SemaOverload.cpp revision bbf306bd1d3e674edf40c692a5693a475e961a57
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const
144{
145  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
146  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
147
148  // Note that FromType has not necessarily been transformed by the
149  // array-to-pointer or function-to-pointer implicit conversions, so
150  // check for their presence as well as checking whether FromType is
151  // a pointer.
152  if (ToType->isBooleanType() &&
153      (FromType->isPointerType() || FromType->isBlockPointerType() ||
154       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
155    return true;
156
157  return false;
158}
159
160/// isPointerConversionToVoidPointer - Determines whether this
161/// conversion is a conversion of a pointer to a void pointer. This is
162/// used as part of the ranking of standard conversion sequences (C++
163/// 13.3.3.2p4).
164bool
165StandardConversionSequence::
166isPointerConversionToVoidPointer(ASTContext& Context) const
167{
168  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
169  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
170
171  // Note that FromType has not necessarily been transformed by the
172  // array-to-pointer implicit conversion, so check for its presence
173  // and redo the conversion to get a pointer.
174  if (First == ICK_Array_To_Pointer)
175    FromType = Context.getArrayDecayedType(FromType);
176
177  if (Second == ICK_Pointer_Conversion)
178    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
179      return ToPtrType->getPointeeType()->isVoidType();
180
181  return false;
182}
183
184/// DebugPrint - Print this standard conversion sequence to standard
185/// error. Useful for debugging overloading issues.
186void StandardConversionSequence::DebugPrint() const {
187  bool PrintedSomething = false;
188  if (First != ICK_Identity) {
189    fprintf(stderr, "%s", GetImplicitConversionName(First));
190    PrintedSomething = true;
191  }
192
193  if (Second != ICK_Identity) {
194    if (PrintedSomething) {
195      fprintf(stderr, " -> ");
196    }
197    fprintf(stderr, "%s", GetImplicitConversionName(Second));
198
199    if (CopyConstructor) {
200      fprintf(stderr, " (by copy constructor)");
201    } else if (DirectBinding) {
202      fprintf(stderr, " (direct reference binding)");
203    } else if (ReferenceBinding) {
204      fprintf(stderr, " (reference binding)");
205    }
206    PrintedSomething = true;
207  }
208
209  if (Third != ICK_Identity) {
210    if (PrintedSomething) {
211      fprintf(stderr, " -> ");
212    }
213    fprintf(stderr, "%s", GetImplicitConversionName(Third));
214    PrintedSomething = true;
215  }
216
217  if (!PrintedSomething) {
218    fprintf(stderr, "No conversions required");
219  }
220}
221
222/// DebugPrint - Print this user-defined conversion sequence to standard
223/// error. Useful for debugging overloading issues.
224void UserDefinedConversionSequence::DebugPrint() const {
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    fprintf(stderr, " -> ");
228  }
229  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
230  if (After.First || After.Second || After.Third) {
231    fprintf(stderr, " -> ");
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  switch (ConversionKind) {
240  case StandardConversion:
241    fprintf(stderr, "Standard conversion: ");
242    Standard.DebugPrint();
243    break;
244  case UserDefinedConversion:
245    fprintf(stderr, "User-defined conversion: ");
246    UserDefined.DebugPrint();
247    break;
248  case EllipsisConversion:
249    fprintf(stderr, "Ellipsis conversion");
250    break;
251  case BadConversion:
252    fprintf(stderr, "Bad conversion");
253    break;
254  }
255
256  fprintf(stderr, "\n");
257}
258
259// IsOverload - Determine whether the given New declaration is an
260// overload of the Old declaration. This routine returns false if New
261// and Old cannot be overloaded, e.g., if they are functions with the
262// same signature (C++ 1.3.10) or if the Old declaration isn't a
263// function (or overload set). When it does return false and Old is an
264// OverloadedFunctionDecl, MatchedDecl will be set to point to the
265// FunctionDecl that New cannot be overloaded with.
266//
267// Example: Given the following input:
268//
269//   void f(int, float); // #1
270//   void f(int, int); // #2
271//   int f(int, int); // #3
272//
273// When we process #1, there is no previous declaration of "f",
274// so IsOverload will not be used.
275//
276// When we process #2, Old is a FunctionDecl for #1.  By comparing the
277// parameter types, we see that #1 and #2 are overloaded (since they
278// have different signatures), so this routine returns false;
279// MatchedDecl is unchanged.
280//
281// When we process #3, Old is an OverloadedFunctionDecl containing #1
282// and #2. We compare the signatures of #3 to #1 (they're overloaded,
283// so we do nothing) and then #3 to #2. Since the signatures of #3 and
284// #2 are identical (return types of functions are not part of the
285// signature), IsOverload returns false and MatchedDecl will be set to
286// point to the FunctionDecl for #2.
287bool
288Sema::IsOverload(FunctionDecl *New, Decl* OldD,
289                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
290{
291  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
292    // Is this new function an overload of every function in the
293    // overload set?
294    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
295                                           FuncEnd = Ovl->function_end();
296    for (; Func != FuncEnd; ++Func) {
297      if (!IsOverload(New, *Func, MatchedDecl)) {
298        MatchedDecl = Func;
299        return false;
300      }
301    }
302
303    // This function overloads every function in the overload set.
304    return true;
305  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
306    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
307  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
308    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
309    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
310
311    // C++ [temp.fct]p2:
312    //   A function template can be overloaded with other function templates
313    //   and with normal (non-template) functions.
314    if ((OldTemplate == 0) != (NewTemplate == 0))
315      return true;
316
317    // Is the function New an overload of the function Old?
318    QualType OldQType = Context.getCanonicalType(Old->getType());
319    QualType NewQType = Context.getCanonicalType(New->getType());
320
321    // Compare the signatures (C++ 1.3.10) of the two functions to
322    // determine whether they are overloads. If we find any mismatch
323    // in the signature, they are overloads.
324
325    // If either of these functions is a K&R-style function (no
326    // prototype), then we consider them to have matching signatures.
327    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
328        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
329      return false;
330
331    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
332    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
333
334    // The signature of a function includes the types of its
335    // parameters (C++ 1.3.10), which includes the presence or absence
336    // of the ellipsis; see C++ DR 357).
337    if (OldQType != NewQType &&
338        (OldType->getNumArgs() != NewType->getNumArgs() ||
339         OldType->isVariadic() != NewType->isVariadic() ||
340         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
341                     NewType->arg_type_begin())))
342      return true;
343
344    // C++ [temp.over.link]p4:
345    //   The signature of a function template consists of its function
346    //   signature, its return type and its template parameter list. The names
347    //   of the template parameters are significant only for establishing the
348    //   relationship between the template parameters and the rest of the
349    //   signature.
350    //
351    // We check the return type and template parameter lists for function
352    // templates first; the remaining checks follow.
353    if (NewTemplate &&
354        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
355                                         OldTemplate->getTemplateParameters(),
356                                         false, false, SourceLocation()) ||
357         OldType->getResultType() != NewType->getResultType()))
358      return true;
359
360    // If the function is a class member, its signature includes the
361    // cv-qualifiers (if any) on the function itself.
362    //
363    // As part of this, also check whether one of the member functions
364    // is static, in which case they are not overloads (C++
365    // 13.1p2). While not part of the definition of the signature,
366    // this check is important to determine whether these functions
367    // can be overloaded.
368    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
369    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
370    if (OldMethod && NewMethod &&
371        !OldMethod->isStatic() && !NewMethod->isStatic() &&
372        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
373      return true;
374
375    // The signatures match; this is not an overload.
376    return false;
377  } else {
378    // (C++ 13p1):
379    //   Only function declarations can be overloaded; object and type
380    //   declarations cannot be overloaded.
381    return false;
382  }
383}
384
385/// TryImplicitConversion - Attempt to perform an implicit conversion
386/// from the given expression (Expr) to the given type (ToType). This
387/// function returns an implicit conversion sequence that can be used
388/// to perform the initialization. Given
389///
390///   void f(float f);
391///   void g(int i) { f(i); }
392///
393/// this routine would produce an implicit conversion sequence to
394/// describe the initialization of f from i, which will be a standard
395/// conversion sequence containing an lvalue-to-rvalue conversion (C++
396/// 4.1) followed by a floating-integral conversion (C++ 4.9).
397//
398/// Note that this routine only determines how the conversion can be
399/// performed; it does not actually perform the conversion. As such,
400/// it will not produce any diagnostics if no conversion is available,
401/// but will instead return an implicit conversion sequence of kind
402/// "BadConversion".
403///
404/// If @p SuppressUserConversions, then user-defined conversions are
405/// not permitted.
406/// If @p AllowExplicit, then explicit user-defined conversions are
407/// permitted.
408/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
409/// no matter its actual lvalueness.
410ImplicitConversionSequence
411Sema::TryImplicitConversion(Expr* From, QualType ToType,
412                            bool SuppressUserConversions,
413                            bool AllowExplicit, bool ForceRValue,
414                            bool InOverloadResolution)
415{
416  ImplicitConversionSequence ICS;
417  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
418    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
419  else if (getLangOptions().CPlusPlus &&
420           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
421                                   !SuppressUserConversions, AllowExplicit,
422                                   ForceRValue)) {
423    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
424    // C++ [over.ics.user]p4:
425    //   A conversion of an expression of class type to the same class
426    //   type is given Exact Match rank, and a conversion of an
427    //   expression of class type to a base class of that type is
428    //   given Conversion rank, in spite of the fact that a copy
429    //   constructor (i.e., a user-defined conversion function) is
430    //   called for those cases.
431    if (CXXConstructorDecl *Constructor
432          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
433      QualType FromCanon
434        = Context.getCanonicalType(From->getType().getUnqualifiedType());
435      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
436      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
437        // Turn this into a "standard" conversion sequence, so that it
438        // gets ranked with standard conversion sequences.
439        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
440        ICS.Standard.setAsIdentityConversion();
441        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
442        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
443        ICS.Standard.CopyConstructor = Constructor;
444        if (ToCanon != FromCanon)
445          ICS.Standard.Second = ICK_Derived_To_Base;
446      }
447    }
448
449    // C++ [over.best.ics]p4:
450    //   However, when considering the argument of a user-defined
451    //   conversion function that is a candidate by 13.3.1.3 when
452    //   invoked for the copying of the temporary in the second step
453    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
454    //   13.3.1.6 in all cases, only standard conversion sequences and
455    //   ellipsis conversion sequences are allowed.
456    if (SuppressUserConversions &&
457        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
458      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
459  } else
460    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
461
462  return ICS;
463}
464
465/// IsStandardConversion - Determines whether there is a standard
466/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
467/// expression From to the type ToType. Standard conversion sequences
468/// only consider non-class types; for conversions that involve class
469/// types, use TryImplicitConversion. If a conversion exists, SCS will
470/// contain the standard conversion sequence required to perform this
471/// conversion and this routine will return true. Otherwise, this
472/// routine will return false and the value of SCS is unspecified.
473bool
474Sema::IsStandardConversion(Expr* From, QualType ToType,
475                           bool InOverloadResolution,
476                           StandardConversionSequence &SCS)
477{
478  QualType FromType = From->getType();
479
480  // Standard conversions (C++ [conv])
481  SCS.setAsIdentityConversion();
482  SCS.Deprecated = false;
483  SCS.IncompatibleObjC = false;
484  SCS.FromTypePtr = FromType.getAsOpaquePtr();
485  SCS.CopyConstructor = 0;
486
487  // There are no standard conversions for class types in C++, so
488  // abort early. When overloading in C, however, we do permit
489  if (FromType->isRecordType() || ToType->isRecordType()) {
490    if (getLangOptions().CPlusPlus)
491      return false;
492
493    // When we're overloading in C, we allow, as standard conversions,
494  }
495
496  // The first conversion can be an lvalue-to-rvalue conversion,
497  // array-to-pointer conversion, or function-to-pointer conversion
498  // (C++ 4p1).
499
500  // Lvalue-to-rvalue conversion (C++ 4.1):
501  //   An lvalue (3.10) of a non-function, non-array type T can be
502  //   converted to an rvalue.
503  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
504  if (argIsLvalue == Expr::LV_Valid &&
505      !FromType->isFunctionType() && !FromType->isArrayType() &&
506      Context.getCanonicalType(FromType) != Context.OverloadTy) {
507    SCS.First = ICK_Lvalue_To_Rvalue;
508
509    // If T is a non-class type, the type of the rvalue is the
510    // cv-unqualified version of T. Otherwise, the type of the rvalue
511    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
512    // just strip the qualifiers because they don't matter.
513
514    // FIXME: Doesn't see through to qualifiers behind a typedef!
515    FromType = FromType.getUnqualifiedType();
516  } else if (FromType->isArrayType()) {
517    // Array-to-pointer conversion (C++ 4.2)
518    SCS.First = ICK_Array_To_Pointer;
519
520    // An lvalue or rvalue of type "array of N T" or "array of unknown
521    // bound of T" can be converted to an rvalue of type "pointer to
522    // T" (C++ 4.2p1).
523    FromType = Context.getArrayDecayedType(FromType);
524
525    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
526      // This conversion is deprecated. (C++ D.4).
527      SCS.Deprecated = true;
528
529      // For the purpose of ranking in overload resolution
530      // (13.3.3.1.1), this conversion is considered an
531      // array-to-pointer conversion followed by a qualification
532      // conversion (4.4). (C++ 4.2p2)
533      SCS.Second = ICK_Identity;
534      SCS.Third = ICK_Qualification;
535      SCS.ToTypePtr = ToType.getAsOpaquePtr();
536      return true;
537    }
538  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
539    // Function-to-pointer conversion (C++ 4.3).
540    SCS.First = ICK_Function_To_Pointer;
541
542    // An lvalue of function type T can be converted to an rvalue of
543    // type "pointer to T." The result is a pointer to the
544    // function. (C++ 4.3p1).
545    FromType = Context.getPointerType(FromType);
546  } else if (FunctionDecl *Fn
547             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548    // Address of overloaded function (C++ [over.over]).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // We were able to resolve the address of the overloaded function,
552    // so we can convert to the type of that function.
553    FromType = Fn->getType();
554    if (ToType->isLValueReferenceType())
555      FromType = Context.getLValueReferenceType(FromType);
556    else if (ToType->isRValueReferenceType())
557      FromType = Context.getRValueReferenceType(FromType);
558    else if (ToType->isMemberPointerType()) {
559      // Resolve address only succeeds if both sides are member pointers,
560      // but it doesn't have to be the same class. See DR 247.
561      // Note that this means that the type of &Derived::fn can be
562      // Ret (Base::*)(Args) if the fn overload actually found is from the
563      // base class, even if it was brought into the derived class via a
564      // using declaration. The standard isn't clear on this issue at all.
565      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
566      FromType = Context.getMemberPointerType(FromType,
567                    Context.getTypeDeclType(M->getParent()).getTypePtr());
568    } else
569      FromType = Context.getPointerType(FromType);
570  } else {
571    // We don't require any conversions for the first step.
572    SCS.First = ICK_Identity;
573  }
574
575  // The second conversion can be an integral promotion, floating
576  // point promotion, integral conversion, floating point conversion,
577  // floating-integral conversion, pointer conversion,
578  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579  // For overloading in C, this can also be a "compatible-type"
580  // conversion.
581  bool IncompatibleObjC = false;
582  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583    // The unqualified versions of the types are the same: there's no
584    // conversion to do.
585    SCS.Second = ICK_Identity;
586  } else if (IsIntegralPromotion(From, FromType, ToType)) {
587    // Integral promotion (C++ 4.5).
588    SCS.Second = ICK_Integral_Promotion;
589    FromType = ToType.getUnqualifiedType();
590  } else if (IsFloatingPointPromotion(FromType, ToType)) {
591    // Floating point promotion (C++ 4.6).
592    SCS.Second = ICK_Floating_Promotion;
593    FromType = ToType.getUnqualifiedType();
594  } else if (IsComplexPromotion(FromType, ToType)) {
595    // Complex promotion (Clang extension)
596    SCS.Second = ICK_Complex_Promotion;
597    FromType = ToType.getUnqualifiedType();
598  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
599           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
600    // Integral conversions (C++ 4.7).
601    // FIXME: isIntegralType shouldn't be true for enums in C++.
602    SCS.Second = ICK_Integral_Conversion;
603    FromType = ToType.getUnqualifiedType();
604  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
605    // Floating point conversions (C++ 4.8).
606    SCS.Second = ICK_Floating_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  } else if (FromType->isComplexType() && ToType->isComplexType()) {
609    // Complex conversions (C99 6.3.1.6)
610    SCS.Second = ICK_Complex_Conversion;
611    FromType = ToType.getUnqualifiedType();
612  } else if ((FromType->isFloatingType() &&
613              ToType->isIntegralType() && (!ToType->isBooleanType() &&
614                                           !ToType->isEnumeralType())) ||
615             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
616              ToType->isFloatingType())) {
617    // Floating-integral conversions (C++ 4.9).
618    // FIXME: isIntegralType shouldn't be true for enums in C++.
619    SCS.Second = ICK_Floating_Integral;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
622             (ToType->isComplexType() && FromType->isArithmeticType())) {
623    // Complex-real conversions (C99 6.3.1.7)
624    SCS.Second = ICK_Complex_Real;
625    FromType = ToType.getUnqualifiedType();
626  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
627                                 FromType, IncompatibleObjC)) {
628    // Pointer conversions (C++ 4.10).
629    SCS.Second = ICK_Pointer_Conversion;
630    SCS.IncompatibleObjC = IncompatibleObjC;
631  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
632    // Pointer to member conversions (4.11).
633    SCS.Second = ICK_Pointer_Member;
634  } else if (ToType->isBooleanType() &&
635             (FromType->isArithmeticType() ||
636              FromType->isEnumeralType() ||
637              FromType->isPointerType() ||
638              FromType->isBlockPointerType() ||
639              FromType->isMemberPointerType() ||
640              FromType->isNullPtrType())) {
641    // Boolean conversions (C++ 4.12).
642    SCS.Second = ICK_Boolean_Conversion;
643    FromType = Context.BoolTy;
644  } else if (!getLangOptions().CPlusPlus &&
645             Context.typesAreCompatible(ToType, FromType)) {
646    // Compatible conversions (Clang extension for C function overloading)
647    SCS.Second = ICK_Compatible_Conversion;
648  } else {
649    // No second conversion required.
650    SCS.Second = ICK_Identity;
651  }
652
653  QualType CanonFrom;
654  QualType CanonTo;
655  // The third conversion can be a qualification conversion (C++ 4p1).
656  if (IsQualificationConversion(FromType, ToType)) {
657    SCS.Third = ICK_Qualification;
658    FromType = ToType;
659    CanonFrom = Context.getCanonicalType(FromType);
660    CanonTo = Context.getCanonicalType(ToType);
661  } else {
662    // No conversion required
663    SCS.Third = ICK_Identity;
664
665    // C++ [over.best.ics]p6:
666    //   [...] Any difference in top-level cv-qualification is
667    //   subsumed by the initialization itself and does not constitute
668    //   a conversion. [...]
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
672        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
673      FromType = ToType;
674      CanonFrom = CanonTo;
675    }
676  }
677
678  // If we have not converted the argument type to the parameter type,
679  // this is a bad conversion sequence.
680  if (CanonFrom != CanonTo)
681    return false;
682
683  SCS.ToTypePtr = FromType.getAsOpaquePtr();
684  return true;
685}
686
687/// IsIntegralPromotion - Determines whether the conversion from the
688/// expression From (whose potentially-adjusted type is FromType) to
689/// ToType is an integral promotion (C++ 4.5). If so, returns true and
690/// sets PromotedType to the promoted type.
691bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
692{
693  const BuiltinType *To = ToType->getAsBuiltinType();
694  // All integers are built-in.
695  if (!To) {
696    return false;
697  }
698
699  // An rvalue of type char, signed char, unsigned char, short int, or
700  // unsigned short int can be converted to an rvalue of type int if
701  // int can represent all the values of the source type; otherwise,
702  // the source rvalue can be converted to an rvalue of type unsigned
703  // int (C++ 4.5p1).
704  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
705    if (// We can promote any signed, promotable integer type to an int
706        (FromType->isSignedIntegerType() ||
707         // We can promote any unsigned integer type whose size is
708         // less than int to an int.
