SemaOverload.cpp revision efce31f51d6e7e31e125f96c20f6cdab3ead0a47
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34
35namespace clang {
36using namespace sema;
37
38/// A convenience routine for creating a decayed reference to a
39/// function.
40static ExprResult
41CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
42                      SourceLocation Loc = SourceLocation(),
43                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
44  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
45                                                 VK_LValue, Loc, LocInfo);
46  if (HadMultipleCandidates)
47    DRE->setHadMultipleCandidates(true);
48  ExprResult E = S.Owned(DRE);
49  E = S.DefaultFunctionArrayConversion(E.take());
50  if (E.isInvalid())
51    return ExprError();
52  return move(E);
53}
54
55static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
56                                 bool InOverloadResolution,
57                                 StandardConversionSequence &SCS,
58                                 bool CStyle,
59                                 bool AllowObjCWritebackConversion);
60
61static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
62                                                 QualType &ToType,
63                                                 bool InOverloadResolution,
64                                                 StandardConversionSequence &SCS,
65                                                 bool CStyle);
66static OverloadingResult
67IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
68                        UserDefinedConversionSequence& User,
69                        OverloadCandidateSet& Conversions,
70                        bool AllowExplicit);
71
72
73static ImplicitConversionSequence::CompareKind
74CompareStandardConversionSequences(Sema &S,
75                                   const StandardConversionSequence& SCS1,
76                                   const StandardConversionSequence& SCS2);
77
78static ImplicitConversionSequence::CompareKind
79CompareQualificationConversions(Sema &S,
80                                const StandardConversionSequence& SCS1,
81                                const StandardConversionSequence& SCS2);
82
83static ImplicitConversionSequence::CompareKind
84CompareDerivedToBaseConversions(Sema &S,
85                                const StandardConversionSequence& SCS1,
86                                const StandardConversionSequence& SCS2);
87
88
89
90/// GetConversionCategory - Retrieve the implicit conversion
91/// category corresponding to the given implicit conversion kind.
92ImplicitConversionCategory
93GetConversionCategory(ImplicitConversionKind Kind) {
94  static const ImplicitConversionCategory
95    Category[(int)ICK_Num_Conversion_Kinds] = {
96    ICC_Identity,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Lvalue_Transformation,
100    ICC_Identity,
101    ICC_Qualification_Adjustment,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Promotion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion,
117    ICC_Conversion
118  };
119  return Category[(int)Kind];
120}
121
122/// GetConversionRank - Retrieve the implicit conversion rank
123/// corresponding to the given implicit conversion kind.
124ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
125  static const ImplicitConversionRank
126    Rank[(int)ICK_Num_Conversion_Kinds] = {
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Exact_Match,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Promotion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Conversion,
147    ICR_Complex_Real_Conversion,
148    ICR_Conversion,
149    ICR_Conversion,
150    ICR_Writeback_Conversion
151  };
152  return Rank[(int)Kind];
153}
154
155/// GetImplicitConversionName - Return the name of this kind of
156/// implicit conversion.
157const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159    "No conversion",
160    "Lvalue-to-rvalue",
161    "Array-to-pointer",
162    "Function-to-pointer",
163    "Noreturn adjustment",
164    "Qualification",
165    "Integral promotion",
166    "Floating point promotion",
167    "Complex promotion",
168    "Integral conversion",
169    "Floating conversion",
170    "Complex conversion",
171    "Floating-integral conversion",
172    "Pointer conversion",
173    "Pointer-to-member conversion",
174    "Boolean conversion",
175    "Compatible-types conversion",
176    "Derived-to-base conversion",
177    "Vector conversion",
178    "Vector splat",
179    "Complex-real conversion",
180    "Block Pointer conversion",
181    "Transparent Union Conversion"
182    "Writeback conversion"
183  };
184  return Name[Kind];
185}
186
187/// StandardConversionSequence - Set the standard conversion
188/// sequence to the identity conversion.
189void StandardConversionSequence::setAsIdentityConversion() {
190  First = ICK_Identity;
191  Second = ICK_Identity;
192  Third = ICK_Identity;
193  DeprecatedStringLiteralToCharPtr = false;
194  QualificationIncludesObjCLifetime = false;
195  ReferenceBinding = false;
196  DirectBinding = false;
197  IsLvalueReference = true;
198  BindsToFunctionLvalue = false;
199  BindsToRvalue = false;
200  BindsImplicitObjectArgumentWithoutRefQualifier = false;
201  ObjCLifetimeConversionBinding = false;
202  CopyConstructor = 0;
203}
204
205/// getRank - Retrieve the rank of this standard conversion sequence
206/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
207/// implicit conversions.
208ImplicitConversionRank StandardConversionSequence::getRank() const {
209  ImplicitConversionRank Rank = ICR_Exact_Match;
210  if  (GetConversionRank(First) > Rank)
211    Rank = GetConversionRank(First);
212  if  (GetConversionRank(Second) > Rank)
213    Rank = GetConversionRank(Second);
214  if  (GetConversionRank(Third) > Rank)
215    Rank = GetConversionRank(Third);
216  return Rank;
217}
218
219/// isPointerConversionToBool - Determines whether this conversion is
220/// a conversion of a pointer or pointer-to-member to bool. This is
221/// used as part of the ranking of standard conversion sequences
222/// (C++ 13.3.3.2p4).
223bool StandardConversionSequence::isPointerConversionToBool() const {
224  // Note that FromType has not necessarily been transformed by the
225  // array-to-pointer or function-to-pointer implicit conversions, so
226  // check for their presence as well as checking whether FromType is
227  // a pointer.
228  if (getToType(1)->isBooleanType() &&
229      (getFromType()->isPointerType() ||
230       getFromType()->isObjCObjectPointerType() ||
231       getFromType()->isBlockPointerType() ||
232       getFromType()->isNullPtrType() ||
233       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
234    return true;
235
236  return false;
237}
238
239/// isPointerConversionToVoidPointer - Determines whether this
240/// conversion is a conversion of a pointer to a void pointer. This is
241/// used as part of the ranking of standard conversion sequences (C++
242/// 13.3.3.2p4).
243bool
244StandardConversionSequence::
245isPointerConversionToVoidPointer(ASTContext& Context) const {
246  QualType FromType = getFromType();
247  QualType ToType = getToType(1);
248
249  // Note that FromType has not necessarily been transformed by the
250  // array-to-pointer implicit conversion, so check for its presence
251  // and redo the conversion to get a pointer.
252  if (First == ICK_Array_To_Pointer)
253    FromType = Context.getArrayDecayedType(FromType);
254
255  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
256    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
257      return ToPtrType->getPointeeType()->isVoidType();
258
259  return false;
260}
261
262/// Skip any implicit casts which could be either part of a narrowing conversion
263/// or after one in an implicit conversion.
264static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
265  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
266    switch (ICE->getCastKind()) {
267    case CK_NoOp:
268    case CK_IntegralCast:
269    case CK_IntegralToBoolean:
270    case CK_IntegralToFloating:
271    case CK_FloatingToIntegral:
272    case CK_FloatingToBoolean:
273    case CK_FloatingCast:
274      Converted = ICE->getSubExpr();
275      continue;
276
277    default:
278      return Converted;
279    }
280  }
281
282  return Converted;
283}
284
285/// Check if this standard conversion sequence represents a narrowing
286/// conversion, according to C++11 [dcl.init.list]p7.
287///
288/// \param Ctx  The AST context.
289/// \param Converted  The result of applying this standard conversion sequence.
290/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
291///        value of the expression prior to the narrowing conversion.
292/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
293///        type of the expression prior to the narrowing conversion.
294NarrowingKind
295StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
296                                             const Expr *Converted,
297                                             APValue &ConstantValue,
298                                             QualType &ConstantType) const {
299  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
300
301  // C++11 [dcl.init.list]p7:
302  //   A narrowing conversion is an implicit conversion ...
303  QualType FromType = getToType(0);
304  QualType ToType = getToType(1);
305  switch (Second) {
306  // -- from a floating-point type to an integer type, or
307  //
308  // -- from an integer type or unscoped enumeration type to a floating-point
309  //    type, except where the source is a constant expression and the actual
310  //    value after conversion will fit into the target type and will produce
311  //    the original value when converted back to the original type, or
312  case ICK_Floating_Integral:
313    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
314      return NK_Type_Narrowing;
315    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
316      llvm::APSInt IntConstantValue;
317      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
318      if (Initializer &&
319          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
320        // Convert the integer to the floating type.
321        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
322        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
323                                llvm::APFloat::rmNearestTiesToEven);
324        // And back.
325        llvm::APSInt ConvertedValue = IntConstantValue;
326        bool ignored;
327        Result.convertToInteger(ConvertedValue,
328                                llvm::APFloat::rmTowardZero, &ignored);
329        // If the resulting value is different, this was a narrowing conversion.
330        if (IntConstantValue != ConvertedValue) {
331          ConstantValue = APValue(IntConstantValue);
332          ConstantType = Initializer->getType();
333          return NK_Constant_Narrowing;
334        }
335      } else {
336        // Variables are always narrowings.
337        return NK_Variable_Narrowing;
338      }
339    }
340    return NK_Not_Narrowing;
341
342  // -- from long double to double or float, or from double to float, except
343  //    where the source is a constant expression and the actual value after
344  //    conversion is within the range of values that can be represented (even
345  //    if it cannot be represented exactly), or
346  case ICK_Floating_Conversion:
347    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
348        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
349      // FromType is larger than ToType.
350      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
351      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
352        // Constant!
353        assert(ConstantValue.isFloat());
354        llvm::APFloat FloatVal = ConstantValue.getFloat();
355        // Convert the source value into the target type.
356        bool ignored;
357        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
358          Ctx.getFloatTypeSemantics(ToType),
359          llvm::APFloat::rmNearestTiesToEven, &ignored);
360        // If there was no overflow, the source value is within the range of
361        // values that can be represented.
362        if (ConvertStatus & llvm::APFloat::opOverflow) {
363          ConstantType = Initializer->getType();
364          return NK_Constant_Narrowing;
365        }
366      } else {
367        return NK_Variable_Narrowing;
368      }
369    }
370    return NK_Not_Narrowing;
371
372  // -- from an integer type or unscoped enumeration type to an integer type
373  //    that cannot represent all the values of the original type, except where
374  //    the source is a constant expression and the actual value after
375  //    conversion will fit into the target type and will produce the original
376  //    value when converted back to the original type.
377  case ICK_Boolean_Conversion:  // Bools are integers too.
378    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
379      // Boolean conversions can be from pointers and pointers to members
380      // [conv.bool], and those aren't considered narrowing conversions.
381      return NK_Not_Narrowing;
382    }  // Otherwise, fall through to the integral case.
383  case ICK_Integral_Conversion: {
384    assert(FromType->isIntegralOrUnscopedEnumerationType());
385    assert(ToType->isIntegralOrUnscopedEnumerationType());
386    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
387    const unsigned FromWidth = Ctx.getIntWidth(FromType);
388    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
389    const unsigned ToWidth = Ctx.getIntWidth(ToType);
390
391    if (FromWidth > ToWidth ||
392        (FromWidth == ToWidth && FromSigned != ToSigned) ||
393        (FromSigned && !ToSigned)) {
394      // Not all values of FromType can be represented in ToType.
395      llvm::APSInt InitializerValue;
396      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
397      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
398        // Such conversions on variables are always narrowing.
399        return NK_Variable_Narrowing;
400      }
401      bool Narrowing = false;
402      if (FromWidth < ToWidth) {
403        // Negative -> unsigned is narrowing. Otherwise, more bits is never
404        // narrowing.
405        if (InitializerValue.isSigned() && InitializerValue.isNegative())
406          Narrowing = true;
407      } else {
408        // Add a bit to the InitializerValue so we don't have to worry about
409        // signed vs. unsigned comparisons.
