Viable = false;
2922    Candidate.FailureKind = ovl_fail_too_many_arguments;
2923    return;
2924  }
2925
2926  // Function types don't have any default arguments, so just check if
2927  // we have enough arguments.
2928  if (NumArgs < NumArgsInProto) {
2929    // Not enough arguments.
2930    Candidate.Viable = false;
2931    Candidate.FailureKind = ovl_fail_too_few_arguments;
2932    return;
2933  }
2934
2935  // Determine the implicit conversion sequences for each of the
2936  // arguments.
2937  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2938    if (ArgIdx < NumArgsInProto) {
2939      // (C++ 13.3.2p3): for F to be a viable function, there shall
2940      // exist for each argument an implicit conversion sequence
2941      // (13.3.3.1) that converts that argument to the corresponding
2942      // parameter of F.
2943      QualType ParamType = Proto->getArgType(ArgIdx);
2944      Candidate.Conversions[ArgIdx + 1]
2945        = TryCopyInitialization(Args[ArgIdx], ParamType,
2946                                /*SuppressUserConversions=*/false,
2947                                /*ForceRValue=*/false,
2948                                /*InOverloadResolution=*/false);
2949      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2950        Candidate.Viable = false;
2951        Candidate.FailureKind = ovl_fail_bad_conversion;
2952        break;
2953      }
2954    } else {
2955      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2956      // argument for which there is no corresponding parameter is
2957      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2958      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2959    }
2960  }
2961}
2962
2963// FIXME: This will eventually be removed, once we've migrated all of the
2964// operator overloading logic over to the scheme used by binary operators, which
2965// works for template instantiation.
2966void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2967                                 SourceLocation OpLoc,
2968                                 Expr **Args, unsigned NumArgs,
2969                                 OverloadCandidateSet& CandidateSet,
2970                                 SourceRange OpRange) {
2971  FunctionSet Functions;
2972
2973  QualType T1 = Args[0]->getType();
2974  QualType T2;
2975  if (NumArgs > 1)
2976    T2 = Args[1]->getType();
2977
2978  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2979  if (S)
2980    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2981  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2982  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2983  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2984  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2985}
2986
2987/// \brief Add overload candidates for overloaded operators that are
2988/// member functions.
2989///
2990/// Add the overloaded operator candidates that are member functions
2991/// for the operator Op that was used in an operator expression such
2992/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2993/// CandidateSet will store the added overload candidates. (C++
2994/// [over.match.oper]).
2995void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2996                                       SourceLocation OpLoc,
2997                                       Expr **Args, unsigned NumArgs,
2998                                       OverloadCandidateSet& CandidateSet,
2999                                       SourceRange OpRange) {
3000  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3001
3002  // C++ [over.match.oper]p3:
3003  //   For a unary operator @ with an operand of a type whose
3004  //   cv-unqualified version is T1, and for a binary operator @ with
3005  //   a left operand of a type whose cv-unqualified version is T1 and
3006  //   a right operand of a type whose cv-unqualified version is T2,
3007  //   three sets of candidate functions, designated member
3008  //   candidates, non-member candidates and built-in candidates, are
3009  //   constructed as follows:
3010  QualType T1 = Args[0]->getType();
3011  QualType T2;
3012  if (NumArgs > 1)
3013    T2 = Args[1]->getType();
3014
3015  //     -- If T1 is a class type, the set of member candidates is the
3016  //        result of the qualified lookup of T1::operator@
3017  //        (13.3.1.1.1); otherwise, the set of member candidates is
3018  //        empty.
3019  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3020    // Complete the type if it can be completed. Otherwise, we're done.
3021    if (RequireCompleteType(OpLoc, T1, PDiag()))
3022      return;
3023
3024    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3025    LookupQualifiedName(Operators, T1Rec->getDecl());
3026    Operators.suppressDiagnostics();
3027
3028    for (LookupResult::iterator Oper = Operators.begin(),
3029                             OperEnd = Operators.end();
3030         Oper != OperEnd;
3031         ++Oper)
3032      AddMethodCandidate(*Oper, Args[0]->getType(),
3033                         Args + 1, NumArgs - 1, CandidateSet,
3034                         /* SuppressUserConversions = */ false);
3035  }
3036}
3037
3038/// AddBuiltinCandidate - Add a candidate for a built-in
3039/// operator. ResultTy and ParamTys are the result and parameter types
3040/// of the built-in candidate, respectively. Args and NumArgs are the
3041/// arguments being passed to the candidate. IsAssignmentOperator
3042/// should be true when this built-in candidate is an assignment
3043/// operator. NumContextualBoolArguments is the number of arguments
3044/// (at the beginning of the argument list) that will be contextually
3045/// converted to bool.
3046void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3047                               Expr **Args, unsigned NumArgs,
3048                               OverloadCandidateSet& CandidateSet,
3049                               bool IsAssignmentOperator,
3050                               unsigned NumContextualBoolArguments) {
3051  // Overload resolution is always an unevaluated context.
3052  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3053
3054  // Add this candidate
3055  CandidateSet.push_back(OverloadCandidate());
3056  OverloadCandidate& Candidate = CandidateSet.back();
3057  Candidate.Function = 0;
3058  Candidate.IsSurrogate = false;
3059  Candidate.IgnoreObjectArgument = false;
3060  Candidate.BuiltinTypes.ResultTy = ResultTy;
3061  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3062    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3063
3064  // Determine the implicit conversion sequences for each of the
3065  // arguments.
3066  Candidate.Viable = true;
3067  Candidate.Conversions.resize(NumArgs);
3068  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3069    // C++ [over.match.oper]p4:
3070    //   For the built-in assignment operators, conversions of the
3071    //   left operand are restricted as follows:
3072    //     -- no temporaries are introduced to hold the left operand, and
3073    //     -- no user-defined conversions are applied to the left
3074    //        operand to achieve a type match with the left-most
3075    //        parameter of a built-in candidate.
3076    //
3077    // We block these conversions by turning off user-defined
3078    // conversions, since that is the only way that initialization of
3079    // a reference to a non-class type can occur from something that
3080    // is not of the same type.
3081    if (ArgIdx < NumContextualBoolArguments) {
3082      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3083             "Contextual conversion to bool requires bool type");
3084      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3085    } else {
3086      Candidate.Conversions[ArgIdx]
3087        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3088                                ArgIdx == 0 && IsAssignmentOperator,
3089                                /*ForceRValue=*/false,
3090                                /*InOverloadResolution=*/false);
3091    }
3092    if (Candidate.Conversions[ArgIdx].isBad()) {
3093      Candidate.Viable = false;
3094      Candidate.FailureKind = ovl_fail_bad_conversion;
3095      break;
3096    }
3097  }
3098}
3099
3100/// BuiltinCandidateTypeSet - A set of types that will be used for the
3101/// candidate operator functions for built-in operators (C++
3102/// [over.built]). The types are separated into pointer types and
3103/// enumeration types.
3104class BuiltinCandidateTypeSet  {
3105  /// TypeSet - A set of types.
3106  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3107
3108  /// PointerTypes - The set of pointer types that will be used in the
3109  /// built-in candidates.
3110  TypeSet PointerTypes;
3111
3112  /// MemberPointerTypes - The set of member pointer types that will be
3113  /// used in the built-in candidates.
3114  TypeSet MemberPointerTypes;
3115
3116  /// EnumerationTypes - The set of enumeration types that will be
3117  /// used in the built-in candidates.
3118  TypeSet EnumerationTypes;
3119
3120  /// Sema - The semantic analysis instance where we are building the
3121  /// candidate type set.
3122  Sema &SemaRef;
3123
3124  /// Context - The AST context in which we will build the type sets.
3125  ASTContext &Context;
3126
3127  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3128                                               const Qualifiers &VisibleQuals);
3129  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3130
3131public:
3132  /// iterator - Iterates through the types that are part of the set.
3133  typedef TypeSet::iterator iterator;
3134
3135  BuiltinCandidateTypeSet(Sema &SemaRef)
3136    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3137
3138  void AddTypesConvertedFrom(QualType Ty,
3139                             SourceLocation Loc,
3140                             bool AllowUserConversions,
3141                             bool AllowExplicitConversions,
3142                             const Qualifiers &VisibleTypeConversionsQuals);
3143
3144  /// pointer_begin - First pointer type found;
3145  iterator pointer_begin() { return PointerTypes.begin(); }
3146
3147  /// pointer_end - Past the last pointer type found;
3148  iterator pointer_end() { return PointerTypes.end(); }
3149
3150  /// member_pointer_begin - First member pointer type found;
3151  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3152
3153  /// member_pointer_end - Past the last member pointer type found;
3154  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3155
3156  /// enumeration_begin - First enumeration type found;
3157  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3158
3159  /// enumeration_end - Past the last enumeration type found;
3160  iterator enumeration_end() { return EnumerationTypes.end(); }
3161};
3162
3163/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3164/// the set of pointer types along with any more-qualified variants of
3165/// that type. For example, if @p Ty is "int const *", this routine
3166/// will add "int const *", "int const volatile *", "int const
3167/// restrict *", and "int const volatile restrict *" to the set of
3168/// pointer types. Returns true if the add of @p Ty itself succeeded,
3169/// false otherwise.
3170///
3171/// FIXME: what to do about extended qualifiers?
3172bool
3173BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3174                                             const Qualifiers &VisibleQuals) {
3175
3176  // Insert this type.
3177  if (!PointerTypes.insert(Ty))
3178    return false;
3179
3180  const PointerType *PointerTy = Ty->getAs<PointerType>();
3181  assert(PointerTy && "type was not a pointer type!");
3182
3183  QualType PointeeTy = PointerTy->getPointeeType();
3184  // Don't add qualified variants of arrays. For one, they're not allowed
3185  // (the qualifier would sink to the element type), and for another, the
3186  // only overload situation where it matters is subscript or pointer +- int,
3187  // and those shouldn't have qualifier variants anyway.
3188  if (PointeeTy->isArrayType())
3189    return true;
3190  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3191  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3192    BaseCVR = Array->getElementType().getCVRQualifiers();
3193  bool hasVolatile = VisibleQuals.hasVolatile();
3194  bool hasRestrict = VisibleQuals.hasRestrict();
3195
3196  // Iterate through all strict supersets of BaseCVR.
3197  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3198    if ((CVR | BaseCVR) != CVR) continue;
3199    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3200    // in the types.
3201    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3202    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3203    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3204    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3205  }
3206
3207  return true;
3208}
3209
3210/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3211/// to the set of pointer types along with any more-qualified variants of
3212/// that type. For example, if @p Ty is "int const *", this routine
3213/// will add "int const *", "int const volatile *", "int const
3214/// restrict *", and "int const volatile restrict *" to the set of
3215/// pointer types. Returns true if the add of @p Ty itself succeeded,
3216/// false otherwise.
3217///
3218/// FIXME: what to do about extended qualifiers?
3219bool
3220BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3221    QualType Ty) {
3222  // Insert this type.
3223  if (!MemberPointerTypes.insert(Ty))
3224    return false;
3225
3226  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3227  assert(PointerTy && "type was not a member pointer type!");
3228
3229  QualType PointeeTy = PointerTy->getPointeeType();
3230  // Don't add qualified variants of arrays. For one, they're not allowed
3231  // (the qualifier would sink to the element type), and for another, the
3232  // only overload situation where it matters is subscript or pointer +- int,
3233  // and those shouldn't have qualifier variants anyway.
3234  if (PointeeTy->isArrayType())
3235    return true;
3236  const Type *ClassTy = PointerTy->getClass();
3237
3238  // Iterate through all strict supersets of the pointee type's CVR
3239  // qualifiers.
3240  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3241  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3242    if ((CVR | BaseCVR) != CVR) continue;
3243
3244    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3245    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3246  }
3247
3248  return true;
3249}
3250
3251/// AddTypesConvertedFrom - Add each of the types to which the type @p
3252/// Ty can be implicit converted to the given set of @p Types. We're
3253/// primarily interested in pointer types and enumeration types. We also
3254/// take member pointer types, for the conditional operator.
3255/// AllowUserConversions is true if we should look at the conversion
3256/// functions of a class type, and AllowExplicitConversions if we
3257/// should also include the explicit conversion functions of a class
3258/// type.
3259void
3260BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3261                                               SourceLocation Loc,
3262                                               bool AllowUserConversions,
3263                                               bool AllowExplicitConversions,
3264                                               const Qualifiers &VisibleQuals) {
3265  // Only deal with canonical types.
3266  Ty = Context.getCanonicalType(Ty);
3267
3268  // Look through reference types; they aren't part of the type of an
3269  // expression for the purposes of conversions.
3270  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3271    Ty = RefTy->getPointeeType();
3272
3273  // We don't care about qualifiers on the type.
3274  Ty = Ty.getLocalUnqualifiedType();
3275
3276  // If we're dealing with an array type, decay to the pointer.
3277  if (Ty->isArrayType())
3278    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3279
3280  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3281    QualType PointeeTy = PointerTy->getPointeeType();
3282
3283    // Insert our type, and its more-qualified variants, into the set
3284    // of types.
3285    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3286      return;
3287  } else if (Ty->isMemberPointerType()) {
3288    // Member pointers are far easier, since the pointee can't be converted.
3289    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3290      return;
3291  } else if (Ty->isEnumeralType()) {
3292    EnumerationTypes.insert(Ty);
3293  } else if (AllowUserConversions) {
3294    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3295      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3296        // No conversion functions in incomplete types.
3297        return;
3298      }
3299
3300      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3301      const UnresolvedSetImpl *Conversions
3302        = ClassDecl->getVisibleConversionFunctions();
3303      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3304             E = Conversions->end(); I != E; ++I) {
3305
3306        // Skip conversion function templates; they don't tell us anything
3307        // about which builtin types we can convert to.
3308        if (isa<FunctionTemplateDecl>(*I))
3309          continue;
3310
3311        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3312        if (AllowExplicitConversions || !Conv->isExplicit()) {
3313          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3314                                VisibleQuals);
3315        }
3316      }
3317    }
3318  }
3319}
3320
3321/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3322/// the volatile- and non-volatile-qualified assignment operators for the
3323/// given type to the candidate set.
