SemaOverload.cpp revision bf40818928d2a7f76a4ba9abee469a7d02225ab2
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32  static const ImplicitConversionCategory
33    Category[(int)ICK_Num_Conversion_Kinds] = {
34    ICC_Identity,
35    ICC_Lvalue_Transformation,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Qualification_Adjustment,
39    ICC_Promotion,
40    ICC_Promotion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion
48  };
49  return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55  static const ImplicitConversionRank
56    Rank[(int)ICK_Num_Conversion_Kinds] = {
57    ICR_Exact_Match,
58    ICR_Exact_Match,
59    ICR_Exact_Match,
60    ICR_Exact_Match,
61    ICR_Exact_Match,
62    ICR_Promotion,
63    ICR_Promotion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion,
67    ICR_Conversion,
68    ICR_Conversion,
69    ICR_Conversion,
70    ICR_Conversion
71  };
72  return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79    "No conversion",
80    "Lvalue-to-rvalue",
81    "Array-to-pointer",
82    "Function-to-pointer",
83    "Qualification",
84    "Integral promotion",
85    "Floating point promotion",
86    "Integral conversion",
87    "Floating conversion",
88    "Floating-integral conversion",
89    "Pointer conversion",
90    "Pointer-to-member conversion",
91    "Boolean conversion",
92    "Derived-to-base conversion"
93  };
94  return Name[Kind];
95}
96
97/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100  First = ICK_Identity;
101  Second = ICK_Identity;
102  Third = ICK_Identity;
103  Deprecated = false;
104  ReferenceBinding = false;
105  DirectBinding = false;
106  CopyConstructor = 0;
107}
108
109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113  ImplicitConversionRank Rank = ICR_Exact_Match;
114  if  (GetConversionRank(First) > Rank)
115    Rank = GetConversionRank(First);
116  if  (GetConversionRank(Second) > Rank)
117    Rank = GetConversionRank(Second);
118  if  (GetConversionRank(Third) > Rank)
119    Rank = GetConversionRank(Third);
120  return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132  // Note that FromType has not necessarily been transformed by the
133  // array-to-pointer or function-to-pointer implicit conversions, so
134  // check for their presence as well as checking whether FromType is
135  // a pointer.
136  if (ToType->isBooleanType() &&
137      (FromType->isPointerType() ||
138       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139    return true;
140
141  return false;
142}
143
144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155  // Note that FromType has not necessarily been transformed by the
156  // array-to-pointer implicit conversion, so check for its presence
157  // and redo the conversion to get a pointer.
158  if (First == ICK_Array_To_Pointer)
159    FromType = Context.getArrayDecayedType(FromType);
160
161  if (Second == ICK_Pointer_Conversion)
162    if (const PointerType* ToPtrType = ToType->getAsPointerType())
163      return ToPtrType->getPointeeType()->isVoidType();
164
165  return false;
166}
167
168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171  bool PrintedSomething = false;
172  if (First != ICK_Identity) {
173    fprintf(stderr, "%s", GetImplicitConversionName(First));
174    PrintedSomething = true;
175  }
176
177  if (Second != ICK_Identity) {
178    if (PrintedSomething) {
179      fprintf(stderr, " -> ");
180    }
181    fprintf(stderr, "%s", GetImplicitConversionName(Second));
182
183    if (CopyConstructor) {
184      fprintf(stderr, " (by copy constructor)");
185    } else if (DirectBinding) {
186      fprintf(stderr, " (direct reference binding)");
187    } else if (ReferenceBinding) {
188      fprintf(stderr, " (reference binding)");
189    }
190    PrintedSomething = true;
191  }
192
193  if (Third != ICK_Identity) {
194    if (PrintedSomething) {
195      fprintf(stderr, " -> ");
196    }
197    fprintf(stderr, "%s", GetImplicitConversionName(Third));
198    PrintedSomething = true;
199  }
200
201  if (!PrintedSomething) {
202    fprintf(stderr, "No conversions required");
203  }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209  if (Before.First || Before.Second || Before.Third) {
210    Before.DebugPrint();
211    fprintf(stderr, " -> ");
212  }
213  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
214  if (After.First || After.Second || After.Third) {
215    fprintf(stderr, " -> ");
216    After.DebugPrint();
217  }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223  switch (ConversionKind) {
224  case StandardConversion:
225    fprintf(stderr, "Standard conversion: ");
226    Standard.DebugPrint();
227    break;
228  case UserDefinedConversion:
229    fprintf(stderr, "User-defined conversion: ");
230    UserDefined.DebugPrint();
231    break;
232  case EllipsisConversion:
233    fprintf(stderr, "Ellipsis conversion");
234    break;
235  case BadConversion:
236    fprintf(stderr, "Bad conversion");
237    break;
238  }
239
240  fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253//   void f(int, float); // #1
254//   void f(int, int); // #2
255//   int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1.  By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276    // Is this new function an overload of every function in the
277    // overload set?
278    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279                                           FuncEnd = Ovl->function_end();
280    for (; Func != FuncEnd; ++Func) {
281      if (!IsOverload(New, *Func, MatchedDecl)) {
282        MatchedDecl = Func;
283        return false;
284      }
285    }
286
287    // This function overloads every function in the overload set.
288    return true;
289  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290    // Is the function New an overload of the function Old?
291    QualType OldQType = Context.getCanonicalType(Old->getType());
292    QualType NewQType = Context.getCanonicalType(New->getType());
293
294    // Compare the signatures (C++ 1.3.10) of the two functions to
295    // determine whether they are overloads. If we find any mismatch
296    // in the signature, they are overloads.
297
298    // If either of these functions is a K&R-style function (no
299    // prototype), then we consider them to have matching signatures.
300    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302      return false;
303
304    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307    // The signature of a function includes the types of its
308    // parameters (C++ 1.3.10), which includes the presence or absence
309    // of the ellipsis; see C++ DR 357).
310    if (OldQType != NewQType &&
311        (OldType->getNumArgs() != NewType->getNumArgs() ||
312         OldType->isVariadic() != NewType->isVariadic() ||
313         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314                     NewType->arg_type_begin())))
315      return true;
316
317    // If the function is a class member, its signature includes the
318    // cv-qualifiers (if any) on the function itself.
319    //
320    // As part of this, also check whether one of the member functions
321    // is static, in which case they are not overloads (C++
322    // 13.1p2). While not part of the definition of the signature,
323    // this check is important to determine whether these functions
324    // can be overloaded.
325    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327    if (OldMethod && NewMethod &&
328        !OldMethod->isStatic() && !NewMethod->isStatic() &&
329        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
330      return true;
331
332    // The signatures match; this is not an overload.
333    return false;
334  } else {
335    // (C++ 13p1):
336    //   Only function declarations can be overloaded; object and type
337    //   declarations cannot be overloaded.
338    return false;
339  }
340}
341
342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
346///
347///   void f(float f);
348///   void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
363ImplicitConversionSequence
364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365                            bool SuppressUserConversions)
366{
367  ImplicitConversionSequence ICS;
368  if (IsStandardConversion(From, ToType, ICS.Standard))
369    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
370  else if (!SuppressUserConversions &&
371           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
372    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
373    // C++ [over.ics.user]p4:
374    //   A conversion of an expression of class type to the same class
375    //   type is given Exact Match rank, and a conversion of an
376    //   expression of class type to a base class of that type is
377    //   given Conversion rank, in spite of the fact that a copy
378    //   constructor (i.e., a user-defined conversion function) is
379    //   called for those cases.
380    if (CXXConstructorDecl *Constructor
381          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382      if (Constructor->isCopyConstructor(Context)) {
383        // Turn this into a "standard" conversion sequence, so that it
384        // gets ranked with standard conversion sequences.
385        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386        ICS.Standard.setAsIdentityConversion();
387        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
389        ICS.Standard.CopyConstructor = Constructor;
390        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391                          ToType.getUnqualifiedType()))
392          ICS.Standard.Second = ICK_Derived_To_Base;
393      }
394    }
395  } else
396    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
397
398  return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411                           StandardConversionSequence &SCS)
412{
413  QualType FromType = From->getType();
414
415  // There are no standard conversions for class types, so abort early.
416  if (FromType->isRecordType() || ToType->isRecordType())
417    return false;
418
419  // Standard conversions (C++ [conv])
420  SCS.setAsIdentityConversion();
421  SCS.Deprecated = false;
422  SCS.FromTypePtr = FromType.getAsOpaquePtr();
423  SCS.CopyConstructor = 0;
424
425  // The first conversion can be an lvalue-to-rvalue conversion,
426  // array-to-pointer conversion, or function-to-pointer conversion
427  // (C++ 4p1).
428
429  // Lvalue-to-rvalue conversion (C++ 4.1):
430  //   An lvalue (3.10) of a non-function, non-array type T can be
431  //   converted to an rvalue.
432  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433  if (argIsLvalue == Expr::LV_Valid &&
434      !FromType->isFunctionType() && !FromType->isArrayType() &&
435      !FromType->isOverloadType()) {
436    SCS.First = ICK_Lvalue_To_Rvalue;
437
438    // If T is a non-class type, the type of the rvalue is the
439    // cv-unqualified version of T. Otherwise, the type of the rvalue
440    // is T (C++ 4.1p1).
441    FromType = FromType.getUnqualifiedType();
442  }
443  // Array-to-pointer conversion (C++ 4.2)
444  else if (FromType->isArrayType()) {
445    SCS.First = ICK_Array_To_Pointer;
446
447    // An lvalue or rvalue of type "array of N T" or "array of unknown
448    // bound of T" can be converted to an rvalue of type "pointer to
449    // T" (C++ 4.2p1).
450    FromType = Context.getArrayDecayedType(FromType);
451
452    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453      // This conversion is deprecated. (C++ D.4).
454      SCS.Deprecated = true;
455
456      // For the purpose of ranking in overload resolution
457      // (13.3.3.1.1), this conversion is considered an
458      // array-to-pointer conversion followed by a qualification
459      // conversion (4.4). (C++ 4.2p2)
460      SCS.Second = ICK_Identity;
461      SCS.Third = ICK_Qualification;
462      SCS.ToTypePtr = ToType.getAsOpaquePtr();
463      return true;
464    }
465  }
466  // Function-to-pointer conversion (C++ 4.3).
467  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
468    SCS.First = ICK_Function_To_Pointer;
469
470    // An lvalue of function type T can be converted to an rvalue of
471    // type "pointer to T." The result is a pointer to the
472    // function. (C++ 4.3p1).
473    FromType = Context.getPointerType(FromType);
474  }
475  // Address of overloaded function (C++ [over.over]).
476  else if (FunctionDecl *Fn
477             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478    SCS.First = ICK_Function_To_Pointer;
479
480    // We were able to resolve the address of the overloaded function,
481    // so we can convert to the type of that function.
482    FromType = Fn->getType();
483    if (ToType->isReferenceType())
484      FromType = Context.getReferenceType(FromType);
485    else
486      FromType = Context.getPointerType(FromType);
487  }
488  // We don't require any conversions for the first step.
489  else {
490    SCS.First = ICK_Identity;
491  }
492
493  // The second conversion can be an integral promotion, floating
494  // point promotion, integral conversion, floating point conversion,
495  // floating-integral conversion, pointer conversion,
496  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498      Context.getCanonicalType(ToType).getUnqualifiedType()) {
499    // The unqualified versions of the types are the same: there's no
500    // conversion to do.
501    SCS.Second = ICK_Identity;
502  }
503  // Integral promotion (C++ 4.5).
504  else if (IsIntegralPromotion(From, FromType, ToType)) {
505    SCS.Second = ICK_Integral_Promotion;
506    FromType = ToType.getUnqualifiedType();
507  }
508  // Floating point promotion (C++ 4.6).
509  else if (IsFloatingPointPromotion(FromType, ToType)) {
510    SCS.Second = ICK_Floating_Promotion;
511    FromType = ToType.getUnqualifiedType();
512  }
513  // Integral conversions (C++ 4.7).
514  // FIXME: isIntegralType shouldn't be true for enums in C++.
515  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
516           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
517    SCS.Second = ICK_Integral_Conversion;
518    FromType = ToType.getUnqualifiedType();
519  }
520  // Floating point conversions (C++ 4.8).
521  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
522    SCS.Second = ICK_Floating_Conversion;
523    FromType = ToType.getUnqualifiedType();
524  }
525  // Floating-integral conversions (C++ 4.9).
526  // FIXME: isIntegralType shouldn't be true for enums in C++.
527  else if ((FromType->isFloatingType() &&
528            ToType->isIntegralType() && !ToType->isBooleanType() &&
529                                        !ToType->isEnumeralType()) ||
530           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531            ToType->isFloatingType())) {
532    SCS.Second = ICK_Floating_Integral;
533    FromType = ToType.getUnqualifiedType();
534  }
535  // Pointer conversions (C++ 4.10).
536  else if (IsPointerConversion(From, FromType, ToType, FromType)) {
537    SCS.Second = ICK_Pointer_Conversion;
538  }
539  // FIXME: Pointer to member conversions (4.11).
540  // Boolean conversions (C++ 4.12).
541  // FIXME: pointer-to-member type
542  else if (ToType->isBooleanType() &&
543           (FromType->isArithmeticType() ||
544            FromType->isEnumeralType() ||
545            FromType->isPointerType())) {
546    SCS.Second = ICK_Boolean_Conversion;
547    FromType = Context.BoolTy;
548  } else {
549    // No second conversion required.
550    SCS.Second = ICK_Identity;
551  }
552
553  QualType CanonFrom;
554  QualType CanonTo;
555  // The third conversion can be a qualification conversion (C++ 4p1).