410        InitializerValue = InitializerValue.extend(
411          InitializerValue.getBitWidth() + 1);
412        // Convert the initializer to and from the target width and signed-ness.
413        llvm::APSInt ConvertedValue = InitializerValue;
414        ConvertedValue = ConvertedValue.trunc(ToWidth);
415        ConvertedValue.setIsSigned(ToSigned);
416        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
417        ConvertedValue.setIsSigned(InitializerValue.isSigned());
418        // If the result is different, this was a narrowing conversion.
419        if (ConvertedValue != InitializerValue)
420          Narrowing = true;
421      }
422      if (Narrowing) {
423        ConstantType = Initializer->getType();
424        ConstantValue = APValue(InitializerValue);
425        return NK_Constant_Narrowing;
426      }
427    }
428    return NK_Not_Narrowing;
429  }
430
431  default:
432    // Other kinds of conversions are not narrowings.
433    return NK_Not_Narrowing;
434  }
435}
436
437/// DebugPrint - Print this standard conversion sequence to standard
438/// error. Useful for debugging overloading issues.
439void StandardConversionSequence::DebugPrint() const {
440  raw_ostream &OS = llvm::errs();
441  bool PrintedSomething = false;
442  if (First != ICK_Identity) {
443    OS << GetImplicitConversionName(First);
444    PrintedSomething = true;
445  }
446
447  if (Second != ICK_Identity) {
448    if (PrintedSomething) {
449      OS << " -> ";
450    }
451    OS << GetImplicitConversionName(Second);
452
453    if (CopyConstructor) {
454      OS << " (by copy constructor)";
455    } else if (DirectBinding) {
456      OS << " (direct reference binding)";
457    } else if (ReferenceBinding) {
458      OS << " (reference binding)";
459    }
460    PrintedSomething = true;
461  }
462
463  if (Third != ICK_Identity) {
464    if (PrintedSomething) {
465      OS << " -> ";
466    }
467    OS << GetImplicitConversionName(Third);
468    PrintedSomething = true;
469  }
470
471  if (!PrintedSomething) {
472    OS << "No conversions required";
473  }
474}
475
476/// DebugPrint - Print this user-defined conversion sequence to standard
477/// error. Useful for debugging overloading issues.
478void UserDefinedConversionSequence::DebugPrint() const {
479  raw_ostream &OS = llvm::errs();
480  if (Before.First || Before.Second || Before.Third) {
481    Before.DebugPrint();
482    OS << " -> ";
483  }
484  if (ConversionFunction)
485    OS << '\'' << *ConversionFunction << '\'';
486  else
487    OS << "aggregate initialization";
488  if (After.First || After.Second || After.Third) {
489    OS << " -> ";
490    After.DebugPrint();
491  }
492}
493
494/// DebugPrint - Print this implicit conversion sequence to standard
495/// error. Useful for debugging overloading issues.
496void ImplicitConversionSequence::DebugPrint() const {
497  raw_ostream &OS = llvm::errs();
498  switch (ConversionKind) {
499  case StandardConversion:
500    OS << "Standard conversion: ";
501    Standard.DebugPrint();
502    break;
503  case UserDefinedConversion:
504    OS << "User-defined conversion: ";
505    UserDefined.DebugPrint();
506    break;
507  case EllipsisConversion:
508    OS << "Ellipsis conversion";
509    break;
510  case AmbiguousConversion:
511    OS << "Ambiguous conversion";
512    break;
513  case BadConversion:
514    OS << "Bad conversion";
515    break;
516  }
517
518  OS << "\n";
519}
520
521void AmbiguousConversionSequence::construct() {
522  new (&conversions()) ConversionSet();
523}
524
525void AmbiguousConversionSequence::destruct() {
526  conversions().~ConversionSet();
527}
528
529void
530AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
531  FromTypePtr = O.FromTypePtr;
532  ToTypePtr = O.ToTypePtr;
533  new (&conversions()) ConversionSet(O.conversions());
534}
535
536namespace {
537  // Structure used by OverloadCandidate::DeductionFailureInfo to store
538  // template parameter and template argument information.
539  struct DFIParamWithArguments {
540    TemplateParameter Param;
541    TemplateArgument FirstArg;
542    TemplateArgument SecondArg;
543  };
544}
545
546/// \brief Convert from Sema's representation of template deduction information
547/// to the form used in overload-candidate information.
548OverloadCandidate::DeductionFailureInfo
549static MakeDeductionFailureInfo(ASTContext &Context,
550                                Sema::TemplateDeductionResult TDK,
551                                TemplateDeductionInfo &Info) {
552  OverloadCandidate::DeductionFailureInfo Result;
553  Result.Result = static_cast<unsigned>(TDK);
554  Result.HasDiagnostic = false;
555  Result.Data = 0;
556  switch (TDK) {
557  case Sema::TDK_Success:
558  case Sema::TDK_InstantiationDepth:
559  case Sema::TDK_TooManyArguments:
560  case Sema::TDK_TooFewArguments:
561    break;
562
563  case Sema::TDK_Incomplete:
564  case Sema::TDK_InvalidExplicitArguments:
565    Result.Data = Info.Param.getOpaqueValue();
566    break;
567
568  case Sema::TDK_Inconsistent:
569  case Sema::TDK_Underqualified: {
570    // FIXME: Should allocate from normal heap so that we can free this later.
571    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
572    Saved->Param = Info.Param;
573    Saved->FirstArg = Info.FirstArg;
574    Saved->SecondArg = Info.SecondArg;
575    Result.Data = Saved;
576    break;
577  }
578
579  case Sema::TDK_SubstitutionFailure:
580    Result.Data = Info.take();
581    if (Info.hasSFINAEDiagnostic()) {
582      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
583          SourceLocation(), PartialDiagnostic::NullDiagnostic());
584      Info.takeSFINAEDiagnostic(*Diag);
585      Result.HasDiagnostic = true;
586    }
587    break;
588
589  case Sema::TDK_NonDeducedMismatch:
590  case Sema::TDK_FailedOverloadResolution:
591    break;
592  }
593
594  return Result;
595}
596
597void OverloadCandidate::DeductionFailureInfo::Destroy() {
598  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
599  case Sema::TDK_Success:
600  case Sema::TDK_InstantiationDepth:
601  case Sema::TDK_Incomplete:
602  case Sema::TDK_TooManyArguments:
603  case Sema::TDK_TooFewArguments:
604  case Sema::TDK_InvalidExplicitArguments:
605    break;
606
607  case Sema::TDK_Inconsistent:
608  case Sema::TDK_Underqualified:
609    // FIXME: Destroy the data?
610    Data = 0;
611    break;
612
613  case Sema::TDK_SubstitutionFailure:
614    // FIXME: Destroy the template argument list?
615    Data = 0;
616    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
617      Diag->~PartialDiagnosticAt();
618      HasDiagnostic = false;
619    }
620    break;
621
622  // Unhandled
623  case Sema::TDK_NonDeducedMismatch:
624  case Sema::TDK_FailedOverloadResolution:
625    break;
626  }
627}
628
629PartialDiagnosticAt *
630OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
631  if (HasDiagnostic)
632    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
633  return 0;
634}
635
636TemplateParameter
637OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
638  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
639  case Sema::TDK_Success:
640  case Sema::TDK_InstantiationDepth:
641  case Sema::TDK_TooManyArguments:
642  case Sema::TDK_TooFewArguments:
643  case Sema::TDK_SubstitutionFailure:
644    return TemplateParameter();
645
646  case Sema::TDK_Incomplete:
647  case Sema::TDK_InvalidExplicitArguments:
648    return TemplateParameter::getFromOpaqueValue(Data);
649
650  case Sema::TDK_Inconsistent:
651  case Sema::TDK_Underqualified:
652    return static_cast<DFIParamWithArguments*>(Data)->Param;
653
654  // Unhandled
655  case Sema::TDK_NonDeducedMismatch:
656  case Sema::TDK_FailedOverloadResolution:
657    break;
658  }
659
660  return TemplateParameter();
661}
662
663TemplateArgumentList *
664OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
665  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
666    case Sema::TDK_Success:
667    case Sema::TDK_InstantiationDepth:
668    case Sema::TDK_TooManyArguments:
669    case Sema::TDK_TooFewArguments:
670    case Sema::TDK_Incomplete:
671    case Sema::TDK_InvalidExplicitArguments:
672    case Sema::TDK_Inconsistent:
673    case Sema::TDK_Underqualified:
674      return 0;
675
676    case Sema::TDK_SubstitutionFailure:
677      return static_cast<TemplateArgumentList*>(Data);
678
679    // Unhandled
680    case Sema::TDK_NonDeducedMismatch:
681    case Sema::TDK_FailedOverloadResolution:
682      break;
683  }
684
685  return 0;
686}
687
688const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
689  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
690  case Sema::TDK_Success:
691  case Sema::TDK_InstantiationDepth:
692  case Sema::TDK_Incomplete:
693  case Sema::TDK_TooManyArguments:
694  case Sema::TDK_TooFewArguments:
695  case Sema::TDK_InvalidExplicitArguments:
696  case Sema::TDK_SubstitutionFailure:
697    return 0;
698
699  case Sema::TDK_Inconsistent:
700  case Sema::TDK_Underqualified:
701    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
702
703  // Unhandled
704  case Sema::TDK_NonDeducedMismatch:
705  case Sema::TDK_FailedOverloadResolution:
706    break;
707  }
708
709  return 0;
710}
711
712const TemplateArgument *
713OverloadCandidate::DeductionFailureInfo::getSecondArg() {
714  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
715  case Sema::TDK_Success:
716  case Sema::TDK_InstantiationDepth:
717  case Sema::TDK_Incomplete:
718  case Sema::TDK_TooManyArguments:
719  case Sema::TDK_TooFewArguments:
720  case Sema::TDK_InvalidExplicitArguments:
721  case Sema::TDK_SubstitutionFailure:
722    return 0;
723
724  case Sema::TDK_Inconsistent:
725  case Sema::TDK_Underqualified:
726    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
727
728  // Unhandled
729  case Sema::TDK_NonDeducedMismatch:
730  case Sema::TDK_FailedOverloadResolution:
731    break;
732  }
733
734  return 0;
735}
736
737void OverloadCandidateSet::clear() {
738  for (iterator i = begin(), e = end(); i != e; ++i)
739    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
740      i->Conversions[ii].~ImplicitConversionSequence();
741  NumInlineSequences = 0;
742  Candidates.clear();
743  Functions.clear();
744}
745
746namespace {
747  class UnbridgedCastsSet {
748    struct Entry {
749      Expr **Addr;
750      Expr *Saved;
751    };
752    SmallVector<Entry, 2> Entries;
753
754  public:
755    void save(Sema &S, Expr *&E) {
756      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
757      Entry entry = { &E, E };
758      Entries.push_back(entry);
759      E = S.stripARCUnbridgedCast(E);
760    }
761
762    void restore() {
763      for (SmallVectorImpl<Entry>::iterator
764             i = Entries.begin(), e = Entries.end(); i != e; ++i)
765        *i->Addr = i->Saved;
766    }
767  };
768}
769
770/// checkPlaceholderForOverload - Do any interesting placeholder-like
771/// preprocessing on the given expression.
772///
773/// \param unbridgedCasts a collection to which to add unbridged casts;
774///   without this, they will be immediately diagnosed as errors
775///
776/// Return true on unrecoverable error.
777static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
778                                        UnbridgedCastsSet *unbridgedCasts = 0) {
779  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
780    // We can't handle overloaded expressions here because overload
781    // resolution might reasonably tweak them.
782    if (placeholder->getKind() == BuiltinType::Overload) return false;
783
784    // If the context potentially accepts unbridged ARC casts, strip
785    // the unbridged cast and add it to the collection for later restoration.
786    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
787        unbridgedCasts) {
788      unbridgedCasts->save(S, E);
789      return false;
790    }
791
792    // Go ahead and check everything else.