709         (!FromType->isSignedIntegerType() &&
710          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
711      return To->getKind() == BuiltinType::Int;
712    }
713
714    return To->getKind() == BuiltinType::UInt;
715  }
716
717  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
718  // can be converted to an rvalue of the first of the following types
719  // that can represent all the values of its underlying type: int,
720  // unsigned int, long, or unsigned long (C++ 4.5p2).
721  if ((FromType->isEnumeralType() || FromType->isWideCharType())
722      && ToType->isIntegerType()) {
723    // Determine whether the type we're converting from is signed or
724    // unsigned.
725    bool FromIsSigned;
726    uint64_t FromSize = Context.getTypeSize(FromType);
727    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
728      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
729      FromIsSigned = UnderlyingType->isSignedIntegerType();
730    } else {
731      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
732      FromIsSigned = true;
733    }
734
735    // The types we'll try to promote to, in the appropriate
736    // order. Try each of these types.
737    QualType PromoteTypes[6] = {
738      Context.IntTy, Context.UnsignedIntTy,
739      Context.LongTy, Context.UnsignedLongTy ,
740      Context.LongLongTy, Context.UnsignedLongLongTy
741    };
742    for (int Idx = 0; Idx < 6; ++Idx) {
743      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
744      if (FromSize < ToSize ||
745          (FromSize == ToSize &&
746           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
747        // We found the type that we can promote to. If this is the
748        // type we wanted, we have a promotion. Otherwise, no
749        // promotion.
750        return Context.getCanonicalType(ToType).getUnqualifiedType()
751          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
752      }
753    }
754  }
755
756  // An rvalue for an integral bit-field (9.6) can be converted to an
757  // rvalue of type int if int can represent all the values of the
758  // bit-field; otherwise, it can be converted to unsigned int if
759  // unsigned int can represent all the values of the bit-field. If
760  // the bit-field is larger yet, no integral promotion applies to
761  // it. If the bit-field has an enumerated type, it is treated as any
762  // other value of that type for promotion purposes (C++ 4.5p3).
763  // FIXME: We should delay checking of bit-fields until we actually perform the
764  // conversion.
765  using llvm::APSInt;
766  if (From)
767    if (FieldDecl *MemberDecl = From->getBitField()) {
768      APSInt BitWidth;
769      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
770          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
771        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
772        ToSize = Context.getTypeSize(ToType);
773
774        // Are we promoting to an int from a bitfield that fits in an int?
775        if (BitWidth < ToSize ||
776            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
777          return To->getKind() == BuiltinType::Int;
778        }
779
780        // Are we promoting to an unsigned int from an unsigned bitfield
781        // that fits into an unsigned int?
782        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
783          return To->getKind() == BuiltinType::UInt;
784        }
785
786        return false;
787      }
788    }
789
790  // An rvalue of type bool can be converted to an rvalue of type int,
791  // with false becoming zero and true becoming one (C++ 4.5p4).
792  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
793    return true;
794  }
795
796  return false;
797}
798
799/// IsFloatingPointPromotion - Determines whether the conversion from
800/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
801/// returns true and sets PromotedType to the promoted type.
802bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
803{
804  /// An rvalue of type float can be converted to an rvalue of type
805  /// double. (C++ 4.6p1).
806  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
807    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
808      if (FromBuiltin->getKind() == BuiltinType::Float &&
809          ToBuiltin->getKind() == BuiltinType::Double)
810        return true;
811
812      // C99 6.3.1.5p1:
813      //   When a float is promoted to double or long double, or a
814      //   double is promoted to long double [...].
815      if (!getLangOptions().CPlusPlus &&
816          (FromBuiltin->getKind() == BuiltinType::Float ||
817           FromBuiltin->getKind() == BuiltinType::Double) &&
818          (ToBuiltin->getKind() == BuiltinType::LongDouble))
819        return true;
820    }
821
822  return false;
823}
824
825/// \brief Determine if a conversion is a complex promotion.
826///
827/// A complex promotion is defined as a complex -> complex conversion
828/// where the conversion between the underlying real types is a
829/// floating-point or integral promotion.
830bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
831  const ComplexType *FromComplex = FromType->getAsComplexType();
832  if (!FromComplex)
833    return false;
834
835  const ComplexType *ToComplex = ToType->getAsComplexType();
836  if (!ToComplex)
837    return false;
838
839  return IsFloatingPointPromotion(FromComplex->getElementType(),
840                                  ToComplex->getElementType()) ||
841    IsIntegralPromotion(0, FromComplex->getElementType(),
842                        ToComplex->getElementType());
843}
844
845/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
846/// the pointer type FromPtr to a pointer to type ToPointee, with the
847/// same type qualifiers as FromPtr has on its pointee type. ToType,
848/// if non-empty, will be a pointer to ToType that may or may not have
849/// the right set of qualifiers on its pointee.
850static QualType
851BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
852                                   QualType ToPointee, QualType ToType,
853                                   ASTContext &Context) {
854  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
855  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
856  unsigned Quals = CanonFromPointee.getCVRQualifiers();
857
858  // Exact qualifier match -> return the pointer type we're converting to.
859  if (CanonToPointee.getCVRQualifiers() == Quals) {
860    // ToType is exactly what we need. Return it.
861    if (ToType.getTypePtr())
862      return ToType;
863
864    // Build a pointer to ToPointee. It has the right qualifiers
865    // already.
866    return Context.getPointerType(ToPointee);
867  }
868
869  // Just build a canonical type that has the right qualifiers.
870  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
871}
872
873static bool isNullPointerConstantForConversion(Expr *Expr,
874                                               bool InOverloadResolution,
875                                               ASTContext &Context) {
876  // Handle value-dependent integral null pointer constants correctly.
877  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
878  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
879      Expr->getType()->isIntegralType())
880    return !InOverloadResolution;
881
882  return Expr->isNullPointerConstant(Context);
883}
884
885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
891///
892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
902                               bool InOverloadResolution,
903                               QualType& ConvertedType,
904                               bool &IncompatibleObjC)
905{
906  IncompatibleObjC = false;
907  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
908    return true;
909
910  // Conversion from a null pointer constant to any Objective-C pointer type.
911  if (ToType->isObjCObjectPointerType() &&
912      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
913    ConvertedType = ToType;
914    return true;
915  }
916
917  // Blocks: Block pointers can be converted to void*.
918  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
919      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
920    ConvertedType = ToType;
921    return true;
922  }
923  // Blocks: A null pointer constant can be converted to a block
924  // pointer type.
925  if (ToType->isBlockPointerType() &&
926      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
927    ConvertedType = ToType;
928    return true;
929  }
930
931  // If the left-hand-side is nullptr_t, the right side can be a null
932  // pointer constant.
933  if (ToType->isNullPtrType() &&
934      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
935    ConvertedType = ToType;
936    return true;
937  }
938
939  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
940  if (!ToTypePtr)
941    return false;
942
943  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
944  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  // Beyond this point, both types need to be pointers.
950  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
951  if (!FromTypePtr)
952    return false;
953
954  QualType FromPointeeType = FromTypePtr->getPointeeType();
955  QualType ToPointeeType = ToTypePtr->getPointeeType();
956
957  // An rvalue of type "pointer to cv T," where T is an object type,
958  // can be converted to an rvalue of type "pointer to cv void" (C++
959  // 4.10p2).
960  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
961    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
962                                                       ToPointeeType,
963                                                       ToType, Context);
964    return true;
965  }
966
967  // When we're overloading in C, we allow a special kind of pointer
968  // conversion for compatible-but-not-identical pointee types.
969  if (!getLangOptions().CPlusPlus &&
970      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // C++ [conv.ptr]p3:
978  //
979  //   An rvalue of type "pointer to cv D," where D is a class type,
980  //   can be converted to an rvalue of type "pointer to cv B," where
981  //   B is a base class (clause 10) of D. If B is an inaccessible
982  //   (clause 11) or ambiguous (10.2) base class of D, a program that
983  //   necessitates this conversion is ill-formed. The result of the
984  //   conversion is a pointer to the base class sub-object of the
985  //   derived class object. The null pointer value is converted to
986  //   the null pointer value of the destination type.
987  //
988  // Note that we do not check for ambiguity or inaccessibility
989  // here. That is handled by CheckPointerConversion.
990  if (getLangOptions().CPlusPlus &&
991      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
992      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
993    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
994                                                       ToPointeeType,
995                                                       ToType, Context);
996    return true;
997  }
998
999  return false;
1000}
1001
1002/// isObjCPointerConversion - Determines whether this is an
1003/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1004/// with the same arguments and return values.
1005bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1006                                   QualType& ConvertedType,
1007                                   bool &IncompatibleObjC) {
1008  if (!getLangOptions().ObjC1)
1009    return false;
1010
1011  // First, we handle all conversions on ObjC object pointer types.
1012  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1013  const ObjCObjectPointerType *FromObjCPtr =
1014    FromType->getAsObjCObjectPointerType();
1015
1016  if (ToObjCPtr && FromObjCPtr) {
1017    // Objective C++: We're able to convert between "id" or "Class" and a
1018    // pointer to any interface (in both directions).
1019    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1020      ConvertedType = ToType;
1021      return true;
1022    }
1023    // Conversions with Objective-C's id<...>.
1024    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1025         ToObjCPtr->isObjCQualifiedIdType()) &&
1026        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1027                                                  /*compare=*/false)) {
1028      ConvertedType = ToType;
1029      return true;
1030    }
1031    // Objective C++: We're able to convert from a pointer to an
1032    // interface to a pointer to a different interface.
1033    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1034      ConvertedType = ToType;
1035      return true;
1036    }
1037
1038    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1039      // Okay: this is some kind of implicit downcast of Objective-C
1040      // interfaces, which is permitted. However, we're going to
1041      // complain about it.
1042      IncompatibleObjC = true;
1043      ConvertedType = FromType;
1044      return true;
1045    }
1046  }
1047  // Beyond this point, both types need to be C pointers or block pointers.
1048  QualType ToPointeeType;
1049  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1050    ToPointeeType = ToCPtr->getPointeeType();
1051  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1052    ToPointeeType = ToBlockPtr->getPointeeType();
1053  else
1054    return false;
1055
1056  QualType FromPointeeType;
1057  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1058    FromPointeeType = FromCPtr->getPointeeType();
1059  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1060    FromPointeeType = FromBlockPtr->getPointeeType();
1061  else
1062    return false;
1063
1064  // If we have pointers to pointers, recursively check whether this
1065  // is an Objective-C conversion.
1066  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1067      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1068                              IncompatibleObjC)) {
1069    // We always complain about this conversion.
1070    IncompatibleObjC = true;
1071    ConvertedType = ToType;
1072    return true;
1073  }
1074  // If we have pointers to functions or blocks, check whether the only
1075  // differences in the argument and result types are in Objective-C
1076  // pointer conversions. If so, we permit the conversion (but
1077  // complain about it).
1078  const FunctionProtoType *FromFunctionType
1079    = FromPointeeType->getAsFunctionProtoType();
1080  const FunctionProtoType *ToFunctionType
1081    = ToPointeeType->getAsFunctionProtoType();
1082  if (FromFunctionType && ToFunctionType) {
1083    // If the function types are exactly the same, this isn't an
1084    // Objective-C pointer conversion.
1085    if (Context.getCanonicalType(FromPointeeType)
1086          == Context.getCanonicalType(ToPointeeType))
1087      return false;
1088
1089    // Perform the quick checks that will tell us whether these
1090    // function types are obviously different.
1091    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1092        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1093        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1094      return false;
1095
1096    bool HasObjCConversion = false;
1097    if (Context.getCanonicalType(FromFunctionType->getResultType())
1098          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1099      // Okay, the types match exactly. Nothing to do.
1100    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1101                                       ToFunctionType->getResultType(),
1102                                       ConvertedType, IncompatibleObjC)) {
1103      // Okay, we have an Objective-C pointer conversion.
1104      HasObjCConversion = true;
1105    } else {
1106      // Function types are too different. Abort.
1107      return false;
1108    }
1109
1110    // Check argument types.
1111    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1112         ArgIdx != NumArgs; ++ArgIdx) {
1113      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1114      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1115      if (Context.getCanonicalType(FromArgType)
1116            == Context.getCanonicalType(ToArgType)) {
1117        // Okay, the types match exactly. Nothing to do.
1118      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1119                                         ConvertedType, IncompatibleObjC)) {
1120        // Okay, we have an Objective-C pointer conversion.
1121        HasObjCConversion = true;
1122      } else {
1123        // Argument types are too different. Abort.
1124        return false;
1125      }
1126    }
1127
1128    if (HasObjCConversion) {
1129      // We had an Objective-C conversion. Allow this pointer
1130      // conversion, but complain about it.
1131      ConvertedType = ToType;
1132      IncompatibleObjC = true;
1133      return true;
1134    }
1135  }
1136
1137  return false;
1138}
1139
1140/// CheckPointerConversion - Check the pointer conversion from the
1141/// expression From to the type ToType. This routine checks for
1142/// ambiguous or inaccessible derived-to-base pointer
1143/// conversions for which IsPointerConversion has already returned
1144/// true. It returns true and produces a diagnostic if there was an
1145/// error, or returns false otherwise.
1146bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1147  QualType FromType = From->getType();
1148
1149  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1150    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1151      QualType FromPointeeType = FromPtrType->getPointeeType(),
1152               ToPointeeType   = ToPtrType->getPointeeType();
1153
1154      if (FromPointeeType->isRecordType() &&
1155          ToPointeeType->isRecordType()) {
1156        // We must have a derived-to-base conversion. Check an
1157        // ambiguous or inaccessible conversion.
1158        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1159                                            From->getExprLoc(),
1160                                            From->getSourceRange());
1161      }
1162    }
1163  if (const ObjCObjectPointerType *FromPtrType =
1164        FromType->getAsObjCObjectPointerType())
1165    if (const ObjCObjectPointerType *ToPtrType =
1166          ToType->getAsObjCObjectPointerType()) {
1167      // Objective-C++ conversions are always okay.
1168      // FIXME: We should have a different class of conversions for the
1169      // Objective-C++ implicit conversions.
1170      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1171        return false;
1172
1173  }
1174  return false;
1175}
1176
1177/// IsMemberPointerConversion - Determines whether the conversion of the
1178/// expression From, which has the (possibly adjusted) type FromType, can be
1179/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1180/// If so, returns true and places the converted type (that might differ from
1181/// ToType in its cv-qualifiers at some level) into ConvertedType.
1182bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1183                                     QualType ToType, QualType &ConvertedType)
1184{
1185  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1186  if (!ToTypePtr)
1187    return false;
1188
1189  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1190  if (From->isNullPointerConstant(Context)) {
1191    ConvertedType = ToType;
1192    return true;
1193  }
1194
1195  // Otherwise, both types have to be member pointers.
1196  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1197  if (!FromTypePtr)
1198    return false;
1199
1200  // A pointer to member of B can be converted to a pointer to member of D,
1201  // where D is derived from B (C++ 4.11p2).
1202  QualType FromClass(FromTypePtr->getClass(), 0);
1203  QualType ToClass(ToTypePtr->getClass(), 0);
1204  // FIXME: What happens when these are dependent? Is this function even called?
1205
1206  if (IsDerivedFrom(ToClass, FromClass)) {
1207    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1208                                                 ToClass.getTypePtr());
1209    return true;
1210  }
1211
1212  return false;
1213}
1214
1215/// CheckMemberPointerConversion - Check the member pointer conversion from the
1216/// expression From to the type ToType. This routine checks for ambiguous or
1217/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1218/// for which IsMemberPointerConversion has already returned true. It returns
1219/// true and produces a diagnostic if there was an error, or returns false
1220/// otherwise.
1221bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1222                                        CastExpr::CastKind &Kind) {
1223  QualType FromType = From->getType();
1224  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1225  if (!FromPtrType) {
1226    // This must be a null pointer to member pointer conversion
1227    assert(From->isNullPointerConstant(Context) &&
1228           "Expr must be null pointer constant!");
1229    Kind = CastExpr::CK_NullToMemberPointer;
1230    return false;
1231  }
1232
1233  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1234  assert(ToPtrType && "No member pointer cast has a target type "
1235                      "that is not a member pointer.");
1236
1237  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1238  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1239
1240  // FIXME: What about dependent types?
1241  assert(FromClass->isRecordType() && "Pointer into non-class.");
1242  assert(ToClass->isRecordType() && "Pointer into non-class.");
1243
1244  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1245                  /*DetectVirtual=*/true);
1246  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1247  assert(DerivationOkay &&
1248         "Should not have been called if derivation isn't OK.");
1249  (void)DerivationOkay;
1250
1251  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1252                                  getUnqualifiedType())) {
1253    // Derivation is ambiguous. Redo the check to find the exact paths.
1254    Paths.clear();
1255    Paths.setRecordingPaths(true);
1256    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1257    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1258    (void)StillOkay;
1259
1260    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1261    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1262      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1263    return true;
1264  }
1265
1266  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1267    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1268      << FromClass << ToClass << QualType(VBase, 0)
1269      << From->getSourceRange();
1270    return true;
1271  }
1272
1273  // Must be a base to derived member conversion.
1274  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1275  return false;
1276}
1277
1278/// IsQualificationConversion - Determines whether the conversion from
1279/// an rvalue of type FromType to ToType is a qualification conversion
1280/// (C++ 4.4).
1281bool
1282Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1283{
1284  FromType = Context.getCanonicalType(FromType);
1285  ToType = Context.getCanonicalType(ToType);
1286
1287  // If FromType and ToType are the same type, this is not a
1288  // qualification conversion.
1289  if (FromType == ToType)
1290    return false;
1291
1292  // (C++ 4.4p4):
1293  //   A conversion can add cv-qualifiers at levels other than the first
1294  //   in multi-level pointers, subject to the following rules: [...]
1295  bool PreviousToQualsIncludeConst = true;
1296  bool UnwrappedAnyPointer = false;
1297  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1298    // Within each iteration of the loop, we check the qualifiers to
1299    // determine if this still looks like a qualification
1300    // conversion. Then, if all is well, we unwrap one more level of
1301    // pointers or pointers-to-members and do it all again
1302    // until there are no more pointers or pointers-to-members left to
1303    // unwrap.
1304    UnwrappedAnyPointer = true;
1305
1306    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1307    //      2,j, and similarly for volatile.
1308    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1309      return false;
1310
1311    //   -- if the cv 1,j and cv 2,j are different, then const is in
1312    //      every cv for 0 < k < j.
1313    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1314        && !PreviousToQualsIncludeConst)
1315      return false;
1316
1317    // Keep track of whether all prior cv-qualifiers in the "to" type
1318    // include const.
1319    PreviousToQualsIncludeConst
1320      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1321  }
1322
1323  // We are left with FromType and ToType being the pointee types
1324  // after unwrapping the original FromType and ToType the same number
1325  // of types. If we unwrapped any pointers, and if FromType and
1326  // ToType have the same unqualified type (since we checked
1327  // qualifiers above), then this is a qualification conversion.
1328  return UnwrappedAnyPointer &&
1329    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1330}
1331
1332/// \brief Given a function template or function, extract the function template
1333/// declaration (if any) and the underlying function declaration.
1334template<typename T>
1335static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1336                                   FunctionTemplateDecl *&FunctionTemplate) {
1337  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1338  if (FunctionTemplate)
1339    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1340  else
1341    Function = cast<T>(Orig);
1342}
1343
1344
1345/// Determines whether there is a user-defined conversion sequence
1346/// (C++ [over.ics.user]) that converts expression From to the type
1347/// ToType. If such a conversion exists, User will contain the
1348/// user-defined conversion sequence that performs such a conversion
1349/// and this routine will return true. Otherwise, this routine returns
1350/// false and User is unspecified.
1351///
1352/// \param AllowConversionFunctions true if the conversion should
1353/// consider conversion functions at all. If false, only constructors
1354/// will be considered.
1355///
1356/// \param AllowExplicit  true if the conversion should consider C++0x
1357/// "explicit" conversion functions as well as non-explicit conversion
1358/// functions (C++0x [class.conv.fct]p2).
1359///
1360/// \param ForceRValue  true if the expression should be treated as an rvalue
1361/// for overload resolution.
1362bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1363                                   UserDefinedConversionSequence& User,
1364                                   bool AllowConversionFunctions,
1365                                   bool AllowExplicit, bool ForceRValue)
1366{
1367  OverloadCandidateSet CandidateSet;
1368  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1369    if (CXXRecordDecl *ToRecordDecl
1370          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1371      // C++ [over.match.ctor]p1:
1372      //   When objects of class type are direct-initialized (8.5), or
1373      //   copy-initialized from an expression of the same or a
1374      //   derived class type (8.5), overload resolution selects the
1375      //   constructor. [...] For copy-initialization, the candidate
1376      //   functions are all the converting constructors (12.3.1) of
1377      //   that class. The argument list is the expression-list within
1378      //   the parentheses of the initializer.