556  if (IsQualificationConversion(FromType, ToType)) {
557    SCS.Third = ICK_Qualification;
558    FromType = ToType;
559    CanonFrom = Context.getCanonicalType(FromType);
560    CanonTo = Context.getCanonicalType(ToType);
561  } else {
562    // No conversion required
563    SCS.Third = ICK_Identity;
564
565    // C++ [over.best.ics]p6:
566    //   [...] Any difference in top-level cv-qualification is
567    //   subsumed by the initialization itself and does not constitute
568    //   a conversion. [...]
569    CanonFrom = Context.getCanonicalType(FromType);
570    CanonTo = Context.getCanonicalType(ToType);
571    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
572        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573      FromType = ToType;
574      CanonFrom = CanonTo;
575    }
576  }
577
578  // If we have not converted the argument type to the parameter type,
579  // this is a bad conversion sequence.
580  if (CanonFrom != CanonTo)
581    return false;
582
583  SCS.ToTypePtr = FromType.getAsOpaquePtr();
584  return true;
585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593  const BuiltinType *To = ToType->getAsBuiltinType();
594  // All integers are built-in.
595  if (!To) {
596    return false;
597  }
598
599  // An rvalue of type char, signed char, unsigned char, short int, or
600  // unsigned short int can be converted to an rvalue of type int if
601  // int can represent all the values of the source type; otherwise,
602  // the source rvalue can be converted to an rvalue of type unsigned
603  // int (C++ 4.5p1).
604  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
605    if (// We can promote any signed, promotable integer type to an int
606        (FromType->isSignedIntegerType() ||
607         // We can promote any unsigned integer type whose size is
608         // less than int to an int.
609         (!FromType->isSignedIntegerType() &&
610          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
611      return To->getKind() == BuiltinType::Int;
612    }
613
614    return To->getKind() == BuiltinType::UInt;
615  }
616
617  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618  // can be converted to an rvalue of the first of the following types
619  // that can represent all the values of its underlying type: int,
620  // unsigned int, long, or unsigned long (C++ 4.5p2).
621  if ((FromType->isEnumeralType() || FromType->isWideCharType())
622      && ToType->isIntegerType()) {
623    // Determine whether the type we're converting from is signed or
624    // unsigned.
625    bool FromIsSigned;
626    uint64_t FromSize = Context.getTypeSize(FromType);
627    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629      FromIsSigned = UnderlyingType->isSignedIntegerType();
630    } else {
631      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632      FromIsSigned = true;
633    }
634
635    // The types we'll try to promote to, in the appropriate
636    // order. Try each of these types.
637    QualType PromoteTypes[4] = {
638      Context.IntTy, Context.UnsignedIntTy,
639      Context.LongTy, Context.UnsignedLongTy
640    };
641    for (int Idx = 0; Idx < 4; ++Idx) {
642      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
643      if (FromSize < ToSize ||
644          (FromSize == ToSize &&
645           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
646        // We found the type that we can promote to. If this is the
647        // type we wanted, we have a promotion. Otherwise, no
648        // promotion.
649        return Context.getCanonicalType(ToType).getUnqualifiedType()
650          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
651      }
652    }
653  }
654
655  // An rvalue for an integral bit-field (9.6) can be converted to an
656  // rvalue of type int if int can represent all the values of the
657  // bit-field; otherwise, it can be converted to unsigned int if
658  // unsigned int can represent all the values of the bit-field. If
659  // the bit-field is larger yet, no integral promotion applies to
660  // it. If the bit-field has an enumerated type, it is treated as any
661  // other value of that type for promotion purposes (C++ 4.5p3).
662  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
663    using llvm::APSInt;
664    FieldDecl *MemberDecl = MemRef->getMemberDecl();
665    APSInt BitWidth;
666    if (MemberDecl->isBitField() &&
667        FromType->isIntegralType() && !FromType->isEnumeralType() &&
668        From->isIntegerConstantExpr(BitWidth, Context)) {
669      APSInt ToSize(Context.getTypeSize(ToType));
670
671      // Are we promoting to an int from a bitfield that fits in an int?
672      if (BitWidth < ToSize ||
673          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
674        return To->getKind() == BuiltinType::Int;
675      }
676
677      // Are we promoting to an unsigned int from an unsigned bitfield
678      // that fits into an unsigned int?
679      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
680        return To->getKind() == BuiltinType::UInt;
681      }
682
683      return false;
684    }
685  }
686
687  // An rvalue of type bool can be converted to an rvalue of type int,
688  // with false becoming zero and true becoming one (C++ 4.5p4).
689  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
690    return true;
691  }
692
693  return false;
694}
695
696/// IsFloatingPointPromotion - Determines whether the conversion from
697/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
698/// returns true and sets PromotedType to the promoted type.
699bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
700{
701  /// An rvalue of type float can be converted to an rvalue of type
702  /// double. (C++ 4.6p1).
703  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
704    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
705      if (FromBuiltin->getKind() == BuiltinType::Float &&
706          ToBuiltin->getKind() == BuiltinType::Double)
707        return true;
708
709  return false;
710}
711
712/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
713/// the pointer type FromPtr to a pointer to type ToPointee, with the
714/// same type qualifiers as FromPtr has on its pointee type. ToType,
715/// if non-empty, will be a pointer to ToType that may or may not have
716/// the right set of qualifiers on its pointee.
717static QualType
718BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
719                                   QualType ToPointee, QualType ToType,
720                                   ASTContext &Context) {
721  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
722  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
723  unsigned Quals = CanonFromPointee.getCVRQualifiers();
724
725  // Exact qualifier match -> return the pointer type we're converting to.
726  if (CanonToPointee.getCVRQualifiers() == Quals) {
727    // ToType is exactly what we need. Return it.
728    if (ToType.getTypePtr())
729      return ToType;
730
731    // Build a pointer to ToPointee. It has the right qualifiers
732    // already.
733    return Context.getPointerType(ToPointee);
734  }
735
736  // Just build a canonical type that has the right qualifiers.
737  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
738}
739
740/// IsPointerConversion - Determines whether the conversion of the
741/// expression From, which has the (possibly adjusted) type FromType,
742/// can be converted to the type ToType via a pointer conversion (C++
743/// 4.10). If so, returns true and places the converted type (that
744/// might differ from ToType in its cv-qualifiers at some level) into
745/// ConvertedType.
746///
747/// This routine also supports conversions to and from block pointers.
748bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
749                               QualType& ConvertedType)
750{
751  // Blocks: Block pointers can be converted to void*.
752  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
753      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
754    ConvertedType = ToType;
755    return true;
756  }
757  // Blocks: A null pointer constant can be converted to a block
758  // pointer type.
759  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
760    ConvertedType = ToType;
761    return true;
762  }
763
764  const PointerType* ToTypePtr = ToType->getAsPointerType();
765  if (!ToTypePtr)
766    return false;
767
768  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
769  if (From->isNullPointerConstant(Context)) {
770    ConvertedType = ToType;
771    return true;
772  }
773
774  // Beyond this point, both types need to be pointers.
775  const PointerType *FromTypePtr = FromType->getAsPointerType();
776  if (!FromTypePtr)
777    return false;
778
779  QualType FromPointeeType = FromTypePtr->getPointeeType();
780  QualType ToPointeeType = ToTypePtr->getPointeeType();
781
782  // An rvalue of type "pointer to cv T," where T is an object type,
783  // can be converted to an rvalue of type "pointer to cv void" (C++
784  // 4.10p2).
785  if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
786    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
787                                                       ToPointeeType,
788                                                       ToType, Context);
789    return true;
790  }
791
792  // C++ [conv.ptr]p3:
793  //
794  //   An rvalue of type "pointer to cv D," where D is a class type,
795  //   can be converted to an rvalue of type "pointer to cv B," where
796  //   B is a base class (clause 10) of D. If B is an inaccessible
797  //   (clause 11) or ambiguous (10.2) base class of D, a program that
798  //   necessitates this conversion is ill-formed. The result of the
799  //   conversion is a pointer to the base class sub-object of the
800  //   derived class object. The null pointer value is converted to
801  //   the null pointer value of the destination type.
802  //
803  // Note that we do not check for ambiguity or inaccessibility
804  // here. That is handled by CheckPointerConversion.
805  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
806      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
807    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
808                                                       ToPointeeType,
809                                                       ToType, Context);
810    return true;
811  }
812
813  // Objective C++: We're able to convert from a pointer to an
814  // interface to a pointer to a different interface.
815  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
816  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
817  if (FromIface && ToIface &&
818      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
819    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
820                                                       ToPointeeType,
821                                                       ToType, Context);
822    return true;
823  }
824
825  // Objective C++: We're able to convert between "id" and a pointer
826  // to any interface (in both directions).
827  if ((FromIface && Context.isObjCIdType(ToPointeeType))
828      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
829    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
830                                                       ToPointeeType,
831                                                       ToType, Context);
832    return true;
833  }
834
835  return false;
836}
837
838/// CheckPointerConversion - Check the pointer conversion from the
839/// expression From to the type ToType. This routine checks for
840/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
841/// conversions for which IsPointerConversion has already returned
842/// true. It returns true and produces a diagnostic if there was an
843/// error, or returns false otherwise.
844bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
845  QualType FromType = From->getType();
846
847  if (const PointerType *FromPtrType = FromType->getAsPointerType())
848    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
849      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
850                      /*DetectVirtual=*/false);
851      QualType FromPointeeType = FromPtrType->getPointeeType(),
852               ToPointeeType   = ToPtrType->getPointeeType();
853      if (FromPointeeType->isRecordType() &&
854          ToPointeeType->isRecordType()) {
855        // We must have a derived-to-base conversion. Check an
856        // ambiguous or inaccessible conversion.
857        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
858                                            From->getExprLoc(),
859                                            From->getSourceRange());
860      }
861    }
862
863  return false;
864}
865
866/// IsQualificationConversion - Determines whether the conversion from
867/// an rvalue of type FromType to ToType is a qualification conversion
868/// (C++ 4.4).
869bool
870Sema::IsQualificationConversion(QualType FromType, QualType ToType)
871{
872  FromType = Context.getCanonicalType(FromType);
873  ToType = Context.getCanonicalType(ToType);
874
875  // If FromType and ToType are the same type, this is not a
876  // qualification conversion.
877  if (FromType == ToType)
878    return false;
879
880  // (C++ 4.4p4):
881  //   A conversion can add cv-qualifiers at levels other than the first
882  //   in multi-level pointers, subject to the following rules: [...]
883  bool PreviousToQualsIncludeConst = true;
884  bool UnwrappedAnyPointer = false;
885  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
886    // Within each iteration of the loop, we check the qualifiers to
887    // determine if this still looks like a qualification
888    // conversion. Then, if all is well, we unwrap one more level of
889    // pointers or pointers-to-members and do it all again
890    // until there are no more pointers or pointers-to-members left to
891    // unwrap.
892    UnwrappedAnyPointer = true;
893
894    //   -- for every j > 0, if const is in cv 1,j then const is in cv
895    //      2,j, and similarly for volatile.
896    if (!ToType.isAtLeastAsQualifiedAs(FromType))
897      return false;
898
899    //   -- if the cv 1,j and cv 2,j are different, then const is in
900    //      every cv for 0 < k < j.
901    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
902        && !PreviousToQualsIncludeConst)
903      return false;
904
905    // Keep track of whether all prior cv-qualifiers in the "to" type
906    // include const.
907    PreviousToQualsIncludeConst
908      = PreviousToQualsIncludeConst && ToType.isConstQualified();
909  }
910
911  // We are left with FromType and ToType being the pointee types
912  // after unwrapping the original FromType and ToType the same number
913  // of types. If we unwrapped any pointers, and if FromType and
914  // ToType have the same unqualified type (since we checked
915  // qualifiers above), then this is a qualification conversion.
916  return UnwrappedAnyPointer &&
917    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
918}
919
920/// IsUserDefinedConversion - Determines whether there is a
921/// user-defined conversion sequence (C++ [over.ics.user]) that
922/// converts expression From to the type ToType. If such a conversion
923/// exists, User will contain the user-defined conversion sequence
924/// that performs such a conversion and this routine will return
925/// true. Otherwise, this routine returns false and User is
926/// unspecified.
927bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
928                                   UserDefinedConversionSequence& User)
929{
930  OverloadCandidateSet CandidateSet;
931  if (const CXXRecordType *ToRecordType
932        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
933    // C++ [over.match.ctor]p1:
934    //   When objects of class type are direct-initialized (8.5), or
935    //   copy-initialized from an expression of the same or a
936    //   derived class type (8.5), overload resolution selects the
937    //   constructor. [...] For copy-initialization, the candidate
938    //   functions are all the converting constructors (12.3.1) of
939    //   that class. The argument list is the expression-list within
940    //   the parentheses of the initializer.
941    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
942    const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
943    for (OverloadedFunctionDecl::function_const_iterator func
944           = Constructors->function_begin();
945         func != Constructors->function_end(); ++func) {
946      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
947      if (Constructor->isConvertingConstructor())
948        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
949                             /*SuppressUserConversions=*/true);
950    }
951  }
952
953  if (const CXXRecordType *FromRecordType
954        = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
955    // Add all of the conversion functions as candidates.
956    // FIXME: Look for conversions in base classes!
957    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
958    OverloadedFunctionDecl *Conversions
959      = FromRecordDecl->getConversionFunctions();
960    for (OverloadedFunctionDecl::function_iterator Func
961           = Conversions->function_begin();
962         Func != Conversions->function_end(); ++Func) {
963      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
964      AddConversionCandidate(Conv, From, ToType, CandidateSet);
965    }
966  }
967
968  OverloadCandidateSet::iterator Best;
969  switch (BestViableFunction(CandidateSet, Best)) {
970    case OR_Success:
971      // Record the standard conversion we used and the conversion function.