793    ExprResult result = S.CheckPlaceholderExpr(E);
794    if (result.isInvalid())
795      return true;
796
797    E = result.take();
798    return false;
799  }
800
801  // Nothing to do.
802  return false;
803}
804
805/// checkArgPlaceholdersForOverload - Check a set of call operands for
806/// placeholders.
807static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
808                                            unsigned numArgs,
809                                            UnbridgedCastsSet &unbridged) {
810  for (unsigned i = 0; i != numArgs; ++i)
811    if (checkPlaceholderForOverload(S, args[i], &unbridged))
812      return true;
813
814  return false;
815}
816
817// IsOverload - Determine whether the given New declaration is an
818// overload of the declarations in Old. This routine returns false if
819// New and Old cannot be overloaded, e.g., if New has the same
820// signature as some function in Old (C++ 1.3.10) or if the Old
821// declarations aren't functions (or function templates) at all. When
822// it does return false, MatchedDecl will point to the decl that New
823// cannot be overloaded with.  This decl may be a UsingShadowDecl on
824// top of the underlying declaration.
825//
826// Example: Given the following input:
827//
828//   void f(int, float); // #1
829//   void f(int, int); // #2
830//   int f(int, int); // #3
831//
832// When we process #1, there is no previous declaration of "f",
833// so IsOverload will not be used.
834//
835// When we process #2, Old contains only the FunctionDecl for #1.  By
836// comparing the parameter types, we see that #1 and #2 are overloaded
837// (since they have different signatures), so this routine returns
838// false; MatchedDecl is unchanged.
839//
840// When we process #3, Old is an overload set containing #1 and #2. We
841// compare the signatures of #3 to #1 (they're overloaded, so we do
842// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
843// identical (return types of functions are not part of the
844// signature), IsOverload returns false and MatchedDecl will be set to
845// point to the FunctionDecl for #2.
846//
847// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
848// into a class by a using declaration.  The rules for whether to hide
849// shadow declarations ignore some properties which otherwise figure
850// into a function template's signature.
851Sema::OverloadKind
852Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
853                    NamedDecl *&Match, bool NewIsUsingDecl) {
854  for (LookupResult::iterator I = Old.begin(), E = Old.end();
855         I != E; ++I) {
856    NamedDecl *OldD = *I;
857
858    bool OldIsUsingDecl = false;
859    if (isa<UsingShadowDecl>(OldD)) {
860      OldIsUsingDecl = true;
861
862      // We can always introduce two using declarations into the same
863      // context, even if they have identical signatures.
864      if (NewIsUsingDecl) continue;
865
866      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
867    }
868
869    // If either declaration was introduced by a using declaration,
870    // we'll need to use slightly different rules for matching.
871    // Essentially, these rules are the normal rules, except that
872    // function templates hide function templates with different
873    // return types or template parameter lists.
874    bool UseMemberUsingDeclRules =
875      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
876
877    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
878      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
879        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
880          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
881          continue;
882        }
883
884        Match = *I;
885        return Ovl_Match;
886      }
887    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
888      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
889        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
890          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
891          continue;
892        }
893
894        Match = *I;
895        return Ovl_Match;
896      }
897    } else if (isa<UsingDecl>(OldD)) {
898      // We can overload with these, which can show up when doing
899      // redeclaration checks for UsingDecls.
900      assert(Old.getLookupKind() == LookupUsingDeclName);
901    } else if (isa<TagDecl>(OldD)) {
902      // We can always overload with tags by hiding them.
903    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
904      // Optimistically assume that an unresolved using decl will
905      // overload; if it doesn't, we'll have to diagnose during
906      // template instantiation.
907    } else {
908      // (C++ 13p1):
909      //   Only function declarations can be overloaded; object and type
910      //   declarations cannot be overloaded.
911      Match = *I;
912      return Ovl_NonFunction;
913    }
914  }
915
916  return Ovl_Overload;
917}
918
919bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
920                      bool UseUsingDeclRules) {
921  // If both of the functions are extern "C", then they are not
922  // overloads.
923  if (Old->isExternC() && New->isExternC())
924    return false;
925
926  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
927  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
928
929  // C++ [temp.fct]p2:
930  //   A function template can be overloaded with other function templates
931  //   and with normal (non-template) functions.
932  if ((OldTemplate == 0) != (NewTemplate == 0))
933    return true;
934
935  // Is the function New an overload of the function Old?
936  QualType OldQType = Context.getCanonicalType(Old->getType());
937  QualType NewQType = Context.getCanonicalType(New->getType());
938
939  // Compare the signatures (C++ 1.3.10) of the two functions to
940  // determine whether they are overloads. If we find any mismatch
941  // in the signature, they are overloads.
942
943  // If either of these functions is a K&R-style function (no
944  // prototype), then we consider them to have matching signatures.
945  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
946      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
947    return false;
948
949  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
950  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
951
952  // The signature of a function includes the types of its
953  // parameters (C++ 1.3.10), which includes the presence or absence
954  // of the ellipsis; see C++ DR 357).
955  if (OldQType != NewQType &&
956      (OldType->getNumArgs() != NewType->getNumArgs() ||
957       OldType->isVariadic() != NewType->isVariadic() ||
958       !FunctionArgTypesAreEqual(OldType, NewType)))
959    return true;
960
961  // C++ [temp.over.link]p4:
962  //   The signature of a function template consists of its function
963  //   signature, its return type and its template parameter list. The names
964  //   of the template parameters are significant only for establishing the
965  //   relationship between the template parameters and the rest of the
966  //   signature.
967  //
968  // We check the return type and template parameter lists for function
969  // templates first; the remaining checks follow.
970  //
971  // However, we don't consider either of these when deciding whether
972  // a member introduced by a shadow declaration is hidden.
973  if (!UseUsingDeclRules && NewTemplate &&
974      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
975                                       OldTemplate->getTemplateParameters(),
976                                       false, TPL_TemplateMatch) ||
977       OldType->getResultType() != NewType->getResultType()))
978    return true;
979
980  // If the function is a class member, its signature includes the
981  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
982  //
983  // As part of this, also check whether one of the member functions
984  // is static, in which case they are not overloads (C++
985  // 13.1p2). While not part of the definition of the signature,
986  // this check is important to determine whether these functions
987  // can be overloaded.
988  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
989  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
990  if (OldMethod && NewMethod &&
991      !OldMethod->isStatic() && !NewMethod->isStatic() &&
992      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
993       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
994    if (!UseUsingDeclRules &&
995        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
996        (OldMethod->getRefQualifier() == RQ_None ||
997         NewMethod->getRefQualifier() == RQ_None)) {
998      // C++0x [over.load]p2:
999      //   - Member function declarations with the same name and the same
1000      //     parameter-type-list as well as member function template
1001      //     declarations with the same name, the same parameter-type-list, and
1002      //     the same template parameter lists cannot be overloaded if any of
1003      //     them, but not all, have a ref-qualifier (8.3.5).
1004      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1005        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1006      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1007    }
1008
1009    return true;
1010  }
1011
1012  // The signatures match; this is not an overload.
1013  return false;
1014}
1015
1016/// \brief Checks availability of the function depending on the current
1017/// function context. Inside an unavailable function, unavailability is ignored.
1018///
1019/// \returns true if \arg FD is unavailable and current context is inside
1020/// an available function, false otherwise.
1021bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1022  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1023}
1024
1025/// \brief Tries a user-defined conversion from From to ToType.
1026///
1027/// Produces an implicit conversion sequence for when a standard conversion
1028/// is not an option. See TryImplicitConversion for more information.
1029static ImplicitConversionSequence
1030TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1031                         bool SuppressUserConversions,
1032                         bool AllowExplicit,
1033                         bool InOverloadResolution,
1034                         bool CStyle,
1035                         bool AllowObjCWritebackConversion) {
1036  ImplicitConversionSequence ICS;
1037
1038  if (SuppressUserConversions) {
1039    // We're not in the case above, so there is no conversion that
1040    // we can perform.
1041    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1042    return ICS;
1043  }
1044
1045  // Attempt user-defined conversion.
1046  OverloadCandidateSet Conversions(From->getExprLoc());
1047  OverloadingResult UserDefResult
1048    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1049                              AllowExplicit);
1050
1051  if (UserDefResult == OR_Success) {
1052    ICS.setUserDefined();
1053    // C++ [over.ics.user]p4:
1054    //   A conversion of an expression of class type to the same class
1055    //   type is given Exact Match rank, and a conversion of an
1056    //   expression of class type to a base class of that type is
1057    //   given Conversion rank, in spite of the fact that a copy
1058    //   constructor (i.e., a user-defined conversion function) is
1059    //   called for those cases.
1060    if (CXXConstructorDecl *Constructor
1061          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1062      QualType FromCanon
1063        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1064      QualType ToCanon
1065        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1066      if (Constructor->isCopyConstructor() &&
1067          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1068        // Turn this into a "standard" conversion sequence, so that it
1069        // gets ranked with standard conversion sequences.
1070        ICS.setStandard();
1071        ICS.Standard.setAsIdentityConversion();
1072        ICS.Standard.setFromType(From->getType());
1073        ICS.Standard.setAllToTypes(ToType);
1074        ICS.Standard.CopyConstructor = Constructor;
1075        if (ToCanon != FromCanon)
1076          ICS.Standard.Second = ICK_Derived_To_Base;
1077      }
1078    }
1079
1080    // C++ [over.best.ics]p4:
1081    //   However, when considering the argument of a user-defined
1082    //   conversion function that is a candidate by 13.3.1.3 when
1083    //   invoked for the copying of the temporary in the second step
1084    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1085    //   13.3.1.6 in all cases, only standard conversion sequences and
1086    //   ellipsis conversion sequences are allowed.
1087    if (SuppressUserConversions && ICS.isUserDefined()) {
1088      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1089    }
1090  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1091    ICS.setAmbiguous();
1092    ICS.Ambiguous.setFromType(From->getType());
1093    ICS.Ambiguous.setToType(ToType);
1094    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1095         Cand != Conversions.end(); ++Cand)
1096      if (Cand->Viable)
1097        ICS.Ambiguous.addConversion(Cand->Function);
1098  } else {
1099    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1100  }
1101
1102  return ICS;
1103}
1104
1105/// TryImplicitConversion - Attempt to perform an implicit conversion
1106/// from the given expression (Expr) to the given type (ToType). This
1107/// function returns an implicit conversion sequence that can be used
1108/// to perform the initialization. Given
1109///
1110///   void f(float f);
1111///   void g(int i) { f(i); }
1112///
1113/// this routine would produce an implicit conversion sequence to
1114/// describe the initialization of f from i, which will be a standard
1115/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1116/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1117//
1118/// Note that this routine only determines how the conversion can be
1119/// performed; it does not actually perform the conversion. As such,
1120/// it will not produce any diagnostics if no conversion is available,
1121/// but will instead return an implicit conversion sequence of kind
1122/// "BadConversion".
1123///
1124/// If @p SuppressUserConversions, then user-defined conversions are
1125/// not permitted.
1126/// If @p AllowExplicit, then explicit user-defined conversions are
1127/// permitted.
1128///
1129/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1130/// writeback conversion, which allows __autoreleasing id* parameters to
1131/// be initialized with __strong id* or __weak id* arguments.
1132static ImplicitConversionSequence
1133TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1134                      bool SuppressUserConversions,
1135                      bool AllowExplicit,
1136                      bool InOverloadResolution,
1137                      bool CStyle,
1138                      bool AllowObjCWritebackConversion) {
1139  ImplicitConversionSequence ICS;
1140  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1141                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1142    ICS.setStandard();
1143    return ICS;
1144  }
1145
1146  if (!S.getLangOpts().CPlusPlus) {
1147    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1148    return ICS;
1149  }
1150
1151  // C++ [over.ics.user]p4:
1152  //   A conversion of an expression of class type to the same class
1153  //   type is given Exact Match rank, and a conversion of an
1154  //   expression of class type to a base class of that type is
1155  //   given Conversion rank, in spite of the fact that a copy/move
1156  //   constructor (i.e., a user-defined conversion function) is
1157  //   called for those cases.