1379      DeclarationName ConstructorName
1380        = Context.DeclarationNames.getCXXConstructorName(
1381                          Context.getCanonicalType(ToType).getUnqualifiedType());
1382      DeclContext::lookup_iterator Con, ConEnd;
1383      for (llvm::tie(Con, ConEnd)
1384             = ToRecordDecl->lookup(ConstructorName);
1385           Con != ConEnd; ++Con) {
1386        // Find the constructor (which may be a template).
1387        CXXConstructorDecl *Constructor = 0;
1388        FunctionTemplateDecl *ConstructorTmpl
1389          = dyn_cast<FunctionTemplateDecl>(*Con);
1390        if (ConstructorTmpl)
1391          Constructor
1392            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1393        else
1394          Constructor = cast<CXXConstructorDecl>(*Con);
1395
1396        if (!Constructor->isInvalidDecl() &&
1397            Constructor->isConvertingConstructor()) {
1398          if (ConstructorTmpl)
1399            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1400                                         1, CandidateSet,
1401                                         /*SuppressUserConversions=*/true,
1402                                         ForceRValue);
1403          else
1404            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1405                                 /*SuppressUserConversions=*/true, ForceRValue);
1406        }
1407      }
1408    }
1409  }
1410
1411  if (!AllowConversionFunctions) {
1412    // Don't allow any conversion functions to enter the overload set.
1413  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1414                                 PDiag(0)
1415                                   << From->getSourceRange())) {
1416    // No conversion functions from incomplete types.
1417  } else if (const RecordType *FromRecordType
1418               = From->getType()->getAs<RecordType>()) {
1419    if (CXXRecordDecl *FromRecordDecl
1420          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1421      // Add all of the conversion functions as candidates.
1422      // FIXME: Look for conversions in base classes!
1423      OverloadedFunctionDecl *Conversions
1424        = FromRecordDecl->getConversionFunctions();
1425      for (OverloadedFunctionDecl::function_iterator Func
1426             = Conversions->function_begin();
1427           Func != Conversions->function_end(); ++Func) {
1428        CXXConversionDecl *Conv;
1429        FunctionTemplateDecl *ConvTemplate;
1430        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1431        if (ConvTemplate)
1432          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1433        else
1434          Conv = dyn_cast<CXXConversionDecl>(*Func);
1435
1436        if (AllowExplicit || !Conv->isExplicit()) {
1437          if (ConvTemplate)
1438            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1439                                           CandidateSet);
1440          else
1441            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1442        }
1443      }
1444    }
1445  }
1446
1447  OverloadCandidateSet::iterator Best;
1448  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1449    case OR_Success:
1450      // Record the standard conversion we used and the conversion function.
1451      if (CXXConstructorDecl *Constructor
1452            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1453        // C++ [over.ics.user]p1:
1454        //   If the user-defined conversion is specified by a
1455        //   constructor (12.3.1), the initial standard conversion
1456        //   sequence converts the source type to the type required by
1457        //   the argument of the constructor.
1458        //
1459        // FIXME: What about ellipsis conversions?
1460        QualType ThisType = Constructor->getThisType(Context);
1461        User.Before = Best->Conversions[0].Standard;
1462        User.ConversionFunction = Constructor;
1463        User.After.setAsIdentityConversion();
1464        User.After.FromTypePtr
1465          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1466        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1467        return true;
1468      } else if (CXXConversionDecl *Conversion
1469                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1470        // C++ [over.ics.user]p1:
1471        //
1472        //   [...] If the user-defined conversion is specified by a
1473        //   conversion function (12.3.2), the initial standard
1474        //   conversion sequence converts the source type to the
1475        //   implicit object parameter of the conversion function.
1476        User.Before = Best->Conversions[0].Standard;
1477        User.ConversionFunction = Conversion;
1478
1479        // C++ [over.ics.user]p2:
1480        //   The second standard conversion sequence converts the
1481        //   result of the user-defined conversion to the target type
1482        //   for the sequence. Since an implicit conversion sequence
1483        //   is an initialization, the special rules for
1484        //   initialization by user-defined conversion apply when
1485        //   selecting the best user-defined conversion for a
1486        //   user-defined conversion sequence (see 13.3.3 and
1487        //   13.3.3.1).
1488        User.After = Best->FinalConversion;
1489        return true;
1490      } else {
1491        assert(false && "Not a constructor or conversion function?");
1492        return false;
1493      }
1494
1495    case OR_No_Viable_Function:
1496    case OR_Deleted:
1497      // No conversion here! We're done.
1498      return false;
1499
1500    case OR_Ambiguous:
1501      // FIXME: See C++ [over.best.ics]p10 for the handling of
1502      // ambiguous conversion sequences.
1503      return false;
1504    }
1505
1506  return false;
1507}
1508
1509/// CompareImplicitConversionSequences - Compare two implicit
1510/// conversion sequences to determine whether one is better than the
1511/// other or if they are indistinguishable (C++ 13.3.3.2).
1512ImplicitConversionSequence::CompareKind
1513Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1514                                         const ImplicitConversionSequence& ICS2)
1515{
1516  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1517  // conversion sequences (as defined in 13.3.3.1)
1518  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1519  //      conversion sequence than a user-defined conversion sequence or
1520  //      an ellipsis conversion sequence, and
1521  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1522  //      conversion sequence than an ellipsis conversion sequence
1523  //      (13.3.3.1.3).
1524  //
1525  if (ICS1.ConversionKind < ICS2.ConversionKind)
1526    return ImplicitConversionSequence::Better;
1527  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1528    return ImplicitConversionSequence::Worse;
1529
1530  // Two implicit conversion sequences of the same form are
1531  // indistinguishable conversion sequences unless one of the
1532  // following rules apply: (C++ 13.3.3.2p3):
1533  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1534    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1535  else if (ICS1.ConversionKind ==
1536             ImplicitConversionSequence::UserDefinedConversion) {
1537    // User-defined conversion sequence U1 is a better conversion
1538    // sequence than another user-defined conversion sequence U2 if
1539    // they contain the same user-defined conversion function or
1540    // constructor and if the second standard conversion sequence of
1541    // U1 is better than the second standard conversion sequence of
1542    // U2 (C++ 13.3.3.2p3).
1543    if (ICS1.UserDefined.ConversionFunction ==
1544          ICS2.UserDefined.ConversionFunction)
1545      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1546                                                ICS2.UserDefined.After);
1547  }
1548
1549  return ImplicitConversionSequence::Indistinguishable;
1550}
1551
1552/// CompareStandardConversionSequences - Compare two standard
1553/// conversion sequences to determine whether one is better than the
1554/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1555ImplicitConversionSequence::CompareKind
1556Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1557                                         const StandardConversionSequence& SCS2)
1558{
1559  // Standard conversion sequence S1 is a better conversion sequence
1560  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1561
1562  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1563  //     sequences in the canonical form defined by 13.3.3.1.1,
1564  //     excluding any Lvalue Transformation; the identity conversion
1565  //     sequence is considered to be a subsequence of any
1566  //     non-identity conversion sequence) or, if not that,
1567  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1568    // Neither is a proper subsequence of the other. Do nothing.
1569    ;
1570  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1571           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1572           (SCS1.Second == ICK_Identity &&
1573            SCS1.Third == ICK_Identity))
1574    // SCS1 is a proper subsequence of SCS2.
1575    return ImplicitConversionSequence::Better;
1576  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1577           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1578           (SCS2.Second == ICK_Identity &&
1579            SCS2.Third == ICK_Identity))
1580    // SCS2 is a proper subsequence of SCS1.
1581    return ImplicitConversionSequence::Worse;
1582
1583  //  -- the rank of S1 is better than the rank of S2 (by the rules
1584  //     defined below), or, if not that,
1585  ImplicitConversionRank Rank1 = SCS1.getRank();
1586  ImplicitConversionRank Rank2 = SCS2.getRank();
1587  if (Rank1 < Rank2)
1588    return ImplicitConversionSequence::Better;
1589  else if (Rank2 < Rank1)
1590    return ImplicitConversionSequence::Worse;
1591
1592  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1593  // are indistinguishable unless one of the following rules
1594  // applies:
1595
1596  //   A conversion that is not a conversion of a pointer, or
1597  //   pointer to member, to bool is better than another conversion
1598  //   that is such a conversion.
1599  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1600    return SCS2.isPointerConversionToBool()
1601             ? ImplicitConversionSequence::Better
1602             : ImplicitConversionSequence::Worse;
1603
1604  // C++ [over.ics.rank]p4b2:
1605  //
1606  //   If class B is derived directly or indirectly from class A,
1607  //   conversion of B* to A* is better than conversion of B* to
1608  //   void*, and conversion of A* to void* is better than conversion
1609  //   of B* to void*.
1610  bool SCS1ConvertsToVoid
1611    = SCS1.isPointerConversionToVoidPointer(Context);
1612  bool SCS2ConvertsToVoid
1613    = SCS2.isPointerConversionToVoidPointer(Context);
1614  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1615    // Exactly one of the conversion sequences is a conversion to
1616    // a void pointer; it's the worse conversion.
1617    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1618                              : ImplicitConversionSequence::Worse;
1619  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1620    // Neither conversion sequence converts to a void pointer; compare
1621    // their derived-to-base conversions.
1622    if (ImplicitConversionSequence::CompareKind DerivedCK
1623          = CompareDerivedToBaseConversions(SCS1, SCS2))
1624      return DerivedCK;
1625  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1626    // Both conversion sequences are conversions to void
1627    // pointers. Compare the source types to determine if there's an
1628    // inheritance relationship in their sources.
1629    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1630    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1631
1632    // Adjust the types we're converting from via the array-to-pointer
1633    // conversion, if we need to.
1634    if (SCS1.First == ICK_Array_To_Pointer)
1635      FromType1 = Context.getArrayDecayedType(FromType1);
1636    if (SCS2.First == ICK_Array_To_Pointer)
1637      FromType2 = Context.getArrayDecayedType(FromType2);
1638
1639    QualType FromPointee1
1640      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1641    QualType FromPointee2
1642      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1643
1644    if (IsDerivedFrom(FromPointee2, FromPointee1))
1645      return ImplicitConversionSequence::Better;
1646    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1647      return ImplicitConversionSequence::Worse;
1648
1649    // Objective-C++: If one interface is more specific than the
1650    // other, it is the better one.
1651    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1652    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1653    if (FromIface1 && FromIface1) {
1654      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1655        return ImplicitConversionSequence::Better;
1656      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1657        return ImplicitConversionSequence::Worse;
1658    }
1659  }
1660
1661  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1662  // bullet 3).
1663  if (ImplicitConversionSequence::CompareKind QualCK
1664        = CompareQualificationConversions(SCS1, SCS2))
1665    return QualCK;
1666
1667  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1668    // C++0x [over.ics.rank]p3b4:
1669    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1670    //      implicit object parameter of a non-static member function declared
1671    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1672    //      rvalue and S2 binds an lvalue reference.
1673    // FIXME: We don't know if we're dealing with the implicit object parameter,
1674    // or if the member function in this case has a ref qualifier.
1675    // (Of course, we don't have ref qualifiers yet.)
1676    if (SCS1.RRefBinding != SCS2.RRefBinding)
1677      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1678                              : ImplicitConversionSequence::Worse;
1679
1680    // C++ [over.ics.rank]p3b4:
1681    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1682    //      which the references refer are the same type except for
1683    //      top-level cv-qualifiers, and the type to which the reference
1684    //      initialized by S2 refers is more cv-qualified than the type
1685    //      to which the reference initialized by S1 refers.
1686    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1687    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1688    T1 = Context.getCanonicalType(T1);
1689    T2 = Context.getCanonicalType(T2);
1690    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1691      if (T2.isMoreQualifiedThan(T1))
1692        return ImplicitConversionSequence::Better;
1693      else if (T1.isMoreQualifiedThan(T2))
1694        return ImplicitConversionSequence::Worse;
1695    }
1696  }
1697
1698  return ImplicitConversionSequence::Indistinguishable;
1699}
1700
1701/// CompareQualificationConversions - Compares two standard conversion
1702/// sequences to determine whether they can be ranked based on their
1703/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1704ImplicitConversionSequence::CompareKind
1705Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1706                                      const StandardConversionSequence& SCS2)
1707{
1708  // C++ 13.3.3.2p3:
1709  //  -- S1 and S2 differ only in their qualification conversion and
1710  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1711  //     cv-qualification signature of type T1 is a proper subset of
1712  //     the cv-qualification signature of type T2, and S1 is not the
1713  //     deprecated string literal array-to-pointer conversion (4.2).
1714  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1715      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1716    return ImplicitConversionSequence::Indistinguishable;
1717
1718  // FIXME: the example in the standard doesn't use a qualification
1719  // conversion (!)
1720  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1721  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1722  T1 = Context.getCanonicalType(T1);
1723  T2 = Context.getCanonicalType(T2);
1724
1725  // If the types are the same, we won't learn anything by unwrapped
1726  // them.
1727  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1728    return ImplicitConversionSequence::Indistinguishable;
1729
1730  ImplicitConversionSequence::CompareKind Result
1731    = ImplicitConversionSequence::Indistinguishable;
1732  while (UnwrapSimilarPointerTypes(T1, T2)) {
1733    // Within each iteration of the loop, we check the qualifiers to
1734    // determine if this still looks like a qualification
1735    // conversion. Then, if all is well, we unwrap one more level of
1736    // pointers or pointers-to-members and do it all again
1737    // until there are no more pointers or pointers-to-members left
1738    // to unwrap. This essentially mimics what
1739    // IsQualificationConversion does, but here we're checking for a
1740    // strict subset of qualifiers.
1741    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1742      // The qualifiers are the same, so this doesn't tell us anything
1743      // about how the sequences rank.
1744      ;
1745    else if (T2.isMoreQualifiedThan(T1)) {
1746      // T1 has fewer qualifiers, so it could be the better sequence.
1747      if (Result == ImplicitConversionSequence::Worse)
1748        // Neither has qualifiers that are a subset of the other's
1749        // qualifiers.
1750        return ImplicitConversionSequence::Indistinguishable;
1751
1752      Result = ImplicitConversionSequence::Better;
1753    } else if (T1.isMoreQualifiedThan(T2)) {
1754      // T2 has fewer qualifiers, so it could be the better sequence.
1755      if (Result == ImplicitConversionSequence::Better)
1756        // Neither has qualifiers that are a subset of the other's
1757        // qualifiers.
1758        return ImplicitConversionSequence::Indistinguishable;
1759
1760      Result = ImplicitConversionSequence::Worse;
1761    } else {
1762      // Qualifiers are disjoint.
1763      return ImplicitConversionSequence::Indistinguishable;
1764    }
1765
1766    // If the types after this point are equivalent, we're done.
1767    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1768      break;
1769  }
1770
1771  // Check that the winning standard conversion sequence isn't using
1772  // the deprecated string literal array to pointer conversion.
1773  switch (Result) {
1774  case ImplicitConversionSequence::Better:
1775    if (SCS1.Deprecated)
1776      Result = ImplicitConversionSequence::Indistinguishable;
1777    break;
1778
1779  case ImplicitConversionSequence::Indistinguishable:
1780    break;
1781
1782  case ImplicitConversionSequence::Worse:
1783    if (SCS2.Deprecated)
1784      Result = ImplicitConversionSequence::Indistinguishable;
1785    break;
1786  }
1787
1788  return Result;
1789}
1790
1791/// CompareDerivedToBaseConversions - Compares two standard conversion
1792/// sequences to determine whether they can be ranked based on their
1793/// various kinds of derived-to-base conversions (C++
1794/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1795/// conversions between Objective-C interface types.
1796ImplicitConversionSequence::CompareKind
1797Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1798                                      const StandardConversionSequence& SCS2) {
1799  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1800  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1801  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1802  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1803
1804  // Adjust the types we're converting from via the array-to-pointer
1805  // conversion, if we need to.
1806  if (SCS1.First == ICK_Array_To_Pointer)
1807    FromType1 = Context.getArrayDecayedType(FromType1);
1808  if (SCS2.First == ICK_Array_To_Pointer)
1809    FromType2 = Context.getArrayDecayedType(FromType2);
1810
1811  // Canonicalize all of the types.
1812  FromType1 = Context.getCanonicalType(FromType1);
1813  ToType1 = Context.getCanonicalType(ToType1);
1814  FromType2 = Context.getCanonicalType(FromType2);
1815  ToType2 = Context.getCanonicalType(ToType2);
1816
1817  // C++ [over.ics.rank]p4b3:
1818  //
1819  //   If class B is derived directly or indirectly from class A and
1820  //   class C is derived directly or indirectly from B,
1821  //
1822  // For Objective-C, we let A, B, and C also be Objective-C
1823  // interfaces.
1824
1825  // Compare based on pointer conversions.
1826  if (SCS1.Second == ICK_Pointer_Conversion &&
1827      SCS2.Second == ICK_Pointer_Conversion &&
1828      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1829      FromType1->isPointerType() && FromType2->isPointerType() &&
1830      ToType1->isPointerType() && ToType2->isPointerType()) {
1831    QualType FromPointee1
1832      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1833    QualType ToPointee1
1834      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1835    QualType FromPointee2
1836      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1837    QualType ToPointee2
1838      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1839
1840    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1841    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1842    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1843    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1844
1845    //   -- conversion of C* to B* is better than conversion of C* to A*,
1846    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1847      if (IsDerivedFrom(ToPointee1, ToPointee2))
1848        return ImplicitConversionSequence::Better;
1849      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1850        return ImplicitConversionSequence::Worse;
1851
1852      if (ToIface1 && ToIface2) {
1853        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1854          return ImplicitConversionSequence::Better;
1855        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1856          return ImplicitConversionSequence::Worse;
1857      }
1858    }
1859
1860    //   -- conversion of B* to A* is better than conversion of C* to A*,
1861    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1862      if (IsDerivedFrom(FromPointee2, FromPointee1))
1863        return ImplicitConversionSequence::Better;
1864      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1865        return ImplicitConversionSequence::Worse;
1866
1867      if (FromIface1 && FromIface2) {
1868        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1869          return ImplicitConversionSequence::Better;
1870        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1871          return ImplicitConversionSequence::Worse;
1872      }
1873    }
1874  }
1875
1876  // Compare based on reference bindings.
1877  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1878      SCS1.Second == ICK_Derived_To_Base) {
1879    //   -- binding of an expression of type C to a reference of type
1880    //      B& is better than binding an expression of type C to a
1881    //      reference of type A&,
1882    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1883        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1884      if (IsDerivedFrom(ToType1, ToType2))
1885        return ImplicitConversionSequence::Better;
1886      else if (IsDerivedFrom(ToType2, ToType1))
1887        return ImplicitConversionSequence::Worse;
1888    }
1889
1890    //   -- binding of an expression of type B to a reference of type
1891    //      A& is better than binding an expression of type C to a
1892    //      reference of type A&,
1893    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1894        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1895      if (IsDerivedFrom(FromType2, FromType1))
1896        return ImplicitConversionSequence::Better;
1897      else if (IsDerivedFrom(FromType1, FromType2))
1898        return ImplicitConversionSequence::Worse;
1899    }
1900  }
1901
1902
1903  // FIXME: conversion of A::* to B::* is better than conversion of
1904  // A::* to C::*,
1905
1906  // FIXME: conversion of B::* to C::* is better than conversion of
1907  // A::* to C::*, and
1908
1909  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1910      SCS1.Second == ICK_Derived_To_Base) {
1911    //   -- conversion of C to B is better than conversion of C to A,
1912    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1913        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1914      if (IsDerivedFrom(ToType1, ToType2))
1915        return ImplicitConversionSequence::Better;
1916      else if (IsDerivedFrom(ToType2, ToType1))
1917        return ImplicitConversionSequence::Worse;
1918    }
1919
1920    //   -- conversion of B to A is better than conversion of C to A.