972      if (CXXConstructorDecl *Constructor
973            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
974        // C++ [over.ics.user]p1:
975        //   If the user-defined conversion is specified by a
976        //   constructor (12.3.1), the initial standard conversion
977        //   sequence converts the source type to the type required by
978        //   the argument of the constructor.
979        //
980        // FIXME: What about ellipsis conversions?
981        QualType ThisType = Constructor->getThisType(Context);
982        User.Before = Best->Conversions[0].Standard;
983        User.ConversionFunction = Constructor;
984        User.After.setAsIdentityConversion();
985        User.After.FromTypePtr
986          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
987        User.After.ToTypePtr = ToType.getAsOpaquePtr();
988        return true;
989      } else if (CXXConversionDecl *Conversion
990                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
991        // C++ [over.ics.user]p1:
992        //
993        //   [...] If the user-defined conversion is specified by a
994        //   conversion function (12.3.2), the initial standard
995        //   conversion sequence converts the source type to the
996        //   implicit object parameter of the conversion function.
997        User.Before = Best->Conversions[0].Standard;
998        User.ConversionFunction = Conversion;
999
1000        // C++ [over.ics.user]p2:
1001        //   The second standard conversion sequence converts the
1002        //   result of the user-defined conversion to the target type
1003        //   for the sequence. Since an implicit conversion sequence
1004        //   is an initialization, the special rules for
1005        //   initialization by user-defined conversion apply when
1006        //   selecting the best user-defined conversion for a
1007        //   user-defined conversion sequence (see 13.3.3 and
1008        //   13.3.3.1).
1009        User.After = Best->FinalConversion;
1010        return true;
1011      } else {
1012        assert(false && "Not a constructor or conversion function?");
1013        return false;
1014      }
1015
1016    case OR_No_Viable_Function:
1017      // No conversion here! We're done.
1018      return false;
1019
1020    case OR_Ambiguous:
1021      // FIXME: See C++ [over.best.ics]p10 for the handling of
1022      // ambiguous conversion sequences.
1023      return false;
1024    }
1025
1026  return false;
1027}
1028
1029/// CompareImplicitConversionSequences - Compare two implicit
1030/// conversion sequences to determine whether one is better than the
1031/// other or if they are indistinguishable (C++ 13.3.3.2).
1032ImplicitConversionSequence::CompareKind
1033Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1034                                         const ImplicitConversionSequence& ICS2)
1035{
1036  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1037  // conversion sequences (as defined in 13.3.3.1)
1038  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1039  //      conversion sequence than a user-defined conversion sequence or
1040  //      an ellipsis conversion sequence, and
1041  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1042  //      conversion sequence than an ellipsis conversion sequence
1043  //      (13.3.3.1.3).
1044  //
1045  if (ICS1.ConversionKind < ICS2.ConversionKind)
1046    return ImplicitConversionSequence::Better;
1047  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1048    return ImplicitConversionSequence::Worse;
1049
1050  // Two implicit conversion sequences of the same form are
1051  // indistinguishable conversion sequences unless one of the
1052  // following rules apply: (C++ 13.3.3.2p3):
1053  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1054    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1055  else if (ICS1.ConversionKind ==
1056             ImplicitConversionSequence::UserDefinedConversion) {
1057    // User-defined conversion sequence U1 is a better conversion
1058    // sequence than another user-defined conversion sequence U2 if
1059    // they contain the same user-defined conversion function or
1060    // constructor and if the second standard conversion sequence of
1061    // U1 is better than the second standard conversion sequence of
1062    // U2 (C++ 13.3.3.2p3).
1063    if (ICS1.UserDefined.ConversionFunction ==
1064          ICS2.UserDefined.ConversionFunction)
1065      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1066                                                ICS2.UserDefined.After);
1067  }
1068
1069  return ImplicitConversionSequence::Indistinguishable;
1070}
1071
1072/// CompareStandardConversionSequences - Compare two standard
1073/// conversion sequences to determine whether one is better than the
1074/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1075ImplicitConversionSequence::CompareKind
1076Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1077                                         const StandardConversionSequence& SCS2)
1078{
1079  // Standard conversion sequence S1 is a better conversion sequence
1080  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1081
1082  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1083  //     sequences in the canonical form defined by 13.3.3.1.1,
1084  //     excluding any Lvalue Transformation; the identity conversion
1085  //     sequence is considered to be a subsequence of any
1086  //     non-identity conversion sequence) or, if not that,
1087  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1088    // Neither is a proper subsequence of the other. Do nothing.
1089    ;
1090  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1091           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1092           (SCS1.Second == ICK_Identity &&
1093            SCS1.Third == ICK_Identity))
1094    // SCS1 is a proper subsequence of SCS2.
1095    return ImplicitConversionSequence::Better;
1096  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1097           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1098           (SCS2.Second == ICK_Identity &&
1099            SCS2.Third == ICK_Identity))
1100    // SCS2 is a proper subsequence of SCS1.
1101    return ImplicitConversionSequence::Worse;
1102
1103  //  -- the rank of S1 is better than the rank of S2 (by the rules
1104  //     defined below), or, if not that,
1105  ImplicitConversionRank Rank1 = SCS1.getRank();
1106  ImplicitConversionRank Rank2 = SCS2.getRank();
1107  if (Rank1 < Rank2)
1108    return ImplicitConversionSequence::Better;
1109  else if (Rank2 < Rank1)
1110    return ImplicitConversionSequence::Worse;
1111
1112  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1113  // are indistinguishable unless one of the following rules
1114  // applies:
1115
1116  //   A conversion that is not a conversion of a pointer, or
1117  //   pointer to member, to bool is better than another conversion
1118  //   that is such a conversion.
1119  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1120    return SCS2.isPointerConversionToBool()
1121             ? ImplicitConversionSequence::Better
1122             : ImplicitConversionSequence::Worse;
1123
1124  // C++ [over.ics.rank]p4b2:
1125  //
1126  //   If class B is derived directly or indirectly from class A,
1127  //   conversion of B* to A* is better than conversion of B* to
1128  //   void*, and conversion of A* to void* is better than conversion
1129  //   of B* to void*.
1130  bool SCS1ConvertsToVoid
1131    = SCS1.isPointerConversionToVoidPointer(Context);
1132  bool SCS2ConvertsToVoid
1133    = SCS2.isPointerConversionToVoidPointer(Context);
1134  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1135    // Exactly one of the conversion sequences is a conversion to
1136    // a void pointer; it's the worse conversion.
1137    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1138                              : ImplicitConversionSequence::Worse;
1139  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1140    // Neither conversion sequence converts to a void pointer; compare
1141    // their derived-to-base conversions.
1142    if (ImplicitConversionSequence::CompareKind DerivedCK
1143          = CompareDerivedToBaseConversions(SCS1, SCS2))
1144      return DerivedCK;
1145  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1146    // Both conversion sequences are conversions to void
1147    // pointers. Compare the source types to determine if there's an
1148    // inheritance relationship in their sources.
1149    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1150    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1151
1152    // Adjust the types we're converting from via the array-to-pointer
1153    // conversion, if we need to.
1154    if (SCS1.First == ICK_Array_To_Pointer)
1155      FromType1 = Context.getArrayDecayedType(FromType1);
1156    if (SCS2.First == ICK_Array_To_Pointer)
1157      FromType2 = Context.getArrayDecayedType(FromType2);
1158
1159    QualType FromPointee1
1160      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1161    QualType FromPointee2
1162      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1163
1164    if (IsDerivedFrom(FromPointee2, FromPointee1))
1165      return ImplicitConversionSequence::Better;
1166    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1167      return ImplicitConversionSequence::Worse;
1168
1169    // Objective-C++: If one interface is more specific than the
1170    // other, it is the better one.
1171    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1172    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1173    if (FromIface1 && FromIface1) {
1174      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1175        return ImplicitConversionSequence::Better;
1176      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1177        return ImplicitConversionSequence::Worse;
1178    }
1179  }
1180
1181  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1182  // bullet 3).
1183  if (ImplicitConversionSequence::CompareKind QualCK
1184        = CompareQualificationConversions(SCS1, SCS2))
1185    return QualCK;
1186
1187  // C++ [over.ics.rank]p3b4:
1188  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1189  //      which the references refer are the same type except for
1190  //      top-level cv-qualifiers, and the type to which the reference
1191  //      initialized by S2 refers is more cv-qualified than the type
1192  //      to which the reference initialized by S1 refers.
1193  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1194    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1195    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1196    T1 = Context.getCanonicalType(T1);
1197    T2 = Context.getCanonicalType(T2);
1198    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1199      if (T2.isMoreQualifiedThan(T1))
1200        return ImplicitConversionSequence::Better;
1201      else if (T1.isMoreQualifiedThan(T2))
1202        return ImplicitConversionSequence::Worse;
1203    }
1204  }
1205
1206  return ImplicitConversionSequence::Indistinguishable;
1207}
1208
1209/// CompareQualificationConversions - Compares two standard conversion
1210/// sequences to determine whether they can be ranked based on their
1211/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1212ImplicitConversionSequence::CompareKind
1213Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1214                                      const StandardConversionSequence& SCS2)
1215{
1216  // C++ 13.3.3.2p3:
1217  //  -- S1 and S2 differ only in their qualification conversion and
1218  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1219  //     cv-qualification signature of type T1 is a proper subset of
1220  //     the cv-qualification signature of type T2, and S1 is not the
1221  //     deprecated string literal array-to-pointer conversion (4.2).
1222  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1223      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1224    return ImplicitConversionSequence::Indistinguishable;
1225
1226  // FIXME: the example in the standard doesn't use a qualification
1227  // conversion (!)
1228  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1229  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1230  T1 = Context.getCanonicalType(T1);
1231  T2 = Context.getCanonicalType(T2);
1232
1233  // If the types are the same, we won't learn anything by unwrapped
1234  // them.
1235  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1236    return ImplicitConversionSequence::Indistinguishable;
1237
1238  ImplicitConversionSequence::CompareKind Result
1239    = ImplicitConversionSequence::Indistinguishable;
1240  while (UnwrapSimilarPointerTypes(T1, T2)) {
1241    // Within each iteration of the loop, we check the qualifiers to
1242    // determine if this still looks like a qualification
1243    // conversion. Then, if all is well, we unwrap one more level of
1244    // pointers or pointers-to-members and do it all again
1245    // until there are no more pointers or pointers-to-members left
1246    // to unwrap. This essentially mimics what
1247    // IsQualificationConversion does, but here we're checking for a
1248    // strict subset of qualifiers.
1249    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1250      // The qualifiers are the same, so this doesn't tell us anything
1251      // about how the sequences rank.
1252      ;
1253    else if (T2.isMoreQualifiedThan(T1)) {
1254      // T1 has fewer qualifiers, so it could be the better sequence.
1255      if (Result == ImplicitConversionSequence::Worse)
1256        // Neither has qualifiers that are a subset of the other's
1257        // qualifiers.
1258        return ImplicitConversionSequence::Indistinguishable;
1259
1260      Result = ImplicitConversionSequence::Better;
1261    } else if (T1.isMoreQualifiedThan(T2)) {
1262      // T2 has fewer qualifiers, so it could be the better sequence.
1263      if (Result == ImplicitConversionSequence::Better)
1264        // Neither has qualifiers that are a subset of the other's
1265        // qualifiers.
1266        return ImplicitConversionSequence::Indistinguishable;
1267
1268      Result = ImplicitConversionSequence::Worse;
1269    } else {
1270      // Qualifiers are disjoint.
1271      return ImplicitConversionSequence::Indistinguishable;
1272    }
1273
1274    // If the types after this point are equivalent, we're done.
1275    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1276      break;
1277  }
1278
1279  // Check that the winning standard conversion sequence isn't using
1280  // the deprecated string literal array to pointer conversion.
1281  switch (Result) {
1282  case ImplicitConversionSequence::Better:
1283    if (SCS1.Deprecated)
1284      Result = ImplicitConversionSequence::Indistinguishable;
1285    break;
1286
1287  case ImplicitConversionSequence::Indistinguishable:
1288    break;
1289
1290  case ImplicitConversionSequence::Worse:
1291    if (SCS2.Deprecated)
1292      Result = ImplicitConversionSequence::Indistinguishable;
1293    break;
1294  }
1295
1296  return Result;
1297}
1298
1299/// CompareDerivedToBaseConversions - Compares two standard conversion
1300/// sequences to determine whether they can be ranked based on their
1301/// various kinds of derived-to-base conversions (C++
1302/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1303/// conversions between Objective-C interface types.
1304ImplicitConversionSequence::CompareKind
1305Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1306                                      const StandardConversionSequence& SCS2) {
1307  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1308  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1309  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1310  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1311
1312  // Adjust the types we're converting from via the array-to-pointer
1313  // conversion, if we need to.
1314  if (SCS1.First == ICK_Array_To_Pointer)
1315    FromType1 = Context.getArrayDecayedType(FromType1);
1316  if (SCS2.First == ICK_Array_To_Pointer)
1317    FromType2 = Context.getArrayDecayedType(FromType2);
1318
1319  // Canonicalize all of the types.
1320  FromType1 = Context.getCanonicalType(FromType1);
1321  ToType1 = Context.getCanonicalType(ToType1);
1322  FromType2 = Context.getCanonicalType(FromType2);
1323  ToType2 = Context.getCanonicalType(ToType2);
1324
1325  // C++ [over.ics.rank]p4b3:
1326  //
1327  //   If class B is derived directly or indirectly from class A and
1328  //   class C is derived directly or indirectly from B,
1329  //
1330  // For Objective-C, we let A, B, and C also be Objective-C
1331  // interfaces.
1332
1333  // Compare based on pointer conversions.