1158  QualType FromType = From->getType();
1159  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1160      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1161       S.IsDerivedFrom(FromType, ToType))) {
1162    ICS.setStandard();
1163    ICS.Standard.setAsIdentityConversion();
1164    ICS.Standard.setFromType(FromType);
1165    ICS.Standard.setAllToTypes(ToType);
1166
1167    // We don't actually check at this point whether there is a valid
1168    // copy/move constructor, since overloading just assumes that it
1169    // exists. When we actually perform initialization, we'll find the
1170    // appropriate constructor to copy the returned object, if needed.
1171    ICS.Standard.CopyConstructor = 0;
1172
1173    // Determine whether this is considered a derived-to-base conversion.
1174    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1175      ICS.Standard.Second = ICK_Derived_To_Base;
1176
1177    return ICS;
1178  }
1179
1180  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1181                                  AllowExplicit, InOverloadResolution, CStyle,
1182                                  AllowObjCWritebackConversion);
1183}
1184
1185ImplicitConversionSequence
1186Sema::TryImplicitConversion(Expr *From, QualType ToType,
1187                            bool SuppressUserConversions,
1188                            bool AllowExplicit,
1189                            bool InOverloadResolution,
1190                            bool CStyle,
1191                            bool AllowObjCWritebackConversion) {
1192  return clang::TryImplicitConversion(*this, From, ToType,
1193                                      SuppressUserConversions, AllowExplicit,
1194                                      InOverloadResolution, CStyle,
1195                                      AllowObjCWritebackConversion);
1196}
1197
1198/// PerformImplicitConversion - Perform an implicit conversion of the
1199/// expression From to the type ToType. Returns the
1200/// converted expression. Flavor is the kind of conversion we're
1201/// performing, used in the error message. If @p AllowExplicit,
1202/// explicit user-defined conversions are permitted.
1203ExprResult
1204Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1205                                AssignmentAction Action, bool AllowExplicit) {
1206  ImplicitConversionSequence ICS;
1207  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1208}
1209
1210ExprResult
1211Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1212                                AssignmentAction Action, bool AllowExplicit,
1213                                ImplicitConversionSequence& ICS) {
1214  if (checkPlaceholderForOverload(*this, From))
1215    return ExprError();
1216
1217  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1218  bool AllowObjCWritebackConversion
1219    = getLangOpts().ObjCAutoRefCount &&
1220      (Action == AA_Passing || Action == AA_Sending);
1221
1222  ICS = clang::TryImplicitConversion(*this, From, ToType,
1223                                     /*SuppressUserConversions=*/false,
1224                                     AllowExplicit,
1225                                     /*InOverloadResolution=*/false,
1226                                     /*CStyle=*/false,
1227                                     AllowObjCWritebackConversion);
1228  return PerformImplicitConversion(From, ToType, ICS, Action);
1229}
1230
1231/// \brief Determine whether the conversion from FromType to ToType is a valid
1232/// conversion that strips "noreturn" off the nested function type.
1233bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1234                                QualType &ResultTy) {
1235  if (Context.hasSameUnqualifiedType(FromType, ToType))
1236    return false;
1237
1238  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1239  // where F adds one of the following at most once:
1240  //   - a pointer
1241  //   - a member pointer
1242  //   - a block pointer
1243  CanQualType CanTo = Context.getCanonicalType(ToType);
1244  CanQualType CanFrom = Context.getCanonicalType(FromType);
1245  Type::TypeClass TyClass = CanTo->getTypeClass();
1246  if (TyClass != CanFrom->getTypeClass()) return false;
1247  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1248    if (TyClass == Type::Pointer) {
1249      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1250      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1251    } else if (TyClass == Type::BlockPointer) {
1252      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1253      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1254    } else if (TyClass == Type::MemberPointer) {
1255      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1256      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1257    } else {
1258      return false;
1259    }
1260
1261    TyClass = CanTo->getTypeClass();
1262    if (TyClass != CanFrom->getTypeClass()) return false;
1263    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1264      return false;
1265  }
1266
1267  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1268  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1269  if (!EInfo.getNoReturn()) return false;
1270
1271  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1272  assert(QualType(FromFn, 0).isCanonical());
1273  if (QualType(FromFn, 0) != CanTo) return false;
1274
1275  ResultTy = ToType;
1276  return true;
1277}
1278
1279/// \brief Determine whether the conversion from FromType to ToType is a valid
1280/// vector conversion.
1281///
1282/// \param ICK Will be set to the vector conversion kind, if this is a vector
1283/// conversion.
1284static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1285                               QualType ToType, ImplicitConversionKind &ICK) {
1286  // We need at least one of these types to be a vector type to have a vector
1287  // conversion.
1288  if (!ToType->isVectorType() && !FromType->isVectorType())
1289    return false;
1290
1291  // Identical types require no conversions.
1292  if (Context.hasSameUnqualifiedType(FromType, ToType))
1293    return false;
1294
1295  // There are no conversions between extended vector types, only identity.
1296  if (ToType->isExtVectorType()) {
1297    // There are no conversions between extended vector types other than the
1298    // identity conversion.
1299    if (FromType->isExtVectorType())
1300      return false;
1301
1302    // Vector splat from any arithmetic type to a vector.
1303    if (FromType->isArithmeticType()) {
1304      ICK = ICK_Vector_Splat;
1305      return true;
1306    }
1307  }
1308
1309  // We can perform the conversion between vector types in the following cases:
1310  // 1)vector types are equivalent AltiVec and GCC vector types
1311  // 2)lax vector conversions are permitted and the vector types are of the
1312  //   same size
1313  if (ToType->isVectorType() && FromType->isVectorType()) {
1314    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1315        (Context.getLangOpts().LaxVectorConversions &&
1316         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1317      ICK = ICK_Vector_Conversion;
1318      return true;
1319    }
1320  }
1321
1322  return false;
1323}
1324
1325static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1326                                bool InOverloadResolution,
1327                                StandardConversionSequence &SCS,
1328                                bool CStyle);
1329
1330/// IsStandardConversion - Determines whether there is a standard
1331/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1332/// expression From to the type ToType. Standard conversion sequences
1333/// only consider non-class types; for conversions that involve class
1334/// types, use TryImplicitConversion. If a conversion exists, SCS will
1335/// contain the standard conversion sequence required to perform this
1336/// conversion and this routine will return true. Otherwise, this
1337/// routine will return false and the value of SCS is unspecified.
1338static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1339                                 bool InOverloadResolution,
1340                                 StandardConversionSequence &SCS,
1341                                 bool CStyle,
1342                                 bool AllowObjCWritebackConversion) {
1343  QualType FromType = From->getType();
1344
1345  // Standard conversions (C++ [conv])
1346  SCS.setAsIdentityConversion();
1347  SCS.DeprecatedStringLiteralToCharPtr = false;
1348  SCS.IncompatibleObjC = false;
1349  SCS.setFromType(FromType);
1350  SCS.CopyConstructor = 0;
1351
1352  // There are no standard conversions for class types in C++, so
1353  // abort early. When overloading in C, however, we do permit
1354  if (FromType->isRecordType() || ToType->isRecordType()) {
1355    if (S.getLangOpts().CPlusPlus)
1356      return false;
1357
1358    // When we're overloading in C, we allow, as standard conversions,
1359  }
1360
1361  // The first conversion can be an lvalue-to-rvalue conversion,
1362  // array-to-pointer conversion, or function-to-pointer conversion
1363  // (C++ 4p1).
1364
1365  if (FromType == S.Context.OverloadTy) {
1366    DeclAccessPair AccessPair;
1367    if (FunctionDecl *Fn
1368          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1369                                                 AccessPair)) {
1370      // We were able to resolve the address of the overloaded function,
1371      // so we can convert to the type of that function.
1372      FromType = Fn->getType();
1373
1374      // we can sometimes resolve &foo<int> regardless of ToType, so check
1375      // if the type matches (identity) or we are converting to bool
1376      if (!S.Context.hasSameUnqualifiedType(
1377                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1378        QualType resultTy;
1379        // if the function type matches except for [[noreturn]], it's ok
1380        if (!S.IsNoReturnConversion(FromType,
1381              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1382          // otherwise, only a boolean conversion is standard
1383          if (!ToType->isBooleanType())
1384            return false;
1385      }
1386
1387      // Check if the "from" expression is taking the address of an overloaded
1388      // function and recompute the FromType accordingly. Take advantage of the
1389      // fact that non-static member functions *must* have such an address-of
1390      // expression.
1391      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1392      if (Method && !Method->isStatic()) {
1393        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1394               "Non-unary operator on non-static member address");
1395        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1396               == UO_AddrOf &&
1397               "Non-address-of operator on non-static member address");
1398        const Type *ClassType
1399          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1400        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1401      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1402        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1403               UO_AddrOf &&
1404               "Non-address-of operator for overloaded function expression");
1405        FromType = S.Context.getPointerType(FromType);
1406      }
1407
1408      // Check that we've computed the proper type after overload resolution.
1409      assert(S.Context.hasSameType(
1410        FromType,
1411        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1412    } else {
1413      return false;
1414    }
1415  }
1416  // Lvalue-to-rvalue conversion (C++11 4.1):
1417  //   A glvalue (3.10) of a non-function, non-array type T can
1418  //   be converted to a prvalue.
1419  bool argIsLValue = From->isGLValue();
1420  if (argIsLValue &&
1421      !FromType->isFunctionType() && !FromType->isArrayType() &&
1422      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1423    SCS.First = ICK_Lvalue_To_Rvalue;
1424
1425    // C11 6.3.2.1p2:
1426    //   ... if the lvalue has atomic type, the value has the non-atomic version
1427    //   of the type of the lvalue ...
1428    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1429      FromType = Atomic->getValueType();
1430
1431    // If T is a non-class type, the type of the rvalue is the
1432    // cv-unqualified version of T. Otherwise, the type of the rvalue
1433    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1434    // just strip the qualifiers because they don't matter.
1435    FromType = FromType.getUnqualifiedType();
1436  } else if (FromType->isArrayType()) {
1437    // Array-to-pointer conversion (C++ 4.2)
1438    SCS.First = ICK_Array_To_Pointer;
1439
1440    // An lvalue or rvalue of type "array of N T" or "array of unknown
1441    // bound of T" can be converted to an rvalue of type "pointer to
1442    // T" (C++ 4.2p1).
1443    FromType = S.Context.getArrayDecayedType(FromType);
1444
1445    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1446      // This conversion is deprecated. (C++ D.4).
1447      SCS.DeprecatedStringLiteralToCharPtr = true;
1448
1449      // For the purpose of ranking in overload resolution
1450      // (13.3.3.1.1), this conversion is considered an
1451      // array-to-pointer conversion followed by a qualification
1452      // conversion (4.4). (C++ 4.2p2)
1453      SCS.Second = ICK_Identity;
1454      SCS.Third = ICK_Qualification;
1455      SCS.QualificationIncludesObjCLifetime = false;
1456      SCS.setAllToTypes(FromType);
1457      return true;
1458    }
1459  } else if (FromType->isFunctionType() && argIsLValue) {
1460    // Function-to-pointer conversion (C++ 4.3).
1461    SCS.First = ICK_Function_To_Pointer;
1462
1463    // An lvalue of function type T can be converted to an rvalue of
1464    // type "pointer to T." The result is a pointer to the
1465    // function. (C++ 4.3p1).
1466    FromType = S.Context.getPointerType(FromType);
1467  } else {
1468    // We don't require any conversions for the first step.
1469    SCS.First = ICK_Identity;
1470  }
1471  SCS.setToType(0, FromType);
1472
1473  // The second conversion can be an integral promotion, floating
1474  // point promotion, integral conversion, floating point conversion,
1475  // floating-integral conversion, pointer conversion,
1476  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1477  // For overloading in C, this can also be a "compatible-type"
1478  // conversion.