3324static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3325                                                   QualType T,
3326                                                   Expr **Args,
3327                                                   unsigned NumArgs,
3328                                    OverloadCandidateSet &CandidateSet) {
3329  QualType ParamTypes[2];
3330
3331  // T& operator=(T&, T)
3332  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3333  ParamTypes[1] = T;
3334  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3335                        /*IsAssignmentOperator=*/true);
3336
3337  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3338    // volatile T& operator=(volatile T&, T)
3339    ParamTypes[0]
3340      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3341    ParamTypes[1] = T;
3342    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3343                          /*IsAssignmentOperator=*/true);
3344  }
3345}
3346
3347/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3348/// if any, found in visible type conversion functions found in ArgExpr's type.
3349static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3350    Qualifiers VRQuals;
3351    const RecordType *TyRec;
3352    if (const MemberPointerType *RHSMPType =
3353        ArgExpr->getType()->getAs<MemberPointerType>())
3354      TyRec = cast<RecordType>(RHSMPType->getClass());
3355    else
3356      TyRec = ArgExpr->getType()->getAs<RecordType>();
3357    if (!TyRec) {
3358      // Just to be safe, assume the worst case.
3359      VRQuals.addVolatile();
3360      VRQuals.addRestrict();
3361      return VRQuals;
3362    }
3363
3364    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3365    const UnresolvedSetImpl *Conversions =
3366      ClassDecl->getVisibleConversionFunctions();
3367
3368    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3369           E = Conversions->end(); I != E; ++I) {
3370      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3371        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3372        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3373          CanTy = ResTypeRef->getPointeeType();
3374        // Need to go down the pointer/mempointer chain and add qualifiers
3375        // as see them.
3376        bool done = false;
3377        while (!done) {
3378          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3379            CanTy = ResTypePtr->getPointeeType();
3380          else if (const MemberPointerType *ResTypeMPtr =
3381                CanTy->getAs<MemberPointerType>())
3382            CanTy = ResTypeMPtr->getPointeeType();
3383          else
3384            done = true;
3385          if (CanTy.isVolatileQualified())
3386            VRQuals.addVolatile();
3387          if (CanTy.isRestrictQualified())
3388            VRQuals.addRestrict();
3389          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3390            return VRQuals;
3391        }
3392      }
3393    }
3394    return VRQuals;
3395}
3396
3397/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3398/// operator overloads to the candidate set (C++ [over.built]), based
3399/// on the operator @p Op and the arguments given. For example, if the
3400/// operator is a binary '+', this routine might add "int
3401/// operator+(int, int)" to cover integer addition.
3402void
3403Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3404                                   SourceLocation OpLoc,
3405                                   Expr **Args, unsigned NumArgs,
3406                                   OverloadCandidateSet& CandidateSet) {
3407  // The set of "promoted arithmetic types", which are the arithmetic
3408  // types are that preserved by promotion (C++ [over.built]p2). Note
3409  // that the first few of these types are the promoted integral
3410  // types; these types need to be first.
3411  // FIXME: What about complex?
3412  const unsigned FirstIntegralType = 0;
3413  const unsigned LastIntegralType = 13;
3414  const unsigned FirstPromotedIntegralType = 7,
3415                 LastPromotedIntegralType = 13;
3416  const unsigned FirstPromotedArithmeticType = 7,
3417                 LastPromotedArithmeticType = 16;
3418  const unsigned NumArithmeticTypes = 16;
3419  QualType ArithmeticTypes[NumArithmeticTypes] = {
3420    Context.BoolTy, Context.CharTy, Context.WCharTy,
3421// FIXME:   Context.Char16Ty, Context.Char32Ty,
3422    Context.SignedCharTy, Context.ShortTy,
3423    Context.UnsignedCharTy, Context.UnsignedShortTy,
3424    Context.IntTy, Context.LongTy, Context.LongLongTy,
3425    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3426    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3427  };
3428  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3429         "Invalid first promoted integral type");
3430  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3431           == Context.UnsignedLongLongTy &&
3432         "Invalid last promoted integral type");
3433  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3434         "Invalid first promoted arithmetic type");
3435  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3436            == Context.LongDoubleTy &&
3437         "Invalid last promoted arithmetic type");
3438
3439  // Find all of the types that the arguments can convert to, but only
3440  // if the operator we're looking at has built-in operator candidates
3441  // that make use of these types.
3442  Qualifiers VisibleTypeConversionsQuals;
3443  VisibleTypeConversionsQuals.addConst();
3444  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3445    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3446
3447  BuiltinCandidateTypeSet CandidateTypes(*this);
3448  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3449      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3450      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3451      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3452      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3453      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3454    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3455      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3456                                           OpLoc,
3457                                           true,
3458                                           (Op == OO_Exclaim ||
3459                                            Op == OO_AmpAmp ||
3460                                            Op == OO_PipePipe),
3461                                           VisibleTypeConversionsQuals);
3462  }
3463
3464  bool isComparison = false;
3465  switch (Op) {
3466  case OO_None:
3467  case NUM_OVERLOADED_OPERATORS:
3468    assert(false && "Expected an overloaded operator");
3469    break;
3470
3471  case OO_Star: // '*' is either unary or binary
3472    if (NumArgs == 1)
3473      goto UnaryStar;
3474    else
3475      goto BinaryStar;
3476    break;
3477
3478  case OO_Plus: // '+' is either unary or binary
3479    if (NumArgs == 1)
3480      goto UnaryPlus;
3481    else
3482      goto BinaryPlus;
3483    break;
3484
3485  case OO_Minus: // '-' is either unary or binary
3486    if (NumArgs == 1)
3487      goto UnaryMinus;
3488    else
3489      goto BinaryMinus;
3490    break;
3491
3492  case OO_Amp: // '&' is either unary or binary
3493    if (NumArgs == 1)
3494      goto UnaryAmp;
3495    else
3496      goto BinaryAmp;
3497
3498  case OO_PlusPlus:
3499  case OO_MinusMinus:
3500    // C++ [over.built]p3:
3501    //
3502    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3503    //   is either volatile or empty, there exist candidate operator
3504    //   functions of the form
3505    //
3506    //       VQ T&      operator++(VQ T&);
3507    //       T          operator++(VQ T&, int);
3508    //
3509    // C++ [over.built]p4:
3510    //
3511    //   For every pair (T, VQ), where T is an arithmetic type other
3512    //   than bool, and VQ is either volatile or empty, there exist
3513    //   candidate operator functions of the form
3514    //
3515    //       VQ T&      operator--(VQ T&);
3516    //       T          operator--(VQ T&, int);
3517    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3518         Arith < NumArithmeticTypes; ++Arith) {
3519      QualType ArithTy = ArithmeticTypes[Arith];
3520      QualType ParamTypes[2]
3521        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3522
3523      // Non-volatile version.
3524      if (NumArgs == 1)
3525        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3526      else
3527        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3528      // heuristic to reduce number of builtin candidates in the set.
3529      // Add volatile version only if there are conversions to a volatile type.
3530      if (VisibleTypeConversionsQuals.hasVolatile()) {
3531        // Volatile version
3532        ParamTypes[0]
3533          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3534        if (NumArgs == 1)
3535          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3536        else
3537          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3538      }
3539    }
3540
3541    // C++ [over.built]p5:
3542    //
3543    //   For every pair (T, VQ), where T is a cv-qualified or
3544    //   cv-unqualified object type, and VQ is either volatile or
3545    //   empty, there exist candidate operator functions of the form
3546    //
3547    //       T*VQ&      operator++(T*VQ&);
3548    //       T*VQ&      operator--(T*VQ&);
3549    //       T*         operator++(T*VQ&, int);
3550    //       T*         operator--(T*VQ&, int);
3551    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3552         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3553      // Skip pointer types that aren't pointers to object types.
3554      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3555        continue;
3556
3557      QualType ParamTypes[2] = {
3558        Context.getLValueReferenceType(*Ptr), Context.IntTy
3559      };
3560
3561      // Without volatile
3562      if (NumArgs == 1)
3563        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3564      else
3565        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3566
3567      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3568          VisibleTypeConversionsQuals.hasVolatile()) {
3569        // With volatile
3570        ParamTypes[0]
3571          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3572        if (NumArgs == 1)
3573          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3574        else
3575          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3576      }
3577    }
3578    break;
3579
3580  UnaryStar:
3581    // C++ [over.built]p6:
3582    //   For every cv-qualified or cv-unqualified object type T, there
3583    //   exist candidate operator functions of the form
3584    //
3585    //       T&         operator*(T*);
3586    //
3587    // C++ [over.built]p7:
3588    //   For every function type T, there exist candidate operator
3589    //   functions of the form
3590    //       T&         operator*(T*);
3591    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3592         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3593      QualType ParamTy = *Ptr;
3594      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3595      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3596                          &ParamTy, Args, 1, CandidateSet);
3597    }
3598    break;
3599
3600  UnaryPlus:
3601    // C++ [over.built]p8:
3602    //   For every type T, there exist candidate operator functions of
3603    //   the form
3604    //
3605    //       T*         operator+(T*);
3606    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3607         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3608      QualType ParamTy = *Ptr;
3609      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3610    }
3611
3612    // Fall through
3613
3614  UnaryMinus:
3615    // C++ [over.built]p9:
3616    //  For every promoted arithmetic type T, there exist candidate
3617    //  operator functions of the form
3618    //
3619    //       T         operator+(T);
3620    //       T         operator-(T);
3621    for (unsigned Arith = FirstPromotedArithmeticType;
3622         Arith < LastPromotedArithmeticType; ++Arith) {
3623      QualType ArithTy = ArithmeticTypes[Arith];
3624      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3625    }
3626    break;
3627
3628  case OO_Tilde:
3629    // C++ [over.built]p10:
3630    //   For every promoted integral type T, there exist candidate
3631    //   operator functions of the form
3632    //
3633    //        T         operator~(T);
3634    for (unsigned Int = FirstPromotedIntegralType;
3635         Int < LastPromotedIntegralType; ++Int) {
3636      QualType IntTy = ArithmeticTypes[Int];
3637      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3638    }
3639    break;
3640
3641  case OO_New:
3642  case OO_Delete:
3643  case OO_Array_New:
3644  case OO_Array_Delete:
3645  case OO_Call:
3646    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3647    break;
3648
3649  case OO_Comma:
3650  UnaryAmp:
3651  case OO_Arrow:
3652    // C++ [over.match.oper]p3:
3653    //   -- For the operator ',', the unary operator '&', or the
3654    //      operator '->', the built-in candidates set is empty.
3655    break;
3656
3657  case OO_EqualEqual:
3658  case OO_ExclaimEqual:
3659    // C++ [over.match.oper]p16:
3660    //   For every pointer to member type T, there exist candidate operator
3661    //   functions of the form
3662    //
3663    //        bool operator==(T,T);
3664    //        bool operator!=(T,T);
3665    for (BuiltinCandidateTypeSet::iterator
3666           MemPtr = CandidateTypes.member_pointer_begin(),
3667           MemPtrEnd = CandidateTypes.member_pointer_end();
3668         MemPtr != MemPtrEnd;
3669         ++MemPtr) {
3670      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3671      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3672    }
3673
3674    // Fall through
3675
3676  case OO_Less:
3677  case OO_Greater:
3678  case OO_LessEqual:
3679  case OO_GreaterEqual:
3680    // C++ [over.built]p15:
3681    //
3682    //   For every pointer or enumeration type T, there exist
3683    //   candidate operator functions of the form
3684    //
3685    //        bool       operator<(T, T);
3686    //        bool       operator>(T, T);
3687    //        bool       operator<=(T, T);
3688    //        bool       operator>=(T, T);
3689    //        bool       operator==(T, T);
3690    //        bool       operator!=(T, T);
3691    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3692         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3693      QualType ParamTypes[2] = { *Ptr, *Ptr };
3694      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3695    }
3696    for (BuiltinCandidateTypeSet::iterator Enum
3697           = CandidateTypes.enumeration_begin();
3698         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3699      QualType ParamTypes[2] = { *Enum, *Enum };
3700      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3701    }
3702
3703    // Fall through.
3704    isComparison = true;
3705
3706  BinaryPlus:
3707  BinaryMinus:
3708    if (!isComparison) {
3709      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3710
3711      // C++ [over.built]p13:
3712      //
3713      //   For every cv-qualified or cv-unqualified object type T
3714      //   there exist candidate operator functions of the form
3715      //
3716      //      T*         operator+(T*, ptrdiff_t);
3717      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3718      //      T*         operator-(T*, ptrdiff_t);
3719      //      T*         operator+(ptrdiff_t, T*);
3720      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3721      //
3722      // C++ [over.built]p14:
3723      //
3724      //   For every T, where T is a pointer to object type, there
3725      //   exist candidate operator functions of the form
3726      //
3727      //      ptrdiff_t  operator-(T, T);
3728      for (BuiltinCandidateTypeSet::iterator Ptr
3729             = CandidateTypes.pointer_begin();
3730           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3731        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3732
3733        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3734        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3735
3736        if (Op == OO_Plus) {
3737          // T* operator+(ptrdiff_t, T*);
3738          ParamTypes[0] = ParamTypes[1];
3739          ParamTypes[1] = *Ptr;
3740          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3741        } else {
3742          // ptrdiff_t operator-(T, T);
3743          ParamTypes[1] = *Ptr;
3744          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3745                              Args, 2, CandidateSet);
3746        }
3747      }
3748    }
3749    // Fall through
3750
3751  case OO_Slash:
3752  BinaryStar:
3753  Conditional:
3754    // C++ [over.built]p12:
3755    //
3756    //   For every pair of promoted arithmetic types L and R, there
3757    //   exist candidate operator functions of the form
3758    //
3759    //        LR         operator*(L, R);
3760    //        LR         operator/(L, R);
3761    //        LR         operator+(L, R);
3762    //        LR         operator-(L, R);
3763    //        bool       operator<(L, R);
3764    //        bool       operator>(L, R);
3765    //        bool       operator<=(L, R);
3766    //        bool       operator>=(L, R);
3767    //        bool       operator==(L, R);
3768    //        bool       operator!=(L, R);
3769    //
3770    //   where LR is the result of the usual arithmetic conversions
3771    //   between types L and R.
3772    //
3773    // C++ [over.built]p24:
3774    //
3775    //   For every pair of promoted arithmetic types L and R, there exist
3776    //   candidate operator functions of the form
3777    //
3778    //        LR       operator?(bool, L, R);
3779    //
3780    //   where LR is the result of the usual arithmetic conversions
3781    //   between types L and R.