1334  if (SCS1.Second == ICK_Pointer_Conversion &&
1335      SCS2.Second == ICK_Pointer_Conversion) {
1336    QualType FromPointee1
1337      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1338    QualType ToPointee1
1339      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1340    QualType FromPointee2
1341      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1342    QualType ToPointee2
1343      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1344
1345    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1346    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1347    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1348    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1349
1350    //   -- conversion of C* to B* is better than conversion of C* to A*,
1351    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1352      if (IsDerivedFrom(ToPointee1, ToPointee2))
1353        return ImplicitConversionSequence::Better;
1354      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1355        return ImplicitConversionSequence::Worse;
1356
1357      if (ToIface1 && ToIface2) {
1358        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1359          return ImplicitConversionSequence::Better;
1360        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1361          return ImplicitConversionSequence::Worse;
1362      }
1363    }
1364
1365    //   -- conversion of B* to A* is better than conversion of C* to A*,
1366    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1367      if (IsDerivedFrom(FromPointee2, FromPointee1))
1368        return ImplicitConversionSequence::Better;
1369      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1370        return ImplicitConversionSequence::Worse;
1371
1372      if (FromIface1 && FromIface2) {
1373        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1374          return ImplicitConversionSequence::Better;
1375        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1376          return ImplicitConversionSequence::Worse;
1377      }
1378    }
1379  }
1380
1381  // Compare based on reference bindings.
1382  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1383      SCS1.Second == ICK_Derived_To_Base) {
1384    //   -- binding of an expression of type C to a reference of type
1385    //      B& is better than binding an expression of type C to a
1386    //      reference of type A&,
1387    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1388        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1389      if (IsDerivedFrom(ToType1, ToType2))
1390        return ImplicitConversionSequence::Better;
1391      else if (IsDerivedFrom(ToType2, ToType1))
1392        return ImplicitConversionSequence::Worse;
1393    }
1394
1395    //   -- binding of an expression of type B to a reference of type
1396    //      A& is better than binding an expression of type C to a
1397    //      reference of type A&,
1398    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1399        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1400      if (IsDerivedFrom(FromType2, FromType1))
1401        return ImplicitConversionSequence::Better;
1402      else if (IsDerivedFrom(FromType1, FromType2))
1403        return ImplicitConversionSequence::Worse;
1404    }
1405  }
1406
1407
1408  // FIXME: conversion of A::* to B::* is better than conversion of
1409  // A::* to C::*,
1410
1411  // FIXME: conversion of B::* to C::* is better than conversion of
1412  // A::* to C::*, and
1413
1414  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1415      SCS1.Second == ICK_Derived_To_Base) {
1416    //   -- conversion of C to B is better than conversion of C to A,
1417    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1418        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1419      if (IsDerivedFrom(ToType1, ToType2))
1420        return ImplicitConversionSequence::Better;
1421      else if (IsDerivedFrom(ToType2, ToType1))
1422        return ImplicitConversionSequence::Worse;
1423    }
1424
1425    //   -- conversion of B to A is better than conversion of C to A.
1426    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1427        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1428      if (IsDerivedFrom(FromType2, FromType1))
1429        return ImplicitConversionSequence::Better;
1430      else if (IsDerivedFrom(FromType1, FromType2))
1431        return ImplicitConversionSequence::Worse;
1432    }
1433  }
1434
1435  return ImplicitConversionSequence::Indistinguishable;
1436}
1437
1438/// TryCopyInitialization - Try to copy-initialize a value of type
1439/// ToType from the expression From. Return the implicit conversion
1440/// sequence required to pass this argument, which may be a bad
1441/// conversion sequence (meaning that the argument cannot be passed to
1442/// a parameter of this type). If @p SuppressUserConversions, then we
1443/// do not permit any user-defined conversion sequences.
1444ImplicitConversionSequence
1445Sema::TryCopyInitialization(Expr *From, QualType ToType,
1446                            bool SuppressUserConversions) {
1447  if (!getLangOptions().CPlusPlus) {
1448    // In C, copy initialization is the same as performing an assignment.
1449    AssignConvertType ConvTy =
1450      CheckSingleAssignmentConstraints(ToType, From);
1451    ImplicitConversionSequence ICS;
1452    if (getLangOptions().NoExtensions? ConvTy != Compatible
1453                                     : ConvTy == Incompatible)
1454      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1455    else
1456      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1457    return ICS;
1458  } else if (ToType->isReferenceType()) {
1459    ImplicitConversionSequence ICS;
1460    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1461    return ICS;
1462  } else {
1463    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1464  }
1465}
1466
1467/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1468/// type ToType. Returns true (and emits a diagnostic) if there was
1469/// an error, returns false if the initialization succeeded.
1470bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1471                                     const char* Flavor) {
1472  if (!getLangOptions().CPlusPlus) {
1473    // In C, argument passing is the same as performing an assignment.
1474    QualType FromType = From->getType();
1475    AssignConvertType ConvTy =
1476      CheckSingleAssignmentConstraints(ToType, From);
1477
1478    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1479                                    FromType, From, Flavor);
1480  }
1481
1482  if (ToType->isReferenceType())
1483    return CheckReferenceInit(From, ToType);
1484
1485  if (!PerformImplicitConversion(From, ToType))
1486    return false;
1487
1488  return Diag(From->getSourceRange().getBegin(),
1489              diag::err_typecheck_convert_incompatible)
1490    << ToType << From->getType() << Flavor << From->getSourceRange();
1491}
1492
1493/// TryObjectArgumentInitialization - Try to initialize the object
1494/// parameter of the given member function (@c Method) from the
1495/// expression @p From.
1496ImplicitConversionSequence
1497Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1498  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1499  unsigned MethodQuals = Method->getTypeQualifiers();
1500  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1501
1502  // Set up the conversion sequence as a "bad" conversion, to allow us
1503  // to exit early.
1504  ImplicitConversionSequence ICS;
1505  ICS.Standard.setAsIdentityConversion();
1506  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1507
1508  // We need to have an object of class type.
1509  QualType FromType = From->getType();
1510  if (!FromType->isRecordType())
1511    return ICS;
1512
1513  // The implicit object parmeter is has the type "reference to cv X",
1514  // where X is the class of which the function is a member
1515  // (C++ [over.match.funcs]p4). However, when finding an implicit
1516  // conversion sequence for the argument, we are not allowed to
1517  // create temporaries or perform user-defined conversions
1518  // (C++ [over.match.funcs]p5). We perform a simplified version of
1519  // reference binding here, that allows class rvalues to bind to
1520  // non-constant references.
1521
1522  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1523  // with the implicit object parameter (C++ [over.match.funcs]p5).
1524  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1525  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1526      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1527    return ICS;
1528
1529  // Check that we have either the same type or a derived type. It
1530  // affects the conversion rank.
1531  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1532  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1533    ICS.Standard.Second = ICK_Identity;
1534  else if (IsDerivedFrom(FromType, ClassType))
1535    ICS.Standard.Second = ICK_Derived_To_Base;
1536  else
1537    return ICS;
1538
1539  // Success. Mark this as a reference binding.
1540  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1541  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1542  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1543  ICS.Standard.ReferenceBinding = true;
1544  ICS.Standard.DirectBinding = true;
1545  return ICS;
1546}
1547
1548/// PerformObjectArgumentInitialization - Perform initialization of
1549/// the implicit object parameter for the given Method with the given
1550/// expression.
1551bool
1552Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1553  QualType ImplicitParamType
1554    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1555  ImplicitConversionSequence ICS
1556    = TryObjectArgumentInitialization(From, Method);
1557  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1558    return Diag(From->getSourceRange().getBegin(),
1559                diag::err_implicit_object_parameter_init)
1560       << ImplicitParamType << From->getType() << From->getSourceRange();
1561
1562  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1563      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1564                                   From->getSourceRange().getBegin(),
1565                                   From->getSourceRange()))
1566    return true;
1567
1568  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1569  return false;
1570}
1571
1572/// AddOverloadCandidate - Adds the given function to the set of
1573/// candidate functions, using the given function call arguments.  If
1574/// @p SuppressUserConversions, then don't allow user-defined
1575/// conversions via constructors or conversion operators.
1576void
1577Sema::AddOverloadCandidate(FunctionDecl *Function,
1578                           Expr **Args, unsigned NumArgs,
1579                           OverloadCandidateSet& CandidateSet,
1580                           bool SuppressUserConversions)
1581{
1582  const FunctionTypeProto* Proto
1583    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1584  assert(Proto && "Functions without a prototype cannot be overloaded");
1585  assert(!isa<CXXConversionDecl>(Function) &&
1586         "Use AddConversionCandidate for conversion functions");
1587
1588  // Add this candidate
1589  CandidateSet.push_back(OverloadCandidate());
1590  OverloadCandidate& Candidate = CandidateSet.back();
1591  Candidate.Function = Function;
1592  Candidate.IsSurrogate = false;
1593
1594  unsigned NumArgsInProto = Proto->getNumArgs();
1595
1596  // (C++ 13.3.2p2): A candidate function having fewer than m
1597  // parameters is viable only if it has an ellipsis in its parameter
1598  // list (8.3.5).
1599  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1600    Candidate.Viable = false;
1601    return;
1602  }
1603
1604  // (C++ 13.3.2p2): A candidate function having more than m parameters
1605  // is viable only if the (m+1)st parameter has a default argument
1606  // (8.3.6). For the purposes of overload resolution, the
1607  // parameter list is truncated on the right, so that there are
1608  // exactly m parameters.
1609  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1610  if (NumArgs < MinRequiredArgs) {
1611    // Not enough arguments.
1612    Candidate.Viable = false;
1613    return;
1614  }
1615
1616  // Determine the implicit conversion sequences for each of the
1617  // arguments.
1618  Candidate.Viable = true;
1619  Candidate.Conversions.resize(NumArgs);
1620  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1621    if (ArgIdx < NumArgsInProto) {
1622      // (C++ 13.3.2p3): for F to be a viable function, there shall
1623      // exist for each argument an implicit conversion sequence
1624      // (13.3.3.1) that converts that argument to the corresponding
1625      // parameter of F.
1626      QualType ParamType = Proto->getArgType(ArgIdx);
1627      Candidate.Conversions[ArgIdx]
1628        = TryCopyInitialization(Args[ArgIdx], ParamType,
1629                                SuppressUserConversions);
1630      if (Candidate.Conversions[ArgIdx].ConversionKind
1631            == ImplicitConversionSequence::BadConversion) {
1632        Candidate.Viable = false;
1633        break;
1634      }
1635    } else {
1636      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1637      // argument for which there is no corresponding parameter is
1638      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1639      Candidate.Conversions[ArgIdx].ConversionKind
1640        = ImplicitConversionSequence::EllipsisConversion;
1641    }
1642  }
1643}
1644
1645/// AddMethodCandidate - Adds the given C++ member function to the set
1646/// of candidate functions, using the given function call arguments
1647/// and the object argument (@c Object). For example, in a call
1648/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1649/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1650/// allow user-defined conversions via constructors or conversion
1651/// operators.
1652void
1653Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1654                         Expr **Args, unsigned NumArgs,
1655                         OverloadCandidateSet& CandidateSet,
1656                         bool SuppressUserConversions)
1657{
1658  const FunctionTypeProto* Proto
1659    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1660  assert(Proto && "Methods without a prototype cannot be overloaded");
1661  assert(!isa<CXXConversionDecl>(Method) &&
1662         "Use AddConversionCandidate for conversion functions");
1663
1664  // Add this candidate
1665  CandidateSet.push_back(OverloadCandidate());
1666  OverloadCandidate& Candidate = CandidateSet.back();
1667  Candidate.Function = Method;
1668  Candidate.IsSurrogate = false;
1669
1670  unsigned NumArgsInProto = Proto->getNumArgs();
1671
1672  // (C++ 13.3.2p2): A candidate function having fewer than m
1673  // parameters is viable only if it has an ellipsis in its parameter
1674  // list (8.3.5).
1675  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1676    Candidate.Viable = false;
1677    return;
1678  }
1679
1680  // (C++ 13.3.2p2): A candidate function having more than m parameters
1681  // is viable only if the (m+1)st parameter has a default argument
1682  // (8.3.6). For the purposes of overload resolution, the
1683  // parameter list is truncated on the right, so that there are
1684  // exactly m parameters.
1685  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1686  if (NumArgs < MinRequiredArgs) {
1687    // Not enough arguments.
1688    Candidate.Viable = false;
1689    return;
1690  }
1691
1692  Candidate.Viable = true;
1693  Candidate.Conversions.resize(NumArgs + 1);
1694
1695  // Determine the implicit conversion sequence for the object
1696  // parameter.
1697  Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1698  if (Candidate.Conversions[0].ConversionKind
1699        == ImplicitConversionSequence::BadConversion) {
1700    Candidate.Viable = false;
1701    return;
1702  }
1703
1704  // Determine the implicit conversion sequences for each of the
1705  // arguments.
1706  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1707    if (ArgIdx < NumArgsInProto) {
1708      // (C++ 13.3.2p3): for F to be a viable function, there shall
1709      // exist for each argument an implicit conversion sequence
1710      // (13.3.3.1) that converts that argument to the corresponding
1711      // parameter of F.
1712      QualType ParamType = Proto->getArgType(ArgIdx);
1713      Candidate.Conversions[ArgIdx + 1]
1714        = TryCopyInitialization(Args[ArgIdx], ParamType,
1715                                SuppressUserConversions);
1716      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1717            == ImplicitConversionSequence::BadConversion) {
1718        Candidate.Viable = false;
1719        break;
1720      }
1721    } else {
1722      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1723      // argument for which there is no corresponding parameter is
1724      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1725      Candidate.Conversions[ArgIdx + 1].ConversionKind
1726        = ImplicitConversionSequence::EllipsisConversion;
1727    }
1728  }
1729}
1730
1731/// AddConversionCandidate - Add a C++ conversion function as a
1732/// candidate in the candidate set (C++ [over.match.conv],
1733/// C++ [over.match.copy]). From is the expression we're converting from,
1734/// and ToType is the type that we're eventually trying to convert to
1735/// (which may or may not be the same type as the type that the
1736/// conversion function produces).