1479  bool IncompatibleObjC = false;
1480  ImplicitConversionKind SecondICK = ICK_Identity;
1481  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1482    // The unqualified versions of the types are the same: there's no
1483    // conversion to do.
1484    SCS.Second = ICK_Identity;
1485  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1486    // Integral promotion (C++ 4.5).
1487    SCS.Second = ICK_Integral_Promotion;
1488    FromType = ToType.getUnqualifiedType();
1489  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1490    // Floating point promotion (C++ 4.6).
1491    SCS.Second = ICK_Floating_Promotion;
1492    FromType = ToType.getUnqualifiedType();
1493  } else if (S.IsComplexPromotion(FromType, ToType)) {
1494    // Complex promotion (Clang extension)
1495    SCS.Second = ICK_Complex_Promotion;
1496    FromType = ToType.getUnqualifiedType();
1497  } else if (ToType->isBooleanType() &&
1498             (FromType->isArithmeticType() ||
1499              FromType->isAnyPointerType() ||
1500              FromType->isBlockPointerType() ||
1501              FromType->isMemberPointerType() ||
1502              FromType->isNullPtrType())) {
1503    // Boolean conversions (C++ 4.12).
1504    SCS.Second = ICK_Boolean_Conversion;
1505    FromType = S.Context.BoolTy;
1506  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1507             ToType->isIntegralType(S.Context)) {
1508    // Integral conversions (C++ 4.7).
1509    SCS.Second = ICK_Integral_Conversion;
1510    FromType = ToType.getUnqualifiedType();
1511  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1512    // Complex conversions (C99 6.3.1.6)
1513    SCS.Second = ICK_Complex_Conversion;
1514    FromType = ToType.getUnqualifiedType();
1515  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1516             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1517    // Complex-real conversions (C99 6.3.1.7)
1518    SCS.Second = ICK_Complex_Real;
1519    FromType = ToType.getUnqualifiedType();
1520  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1521    // Floating point conversions (C++ 4.8).
1522    SCS.Second = ICK_Floating_Conversion;
1523    FromType = ToType.getUnqualifiedType();
1524  } else if ((FromType->isRealFloatingType() &&
1525              ToType->isIntegralType(S.Context)) ||
1526             (FromType->isIntegralOrUnscopedEnumerationType() &&
1527              ToType->isRealFloatingType())) {
1528    // Floating-integral conversions (C++ 4.9).
1529    SCS.Second = ICK_Floating_Integral;
1530    FromType = ToType.getUnqualifiedType();
1531  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1532    SCS.Second = ICK_Block_Pointer_Conversion;
1533  } else if (AllowObjCWritebackConversion &&
1534             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1535    SCS.Second = ICK_Writeback_Conversion;
1536  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1537                                   FromType, IncompatibleObjC)) {
1538    // Pointer conversions (C++ 4.10).
1539    SCS.Second = ICK_Pointer_Conversion;
1540    SCS.IncompatibleObjC = IncompatibleObjC;
1541    FromType = FromType.getUnqualifiedType();
1542  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1543                                         InOverloadResolution, FromType)) {
1544    // Pointer to member conversions (4.11).
1545    SCS.Second = ICK_Pointer_Member;
1546  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1547    SCS.Second = SecondICK;
1548    FromType = ToType.getUnqualifiedType();
1549  } else if (!S.getLangOpts().CPlusPlus &&
1550             S.Context.typesAreCompatible(ToType, FromType)) {
1551    // Compatible conversions (Clang extension for C function overloading)
1552    SCS.Second = ICK_Compatible_Conversion;
1553    FromType = ToType.getUnqualifiedType();
1554  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1555    // Treat a conversion that strips "noreturn" as an identity conversion.
1556    SCS.Second = ICK_NoReturn_Adjustment;
1557  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1558                                             InOverloadResolution,
1559                                             SCS, CStyle)) {
1560    SCS.Second = ICK_TransparentUnionConversion;
1561    FromType = ToType;
1562  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1563                                 CStyle)) {
1564    // tryAtomicConversion has updated the standard conversion sequence
1565    // appropriately.
1566    return true;
1567  } else {
1568    // No second conversion required.
1569    SCS.Second = ICK_Identity;
1570  }
1571  SCS.setToType(1, FromType);
1572
1573  QualType CanonFrom;
1574  QualType CanonTo;
1575  // The third conversion can be a qualification conversion (C++ 4p1).
1576  bool ObjCLifetimeConversion;
1577  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1578                                  ObjCLifetimeConversion)) {
1579    SCS.Third = ICK_Qualification;
1580    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1581    FromType = ToType;
1582    CanonFrom = S.Context.getCanonicalType(FromType);
1583    CanonTo = S.Context.getCanonicalType(ToType);
1584  } else {
1585    // No conversion required
1586    SCS.Third = ICK_Identity;
1587
1588    // C++ [over.best.ics]p6:
1589    //   [...] Any difference in top-level cv-qualification is
1590    //   subsumed by the initialization itself and does not constitute
1591    //   a conversion. [...]
1592    CanonFrom = S.Context.getCanonicalType(FromType);
1593    CanonTo = S.Context.getCanonicalType(ToType);
1594    if (CanonFrom.getLocalUnqualifiedType()
1595                                       == CanonTo.getLocalUnqualifiedType() &&
1596        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1597         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1598         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1599      FromType = ToType;
1600      CanonFrom = CanonTo;
1601    }
1602  }
1603  SCS.setToType(2, FromType);
1604
1605  // If we have not converted the argument type to the parameter type,
1606  // this is a bad conversion sequence.
1607  if (CanonFrom != CanonTo)
1608    return false;
1609
1610  return true;
1611}
1612
1613static bool
1614IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1615                                     QualType &ToType,
1616                                     bool InOverloadResolution,
1617                                     StandardConversionSequence &SCS,
1618                                     bool CStyle) {
1619
1620  const RecordType *UT = ToType->getAsUnionType();
1621  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1622    return false;
1623  // The field to initialize within the transparent union.
1624  RecordDecl *UD = UT->getDecl();
1625  // It's compatible if the expression matches any of the fields.
1626  for (RecordDecl::field_iterator it = UD->field_begin(),
1627       itend = UD->field_end();
1628       it != itend; ++it) {
1629    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1630                             CStyle, /*ObjCWritebackConversion=*/false)) {
1631      ToType = it->getType();
1632      return true;
1633    }
1634  }
1635  return false;
1636}
1637
1638/// IsIntegralPromotion - Determines whether the conversion from the
1639/// expression From (whose potentially-adjusted type is FromType) to
1640/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1641/// sets PromotedType to the promoted type.
1642bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1643  const BuiltinType *To = ToType->getAs<BuiltinType>();
1644  // All integers are built-in.
1645  if (!To) {
1646    return false;
1647  }
1648
1649  // An rvalue of type char, signed char, unsigned char, short int, or
1650  // unsigned short int can be converted to an rvalue of type int if
1651  // int can represent all the values of the source type; otherwise,
1652  // the source rvalue can be converted to an rvalue of type unsigned
1653  // int (C++ 4.5p1).
1654  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1655      !FromType->isEnumeralType()) {
1656    if (// We can promote any signed, promotable integer type to an int
1657        (FromType->isSignedIntegerType() ||
1658         // We can promote any unsigned integer type whose size is
1659         // less than int to an int.
1660         (!FromType->isSignedIntegerType() &&
1661          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1662      return To->getKind() == BuiltinType::Int;
1663    }
1664
1665    return To->getKind() == BuiltinType::UInt;
1666  }
1667
1668  // C++0x [conv.prom]p3:
1669  //   A prvalue of an unscoped enumeration type whose underlying type is not
1670  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1671  //   following types that can represent all the values of the enumeration
1672  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1673  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1674  //   long long int. If none of the types in that list can represent all the
1675  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1676  //   type can be converted to an rvalue a prvalue of the extended integer type
1677  //   with lowest integer conversion rank (4.13) greater than the rank of long
1678  //   long in which all the values of the enumeration can be represented. If
1679  //   there are two such extended types, the signed one is chosen.
1680  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1681    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1682    // provided for a scoped enumeration.
1683    if (FromEnumType->getDecl()->isScoped())
1684      return false;
1685
1686    // We have already pre-calculated the promotion type, so this is trivial.
1687    if (ToType->isIntegerType() &&
1688        !RequireCompleteType(From->getLocStart(), FromType, 0))
1689      return Context.hasSameUnqualifiedType(ToType,
1690                                FromEnumType->getDecl()->getPromotionType());
1691  }
1692
1693  // C++0x [conv.prom]p2:
1694  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1695  //   to an rvalue a prvalue of the first of the following types that can
1696  //   represent all the values of its underlying type: int, unsigned int,
1697  //   long int, unsigned long int, long long int, or unsigned long long int.
1698  //   If none of the types in that list can represent all the values of its
1699  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1700  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1701  //   type.
1702  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1703      ToType->isIntegerType()) {
1704    // Determine whether the type we're converting from is signed or
1705    // unsigned.
1706    bool FromIsSigned = FromType->isSignedIntegerType();
1707    uint64_t FromSize = Context.getTypeSize(FromType);
1708
1709    // The types we'll try to promote to, in the appropriate
1710    // order. Try each of these types.
1711    QualType PromoteTypes[6] = {
1712      Context.IntTy, Context.UnsignedIntTy,
1713      Context.LongTy, Context.UnsignedLongTy ,
1714      Context.LongLongTy, Context.UnsignedLongLongTy
1715    };
1716    for (int Idx = 0; Idx < 6; ++Idx) {
1717      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1718      if (FromSize < ToSize ||
1719          (FromSize == ToSize &&
1720           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1721        // We found the type that we can promote to. If this is the
1722        // type we wanted, we have a promotion. Otherwise, no
1723        // promotion.
1724        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1725      }
1726    }
1727  }
1728
1729  // An rvalue for an integral bit-field (9.6) can be converted to an
1730  // rvalue of type int if int can represent all the values of the
1731  // bit-field; otherwise, it can be converted to unsigned int if
1732  // unsigned int can represent all the values of the bit-field. If
1733  // the bit-field is larger yet, no integral promotion applies to
1734  // it. If the bit-field has an enumerated type, it is treated as any
1735  // other value of that type for promotion purposes (C++ 4.5p3).
1736  // FIXME: We should delay checking of bit-fields until we actually perform the
1737  // conversion.
1738  using llvm::APSInt;
1739  if (From)
1740    if (FieldDecl *MemberDecl = From->getBitField()) {
1741      APSInt BitWidth;
1742      if (FromType->isIntegralType(Context) &&
1743          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1744        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1745        ToSize = Context.getTypeSize(ToType);
1746
1747        // Are we promoting to an int from a bitfield that fits in an int?
1748        if (BitWidth < ToSize ||
1749            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1750          return To->getKind() == BuiltinType::Int;
1751        }
1752
1753        // Are we promoting to an unsigned int from an unsigned bitfield
1754        // that fits into an unsigned int?
1755        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1756          return To->getKind() == BuiltinType::UInt;
1757        }
1758
1759        return false;
1760      }
1761    }
1762
1763  // An rvalue of type bool can be converted to an rvalue of type int,
1764  // with false becoming zero and true becoming one (C++ 4.5p4).
1765  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1766    return true;
1767  }
1768
1769  return false;
1770}
1771
1772/// IsFloatingPointPromotion - Determines whether the conversion from
1773/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1774/// returns true and sets PromotedType to the promoted type.
1775bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1776  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1777    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1778      /// An rvalue of type float can be converted to an rvalue of type
1779      /// double. (C++ 4.6p1).
1780      if (FromBuiltin->getKind() == BuiltinType::Float &&
1781          ToBuiltin->getKind() == BuiltinType::Double)
1782        return true;
1783
1784      // C99 6.3.1.5p1:
1785      //   When a float is promoted to double or long double, or a
1786      //   double is promoted to long double [...].