3782    // Our candidates ignore the first parameter.
3783    for (unsigned Left = FirstPromotedArithmeticType;
3784         Left < LastPromotedArithmeticType; ++Left) {
3785      for (unsigned Right = FirstPromotedArithmeticType;
3786           Right < LastPromotedArithmeticType; ++Right) {
3787        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3788        QualType Result
3789          = isComparison
3790          ? Context.BoolTy
3791          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3792        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3793      }
3794    }
3795    break;
3796
3797  case OO_Percent:
3798  BinaryAmp:
3799  case OO_Caret:
3800  case OO_Pipe:
3801  case OO_LessLess:
3802  case OO_GreaterGreater:
3803    // C++ [over.built]p17:
3804    //
3805    //   For every pair of promoted integral types L and R, there
3806    //   exist candidate operator functions of the form
3807    //
3808    //      LR         operator%(L, R);
3809    //      LR         operator&(L, R);
3810    //      LR         operator^(L, R);
3811    //      LR         operator|(L, R);
3812    //      L          operator<<(L, R);
3813    //      L          operator>>(L, R);
3814    //
3815    //   where LR is the result of the usual arithmetic conversions
3816    //   between types L and R.
3817    for (unsigned Left = FirstPromotedIntegralType;
3818         Left < LastPromotedIntegralType; ++Left) {
3819      for (unsigned Right = FirstPromotedIntegralType;
3820           Right < LastPromotedIntegralType; ++Right) {
3821        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3822        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3823            ? LandR[0]
3824            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3825        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3826      }
3827    }
3828    break;
3829
3830  case OO_Equal:
3831    // C++ [over.built]p20:
3832    //
3833    //   For every pair (T, VQ), where T is an enumeration or
3834    //   pointer to member type and VQ is either volatile or
3835    //   empty, there exist candidate operator functions of the form
3836    //
3837    //        VQ T&      operator=(VQ T&, T);
3838    for (BuiltinCandidateTypeSet::iterator
3839           Enum = CandidateTypes.enumeration_begin(),
3840           EnumEnd = CandidateTypes.enumeration_end();
3841         Enum != EnumEnd; ++Enum)
3842      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3843                                             CandidateSet);
3844    for (BuiltinCandidateTypeSet::iterator
3845           MemPtr = CandidateTypes.member_pointer_begin(),
3846         MemPtrEnd = CandidateTypes.member_pointer_end();
3847         MemPtr != MemPtrEnd; ++MemPtr)
3848      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3849                                             CandidateSet);
3850      // Fall through.
3851
3852  case OO_PlusEqual:
3853  case OO_MinusEqual:
3854    // C++ [over.built]p19:
3855    //
3856    //   For every pair (T, VQ), where T is any type and VQ is either
3857    //   volatile or empty, there exist candidate operator functions
3858    //   of the form
3859    //
3860    //        T*VQ&      operator=(T*VQ&, T*);
3861    //
3862    // C++ [over.built]p21:
3863    //
3864    //   For every pair (T, VQ), where T is a cv-qualified or
3865    //   cv-unqualified object type and VQ is either volatile or
3866    //   empty, there exist candidate operator functions of the form
3867    //
3868    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3869    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3870    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3871         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3872      QualType ParamTypes[2];
3873      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3874
3875      // non-volatile version
3876      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3877      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3878                          /*IsAssigmentOperator=*/Op == OO_Equal);
3879
3880      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3881          VisibleTypeConversionsQuals.hasVolatile()) {
3882        // volatile version
3883        ParamTypes[0]
3884          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3885        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3886                            /*IsAssigmentOperator=*/Op == OO_Equal);
3887      }
3888    }
3889    // Fall through.
3890
3891  case OO_StarEqual:
3892  case OO_SlashEqual:
3893    // C++ [over.built]p18:
3894    //
3895    //   For every triple (L, VQ, R), where L is an arithmetic type,
3896    //   VQ is either volatile or empty, and R is a promoted
3897    //   arithmetic type, there exist candidate operator functions of
3898    //   the form
3899    //
3900    //        VQ L&      operator=(VQ L&, R);
3901    //        VQ L&      operator*=(VQ L&, R);
3902    //        VQ L&      operator/=(VQ L&, R);
3903    //        VQ L&      operator+=(VQ L&, R);
3904    //        VQ L&      operator-=(VQ L&, R);
3905    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3906      for (unsigned Right = FirstPromotedArithmeticType;
3907           Right < LastPromotedArithmeticType; ++Right) {
3908        QualType ParamTypes[2];
3909        ParamTypes[1] = ArithmeticTypes[Right];
3910
3911        // Add this built-in operator as a candidate (VQ is empty).
3912        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3913        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3914                            /*IsAssigmentOperator=*/Op == OO_Equal);
3915
3916        // Add this built-in operator as a candidate (VQ is 'volatile').
3917        if (VisibleTypeConversionsQuals.hasVolatile()) {
3918          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3919          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3920          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3921                              /*IsAssigmentOperator=*/Op == OO_Equal);
3922        }
3923      }
3924    }
3925    break;
3926
3927  case OO_PercentEqual:
3928  case OO_LessLessEqual:
3929  case OO_GreaterGreaterEqual:
3930  case OO_AmpEqual:
3931  case OO_CaretEqual:
3932  case OO_PipeEqual:
3933    // C++ [over.built]p22:
3934    //
3935    //   For every triple (L, VQ, R), where L is an integral type, VQ
3936    //   is either volatile or empty, and R is a promoted integral
3937    //   type, there exist candidate operator functions of the form
3938    //
3939    //        VQ L&       operator%=(VQ L&, R);
3940    //        VQ L&       operator<<=(VQ L&, R);
3941    //        VQ L&       operator>>=(VQ L&, R);
3942    //        VQ L&       operator&=(VQ L&, R);
3943    //        VQ L&       operator^=(VQ L&, R);
3944    //        VQ L&       operator|=(VQ L&, R);
3945    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3946      for (unsigned Right = FirstPromotedIntegralType;
3947           Right < LastPromotedIntegralType; ++Right) {
3948        QualType ParamTypes[2];
3949        ParamTypes[1] = ArithmeticTypes[Right];
3950
3951        // Add this built-in operator as a candidate (VQ is empty).
3952        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3953        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3954        if (VisibleTypeConversionsQuals.hasVolatile()) {
3955          // Add this built-in operator as a candidate (VQ is 'volatile').
3956          ParamTypes[0] = ArithmeticTypes[Left];
3957          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3958          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3959          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3960        }
3961      }
3962    }
3963    break;
3964
3965  case OO_Exclaim: {
3966    // C++ [over.operator]p23:
3967    //
3968    //   There also exist candidate operator functions of the form
3969    //
3970    //        bool        operator!(bool);
3971    //        bool        operator&&(bool, bool);     [BELOW]
3972    //        bool        operator||(bool, bool);     [BELOW]
3973    QualType ParamTy = Context.BoolTy;
3974    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3975                        /*IsAssignmentOperator=*/false,
3976                        /*NumContextualBoolArguments=*/1);
3977    break;
3978  }
3979
3980  case OO_AmpAmp:
3981  case OO_PipePipe: {
3982    // C++ [over.operator]p23:
3983    //
3984    //   There also exist candidate operator functions of the form
3985    //
3986    //        bool        operator!(bool);            [ABOVE]
3987    //        bool        operator&&(bool, bool);
3988    //        bool        operator||(bool, bool);
3989    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3990    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3991                        /*IsAssignmentOperator=*/false,
3992                        /*NumContextualBoolArguments=*/2);
3993    break;
3994  }
3995
3996  case OO_Subscript:
3997    // C++ [over.built]p13:
3998    //
3999    //   For every cv-qualified or cv-unqualified object type T there
4000    //   exist candidate operator functions of the form
4001    //
4002    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4003    //        T&         operator[](T*, ptrdiff_t);
4004    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4005    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4006    //        T&         operator[](ptrdiff_t, T*);
4007    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4008         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4009      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4010      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4011      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4012
4013      // T& operator[](T*, ptrdiff_t)
4014      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4015
4016      // T& operator[](ptrdiff_t, T*);
4017      ParamTypes[0] = ParamTypes[1];
4018      ParamTypes[1] = *Ptr;
4019      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4020    }
4021    break;
4022
4023  case OO_ArrowStar:
4024    // C++ [over.built]p11:
4025    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4026    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4027    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4028    //    there exist candidate operator functions of the form
4029    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4030    //    where CV12 is the union of CV1 and CV2.
4031    {
4032      for (BuiltinCandidateTypeSet::iterator Ptr =
4033             CandidateTypes.pointer_begin();
4034           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4035        QualType C1Ty = (*Ptr);
4036        QualType C1;
4037        QualifierCollector Q1;
4038        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4039          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4040          if (!isa<RecordType>(C1))
4041            continue;
4042          // heuristic to reduce number of builtin candidates in the set.
4043          // Add volatile/restrict version only if there are conversions to a
4044          // volatile/restrict type.
4045          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4046            continue;
4047          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4048            continue;
4049        }
4050        for (BuiltinCandidateTypeSet::iterator
4051             MemPtr = CandidateTypes.member_pointer_begin(),
4052             MemPtrEnd = CandidateTypes.member_pointer_end();
4053             MemPtr != MemPtrEnd; ++MemPtr) {
4054          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4055          QualType C2 = QualType(mptr->getClass(), 0);
4056          C2 = C2.getUnqualifiedType();
4057          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4058            break;
4059          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4060          // build CV12 T&
4061          QualType T = mptr->getPointeeType();
4062          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4063              T.isVolatileQualified())
4064            continue;
4065          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4066              T.isRestrictQualified())
4067            continue;
4068          T = Q1.apply(T);
4069          QualType ResultTy = Context.getLValueReferenceType(T);
4070          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4071        }
4072      }
4073    }
4074    break;
4075
4076  case OO_Conditional:
4077    // Note that we don't consider the first argument, since it has been
4078    // contextually converted to bool long ago. The candidates below are
4079    // therefore added as binary.
4080    //
4081    // C++ [over.built]p24:
4082    //   For every type T, where T is a pointer or pointer-to-member type,
4083    //   there exist candidate operator functions of the form
4084    //
4085    //        T        operator?(bool, T, T);
4086    //
4087    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4088         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4089      QualType ParamTypes[2] = { *Ptr, *Ptr };
4090      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4091    }
4092    for (BuiltinCandidateTypeSet::iterator Ptr =
4093           CandidateTypes.member_pointer_begin(),
4094         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4095      QualType ParamTypes[2] = { *Ptr, *Ptr };
4096      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4097    }
4098    goto Conditional;
4099  }
4100}
4101
4102/// \brief Add function candidates found via argument-dependent lookup
4103/// to the set of overloading candidates.
4104///
4105/// This routine performs argument-dependent name lookup based on the
4106/// given function name (which may also be an operator name) and adds
4107/// all of the overload candidates found by ADL to the overload
4108/// candidate set (C++ [basic.lookup.argdep]).
4109void
4110Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4111                                           Expr **Args, unsigned NumArgs,
4112                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4113                                           OverloadCandidateSet& CandidateSet,
4114                                           bool PartialOverloading) {
4115  FunctionSet Functions;
4116
4117  // FIXME: Should we be trafficking in canonical function decls throughout?
4118
4119  // Record all of the function candidates that we've already
4120  // added to the overload set, so that we don't add those same
4121  // candidates a second time.
4122  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4123                                   CandEnd = CandidateSet.end();
4124       Cand != CandEnd; ++Cand)
4125    if (Cand->Function) {
4126      Functions.insert(Cand->Function);
4127      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4128        Functions.insert(FunTmpl);
4129    }
4130
4131  // FIXME: Pass in the explicit template arguments?
4132  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
4133
4134  // Erase all of the candidates we already knew about.
4135  // FIXME: This is suboptimal. Is there a better way?
4136  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4137                                   CandEnd = CandidateSet.end();
4138       Cand != CandEnd; ++Cand)
4139    if (Cand->Function) {
4140      Functions.erase(Cand->Function);
4141      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4142        Functions.erase(FunTmpl);
4143    }
4144
4145  // For each of the ADL candidates we found, add it to the overload
4146  // set.
4147  for (FunctionSet::iterator Func = Functions.begin(),
4148                          FuncEnd = Functions.end();
4149       Func != FuncEnd; ++Func) {
4150    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
4151      if (ExplicitTemplateArgs)
4152        continue;
4153
4154      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
4155                           false, false, PartialOverloading);
4156    } else
4157      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
4158                                   ExplicitTemplateArgs,
4159                                   Args, NumArgs, CandidateSet);
4160  }
4161}
4162
4163/// isBetterOverloadCandidate - Determines whether the first overload
4164/// candidate is a better candidate than the second (C++ 13.3.3p1).
4165bool
4166Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4167                                const OverloadCandidate& Cand2) {
4168  // Define viable functions to be better candidates than non-viable
4169  // functions.
4170  if (!Cand2.Viable)
4171    return Cand1.Viable;
4172  else if (!Cand1.Viable)
4173    return false;
4174
4175  // C++ [over.match.best]p1:
4176  //
4177  //   -- if F is a static member function, ICS1(F) is defined such
4178  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4179  //      any function G, and, symmetrically, ICS1(G) is neither
4180  //      better nor worse than ICS1(F).
4181  unsigned StartArg = 0;
4182  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4183    StartArg = 1;
4184
4185  // C++ [over.match.best]p1:
4186  //   A viable function F1 is defined to be a better function than another
4187  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4188  //   conversion sequence than ICSi(F2), and then...
4189  unsigned NumArgs = Cand1.Conversions.size();
4190  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4191  bool HasBetterConversion = false;
4192  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4193    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4194                                               Cand2.Conversions[ArgIdx])) {
4195    case ImplicitConversionSequence::Better:
4196      // Cand1 has a better conversion sequence.
4197      HasBetterConversion = true;
4198      break;
4199
4200    case ImplicitConversionSequence::Worse:
4201      // Cand1 can't be better than Cand2.
4202      return false;
4203
4204    case ImplicitConversionSequence::Indistinguishable:
4205      // Do nothing.