1737void
1738Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1739                             Expr *From, QualType ToType,
1740                             OverloadCandidateSet& CandidateSet) {
1741  // Add this candidate
1742  CandidateSet.push_back(OverloadCandidate());
1743  OverloadCandidate& Candidate = CandidateSet.back();
1744  Candidate.Function = Conversion;
1745  Candidate.IsSurrogate = false;
1746  Candidate.FinalConversion.setAsIdentityConversion();
1747  Candidate.FinalConversion.FromTypePtr
1748    = Conversion->getConversionType().getAsOpaquePtr();
1749  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1750
1751  // Determine the implicit conversion sequence for the implicit
1752  // object parameter.
1753  Candidate.Viable = true;
1754  Candidate.Conversions.resize(1);
1755  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
1756
1757  if (Candidate.Conversions[0].ConversionKind
1758      == ImplicitConversionSequence::BadConversion) {
1759    Candidate.Viable = false;
1760    return;
1761  }
1762
1763  // To determine what the conversion from the result of calling the
1764  // conversion function to the type we're eventually trying to
1765  // convert to (ToType), we need to synthesize a call to the
1766  // conversion function and attempt copy initialization from it. This
1767  // makes sure that we get the right semantics with respect to
1768  // lvalues/rvalues and the type. Fortunately, we can allocate this
1769  // call on the stack and we don't need its arguments to be
1770  // well-formed.
1771  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1772                            SourceLocation());
1773  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
1774                                &ConversionRef, false);
1775  CallExpr Call(&ConversionFn, 0, 0,
1776                Conversion->getConversionType().getNonReferenceType(),
1777                SourceLocation());
1778  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1779  switch (ICS.ConversionKind) {
1780  case ImplicitConversionSequence::StandardConversion:
1781    Candidate.FinalConversion = ICS.Standard;
1782    break;
1783
1784  case ImplicitConversionSequence::BadConversion:
1785    Candidate.Viable = false;
1786    break;
1787
1788  default:
1789    assert(false &&
1790           "Can only end up with a standard conversion sequence or failure");
1791  }
1792}
1793
1794/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1795/// converts the given @c Object to a function pointer via the
1796/// conversion function @c Conversion, and then attempts to call it
1797/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1798/// the type of function that we'll eventually be calling.
1799void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1800                                 const FunctionTypeProto *Proto,
1801                                 Expr *Object, Expr **Args, unsigned NumArgs,
1802                                 OverloadCandidateSet& CandidateSet) {
1803  CandidateSet.push_back(OverloadCandidate());
1804  OverloadCandidate& Candidate = CandidateSet.back();
1805  Candidate.Function = 0;
1806  Candidate.Surrogate = Conversion;
1807  Candidate.Viable = true;
1808  Candidate.IsSurrogate = true;
1809  Candidate.Conversions.resize(NumArgs + 1);
1810
1811  // Determine the implicit conversion sequence for the implicit
1812  // object parameter.
1813  ImplicitConversionSequence ObjectInit
1814    = TryObjectArgumentInitialization(Object, Conversion);
1815  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1816    Candidate.Viable = false;
1817    return;
1818  }
1819
1820  // The first conversion is actually a user-defined conversion whose
1821  // first conversion is ObjectInit's standard conversion (which is
1822  // effectively a reference binding). Record it as such.
1823  Candidate.Conversions[0].ConversionKind
1824    = ImplicitConversionSequence::UserDefinedConversion;
1825  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1826  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1827  Candidate.Conversions[0].UserDefined.After
1828    = Candidate.Conversions[0].UserDefined.Before;
1829  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1830
1831  // Find the
1832  unsigned NumArgsInProto = Proto->getNumArgs();
1833
1834  // (C++ 13.3.2p2): A candidate function having fewer than m
1835  // parameters is viable only if it has an ellipsis in its parameter
1836  // list (8.3.5).
1837  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1838    Candidate.Viable = false;
1839    return;
1840  }
1841
1842  // Function types don't have any default arguments, so just check if
1843  // we have enough arguments.
1844  if (NumArgs < NumArgsInProto) {
1845    // Not enough arguments.
1846    Candidate.Viable = false;
1847    return;
1848  }
1849
1850  // Determine the implicit conversion sequences for each of the
1851  // arguments.
1852  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1853    if (ArgIdx < NumArgsInProto) {
1854      // (C++ 13.3.2p3): for F to be a viable function, there shall
1855      // exist for each argument an implicit conversion sequence
1856      // (13.3.3.1) that converts that argument to the corresponding
1857      // parameter of F.
1858      QualType ParamType = Proto->getArgType(ArgIdx);
1859      Candidate.Conversions[ArgIdx + 1]
1860        = TryCopyInitialization(Args[ArgIdx], ParamType,
1861                                /*SuppressUserConversions=*/false);
1862      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1863            == ImplicitConversionSequence::BadConversion) {
1864        Candidate.Viable = false;
1865        break;
1866      }
1867    } else {
1868      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1869      // argument for which there is no corresponding parameter is
1870      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1871      Candidate.Conversions[ArgIdx + 1].ConversionKind
1872        = ImplicitConversionSequence::EllipsisConversion;
1873    }
1874  }
1875}
1876
1877/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1878/// an acceptable non-member overloaded operator for a call whose
1879/// arguments have types T1 (and, if non-empty, T2). This routine
1880/// implements the check in C++ [over.match.oper]p3b2 concerning
1881/// enumeration types.
1882static bool
1883IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1884                                       QualType T1, QualType T2,
1885                                       ASTContext &Context) {
1886  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1887    return true;
1888
1889  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1890  if (Proto->getNumArgs() < 1)
1891    return false;
1892
1893  if (T1->isEnumeralType()) {
1894    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1895    if (Context.getCanonicalType(T1).getUnqualifiedType()
1896          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1897      return true;
1898  }
1899
1900  if (Proto->getNumArgs() < 2)
1901    return false;
1902
1903  if (!T2.isNull() && T2->isEnumeralType()) {
1904    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1905    if (Context.getCanonicalType(T2).getUnqualifiedType()
1906          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1907      return true;
1908  }
1909
1910  return false;
1911}
1912
1913/// AddOperatorCandidates - Add the overloaded operator candidates for
1914/// the operator Op that was used in an operator expression such as "x
1915/// Op y". S is the scope in which the expression occurred (used for
1916/// name lookup of the operator), Args/NumArgs provides the operator
1917/// arguments, and CandidateSet will store the added overload
1918/// candidates. (C++ [over.match.oper]).
1919void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1920                                 Expr **Args, unsigned NumArgs,
1921                                 OverloadCandidateSet& CandidateSet) {
1922  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1923
1924  // C++ [over.match.oper]p3:
1925  //   For a unary operator @ with an operand of a type whose
1926  //   cv-unqualified version is T1, and for a binary operator @ with
1927  //   a left operand of a type whose cv-unqualified version is T1 and
1928  //   a right operand of a type whose cv-unqualified version is T2,
1929  //   three sets of candidate functions, designated member
1930  //   candidates, non-member candidates and built-in candidates, are
1931  //   constructed as follows:
1932  QualType T1 = Args[0]->getType();
1933  QualType T2;
1934  if (NumArgs > 1)
1935    T2 = Args[1]->getType();
1936
1937  //     -- If T1 is a class type, the set of member candidates is the
1938  //        result of the qualified lookup of T1::operator@
1939  //        (13.3.1.1.1); otherwise, the set of member candidates is
1940  //        empty.
1941  if (const RecordType *T1Rec = T1->getAsRecordType()) {
1942    IdentifierResolver::iterator I
1943      = IdResolver.begin(OpName, cast<CXXRecordType>(T1Rec)->getDecl(),
1944                         /*LookInParentCtx=*/false);
1945    NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
1946    if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1947      AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1948                         /*SuppressUserConversions=*/false);
1949    else if (OverloadedFunctionDecl *Ovl
1950               = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1951      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1952                                                  FEnd = Ovl->function_end();
1953           F != FEnd; ++F) {
1954        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1955          AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1956                             /*SuppressUserConversions=*/false);
1957      }
1958    }
1959  }
1960
1961  //     -- The set of non-member candidates is the result of the
1962  //        unqualified lookup of operator@ in the context of the
1963  //        expression according to the usual rules for name lookup in
1964  //        unqualified function calls (3.4.2) except that all member
1965  //        functions are ignored. However, if no operand has a class
1966  //        type, only those non-member functions in the lookup set
1967  //        that have a first parameter of type T1 or “reference to
1968  //        (possibly cv-qualified) T1”, when T1 is an enumeration
1969  //        type, or (if there is a right operand) a second parameter
1970  //        of type T2 or “reference to (possibly cv-qualified) T2”,
1971  //        when T2 is an enumeration type, are candidate functions.
1972  {
1973    NamedDecl *NonMemberOps = 0;
1974    for (IdentifierResolver::iterator I
1975           = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
1976         I != IdResolver.end(); ++I) {
1977      // We don't need to check the identifier namespace, because
1978      // operator names can only be ordinary identifiers.
1979
1980      // Ignore member functions.
1981      if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
1982        if (SD->getDeclContext()->isCXXRecord())
1983          continue;
1984      }
1985
1986      // We found something with this name. We're done.
1987      NonMemberOps = *I;
1988      break;
1989    }
1990
1991    if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
1992      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1993        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
1994                             /*SuppressUserConversions=*/false);
1995    } else if (OverloadedFunctionDecl *Ovl
1996                 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
1997      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1998                                                  FEnd = Ovl->function_end();
1999           F != FEnd; ++F) {
2000        if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2001          AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2002                               /*SuppressUserConversions=*/false);
2003      }
2004    }
2005  }
2006
2007  // Add builtin overload candidates (C++ [over.built]).
2008  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2009}
2010
2011/// AddBuiltinCandidate - Add a candidate for a built-in
2012/// operator. ResultTy and ParamTys are the result and parameter types
2013/// of the built-in candidate, respectively. Args and NumArgs are the
2014/// arguments being passed to the candidate.
2015void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2016                               Expr **Args, unsigned NumArgs,
2017                               OverloadCandidateSet& CandidateSet) {
2018  // Add this candidate
2019  CandidateSet.push_back(OverloadCandidate());
2020  OverloadCandidate& Candidate = CandidateSet.back();
2021  Candidate.Function = 0;
2022  Candidate.BuiltinTypes.ResultTy = ResultTy;
2023  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2024    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2025
2026  // Determine the implicit conversion sequences for each of the
2027  // arguments.
2028  Candidate.Viable = true;
2029  Candidate.Conversions.resize(NumArgs);
2030  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2031    Candidate.Conversions[ArgIdx]
2032      = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2033    if (Candidate.Conversions[ArgIdx].ConversionKind
2034        == ImplicitConversionSequence::BadConversion) {
2035      Candidate.Viable = false;
2036      break;
2037    }
2038  }
2039}
2040
2041/// BuiltinCandidateTypeSet - A set of types that will be used for the
2042/// candidate operator functions for built-in operators (C++
2043/// [over.built]). The types are separated into pointer types and
2044/// enumeration types.
2045class BuiltinCandidateTypeSet  {
2046  /// TypeSet - A set of types.
2047  typedef llvm::SmallPtrSet<void*, 8> TypeSet;
2048
2049  /// PointerTypes - The set of pointer types that will be used in the
2050  /// built-in candidates.
2051  TypeSet PointerTypes;
2052
2053  /// EnumerationTypes - The set of enumeration types that will be
2054  /// used in the built-in candidates.
2055  TypeSet EnumerationTypes;
2056
2057  /// Context - The AST context in which we will build the type sets.
2058  ASTContext &Context;
2059
2060  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2061
2062public:
2063  /// iterator - Iterates through the types that are part of the set.
2064  class iterator {
2065    TypeSet::iterator Base;
2066
2067  public:
2068    typedef QualType                 value_type;
2069    typedef QualType                 reference;
2070    typedef QualType                 pointer;
2071    typedef std::ptrdiff_t           difference_type;
2072    typedef std::input_iterator_tag  iterator_category;
2073
2074    iterator(TypeSet::iterator B) : Base(B) { }
2075
2076    iterator& operator++() {
2077      ++Base;
2078      return *this;
2079    }
2080
2081    iterator operator++(int) {
2082      iterator tmp(*this);
2083      ++(*this);
2084      return tmp;
2085    }
2086
2087    reference operator*() const {
2088      return QualType::getFromOpaquePtr(*Base);
2089    }
2090
2091    pointer operator->() const {
2092      return **this;
2093    }
2094
2095    friend bool operator==(iterator LHS, iterator RHS) {
2096      return LHS.Base == RHS.Base;
2097    }
2098
2099    friend bool operator!=(iterator LHS, iterator RHS) {
2100      return LHS.Base != RHS.Base;
2101    }
2102  };
2103
2104  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2105
2106  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2107
2108  /// pointer_begin - First pointer type found;
2109  iterator pointer_begin() { return PointerTypes.begin(); }
2110
2111  /// pointer_end - Last pointer type found;
2112  iterator pointer_end() { return PointerTypes.end(); }
2113
2114  /// enumeration_begin - First enumeration type found;
2115  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2116
2117  /// enumeration_end - Last enumeration type found;
2118  iterator enumeration_end() { return EnumerationTypes.end(); }
2119};
2120
2121/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2122/// the set of pointer types along with any more-qualified variants of
2123/// that type. For example, if @p Ty is "int const *", this routine
2124/// will add "int const *", "int const volatile *", "int const
2125/// restrict *", and "int const volatile restrict *" to the set of
2126/// pointer types. Returns true if the add of @p Ty itself succeeded,
2127/// false otherwise.