1787      if (!getLangOpts().CPlusPlus &&
1788          (FromBuiltin->getKind() == BuiltinType::Float ||
1789           FromBuiltin->getKind() == BuiltinType::Double) &&
1790          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1791        return true;
1792
1793      // Half can be promoted to float.
1794      if (FromBuiltin->getKind() == BuiltinType::Half &&
1795          ToBuiltin->getKind() == BuiltinType::Float)
1796        return true;
1797    }
1798
1799  return false;
1800}
1801
1802/// \brief Determine if a conversion is a complex promotion.
1803///
1804/// A complex promotion is defined as a complex -> complex conversion
1805/// where the conversion between the underlying real types is a
1806/// floating-point or integral promotion.
1807bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1808  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1809  if (!FromComplex)
1810    return false;
1811
1812  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1813  if (!ToComplex)
1814    return false;
1815
1816  return IsFloatingPointPromotion(FromComplex->getElementType(),
1817                                  ToComplex->getElementType()) ||
1818    IsIntegralPromotion(0, FromComplex->getElementType(),
1819                        ToComplex->getElementType());
1820}
1821
1822/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1823/// the pointer type FromPtr to a pointer to type ToPointee, with the
1824/// same type qualifiers as FromPtr has on its pointee type. ToType,
1825/// if non-empty, will be a pointer to ToType that may or may not have
1826/// the right set of qualifiers on its pointee.
1827///
1828static QualType
1829BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1830                                   QualType ToPointee, QualType ToType,
1831                                   ASTContext &Context,
1832                                   bool StripObjCLifetime = false) {
1833  assert((FromPtr->getTypeClass() == Type::Pointer ||
1834          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1835         "Invalid similarly-qualified pointer type");
1836
1837  /// Conversions to 'id' subsume cv-qualifier conversions.
1838  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1839    return ToType.getUnqualifiedType();
1840
1841  QualType CanonFromPointee
1842    = Context.getCanonicalType(FromPtr->getPointeeType());
1843  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1844  Qualifiers Quals = CanonFromPointee.getQualifiers();
1845
1846  if (StripObjCLifetime)
1847    Quals.removeObjCLifetime();
1848
1849  // Exact qualifier match -> return the pointer type we're converting to.
1850  if (CanonToPointee.getLocalQualifiers() == Quals) {
1851    // ToType is exactly what we need. Return it.
1852    if (!ToType.isNull())
1853      return ToType.getUnqualifiedType();
1854
1855    // Build a pointer to ToPointee. It has the right qualifiers
1856    // already.
1857    if (isa<ObjCObjectPointerType>(ToType))
1858      return Context.getObjCObjectPointerType(ToPointee);
1859    return Context.getPointerType(ToPointee);
1860  }
1861
1862  // Just build a canonical type that has the right qualifiers.
1863  QualType QualifiedCanonToPointee
1864    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1865
1866  if (isa<ObjCObjectPointerType>(ToType))
1867    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1868  return Context.getPointerType(QualifiedCanonToPointee);
1869}
1870
1871static bool isNullPointerConstantForConversion(Expr *Expr,
1872                                               bool InOverloadResolution,
1873                                               ASTContext &Context) {
1874  // Handle value-dependent integral null pointer constants correctly.
1875  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1876  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1877      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1878    return !InOverloadResolution;
1879
1880  return Expr->isNullPointerConstant(Context,
1881                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1882                                        : Expr::NPC_ValueDependentIsNull);
1883}
1884
1885/// IsPointerConversion - Determines whether the conversion of the
1886/// expression From, which has the (possibly adjusted) type FromType,
1887/// can be converted to the type ToType via a pointer conversion (C++
1888/// 4.10). If so, returns true and places the converted type (that
1889/// might differ from ToType in its cv-qualifiers at some level) into
1890/// ConvertedType.
1891///
1892/// This routine also supports conversions to and from block pointers
1893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1894/// pointers to interfaces. FIXME: Once we've determined the
1895/// appropriate overloading rules for Objective-C, we may want to
1896/// split the Objective-C checks into a different routine; however,
1897/// GCC seems to consider all of these conversions to be pointer
1898/// conversions, so for now they live here. IncompatibleObjC will be
1899/// set if the conversion is an allowed Objective-C conversion that
1900/// should result in a warning.
1901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1902                               bool InOverloadResolution,
1903                               QualType& ConvertedType,
1904                               bool &IncompatibleObjC) {
1905  IncompatibleObjC = false;
1906  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1907                              IncompatibleObjC))
1908    return true;
1909
1910  // Conversion from a null pointer constant to any Objective-C pointer type.
1911  if (ToType->isObjCObjectPointerType() &&
1912      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1913    ConvertedType = ToType;
1914    return true;
1915  }
1916
1917  // Blocks: Block pointers can be converted to void*.
1918  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1919      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1920    ConvertedType = ToType;
1921    return true;
1922  }
1923  // Blocks: A null pointer constant can be converted to a block
1924  // pointer type.
1925  if (ToType->isBlockPointerType() &&
1926      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1927    ConvertedType = ToType;
1928    return true;
1929  }
1930
1931  // If the left-hand-side is nullptr_t, the right side can be a null
1932  // pointer constant.
1933  if (ToType->isNullPtrType() &&
1934      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1935    ConvertedType = ToType;
1936    return true;
1937  }
1938
1939  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1940  if (!ToTypePtr)
1941    return false;
1942
1943  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1944  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1945    ConvertedType = ToType;
1946    return true;
1947  }
1948
1949  // Beyond this point, both types need to be pointers
1950  // , including objective-c pointers.
1951  QualType ToPointeeType = ToTypePtr->getPointeeType();
1952  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1953      !getLangOpts().ObjCAutoRefCount) {
1954    ConvertedType = BuildSimilarlyQualifiedPointerType(
1955                                      FromType->getAs<ObjCObjectPointerType>(),
1956                                                       ToPointeeType,
1957                                                       ToType, Context);
1958    return true;
1959  }
1960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1961  if (!FromTypePtr)
1962    return false;
1963
1964  QualType FromPointeeType = FromTypePtr->getPointeeType();
1965
1966  // If the unqualified pointee types are the same, this can't be a
1967  // pointer conversion, so don't do all of the work below.
1968  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1969    return false;
1970
1971  // An rvalue of type "pointer to cv T," where T is an object type,
1972  // can be converted to an rvalue of type "pointer to cv void" (C++
1973  // 4.10p2).
1974  if (FromPointeeType->isIncompleteOrObjectType() &&
1975      ToPointeeType->isVoidType()) {
1976    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1977                                                       ToPointeeType,
1978                                                       ToType, Context,
1979                                                   /*StripObjCLifetime=*/true);
1980    return true;
1981  }
1982
1983  // MSVC allows implicit function to void* type conversion.
1984  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
1985      ToPointeeType->isVoidType()) {
1986    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1987                                                       ToPointeeType,
1988                                                       ToType, Context);
1989    return true;
1990  }
1991
1992  // When we're overloading in C, we allow a special kind of pointer
1993  // conversion for compatible-but-not-identical pointee types.
1994  if (!getLangOpts().CPlusPlus &&
1995      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1996    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1997                                                       ToPointeeType,
1998                                                       ToType, Context);
1999    return true;
2000  }
2001
2002  // C++ [conv.ptr]p3:
2003  //
2004  //   An rvalue of type "pointer to cv D," where D is a class type,
2005  //   can be converted to an rvalue of type "pointer to cv B," where
2006  //   B is a base class (clause 10) of D. If B is an inaccessible
2007  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2008  //   necessitates this conversion is ill-formed. The result of the
2009  //   conversion is a pointer to the base class sub-object of the
2010  //   derived class object. The null pointer value is converted to
2011  //   the null pointer value of the destination type.
2012  //
2013  // Note that we do not check for ambiguity or inaccessibility
2014  // here. That is handled by CheckPointerConversion.
2015  if (getLangOpts().CPlusPlus &&
2016      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2017      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2018      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2019      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2020    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2021                                                       ToPointeeType,
2022                                                       ToType, Context);
2023    return true;
2024  }
2025
2026  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2027      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2028    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2029                                                       ToPointeeType,
2030                                                       ToType, Context);
2031    return true;
2032  }
2033
2034  return false;
2035}
2036
2037/// \brief Adopt the given qualifiers for the given type.
2038static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2039  Qualifiers TQs = T.getQualifiers();
2040
2041  // Check whether qualifiers already match.
2042  if (TQs == Qs)
2043    return T;
2044
2045  if (Qs.compatiblyIncludes(TQs))
2046    return Context.getQualifiedType(T, Qs);
2047
2048  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2049}
2050
2051/// isObjCPointerConversion - Determines whether this is an
2052/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2053/// with the same arguments and return values.
2054bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2055                                   QualType& ConvertedType,
2056                                   bool &IncompatibleObjC) {
2057  if (!getLangOpts().ObjC1)
2058    return false;
2059
2060  // The set of qualifiers on the type we're converting from.
2061  Qualifiers FromQualifiers = FromType.getQualifiers();
2062
2063  // First, we handle all conversions on ObjC object pointer types.
2064  const ObjCObjectPointerType* ToObjCPtr =
2065    ToType->getAs<ObjCObjectPointerType>();
2066  const ObjCObjectPointerType *FromObjCPtr =
2067    FromType->getAs<ObjCObjectPointerType>();
2068
2069  if (ToObjCPtr && FromObjCPtr) {
2070    // If the pointee types are the same (ignoring qualifications),
2071    // then this is not a pointer conversion.
2072    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2073                                       FromObjCPtr->getPointeeType()))
2074      return false;
2075
2076    // Check for compatible
2077    // Objective C++: We're able to convert between "id" or "Class" and a
2078    // pointer to any interface (in both directions).
2079    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2080      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2081      return true;
2082    }
2083    // Conversions with Objective-C's id<...>.
2084    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2085         ToObjCPtr->isObjCQualifiedIdType()) &&
2086        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2087                                                  /*compare=*/false)) {
2088      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2089      return true;
2090    }
2091    // Objective C++: We're able to convert from a pointer to an
2092    // interface to a pointer to a different interface.
2093    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2094      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2095      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2096      if (getLangOpts().CPlusPlus && LHS && RHS &&
2097          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2098                                                FromObjCPtr->getPointeeType()))
2099        return false;
2100      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2101                                                   ToObjCPtr->getPointeeType(),
2102                                                         ToType, Context);
2103      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2104      return true;
2105    }
2106
2107    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2108      // Okay: this is some kind of implicit downcast of Objective-C
2109      // interfaces, which is permitted. However, we're going to
2110      // complain about it.
2111      IncompatibleObjC = true;
2112      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2113                                                   ToObjCPtr->getPointeeType(),
2114                                                         ToType, Context);
2115      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2116      return true;
2117    }
2118  }
2119  // Beyond this point, both types need to be C pointers or block pointers.
2120  QualType ToPointeeType;
2121  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2122    ToPointeeType = ToCPtr->getPointeeType();
2123  else if (const BlockPointerType *ToBlockPtr =
2124            ToType->getAs<BlockPointerType>()) {
2125    // Objective C++: We're able to convert from a pointer to any object
2126    // to a block pointer type.
2127    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2128      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2129      return true;
2130    }
2131    ToPointeeType = ToBlockPtr->getPointeeType();
2132  }
2133  else if (FromType->getAs<BlockPointerType>() &&
2134           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2135    // Objective C++: We're able to convert from a block pointer type to a
2136    // pointer to any object.
2137    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2138    return true;
2139  }
2140  else
2141    return false;
2142
2143  QualType FromPointeeType;
2144  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2145    FromPointeeType = FromCPtr->getPointeeType();
2146  else if (const BlockPointerType *FromBlockPtr =
2147           FromType->getAs<BlockPointerType>())
2148    FromPointeeType = FromBlockPtr->getPointeeType();
2149  else
2150    return false;
2151
2152  // If we have pointers to pointers, recursively check whether this
2153  // is an Objective-C conversion.