1921    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1922        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1923      if (IsDerivedFrom(FromType2, FromType1))
1924        return ImplicitConversionSequence::Better;
1925      else if (IsDerivedFrom(FromType1, FromType2))
1926        return ImplicitConversionSequence::Worse;
1927    }
1928  }
1929
1930  return ImplicitConversionSequence::Indistinguishable;
1931}
1932
1933/// TryCopyInitialization - Try to copy-initialize a value of type
1934/// ToType from the expression From. Return the implicit conversion
1935/// sequence required to pass this argument, which may be a bad
1936/// conversion sequence (meaning that the argument cannot be passed to
1937/// a parameter of this type). If @p SuppressUserConversions, then we
1938/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1939/// then we treat @p From as an rvalue, even if it is an lvalue.
1940ImplicitConversionSequence
1941Sema::TryCopyInitialization(Expr *From, QualType ToType,
1942                            bool SuppressUserConversions, bool ForceRValue,
1943                            bool InOverloadResolution) {
1944  if (ToType->isReferenceType()) {
1945    ImplicitConversionSequence ICS;
1946    CheckReferenceInit(From, ToType,
1947                       SuppressUserConversions,
1948                       /*AllowExplicit=*/false,
1949                       ForceRValue,
1950                       &ICS);
1951    return ICS;
1952  } else {
1953    return TryImplicitConversion(From, ToType,
1954                                 SuppressUserConversions,
1955                                 /*AllowExplicit=*/false,
1956                                 ForceRValue,
1957                                 InOverloadResolution);
1958  }
1959}
1960
1961/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1962/// the expression @p From. Returns true (and emits a diagnostic) if there was
1963/// an error, returns false if the initialization succeeded. Elidable should
1964/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1965/// differently in C++0x for this case.
1966bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1967                                     const char* Flavor, bool Elidable) {
1968  if (!getLangOptions().CPlusPlus) {
1969    // In C, argument passing is the same as performing an assignment.
1970    QualType FromType = From->getType();
1971
1972    AssignConvertType ConvTy =
1973      CheckSingleAssignmentConstraints(ToType, From);
1974    if (ConvTy != Compatible &&
1975        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1976      ConvTy = Compatible;
1977
1978    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1979                                    FromType, From, Flavor);
1980  }
1981
1982  if (ToType->isReferenceType())
1983    return CheckReferenceInit(From, ToType,
1984                              /*SuppressUserConversions=*/false,
1985                              /*AllowExplicit=*/false,
1986                              /*ForceRValue=*/false);
1987
1988  if (!PerformImplicitConversion(From, ToType, Flavor,
1989                                 /*AllowExplicit=*/false, Elidable))
1990    return false;
1991
1992  return Diag(From->getSourceRange().getBegin(),
1993              diag::err_typecheck_convert_incompatible)
1994    << ToType << From->getType() << Flavor << From->getSourceRange();
1995}
1996
1997/// TryObjectArgumentInitialization - Try to initialize the object
1998/// parameter of the given member function (@c Method) from the
1999/// expression @p From.
2000ImplicitConversionSequence
2001Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2002  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2003  unsigned MethodQuals = Method->getTypeQualifiers();
2004  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
2005
2006  // Set up the conversion sequence as a "bad" conversion, to allow us
2007  // to exit early.
2008  ImplicitConversionSequence ICS;
2009  ICS.Standard.setAsIdentityConversion();
2010  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2011
2012  // We need to have an object of class type.
2013  QualType FromType = From->getType();
2014  if (const PointerType *PT = FromType->getAs<PointerType>())
2015    FromType = PT->getPointeeType();
2016
2017  assert(FromType->isRecordType());
2018
2019  // The implicit object parmeter is has the type "reference to cv X",
2020  // where X is the class of which the function is a member
2021  // (C++ [over.match.funcs]p4). However, when finding an implicit
2022  // conversion sequence for the argument, we are not allowed to
2023  // create temporaries or perform user-defined conversions
2024  // (C++ [over.match.funcs]p5). We perform a simplified version of
2025  // reference binding here, that allows class rvalues to bind to
2026  // non-constant references.
2027
2028  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2029  // with the implicit object parameter (C++ [over.match.funcs]p5).
2030  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2031  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2032      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2033    return ICS;
2034
2035  // Check that we have either the same type or a derived type. It
2036  // affects the conversion rank.
2037  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2038  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2039    ICS.Standard.Second = ICK_Identity;
2040  else if (IsDerivedFrom(FromType, ClassType))
2041    ICS.Standard.Second = ICK_Derived_To_Base;
2042  else
2043    return ICS;
2044
2045  // Success. Mark this as a reference binding.
2046  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2047  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2048  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2049  ICS.Standard.ReferenceBinding = true;
2050  ICS.Standard.DirectBinding = true;
2051  ICS.Standard.RRefBinding = false;
2052  return ICS;
2053}
2054
2055/// PerformObjectArgumentInitialization - Perform initialization of
2056/// the implicit object parameter for the given Method with the given
2057/// expression.
2058bool
2059Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2060  QualType FromRecordType, DestType;
2061  QualType ImplicitParamRecordType  =
2062    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2063
2064  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2065    FromRecordType = PT->getPointeeType();
2066    DestType = Method->getThisType(Context);
2067  } else {
2068    FromRecordType = From->getType();
2069    DestType = ImplicitParamRecordType;
2070  }
2071
2072  ImplicitConversionSequence ICS
2073    = TryObjectArgumentInitialization(From, Method);
2074  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2075    return Diag(From->getSourceRange().getBegin(),
2076                diag::err_implicit_object_parameter_init)
2077       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2078
2079  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2080      CheckDerivedToBaseConversion(FromRecordType,
2081                                   ImplicitParamRecordType,
2082                                   From->getSourceRange().getBegin(),
2083                                   From->getSourceRange()))
2084    return true;
2085
2086  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2087                    /*isLvalue=*/true);
2088  return false;
2089}
2090
2091/// TryContextuallyConvertToBool - Attempt to contextually convert the
2092/// expression From to bool (C++0x [conv]p3).
2093ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2094  return TryImplicitConversion(From, Context.BoolTy,
2095                               // FIXME: Are these flags correct?
2096                               /*SuppressUserConversions=*/false,
2097                               /*AllowExplicit=*/true,
2098                               /*ForceRValue=*/false,
2099                               /*InOverloadResolution=*/false);
2100}
2101
2102/// PerformContextuallyConvertToBool - Perform a contextual conversion
2103/// of the expression From to bool (C++0x [conv]p3).
2104bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2105  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2106  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2107    return false;
2108
2109  return Diag(From->getSourceRange().getBegin(),
2110              diag::err_typecheck_bool_condition)
2111    << From->getType() << From->getSourceRange();
2112}
2113
2114/// AddOverloadCandidate - Adds the given function to the set of
2115/// candidate functions, using the given function call arguments.  If
2116/// @p SuppressUserConversions, then don't allow user-defined
2117/// conversions via constructors or conversion operators.
2118/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2119/// hacky way to implement the overloading rules for elidable copy
2120/// initialization in C++0x (C++0x 12.8p15).
2121void
2122Sema::AddOverloadCandidate(FunctionDecl *Function,
2123                           Expr **Args, unsigned NumArgs,
2124                           OverloadCandidateSet& CandidateSet,
2125                           bool SuppressUserConversions,
2126                           bool ForceRValue)
2127{
2128  const FunctionProtoType* Proto
2129    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2130  assert(Proto && "Functions without a prototype cannot be overloaded");
2131  assert(!isa<CXXConversionDecl>(Function) &&
2132         "Use AddConversionCandidate for conversion functions");
2133  assert(!Function->getDescribedFunctionTemplate() &&
2134         "Use AddTemplateOverloadCandidate for function templates");
2135
2136  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2137    if (!isa<CXXConstructorDecl>(Method)) {
2138      // If we get here, it's because we're calling a member function
2139      // that is named without a member access expression (e.g.,
2140      // "this->f") that was either written explicitly or created
2141      // implicitly. This can happen with a qualified call to a member
2142      // function, e.g., X::f(). We use a NULL object as the implied
2143      // object argument (C++ [over.call.func]p3).
2144      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2145                         SuppressUserConversions, ForceRValue);
2146      return;
2147    }
2148    // We treat a constructor like a non-member function, since its object
2149    // argument doesn't participate in overload resolution.
2150  }
2151
2152
2153  // Add this candidate
2154  CandidateSet.push_back(OverloadCandidate());
2155  OverloadCandidate& Candidate = CandidateSet.back();
2156  Candidate.Function = Function;
2157  Candidate.Viable = true;
2158  Candidate.IsSurrogate = false;
2159  Candidate.IgnoreObjectArgument = false;
2160
2161  unsigned NumArgsInProto = Proto->getNumArgs();
2162
2163  // (C++ 13.3.2p2): A candidate function having fewer than m
2164  // parameters is viable only if it has an ellipsis in its parameter
2165  // list (8.3.5).
2166  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2167    Candidate.Viable = false;
2168    return;
2169  }
2170
2171  // (C++ 13.3.2p2): A candidate function having more than m parameters
2172  // is viable only if the (m+1)st parameter has a default argument
2173  // (8.3.6). For the purposes of overload resolution, the
2174  // parameter list is truncated on the right, so that there are
2175  // exactly m parameters.
2176  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2177  if (NumArgs < MinRequiredArgs) {
2178    // Not enough arguments.
2179    Candidate.Viable = false;
2180    return;
2181  }
2182
2183  // Determine the implicit conversion sequences for each of the
2184  // arguments.
2185  Candidate.Conversions.resize(NumArgs);
2186  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2187    if (ArgIdx < NumArgsInProto) {
2188      // (C++ 13.3.2p3): for F to be a viable function, there shall
2189      // exist for each argument an implicit conversion sequence
2190      // (13.3.3.1) that converts that argument to the corresponding
2191      // parameter of F.
2192      QualType ParamType = Proto->getArgType(ArgIdx);
2193      Candidate.Conversions[ArgIdx]
2194        = TryCopyInitialization(Args[ArgIdx], ParamType,
2195                                SuppressUserConversions, ForceRValue,
2196                                /*InOverloadResolution=*/true);
2197      if (Candidate.Conversions[ArgIdx].ConversionKind
2198            == ImplicitConversionSequence::BadConversion) {
2199        Candidate.Viable = false;
2200        break;
2201      }
2202    } else {
2203      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2204      // argument for which there is no corresponding parameter is
2205      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2206      Candidate.Conversions[ArgIdx].ConversionKind
2207        = ImplicitConversionSequence::EllipsisConversion;
2208    }
2209  }
2210}
2211
2212/// \brief Add all of the function declarations in the given function set to
2213/// the overload canddiate set.
2214void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2215                                 Expr **Args, unsigned NumArgs,
2216                                 OverloadCandidateSet& CandidateSet,
2217                                 bool SuppressUserConversions) {
2218  for (FunctionSet::const_iterator F = Functions.begin(),
2219                                FEnd = Functions.end();
2220       F != FEnd; ++F) {
2221    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2222      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2223                           SuppressUserConversions);
2224    else
2225      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2226                                   /*FIXME: explicit args */false, 0, 0,
2227                                   Args, NumArgs, CandidateSet,
2228                                   SuppressUserConversions);
2229  }
2230}
2231
2232/// AddMethodCandidate - Adds the given C++ member function to the set
2233/// of candidate functions, using the given function call arguments
2234/// and the object argument (@c Object). For example, in a call
2235/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2236/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2237/// allow user-defined conversions via constructors or conversion
2238/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2239/// a slightly hacky way to implement the overloading rules for elidable copy
2240/// initialization in C++0x (C++0x 12.8p15).
2241void
2242Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2243                         Expr **Args, unsigned NumArgs,
2244                         OverloadCandidateSet& CandidateSet,
2245                         bool SuppressUserConversions, bool ForceRValue)
2246{
2247  const FunctionProtoType* Proto
2248    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2249  assert(Proto && "Methods without a prototype cannot be overloaded");
2250  assert(!isa<CXXConversionDecl>(Method) &&
2251         "Use AddConversionCandidate for conversion functions");
2252  assert(!isa<CXXConstructorDecl>(Method) &&
2253         "Use AddOverloadCandidate for constructors");
2254
2255  // Add this candidate
2256  CandidateSet.push_back(OverloadCandidate());
2257  OverloadCandidate& Candidate = CandidateSet.back();
2258  Candidate.Function = Method;
2259  Candidate.IsSurrogate = false;
2260  Candidate.IgnoreObjectArgument = false;
2261
2262  unsigned NumArgsInProto = Proto->getNumArgs();
2263
2264  // (C++ 13.3.2p2): A candidate function having fewer than m
2265  // parameters is viable only if it has an ellipsis in its parameter
2266  // list (8.3.5).
2267  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2268    Candidate.Viable = false;
2269    return;
2270  }
2271
2272  // (C++ 13.3.2p2): A candidate function having more than m parameters
2273  // is viable only if the (m+1)st parameter has a default argument
2274  // (8.3.6). For the purposes of overload resolution, the
2275  // parameter list is truncated on the right, so that there are
2276  // exactly m parameters.
2277  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2278  if (NumArgs < MinRequiredArgs) {
2279    // Not enough arguments.
2280    Candidate.Viable = false;
2281    return;
2282  }
2283
2284  Candidate.Viable = true;
2285  Candidate.Conversions.resize(NumArgs + 1);
2286
2287  if (Method->isStatic() || !Object)
2288    // The implicit object argument is ignored.
2289    Candidate.IgnoreObjectArgument = true;
2290  else {
2291    // Determine the implicit conversion sequence for the object
2292    // parameter.
2293    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2294    if (Candidate.Conversions[0].ConversionKind
2295          == ImplicitConversionSequence::BadConversion) {
2296      Candidate.Viable = false;
2297      return;
2298    }
2299  }
2300
2301  // Determine the implicit conversion sequences for each of the
2302  // arguments.
2303  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2304    if (ArgIdx < NumArgsInProto) {
2305      // (C++ 13.3.2p3): for F to be a viable function, there shall
2306      // exist for each argument an implicit conversion sequence
2307      // (13.3.3.1) that converts that argument to the corresponding
2308      // parameter of F.
2309      QualType ParamType = Proto->getArgType(ArgIdx);
2310      Candidate.Conversions[ArgIdx + 1]
2311        = TryCopyInitialization(Args[ArgIdx], ParamType,
2312                                SuppressUserConversions, ForceRValue,
2313                                /*InOverloadResolution=*/true);
2314      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2315            == ImplicitConversionSequence::BadConversion) {
2316        Candidate.Viable = false;
2317        break;
2318      }
2319    } else {
2320      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2321      // argument for which there is no corresponding parameter is
2322      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2323      Candidate.Conversions[ArgIdx + 1].ConversionKind
2324        = ImplicitConversionSequence::EllipsisConversion;
2325    }
2326  }
2327}
2328
2329/// \brief Add a C++ member function template as a candidate to the candidate
2330/// set, using template argument deduction to produce an appropriate member
2331/// function template specialization.
2332void
2333Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2334                                 bool HasExplicitTemplateArgs,
2335                                 const TemplateArgument *ExplicitTemplateArgs,
2336                                 unsigned NumExplicitTemplateArgs,
2337                                 Expr *Object, Expr **Args, unsigned NumArgs,
2338                                 OverloadCandidateSet& CandidateSet,
2339                                 bool SuppressUserConversions,
2340                                 bool ForceRValue) {
2341  // C++ [over.match.funcs]p7:
2342  //   In each case where a candidate is a function template, candidate
2343  //   function template specializations are generated using template argument
2344  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2345  //   candidate functions in the usual way.113) A given name can refer to one
2346  //   or more function templates and also to a set of overloaded non-template
2347  //   functions. In such a case, the candidate functions generated from each
2348  //   function template are combined with the set of non-template candidate
2349  //   functions.
2350  TemplateDeductionInfo Info(Context);
2351  FunctionDecl *Specialization = 0;
2352  if (TemplateDeductionResult Result
2353      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2354                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2355                                Args, NumArgs, Specialization, Info)) {
2356        // FIXME: Record what happened with template argument deduction, so
2357        // that we can give the user a beautiful diagnostic.
2358        (void)Result;
2359        return;
2360      }
2361
2362  // Add the function template specialization produced by template argument
2363  // deduction as a candidate.
2364  assert(Specialization && "Missing member function template specialization?");
2365  assert(isa<CXXMethodDecl>(Specialization) &&
2366         "Specialization is not a member function?");
2367  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2368                     CandidateSet, SuppressUserConversions, ForceRValue);
2369}
2370
2371/// \brief Add a C++ function template specialization as a candidate
2372/// in the candidate set, using template argument deduction to produce
2373/// an appropriate function template specialization.
2374void
2375Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2376                                   bool HasExplicitTemplateArgs,
2377                                 const TemplateArgument *ExplicitTemplateArgs,
2378                                   unsigned NumExplicitTemplateArgs,
2379                                   Expr **Args, unsigned NumArgs,
2380                                   OverloadCandidateSet& CandidateSet,
2381                                   bool SuppressUserConversions,
2382                                   bool ForceRValue) {
2383  // C++ [over.match.funcs]p7:
2384  //   In each case where a candidate is a function template, candidate
2385  //   function template specializations are generated using template argument
2386  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2387  //   candidate functions in the usual way.113) A given name can refer to one
2388  //   or more function templates and also to a set of overloaded non-template
2389  //   functions. In such a case, the candidate functions generated from each
2390  //   function template are combined with the set of non-template candidate
2391  //   functions.
2392  TemplateDeductionInfo Info(Context);
2393  FunctionDecl *Specialization = 0;
2394  if (TemplateDeductionResult Result
2395        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2396                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2397                                  Args, NumArgs, Specialization, Info)) {
2398    // FIXME: Record what happened with template argument deduction, so
2399    // that we can give the user a beautiful diagnostic.
2400    (void)Result;
2401    return;
2402  }
2403
2404  // Add the function template specialization produced by template argument
2405  // deduction as a candidate.
2406  assert(Specialization && "Missing function template specialization?");
2407  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2408                       SuppressUserConversions, ForceRValue);
2409}
2410
2411/// AddConversionCandidate - Add a C++ conversion function as a
2412/// candidate in the candidate set (C++ [over.match.conv],
2413/// C++ [over.match.copy]). From is the expression we're converting from,
2414/// and ToType is the type that we're eventually trying to convert to
2415/// (which may or may not be the same type as the type that the
2416/// conversion function produces).
2417void
2418Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2419                             Expr *From, QualType ToType,
2420                             OverloadCandidateSet& CandidateSet) {
2421  assert(!Conversion->getDescribedFunctionTemplate() &&
2422         "Conversion function templates use AddTemplateConversionCandidate");
2423
2424  // Add this candidate
2425  CandidateSet.push_back(OverloadCandidate());
2426  OverloadCandidate& Candidate = CandidateSet.back();
2427  Candidate.Function = Conversion;
2428  Candidate.IsSurrogate = false;
2429  Candidate.IgnoreObjectArgument = false;
2430  Candidate.FinalConversion.setAsIdentityConversion();
2431  Candidate.FinalConversion.FromTypePtr
2432    = Conversion->getConversionType().getAsOpaquePtr();
2433  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2434
2435  // Determine the implicit conversion sequence for the implicit
2436  // object parameter.
2437  Candidate.Viable = true;
2438  Candidate.Conversions.resize(1);
2439  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2440
2441  if (Candidate.Conversions[0].ConversionKind
2442      == ImplicitConversionSequence::BadConversion) {
2443    Candidate.Viable = false;
2444    return;
2445  }
2446
2447  // To determine what the conversion from the result of calling the
2448  // conversion function to the type we're eventually trying to
2449  // convert to (ToType), we need to synthesize a call to the
2450  // conversion function and attempt copy initialization from it. This
2451  // makes sure that we get the right semantics with respect to
2452  // lvalues/rvalues and the type. Fortunately, we can allocate this
2453  // call on the stack and we don't need its arguments to be
2454  // well-formed.
2455  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2456                            SourceLocation());
2457  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2458                                CastExpr::CK_Unknown,
2459                                &ConversionRef, false);
2460
2461  // Note that it is safe to allocate CallExpr on the stack here because
2462  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2463  // allocator).