4206      break;
4207    }
4208  }
4209
4210  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4211  //       ICSj(F2), or, if not that,
4212  if (HasBetterConversion)
4213    return true;
4214
4215  //     - F1 is a non-template function and F2 is a function template
4216  //       specialization, or, if not that,
4217  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4218      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4219    return true;
4220
4221  //   -- F1 and F2 are function template specializations, and the function
4222  //      template for F1 is more specialized than the template for F2
4223  //      according to the partial ordering rules described in 14.5.5.2, or,
4224  //      if not that,
4225  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4226      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4227    if (FunctionTemplateDecl *BetterTemplate
4228          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4229                                       Cand2.Function->getPrimaryTemplate(),
4230                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4231                                                             : TPOC_Call))
4232      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4233
4234  //   -- the context is an initialization by user-defined conversion
4235  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4236  //      from the return type of F1 to the destination type (i.e.,
4237  //      the type of the entity being initialized) is a better
4238  //      conversion sequence than the standard conversion sequence
4239  //      from the return type of F2 to the destination type.
4240  if (Cand1.Function && Cand2.Function &&
4241      isa<CXXConversionDecl>(Cand1.Function) &&
4242      isa<CXXConversionDecl>(Cand2.Function)) {
4243    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4244                                               Cand2.FinalConversion)) {
4245    case ImplicitConversionSequence::Better:
4246      // Cand1 has a better conversion sequence.
4247      return true;
4248
4249    case ImplicitConversionSequence::Worse:
4250      // Cand1 can't be better than Cand2.
4251      return false;
4252
4253    case ImplicitConversionSequence::Indistinguishable:
4254      // Do nothing
4255      break;
4256    }
4257  }
4258
4259  return false;
4260}
4261
4262/// \brief Computes the best viable function (C++ 13.3.3)
4263/// within an overload candidate set.
4264///
4265/// \param CandidateSet the set of candidate functions.
4266///
4267/// \param Loc the location of the function name (or operator symbol) for
4268/// which overload resolution occurs.
4269///
4270/// \param Best f overload resolution was successful or found a deleted
4271/// function, Best points to the candidate function found.
4272///
4273/// \returns The result of overload resolution.
4274OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4275                                           SourceLocation Loc,
4276                                        OverloadCandidateSet::iterator& Best) {
4277  // Find the best viable function.
4278  Best = CandidateSet.end();
4279  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4280       Cand != CandidateSet.end(); ++Cand) {
4281    if (Cand->Viable) {
4282      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4283        Best = Cand;
4284    }
4285  }
4286
4287  // If we didn't find any viable functions, abort.
4288  if (Best == CandidateSet.end())
4289    return OR_No_Viable_Function;
4290
4291  // Make sure that this function is better than every other viable
4292  // function. If not, we have an ambiguity.
4293  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4294       Cand != CandidateSet.end(); ++Cand) {
4295    if (Cand->Viable &&
4296        Cand != Best &&
4297        !isBetterOverloadCandidate(*Best, *Cand)) {
4298      Best = CandidateSet.end();
4299      return OR_Ambiguous;
4300    }
4301  }
4302
4303  // Best is the best viable function.
4304  if (Best->Function &&
4305      (Best->Function->isDeleted() ||
4306       Best->Function->getAttr<UnavailableAttr>()))
4307    return OR_Deleted;
4308
4309  // C++ [basic.def.odr]p2:
4310  //   An overloaded function is used if it is selected by overload resolution
4311  //   when referred to from a potentially-evaluated expression. [Note: this
4312  //   covers calls to named functions (5.2.2), operator overloading
4313  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4314  //   placement new (5.3.4), as well as non-default initialization (8.5).
4315  if (Best->Function)
4316    MarkDeclarationReferenced(Loc, Best->Function);
4317  return OR_Success;
4318}
4319
4320namespace {
4321
4322enum OverloadCandidateKind {
4323  oc_function,
4324  oc_method,
4325  oc_constructor,
4326  oc_function_template,
4327  oc_method_template,
4328  oc_constructor_template,
4329  oc_implicit_default_constructor,
4330  oc_implicit_copy_constructor,
4331  oc_implicit_copy_assignment
4332};
4333
4334OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4335                                                FunctionDecl *Fn,
4336                                                std::string &Description) {
4337  bool isTemplate = false;
4338
4339  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4340    isTemplate = true;
4341    Description = S.getTemplateArgumentBindingsText(
4342      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4343  }
4344
4345  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4346    if (!Ctor->isImplicit())
4347      return isTemplate ? oc_constructor_template : oc_constructor;
4348
4349    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4350                                     : oc_implicit_default_constructor;
4351  }
4352
4353  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4354    // This actually gets spelled 'candidate function' for now, but
4355    // it doesn't hurt to split it out.
4356    if (!Meth->isImplicit())
4357      return isTemplate ? oc_method_template : oc_method;
4358
4359    assert(Meth->isCopyAssignment()
4360           && "implicit method is not copy assignment operator?");
4361    return oc_implicit_copy_assignment;
4362  }
4363
4364  return isTemplate ? oc_function_template : oc_function;
4365}
4366
4367} // end anonymous namespace
4368
4369// Notes the location of an overload candidate.
4370void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4371  std::string FnDesc;
4372  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4373  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4374    << (unsigned) K << FnDesc;
4375}
4376
4377/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4378/// "lead" diagnostic; it will be given two arguments, the source and
4379/// target types of the conversion.
4380void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4381                                       SourceLocation CaretLoc,
4382                                       const PartialDiagnostic &PDiag) {
4383  Diag(CaretLoc, PDiag)
4384    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4385  for (AmbiguousConversionSequence::const_iterator
4386         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4387    NoteOverloadCandidate(*I);
4388  }
4389}
4390
4391namespace {
4392
4393void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4394  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4395  assert(Conv.isBad());
4396  assert(Cand->Function && "for now, candidate must be a function");
4397  FunctionDecl *Fn = Cand->Function;
4398
4399  // There's a conversion slot for the object argument if this is a
4400  // non-constructor method.  Note that 'I' corresponds the
4401  // conversion-slot index.
4402  bool isObjectArgument = false;
4403  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4404    if (I == 0)
4405      isObjectArgument = true;
4406    else
4407      I--;
4408  }
4409
4410  std::string FnDesc;
4411  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4412
4413  Expr *FromExpr = Conv.Bad.FromExpr;
4414  QualType FromTy = Conv.Bad.getFromType();
4415  QualType ToTy = Conv.Bad.getToType();
4416
4417  // Do some hand-waving analysis to see if the non-viability is due to a
4418  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4419  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4420  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4421    CToTy = RT->getPointeeType();
4422  else {
4423    // TODO: detect and diagnose the full richness of const mismatches.
4424    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4425      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4426        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4427  }
4428
4429  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4430      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4431    // It is dumb that we have to do this here.
4432    while (isa<ArrayType>(CFromTy))
4433      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4434    while (isa<ArrayType>(CToTy))
4435      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4436
4437    Qualifiers FromQs = CFromTy.getQualifiers();
4438    Qualifiers ToQs = CToTy.getQualifiers();
4439
4440    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4441      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4442        << (unsigned) FnKind << FnDesc
4443        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4444        << FromTy
4445        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4446        << (unsigned) isObjectArgument << I+1;
4447      return;
4448    }
4449
4450    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4451    assert(CVR && "unexpected qualifiers mismatch");
4452
4453    if (isObjectArgument) {
4454      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4455        << (unsigned) FnKind << FnDesc
4456        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4457        << FromTy << (CVR - 1);
4458    } else {
4459      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4460        << (unsigned) FnKind << FnDesc
4461        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4462        << FromTy << (CVR - 1) << I+1;
4463    }
4464    return;
4465  }
4466
4467  // TODO: specialize more based on the kind of mismatch
4468  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4469    << (unsigned) FnKind << FnDesc
4470    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4471    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4472}
4473
4474void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4475                           unsigned NumFormalArgs) {
4476  // TODO: treat calls to a missing default constructor as a special case
4477
4478  FunctionDecl *Fn = Cand->Function;
4479  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4480
4481  unsigned MinParams = Fn->getMinRequiredArguments();
4482
4483  // at least / at most / exactly
4484  unsigned mode, modeCount;
4485  if (NumFormalArgs < MinParams) {
4486    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4487    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4488      mode = 0; // "at least"
4489    else
4490      mode = 2; // "exactly"
4491    modeCount = MinParams;
4492  } else {
4493    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4494    if (MinParams != FnTy->getNumArgs())
4495      mode = 1; // "at most"
4496    else
4497      mode = 2; // "exactly"
4498    modeCount = FnTy->getNumArgs();
4499  }
4500
4501  std::string Description;
4502  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4503
4504  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4505    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4506}
4507
4508void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4509                           Expr **Args, unsigned NumArgs) {
4510  FunctionDecl *Fn = Cand->Function;
4511
4512  // Note deleted candidates, but only if they're viable.
4513  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4514    std::string FnDesc;
4515    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4516
4517    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4518      << FnKind << FnDesc << Fn->isDeleted();
4519    return;
4520  }
4521
4522  // We don't really have anything else to say about viable candidates.
4523  if (Cand->Viable) {
4524    S.NoteOverloadCandidate(Fn);
4525    return;
4526  }
4527
4528  switch (Cand->FailureKind) {
4529  case ovl_fail_too_many_arguments:
4530  case ovl_fail_too_few_arguments:
4531    return DiagnoseArityMismatch(S, Cand, NumArgs);
4532
4533  case ovl_fail_bad_deduction:
4534  case ovl_fail_trivial_conversion:
4535  case ovl_fail_bad_final_conversion:
4536    return S.NoteOverloadCandidate(Fn);
4537
4538  case ovl_fail_bad_conversion:
4539    for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I)
4540      if (Cand->Conversions[I].isBad())
4541        return DiagnoseBadConversion(S, Cand, I);
4542
4543    // FIXME: this currently happens when we're called from SemaInit
4544    // when user-conversion overload fails.  Figure out how to handle
4545    // those conditions and diagnose them well.
4546    return S.NoteOverloadCandidate(Fn);
4547  }
4548}
4549
4550void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4551  // Desugar the type of the surrogate down to a function type,
4552  // retaining as many typedefs as possible while still showing
4553  // the function type (and, therefore, its parameter types).
4554  QualType FnType = Cand->Surrogate->getConversionType();
4555  bool isLValueReference = false;
4556  bool isRValueReference = false;
4557  bool isPointer = false;
4558  if (const LValueReferenceType *FnTypeRef =
4559        FnType->getAs<LValueReferenceType>()) {
4560    FnType = FnTypeRef->getPointeeType();
4561    isLValueReference = true;
4562  } else if (const RValueReferenceType *FnTypeRef =
4563               FnType->getAs<RValueReferenceType>()) {
4564    FnType = FnTypeRef->getPointeeType();
4565    isRValueReference = true;
4566  }
4567  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4568    FnType = FnTypePtr->getPointeeType();
4569    isPointer = true;
4570  }
4571  // Desugar down to a function type.
4572  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4573  // Reconstruct the pointer/reference as appropriate.
4574  if (isPointer) FnType = S.Context.getPointerType(FnType);
4575  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4576  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4577
4578  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4579    << FnType;
4580}
4581
4582void NoteBuiltinOperatorCandidate(Sema &S,
4583                                  const char *Opc,
4584                                  SourceLocation OpLoc,
4585                                  OverloadCandidate *Cand) {
4586  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4587  std::string TypeStr("operator");
4588  TypeStr += Opc;
4589  TypeStr += "(";
4590  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4591  if (Cand->Conversions.size() == 1) {
4592    TypeStr += ")";
4593    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4594  } else {
4595    TypeStr += ", ";
4596    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4597    TypeStr += ")";
4598    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4599  }
4600}
4601
4602void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4603                                  OverloadCandidate *Cand) {
4604  unsigned NoOperands = Cand->Conversions.size();
4605  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4606    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4607    if (ICS.isBad()) break; // all meaningless after first invalid
4608    if (!ICS.isAmbiguous()) continue;
4609
4610    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4611                              PDiag(diag::note_ambiguous_type_conversion));
4612  }
4613}
4614
4615SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4616  if (Cand->Function)
4617    return Cand->Function->getLocation();
4618  if (Cand->IsSurrogate)
4619    return Cand->Surrogate->getLocation();
4620  return SourceLocation();
4621}
4622
4623struct CompareOverloadCandidatesForDisplay {
4624  Sema &S;
4625  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4626
4627  bool operator()(const OverloadCandidate *L,
4628                  const OverloadCandidate *R) {
4629    // Fast-path this check.
4630    if (L == R) return false;
4631
4632    // Order first by viability.
4633    if (L->Viable) {
4634      if (!R->Viable) return true;
4635
4636      // TODO: introduce a tri-valued comparison for overload
4637      // candidates.  Would be more worthwhile if we had a sort
4638      // that could exploit it.
4639      if (S.isBetterOverloadCandidate(*L, *R)) return true;
4640      if (S.isBetterOverloadCandidate(*R, *L)) return false;
4641    } else if (R->Viable)
4642      return false;
4643
4644    assert(L->Viable == R->Viable);
4645
4646    // Criteria by which we can sort non-viable candidates:
4647    if (!L->Viable) {
4648      // 1. Arity mismatches come after other candidates.
4649      if (L->FailureKind == ovl_fail_too_many_arguments ||
4650          L->FailureKind == ovl_fail_too_few_arguments)
4651        return false;
4652      if (R->FailureKind == ovl_fail_too_many_arguments ||
4653          R->FailureKind == ovl_fail_too_few_arguments)
4654        return true;
4655
4656      // 2. Bad conversions come first and are ordered by the number
4657      // of bad conversions and quality of good conversions.
4658      if (L->FailureKind == ovl_fail_bad_conversion) {
4659        if (R->FailureKind != ovl_fail_bad_conversion)
4660          return true;
4661
4662        // If there's any ordering between the defined conversions...
4663        // FIXME: this might not be transitive.
4664        assert(L->Conversions.size() == R->Conversions.size());
4665
4666        int leftBetter = 0;
4667        for (unsigned I = 0, E = L->Conversions.size(); I != E; ++I) {
4668          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4669                                                       R->Conversions[I])) {
4670          case ImplicitConversionSequence::Better:
4671            leftBetter++;
4672            break;
4673
4674          case ImplicitConversionSequence::Worse:
4675            leftBetter--;
4676            break;
4677
4678          case ImplicitConversionSequence::Indistinguishable:
4679            break;
4680          }
4681        }
4682        if (leftBetter > 0) return true;
4683        if (leftBetter < 0) return false;
4684
4685      } else if (R->FailureKind == ovl_fail_bad_conversion)
4686        return false;
4687
4688      // TODO: others?