2128bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2129  // Insert this type.
2130  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
2131    return false;
2132
2133  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2134    QualType PointeeTy = PointerTy->getPointeeType();
2135    // FIXME: Optimize this so that we don't keep trying to add the same types.
2136
2137    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2138    // with all pointer conversions that don't cast away constness?
2139    if (!PointeeTy.isConstQualified())
2140      AddWithMoreQualifiedTypeVariants
2141        (Context.getPointerType(PointeeTy.withConst()));
2142    if (!PointeeTy.isVolatileQualified())
2143      AddWithMoreQualifiedTypeVariants
2144        (Context.getPointerType(PointeeTy.withVolatile()));
2145    if (!PointeeTy.isRestrictQualified())
2146      AddWithMoreQualifiedTypeVariants
2147        (Context.getPointerType(PointeeTy.withRestrict()));
2148  }
2149
2150  return true;
2151}
2152
2153/// AddTypesConvertedFrom - Add each of the types to which the type @p
2154/// Ty can be implicit converted to the given set of @p Types. We're
2155/// primarily interested in pointer types, enumeration types,
2156void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2157                                                    bool AllowUserConversions) {
2158  // Only deal with canonical types.
2159  Ty = Context.getCanonicalType(Ty);
2160
2161  // Look through reference types; they aren't part of the type of an
2162  // expression for the purposes of conversions.
2163  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2164    Ty = RefTy->getPointeeType();
2165
2166  // We don't care about qualifiers on the type.
2167  Ty = Ty.getUnqualifiedType();
2168
2169  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2170    QualType PointeeTy = PointerTy->getPointeeType();
2171
2172    // Insert our type, and its more-qualified variants, into the set
2173    // of types.
2174    if (!AddWithMoreQualifiedTypeVariants(Ty))
2175      return;
2176
2177    // Add 'cv void*' to our set of types.
2178    if (!Ty->isVoidType()) {
2179      QualType QualVoid
2180        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2181      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2182    }
2183
2184    // If this is a pointer to a class type, add pointers to its bases
2185    // (with the same level of cv-qualification as the original
2186    // derived class, of course).
2187    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2188      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2189      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2190           Base != ClassDecl->bases_end(); ++Base) {
2191        QualType BaseTy = Context.getCanonicalType(Base->getType());
2192        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2193
2194        // Add the pointer type, recursively, so that we get all of
2195        // the indirect base classes, too.
2196        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2197      }
2198    }
2199  } else if (Ty->isEnumeralType()) {
2200    EnumerationTypes.insert(Ty.getAsOpaquePtr());
2201  } else if (AllowUserConversions) {
2202    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2203      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2204      // FIXME: Visit conversion functions in the base classes, too.
2205      OverloadedFunctionDecl *Conversions
2206        = ClassDecl->getConversionFunctions();
2207      for (OverloadedFunctionDecl::function_iterator Func
2208             = Conversions->function_begin();
2209           Func != Conversions->function_end(); ++Func) {
2210        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2211        AddTypesConvertedFrom(Conv->getConversionType(), false);
2212      }
2213    }
2214  }
2215}
2216
2217/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2218/// operator overloads to the candidate set (C++ [over.built]), based
2219/// on the operator @p Op and the arguments given. For example, if the
2220/// operator is a binary '+', this routine might add "int
2221/// operator+(int, int)" to cover integer addition.
2222void
2223Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2224                                   Expr **Args, unsigned NumArgs,
2225                                   OverloadCandidateSet& CandidateSet) {
2226  // The set of "promoted arithmetic types", which are the arithmetic
2227  // types are that preserved by promotion (C++ [over.built]p2). Note
2228  // that the first few of these types are the promoted integral
2229  // types; these types need to be first.
2230  // FIXME: What about complex?
2231  const unsigned FirstIntegralType = 0;
2232  const unsigned LastIntegralType = 13;
2233  const unsigned FirstPromotedIntegralType = 7,
2234                 LastPromotedIntegralType = 13;
2235  const unsigned FirstPromotedArithmeticType = 7,
2236                 LastPromotedArithmeticType = 16;
2237  const unsigned NumArithmeticTypes = 16;
2238  QualType ArithmeticTypes[NumArithmeticTypes] = {
2239    Context.BoolTy, Context.CharTy, Context.WCharTy,
2240    Context.SignedCharTy, Context.ShortTy,
2241    Context.UnsignedCharTy, Context.UnsignedShortTy,
2242    Context.IntTy, Context.LongTy, Context.LongLongTy,
2243    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2244    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2245  };
2246
2247  // Find all of the types that the arguments can convert to, but only
2248  // if the operator we're looking at has built-in operator candidates
2249  // that make use of these types.
2250  BuiltinCandidateTypeSet CandidateTypes(Context);
2251  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2252      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2253      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2254      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2255      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2256      (Op == OO_Star && NumArgs == 1)) {
2257    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2258      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2259  }
2260
2261  bool isComparison = false;
2262  switch (Op) {
2263  case OO_None:
2264  case NUM_OVERLOADED_OPERATORS:
2265    assert(false && "Expected an overloaded operator");
2266    break;
2267
2268  case OO_Star: // '*' is either unary or binary
2269    if (NumArgs == 1)
2270      goto UnaryStar;
2271    else
2272      goto BinaryStar;
2273    break;
2274
2275  case OO_Plus: // '+' is either unary or binary
2276    if (NumArgs == 1)
2277      goto UnaryPlus;
2278    else
2279      goto BinaryPlus;
2280    break;
2281
2282  case OO_Minus: // '-' is either unary or binary
2283    if (NumArgs == 1)
2284      goto UnaryMinus;
2285    else
2286      goto BinaryMinus;
2287    break;
2288
2289  case OO_Amp: // '&' is either unary or binary
2290    if (NumArgs == 1)
2291      goto UnaryAmp;
2292    else
2293      goto BinaryAmp;
2294
2295  case OO_PlusPlus:
2296  case OO_MinusMinus:
2297    // C++ [over.built]p3:
2298    //
2299    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2300    //   is either volatile or empty, there exist candidate operator
2301    //   functions of the form
2302    //
2303    //       VQ T&      operator++(VQ T&);
2304    //       T          operator++(VQ T&, int);
2305    //
2306    // C++ [over.built]p4:
2307    //
2308    //   For every pair (T, VQ), where T is an arithmetic type other
2309    //   than bool, and VQ is either volatile or empty, there exist
2310    //   candidate operator functions of the form
2311    //
2312    //       VQ T&      operator--(VQ T&);
2313    //       T          operator--(VQ T&, int);
2314    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2315         Arith < NumArithmeticTypes; ++Arith) {
2316      QualType ArithTy = ArithmeticTypes[Arith];
2317      QualType ParamTypes[2]
2318        = { Context.getReferenceType(ArithTy), Context.IntTy };
2319
2320      // Non-volatile version.
2321      if (NumArgs == 1)
2322        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2323      else
2324        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2325
2326      // Volatile version
2327      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2328      if (NumArgs == 1)
2329        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2330      else
2331        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2332    }
2333
2334    // C++ [over.built]p5:
2335    //
2336    //   For every pair (T, VQ), where T is a cv-qualified or
2337    //   cv-unqualified object type, and VQ is either volatile or
2338    //   empty, there exist candidate operator functions of the form
2339    //
2340    //       T*VQ&      operator++(T*VQ&);
2341    //       T*VQ&      operator--(T*VQ&);
2342    //       T*         operator++(T*VQ&, int);
2343    //       T*         operator--(T*VQ&, int);
2344    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2345         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2346      // Skip pointer types that aren't pointers to object types.
2347      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
2348        continue;
2349
2350      QualType ParamTypes[2] = {
2351        Context.getReferenceType(*Ptr), Context.IntTy
2352      };
2353
2354      // Without volatile
2355      if (NumArgs == 1)
2356        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2357      else
2358        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2359
2360      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2361        // With volatile
2362        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2363        if (NumArgs == 1)
2364          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2365        else
2366          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2367      }
2368    }
2369    break;
2370
2371  UnaryStar:
2372    // C++ [over.built]p6:
2373    //   For every cv-qualified or cv-unqualified object type T, there
2374    //   exist candidate operator functions of the form
2375    //
2376    //       T&         operator*(T*);
2377    //
2378    // C++ [over.built]p7:
2379    //   For every function type T, there exist candidate operator
2380    //   functions of the form
2381    //       T&         operator*(T*);
2382    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2383         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2384      QualType ParamTy = *Ptr;
2385      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2386      AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2387                          &ParamTy, Args, 1, CandidateSet);
2388    }
2389    break;
2390
2391  UnaryPlus:
2392    // C++ [over.built]p8:
2393    //   For every type T, there exist candidate operator functions of
2394    //   the form
2395    //
2396    //       T*         operator+(T*);
2397    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2398         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2399      QualType ParamTy = *Ptr;
2400      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2401    }
2402
2403    // Fall through
2404
2405  UnaryMinus:
2406    // C++ [over.built]p9:
2407    //  For every promoted arithmetic type T, there exist candidate
2408    //  operator functions of the form
2409    //
2410    //       T         operator+(T);
2411    //       T         operator-(T);
2412    for (unsigned Arith = FirstPromotedArithmeticType;
2413         Arith < LastPromotedArithmeticType; ++Arith) {
2414      QualType ArithTy = ArithmeticTypes[Arith];
2415      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2416    }
2417    break;
2418
2419  case OO_Tilde:
2420    // C++ [over.built]p10:
2421    //   For every promoted integral type T, there exist candidate
2422    //   operator functions of the form
2423    //
2424    //        T         operator~(T);
2425    for (unsigned Int = FirstPromotedIntegralType;
2426         Int < LastPromotedIntegralType; ++Int) {
2427      QualType IntTy = ArithmeticTypes[Int];
2428      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2429    }
2430    break;
2431
2432  case OO_New:
2433  case OO_Delete:
2434  case OO_Array_New:
2435  case OO_Array_Delete:
2436  case OO_Call:
2437    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2438    break;
2439
2440  case OO_Comma:
2441  UnaryAmp:
2442  case OO_Arrow:
2443    // C++ [over.match.oper]p3:
2444    //   -- For the operator ',', the unary operator '&', or the
2445    //      operator '->', the built-in candidates set is empty.
2446    break;
2447
2448  case OO_Less:
2449  case OO_Greater:
2450  case OO_LessEqual:
2451  case OO_GreaterEqual:
2452  case OO_EqualEqual:
2453  case OO_ExclaimEqual:
2454    // C++ [over.built]p15:
2455    //
2456    //   For every pointer or enumeration type T, there exist
2457    //   candidate operator functions of the form
2458    //
2459    //        bool       operator<(T, T);
2460    //        bool       operator>(T, T);
2461    //        bool       operator<=(T, T);
2462    //        bool       operator>=(T, T);
2463    //        bool       operator==(T, T);
2464    //        bool       operator!=(T, T);
2465    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2466         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2467      QualType ParamTypes[2] = { *Ptr, *Ptr };
2468      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2469    }
2470    for (BuiltinCandidateTypeSet::iterator Enum
2471           = CandidateTypes.enumeration_begin();
2472         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2473      QualType ParamTypes[2] = { *Enum, *Enum };
2474      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2475    }
2476
2477    // Fall through.
2478    isComparison = true;
2479
2480  BinaryPlus:
2481  BinaryMinus:
2482    if (!isComparison) {
2483      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2484
2485      // C++ [over.built]p13:
2486      //
2487      //   For every cv-qualified or cv-unqualified object type T
2488      //   there exist candidate operator functions of the form
2489      //
2490      //      T*         operator+(T*, ptrdiff_t);
2491      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2492      //      T*         operator-(T*, ptrdiff_t);
2493      //      T*         operator+(ptrdiff_t, T*);
2494      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2495      //
2496      // C++ [over.built]p14:
2497      //
2498      //   For every T, where T is a pointer to object type, there
2499      //   exist candidate operator functions of the form
2500      //
2501      //      ptrdiff_t  operator-(T, T);
2502      for (BuiltinCandidateTypeSet::iterator Ptr
2503             = CandidateTypes.pointer_begin();
2504           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2505        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2506
2507        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2508        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2509
2510        if (Op == OO_Plus) {
2511          // T* operator+(ptrdiff_t, T*);
2512          ParamTypes[0] = ParamTypes[1];
2513          ParamTypes[1] = *Ptr;
2514          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2515        } else {
2516          // ptrdiff_t operator-(T, T);
2517          ParamTypes[1] = *Ptr;
2518          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2519                              Args, 2, CandidateSet);
2520        }
2521      }
2522    }
2523    // Fall through
2524
2525  case OO_Slash:
2526  BinaryStar:
2527    // C++ [over.built]p12:
2528    //
2529    //   For every pair of promoted arithmetic types L and R, there
2530    //   exist candidate operator functions of the form
2531    //
2532    //        LR         operator*(L, R);
2533    //        LR         operator/(L, R);
2534    //        LR         operator+(L, R);
2535    //        LR         operator-(L, R);
2536    //        bool       operator<(L, R);
2537    //        bool       operator>(L, R);
2538    //        bool       operator<=(L, R);
2539    //        bool       operator>=(L, R);
2540    //        bool       operator==(L, R);
2541    //        bool       operator!=(L, R);
2542    //
2543    //   where LR is the result of the usual arithmetic conversions
2544    //   between types L and R.