2464  CallExpr Call(Context, &ConversionFn, 0, 0,
2465                Conversion->getConversionType().getNonReferenceType(),
2466                SourceLocation());
2467  ImplicitConversionSequence ICS =
2468    TryCopyInitialization(&Call, ToType,
2469                          /*SuppressUserConversions=*/true,
2470                          /*ForceRValue=*/false,
2471                          /*InOverloadResolution=*/false);
2472
2473  switch (ICS.ConversionKind) {
2474  case ImplicitConversionSequence::StandardConversion:
2475    Candidate.FinalConversion = ICS.Standard;
2476    break;
2477
2478  case ImplicitConversionSequence::BadConversion:
2479    Candidate.Viable = false;
2480    break;
2481
2482  default:
2483    assert(false &&
2484           "Can only end up with a standard conversion sequence or failure");
2485  }
2486}
2487
2488/// \brief Adds a conversion function template specialization
2489/// candidate to the overload set, using template argument deduction
2490/// to deduce the template arguments of the conversion function
2491/// template from the type that we are converting to (C++
2492/// [temp.deduct.conv]).
2493void
2494Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2495                                     Expr *From, QualType ToType,
2496                                     OverloadCandidateSet &CandidateSet) {
2497  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2498         "Only conversion function templates permitted here");
2499
2500  TemplateDeductionInfo Info(Context);
2501  CXXConversionDecl *Specialization = 0;
2502  if (TemplateDeductionResult Result
2503        = DeduceTemplateArguments(FunctionTemplate, ToType,
2504                                  Specialization, Info)) {
2505    // FIXME: Record what happened with template argument deduction, so
2506    // that we can give the user a beautiful diagnostic.
2507    (void)Result;
2508    return;
2509  }
2510
2511  // Add the conversion function template specialization produced by
2512  // template argument deduction as a candidate.
2513  assert(Specialization && "Missing function template specialization?");
2514  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2515}
2516
2517/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2518/// converts the given @c Object to a function pointer via the
2519/// conversion function @c Conversion, and then attempts to call it
2520/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2521/// the type of function that we'll eventually be calling.
2522void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2523                                 const FunctionProtoType *Proto,
2524                                 Expr *Object, Expr **Args, unsigned NumArgs,
2525                                 OverloadCandidateSet& CandidateSet) {
2526  CandidateSet.push_back(OverloadCandidate());
2527  OverloadCandidate& Candidate = CandidateSet.back();
2528  Candidate.Function = 0;
2529  Candidate.Surrogate = Conversion;
2530  Candidate.Viable = true;
2531  Candidate.IsSurrogate = true;
2532  Candidate.IgnoreObjectArgument = false;
2533  Candidate.Conversions.resize(NumArgs + 1);
2534
2535  // Determine the implicit conversion sequence for the implicit
2536  // object parameter.
2537  ImplicitConversionSequence ObjectInit
2538    = TryObjectArgumentInitialization(Object, Conversion);
2539  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2540    Candidate.Viable = false;
2541    return;
2542  }
2543
2544  // The first conversion is actually a user-defined conversion whose
2545  // first conversion is ObjectInit's standard conversion (which is
2546  // effectively a reference binding). Record it as such.
2547  Candidate.Conversions[0].ConversionKind
2548    = ImplicitConversionSequence::UserDefinedConversion;
2549  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2550  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2551  Candidate.Conversions[0].UserDefined.After
2552    = Candidate.Conversions[0].UserDefined.Before;
2553  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2554
2555  // Find the
2556  unsigned NumArgsInProto = Proto->getNumArgs();
2557
2558  // (C++ 13.3.2p2): A candidate function having fewer than m
2559  // parameters is viable only if it has an ellipsis in its parameter
2560  // list (8.3.5).
2561  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2562    Candidate.Viable = false;
2563    return;
2564  }
2565
2566  // Function types don't have any default arguments, so just check if
2567  // we have enough arguments.
2568  if (NumArgs < NumArgsInProto) {
2569    // Not enough arguments.
2570    Candidate.Viable = false;
2571    return;
2572  }
2573
2574  // Determine the implicit conversion sequences for each of the
2575  // arguments.
2576  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2577    if (ArgIdx < NumArgsInProto) {
2578      // (C++ 13.3.2p3): for F to be a viable function, there shall
2579      // exist for each argument an implicit conversion sequence
2580      // (13.3.3.1) that converts that argument to the corresponding
2581      // parameter of F.
2582      QualType ParamType = Proto->getArgType(ArgIdx);
2583      Candidate.Conversions[ArgIdx + 1]
2584        = TryCopyInitialization(Args[ArgIdx], ParamType,
2585                                /*SuppressUserConversions=*/false,
2586                                /*ForceRValue=*/false,
2587                                /*InOverloadResolution=*/false);
2588      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2589            == ImplicitConversionSequence::BadConversion) {
2590        Candidate.Viable = false;
2591        break;
2592      }
2593    } else {
2594      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2595      // argument for which there is no corresponding parameter is
2596      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2597      Candidate.Conversions[ArgIdx + 1].ConversionKind
2598        = ImplicitConversionSequence::EllipsisConversion;
2599    }
2600  }
2601}
2602
2603// FIXME: This will eventually be removed, once we've migrated all of the
2604// operator overloading logic over to the scheme used by binary operators, which
2605// works for template instantiation.
2606void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2607                                 SourceLocation OpLoc,
2608                                 Expr **Args, unsigned NumArgs,
2609                                 OverloadCandidateSet& CandidateSet,
2610                                 SourceRange OpRange) {
2611
2612  FunctionSet Functions;
2613
2614  QualType T1 = Args[0]->getType();
2615  QualType T2;
2616  if (NumArgs > 1)
2617    T2 = Args[1]->getType();
2618
2619  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2620  if (S)
2621    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2622  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2623  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2624  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2625  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2626}
2627
2628/// \brief Add overload candidates for overloaded operators that are
2629/// member functions.
2630///
2631/// Add the overloaded operator candidates that are member functions
2632/// for the operator Op that was used in an operator expression such
2633/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2634/// CandidateSet will store the added overload candidates. (C++
2635/// [over.match.oper]).
2636void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2637                                       SourceLocation OpLoc,
2638                                       Expr **Args, unsigned NumArgs,
2639                                       OverloadCandidateSet& CandidateSet,
2640                                       SourceRange OpRange) {
2641  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2642
2643  // C++ [over.match.oper]p3:
2644  //   For a unary operator @ with an operand of a type whose
2645  //   cv-unqualified version is T1, and for a binary operator @ with
2646  //   a left operand of a type whose cv-unqualified version is T1 and
2647  //   a right operand of a type whose cv-unqualified version is T2,
2648  //   three sets of candidate functions, designated member
2649  //   candidates, non-member candidates and built-in candidates, are
2650  //   constructed as follows:
2651  QualType T1 = Args[0]->getType();
2652  QualType T2;
2653  if (NumArgs > 1)
2654    T2 = Args[1]->getType();
2655
2656  //     -- If T1 is a class type, the set of member candidates is the
2657  //        result of the qualified lookup of T1::operator@
2658  //        (13.3.1.1.1); otherwise, the set of member candidates is
2659  //        empty.
2660  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2661    // Complete the type if it can be completed. Otherwise, we're done.
2662    if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0)))
2663      return;
2664
2665    LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName,
2666                                                 LookupOrdinaryName, false);
2667    for (LookupResult::iterator Oper = Operators.begin(),
2668                             OperEnd = Operators.end();
2669         Oper != OperEnd;
2670         ++Oper)
2671      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2672                         Args+1, NumArgs - 1, CandidateSet,
2673                         /*SuppressUserConversions=*/false);
2674  }
2675}
2676
2677/// AddBuiltinCandidate - Add a candidate for a built-in
2678/// operator. ResultTy and ParamTys are the result and parameter types
2679/// of the built-in candidate, respectively. Args and NumArgs are the
2680/// arguments being passed to the candidate. IsAssignmentOperator
2681/// should be true when this built-in candidate is an assignment
2682/// operator. NumContextualBoolArguments is the number of arguments
2683/// (at the beginning of the argument list) that will be contextually
2684/// converted to bool.
2685void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2686                               Expr **Args, unsigned NumArgs,
2687                               OverloadCandidateSet& CandidateSet,
2688                               bool IsAssignmentOperator,
2689                               unsigned NumContextualBoolArguments) {
2690  // Add this candidate
2691  CandidateSet.push_back(OverloadCandidate());
2692  OverloadCandidate& Candidate = CandidateSet.back();
2693  Candidate.Function = 0;
2694  Candidate.IsSurrogate = false;
2695  Candidate.IgnoreObjectArgument = false;
2696  Candidate.BuiltinTypes.ResultTy = ResultTy;
2697  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2698    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2699
2700  // Determine the implicit conversion sequences for each of the
2701  // arguments.
2702  Candidate.Viable = true;
2703  Candidate.Conversions.resize(NumArgs);
2704  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2705    // C++ [over.match.oper]p4:
2706    //   For the built-in assignment operators, conversions of the
2707    //   left operand are restricted as follows:
2708    //     -- no temporaries are introduced to hold the left operand, and
2709    //     -- no user-defined conversions are applied to the left
2710    //        operand to achieve a type match with the left-most
2711    //        parameter of a built-in candidate.
2712    //
2713    // We block these conversions by turning off user-defined
2714    // conversions, since that is the only way that initialization of
2715    // a reference to a non-class type can occur from something that
2716    // is not of the same type.
2717    if (ArgIdx < NumContextualBoolArguments) {
2718      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2719             "Contextual conversion to bool requires bool type");
2720      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2721    } else {
2722      Candidate.Conversions[ArgIdx]
2723        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2724                                ArgIdx == 0 && IsAssignmentOperator,
2725                                /*ForceRValue=*/false,
2726                                /*InOverloadResolution=*/false);
2727    }
2728    if (Candidate.Conversions[ArgIdx].ConversionKind
2729        == ImplicitConversionSequence::BadConversion) {
2730      Candidate.Viable = false;
2731      break;
2732    }
2733  }
2734}
2735
2736/// BuiltinCandidateTypeSet - A set of types that will be used for the
2737/// candidate operator functions for built-in operators (C++
2738/// [over.built]). The types are separated into pointer types and
2739/// enumeration types.
2740class BuiltinCandidateTypeSet  {
2741  /// TypeSet - A set of types.
2742  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2743
2744  /// PointerTypes - The set of pointer types that will be used in the
2745  /// built-in candidates.
2746  TypeSet PointerTypes;
2747
2748  /// MemberPointerTypes - The set of member pointer types that will be
2749  /// used in the built-in candidates.
2750  TypeSet MemberPointerTypes;
2751
2752  /// EnumerationTypes - The set of enumeration types that will be
2753  /// used in the built-in candidates.
2754  TypeSet EnumerationTypes;
2755
2756  /// Sema - The semantic analysis instance where we are building the
2757  /// candidate type set.
2758  Sema &SemaRef;
2759
2760  /// Context - The AST context in which we will build the type sets.
2761  ASTContext &Context;
2762
2763  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2764  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2765
2766public:
2767  /// iterator - Iterates through the types that are part of the set.
2768  typedef TypeSet::iterator iterator;
2769
2770  BuiltinCandidateTypeSet(Sema &SemaRef)
2771    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2772
2773  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2774                             bool AllowExplicitConversions);
2775
2776  /// pointer_begin - First pointer type found;
2777  iterator pointer_begin() { return PointerTypes.begin(); }
2778
2779  /// pointer_end - Past the last pointer type found;
2780  iterator pointer_end() { return PointerTypes.end(); }
2781
2782  /// member_pointer_begin - First member pointer type found;
2783  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2784
2785  /// member_pointer_end - Past the last member pointer type found;
2786  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2787
2788  /// enumeration_begin - First enumeration type found;
2789  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2790
2791  /// enumeration_end - Past the last enumeration type found;
2792  iterator enumeration_end() { return EnumerationTypes.end(); }
2793};
2794
2795/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2796/// the set of pointer types along with any more-qualified variants of
2797/// that type. For example, if @p Ty is "int const *", this routine
2798/// will add "int const *", "int const volatile *", "int const
2799/// restrict *", and "int const volatile restrict *" to the set of
2800/// pointer types. Returns true if the add of @p Ty itself succeeded,
2801/// false otherwise.
2802bool
2803BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2804  // Insert this type.
2805  if (!PointerTypes.insert(Ty))
2806    return false;
2807
2808  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2809    QualType PointeeTy = PointerTy->getPointeeType();
2810    // FIXME: Optimize this so that we don't keep trying to add the same types.
2811
2812    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2813    // pointer conversions that don't cast away constness?
2814    if (!PointeeTy.isConstQualified())
2815      AddPointerWithMoreQualifiedTypeVariants
2816        (Context.getPointerType(PointeeTy.withConst()));
2817    if (!PointeeTy.isVolatileQualified())
2818      AddPointerWithMoreQualifiedTypeVariants
2819        (Context.getPointerType(PointeeTy.withVolatile()));
2820    if (!PointeeTy.isRestrictQualified())
2821      AddPointerWithMoreQualifiedTypeVariants
2822        (Context.getPointerType(PointeeTy.withRestrict()));
2823  }
2824
2825  return true;
2826}
2827
2828/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2829/// to the set of pointer types along with any more-qualified variants of
2830/// that type. For example, if @p Ty is "int const *", this routine
2831/// will add "int const *", "int const volatile *", "int const
2832/// restrict *", and "int const volatile restrict *" to the set of
2833/// pointer types. Returns true if the add of @p Ty itself succeeded,
2834/// false otherwise.
2835bool
2836BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2837    QualType Ty) {
2838  // Insert this type.
2839  if (!MemberPointerTypes.insert(Ty))
2840    return false;
2841
2842  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2843    QualType PointeeTy = PointerTy->getPointeeType();
2844    const Type *ClassTy = PointerTy->getClass();
2845    // FIXME: Optimize this so that we don't keep trying to add the same types.
2846
2847    if (!PointeeTy.isConstQualified())
2848      AddMemberPointerWithMoreQualifiedTypeVariants
2849        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2850    if (!PointeeTy.isVolatileQualified())
2851      AddMemberPointerWithMoreQualifiedTypeVariants
2852        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2853    if (!PointeeTy.isRestrictQualified())
2854      AddMemberPointerWithMoreQualifiedTypeVariants
2855        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2856  }
2857
2858  return true;
2859}
2860
2861/// AddTypesConvertedFrom - Add each of the types to which the type @p
2862/// Ty can be implicit converted to the given set of @p Types. We're
2863/// primarily interested in pointer types and enumeration types. We also
2864/// take member pointer types, for the conditional operator.
2865/// AllowUserConversions is true if we should look at the conversion
2866/// functions of a class type, and AllowExplicitConversions if we
2867/// should also include the explicit conversion functions of a class
2868/// type.
2869void
2870BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2871                                               bool AllowUserConversions,
2872                                               bool AllowExplicitConversions) {
2873  // Only deal with canonical types.
2874  Ty = Context.getCanonicalType(Ty);
2875
2876  // Look through reference types; they aren't part of the type of an
2877  // expression for the purposes of conversions.
2878  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2879    Ty = RefTy->getPointeeType();
2880
2881  // We don't care about qualifiers on the type.
2882  Ty = Ty.getUnqualifiedType();
2883
2884  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2885    QualType PointeeTy = PointerTy->getPointeeType();
2886
2887    // Insert our type, and its more-qualified variants, into the set
2888    // of types.
2889    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2890      return;
2891
2892    // Add 'cv void*' to our set of types.
2893    if (!Ty->isVoidType()) {
2894      QualType QualVoid
2895        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2896      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2897    }
2898
2899    // If this is a pointer to a class type, add pointers to its bases
2900    // (with the same level of cv-qualification as the original
2901    // derived class, of course).
2902    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2903      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2904      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2905           Base != ClassDecl->bases_end(); ++Base) {
2906        QualType BaseTy = Context.getCanonicalType(Base->getType());
2907        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2908
2909        // Add the pointer type, recursively, so that we get all of
2910        // the indirect base classes, too.
2911        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2912      }
2913    }
2914  } else if (Ty->isMemberPointerType()) {
2915    // Member pointers are far easier, since the pointee can't be converted.
2916    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2917      return;
2918  } else if (Ty->isEnumeralType()) {
2919    EnumerationTypes.insert(Ty);
2920  } else if (AllowUserConversions) {
2921    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2922      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
2923        // No conversion functions in incomplete types.
2924        return;
2925      }
2926
2927      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2928      // FIXME: Visit conversion functions in the base classes, too.
2929      OverloadedFunctionDecl *Conversions
2930        = ClassDecl->getConversionFunctions();
2931      for (OverloadedFunctionDecl::function_iterator Func
2932             = Conversions->function_begin();
2933           Func != Conversions->function_end(); ++Func) {
2934        CXXConversionDecl *Conv;
2935        FunctionTemplateDecl *ConvTemplate;
2936        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
2937
2938        // Skip conversion function templates; they don't tell us anything
2939        // about which builtin types we can convert to.
2940        if (ConvTemplate)
2941          continue;
2942
2943        if (AllowExplicitConversions || !Conv->isExplicit())
2944          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2945      }
2946    }
2947  }
2948}
2949
2950/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
2951/// the volatile- and non-volatile-qualified assignment operators for the
2952/// given type to the candidate set.
2953static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
2954                                                   QualType T,
2955                                                   Expr **Args,
2956                                                   unsigned NumArgs,
2957                                    OverloadCandidateSet &CandidateSet) {
2958  QualType ParamTypes[2];
2959
2960  // T& operator=(T&, T)
2961  ParamTypes[0] = S.Context.getLValueReferenceType(T);
2962  ParamTypes[1] = T;
2963  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2964                        /*IsAssignmentOperator=*/true);
2965
2966  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
2967    // volatile T& operator=(volatile T&, T)
2968    ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile());
2969    ParamTypes[1] = T;
2970    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2971                          /*IsAssignmentOperator=*/true);
2972  }
2973}
2974
2975/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2976/// operator overloads to the candidate set (C++ [over.built]), based
2977/// on the operator @p Op and the arguments given. For example, if the
2978/// operator is a binary '+', this routine might add "int
2979/// operator+(int, int)" to cover integer addition.
2980void
2981Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2982                                   Expr **Args, unsigned NumArgs,
2983                                   OverloadCandidateSet& CandidateSet) {
2984  // The set of "promoted arithmetic types", which are the arithmetic
2985  // types are that preserved by promotion (C++ [over.built]p2). Note
2986  // that the first few of these types are the promoted integral
2987  // types; these types need to be first.
2988  // FIXME: What about complex?
2989  const unsigned FirstIntegralType = 0;
2990  const unsigned LastIntegralType = 13;
2991  const unsigned FirstPromotedIntegralType = 7,
2992                 LastPromotedIntegralType = 13;
2993  const unsigned FirstPromotedArithmeticType = 7,
2994                 LastPromotedArithmeticType = 16;
2995  const unsigned NumArithmeticTypes = 16;
2996  QualType ArithmeticTypes[NumArithmeticTypes] = {
2997    Context.BoolTy, Context.CharTy, Context.WCharTy,
2998// FIXME:   Context.Char16Ty, Context.Char32Ty,
2999    Context.SignedCharTy, Context.ShortTy,
3000    Context.UnsignedCharTy, Context.UnsignedShortTy,
3001    Context.IntTy, Context.LongTy, Context.LongLongTy,
3002    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3003    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3004  };
3005
3006  // Find all of the types that the arguments can convert to, but only
3007  // if the operator we're looking at has built-in operator candidates
3008  // that make use of these types.
3009  BuiltinCandidateTypeSet CandidateTypes(*this);
3010  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3011      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3012      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3013      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3014      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3015      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3016    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3017      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3018                                           true,
3019                                           (Op == OO_Exclaim ||
3020                                            Op == OO_AmpAmp ||
3021                                            Op == OO_PipePipe));
3022  }
3023
3024  bool isComparison = false;
3025  switch (Op) {
3026  case OO_None:
3027  case NUM_OVERLOADED_OPERATORS:
3028    assert(false && "Expected an overloaded operator");
3029    break;
3030
3031  case OO_Star: // '*' is either unary or binary
3032    if (NumArgs == 1)
3033      goto UnaryStar;
3034    else
3035      goto BinaryStar;
3036    break;
3037
3038  case OO_Plus: // '+' is either unary or binary
3039    if (NumArgs == 1)
3040      goto UnaryPlus;
3041    else
3042      goto BinaryPlus;
3043    break;
3044
3045  case OO_Minus: // '-' is either unary or binary
3046    if (NumArgs == 1)
3047      goto UnaryMinus;
3048    else
3049      goto BinaryMinus;
3050    break;
3051
3052  case OO_Amp: // '&' is either unary or binary
3053    if (NumArgs == 1)
3054      goto UnaryAmp;
3055    else
3056      goto BinaryAmp;
3057
3058  case OO_PlusPlus:
3059  case OO_MinusMinus:
3060    // C++ [over.built]p3:
3061    //
3062    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3063    //   is either volatile or empty, there exist candidate operator
3064    //   functions of the form
3065    //
3066    //       VQ T&      operator++(VQ T&);
3067    //       T          operator++(VQ T&, int);
3068    //
3069    // C++ [over.built]p4:
3070    //
3071    //   For every pair (T, VQ), where T is an arithmetic type other
3072    //   than bool, and VQ is either volatile or empty, there exist
3073    //   candidate operator functions of the form
3074    //
3075    //       VQ T&      operator--(VQ T&);
3076    //       T          operator--(VQ T&, int);
3077    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3078         Arith < NumArithmeticTypes; ++Arith) {
3079      QualType ArithTy = ArithmeticTypes[Arith];
3080      QualType ParamTypes[2]
3081        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3082
3083      // Non-volatile version.