2154  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2155      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2156                              IncompatibleObjC)) {
2157    // We always complain about this conversion.
2158    IncompatibleObjC = true;
2159    ConvertedType = Context.getPointerType(ConvertedType);
2160    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2161    return true;
2162  }
2163  // Allow conversion of pointee being objective-c pointer to another one;
2164  // as in I* to id.
2165  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2166      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2167      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2168                              IncompatibleObjC)) {
2169
2170    ConvertedType = Context.getPointerType(ConvertedType);
2171    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2172    return true;
2173  }
2174
2175  // If we have pointers to functions or blocks, check whether the only
2176  // differences in the argument and result types are in Objective-C
2177  // pointer conversions. If so, we permit the conversion (but
2178  // complain about it).
2179  const FunctionProtoType *FromFunctionType
2180    = FromPointeeType->getAs<FunctionProtoType>();
2181  const FunctionProtoType *ToFunctionType
2182    = ToPointeeType->getAs<FunctionProtoType>();
2183  if (FromFunctionType && ToFunctionType) {
2184    // If the function types are exactly the same, this isn't an
2185    // Objective-C pointer conversion.
2186    if (Context.getCanonicalType(FromPointeeType)
2187          == Context.getCanonicalType(ToPointeeType))
2188      return false;
2189
2190    // Perform the quick checks that will tell us whether these
2191    // function types are obviously different.
2192    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2193        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2194        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2195      return false;
2196
2197    bool HasObjCConversion = false;
2198    if (Context.getCanonicalType(FromFunctionType->getResultType())
2199          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2200      // Okay, the types match exactly. Nothing to do.
2201    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2202                                       ToFunctionType->getResultType(),
2203                                       ConvertedType, IncompatibleObjC)) {
2204      // Okay, we have an Objective-C pointer conversion.
2205      HasObjCConversion = true;
2206    } else {
2207      // Function types are too different. Abort.
2208      return false;
2209    }
2210
2211    // Check argument types.
2212    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2213         ArgIdx != NumArgs; ++ArgIdx) {
2214      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2215      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2216      if (Context.getCanonicalType(FromArgType)
2217            == Context.getCanonicalType(ToArgType)) {
2218        // Okay, the types match exactly. Nothing to do.
2219      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2220                                         ConvertedType, IncompatibleObjC)) {
2221        // Okay, we have an Objective-C pointer conversion.
2222        HasObjCConversion = true;
2223      } else {
2224        // Argument types are too different. Abort.
2225        return false;
2226      }
2227    }
2228
2229    if (HasObjCConversion) {
2230      // We had an Objective-C conversion. Allow this pointer
2231      // conversion, but complain about it.
2232      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2233      IncompatibleObjC = true;
2234      return true;
2235    }
2236  }
2237
2238  return false;
2239}
2240
2241/// \brief Determine whether this is an Objective-C writeback conversion,
2242/// used for parameter passing when performing automatic reference counting.
2243///
2244/// \param FromType The type we're converting form.
2245///
2246/// \param ToType The type we're converting to.
2247///
2248/// \param ConvertedType The type that will be produced after applying
2249/// this conversion.
2250bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2251                                     QualType &ConvertedType) {
2252  if (!getLangOpts().ObjCAutoRefCount ||
2253      Context.hasSameUnqualifiedType(FromType, ToType))
2254    return false;
2255
2256  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2257  QualType ToPointee;
2258  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2259    ToPointee = ToPointer->getPointeeType();
2260  else
2261    return false;
2262
2263  Qualifiers ToQuals = ToPointee.getQualifiers();
2264  if (!ToPointee->isObjCLifetimeType() ||
2265      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2266      !ToQuals.withoutObjCLifetime().empty())
2267    return false;
2268
2269  // Argument must be a pointer to __strong to __weak.
2270  QualType FromPointee;
2271  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2272    FromPointee = FromPointer->getPointeeType();
2273  else
2274    return false;
2275
2276  Qualifiers FromQuals = FromPointee.getQualifiers();
2277  if (!FromPointee->isObjCLifetimeType() ||
2278      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2279       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2280    return false;
2281
2282  // Make sure that we have compatible qualifiers.
2283  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2284  if (!ToQuals.compatiblyIncludes(FromQuals))
2285    return false;
2286
2287  // Remove qualifiers from the pointee type we're converting from; they
2288  // aren't used in the compatibility check belong, and we'll be adding back
2289  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2290  FromPointee = FromPointee.getUnqualifiedType();
2291
2292  // The unqualified form of the pointee types must be compatible.
2293  ToPointee = ToPointee.getUnqualifiedType();
2294  bool IncompatibleObjC;
2295  if (Context.typesAreCompatible(FromPointee, ToPointee))
2296    FromPointee = ToPointee;
2297  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2298                                    IncompatibleObjC))
2299    return false;
2300
2301  /// \brief Construct the type we're converting to, which is a pointer to
2302  /// __autoreleasing pointee.
2303  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2304  ConvertedType = Context.getPointerType(FromPointee);
2305  return true;
2306}
2307
2308bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2309                                    QualType& ConvertedType) {
2310  QualType ToPointeeType;
2311  if (const BlockPointerType *ToBlockPtr =
2312        ToType->getAs<BlockPointerType>())
2313    ToPointeeType = ToBlockPtr->getPointeeType();
2314  else
2315    return false;
2316
2317  QualType FromPointeeType;
2318  if (const BlockPointerType *FromBlockPtr =
2319      FromType->getAs<BlockPointerType>())
2320    FromPointeeType = FromBlockPtr->getPointeeType();
2321  else
2322    return false;
2323  // We have pointer to blocks, check whether the only
2324  // differences in the argument and result types are in Objective-C
2325  // pointer conversions. If so, we permit the conversion.
2326
2327  const FunctionProtoType *FromFunctionType
2328    = FromPointeeType->getAs<FunctionProtoType>();
2329  const FunctionProtoType *ToFunctionType
2330    = ToPointeeType->getAs<FunctionProtoType>();
2331
2332  if (!FromFunctionType || !ToFunctionType)
2333    return false;
2334
2335  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2336    return true;
2337
2338  // Perform the quick checks that will tell us whether these
2339  // function types are obviously different.
2340  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2341      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2342    return false;
2343
2344  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2345  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2346  if (FromEInfo != ToEInfo)
2347    return false;
2348
2349  bool IncompatibleObjC = false;
2350  if (Context.hasSameType(FromFunctionType->getResultType(),
2351                          ToFunctionType->getResultType())) {
2352    // Okay, the types match exactly. Nothing to do.
2353  } else {
2354    QualType RHS = FromFunctionType->getResultType();
2355    QualType LHS = ToFunctionType->getResultType();
2356    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2357        !RHS.hasQualifiers() && LHS.hasQualifiers())
2358       LHS = LHS.getUnqualifiedType();
2359
2360     if (Context.hasSameType(RHS,LHS)) {
2361       // OK exact match.
2362     } else if (isObjCPointerConversion(RHS, LHS,
2363                                        ConvertedType, IncompatibleObjC)) {
2364     if (IncompatibleObjC)
2365       return false;
2366     // Okay, we have an Objective-C pointer conversion.
2367     }
2368     else
2369       return false;
2370   }
2371
2372   // Check argument types.
2373   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2374        ArgIdx != NumArgs; ++ArgIdx) {
2375     IncompatibleObjC = false;
2376     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2377     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2378     if (Context.hasSameType(FromArgType, ToArgType)) {
2379       // Okay, the types match exactly. Nothing to do.
2380     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2381                                        ConvertedType, IncompatibleObjC)) {
2382       if (IncompatibleObjC)
2383         return false;
2384       // Okay, we have an Objective-C pointer conversion.
2385     } else
2386       // Argument types are too different. Abort.
2387       return false;
2388   }
2389   if (LangOpts.ObjCAutoRefCount &&
2390       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2391                                                    ToFunctionType))
2392     return false;
2393
2394   ConvertedType = ToType;
2395   return true;
2396}
2397
2398enum {
2399  ft_default,
2400  ft_different_class,
2401  ft_parameter_arity,
2402  ft_parameter_mismatch,
2403  ft_return_type,
2404  ft_qualifer_mismatch
2405};
2406
2407/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2408/// function types.  Catches different number of parameter, mismatch in
2409/// parameter types, and different return types.
2410void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2411                                      QualType FromType, QualType ToType) {
2412  // If either type is not valid, include no extra info.
2413  if (FromType.isNull() || ToType.isNull()) {
2414    PDiag << ft_default;
2415    return;
2416  }
2417
2418  // Get the function type from the pointers.
2419  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2420    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2421                            *ToMember = ToType->getAs<MemberPointerType>();
2422    if (FromMember->getClass() != ToMember->getClass()) {
2423      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2424            << QualType(FromMember->getClass(), 0);
2425      return;
2426    }
2427    FromType = FromMember->getPointeeType();
2428    ToType = ToMember->getPointeeType();
2429  }
2430
2431  if (FromType->isPointerType())
2432    FromType = FromType->getPointeeType();
2433  if (ToType->isPointerType())
2434    ToType = ToType->getPointeeType();
2435
2436  // Remove references.
2437  FromType = FromType.getNonReferenceType();
2438  ToType = ToType.getNonReferenceType();
2439
2440  // Don't print extra info for non-specialized template functions.
2441  if (FromType->isInstantiationDependentType() &&
2442      !FromType->getAs<TemplateSpecializationType>()) {
2443    PDiag << ft_default;
2444    return;
2445  }
2446
2447  // No extra info for same types.
2448  if (Context.hasSameType(FromType, ToType)) {
2449    PDiag << ft_default;
2450    return;
2451  }
2452
2453  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2454                          *ToFunction = ToType->getAs<FunctionProtoType>();
2455
2456  // Both types need to be function types.
2457  if (!FromFunction || !ToFunction) {
2458    PDiag << ft_default;
2459    return;
2460  }
2461
2462  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2463    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2464          << FromFunction->getNumArgs();
2465    return;
2466  }
2467
2468  // Handle different parameter types.
2469  unsigned ArgPos;
2470  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2471    PDiag << ft_parameter_mismatch << ArgPos + 1
2472          << ToFunction->getArgType(ArgPos)
2473          << FromFunction->getArgType(ArgPos);
2474    return;
2475  }
2476
2477  // Handle different return type.
2478  if (!Context.hasSameType(FromFunction->getResultType(),
2479                           ToFunction->getResultType())) {
2480    PDiag << ft_return_type << ToFunction->getResultType()
2481          << FromFunction->getResultType();
2482    return;
2483  }
2484
2485  unsigned FromQuals = FromFunction->getTypeQuals(),
2486           ToQuals = ToFunction->getTypeQuals();
2487  if (FromQuals != ToQuals) {
2488    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2489    return;
2490  }
2491
2492  // Unable to find a difference, so add no extra info.
2493  PDiag << ft_default;
2494}
2495
2496/// FunctionArgTypesAreEqual - This routine checks two function proto types
2497/// for equality of their argument types. Caller has already checked that
2498/// they have same number of arguments. This routine assumes that Objective-C
2499/// pointer types which only differ in their protocol qualifiers are equal.
2500/// If the parameters are different, ArgPos will have the the parameter index
2501/// of the first different parameter.