2545    for (unsigned Left = FirstPromotedArithmeticType;
2546         Left < LastPromotedArithmeticType; ++Left) {
2547      for (unsigned Right = FirstPromotedArithmeticType;
2548           Right < LastPromotedArithmeticType; ++Right) {
2549        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2550        QualType Result
2551          = isComparison? Context.BoolTy
2552                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2553        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2554      }
2555    }
2556    break;
2557
2558  case OO_Percent:
2559  BinaryAmp:
2560  case OO_Caret:
2561  case OO_Pipe:
2562  case OO_LessLess:
2563  case OO_GreaterGreater:
2564    // C++ [over.built]p17:
2565    //
2566    //   For every pair of promoted integral types L and R, there
2567    //   exist candidate operator functions of the form
2568    //
2569    //      LR         operator%(L, R);
2570    //      LR         operator&(L, R);
2571    //      LR         operator^(L, R);
2572    //      LR         operator|(L, R);
2573    //      L          operator<<(L, R);
2574    //      L          operator>>(L, R);
2575    //
2576    //   where LR is the result of the usual arithmetic conversions
2577    //   between types L and R.
2578    for (unsigned Left = FirstPromotedIntegralType;
2579         Left < LastPromotedIntegralType; ++Left) {
2580      for (unsigned Right = FirstPromotedIntegralType;
2581           Right < LastPromotedIntegralType; ++Right) {
2582        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2583        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2584            ? LandR[0]
2585            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2586        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2587      }
2588    }
2589    break;
2590
2591  case OO_Equal:
2592    // C++ [over.built]p20:
2593    //
2594    //   For every pair (T, VQ), where T is an enumeration or
2595    //   (FIXME:) pointer to member type and VQ is either volatile or
2596    //   empty, there exist candidate operator functions of the form
2597    //
2598    //        VQ T&      operator=(VQ T&, T);
2599    for (BuiltinCandidateTypeSet::iterator Enum
2600           = CandidateTypes.enumeration_begin();
2601         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2602      QualType ParamTypes[2];
2603
2604      // T& operator=(T&, T)
2605      ParamTypes[0] = Context.getReferenceType(*Enum);
2606      ParamTypes[1] = *Enum;
2607      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2608
2609      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2610        // volatile T& operator=(volatile T&, T)
2611        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2612        ParamTypes[1] = *Enum;
2613        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2614      }
2615    }
2616    // Fall through.
2617
2618  case OO_PlusEqual:
2619  case OO_MinusEqual:
2620    // C++ [over.built]p19:
2621    //
2622    //   For every pair (T, VQ), where T is any type and VQ is either
2623    //   volatile or empty, there exist candidate operator functions
2624    //   of the form
2625    //
2626    //        T*VQ&      operator=(T*VQ&, T*);
2627    //
2628    // C++ [over.built]p21:
2629    //
2630    //   For every pair (T, VQ), where T is a cv-qualified or
2631    //   cv-unqualified object type and VQ is either volatile or
2632    //   empty, there exist candidate operator functions of the form
2633    //
2634    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
2635    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
2636    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2637         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2638      QualType ParamTypes[2];
2639      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2640
2641      // non-volatile version
2642      ParamTypes[0] = Context.getReferenceType(*Ptr);
2643      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2644
2645      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2646        // volatile version
2647        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2648        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2649      }
2650    }
2651    // Fall through.
2652
2653  case OO_StarEqual:
2654  case OO_SlashEqual:
2655    // C++ [over.built]p18:
2656    //
2657    //   For every triple (L, VQ, R), where L is an arithmetic type,
2658    //   VQ is either volatile or empty, and R is a promoted
2659    //   arithmetic type, there exist candidate operator functions of
2660    //   the form
2661    //
2662    //        VQ L&      operator=(VQ L&, R);
2663    //        VQ L&      operator*=(VQ L&, R);
2664    //        VQ L&      operator/=(VQ L&, R);
2665    //        VQ L&      operator+=(VQ L&, R);
2666    //        VQ L&      operator-=(VQ L&, R);
2667    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2668      for (unsigned Right = FirstPromotedArithmeticType;
2669           Right < LastPromotedArithmeticType; ++Right) {
2670        QualType ParamTypes[2];
2671        ParamTypes[1] = ArithmeticTypes[Right];
2672
2673        // Add this built-in operator as a candidate (VQ is empty).
2674        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2675        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2676
2677        // Add this built-in operator as a candidate (VQ is 'volatile').
2678        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2679        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2680        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2681      }
2682    }
2683    break;
2684
2685  case OO_PercentEqual:
2686  case OO_LessLessEqual:
2687  case OO_GreaterGreaterEqual:
2688  case OO_AmpEqual:
2689  case OO_CaretEqual:
2690  case OO_PipeEqual:
2691    // C++ [over.built]p22:
2692    //
2693    //   For every triple (L, VQ, R), where L is an integral type, VQ
2694    //   is either volatile or empty, and R is a promoted integral
2695    //   type, there exist candidate operator functions of the form
2696    //
2697    //        VQ L&       operator%=(VQ L&, R);
2698    //        VQ L&       operator<<=(VQ L&, R);
2699    //        VQ L&       operator>>=(VQ L&, R);
2700    //        VQ L&       operator&=(VQ L&, R);
2701    //        VQ L&       operator^=(VQ L&, R);
2702    //        VQ L&       operator|=(VQ L&, R);
2703    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2704      for (unsigned Right = FirstPromotedIntegralType;
2705           Right < LastPromotedIntegralType; ++Right) {
2706        QualType ParamTypes[2];
2707        ParamTypes[1] = ArithmeticTypes[Right];
2708
2709        // Add this built-in operator as a candidate (VQ is empty).
2710        // FIXME: We should be caching these declarations somewhere,
2711        // rather than re-building them every time.
2712        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2713        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2714
2715        // Add this built-in operator as a candidate (VQ is 'volatile').
2716        ParamTypes[0] = ArithmeticTypes[Left];
2717        ParamTypes[0].addVolatile();
2718        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2719        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2720      }
2721    }
2722    break;
2723
2724  case OO_Exclaim: {
2725    // C++ [over.operator]p23:
2726    //
2727    //   There also exist candidate operator functions of the form
2728    //
2729    //        bool        operator!(bool);
2730    //        bool        operator&&(bool, bool);     [BELOW]
2731    //        bool        operator||(bool, bool);     [BELOW]
2732    QualType ParamTy = Context.BoolTy;
2733    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2734    break;
2735  }
2736
2737  case OO_AmpAmp:
2738  case OO_PipePipe: {
2739    // C++ [over.operator]p23:
2740    //
2741    //   There also exist candidate operator functions of the form
2742    //
2743    //        bool        operator!(bool);            [ABOVE]
2744    //        bool        operator&&(bool, bool);
2745    //        bool        operator||(bool, bool);
2746    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2747    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2748    break;
2749  }
2750
2751  case OO_Subscript:
2752    // C++ [over.built]p13:
2753    //
2754    //   For every cv-qualified or cv-unqualified object type T there
2755    //   exist candidate operator functions of the form
2756    //
2757    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
2758    //        T&         operator[](T*, ptrdiff_t);
2759    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
2760    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
2761    //        T&         operator[](ptrdiff_t, T*);
2762    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2763         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2764      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2765      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2766      QualType ResultTy = Context.getReferenceType(PointeeType);
2767
2768      // T& operator[](T*, ptrdiff_t)
2769      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2770
2771      // T& operator[](ptrdiff_t, T*);
2772      ParamTypes[0] = ParamTypes[1];
2773      ParamTypes[1] = *Ptr;
2774      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2775    }
2776    break;
2777
2778  case OO_ArrowStar:
2779    // FIXME: No support for pointer-to-members yet.
2780    break;
2781  }
2782}
2783
2784/// AddOverloadCandidates - Add all of the function overloads in Ovl
2785/// to the candidate set.
2786void
2787Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
2788                            Expr **Args, unsigned NumArgs,
2789                            OverloadCandidateSet& CandidateSet,
2790                            bool SuppressUserConversions)
2791{
2792  for (OverloadedFunctionDecl::function_const_iterator Func
2793         = Ovl->function_begin();
2794       Func != Ovl->function_end(); ++Func)
2795    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2796                         SuppressUserConversions);
2797}
2798
2799/// isBetterOverloadCandidate - Determines whether the first overload
2800/// candidate is a better candidate than the second (C++ 13.3.3p1).
2801bool
2802Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2803                                const OverloadCandidate& Cand2)
2804{
2805  // Define viable functions to be better candidates than non-viable
2806  // functions.
2807  if (!Cand2.Viable)
2808    return Cand1.Viable;
2809  else if (!Cand1.Viable)
2810    return false;
2811
2812  // FIXME: Deal with the implicit object parameter for static member
2813  // functions. (C++ 13.3.3p1).
2814
2815  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2816  // function than another viable function F2 if for all arguments i,
2817  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2818  // then...
2819  unsigned NumArgs = Cand1.Conversions.size();
2820  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2821  bool HasBetterConversion = false;
2822  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2823    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2824                                               Cand2.Conversions[ArgIdx])) {
2825    case ImplicitConversionSequence::Better:
2826      // Cand1 has a better conversion sequence.
2827      HasBetterConversion = true;
2828      break;
2829
2830    case ImplicitConversionSequence::Worse:
2831      // Cand1 can't be better than Cand2.
2832      return false;
2833
2834    case ImplicitConversionSequence::Indistinguishable:
2835      // Do nothing.
2836      break;
2837    }
2838  }
2839
2840  if (HasBetterConversion)
2841    return true;
2842
2843  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2844  // implemented, but they require template support.
2845
2846  // C++ [over.match.best]p1b4:
2847  //
2848  //   -- the context is an initialization by user-defined conversion
2849  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
2850  //      from the return type of F1 to the destination type (i.e.,
2851  //      the type of the entity being initialized) is a better
2852  //      conversion sequence than the standard conversion sequence
2853  //      from the return type of F2 to the destination type.
2854  if (Cand1.Function && Cand2.Function &&
2855      isa<CXXConversionDecl>(Cand1.Function) &&
2856      isa<CXXConversionDecl>(Cand2.Function)) {
2857    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2858                                               Cand2.FinalConversion)) {
2859    case ImplicitConversionSequence::Better:
2860      // Cand1 has a better conversion sequence.
2861      return true;
2862
2863    case ImplicitConversionSequence::Worse:
2864      // Cand1 can't be better than Cand2.
2865      return false;
2866
2867    case ImplicitConversionSequence::Indistinguishable:
2868      // Do nothing
2869      break;
2870    }
2871  }
2872
2873  return false;
2874}
2875
2876/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2877/// within an overload candidate set. If overloading is successful,
2878/// the result will be OR_Success and Best will be set to point to the
2879/// best viable function within the candidate set. Otherwise, one of
2880/// several kinds of errors will be returned; see
2881/// Sema::OverloadingResult.
2882Sema::OverloadingResult
2883Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2884                         OverloadCandidateSet::iterator& Best)
2885{
2886  // Find the best viable function.
2887  Best = CandidateSet.end();
2888  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2889       Cand != CandidateSet.end(); ++Cand) {
2890    if (Cand->Viable) {
2891      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2892        Best = Cand;
2893    }
2894  }
2895
2896  // If we didn't find any viable functions, abort.
2897  if (Best == CandidateSet.end())
2898    return OR_No_Viable_Function;
2899
2900  // Make sure that this function is better than every other viable
2901  // function. If not, we have an ambiguity.
2902  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2903       Cand != CandidateSet.end(); ++Cand) {
2904    if (Cand->Viable &&
2905        Cand != Best &&
2906        !isBetterOverloadCandidate(*Best, *Cand)) {
2907      Best = CandidateSet.end();
2908      return OR_Ambiguous;
2909    }
2910  }
2911
2912  // Best is the best viable function.
2913  return OR_Success;
2914}
2915
2916/// PrintOverloadCandidates - When overload resolution fails, prints
2917/// diagnostic messages containing the candidates in the candidate
2918/// set. If OnlyViable is true, only viable candidates will be printed.
2919void
2920Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2921                              bool OnlyViable)
2922{
2923  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2924                             LastCand = CandidateSet.end();
2925  for (; Cand != LastCand; ++Cand) {
2926    if (Cand->Viable || !OnlyViable) {
2927      if (Cand->Function) {
2928        // Normal function
2929        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
2930      } else if (Cand->IsSurrogate) {
2931        // Desugar the type of the surrogate down to a function type,
2932        // retaining as many typedefs as possible while still showing
2933        // the function type (and, therefore, its parameter types).
2934        QualType FnType = Cand->Surrogate->getConversionType();
2935        bool isReference = false;
2936        bool isPointer = false;
2937        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2938          FnType = FnTypeRef->getPointeeType();
2939          isReference = true;
2940        }
2941        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2942          FnType = FnTypePtr->getPointeeType();
2943          isPointer = true;
2944        }
2945        // Desugar down to a function type.
2946        FnType = QualType(FnType->getAsFunctionType(), 0);
2947        // Reconstruct the pointer/reference as appropriate.
2948        if (isPointer) FnType = Context.getPointerType(FnType);
2949        if (isReference) FnType = Context.getReferenceType(FnType);
2950
2951        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
2952          << FnType;
2953      } else {
2954        // FIXME: We need to get the identifier in here
2955        // FIXME: Do we want the error message to point at the
2956        // operator? (built-ins won't have a location)
2957        QualType FnType
2958          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2959                                    Cand->BuiltinTypes.ParamTypes,
2960                                    Cand->Conversions.size(),
2961                                    false, 0);
2962
2963        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
2964      }
2965    }
2966  }
2967}
2968
2969/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
2970/// an overloaded function (C++ [over.over]), where @p From is an
2971/// expression with overloaded function type and @p ToType is the type
2972/// we're trying to resolve to. For example:
2973///
2974/// @code
2975/// int f(double);
2976/// int f(int);
2977///
2978/// int (*pfd)(double) = f; // selects f(double)
2979/// @endcode
2980///
2981/// This routine returns the resulting FunctionDecl if it could be
2982/// resolved, and NULL otherwise. When @p Complain is true, this
2983/// routine will emit diagnostics if there is an error.