3084      if (NumArgs == 1)
3085        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3086      else
3087        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3088
3089      // Volatile version
3090      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
3091      if (NumArgs == 1)
3092        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3093      else
3094        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3095    }
3096
3097    // C++ [over.built]p5:
3098    //
3099    //   For every pair (T, VQ), where T is a cv-qualified or
3100    //   cv-unqualified object type, and VQ is either volatile or
3101    //   empty, there exist candidate operator functions of the form
3102    //
3103    //       T*VQ&      operator++(T*VQ&);
3104    //       T*VQ&      operator--(T*VQ&);
3105    //       T*         operator++(T*VQ&, int);
3106    //       T*         operator--(T*VQ&, int);
3107    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3108         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3109      // Skip pointer types that aren't pointers to object types.
3110      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3111        continue;
3112
3113      QualType ParamTypes[2] = {
3114        Context.getLValueReferenceType(*Ptr), Context.IntTy
3115      };
3116
3117      // Without volatile
3118      if (NumArgs == 1)
3119        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3120      else
3121        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3122
3123      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3124        // With volatile
3125        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3126        if (NumArgs == 1)
3127          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3128        else
3129          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3130      }
3131    }
3132    break;
3133
3134  UnaryStar:
3135    // C++ [over.built]p6:
3136    //   For every cv-qualified or cv-unqualified object type T, there
3137    //   exist candidate operator functions of the form
3138    //
3139    //       T&         operator*(T*);
3140    //
3141    // C++ [over.built]p7:
3142    //   For every function type T, there exist candidate operator
3143    //   functions of the form
3144    //       T&         operator*(T*);
3145    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3146         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3147      QualType ParamTy = *Ptr;
3148      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3149      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3150                          &ParamTy, Args, 1, CandidateSet);
3151    }
3152    break;
3153
3154  UnaryPlus:
3155    // C++ [over.built]p8:
3156    //   For every type T, there exist candidate operator functions of
3157    //   the form
3158    //
3159    //       T*         operator+(T*);
3160    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3161         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3162      QualType ParamTy = *Ptr;
3163      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3164    }
3165
3166    // Fall through
3167
3168  UnaryMinus:
3169    // C++ [over.built]p9:
3170    //  For every promoted arithmetic type T, there exist candidate
3171    //  operator functions of the form
3172    //
3173    //       T         operator+(T);
3174    //       T         operator-(T);
3175    for (unsigned Arith = FirstPromotedArithmeticType;
3176         Arith < LastPromotedArithmeticType; ++Arith) {
3177      QualType ArithTy = ArithmeticTypes[Arith];
3178      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3179    }
3180    break;
3181
3182  case OO_Tilde:
3183    // C++ [over.built]p10:
3184    //   For every promoted integral type T, there exist candidate
3185    //   operator functions of the form
3186    //
3187    //        T         operator~(T);
3188    for (unsigned Int = FirstPromotedIntegralType;
3189         Int < LastPromotedIntegralType; ++Int) {
3190      QualType IntTy = ArithmeticTypes[Int];
3191      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3192    }
3193    break;
3194
3195  case OO_New:
3196  case OO_Delete:
3197  case OO_Array_New:
3198  case OO_Array_Delete:
3199  case OO_Call:
3200    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3201    break;
3202
3203  case OO_Comma:
3204  UnaryAmp:
3205  case OO_Arrow:
3206    // C++ [over.match.oper]p3:
3207    //   -- For the operator ',', the unary operator '&', or the
3208    //      operator '->', the built-in candidates set is empty.
3209    break;
3210
3211  case OO_EqualEqual:
3212  case OO_ExclaimEqual:
3213    // C++ [over.match.oper]p16:
3214    //   For every pointer to member type T, there exist candidate operator
3215    //   functions of the form
3216    //
3217    //        bool operator==(T,T);
3218    //        bool operator!=(T,T);
3219    for (BuiltinCandidateTypeSet::iterator
3220           MemPtr = CandidateTypes.member_pointer_begin(),
3221           MemPtrEnd = CandidateTypes.member_pointer_end();
3222         MemPtr != MemPtrEnd;
3223         ++MemPtr) {
3224      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3225      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3226    }
3227
3228    // Fall through
3229
3230  case OO_Less:
3231  case OO_Greater:
3232  case OO_LessEqual:
3233  case OO_GreaterEqual:
3234    // C++ [over.built]p15:
3235    //
3236    //   For every pointer or enumeration type T, there exist
3237    //   candidate operator functions of the form
3238    //
3239    //        bool       operator<(T, T);
3240    //        bool       operator>(T, T);
3241    //        bool       operator<=(T, T);
3242    //        bool       operator>=(T, T);
3243    //        bool       operator==(T, T);
3244    //        bool       operator!=(T, T);
3245    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3246         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3247      QualType ParamTypes[2] = { *Ptr, *Ptr };
3248      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3249    }
3250    for (BuiltinCandidateTypeSet::iterator Enum
3251           = CandidateTypes.enumeration_begin();
3252         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3253      QualType ParamTypes[2] = { *Enum, *Enum };
3254      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3255    }
3256
3257    // Fall through.
3258    isComparison = true;
3259
3260  BinaryPlus:
3261  BinaryMinus:
3262    if (!isComparison) {
3263      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3264
3265      // C++ [over.built]p13:
3266      //
3267      //   For every cv-qualified or cv-unqualified object type T
3268      //   there exist candidate operator functions of the form
3269      //
3270      //      T*         operator+(T*, ptrdiff_t);
3271      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3272      //      T*         operator-(T*, ptrdiff_t);
3273      //      T*         operator+(ptrdiff_t, T*);
3274      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3275      //
3276      // C++ [over.built]p14:
3277      //
3278      //   For every T, where T is a pointer to object type, there
3279      //   exist candidate operator functions of the form
3280      //
3281      //      ptrdiff_t  operator-(T, T);
3282      for (BuiltinCandidateTypeSet::iterator Ptr
3283             = CandidateTypes.pointer_begin();
3284           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3285        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3286
3287        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3288        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3289
3290        if (Op == OO_Plus) {
3291          // T* operator+(ptrdiff_t, T*);
3292          ParamTypes[0] = ParamTypes[1];
3293          ParamTypes[1] = *Ptr;
3294          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3295        } else {
3296          // ptrdiff_t operator-(T, T);
3297          ParamTypes[1] = *Ptr;
3298          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3299                              Args, 2, CandidateSet);
3300        }
3301      }
3302    }
3303    // Fall through
3304
3305  case OO_Slash:
3306  BinaryStar:
3307  Conditional:
3308    // C++ [over.built]p12:
3309    //
3310    //   For every pair of promoted arithmetic types L and R, there
3311    //   exist candidate operator functions of the form
3312    //
3313    //        LR         operator*(L, R);
3314    //        LR         operator/(L, R);
3315    //        LR         operator+(L, R);
3316    //        LR         operator-(L, R);
3317    //        bool       operator<(L, R);
3318    //        bool       operator>(L, R);
3319    //        bool       operator<=(L, R);
3320    //        bool       operator>=(L, R);
3321    //        bool       operator==(L, R);
3322    //        bool       operator!=(L, R);
3323    //
3324    //   where LR is the result of the usual arithmetic conversions
3325    //   between types L and R.
3326    //
3327    // C++ [over.built]p24:
3328    //
3329    //   For every pair of promoted arithmetic types L and R, there exist
3330    //   candidate operator functions of the form
3331    //
3332    //        LR       operator?(bool, L, R);
3333    //
3334    //   where LR is the result of the usual arithmetic conversions
3335    //   between types L and R.
3336    // Our candidates ignore the first parameter.
3337    for (unsigned Left = FirstPromotedArithmeticType;
3338         Left < LastPromotedArithmeticType; ++Left) {
3339      for (unsigned Right = FirstPromotedArithmeticType;
3340           Right < LastPromotedArithmeticType; ++Right) {
3341        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3342        QualType Result
3343          = isComparison
3344          ? Context.BoolTy
3345          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3346        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3347      }
3348    }
3349    break;
3350
3351  case OO_Percent:
3352  BinaryAmp:
3353  case OO_Caret:
3354  case OO_Pipe:
3355  case OO_LessLess:
3356  case OO_GreaterGreater:
3357    // C++ [over.built]p17:
3358    //
3359    //   For every pair of promoted integral types L and R, there
3360    //   exist candidate operator functions of the form
3361    //
3362    //      LR         operator%(L, R);
3363    //      LR         operator&(L, R);
3364    //      LR         operator^(L, R);
3365    //      LR         operator|(L, R);
3366    //      L          operator<<(L, R);
3367    //      L          operator>>(L, R);
3368    //
3369    //   where LR is the result of the usual arithmetic conversions
3370    //   between types L and R.
3371    for (unsigned Left = FirstPromotedIntegralType;
3372         Left < LastPromotedIntegralType; ++Left) {
3373      for (unsigned Right = FirstPromotedIntegralType;
3374           Right < LastPromotedIntegralType; ++Right) {
3375        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3376        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3377            ? LandR[0]
3378            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3379        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3380      }
3381    }
3382    break;
3383
3384  case OO_Equal:
3385    // C++ [over.built]p20:
3386    //
3387    //   For every pair (T, VQ), where T is an enumeration or
3388    //   pointer to member type and VQ is either volatile or
3389    //   empty, there exist candidate operator functions of the form
3390    //
3391    //        VQ T&      operator=(VQ T&, T);
3392    for (BuiltinCandidateTypeSet::iterator
3393           Enum = CandidateTypes.enumeration_begin(),
3394           EnumEnd = CandidateTypes.enumeration_end();
3395         Enum != EnumEnd; ++Enum)
3396      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3397                                             CandidateSet);
3398    for (BuiltinCandidateTypeSet::iterator
3399           MemPtr = CandidateTypes.member_pointer_begin(),
3400         MemPtrEnd = CandidateTypes.member_pointer_end();
3401         MemPtr != MemPtrEnd; ++MemPtr)
3402      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3403                                             CandidateSet);
3404      // Fall through.
3405
3406  case OO_PlusEqual:
3407  case OO_MinusEqual:
3408    // C++ [over.built]p19:
3409    //
3410    //   For every pair (T, VQ), where T is any type and VQ is either
3411    //   volatile or empty, there exist candidate operator functions
3412    //   of the form
3413    //
3414    //        T*VQ&      operator=(T*VQ&, T*);
3415    //
3416    // C++ [over.built]p21:
3417    //
3418    //   For every pair (T, VQ), where T is a cv-qualified or
3419    //   cv-unqualified object type and VQ is either volatile or
3420    //   empty, there exist candidate operator functions of the form
3421    //
3422    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3423    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3424    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3425         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3426      QualType ParamTypes[2];
3427      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3428
3429      // non-volatile version
3430      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3431      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3432                          /*IsAssigmentOperator=*/Op == OO_Equal);
3433
3434      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3435        // volatile version
3436        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3437        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3438                            /*IsAssigmentOperator=*/Op == OO_Equal);
3439      }
3440    }
3441    // Fall through.
3442
3443  case OO_StarEqual:
3444  case OO_SlashEqual:
3445    // C++ [over.built]p18:
3446    //
3447    //   For every triple (L, VQ, R), where L is an arithmetic type,
3448    //   VQ is either volatile or empty, and R is a promoted
3449    //   arithmetic type, there exist candidate operator functions of
3450    //   the form
3451    //
3452    //        VQ L&      operator=(VQ L&, R);
3453    //        VQ L&      operator*=(VQ L&, R);
3454    //        VQ L&      operator/=(VQ L&, R);
3455    //        VQ L&      operator+=(VQ L&, R);
3456    //        VQ L&      operator-=(VQ L&, R);
3457    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3458      for (unsigned Right = FirstPromotedArithmeticType;
3459           Right < LastPromotedArithmeticType; ++Right) {
3460        QualType ParamTypes[2];
3461        ParamTypes[1] = ArithmeticTypes[Right];
3462
3463        // Add this built-in operator as a candidate (VQ is empty).
3464        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3465        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3466                            /*IsAssigmentOperator=*/Op == OO_Equal);
3467
3468        // Add this built-in operator as a candidate (VQ is 'volatile').
3469        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3470        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3471        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3472                            /*IsAssigmentOperator=*/Op == OO_Equal);
3473      }
3474    }
3475    break;
3476
3477  case OO_PercentEqual:
3478  case OO_LessLessEqual:
3479  case OO_GreaterGreaterEqual:
3480  case OO_AmpEqual:
3481  case OO_CaretEqual:
3482  case OO_PipeEqual:
3483    // C++ [over.built]p22:
3484    //
3485    //   For every triple (L, VQ, R), where L is an integral type, VQ
3486    //   is either volatile or empty, and R is a promoted integral
3487    //   type, there exist candidate operator functions of the form
3488    //
3489    //        VQ L&       operator%=(VQ L&, R);
3490    //        VQ L&       operator<<=(VQ L&, R);
3491    //        VQ L&       operator>>=(VQ L&, R);
3492    //        VQ L&       operator&=(VQ L&, R);
3493    //        VQ L&       operator^=(VQ L&, R);
3494    //        VQ L&       operator|=(VQ L&, R);
3495    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3496      for (unsigned Right = FirstPromotedIntegralType;
3497           Right < LastPromotedIntegralType; ++Right) {
3498        QualType ParamTypes[2];
3499        ParamTypes[1] = ArithmeticTypes[Right];
3500
3501        // Add this built-in operator as a candidate (VQ is empty).
3502        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3503        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3504
3505        // Add this built-in operator as a candidate (VQ is 'volatile').
3506        ParamTypes[0] = ArithmeticTypes[Left];
3507        ParamTypes[0].addVolatile();
3508        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3509        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3510      }
3511    }
3512    break;
3513
3514  case OO_Exclaim: {
3515    // C++ [over.operator]p23:
3516    //
3517    //   There also exist candidate operator functions of the form
3518    //
3519    //        bool        operator!(bool);
3520    //        bool        operator&&(bool, bool);     [BELOW]
3521    //        bool        operator||(bool, bool);     [BELOW]
3522    QualType ParamTy = Context.BoolTy;
3523    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3524                        /*IsAssignmentOperator=*/false,
3525                        /*NumContextualBoolArguments=*/1);
3526    break;
3527  }
3528
3529  case OO_AmpAmp:
3530  case OO_PipePipe: {
3531    // C++ [over.operator]p23:
3532    //
3533    //   There also exist candidate operator functions of the form
3534    //
3535    //        bool        operator!(bool);            [ABOVE]
3536    //        bool        operator&&(bool, bool);
3537    //        bool        operator||(bool, bool);
3538    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3539    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3540                        /*IsAssignmentOperator=*/false,
3541                        /*NumContextualBoolArguments=*/2);
3542    break;
3543  }
3544
3545  case OO_Subscript:
3546    // C++ [over.built]p13:
3547    //
3548    //   For every cv-qualified or cv-unqualified object type T there
3549    //   exist candidate operator functions of the form
3550    //
3551    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3552    //        T&         operator[](T*, ptrdiff_t);
3553    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3554    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3555    //        T&         operator[](ptrdiff_t, T*);
3556    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3557         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3558      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3559      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3560      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3561
3562      // T& operator[](T*, ptrdiff_t)
3563      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3564
3565      // T& operator[](ptrdiff_t, T*);
3566      ParamTypes[0] = ParamTypes[1];
3567      ParamTypes[1] = *Ptr;
3568      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3569    }
3570    break;
3571
3572  case OO_ArrowStar:
3573    // FIXME: No support for pointer-to-members yet.
3574    break;
3575
3576  case OO_Conditional:
3577    // Note that we don't consider the first argument, since it has been
3578    // contextually converted to bool long ago. The candidates below are
3579    // therefore added as binary.
3580    //
3581    // C++ [over.built]p24:
3582    //   For every type T, where T is a pointer or pointer-to-member type,
3583    //   there exist candidate operator functions of the form
3584    //
3585    //        T        operator?(bool, T, T);
3586    //
3587    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3588         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3589      QualType ParamTypes[2] = { *Ptr, *Ptr };
3590      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3591    }
3592    for (BuiltinCandidateTypeSet::iterator Ptr =
3593           CandidateTypes.member_pointer_begin(),
3594         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3595      QualType ParamTypes[2] = { *Ptr, *Ptr };
3596      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3597    }
3598    goto Conditional;
3599  }
3600}
3601
3602/// \brief Add function candidates found via argument-dependent lookup
3603/// to the set of overloading candidates.
3604///
3605/// This routine performs argument-dependent name lookup based on the
3606/// given function name (which may also be an operator name) and adds
3607/// all of the overload candidates found by ADL to the overload
3608/// candidate set (C++ [basic.lookup.argdep]).
3609void
3610Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3611                                           Expr **Args, unsigned NumArgs,
3612                                           OverloadCandidateSet& CandidateSet) {
3613  FunctionSet Functions;
3614
3615  // Record all of the function candidates that we've already
3616  // added to the overload set, so that we don't add those same
3617  // candidates a second time.
3618  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3619                                   CandEnd = CandidateSet.end();
3620       Cand != CandEnd; ++Cand)
3621    if (Cand->Function) {
3622      Functions.insert(Cand->Function);
3623      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3624        Functions.insert(FunTmpl);
3625    }
3626
3627  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3628
3629  // Erase all of the candidates we already knew about.
3630  // FIXME: This is suboptimal. Is there a better way?
3631  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3632                                   CandEnd = CandidateSet.end();
3633       Cand != CandEnd; ++Cand)
3634    if (Cand->Function) {
3635      Functions.erase(Cand->Function);
3636      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3637        Functions.erase(FunTmpl);
3638    }
3639
3640  // For each of the ADL candidates we found, add it to the overload
3641  // set.
3642  for (FunctionSet::iterator Func = Functions.begin(),
3643                          FuncEnd = Functions.end();
3644       Func != FuncEnd; ++Func) {
3645    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3646      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3647    else
3648      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3649                                   /*FIXME: explicit args */false, 0, 0,
3650                                   Args, NumArgs, CandidateSet);
3651  }
3652}
3653
3654/// isBetterOverloadCandidate - Determines whether the first overload
3655/// candidate is a better candidate than the second (C++ 13.3.3p1).
3656bool
3657Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3658                                const OverloadCandidate& Cand2)
3659{
3660  // Define viable functions to be better candidates than non-viable
3661  // functions.
3662  if (!Cand2.Viable)
3663    return Cand1.Viable;
3664  else if (!Cand1.Viable)
3665    return false;
3666
3667  // C++ [over.match.best]p1:
3668  //
3669  //   -- if F is a static member function, ICS1(F) is defined such
3670  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3671  //      any function G, and, symmetrically, ICS1(G) is neither
3672  //      better nor worse than ICS1(F).
3673  unsigned StartArg = 0;
3674  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3675    StartArg = 1;
3676
3677  // C++ [over.match.best]p1:
3678  //   A viable function F1 is defined to be a better function than another
3679  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3680  //   conversion sequence than ICSi(F2), and then...
3681  unsigned NumArgs = Cand1.Conversions.size();
3682  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3683  bool HasBetterConversion = false;
3684  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3685    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3686                                               Cand2.Conversions[ArgIdx])) {
3687    case ImplicitConversionSequence::Better:
3688      // Cand1 has a better conversion sequence.
3689      HasBetterConversion = true;
3690      break;
3691
3692    case ImplicitConversionSequence::Worse:
3693      // Cand1 can't be better than Cand2.
3694      return false;
3695
3696    case ImplicitConversionSequence::Indistinguishable:
3697      // Do nothing.