4689    }
4690
4691    // Sort everything else by location.
4692    SourceLocation LLoc = GetLocationForCandidate(L);
4693    SourceLocation RLoc = GetLocationForCandidate(R);
4694
4695    // Put candidates without locations (e.g. builtins) at the end.
4696    if (LLoc.isInvalid()) return false;
4697    if (RLoc.isInvalid()) return true;
4698
4699    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4700  }
4701};
4702
4703/// CompleteNonViableCandidate - Normally, overload resolution only
4704/// computes up to the first
4705void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4706                                Expr **Args, unsigned NumArgs) {
4707  assert(!Cand->Viable);
4708
4709  // Don't do anything on failures other than bad conversion.
4710  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4711
4712  // Skip forward to the first bad conversion.
4713  unsigned ConvIdx = 0;
4714  unsigned ConvCount = Cand->Conversions.size();
4715  while (true) {
4716    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4717    ConvIdx++;
4718    if (Cand->Conversions[ConvIdx - 1].isBad())
4719      break;
4720  }
4721
4722  if (ConvIdx == ConvCount)
4723    return;
4724
4725  // FIXME: these should probably be preserved from the overload
4726  // operation somehow.
4727  bool SuppressUserConversions = false;
4728  bool ForceRValue = false;
4729
4730  const FunctionProtoType* Proto;
4731  unsigned ArgIdx = ConvIdx;
4732
4733  if (Cand->IsSurrogate) {
4734    QualType ConvType
4735      = Cand->Surrogate->getConversionType().getNonReferenceType();
4736    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4737      ConvType = ConvPtrType->getPointeeType();
4738    Proto = ConvType->getAs<FunctionProtoType>();
4739    ArgIdx--;
4740  } else if (Cand->Function) {
4741    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4742    if (isa<CXXMethodDecl>(Cand->Function) &&
4743        !isa<CXXConstructorDecl>(Cand->Function))
4744      ArgIdx--;
4745  } else {
4746    // Builtin binary operator with a bad first conversion.
4747    assert(ConvCount <= 3);
4748    for (; ConvIdx != ConvCount; ++ConvIdx)
4749      Cand->Conversions[ConvIdx]
4750        = S.TryCopyInitialization(Args[ConvIdx],
4751                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4752                                  SuppressUserConversions, ForceRValue,
4753                                  /*InOverloadResolution*/ true);
4754    return;
4755  }
4756
4757  // Fill in the rest of the conversions.
4758  unsigned NumArgsInProto = Proto->getNumArgs();
4759  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4760    if (ArgIdx < NumArgsInProto)
4761      Cand->Conversions[ConvIdx]
4762        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4763                                  SuppressUserConversions, ForceRValue,
4764                                  /*InOverloadResolution=*/true);
4765    else
4766      Cand->Conversions[ConvIdx].setEllipsis();
4767  }
4768}
4769
4770} // end anonymous namespace
4771
4772/// PrintOverloadCandidates - When overload resolution fails, prints
4773/// diagnostic messages containing the candidates in the candidate
4774/// set.
4775void
4776Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4777                              OverloadCandidateDisplayKind OCD,
4778                              Expr **Args, unsigned NumArgs,
4779                              const char *Opc,
4780                              SourceLocation OpLoc) {
4781  // Sort the candidates by viability and position.  Sorting directly would
4782  // be prohibitive, so we make a set of pointers and sort those.
4783  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4784  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4785  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4786                                  LastCand = CandidateSet.end();
4787       Cand != LastCand; ++Cand) {
4788    if (Cand->Viable)
4789      Cands.push_back(Cand);
4790    else if (OCD == OCD_AllCandidates) {
4791      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4792      Cands.push_back(Cand);
4793    }
4794  }
4795
4796  std::sort(Cands.begin(), Cands.end(),
4797            CompareOverloadCandidatesForDisplay(*this));
4798
4799  bool ReportedAmbiguousConversions = false;
4800
4801  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4802  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4803    OverloadCandidate *Cand = *I;
4804
4805    if (Cand->Function)
4806      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4807    else if (Cand->IsSurrogate)
4808      NoteSurrogateCandidate(*this, Cand);
4809
4810    // This a builtin candidate.  We do not, in general, want to list
4811    // every possible builtin candidate.
4812    else if (Cand->Viable) {
4813      // Generally we only see ambiguities including viable builtin
4814      // operators if overload resolution got screwed up by an
4815      // ambiguous user-defined conversion.
4816      //
4817      // FIXME: It's quite possible for different conversions to see
4818      // different ambiguities, though.
4819      if (!ReportedAmbiguousConversions) {
4820        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4821        ReportedAmbiguousConversions = true;
4822      }
4823
4824      // If this is a viable builtin, print it.
4825      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4826    }
4827  }
4828}
4829
4830/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4831/// an overloaded function (C++ [over.over]), where @p From is an
4832/// expression with overloaded function type and @p ToType is the type
4833/// we're trying to resolve to. For example:
4834///
4835/// @code
4836/// int f(double);
4837/// int f(int);
4838///
4839/// int (*pfd)(double) = f; // selects f(double)
4840/// @endcode
4841///
4842/// This routine returns the resulting FunctionDecl if it could be
4843/// resolved, and NULL otherwise. When @p Complain is true, this
4844/// routine will emit diagnostics if there is an error.
4845FunctionDecl *
4846Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4847                                         bool Complain) {
4848  QualType FunctionType = ToType;
4849  bool IsMember = false;
4850  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4851    FunctionType = ToTypePtr->getPointeeType();
4852  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4853    FunctionType = ToTypeRef->getPointeeType();
4854  else if (const MemberPointerType *MemTypePtr =
4855                    ToType->getAs<MemberPointerType>()) {
4856    FunctionType = MemTypePtr->getPointeeType();
4857    IsMember = true;
4858  }
4859
4860  // We only look at pointers or references to functions.
4861  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4862  if (!FunctionType->isFunctionType())
4863    return 0;
4864
4865  // Find the actual overloaded function declaration.
4866
4867  // C++ [over.over]p1:
4868  //   [...] [Note: any redundant set of parentheses surrounding the
4869  //   overloaded function name is ignored (5.1). ]
4870  Expr *OvlExpr = From->IgnoreParens();
4871
4872  // C++ [over.over]p1:
4873  //   [...] The overloaded function name can be preceded by the &
4874  //   operator.
4875  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4876    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4877      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4878  }
4879
4880  bool HasExplicitTemplateArgs = false;
4881  TemplateArgumentListInfo ExplicitTemplateArgs;
4882
4883  llvm::SmallVector<NamedDecl*,8> Fns;
4884
4885  // Look into the overloaded expression.
4886  if (UnresolvedLookupExpr *UL
4887               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4888    Fns.append(UL->decls_begin(), UL->decls_end());
4889    if (UL->hasExplicitTemplateArgs()) {
4890      HasExplicitTemplateArgs = true;
4891      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4892    }
4893  } else if (UnresolvedMemberExpr *ME
4894               = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
4895    Fns.append(ME->decls_begin(), ME->decls_end());
4896    if (ME->hasExplicitTemplateArgs()) {
4897      HasExplicitTemplateArgs = true;
4898      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4899    }
4900  }
4901
4902  // If we didn't actually find anything, we're done.
4903  if (Fns.empty())
4904    return 0;
4905
4906  // Look through all of the overloaded functions, searching for one
4907  // whose type matches exactly.
4908  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4909  bool FoundNonTemplateFunction = false;
4910  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4911         E = Fns.end(); I != E; ++I) {
4912    // Look through any using declarations to find the underlying function.
4913    NamedDecl *Fn = (*I)->getUnderlyingDecl();
4914
4915    // C++ [over.over]p3:
4916    //   Non-member functions and static member functions match
4917    //   targets of type "pointer-to-function" or "reference-to-function."
4918    //   Nonstatic member functions match targets of
4919    //   type "pointer-to-member-function."
4920    // Note that according to DR 247, the containing class does not matter.
4921
4922    if (FunctionTemplateDecl *FunctionTemplate
4923          = dyn_cast<FunctionTemplateDecl>(Fn)) {
4924      if (CXXMethodDecl *Method
4925            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4926        // Skip non-static function templates when converting to pointer, and
4927        // static when converting to member pointer.
4928        if (Method->isStatic() == IsMember)
4929          continue;
4930      } else if (IsMember)
4931        continue;
4932
4933      // C++ [over.over]p2:
4934      //   If the name is a function template, template argument deduction is
4935      //   done (14.8.2.2), and if the argument deduction succeeds, the
4936      //   resulting template argument list is used to generate a single
4937      //   function template specialization, which is added to the set of
4938      //   overloaded functions considered.
4939      // FIXME: We don't really want to build the specialization here, do we?
4940      FunctionDecl *Specialization = 0;
4941      TemplateDeductionInfo Info(Context);
4942      if (TemplateDeductionResult Result
4943            = DeduceTemplateArguments(FunctionTemplate,
4944                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
4945                                      FunctionType, Specialization, Info)) {
4946        // FIXME: make a note of the failed deduction for diagnostics.
4947        (void)Result;
4948      } else {
4949        // FIXME: If the match isn't exact, shouldn't we just drop this as
4950        // a candidate? Find a testcase before changing the code.
4951        assert(FunctionType
4952                 == Context.getCanonicalType(Specialization->getType()));
4953        Matches.insert(
4954                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4955      }
4956
4957      continue;
4958    }
4959
4960    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4961      // Skip non-static functions when converting to pointer, and static
4962      // when converting to member pointer.
4963      if (Method->isStatic() == IsMember)
4964        continue;
4965
4966      // If we have explicit template arguments, skip non-templates.
4967      if (HasExplicitTemplateArgs)
4968        continue;
4969    } else if (IsMember)
4970      continue;
4971
4972    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
4973      QualType ResultTy;
4974      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
4975          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
4976                               ResultTy)) {
4977        Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl()));
4978        FoundNonTemplateFunction = true;
4979      }
4980    }
4981  }
4982
4983  // If there were 0 or 1 matches, we're done.
4984  if (Matches.empty())
4985    return 0;
4986  else if (Matches.size() == 1) {
4987    FunctionDecl *Result = *Matches.begin();
4988    MarkDeclarationReferenced(From->getLocStart(), Result);
4989    return Result;
4990  }
4991
4992  // C++ [over.over]p4:
4993  //   If more than one function is selected, [...]
4994  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4995  if (!FoundNonTemplateFunction) {
4996    //   [...] and any given function template specialization F1 is
4997    //   eliminated if the set contains a second function template
4998    //   specialization whose function template is more specialized
4999    //   than the function template of F1 according to the partial
5000    //   ordering rules of 14.5.5.2.
5001
5002    // The algorithm specified above is quadratic. We instead use a
5003    // two-pass algorithm (similar to the one used to identify the
5004    // best viable function in an overload set) that identifies the
5005    // best function template (if it exists).
5006    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
5007                                                         Matches.end());
5008    FunctionDecl *Result =
5009        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
5010                           TPOC_Other, From->getLocStart(),
5011                           PDiag(),
5012                           PDiag(diag::err_addr_ovl_ambiguous)
5013                               << TemplateMatches[0]->getDeclName(),
5014                           PDiag(diag::note_ovl_candidate)
5015                               << (unsigned) oc_function_template);
5016    MarkDeclarationReferenced(From->getLocStart(), Result);
5017    return Result;
5018  }
5019
5020  //   [...] any function template specializations in the set are
5021  //   eliminated if the set also contains a non-template function, [...]
5022  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
5023  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
5024    if ((*M)->getPrimaryTemplate() == 0)
5025      RemainingMatches.push_back(*M);
5026
5027  // [...] After such eliminations, if any, there shall remain exactly one
5028  // selected function.
5029  if (RemainingMatches.size() == 1) {
5030    FunctionDecl *Result = RemainingMatches.front();
5031    MarkDeclarationReferenced(From->getLocStart(), Result);
5032    return Result;
5033  }
5034
5035  // FIXME: We should probably return the same thing that BestViableFunction
5036  // returns (even if we issue the diagnostics here).
5037  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5038    << RemainingMatches[0]->getDeclName();
5039  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
5040    NoteOverloadCandidate(RemainingMatches[I]);
5041  return 0;
5042}
5043
5044/// \brief Given an expression that refers to an overloaded function, try to
5045/// resolve that overloaded function expression down to a single function.
5046///
5047/// This routine can only resolve template-ids that refer to a single function
5048/// template, where that template-id refers to a single template whose template
5049/// arguments are either provided by the template-id or have defaults,
5050/// as described in C++0x [temp.arg.explicit]p3.
5051FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5052  // C++ [over.over]p1:
5053  //   [...] [Note: any redundant set of parentheses surrounding the
5054  //   overloaded function name is ignored (5.1). ]
5055  Expr *OvlExpr = From->IgnoreParens();
5056
5057  // C++ [over.over]p1:
5058  //   [...] The overloaded function name can be preceded by the &
5059  //   operator.
5060  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
5061    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
5062      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
5063  }
5064
5065  bool HasExplicitTemplateArgs = false;
5066  TemplateArgumentListInfo ExplicitTemplateArgs;
5067
5068  llvm::SmallVector<NamedDecl*,8> Fns;
5069
5070  // Look into the overloaded expression.
5071  if (UnresolvedLookupExpr *UL
5072      = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
5073    Fns.append(UL->decls_begin(), UL->decls_end());
5074    if (UL->hasExplicitTemplateArgs()) {
5075      HasExplicitTemplateArgs = true;
5076      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
5077    }
5078  } else if (UnresolvedMemberExpr *ME
5079             = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
5080    Fns.append(ME->decls_begin(), ME->decls_end());
5081    if (ME->hasExplicitTemplateArgs()) {
5082      HasExplicitTemplateArgs = true;
5083      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
5084    }
5085  }
5086
5087  // If we didn't actually find any template-ids, we're done.
5088  if (Fns.empty() || !HasExplicitTemplateArgs)
5089    return 0;
5090
5091  // Look through all of the overloaded functions, searching for one
5092  // whose type matches exactly.