2984FunctionDecl *
2985Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
2986                                         bool Complain) {
2987  QualType FunctionType = ToType;
2988  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
2989    FunctionType = ToTypePtr->getPointeeType();
2990
2991  // We only look at pointers or references to functions.
2992  if (!FunctionType->isFunctionType())
2993    return 0;
2994
2995  // Find the actual overloaded function declaration.
2996  OverloadedFunctionDecl *Ovl = 0;
2997
2998  // C++ [over.over]p1:
2999  //   [...] [Note: any redundant set of parentheses surrounding the
3000  //   overloaded function name is ignored (5.1). ]
3001  Expr *OvlExpr = From->IgnoreParens();
3002
3003  // C++ [over.over]p1:
3004  //   [...] The overloaded function name can be preceded by the &
3005  //   operator.
3006  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3007    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3008      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3009  }
3010
3011  // Try to dig out the overloaded function.
3012  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3013    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3014
3015  // If there's no overloaded function declaration, we're done.
3016  if (!Ovl)
3017    return 0;
3018
3019  // Look through all of the overloaded functions, searching for one
3020  // whose type matches exactly.
3021  // FIXME: When templates or using declarations come along, we'll actually
3022  // have to deal with duplicates, partial ordering, etc. For now, we
3023  // can just do a simple search.
3024  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3025  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3026       Fun != Ovl->function_end(); ++Fun) {
3027    // C++ [over.over]p3:
3028    //   Non-member functions and static member functions match
3029    //   targets of type “pointer-to-function”or
3030    //   “reference-to-function.”
3031    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3032      if (!Method->isStatic())
3033        continue;
3034
3035    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3036      return *Fun;
3037  }
3038
3039  return 0;
3040}
3041
3042/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3043/// (which eventually refers to the set of overloaded functions in
3044/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3045/// function call down to a specific function. If overload resolution
3046/// succeeds, returns the function declaration produced by overload
3047/// resolution. Otherwise, emits diagnostics, deletes all of the
3048/// arguments and Fn, and returns NULL.
3049FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3050                                            SourceLocation LParenLoc,
3051                                            Expr **Args, unsigned NumArgs,
3052                                            SourceLocation *CommaLocs,
3053                                            SourceLocation RParenLoc) {
3054  OverloadCandidateSet CandidateSet;
3055  AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3056  OverloadCandidateSet::iterator Best;
3057  switch (BestViableFunction(CandidateSet, Best)) {
3058  case OR_Success:
3059    return Best->Function;
3060
3061  case OR_No_Viable_Function:
3062    Diag(Fn->getSourceRange().getBegin(),
3063         diag::err_ovl_no_viable_function_in_call)
3064      << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3065      << Fn->getSourceRange();
3066    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3067    break;
3068
3069  case OR_Ambiguous:
3070    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3071      << Ovl->getDeclName() << Fn->getSourceRange();
3072    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3073    break;
3074  }
3075
3076  // Overload resolution failed. Destroy all of the subexpressions and
3077  // return NULL.
3078  Fn->Destroy(Context);
3079  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3080    Args[Arg]->Destroy(Context);
3081  return 0;
3082}
3083
3084/// BuildCallToObjectOfClassType - Build a call to an object of class
3085/// type (C++ [over.call.object]), which can end up invoking an
3086/// overloaded function call operator (@c operator()) or performing a
3087/// user-defined conversion on the object argument.
3088Action::ExprResult
3089Sema::BuildCallToObjectOfClassType(Expr *Object, SourceLocation LParenLoc,
3090                                   Expr **Args, unsigned NumArgs,
3091                                   SourceLocation *CommaLocs,
3092                                   SourceLocation RParenLoc) {
3093  assert(Object->getType()->isRecordType() && "Requires object type argument");
3094  const RecordType *Record = Object->getType()->getAsRecordType();
3095
3096  // C++ [over.call.object]p1:
3097  //  If the primary-expression E in the function call syntax
3098  //  evaluates to a class object of type “cv T”, then the set of
3099  //  candidate functions includes at least the function call
3100  //  operators of T. The function call operators of T are obtained by
3101  //  ordinary lookup of the name operator() in the context of
3102  //  (E).operator().
3103  OverloadCandidateSet CandidateSet;
3104  IdentifierResolver::iterator I
3105    = IdResolver.begin(Context.DeclarationNames.getCXXOperatorName(OO_Call),
3106                       cast<CXXRecordType>(Record)->getDecl(),
3107                       /*LookInParentCtx=*/false);
3108  NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3109  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3110    AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3111                       /*SuppressUserConversions=*/false);
3112  else if (OverloadedFunctionDecl *Ovl
3113           = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3114    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3115           FEnd = Ovl->function_end();
3116         F != FEnd; ++F) {
3117      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3118        AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3119                           /*SuppressUserConversions=*/false);
3120    }
3121  }
3122
3123  // C++ [over.call.object]p2:
3124  //   In addition, for each conversion function declared in T of the
3125  //   form
3126  //
3127  //        operator conversion-type-id () cv-qualifier;
3128  //
3129  //   where cv-qualifier is the same cv-qualification as, or a
3130  //   greater cv-qualification than, cv, and where conversion-type-id
3131  //   denotes the type "pointer to function of (P1,...,Pn) returning
3132  //   R", or the type "reference to pointer to function of
3133  //   (P1,...,Pn) returning R", or the type "reference to function
3134  //   of (P1,...,Pn) returning R", a surrogate call function [...]
3135  //   is also considered as a candidate function. Similarly,
3136  //   surrogate call functions are added to the set of candidate
3137  //   functions for each conversion function declared in an
3138  //   accessible base class provided the function is not hidden
3139  //   within T by another intervening declaration.
3140  //
3141  // FIXME: Look in base classes for more conversion operators!
3142  OverloadedFunctionDecl *Conversions
3143    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
3144  for (OverloadedFunctionDecl::function_iterator
3145         Func = Conversions->function_begin(),
3146         FuncEnd = Conversions->function_end();
3147       Func != FuncEnd; ++Func) {
3148    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3149
3150    // Strip the reference type (if any) and then the pointer type (if
3151    // any) to get down to what might be a function type.
3152    QualType ConvType = Conv->getConversionType().getNonReferenceType();
3153    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3154      ConvType = ConvPtrType->getPointeeType();
3155
3156    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3157      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3158  }
3159
3160  // Perform overload resolution.
3161  OverloadCandidateSet::iterator Best;
3162  switch (BestViableFunction(CandidateSet, Best)) {
3163  case OR_Success:
3164    // Overload resolution succeeded; we'll build the appropriate call
3165    // below.
3166    break;
3167
3168  case OR_No_Viable_Function:
3169    Diag(Object->getSourceRange().getBegin(),
3170         diag::err_ovl_no_viable_object_call)
3171      << Object->getType() << (unsigned)CandidateSet.size()
3172      << Object->getSourceRange();
3173    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3174    break;
3175
3176  case OR_Ambiguous:
3177    Diag(Object->getSourceRange().getBegin(),
3178         diag::err_ovl_ambiguous_object_call)
3179      << Object->getType() << Object->getSourceRange();
3180    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3181    break;
3182  }
3183
3184  if (Best == CandidateSet.end()) {
3185    // We had an error; delete all of the subexpressions and return
3186    // the error.
3187    delete Object;
3188    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3189      delete Args[ArgIdx];
3190    return true;
3191  }
3192
3193  if (Best->Function == 0) {
3194    // Since there is no function declaration, this is one of the
3195    // surrogate candidates. Dig out the conversion function.
3196    CXXConversionDecl *Conv
3197      = cast<CXXConversionDecl>(
3198                         Best->Conversions[0].UserDefined.ConversionFunction);
3199
3200    // We selected one of the surrogate functions that converts the
3201    // object parameter to a function pointer. Perform the conversion
3202    // on the object argument, then let ActOnCallExpr finish the job.
3203    // FIXME: Represent the user-defined conversion in the AST!
3204    ImpCastExprToType(Object,
3205                      Conv->getConversionType().getNonReferenceType(),
3206                      Conv->getConversionType()->isReferenceType());
3207    return ActOnCallExpr((ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3208                         CommaLocs, RParenLoc);
3209  }
3210
3211  // We found an overloaded operator(). Build a CXXOperatorCallExpr
3212  // that calls this method, using Object for the implicit object
3213  // parameter and passing along the remaining arguments.
3214  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3215  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3216
3217  unsigned NumArgsInProto = Proto->getNumArgs();
3218  unsigned NumArgsToCheck = NumArgs;
3219
3220  // Build the full argument list for the method call (the
3221  // implicit object parameter is placed at the beginning of the
3222  // list).
3223  Expr **MethodArgs;
3224  if (NumArgs < NumArgsInProto) {
3225    NumArgsToCheck = NumArgsInProto;
3226    MethodArgs = new Expr*[NumArgsInProto + 1];
3227  } else {
3228    MethodArgs = new Expr*[NumArgs + 1];
3229  }
3230  MethodArgs[0] = Object;
3231  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3232    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3233
3234  Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3235                                SourceLocation());
3236  UsualUnaryConversions(NewFn);
3237
3238  // Once we've built TheCall, all of the expressions are properly
3239  // owned.
3240  QualType ResultTy = Method->getResultType().getNonReferenceType();
3241  llvm::OwningPtr<CXXOperatorCallExpr>
3242    TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3243                                    ResultTy, RParenLoc));
3244  delete [] MethodArgs;
3245
3246  // Initialize the implicit object parameter.
3247  if (!PerformObjectArgumentInitialization(Object, Method))
3248    return true;
3249  TheCall->setArg(0, Object);
3250
3251  // Check the argument types.
3252  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3253    QualType ProtoArgType = Proto->getArgType(i);
3254
3255    Expr *Arg;
3256    if (i < NumArgs)
3257      Arg = Args[i];
3258    else
3259      Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3260    QualType ArgType = Arg->getType();
3261
3262    // Pass the argument.
3263    if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3264      return true;
3265
3266    TheCall->setArg(i + 1, Arg);
3267  }
3268
3269  // If this is a variadic call, handle args passed through "...".
3270  if (Proto->isVariadic()) {
3271    // Promote the arguments (C99 6.5.2.2p7).
3272    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3273      Expr *Arg = Args[i];
3274      DefaultArgumentPromotion(Arg);
3275      TheCall->setArg(i + 1, Arg);
3276    }
3277  }
3278
3279  return CheckFunctionCall(Method, TheCall.take());
3280}
3281
3282/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3283///  (if one exists), where @c Base is an expression of class type and
3284/// @c Member is the name of the member we're trying to find.
3285Action::ExprResult
3286Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3287                               SourceLocation MemberLoc,
3288                               IdentifierInfo &Member) {
3289  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3290
3291  // C++ [over.ref]p1:
3292  //
3293  //   [...] An expression x->m is interpreted as (x.operator->())->m
3294  //   for a class object x of type T if T::operator->() exists and if
3295  //   the operator is selected as the best match function by the
3296  //   overload resolution mechanism (13.3).
3297  // FIXME: look in base classes.
3298  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3299  OverloadCandidateSet CandidateSet;
3300  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3301  IdentifierResolver::iterator I
3302    = IdResolver.begin(OpName, cast<CXXRecordType>(BaseRecord)->getDecl(),
3303                       /*LookInParentCtx=*/false);
3304  NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3305  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3306    AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3307                       /*SuppressUserConversions=*/false);
3308  else if (OverloadedFunctionDecl *Ovl
3309             = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3310    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3311           FEnd = Ovl->function_end();
3312         F != FEnd; ++F) {
3313      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3314        AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3315                           /*SuppressUserConversions=*/false);
3316    }
3317  }
3318
3319  llvm::OwningPtr<Expr> BasePtr(Base);
3320
3321  // Perform overload resolution.
3322  OverloadCandidateSet::iterator Best;
3323  switch (BestViableFunction(CandidateSet, Best)) {
3324  case OR_Success:
3325    // Overload resolution succeeded; we'll build the call below.
3326    break;
3327
3328  case OR_No_Viable_Function:
3329    if (CandidateSet.empty())
3330      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
3331        << BasePtr->getType() << BasePtr->getSourceRange();
3332    else
3333      Diag(OpLoc, diag::err_ovl_no_viable_oper)
3334        << "operator->" << (unsigned)CandidateSet.size()
3335        << BasePtr->getSourceRange();
3336    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3337    return true;
3338
3339  case OR_Ambiguous:
3340    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3341      << "operator->" << BasePtr->getSourceRange();
3342    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3343    return true;
3344  }
3345
3346  // Convert the object parameter.
3347  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3348  if (PerformObjectArgumentInitialization(Base, Method))
3349    return true;
3350
3351  // No concerns about early exits now.
3352  BasePtr.take();
3353
3354  // Build the operator call.
3355  Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3356  UsualUnaryConversions(FnExpr);
3357  Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3358                                 Method->getResultType().getNonReferenceType(),
3359                                 OpLoc);
3360  return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3361}
3362
3363/// FixOverloadedFunctionReference - E is an expression that refers to
3364/// a C++ overloaded function (possibly with some parentheses and
3365/// perhaps a '&' around it). We have resolved the overloaded function
3366/// to the function declaration Fn, so patch up the expression E to
3367/// refer (possibly indirectly) to Fn.
3368void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3369  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3370    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3371    E->setType(PE->getSubExpr()->getType());
3372  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3373    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3374           "Can only take the address of an overloaded function");
3375    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3376    E->setType(Context.getPointerType(E->getType()));
3377  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3378    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3379           "Expected overloaded function");
3380    DR->setDecl(Fn);
3381    E->setType(Fn->getType());
3382  } else {
3383    assert(false && "Invalid reference to overloaded function");
3384  }
3385}
3386
3387} // end namespace clang
3388