3698      break;
3699    }
3700  }
3701
3702  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3703  //       ICSj(F2), or, if not that,
3704  if (HasBetterConversion)
3705    return true;
3706
3707  //     - F1 is a non-template function and F2 is a function template
3708  //       specialization, or, if not that,
3709  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3710      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3711    return true;
3712
3713  //   -- F1 and F2 are function template specializations, and the function
3714  //      template for F1 is more specialized than the template for F2
3715  //      according to the partial ordering rules described in 14.5.5.2, or,
3716  //      if not that,
3717  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3718      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3719    if (FunctionTemplateDecl *BetterTemplate
3720          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3721                                       Cand2.Function->getPrimaryTemplate(),
3722                                       true))
3723      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3724
3725  //   -- the context is an initialization by user-defined conversion
3726  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3727  //      from the return type of F1 to the destination type (i.e.,
3728  //      the type of the entity being initialized) is a better
3729  //      conversion sequence than the standard conversion sequence
3730  //      from the return type of F2 to the destination type.
3731  if (Cand1.Function && Cand2.Function &&
3732      isa<CXXConversionDecl>(Cand1.Function) &&
3733      isa<CXXConversionDecl>(Cand2.Function)) {
3734    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3735                                               Cand2.FinalConversion)) {
3736    case ImplicitConversionSequence::Better:
3737      // Cand1 has a better conversion sequence.
3738      return true;
3739
3740    case ImplicitConversionSequence::Worse:
3741      // Cand1 can't be better than Cand2.
3742      return false;
3743
3744    case ImplicitConversionSequence::Indistinguishable:
3745      // Do nothing
3746      break;
3747    }
3748  }
3749
3750  return false;
3751}
3752
3753/// \brief Computes the best viable function (C++ 13.3.3)
3754/// within an overload candidate set.
3755///
3756/// \param CandidateSet the set of candidate functions.
3757///
3758/// \param Loc the location of the function name (or operator symbol) for
3759/// which overload resolution occurs.
3760///
3761/// \param Best f overload resolution was successful or found a deleted
3762/// function, Best points to the candidate function found.
3763///
3764/// \returns The result of overload resolution.
3765Sema::OverloadingResult
3766Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3767                         SourceLocation Loc,
3768                         OverloadCandidateSet::iterator& Best)
3769{
3770  // Find the best viable function.
3771  Best = CandidateSet.end();
3772  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3773       Cand != CandidateSet.end(); ++Cand) {
3774    if (Cand->Viable) {
3775      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3776        Best = Cand;
3777    }
3778  }
3779
3780  // If we didn't find any viable functions, abort.
3781  if (Best == CandidateSet.end())
3782    return OR_No_Viable_Function;
3783
3784  // Make sure that this function is better than every other viable
3785  // function. If not, we have an ambiguity.
3786  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3787       Cand != CandidateSet.end(); ++Cand) {
3788    if (Cand->Viable &&
3789        Cand != Best &&
3790        !isBetterOverloadCandidate(*Best, *Cand)) {
3791      Best = CandidateSet.end();
3792      return OR_Ambiguous;
3793    }
3794  }
3795
3796  // Best is the best viable function.
3797  if (Best->Function &&
3798      (Best->Function->isDeleted() ||
3799       Best->Function->getAttr<UnavailableAttr>()))
3800    return OR_Deleted;
3801
3802  // C++ [basic.def.odr]p2:
3803  //   An overloaded function is used if it is selected by overload resolution
3804  //   when referred to from a potentially-evaluated expression. [Note: this
3805  //   covers calls to named functions (5.2.2), operator overloading
3806  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3807  //   placement new (5.3.4), as well as non-default initialization (8.5).
3808  if (Best->Function)
3809    MarkDeclarationReferenced(Loc, Best->Function);
3810  return OR_Success;
3811}
3812
3813/// PrintOverloadCandidates - When overload resolution fails, prints
3814/// diagnostic messages containing the candidates in the candidate
3815/// set. If OnlyViable is true, only viable candidates will be printed.
3816void
3817Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3818                              bool OnlyViable)
3819{
3820  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3821                             LastCand = CandidateSet.end();
3822  for (; Cand != LastCand; ++Cand) {
3823    if (Cand->Viable || !OnlyViable) {
3824      if (Cand->Function) {
3825        if (Cand->Function->isDeleted() ||
3826            Cand->Function->getAttr<UnavailableAttr>()) {
3827          // Deleted or "unavailable" function.
3828          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3829            << Cand->Function->isDeleted();
3830        } else {
3831          // Normal function
3832          // FIXME: Give a better reason!
3833          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3834        }
3835      } else if (Cand->IsSurrogate) {
3836        // Desugar the type of the surrogate down to a function type,
3837        // retaining as many typedefs as possible while still showing
3838        // the function type (and, therefore, its parameter types).
3839        QualType FnType = Cand->Surrogate->getConversionType();
3840        bool isLValueReference = false;
3841        bool isRValueReference = false;
3842        bool isPointer = false;
3843        if (const LValueReferenceType *FnTypeRef =
3844              FnType->getAs<LValueReferenceType>()) {
3845          FnType = FnTypeRef->getPointeeType();
3846          isLValueReference = true;
3847        } else if (const RValueReferenceType *FnTypeRef =
3848                     FnType->getAs<RValueReferenceType>()) {
3849          FnType = FnTypeRef->getPointeeType();
3850          isRValueReference = true;
3851        }
3852        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3853          FnType = FnTypePtr->getPointeeType();
3854          isPointer = true;
3855        }
3856        // Desugar down to a function type.
3857        FnType = QualType(FnType->getAsFunctionType(), 0);
3858        // Reconstruct the pointer/reference as appropriate.
3859        if (isPointer) FnType = Context.getPointerType(FnType);
3860        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3861        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3862
3863        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3864          << FnType;
3865      } else {
3866        // FIXME: We need to get the identifier in here
3867        // FIXME: Do we want the error message to point at the operator?
3868        // (built-ins won't have a location)
3869        QualType FnType
3870          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3871                                    Cand->BuiltinTypes.ParamTypes,
3872                                    Cand->Conversions.size(),
3873                                    false, 0);
3874
3875        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3876      }
3877    }
3878  }
3879}
3880
3881/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3882/// an overloaded function (C++ [over.over]), where @p From is an
3883/// expression with overloaded function type and @p ToType is the type
3884/// we're trying to resolve to. For example:
3885///
3886/// @code
3887/// int f(double);
3888/// int f(int);
3889///
3890/// int (*pfd)(double) = f; // selects f(double)
3891/// @endcode
3892///
3893/// This routine returns the resulting FunctionDecl if it could be
3894/// resolved, and NULL otherwise. When @p Complain is true, this
3895/// routine will emit diagnostics if there is an error.
3896FunctionDecl *
3897Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3898                                         bool Complain) {
3899  QualType FunctionType = ToType;
3900  bool IsMember = false;
3901  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3902    FunctionType = ToTypePtr->getPointeeType();
3903  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3904    FunctionType = ToTypeRef->getPointeeType();
3905  else if (const MemberPointerType *MemTypePtr =
3906                    ToType->getAs<MemberPointerType>()) {
3907    FunctionType = MemTypePtr->getPointeeType();
3908    IsMember = true;
3909  }
3910
3911  // We only look at pointers or references to functions.
3912  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3913  if (!FunctionType->isFunctionType())
3914    return 0;
3915
3916  // Find the actual overloaded function declaration.
3917  OverloadedFunctionDecl *Ovl = 0;
3918
3919  // C++ [over.over]p1:
3920  //   [...] [Note: any redundant set of parentheses surrounding the
3921  //   overloaded function name is ignored (5.1). ]
3922  Expr *OvlExpr = From->IgnoreParens();
3923
3924  // C++ [over.over]p1:
3925  //   [...] The overloaded function name can be preceded by the &
3926  //   operator.
3927  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3928    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3929      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3930  }
3931
3932  // Try to dig out the overloaded function.
3933  FunctionTemplateDecl *FunctionTemplate = 0;
3934  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3935    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3936    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3937  }
3938
3939  // If there's no overloaded function declaration or function template,
3940  // we're done.
3941  if (!Ovl && !FunctionTemplate)
3942    return 0;
3943
3944  OverloadIterator Fun;
3945  if (Ovl)
3946    Fun = Ovl;
3947  else
3948    Fun = FunctionTemplate;
3949
3950  // Look through all of the overloaded functions, searching for one
3951  // whose type matches exactly.
3952  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3953
3954  bool FoundNonTemplateFunction = false;
3955  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3956    // C++ [over.over]p3:
3957    //   Non-member functions and static member functions match
3958    //   targets of type "pointer-to-function" or "reference-to-function."
3959    //   Nonstatic member functions match targets of
3960    //   type "pointer-to-member-function."
3961    // Note that according to DR 247, the containing class does not matter.
3962
3963    if (FunctionTemplateDecl *FunctionTemplate
3964          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3965      if (CXXMethodDecl *Method
3966            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3967        // Skip non-static function templates when converting to pointer, and
3968        // static when converting to member pointer.
3969        if (Method->isStatic() == IsMember)
3970          continue;
3971      } else if (IsMember)
3972        continue;
3973
3974      // C++ [over.over]p2:
3975      //   If the name is a function template, template argument deduction is
3976      //   done (14.8.2.2), and if the argument deduction succeeds, the
3977      //   resulting template argument list is used to generate a single
3978      //   function template specialization, which is added to the set of
3979      //   overloaded functions considered.
3980      FunctionDecl *Specialization = 0;
3981      TemplateDeductionInfo Info(Context);
3982      if (TemplateDeductionResult Result
3983            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3984                                      /*FIXME:*/0, /*FIXME:*/0,
3985                                      FunctionType, Specialization, Info)) {
3986        // FIXME: make a note of the failed deduction for diagnostics.
3987        (void)Result;
3988      } else {
3989        assert(FunctionType
3990                 == Context.getCanonicalType(Specialization->getType()));
3991        Matches.insert(
3992                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3993      }
3994    }
3995
3996    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3997      // Skip non-static functions when converting to pointer, and static
3998      // when converting to member pointer.
3999      if (Method->isStatic() == IsMember)
4000        continue;
4001    } else if (IsMember)
4002      continue;
4003
4004    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4005      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4006        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4007        FoundNonTemplateFunction = true;
4008      }
4009    }
4010  }
4011
4012  // If there were 0 or 1 matches, we're done.
4013  if (Matches.empty())
4014    return 0;
4015  else if (Matches.size() == 1)
4016    return *Matches.begin();
4017
4018  // C++ [over.over]p4:
4019  //   If more than one function is selected, [...]
4020  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4021  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4022  if (FoundNonTemplateFunction) {
4023    //   [...] any function template specializations in the set are
4024    //   eliminated if the set also contains a non-template function, [...]
4025    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4026      if ((*M)->getPrimaryTemplate() == 0)
4027        RemainingMatches.push_back(*M);
4028  } else {
4029    //   [...] and any given function template specialization F1 is
4030    //   eliminated if the set contains a second function template
4031    //   specialization whose function template is more specialized
4032    //   than the function template of F1 according to the partial
4033    //   ordering rules of 14.5.5.2.
4034
4035    // The algorithm specified above is quadratic. We instead use a
4036    // two-pass algorithm (similar to the one used to identify the
4037    // best viable function in an overload set) that identifies the
4038    // best function template (if it exists).
4039    MatchIter Best = Matches.begin();
4040    MatchIter M = Best, MEnd = Matches.end();
4041    // Find the most specialized function.
4042    for (++M; M != MEnd; ++M)
4043      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4044                                     (*Best)->getPrimaryTemplate(),
4045                                     false)
4046            == (*M)->getPrimaryTemplate())
4047        Best = M;
4048
4049    // Determine whether this function template is more specialized
4050    // that all of the others.
4051    bool Ambiguous = false;
4052    for (M = Matches.begin(); M != MEnd; ++M) {
4053      if (M != Best &&
4054          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4055                                     (*Best)->getPrimaryTemplate(),
4056                                     false)
4057           != (*Best)->getPrimaryTemplate()) {
4058        Ambiguous = true;
4059        break;
4060      }
4061    }
4062
4063    // If one function template was more specialized than all of the
4064    // others, return it.
4065    if (!Ambiguous)
4066      return *Best;
4067
4068    // We could not find a most-specialized function template, which
4069    // is equivalent to having a set of function templates with more
4070    // than one such template. So, we place all of the function
4071    // templates into the set of remaining matches and produce a
4072    // diagnostic below. FIXME: we could perform the quadratic
4073    // algorithm here, pruning the result set to limit the number of
4074    // candidates output later.
4075     RemainingMatches.append(Matches.begin(), Matches.end());
4076  }
4077
4078  // [...] After such eliminations, if any, there shall remain exactly one
4079  // selected function.
4080  if (RemainingMatches.size() == 1)
4081    return RemainingMatches.front();
4082
4083  // FIXME: We should probably return the same thing that BestViableFunction
4084  // returns (even if we issue the diagnostics here).
4085  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4086    << RemainingMatches[0]->getDeclName();
4087  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4088    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4089  return 0;
4090}
4091
4092/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4093/// (which eventually refers to the declaration Func) and the call
4094/// arguments Args/NumArgs, attempt to resolve the function call down
4095/// to a specific function. If overload resolution succeeds, returns
4096/// the function declaration produced by overload
4097/// resolution. Otherwise, emits diagnostics, deletes all of the
4098/// arguments and Fn, and returns NULL.
4099FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4100                                            DeclarationName UnqualifiedName,
4101                                            bool HasExplicitTemplateArgs,
4102                                 const TemplateArgument *ExplicitTemplateArgs,
4103                                            unsigned NumExplicitTemplateArgs,
4104                                            SourceLocation LParenLoc,
4105                                            Expr **Args, unsigned NumArgs,
4106                                            SourceLocation *CommaLocs,
4107                                            SourceLocation RParenLoc,
4108                                            bool &ArgumentDependentLookup) {
4109  OverloadCandidateSet CandidateSet;
4110
4111  // Add the functions denoted by Callee to the set of candidate
4112  // functions. While we're doing so, track whether argument-dependent
4113  // lookup still applies, per:
4114  //
4115  // C++0x [basic.lookup.argdep]p3:
4116  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4117  //   and let Y be the lookup set produced by argument dependent
4118  //   lookup (defined as follows). If X contains
4119  //
4120  //     -- a declaration of a class member, or
4121  //
4122  //     -- a block-scope function declaration that is not a
4123  //        using-declaration, or
4124  //
4125  //     -- a declaration that is neither a function or a function
4126  //        template
4127  //
4128  //   then Y is empty.
4129  if (OverloadedFunctionDecl *Ovl
4130        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
4131    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4132                                                FuncEnd = Ovl->function_end();
4133         Func != FuncEnd; ++Func) {
4134      DeclContext *Ctx = 0;
4135      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
4136        if (HasExplicitTemplateArgs)
4137          continue;
4138
4139        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
4140        Ctx = FunDecl->getDeclContext();
4141      } else {
4142        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
4143        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
4144                                     ExplicitTemplateArgs,
4145                                     NumExplicitTemplateArgs,
4146                                     Args, NumArgs, CandidateSet);
4147        Ctx = FunTmpl->getDeclContext();
4148      }
4149
4150
4151      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
4152        ArgumentDependentLookup = false;
4153    }
4154  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
4155    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4156    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
4157
4158    if (Func->getDeclContext()->isRecord() ||
4159        Func->getDeclContext()->isFunctionOrMethod())
4160      ArgumentDependentLookup = false;
4161  } else if (FunctionTemplateDecl *FuncTemplate
4162               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
4163    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4164                                 ExplicitTemplateArgs,
4165                                 NumExplicitTemplateArgs,
4166                                 Args, NumArgs, CandidateSet);
4167
4168    if (FuncTemplate->getDeclContext()->isRecord())
4169      ArgumentDependentLookup = false;
4170  }
4171
4172  if (Callee)
4173    UnqualifiedName = Callee->getDeclName();
4174
4175  // FIXME: Pass explicit template arguments through for ADL
4176  if (ArgumentDependentLookup)
4177    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4178                                         CandidateSet);
4179
4180  OverloadCandidateSet::iterator Best;
4181  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4182  case OR_Success:
4183    return Best->Function;
4184
4185  case OR_No_Viable_Function:
4186    Diag(Fn->getSourceRange().getBegin(),
4187         diag::err_ovl_no_viable_function_in_call)
4188      << UnqualifiedName << Fn->getSourceRange();
4189    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4190    break;
4191
4192  case OR_Ambiguous:
4193    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4194      << UnqualifiedName << Fn->getSourceRange();
4195    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4196    break;
4197
4198  case OR_Deleted:
4199    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4200      << Best->Function->isDeleted()
4201      << UnqualifiedName
4202      << Fn->getSourceRange();
4203    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4204    break;
4205  }
4206
4207  // Overload resolution failed. Destroy all of the subexpressions and
4208  // return NULL.
4209  Fn->Destroy(Context);
4210  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4211    Args[Arg]->Destroy(Context);
4212  return 0;
4213}
4214
4215/// \brief Create a unary operation that may resolve to an overloaded
4216/// operator.
4217///
4218/// \param OpLoc The location of the operator itself (e.g., '*').
4219///
4220/// \param OpcIn The UnaryOperator::Opcode that describes this
4221/// operator.
4222///
4223/// \param Functions The set of non-member functions that will be
4224/// considered by overload resolution. The caller needs to build this
4225/// set based on the context using, e.g.,
4226/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4227/// set should not contain any member functions; those will be added
4228/// by CreateOverloadedUnaryOp().
4229///
4230/// \param input The input argument.
4231Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4232                                                     unsigned OpcIn,
4233                                                     FunctionSet &Functions,
4234                                                     ExprArg input) {
4235  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4236  Expr *Input = (Expr *)input.get();
4237
4238  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4239  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4240  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4241
4242  Expr *Args[2] = { Input, 0 };
4243  unsigned NumArgs = 1;
4244
4245  // For post-increment and post-decrement, add the implicit '0' as
4246  // the second argument, so that we know this is a post-increment or
4247  // post-decrement.
4248  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4249    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4250    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4251                                           SourceLocation());
4252    NumArgs = 2;
4253  }
4254
4255  if (Input->isTypeDependent()) {
4256    OverloadedFunctionDecl *Overloads
4257      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4258    for (FunctionSet::iterator Func = Functions.begin(),
4259                            FuncEnd = Functions.end();
4260         Func != FuncEnd; ++Func)
4261      Overloads->addOverload(*Func);
4262
4263    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4264                                                OpLoc, false, false);
4265
4266    input.release();
4267    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4268                                                   &Args[0], NumArgs,
4269                                                   Context.DependentTy,
4270                                                   OpLoc));
4271  }
4272
4273  // Build an empty overload set.
4274  OverloadCandidateSet CandidateSet;
4275
4276  // Add the candidates from the given function set.
4277  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4278
4279  // Add operator candidates that are member functions.
4280  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4281
4282  // Add builtin operator candidates.
4283  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4284
4285  // Perform overload resolution.
4286  OverloadCandidateSet::iterator Best;
4287  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4288  case OR_Success: {
4289    // We found a built-in operator or an overloaded operator.
4290    FunctionDecl *FnDecl = Best->Function;
4291
4292    if (FnDecl) {
4293      // We matched an overloaded operator. Build a call to that
4294      // operator.
4295
4296      // Convert the arguments.
4297      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4298        if (PerformObjectArgumentInitialization(Input, Method))
4299          return ExprError();
4300      } else {
4301        // Convert the arguments.
4302        if (PerformCopyInitialization(Input,
4303                                      FnDecl->getParamDecl(0)->getType(),
4304                                      "passing"))
4305          return ExprError();
4306      }
4307
4308      // Determine the result type
4309      QualType ResultTy
4310        = FnDecl->getType()->getAsFunctionType()->getResultType();
4311      ResultTy = ResultTy.getNonReferenceType();
4312
4313      // Build the actual expression node.
4314      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4315                                               SourceLocation());
4316      UsualUnaryConversions(FnExpr);
4317
4318      input.release();
4319
4320      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4321                                                   &Input, 1, ResultTy, OpLoc);
4322      return MaybeBindToTemporary(CE);
4323    } else {
4324      // We matched a built-in operator. Convert the arguments, then
4325      // break out so that we will build the appropriate built-in
4326      // operator node.