5093  FunctionDecl *Matched = 0;
5094  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
5095       E = Fns.end(); I != E; ++I) {
5096    // C++0x [temp.arg.explicit]p3:
5097    //   [...] In contexts where deduction is done and fails, or in contexts
5098    //   where deduction is not done, if a template argument list is
5099    //   specified and it, along with any default template arguments,
5100    //   identifies a single function template specialization, then the
5101    //   template-id is an lvalue for the function template specialization.
5102    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5103
5104    // C++ [over.over]p2:
5105    //   If the name is a function template, template argument deduction is
5106    //   done (14.8.2.2), and if the argument deduction succeeds, the
5107    //   resulting template argument list is used to generate a single
5108    //   function template specialization, which is added to the set of
5109    //   overloaded functions considered.
5110    FunctionDecl *Specialization = 0;
5111    TemplateDeductionInfo Info(Context);
5112    if (TemplateDeductionResult Result
5113          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5114                                    Specialization, Info)) {
5115      // FIXME: make a note of the failed deduction for diagnostics.
5116      (void)Result;
5117      continue;
5118    }
5119
5120    // Multiple matches; we can't resolve to a single declaration.
5121    if (Matched)
5122      return 0;
5123
5124    Matched = Specialization;
5125  }
5126
5127  return Matched;
5128}
5129
5130/// \brief Add a single candidate to the overload set.
5131static void AddOverloadedCallCandidate(Sema &S,
5132                                       NamedDecl *Callee,
5133                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5134                                       Expr **Args, unsigned NumArgs,
5135                                       OverloadCandidateSet &CandidateSet,
5136                                       bool PartialOverloading) {
5137  if (isa<UsingShadowDecl>(Callee))
5138    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5139
5140  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5141    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5142    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
5143                           PartialOverloading);
5144    return;
5145  }
5146
5147  if (FunctionTemplateDecl *FuncTemplate
5148      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5149    S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs,
5150                                   Args, NumArgs, CandidateSet);
5151    return;
5152  }
5153
5154  assert(false && "unhandled case in overloaded call candidate");
5155
5156  // do nothing?
5157}
5158
5159/// \brief Add the overload candidates named by callee and/or found by argument
5160/// dependent lookup to the given overload set.
5161void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5162                                       Expr **Args, unsigned NumArgs,
5163                                       OverloadCandidateSet &CandidateSet,
5164                                       bool PartialOverloading) {
5165
5166#ifndef NDEBUG
5167  // Verify that ArgumentDependentLookup is consistent with the rules
5168  // in C++0x [basic.lookup.argdep]p3:
5169  //
5170  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5171  //   and let Y be the lookup set produced by argument dependent
5172  //   lookup (defined as follows). If X contains
5173  //
5174  //     -- a declaration of a class member, or
5175  //
5176  //     -- a block-scope function declaration that is not a
5177  //        using-declaration, or
5178  //
5179  //     -- a declaration that is neither a function or a function
5180  //        template
5181  //
5182  //   then Y is empty.
5183
5184  if (ULE->requiresADL()) {
5185    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5186           E = ULE->decls_end(); I != E; ++I) {
5187      assert(!(*I)->getDeclContext()->isRecord());
5188      assert(isa<UsingShadowDecl>(*I) ||
5189             !(*I)->getDeclContext()->isFunctionOrMethod());
5190      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5191    }
5192  }
5193#endif
5194
5195  // It would be nice to avoid this copy.
5196  TemplateArgumentListInfo TABuffer;
5197  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5198  if (ULE->hasExplicitTemplateArgs()) {
5199    ULE->copyTemplateArgumentsInto(TABuffer);
5200    ExplicitTemplateArgs = &TABuffer;
5201  }
5202
5203  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5204         E = ULE->decls_end(); I != E; ++I)
5205    AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs,
5206                               Args, NumArgs, CandidateSet,
5207                               PartialOverloading);
5208
5209  if (ULE->requiresADL())
5210    AddArgumentDependentLookupCandidates(ULE->getName(), Args, NumArgs,
5211                                         ExplicitTemplateArgs,
5212                                         CandidateSet,
5213                                         PartialOverloading);
5214}
5215
5216static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5217                                      Expr **Args, unsigned NumArgs) {
5218  Fn->Destroy(SemaRef.Context);
5219  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5220    Args[Arg]->Destroy(SemaRef.Context);
5221  return SemaRef.ExprError();
5222}
5223
5224/// Attempts to recover from a call where no functions were found.
5225///
5226/// Returns true if new candidates were found.
5227static Sema::OwningExprResult
5228BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5229                      UnresolvedLookupExpr *ULE,
5230                      SourceLocation LParenLoc,
5231                      Expr **Args, unsigned NumArgs,
5232                      SourceLocation *CommaLocs,
5233                      SourceLocation RParenLoc) {
5234
5235  CXXScopeSpec SS;
5236  if (ULE->getQualifier()) {
5237    SS.setScopeRep(ULE->getQualifier());
5238    SS.setRange(ULE->getQualifierRange());
5239  }
5240
5241  TemplateArgumentListInfo TABuffer;
5242  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5243  if (ULE->hasExplicitTemplateArgs()) {
5244    ULE->copyTemplateArgumentsInto(TABuffer);
5245    ExplicitTemplateArgs = &TABuffer;
5246  }
5247
5248  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5249                 Sema::LookupOrdinaryName);
5250  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5251    return Destroy(SemaRef, Fn, Args, NumArgs);
5252
5253  assert(!R.empty() && "lookup results empty despite recovery");
5254
5255  // Build an implicit member call if appropriate.  Just drop the
5256  // casts and such from the call, we don't really care.
5257  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5258  if ((*R.begin())->isCXXClassMember())
5259    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5260  else if (ExplicitTemplateArgs)
5261    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5262  else
5263    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5264
5265  if (NewFn.isInvalid())
5266    return Destroy(SemaRef, Fn, Args, NumArgs);
5267
5268  Fn->Destroy(SemaRef.Context);
5269
5270  // This shouldn't cause an infinite loop because we're giving it
5271  // an expression with non-empty lookup results, which should never
5272  // end up here.
5273  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5274                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5275                               CommaLocs, RParenLoc);
5276}
5277
5278/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5279/// (which eventually refers to the declaration Func) and the call
5280/// arguments Args/NumArgs, attempt to resolve the function call down
5281/// to a specific function. If overload resolution succeeds, returns
5282/// the function declaration produced by overload
5283/// resolution. Otherwise, emits diagnostics, deletes all of the
5284/// arguments and Fn, and returns NULL.
5285Sema::OwningExprResult
5286Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5287                              SourceLocation LParenLoc,
5288                              Expr **Args, unsigned NumArgs,
5289                              SourceLocation *CommaLocs,
5290                              SourceLocation RParenLoc) {
5291#ifndef NDEBUG
5292  if (ULE->requiresADL()) {
5293    // To do ADL, we must have found an unqualified name.
5294    assert(!ULE->getQualifier() && "qualified name with ADL");
5295
5296    // We don't perform ADL for implicit declarations of builtins.
5297    // Verify that this was correctly set up.
5298    FunctionDecl *F;
5299    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5300        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5301        F->getBuiltinID() && F->isImplicit())
5302      assert(0 && "performing ADL for builtin");
5303
5304    // We don't perform ADL in C.
5305    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5306  }
5307#endif
5308
5309  OverloadCandidateSet CandidateSet;
5310
5311  // Add the functions denoted by the callee to the set of candidate
5312  // functions, including those from argument-dependent lookup.
5313  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5314
5315  // If we found nothing, try to recover.
5316  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5317  // bailout out if it fails.
5318  if (CandidateSet.empty())
5319    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5320                                 CommaLocs, RParenLoc);
5321
5322  OverloadCandidateSet::iterator Best;
5323  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5324  case OR_Success: {
5325    FunctionDecl *FDecl = Best->Function;
5326    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5327    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5328  }
5329
5330  case OR_No_Viable_Function:
5331    Diag(Fn->getSourceRange().getBegin(),
5332         diag::err_ovl_no_viable_function_in_call)
5333      << ULE->getName() << Fn->getSourceRange();
5334    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5335    break;
5336
5337  case OR_Ambiguous:
5338    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5339      << ULE->getName() << Fn->getSourceRange();
5340    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5341    break;
5342
5343  case OR_Deleted:
5344    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5345      << Best->Function->isDeleted()
5346      << ULE->getName()
5347      << Fn->getSourceRange();
5348    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5349    break;
5350  }
5351
5352  // Overload resolution failed. Destroy all of the subexpressions and
5353  // return NULL.
5354  Fn->Destroy(Context);
5355  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5356    Args[Arg]->Destroy(Context);
5357  return ExprError();
5358}
5359
5360static bool IsOverloaded(const Sema::FunctionSet &Functions) {
5361  return Functions.size() > 1 ||
5362    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5363}
5364
5365/// \brief Create a unary operation that may resolve to an overloaded
5366/// operator.
5367///
5368/// \param OpLoc The location of the operator itself (e.g., '*').
5369///
5370/// \param OpcIn The UnaryOperator::Opcode that describes this
5371/// operator.
5372///
5373/// \param Functions The set of non-member functions that will be
5374/// considered by overload resolution. The caller needs to build this
5375/// set based on the context using, e.g.,
5376/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5377/// set should not contain any member functions; those will be added
5378/// by CreateOverloadedUnaryOp().
5379///
5380/// \param input The input argument.
5381Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
5382                                                     unsigned OpcIn,
5383                                                     FunctionSet &Functions,
5384                                                     ExprArg input) {
5385  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5386  Expr *Input = (Expr *)input.get();
5387
5388  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5389  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5390  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5391
5392  Expr *Args[2] = { Input, 0 };
5393  unsigned NumArgs = 1;
5394
5395  // For post-increment and post-decrement, add the implicit '0' as
5396  // the second argument, so that we know this is a post-increment or
5397  // post-decrement.
5398  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5399    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5400    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5401                                           SourceLocation());
5402    NumArgs = 2;
5403  }
5404
5405  if (Input->isTypeDependent()) {
5406    UnresolvedLookupExpr *Fn
5407      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5408                                     0, SourceRange(), OpName, OpLoc,
5409                                     /*ADL*/ true, IsOverloaded(Functions));
5410    for (FunctionSet::iterator Func = Functions.begin(),
5411                            FuncEnd = Functions.end();
5412         Func != FuncEnd; ++Func)
5413      Fn->addDecl(*Func);
5414
5415    input.release();
5416    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5417                                                   &Args[0], NumArgs,
5418                                                   Context.DependentTy,
5419                                                   OpLoc));
5420  }
5421
5422  // Build an empty overload set.
5423  OverloadCandidateSet CandidateSet;
5424
5425  // Add the candidates from the given function set.
5426  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
5427
5428  // Add operator candidates that are member functions.
5429  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5430
5431  // Add builtin operator candidates.
5432  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5433
5434  // Perform overload resolution.
5435  OverloadCandidateSet::iterator Best;
5436  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5437  case OR_Success: {
5438    // We found a built-in operator or an overloaded operator.
5439    FunctionDecl *FnDecl = Best->Function;
5440
5441    if (FnDecl) {
5442      // We matched an overloaded operator. Build a call to that
5443      // operator.
5444
5445      // Convert the arguments.
5446      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5447        if (PerformObjectArgumentInitialization(Input, Method))
5448          return ExprError();
5449      } else {
5450        // Convert the arguments.
5451        OwningExprResult InputInit
5452          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5453                                                      FnDecl->getParamDecl(0)),
5454                                      SourceLocation(),
5455                                      move(input));
5456        if (InputInit.isInvalid())
5457          return ExprError();
5458
5459        input = move(InputInit);
5460        Input = (Expr *)input.get();
5461      }
5462
5463      // Determine the result type
5464      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5465
5466      // Build the actual expression node.
5467      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5468                                               SourceLocation());
5469      UsualUnaryConversions(FnExpr);
5470
5471      input.release();
5472      Args[0] = Input;
5473      ExprOwningPtr<CallExpr> TheCall(this,
5474        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5475                                          Args, NumArgs, ResultTy, OpLoc));
5476
5477      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5478                              FnDecl))
5479        return ExprError();
5480
5481      return MaybeBindToTemporary(TheCall.release());
5482    } else {
5483      // We matched a built-in operator. Convert the arguments, then
5484      // break out so that we will build the appropriate built-in
5485      // operator node.
5486        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5487                                      Best->Conversions[0], AA_Passing))
5488          return ExprError();
5489
5490        break;
5491      }
5492    }
5493
5494    case OR_No_Viable_Function:
5495      // No viable function; fall through to handling this as a
5496      // built-in operator, which will produce an error message for us.
5497      break;
5498
5499    case OR_Ambiguous:
5500      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5501          << UnaryOperator::getOpcodeStr(Opc)
5502          << Input->getSourceRange();
5503      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5504                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5505      return ExprError();
5506
5507    case OR_Deleted:
5508      Diag(OpLoc, diag::err_ovl_deleted_oper)
5509        << Best->Function->isDeleted()
5510        << UnaryOperator::getOpcodeStr(Opc)
5511        << Input->getSourceRange();
5512      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5513      return ExprError();
5514    }
5515
5516  // Either we found no viable overloaded operator or we matched a
5517  // built-in operator. In either case, fall through to trying to
5518  // build a built-in operation.
5519  input.release();
5520  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5521}
5522
5523/// \brief Create a binary operation that may resolve to an overloaded
5524/// operator.
5525///
5526/// \param OpLoc The location of the operator itself (e.g., '+').
5527///
5528/// \param OpcIn The BinaryOperator::Opcode that describes this
5529/// operator.
5530///
5531/// \param Functions The set of non-member functions that will be
5532/// considered by overload resolution. The caller needs to build this
5533/// set based on the context using, e.g.,
5534/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5535/// set should not contain any member functions; those will be added
5536/// by CreateOverloadedBinOp().
5537///
5538/// \param LHS Left-hand argument.
5539/// \param RHS Right-hand argument.
5540Sema::OwningExprResult
5541Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5542                            unsigned OpcIn,
5543                            FunctionSet &Functions,
5544                            Expr *LHS, Expr *RHS) {
5545  Expr *Args[2] = { LHS, RHS };
5546  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5547
5548  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5549  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5550  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5551
5552  // If either side is type-dependent, create an appropriate dependent
5553  // expression.
5554  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5555    if (Functions.empty()) {
5556      // If there are no functions to store, just build a dependent
5557      // BinaryOperator or CompoundAssignment.
5558      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5559        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5560                                                  Context.DependentTy, OpLoc));
5561
5562      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5563                                                        Context.DependentTy,
5564                                                        Context.DependentTy,
5565                                                        Context.DependentTy,
5566                                                        OpLoc));
5567    }
5568
5569    UnresolvedLookupExpr *Fn
5570      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5571                                     0, SourceRange(), OpName, OpLoc,
5572                                     /* ADL */ true, IsOverloaded(Functions));
5573
5574    for (FunctionSet::iterator Func = Functions.begin(),
5575                            FuncEnd = Functions.end();
5576         Func != FuncEnd; ++Func)
5577      Fn->addDecl(*Func);
5578
5579    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5580                                                   Args, 2,
5581                                                   Context.DependentTy,
5582                                                   OpLoc));
5583  }
5584
5585  // If this is the .* operator, which is not overloadable, just
5586  // create a built-in binary operator.
5587  if (Opc == BinaryOperator::PtrMemD)
5588    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5589
5590  // If this is the assignment operator, we only perform overload resolution
5591  // if the left-hand side is a class or enumeration type. This is actually
5592  // a hack. The standard requires that we do overload resolution between the
5593  // various built-in candidates, but as DR507 points out, this can lead to
5594  // problems. So we do it this way, which pretty much follows what GCC does.
5595  // Note that we go the traditional code path for compound assignment forms.
5596  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5597    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5598
5599  // Build an empty overload set.
5600  OverloadCandidateSet CandidateSet;
5601
5602  // Add the candidates from the given function set.
5603  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
5604
5605  // Add operator candidates that are member functions.
5606  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5607
5608  // Add builtin operator candidates.
5609  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5610
5611  // Perform overload resolution.
5612  OverloadCandidateSet::iterator Best;
5613  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5614    case OR_Success: {
5615      // We found a built-in operator or an overloaded operator.
5616      FunctionDecl *FnDecl = Best->Function;
5617
5618      if (FnDecl) {
5619        // We matched an overloaded operator. Build a call to that
5620        // operator.
5621
5622        // Convert the arguments.
5623        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5624          OwningExprResult Arg1
5625            = PerformCopyInitialization(
5626                                        InitializedEntity::InitializeParameter(
5627                                                        FnDecl->getParamDecl(0)),
5628                                        SourceLocation(),
5629                                        Owned(Args[1]));
5630          if (Arg1.isInvalid())
5631            return ExprError();
5632
5633          if (PerformObjectArgumentInitialization(Args[0], Method))
5634            return ExprError();
5635
5636          Args[1] = RHS = Arg1.takeAs<Expr>();
5637        } else {
5638          // Convert the arguments.
5639          OwningExprResult Arg0
5640            = PerformCopyInitialization(
5641                                        InitializedEntity::InitializeParameter(
5642                                                        FnDecl->getParamDecl(0)),
5643                                        SourceLocation(),
5644                                        Owned(Args[0]));
5645          if (Arg0.isInvalid())
5646            return ExprError();
5647
5648          OwningExprResult Arg1
5649            = PerformCopyInitialization(
5650                                        InitializedEntity::InitializeParameter(
5651                                                        FnDecl->getParamDecl(1)),
5652                                        SourceLocation(),
5653                                        Owned(Args[1]));
5654          if (Arg1.isInvalid())
5655            return ExprError();
5656          Args[0] = LHS = Arg0.takeAs<Expr>();
5657          Args[1] = RHS = Arg1.takeAs<Expr>();
5658        }
5659
5660        // Determine the result type
5661        QualType ResultTy
5662          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5663        ResultTy = ResultTy.getNonReferenceType();
5664
5665        // Build the actual expression node.
5666        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5667                                                 OpLoc);
5668        UsualUnaryConversions(FnExpr);
5669
5670        ExprOwningPtr<CXXOperatorCallExpr>
5671          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5672                                                          Args, 2, ResultTy,
5673                                                          OpLoc));
5674
5675        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5676                                FnDecl))
5677          return ExprError();
5678
5679        return MaybeBindToTemporary(TheCall.release());
5680      } else {
5681        // We matched a built-in operator. Convert the arguments, then
5682        // break out so that we will build the appropriate built-in
5683        // operator node.
5684        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5685                                      Best->Conversions[0], AA_Passing) ||
5686            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5687                                      Best->Conversions[1], AA_Passing))
5688          return ExprError();
5689
5690        break;
5691      }
5692    }
5693
5694    case OR_No_Viable_Function: {
5695      // C++ [over.match.oper]p9:
5696      //   If the operator is the operator , [...] and there are no
5697      //   viable functions, then the operator is assumed to be the
5698      //   built-in operator and interpreted according to clause 5.
5699      if (Opc == BinaryOperator::Comma)
5700        break;
5701
5702      // For class as left operand for assignment or compound assigment operator
5703      // do not fall through to handling in built-in, but report that no overloaded
5704      // assignment operator found
5705      OwningExprResult Result = ExprError();
5706      if (Args[0]->getType()->isRecordType() &&
5707          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5708        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5709             << BinaryOperator::getOpcodeStr(Opc)
5710             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5711      } else {
5712        // No viable function; try to create a built-in operation, which will
5713        // produce an error. Then, show the non-viable candidates.
5714        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5715      }
5716      assert(Result.isInvalid() &&
5717             "C++ binary operator overloading is missing candidates!");
5718      if (Result.isInvalid())
5719        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5720                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5721      return move(Result);
5722    }
5723
5724    case OR_Ambiguous:
5725      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5726          << BinaryOperator::getOpcodeStr(Opc)
5727          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5728      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5729                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5730      return ExprError();
5731
5732    case OR_Deleted:
5733      Diag(OpLoc, diag::err_ovl_deleted_oper)
5734        << Best->Function->isDeleted()
5735        << BinaryOperator::getOpcodeStr(Opc)
5736        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5737      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5738      return ExprError();
5739  }
5740
5741  // We matched a built-in operator; build it.
5742  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5743}
5744
5745Action::OwningExprResult
5746Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5747                                         SourceLocation RLoc,
5748                                         ExprArg Base, ExprArg Idx) {
5749  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5750                    static_cast<Expr*>(Idx.get()) };
5751  DeclarationName OpName =
5752      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5753
5754  // If either side is type-dependent, create an appropriate dependent
5755  // expression.
5756  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5757
5758    UnresolvedLookupExpr *Fn
5759      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5760                                     0, SourceRange(), OpName, LLoc,
5761                                     /*ADL*/ true, /*Overloaded*/ false);
5762    // Can't add any actual overloads yet
5763
5764    Base.release();
5765    Idx.release();
5766    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5767                                                   Args, 2,
5768                                                   Context.DependentTy,
5769                                                   RLoc));
5770  }
5771
5772  // Build an empty overload set.
5773  OverloadCandidateSet CandidateSet;
5774
5775  // Subscript can only be overloaded as a member function.
5776
5777  // Add operator candidates that are member functions.
5778  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5779
5780  // Add builtin operator candidates.
5781  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5782
5783  // Perform overload resolution.
5784  OverloadCandidateSet::iterator Best;
5785  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5786    case OR_Success: {
5787      // We found a built-in operator or an overloaded operator.
5788      FunctionDecl *FnDecl = Best->Function;
5789
5790      if (FnDecl) {
5791        // We matched an overloaded operator. Build a call to that
5792        // operator.
5793
5794        // Convert the arguments.
5795        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5796        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5797            PerformCopyInitialization(Args[1],
5798                                      FnDecl->getParamDecl(0)->getType(),
5799                                      AA_Passing))
5800          return ExprError();
5801
5802        // Determine the result type
5803        QualType ResultTy
5804          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5805        ResultTy = ResultTy.getNonReferenceType();
5806
5807        // Build the actual expression node.
5808        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5809                                                 LLoc);
5810        UsualUnaryConversions(FnExpr);
5811
5812        Base.release();
5813        Idx.release();
5814        ExprOwningPtr<CXXOperatorCallExpr>
5815          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5816                                                          FnExpr, Args, 2,
5817                                                          ResultTy, RLoc));
5818
5819        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5820                                FnDecl))
5821          return ExprError();
5822
5823        return MaybeBindToTemporary(TheCall.release());
5824      } else {
5825        // We matched a built-in operator. Convert the arguments, then
5826        // break out so that we will build the appropriate built-in
5827        // operator node.
5828        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5829                                      Best->Conversions[0], AA_Passing) ||
5830            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5831                                      Best->Conversions[1], AA_Passing))
5832          return ExprError();
5833
5834        break;
5835      }
5836    }
5837
5838    case OR_No_Viable_Function: {
5839      if (CandidateSet.empty())
5840        Diag(LLoc, diag::err_ovl_no_oper)
5841          << Args[0]->getType() << /*subscript*/ 0
5842          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5843      else
5844        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5845          << Args[0]->getType()
5846          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5847      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5848                              "[]", LLoc);
5849      return ExprError();
5850    }
5851
5852    case OR_Ambiguous:
5853      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5854          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5855      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5856                              "[]", LLoc);
5857      return ExprError();
5858
5859    case OR_Deleted:
5860      Diag(LLoc, diag::err_ovl_deleted_oper)
5861        << Best->Function->isDeleted() << "[]"
5862        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5863      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5864                              "[]", LLoc);
5865      return ExprError();
5866    }
5867
5868  // We matched a built-in operator; build it.
5869  Base.release();
5870  Idx.release();
5871  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5872                                         Owned(Args[1]), RLoc);
5873}
5874
5875/// BuildCallToMemberFunction - Build a call to a member
5876/// function. MemExpr is the expression that refers to the member
5877/// function (and includes the object parameter), Args/NumArgs are the
5878/// arguments to the function call (not including the object
5879/// parameter). The caller needs to validate that the member
5880/// expression refers to a member function or an overloaded member
5881/// function.
5882Sema::OwningExprResult
5883Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5884                                SourceLocation LParenLoc, Expr **Args,
5885                                unsigned NumArgs, SourceLocation *CommaLocs,
5886                                SourceLocation RParenLoc) {
5887  // Dig out the member expression. This holds both the object
5888  // argument and the member function we're referring to.
5889  Expr *NakedMemExpr = MemExprE->IgnoreParens();
5890
5891  MemberExpr *MemExpr;
5892  CXXMethodDecl *Method = 0;
5893  if (isa<MemberExpr>(NakedMemExpr)) {
5894    MemExpr = cast<MemberExpr>(NakedMemExpr);
5895    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5896  } else {
5897    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
5898
5899    QualType ObjectType = UnresExpr->getBaseType();
5900
5901    // Add overload candidates
5902    OverloadCandidateSet CandidateSet;
5903
5904    // FIXME: avoid copy.
5905    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5906    if (UnresExpr->hasExplicitTemplateArgs()) {
5907      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5908      TemplateArgs = &TemplateArgsBuffer;
5909    }
5910
5911    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
5912           E = UnresExpr->decls_end(); I != E; ++I) {
5913
5914      NamedDecl *Func = *I;
5915      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
5916      if (isa<UsingShadowDecl>(Func))
5917        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
5918
5919      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
5920        // If explicit template arguments were provided, we can't call a
5921        // non-template member function.
5922        if (TemplateArgs)
5923          continue;
5924
5925        AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs,
5926                           CandidateSet, /*SuppressUserConversions=*/false);
5927      } else {
5928        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
5929                                   ActingDC, TemplateArgs,
5930                                   ObjectType, Args, NumArgs,
5931                                   CandidateSet,
5932                                   /*SuppressUsedConversions=*/false);
5933      }
5934    }
5935
5936    DeclarationName DeclName = UnresExpr->getMemberName();
5937
5938    OverloadCandidateSet::iterator Best;
5939    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
5940    case OR_Success:
5941      Method = cast<CXXMethodDecl>(Best->Function);
5942      break;
5943
5944    case OR_No_Viable_Function:
5945      Diag(UnresExpr->getMemberLoc(),
5946           diag::err_ovl_no_viable_member_function_in_call)
5947        << DeclName << MemExprE->getSourceRange();
5948      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5949      // FIXME: Leaking incoming expressions!
5950      return ExprError();
5951
5952    case OR_Ambiguous:
5953      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
5954        << DeclName << MemExprE->getSourceRange();
5955      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5956      // FIXME: Leaking incoming expressions!
5957      return ExprError();
5958
5959    case OR_Deleted:
5960      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
5961        << Best->Function->isDeleted()
5962        << DeclName << MemExprE->getSourceRange();
5963      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5964      // FIXME: Leaking incoming expressions!
5965      return ExprError();
5966    }
5967
5968    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
5969
5970    // If overload resolution picked a static member, build a
5971    // non-member call based on that function.
5972    if (Method->isStatic()) {
5973      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
5974                                   Args, NumArgs, RParenLoc);
5975    }
5976
5977    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
5978  }
5979
5980  assert(Method && "Member call to something that isn't a method?");
5981  ExprOwningPtr<CXXMemberCallExpr>
5982    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
5983                                                  NumArgs,
5984                                  Method->getResultType().getNonReferenceType(),
5985                                  RParenLoc));
5986
5987  // Check for a valid return type.
5988  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5989                          TheCall.get(), Method))
5990    return ExprError();
5991
5992  // Convert the object argument (for a non-static member function call).
5993  Expr *ObjectArg = MemExpr->getBase();
5994  if (!Method->isStatic() &&
5995      PerformObjectArgumentInitialization(ObjectArg, Method))
5996    return ExprError();
5997  MemExpr->setBase(ObjectArg);
5998
5999  // Convert the rest of the arguments
6000  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6001  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6002                              RParenLoc))
6003    return ExprError();
6004
6005  if (CheckFunctionCall(Method, TheCall.get()))
6006    return ExprError();
6007
6008  return MaybeBindToTemporary(TheCall.release());
6009}
6010
6011/// BuildCallToObjectOfClassType - Build a call to an object of class
6012/// type (C++ [over.call.object]), which can end up invoking an
6013/// overloaded function call operator (@c operator()) or performing a
6014/// user-defined conversion on the object argument.
6015Sema::ExprResult
6016Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6017                                   SourceLocation LParenLoc,
6018                                   Expr **Args, unsigned NumArgs,
6019                                   SourceLocation *CommaLocs,
6020                                   SourceLocation RParenLoc) {
6021  assert(Object->getType()->isRecordType() && "Requires object type argument");
6022  const RecordType *Record = Object->getType()->getAs<RecordType>();
6023
6024  // C++ [over.call.object]p1:
6025  //  If the primary-expression E in the function call syntax
6026  //  evaluates to a class object of type "cv T", then the set of
6027  //  candidate functions includes at least the function call
6028  //  operators of T. The function call operators of T are obtained by
6029  //  ordinary lookup of the name operator() in the context of
6030  //  (E).operator().