4327        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4328                                      Best->Conversions[0], "passing"))
4329          return ExprError();
4330
4331        break;
4332      }
4333    }
4334
4335    case OR_No_Viable_Function:
4336      // No viable function; fall through to handling this as a
4337      // built-in operator, which will produce an error message for us.
4338      break;
4339
4340    case OR_Ambiguous:
4341      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4342          << UnaryOperator::getOpcodeStr(Opc)
4343          << Input->getSourceRange();
4344      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4345      return ExprError();
4346
4347    case OR_Deleted:
4348      Diag(OpLoc, diag::err_ovl_deleted_oper)
4349        << Best->Function->isDeleted()
4350        << UnaryOperator::getOpcodeStr(Opc)
4351        << Input->getSourceRange();
4352      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4353      return ExprError();
4354    }
4355
4356  // Either we found no viable overloaded operator or we matched a
4357  // built-in operator. In either case, fall through to trying to
4358  // build a built-in operation.
4359  input.release();
4360  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4361}
4362
4363/// \brief Create a binary operation that may resolve to an overloaded
4364/// operator.
4365///
4366/// \param OpLoc The location of the operator itself (e.g., '+').
4367///
4368/// \param OpcIn The BinaryOperator::Opcode that describes this
4369/// operator.
4370///
4371/// \param Functions The set of non-member functions that will be
4372/// considered by overload resolution. The caller needs to build this
4373/// set based on the context using, e.g.,
4374/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4375/// set should not contain any member functions; those will be added
4376/// by CreateOverloadedBinOp().
4377///
4378/// \param LHS Left-hand argument.
4379/// \param RHS Right-hand argument.
4380Sema::OwningExprResult
4381Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4382                            unsigned OpcIn,
4383                            FunctionSet &Functions,
4384                            Expr *LHS, Expr *RHS) {
4385  Expr *Args[2] = { LHS, RHS };
4386  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4387
4388  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4389  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4390  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4391
4392  // If either side is type-dependent, create an appropriate dependent
4393  // expression.
4394  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4395    // .* cannot be overloaded.
4396    if (Opc == BinaryOperator::PtrMemD)
4397      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4398                                                Context.DependentTy, OpLoc));
4399
4400    OverloadedFunctionDecl *Overloads
4401      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4402    for (FunctionSet::iterator Func = Functions.begin(),
4403                            FuncEnd = Functions.end();
4404         Func != FuncEnd; ++Func)
4405      Overloads->addOverload(*Func);
4406
4407    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4408                                                OpLoc, false, false);
4409
4410    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4411                                                   Args, 2,
4412                                                   Context.DependentTy,
4413                                                   OpLoc));
4414  }
4415
4416  // If this is the .* operator, which is not overloadable, just
4417  // create a built-in binary operator.
4418  if (Opc == BinaryOperator::PtrMemD)
4419    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4420
4421  // If this is one of the assignment operators, we only perform
4422  // overload resolution if the left-hand side is a class or
4423  // enumeration type (C++ [expr.ass]p3).
4424  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4425      !Args[0]->getType()->isOverloadableType())
4426    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4427
4428  // Build an empty overload set.
4429  OverloadCandidateSet CandidateSet;
4430
4431  // Add the candidates from the given function set.
4432  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4433
4434  // Add operator candidates that are member functions.
4435  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4436
4437  // Add builtin operator candidates.
4438  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4439
4440  // Perform overload resolution.
4441  OverloadCandidateSet::iterator Best;
4442  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4443    case OR_Success: {
4444      // We found a built-in operator or an overloaded operator.
4445      FunctionDecl *FnDecl = Best->Function;
4446
4447      if (FnDecl) {
4448        // We matched an overloaded operator. Build a call to that
4449        // operator.
4450
4451        // Convert the arguments.
4452        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4453          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4454              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4455                                        "passing"))
4456            return ExprError();
4457        } else {
4458          // Convert the arguments.
4459          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4460                                        "passing") ||
4461              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4462                                        "passing"))
4463            return ExprError();
4464        }
4465
4466        // Determine the result type
4467        QualType ResultTy
4468          = FnDecl->getType()->getAsFunctionType()->getResultType();
4469        ResultTy = ResultTy.getNonReferenceType();
4470
4471        // Build the actual expression node.
4472        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4473                                                 OpLoc);
4474        UsualUnaryConversions(FnExpr);
4475
4476        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4477                                                     Args, 2, ResultTy, OpLoc);
4478        return MaybeBindToTemporary(CE);
4479      } else {
4480        // We matched a built-in operator. Convert the arguments, then
4481        // break out so that we will build the appropriate built-in
4482        // operator node.
4483        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4484                                      Best->Conversions[0], "passing") ||
4485            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4486                                      Best->Conversions[1], "passing"))
4487          return ExprError();
4488
4489        break;
4490      }
4491    }
4492
4493    case OR_No_Viable_Function:
4494      // For class as left operand for assignment or compound assigment operator
4495      // do not fall through to handling in built-in, but report that no overloaded
4496      // assignment operator found
4497      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4498        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4499             << BinaryOperator::getOpcodeStr(Opc)
4500             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4501        return ExprError();
4502      }
4503      // No viable function; fall through to handling this as a
4504      // built-in operator, which will produce an error message for us.
4505      break;
4506
4507    case OR_Ambiguous:
4508      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4509          << BinaryOperator::getOpcodeStr(Opc)
4510          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4511      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4512      return ExprError();
4513
4514    case OR_Deleted:
4515      Diag(OpLoc, diag::err_ovl_deleted_oper)
4516        << Best->Function->isDeleted()
4517        << BinaryOperator::getOpcodeStr(Opc)
4518        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4519      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4520      return ExprError();
4521    }
4522
4523  // Either we found no viable overloaded operator or we matched a
4524  // built-in operator. In either case, try to build a built-in
4525  // operation.
4526  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4527}
4528
4529/// BuildCallToMemberFunction - Build a call to a member
4530/// function. MemExpr is the expression that refers to the member
4531/// function (and includes the object parameter), Args/NumArgs are the
4532/// arguments to the function call (not including the object
4533/// parameter). The caller needs to validate that the member
4534/// expression refers to a member function or an overloaded member
4535/// function.
4536Sema::ExprResult
4537Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4538                                SourceLocation LParenLoc, Expr **Args,
4539                                unsigned NumArgs, SourceLocation *CommaLocs,
4540                                SourceLocation RParenLoc) {
4541  // Dig out the member expression. This holds both the object
4542  // argument and the member function we're referring to.
4543  MemberExpr *MemExpr = 0;
4544  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4545    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4546  else
4547    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4548  assert(MemExpr && "Building member call without member expression");
4549
4550  // Extract the object argument.
4551  Expr *ObjectArg = MemExpr->getBase();
4552
4553  CXXMethodDecl *Method = 0;
4554  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4555      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4556    // Add overload candidates
4557    OverloadCandidateSet CandidateSet;
4558    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4559
4560    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4561         Func != FuncEnd; ++Func) {
4562      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4563        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4564                           /*SuppressUserConversions=*/false);
4565      else
4566        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4567                                   /*FIXME:*/false, /*FIXME:*/0,
4568                                   /*FIXME:*/0, ObjectArg, Args, NumArgs,
4569                                   CandidateSet,
4570                                   /*SuppressUsedConversions=*/false);
4571    }
4572
4573    OverloadCandidateSet::iterator Best;
4574    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4575    case OR_Success:
4576      Method = cast<CXXMethodDecl>(Best->Function);
4577      break;
4578
4579    case OR_No_Viable_Function:
4580      Diag(MemExpr->getSourceRange().getBegin(),
4581           diag::err_ovl_no_viable_member_function_in_call)
4582        << DeclName << MemExprE->getSourceRange();
4583      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4584      // FIXME: Leaking incoming expressions!
4585      return true;
4586
4587    case OR_Ambiguous:
4588      Diag(MemExpr->getSourceRange().getBegin(),
4589           diag::err_ovl_ambiguous_member_call)
4590        << DeclName << MemExprE->getSourceRange();
4591      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4592      // FIXME: Leaking incoming expressions!
4593      return true;
4594
4595    case OR_Deleted:
4596      Diag(MemExpr->getSourceRange().getBegin(),
4597           diag::err_ovl_deleted_member_call)
4598        << Best->Function->isDeleted()
4599        << DeclName << MemExprE->getSourceRange();
4600      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4601      // FIXME: Leaking incoming expressions!
4602      return true;
4603    }
4604
4605    FixOverloadedFunctionReference(MemExpr, Method);
4606  } else {
4607    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4608  }
4609
4610  assert(Method && "Member call to something that isn't a method?");
4611  ExprOwningPtr<CXXMemberCallExpr>
4612    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4613                                                  NumArgs,
4614                                  Method->getResultType().getNonReferenceType(),
4615                                  RParenLoc));
4616
4617  // Convert the object argument (for a non-static member function call).
4618  if (!Method->isStatic() &&
4619      PerformObjectArgumentInitialization(ObjectArg, Method))
4620    return true;
4621  MemExpr->setBase(ObjectArg);
4622
4623  // Convert the rest of the arguments
4624  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4625  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4626                              RParenLoc))
4627    return true;
4628
4629  if (CheckFunctionCall(Method, TheCall.get()))
4630    return true;
4631
4632  return MaybeBindToTemporary(TheCall.release()).release();
4633}
4634
4635/// BuildCallToObjectOfClassType - Build a call to an object of class
4636/// type (C++ [over.call.object]), which can end up invoking an
4637/// overloaded function call operator (@c operator()) or performing a
4638/// user-defined conversion on the object argument.
4639Sema::ExprResult
4640Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4641                                   SourceLocation LParenLoc,
4642                                   Expr **Args, unsigned NumArgs,
4643                                   SourceLocation *CommaLocs,
4644                                   SourceLocation RParenLoc) {
4645  assert(Object->getType()->isRecordType() && "Requires object type argument");
4646  const RecordType *Record = Object->getType()->getAs<RecordType>();
4647
4648  // C++ [over.call.object]p1:
4649  //  If the primary-expression E in the function call syntax
4650  //  evaluates to a class object of type "cv T", then the set of
4651  //  candidate functions includes at least the function call
4652  //  operators of T. The function call operators of T are obtained by
4653  //  ordinary lookup of the name operator() in the context of
4654  //  (E).operator().
4655  OverloadCandidateSet CandidateSet;
4656  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4657  DeclContext::lookup_const_iterator Oper, OperEnd;
4658  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4659       Oper != OperEnd; ++Oper)
4660    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4661                       CandidateSet, /*SuppressUserConversions=*/false);
4662
4663  // C++ [over.call.object]p2:
4664  //   In addition, for each conversion function declared in T of the
4665  //   form
4666  //
4667  //        operator conversion-type-id () cv-qualifier;
4668  //
4669  //   where cv-qualifier is the same cv-qualification as, or a
4670  //   greater cv-qualification than, cv, and where conversion-type-id
4671  //   denotes the type "pointer to function of (P1,...,Pn) returning
4672  //   R", or the type "reference to pointer to function of
4673  //   (P1,...,Pn) returning R", or the type "reference to function
4674  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4675  //   is also considered as a candidate function. Similarly,
4676  //   surrogate call functions are added to the set of candidate
4677  //   functions for each conversion function declared in an
4678  //   accessible base class provided the function is not hidden
4679  //   within T by another intervening declaration.
4680
4681  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
4682    // FIXME: Look in base classes for more conversion operators!
4683    OverloadedFunctionDecl *Conversions
4684      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4685    for (OverloadedFunctionDecl::function_iterator
4686           Func = Conversions->function_begin(),
4687           FuncEnd = Conversions->function_end();
4688         Func != FuncEnd; ++Func) {
4689      CXXConversionDecl *Conv;
4690      FunctionTemplateDecl *ConvTemplate;
4691      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
4692
4693      // Skip over templated conversion functions; they aren't
4694      // surrogates.
4695      if (ConvTemplate)
4696        continue;
4697
4698      // Strip the reference type (if any) and then the pointer type (if
4699      // any) to get down to what might be a function type.
4700      QualType ConvType = Conv->getConversionType().getNonReferenceType();
4701      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4702        ConvType = ConvPtrType->getPointeeType();
4703
4704      if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4705        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4706    }
4707  }
4708
4709  // Perform overload resolution.
4710  OverloadCandidateSet::iterator Best;
4711  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4712  case OR_Success:
4713    // Overload resolution succeeded; we'll build the appropriate call
4714    // below.
4715    break;
4716
4717  case OR_No_Viable_Function:
4718    Diag(Object->getSourceRange().getBegin(),
4719         diag::err_ovl_no_viable_object_call)
4720      << Object->getType() << Object->getSourceRange();
4721    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4722    break;
4723
4724  case OR_Ambiguous:
4725    Diag(Object->getSourceRange().getBegin(),
4726         diag::err_ovl_ambiguous_object_call)
4727      << Object->getType() << Object->getSourceRange();
4728    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4729    break;
4730
4731  case OR_Deleted:
4732    Diag(Object->getSourceRange().getBegin(),
4733         diag::err_ovl_deleted_object_call)
4734      << Best->Function->isDeleted()
4735      << Object->getType() << Object->getSourceRange();
4736    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4737    break;
4738  }
4739
4740  if (Best == CandidateSet.end()) {
4741    // We had an error; delete all of the subexpressions and return
4742    // the error.
4743    Object->Destroy(Context);
4744    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4745      Args[ArgIdx]->Destroy(Context);
4746    return true;
4747  }
4748
4749  if (Best->Function == 0) {
4750    // Since there is no function declaration, this is one of the
4751    // surrogate candidates. Dig out the conversion function.
4752    CXXConversionDecl *Conv
4753      = cast<CXXConversionDecl>(
4754                         Best->Conversions[0].UserDefined.ConversionFunction);
4755
4756    // We selected one of the surrogate functions that converts the
4757    // object parameter to a function pointer. Perform the conversion
4758    // on the object argument, then let ActOnCallExpr finish the job.
4759    // FIXME: Represent the user-defined conversion in the AST!
4760    ImpCastExprToType(Object,
4761                      Conv->getConversionType().getNonReferenceType(),
4762                      CastExpr::CK_Unknown,
4763                      Conv->getConversionType()->isLValueReferenceType());
4764    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4765                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4766                         CommaLocs, RParenLoc).release();
4767  }
4768
4769  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4770  // that calls this method, using Object for the implicit object
4771  // parameter and passing along the remaining arguments.
4772  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4773  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4774
4775  unsigned NumArgsInProto = Proto->getNumArgs();
4776  unsigned NumArgsToCheck = NumArgs;
4777
4778  // Build the full argument list for the method call (the
4779  // implicit object parameter is placed at the beginning of the
4780  // list).
4781  Expr **MethodArgs;
4782  if (NumArgs < NumArgsInProto) {
4783    NumArgsToCheck = NumArgsInProto;
4784    MethodArgs = new Expr*[NumArgsInProto + 1];
4785  } else {
4786    MethodArgs = new Expr*[NumArgs + 1];
4787  }
4788  MethodArgs[0] = Object;
4789  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4790    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4791
4792  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4793                                          SourceLocation());
4794  UsualUnaryConversions(NewFn);
4795
4796  // Once we've built TheCall, all of the expressions are properly
4797  // owned.
4798  QualType ResultTy = Method->getResultType().getNonReferenceType();
4799  ExprOwningPtr<CXXOperatorCallExpr>
4800    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4801                                                    MethodArgs, NumArgs + 1,
4802                                                    ResultTy, RParenLoc));
4803  delete [] MethodArgs;
4804
4805  // We may have default arguments. If so, we need to allocate more
4806  // slots in the call for them.
4807  if (NumArgs < NumArgsInProto)
4808    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4809  else if (NumArgs > NumArgsInProto)
4810    NumArgsToCheck = NumArgsInProto;
4811
4812  bool IsError = false;
4813
4814  // Initialize the implicit object parameter.
4815  IsError |= PerformObjectArgumentInitialization(Object, Method);
4816  TheCall->setArg(0, Object);
4817
4818
4819  // Check the argument types.
4820  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4821    Expr *Arg;
4822    if (i < NumArgs) {
4823      Arg = Args[i];
4824
4825      // Pass the argument.
4826      QualType ProtoArgType = Proto->getArgType(i);
4827      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4828    } else {
4829      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4830    }
4831
4832    TheCall->setArg(i + 1, Arg);
4833  }
4834
4835  // If this is a variadic call, handle args passed through "...".
4836  if (Proto->isVariadic()) {
4837    // Promote the arguments (C99 6.5.2.2p7).
4838    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4839      Expr *Arg = Args[i];
4840      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4841      TheCall->setArg(i + 1, Arg);
4842    }
4843  }
4844
4845  if (IsError) return true;
4846
4847  if (CheckFunctionCall(Method, TheCall.get()))
4848    return true;
4849
4850  return MaybeBindToTemporary(TheCall.release()).release();
4851}
4852
4853/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4854///  (if one exists), where @c Base is an expression of class type and
4855/// @c Member is the name of the member we're trying to find.
4856Sema::OwningExprResult
4857Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4858  Expr *Base = static_cast<Expr *>(BaseIn.get());
4859  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4860
4861  // C++ [over.ref]p1:
4862  //
4863  //   [...] An expression x->m is interpreted as (x.operator->())->m
4864  //   for a class object x of type T if T::operator->() exists and if
4865  //   the operator is selected as the best match function by the
4866  //   overload resolution mechanism (13.3).
4867  // FIXME: look in base classes.
4868  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4869  OverloadCandidateSet CandidateSet;
4870  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4871
4872  DeclContext::lookup_const_iterator Oper, OperEnd;
4873  for (llvm::tie(Oper, OperEnd)
4874         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4875    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4876                       /*SuppressUserConversions=*/false);
4877
4878  // Perform overload resolution.
4879  OverloadCandidateSet::iterator Best;
4880  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4881  case OR_Success:
4882    // Overload resolution succeeded; we'll build the call below.
4883    break;
4884
4885  case OR_No_Viable_Function:
4886    if (CandidateSet.empty())
4887      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4888        << Base->getType() << Base->getSourceRange();
4889    else
4890      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4891        << "operator->" << Base->getSourceRange();
4892    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4893    return ExprError();
4894
4895  case OR_Ambiguous:
4896    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4897      << "operator->" << Base->getSourceRange();
4898    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4899    return ExprError();
4900
4901  case OR_Deleted:
4902    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4903      << Best->Function->isDeleted()
4904      << "operator->" << Base->getSourceRange();
4905    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4906    return ExprError();
4907  }
4908
4909  // Convert the object parameter.
4910  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4911  if (PerformObjectArgumentInitialization(Base, Method))
4912    return ExprError();
4913
4914  // No concerns about early exits now.
4915  BaseIn.release();
4916
4917  // Build the operator call.
4918  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4919                                           SourceLocation());
4920  UsualUnaryConversions(FnExpr);
4921  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4922                                 Method->getResultType().getNonReferenceType(),
4923                                 OpLoc);
4924  return Owned(Base);
4925}
4926
4927/// FixOverloadedFunctionReference - E is an expression that refers to
4928/// a C++ overloaded function (possibly with some parentheses and
4929/// perhaps a '&' around it). We have resolved the overloaded function
4930/// to the function declaration Fn, so patch up the expression E to
4931/// refer (possibly indirectly) to Fn.
4932void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4933  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4934    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4935    E->setType(PE->getSubExpr()->getType());
4936  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4937    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4938           "Can only take the address of an overloaded function");
4939    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4940      if (Method->isStatic()) {
4941        // Do nothing: static member functions aren't any different
4942        // from non-member functions.
4943      } else if (QualifiedDeclRefExpr *DRE
4944                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4945        // We have taken the address of a pointer to member
4946        // function. Perform the computation here so that we get the
4947        // appropriate pointer to member type.
4948        DRE->setDecl(Fn);
4949        DRE->setType(Fn->getType());
4950        QualType ClassType
4951          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4952        E->setType(Context.getMemberPointerType(Fn->getType(),
4953                                                ClassType.getTypePtr()));
4954        return;
4955      }
4956    }
4957    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4958    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4959  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4960    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4961            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4962           "Expected overloaded function or function template");
4963    DR->setDecl(Fn);
4964    E->setType(Fn->getType());
4965  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4966    MemExpr->setMemberDecl(Fn);
4967    E->setType(Fn->getType());
4968  } else {
4969    assert(false && "Invalid reference to overloaded function");
4970  }
4971}
4972
4973} // end namespace clang
4974