6031  OverloadCandidateSet CandidateSet;
6032  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6033
6034  if (RequireCompleteType(LParenLoc, Object->getType(),
6035                          PartialDiagnostic(diag::err_incomplete_object_call)
6036                          << Object->getSourceRange()))
6037    return true;
6038
6039  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6040  LookupQualifiedName(R, Record->getDecl());
6041  R.suppressDiagnostics();
6042
6043  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6044       Oper != OperEnd; ++Oper) {
6045    AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet,
6046                       /*SuppressUserConversions=*/ false);
6047  }
6048
6049  // C++ [over.call.object]p2:
6050  //   In addition, for each conversion function declared in T of the
6051  //   form
6052  //
6053  //        operator conversion-type-id () cv-qualifier;
6054  //
6055  //   where cv-qualifier is the same cv-qualification as, or a
6056  //   greater cv-qualification than, cv, and where conversion-type-id
6057  //   denotes the type "pointer to function of (P1,...,Pn) returning
6058  //   R", or the type "reference to pointer to function of
6059  //   (P1,...,Pn) returning R", or the type "reference to function
6060  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6061  //   is also considered as a candidate function. Similarly,
6062  //   surrogate call functions are added to the set of candidate
6063  //   functions for each conversion function declared in an
6064  //   accessible base class provided the function is not hidden
6065  //   within T by another intervening declaration.
6066  const UnresolvedSetImpl *Conversions
6067    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6068  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6069         E = Conversions->end(); I != E; ++I) {
6070    NamedDecl *D = *I;
6071    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6072    if (isa<UsingShadowDecl>(D))
6073      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6074
6075    // Skip over templated conversion functions; they aren't
6076    // surrogates.
6077    if (isa<FunctionTemplateDecl>(D))
6078      continue;
6079
6080    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6081
6082    // Strip the reference type (if any) and then the pointer type (if
6083    // any) to get down to what might be a function type.
6084    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6085    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6086      ConvType = ConvPtrType->getPointeeType();
6087
6088    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6089      AddSurrogateCandidate(Conv, ActingContext, Proto,
6090                            Object->getType(), Args, NumArgs,
6091                            CandidateSet);
6092  }
6093
6094  // Perform overload resolution.
6095  OverloadCandidateSet::iterator Best;
6096  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6097  case OR_Success:
6098    // Overload resolution succeeded; we'll build the appropriate call
6099    // below.
6100    break;
6101
6102  case OR_No_Viable_Function:
6103    if (CandidateSet.empty())
6104      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6105        << Object->getType() << /*call*/ 1
6106        << Object->getSourceRange();
6107    else
6108      Diag(Object->getSourceRange().getBegin(),
6109           diag::err_ovl_no_viable_object_call)
6110        << Object->getType() << Object->getSourceRange();
6111    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6112    break;
6113
6114  case OR_Ambiguous:
6115    Diag(Object->getSourceRange().getBegin(),
6116         diag::err_ovl_ambiguous_object_call)
6117      << Object->getType() << Object->getSourceRange();
6118    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6119    break;
6120
6121  case OR_Deleted:
6122    Diag(Object->getSourceRange().getBegin(),
6123         diag::err_ovl_deleted_object_call)
6124      << Best->Function->isDeleted()
6125      << Object->getType() << Object->getSourceRange();
6126    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6127    break;
6128  }
6129
6130  if (Best == CandidateSet.end()) {
6131    // We had an error; delete all of the subexpressions and return
6132    // the error.
6133    Object->Destroy(Context);
6134    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6135      Args[ArgIdx]->Destroy(Context);
6136    return true;
6137  }
6138
6139  if (Best->Function == 0) {
6140    // Since there is no function declaration, this is one of the
6141    // surrogate candidates. Dig out the conversion function.
6142    CXXConversionDecl *Conv
6143      = cast<CXXConversionDecl>(
6144                         Best->Conversions[0].UserDefined.ConversionFunction);
6145
6146    // We selected one of the surrogate functions that converts the
6147    // object parameter to a function pointer. Perform the conversion
6148    // on the object argument, then let ActOnCallExpr finish the job.
6149
6150    // Create an implicit member expr to refer to the conversion operator.
6151    // and then call it.
6152    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6153
6154    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6155                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6156                         CommaLocs, RParenLoc).release();
6157  }
6158
6159  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6160  // that calls this method, using Object for the implicit object
6161  // parameter and passing along the remaining arguments.
6162  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6163  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6164
6165  unsigned NumArgsInProto = Proto->getNumArgs();
6166  unsigned NumArgsToCheck = NumArgs;
6167
6168  // Build the full argument list for the method call (the
6169  // implicit object parameter is placed at the beginning of the
6170  // list).
6171  Expr **MethodArgs;
6172  if (NumArgs < NumArgsInProto) {
6173    NumArgsToCheck = NumArgsInProto;
6174    MethodArgs = new Expr*[NumArgsInProto + 1];
6175  } else {
6176    MethodArgs = new Expr*[NumArgs + 1];
6177  }
6178  MethodArgs[0] = Object;
6179  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6180    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6181
6182  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6183                                          SourceLocation());
6184  UsualUnaryConversions(NewFn);
6185
6186  // Once we've built TheCall, all of the expressions are properly
6187  // owned.
6188  QualType ResultTy = Method->getResultType().getNonReferenceType();
6189  ExprOwningPtr<CXXOperatorCallExpr>
6190    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6191                                                    MethodArgs, NumArgs + 1,
6192                                                    ResultTy, RParenLoc));
6193  delete [] MethodArgs;
6194
6195  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6196                          Method))
6197    return true;
6198
6199  // We may have default arguments. If so, we need to allocate more
6200  // slots in the call for them.
6201  if (NumArgs < NumArgsInProto)
6202    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6203  else if (NumArgs > NumArgsInProto)
6204    NumArgsToCheck = NumArgsInProto;
6205
6206  bool IsError = false;
6207
6208  // Initialize the implicit object parameter.
6209  IsError |= PerformObjectArgumentInitialization(Object, Method);
6210  TheCall->setArg(0, Object);
6211
6212
6213  // Check the argument types.
6214  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6215    Expr *Arg;
6216    if (i < NumArgs) {
6217      Arg = Args[i];
6218
6219      // Pass the argument.
6220      QualType ProtoArgType = Proto->getArgType(i);
6221      IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing);
6222    } else {
6223      OwningExprResult DefArg
6224        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6225      if (DefArg.isInvalid()) {
6226        IsError = true;
6227        break;
6228      }
6229
6230      Arg = DefArg.takeAs<Expr>();
6231    }
6232
6233    TheCall->setArg(i + 1, Arg);
6234  }
6235
6236  // If this is a variadic call, handle args passed through "...".
6237  if (Proto->isVariadic()) {
6238    // Promote the arguments (C99 6.5.2.2p7).
6239    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6240      Expr *Arg = Args[i];
6241      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6242      TheCall->setArg(i + 1, Arg);
6243    }
6244  }
6245
6246  if (IsError) return true;
6247
6248  if (CheckFunctionCall(Method, TheCall.get()))
6249    return true;
6250
6251  return MaybeBindToTemporary(TheCall.release()).release();
6252}
6253
6254/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6255///  (if one exists), where @c Base is an expression of class type and
6256/// @c Member is the name of the member we're trying to find.
6257Sema::OwningExprResult
6258Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6259  Expr *Base = static_cast<Expr *>(BaseIn.get());
6260  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6261
6262  // C++ [over.ref]p1:
6263  //
6264  //   [...] An expression x->m is interpreted as (x.operator->())->m
6265  //   for a class object x of type T if T::operator->() exists and if
6266  //   the operator is selected as the best match function by the
6267  //   overload resolution mechanism (13.3).
6268  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6269  OverloadCandidateSet CandidateSet;
6270  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6271
6272  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
6273                          PDiag(diag::err_typecheck_incomplete_tag)
6274                            << Base->getSourceRange()))
6275    return ExprError();
6276
6277  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6278  LookupQualifiedName(R, BaseRecord->getDecl());
6279  R.suppressDiagnostics();
6280
6281  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6282       Oper != OperEnd; ++Oper) {
6283    NamedDecl *D = *Oper;
6284    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6285    if (isa<UsingShadowDecl>(D))
6286      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6287
6288    AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext,
6289                       Base->getType(), 0, 0, CandidateSet,
6290                       /*SuppressUserConversions=*/false);
6291  }
6292
6293  // Perform overload resolution.
6294  OverloadCandidateSet::iterator Best;
6295  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6296  case OR_Success:
6297    // Overload resolution succeeded; we'll build the call below.
6298    break;
6299
6300  case OR_No_Viable_Function:
6301    if (CandidateSet.empty())
6302      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6303        << Base->getType() << Base->getSourceRange();
6304    else
6305      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6306        << "operator->" << Base->getSourceRange();
6307    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6308    return ExprError();
6309
6310  case OR_Ambiguous:
6311    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6312      << "->" << Base->getSourceRange();
6313    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6314    return ExprError();
6315
6316  case OR_Deleted:
6317    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6318      << Best->Function->isDeleted()
6319      << "->" << Base->getSourceRange();
6320    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6321    return ExprError();
6322  }
6323
6324  // Convert the object parameter.
6325  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6326  if (PerformObjectArgumentInitialization(Base, Method))
6327    return ExprError();
6328
6329  // No concerns about early exits now.
6330  BaseIn.release();
6331
6332  // Build the operator call.
6333  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6334                                           SourceLocation());
6335  UsualUnaryConversions(FnExpr);
6336
6337  QualType ResultTy = Method->getResultType().getNonReferenceType();
6338  ExprOwningPtr<CXXOperatorCallExpr>
6339    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6340                                                    &Base, 1, ResultTy, OpLoc));
6341
6342  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6343                          Method))
6344          return ExprError();
6345  return move(TheCall);
6346}
6347
6348/// FixOverloadedFunctionReference - E is an expression that refers to
6349/// a C++ overloaded function (possibly with some parentheses and
6350/// perhaps a '&' around it). We have resolved the overloaded function
6351/// to the function declaration Fn, so patch up the expression E to
6352/// refer (possibly indirectly) to Fn. Returns the new expr.
6353Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6354  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6355    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6356    if (SubExpr == PE->getSubExpr())
6357      return PE->Retain();
6358
6359    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6360  }
6361
6362  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6363    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6364    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6365                               SubExpr->getType()) &&
6366           "Implicit cast type cannot be determined from overload");
6367    if (SubExpr == ICE->getSubExpr())
6368      return ICE->Retain();
6369
6370    return new (Context) ImplicitCastExpr(ICE->getType(),
6371                                          ICE->getCastKind(),
6372                                          SubExpr,
6373                                          ICE->isLvalueCast());
6374  }
6375
6376  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6377    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6378           "Can only take the address of an overloaded function");
6379    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6380      if (Method->isStatic()) {
6381        // Do nothing: static member functions aren't any different
6382        // from non-member functions.
6383      } else {
6384        // Fix the sub expression, which really has to be an
6385        // UnresolvedLookupExpr holding an overloaded member function
6386        // or template.
6387        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6388        if (SubExpr == UnOp->getSubExpr())
6389          return UnOp->Retain();
6390
6391        assert(isa<DeclRefExpr>(SubExpr)
6392               && "fixed to something other than a decl ref");
6393        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6394               && "fixed to a member ref with no nested name qualifier");
6395
6396        // We have taken the address of a pointer to member
6397        // function. Perform the computation here so that we get the
6398        // appropriate pointer to member type.
6399        QualType ClassType
6400          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6401        QualType MemPtrType
6402          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6403
6404        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6405                                           MemPtrType, UnOp->getOperatorLoc());
6406      }
6407    }
6408    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6409    if (SubExpr == UnOp->getSubExpr())
6410      return UnOp->Retain();
6411
6412    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6413                                     Context.getPointerType(SubExpr->getType()),
6414                                       UnOp->getOperatorLoc());
6415  }
6416
6417  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6418    // FIXME: avoid copy.
6419    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6420    if (ULE->hasExplicitTemplateArgs()) {
6421      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6422      TemplateArgs = &TemplateArgsBuffer;
6423    }
6424
6425    return DeclRefExpr::Create(Context,
6426                               ULE->getQualifier(),
6427                               ULE->getQualifierRange(),
6428                               Fn,
6429                               ULE->getNameLoc(),
6430                               Fn->getType(),
6431                               TemplateArgs);
6432  }
6433
6434  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6435    // FIXME: avoid copy.
6436    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6437    if (MemExpr->hasExplicitTemplateArgs()) {
6438      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6439      TemplateArgs = &TemplateArgsBuffer;
6440    }
6441
6442    Expr *Base;
6443
6444    // If we're filling in
6445    if (MemExpr->isImplicitAccess()) {
6446      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6447        return DeclRefExpr::Create(Context,
6448                                   MemExpr->getQualifier(),
6449                                   MemExpr->getQualifierRange(),
6450                                   Fn,
6451                                   MemExpr->getMemberLoc(),
6452                                   Fn->getType(),
6453                                   TemplateArgs);
6454      } else {
6455        SourceLocation Loc = MemExpr->getMemberLoc();
6456        if (MemExpr->getQualifier())
6457          Loc = MemExpr->getQualifierRange().getBegin();
6458        Base = new (Context) CXXThisExpr(Loc,
6459                                         MemExpr->getBaseType(),
6460                                         /*isImplicit=*/true);
6461      }
6462    } else
6463      Base = MemExpr->getBase()->Retain();
6464
6465    return MemberExpr::Create(Context, Base,
6466                              MemExpr->isArrow(),
6467                              MemExpr->getQualifier(),
6468                              MemExpr->getQualifierRange(),
6469                              Fn,
6470                              MemExpr->getMemberLoc(),
6471                              TemplateArgs,
6472                              Fn->getType());
6473  }
6474
6475  assert(false && "Invalid reference to overloaded function");
6476  return E->Retain();
6477}
6478
6479Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6480                                                            FunctionDecl *Fn) {
6481  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6482}
6483
6484} // end namespace clang
6485