2502bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2503                                    const FunctionProtoType *NewType,
2504                                    unsigned *ArgPos) {
2505  if (!getLangOpts().ObjC1) {
2506    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2507         N = NewType->arg_type_begin(),
2508         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2509      if (!Context.hasSameType(*O, *N)) {
2510        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2511        return false;
2512      }
2513    }
2514    return true;
2515  }
2516
2517  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2518       N = NewType->arg_type_begin(),
2519       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2520    QualType ToType = (*O);
2521    QualType FromType = (*N);
2522    if (!Context.hasSameType(ToType, FromType)) {
2523      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2524        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2525          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2526               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2527              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2528               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2529            continue;
2530      }
2531      else if (const ObjCObjectPointerType *PTTo =
2532                 ToType->getAs<ObjCObjectPointerType>()) {
2533        if (const ObjCObjectPointerType *PTFr =
2534              FromType->getAs<ObjCObjectPointerType>())
2535          if (Context.hasSameUnqualifiedType(
2536                PTTo->getObjectType()->getBaseType(),
2537                PTFr->getObjectType()->getBaseType()))
2538            continue;
2539      }
2540      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2541      return false;
2542    }
2543  }
2544  return true;
2545}
2546
2547/// CheckPointerConversion - Check the pointer conversion from the
2548/// expression From to the type ToType. This routine checks for
2549/// ambiguous or inaccessible derived-to-base pointer
2550/// conversions for which IsPointerConversion has already returned
2551/// true. It returns true and produces a diagnostic if there was an
2552/// error, or returns false otherwise.
2553bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2554                                  CastKind &Kind,
2555                                  CXXCastPath& BasePath,
2556                                  bool IgnoreBaseAccess) {
2557  QualType FromType = From->getType();
2558  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2559
2560  Kind = CK_BitCast;
2561
2562  if (!IsCStyleOrFunctionalCast &&
2563      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2564      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2565    DiagRuntimeBehavior(From->getExprLoc(), From,
2566                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2567                          << ToType << From->getSourceRange());
2568
2569  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2570    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2571      QualType FromPointeeType = FromPtrType->getPointeeType(),
2572               ToPointeeType   = ToPtrType->getPointeeType();
2573
2574      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2575          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2576        // We must have a derived-to-base conversion. Check an
2577        // ambiguous or inaccessible conversion.
2578        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2579                                         From->getExprLoc(),
2580                                         From->getSourceRange(), &BasePath,
2581                                         IgnoreBaseAccess))
2582          return true;
2583
2584        // The conversion was successful.
2585        Kind = CK_DerivedToBase;
2586      }
2587    }
2588  } else if (const ObjCObjectPointerType *ToPtrType =
2589               ToType->getAs<ObjCObjectPointerType>()) {
2590    if (const ObjCObjectPointerType *FromPtrType =
2591          FromType->getAs<ObjCObjectPointerType>()) {
2592      // Objective-C++ conversions are always okay.
2593      // FIXME: We should have a different class of conversions for the
2594      // Objective-C++ implicit conversions.
2595      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2596        return false;
2597    } else if (FromType->isBlockPointerType()) {
2598      Kind = CK_BlockPointerToObjCPointerCast;
2599    } else {
2600      Kind = CK_CPointerToObjCPointerCast;
2601    }
2602  } else if (ToType->isBlockPointerType()) {
2603    if (!FromType->isBlockPointerType())
2604      Kind = CK_AnyPointerToBlockPointerCast;
2605  }
2606
2607  // We shouldn't fall into this case unless it's valid for other
2608  // reasons.
2609  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2610    Kind = CK_NullToPointer;
2611
2612  return false;
2613}
2614
2615/// IsMemberPointerConversion - Determines whether the conversion of the
2616/// expression From, which has the (possibly adjusted) type FromType, can be
2617/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2618/// If so, returns true and places the converted type (that might differ from
2619/// ToType in its cv-qualifiers at some level) into ConvertedType.
2620bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2621                                     QualType ToType,
2622                                     bool InOverloadResolution,
2623                                     QualType &ConvertedType) {
2624  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2625  if (!ToTypePtr)
2626    return false;
2627
2628  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2629  if (From->isNullPointerConstant(Context,
2630                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2631                                        : Expr::NPC_ValueDependentIsNull)) {
2632    ConvertedType = ToType;
2633    return true;
2634  }
2635
2636  // Otherwise, both types have to be member pointers.
2637  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2638  if (!FromTypePtr)
2639    return false;
2640
2641  // A pointer to member of B can be converted to a pointer to member of D,
2642  // where D is derived from B (C++ 4.11p2).
2643  QualType FromClass(FromTypePtr->getClass(), 0);
2644  QualType ToClass(ToTypePtr->getClass(), 0);
2645
2646  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2647      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2648      IsDerivedFrom(ToClass, FromClass)) {
2649    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2650                                                 ToClass.getTypePtr());
2651    return true;
2652  }
2653
2654  return false;
2655}
2656
2657/// CheckMemberPointerConversion - Check the member pointer conversion from the
2658/// expression From to the type ToType. This routine checks for ambiguous or
2659/// virtual or inaccessible base-to-derived member pointer conversions
2660/// for which IsMemberPointerConversion has already returned true. It returns
2661/// true and produces a diagnostic if there was an error, or returns false
2662/// otherwise.
2663bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2664                                        CastKind &Kind,
2665                                        CXXCastPath &BasePath,
2666                                        bool IgnoreBaseAccess) {
2667  QualType FromType = From->getType();
2668  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2669  if (!FromPtrType) {
2670    // This must be a null pointer to member pointer conversion
2671    assert(From->isNullPointerConstant(Context,
2672                                       Expr::NPC_ValueDependentIsNull) &&
2673           "Expr must be null pointer constant!");
2674    Kind = CK_NullToMemberPointer;
2675    return false;
2676  }
2677
2678  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2679  assert(ToPtrType && "No member pointer cast has a target type "
2680                      "that is not a member pointer.");
2681
2682  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2683  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2684
2685  // FIXME: What about dependent types?
2686  assert(FromClass->isRecordType() && "Pointer into non-class.");
2687  assert(ToClass->isRecordType() && "Pointer into non-class.");
2688
2689  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2690                     /*DetectVirtual=*/true);
2691  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2692  assert(DerivationOkay &&
2693         "Should not have been called if derivation isn't OK.");
2694  (void)DerivationOkay;
2695
2696  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2697                                  getUnqualifiedType())) {
2698    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2699    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2700      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2701    return true;
2702  }
2703
2704  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2705    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2706      << FromClass << ToClass << QualType(VBase, 0)
2707      << From->getSourceRange();
2708    return true;
2709  }
2710
2711  if (!IgnoreBaseAccess)
2712    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2713                         Paths.front(),
2714                         diag::err_downcast_from_inaccessible_base);
2715
2716  // Must be a base to derived member conversion.
2717  BuildBasePathArray(Paths, BasePath);
2718  Kind = CK_BaseToDerivedMemberPointer;
2719  return false;
2720}
2721
2722/// IsQualificationConversion - Determines whether the conversion from
2723/// an rvalue of type FromType to ToType is a qualification conversion
2724/// (C++ 4.4).
2725///
2726/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2727/// when the qualification conversion involves a change in the Objective-C
2728/// object lifetime.
2729bool
2730Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2731                                bool CStyle, bool &ObjCLifetimeConversion) {
2732  FromType = Context.getCanonicalType(FromType);
2733  ToType = Context.getCanonicalType(ToType);
2734  ObjCLifetimeConversion = false;
2735
2736  // If FromType and ToType are the same type, this is not a
2737  // qualification conversion.
2738  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2739    return false;
2740
2741  // (C++ 4.4p4):
2742  //   A conversion can add cv-qualifiers at levels other than the first
2743  //   in multi-level pointers, subject to the following rules: [...]
2744  bool PreviousToQualsIncludeConst = true;
2745  bool UnwrappedAnyPointer = false;
2746  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2747    // Within each iteration of the loop, we check the qualifiers to
2748    // determine if this still looks like a qualification
2749    // conversion. Then, if all is well, we unwrap one more level of
2750    // pointers or pointers-to-members and do it all again
2751    // until there are no more pointers or pointers-to-members left to
2752    // unwrap.
2753    UnwrappedAnyPointer = true;
2754
2755    Qualifiers FromQuals = FromType.getQualifiers();
2756    Qualifiers ToQuals = ToType.getQualifiers();
2757
2758    // Objective-C ARC:
2759    //   Check Objective-C lifetime conversions.
2760    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2761        UnwrappedAnyPointer) {
2762      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2763        ObjCLifetimeConversion = true;
2764        FromQuals.removeObjCLifetime();
2765        ToQuals.removeObjCLifetime();
2766      } else {
2767        // Qualification conversions cannot cast between different
2768        // Objective-C lifetime qualifiers.
2769        return false;
2770      }
2771    }
2772
2773    // Allow addition/removal of GC attributes but not changing GC attributes.
2774    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2775        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2776      FromQuals.removeObjCGCAttr();
2777      ToQuals.removeObjCGCAttr();
2778    }
2779
2780    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2781    //      2,j, and similarly for volatile.
2782    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2783      return false;
2784
2785    //   -- if the cv 1,j and cv 2,j are different, then const is in
2786    //      every cv for 0 < k < j.
2787    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2788        && !PreviousToQualsIncludeConst)
2789      return false;
2790
2791    // Keep track of whether all prior cv-qualifiers in the "to" type
2792    // include const.
2793    PreviousToQualsIncludeConst
2794      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2795  }
2796
2797  // We are left with FromType and ToType being the pointee types
2798  // after unwrapping the original FromType and ToType the same number
2799  // of types. If we unwrapped any pointers, and if FromType and
2800  // ToType have the same unqualified type (since we checked
2801  // qualifiers above), then this is a qualification conversion.
2802  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2803}
2804
2805/// \brief - Determine whether this is a conversion from a scalar type to an
2806/// atomic type.
2807///
2808/// If successful, updates \c SCS's second and third steps in the conversion
2809/// sequence to finish the conversion.
2810static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2811                                bool InOverloadResolution,
2812                                StandardConversionSequence &SCS,
2813                                bool CStyle) {
2814  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2815  if (!ToAtomic)
2816    return false;
2817
2818  StandardConversionSequence InnerSCS;
2819  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2820                            InOverloadResolution, InnerSCS,
2821                            CStyle, /*AllowObjCWritebackConversion=*/false))
2822    return false;
2823
2824  SCS.Second = InnerSCS.Second;
2825  SCS.setToType(1, InnerSCS.getToType(1));
2826  SCS.Third = InnerSCS.Third;
2827  SCS.QualificationIncludesObjCLifetime
2828    = InnerSCS.QualificationIncludesObjCLifetime;
2829  SCS.setToType(2, InnerSCS.getToType(2));
2830  return true;
2831}
2832
2833static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2834                                              CXXConstructorDecl *Constructor,
2835                                              QualType Type) {
2836  const FunctionProtoType *CtorType =
2837      Constructor->getType()->getAs<FunctionProtoType>();
2838  if (CtorType->getNumArgs() > 0) {
2839    QualType FirstArg = CtorType->getArgType(0);
2840    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2841      return true;
2842  }
2843  return false;
2844}
2845
2846static OverloadingResult
2847IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2848                                       CXXRecordDecl *To,
2849                                       UserDefinedConversionSequence &User,
2850                                       OverloadCandidateSet &CandidateSet,
2851                                       bool AllowExplicit) {
2852  DeclContext::lookup_iterator Con, ConEnd;
2853  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
2854       Con != ConEnd; ++Con) {
2855    NamedDecl *D = *Con;
2856    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2857
2858    // Find the constructor (which may be a template).
2859    CXXConstructorDecl *Constructor = 0;
2860    FunctionTemplateDecl *ConstructorTmpl
2861      = dyn_cast<FunctionTemplateDecl>(D);
2862    if (ConstructorTmpl)
2863      Constructor
2864        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2865    else
2866      Constructor = cast<CXXConstructorDecl>(D);
2867
2868    bool Usable = !Constructor->isInvalidDecl() &&
2869                  S.isInitListConstructor(Constructor) &&
2870                  (AllowExplicit || !Constructor->isExplicit());
2871    if (Usable) {
2872      // If the first argument is (a reference to) the target type,
2873      // suppress conversions.
2874      bool SuppressUserConversions =
2875          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2876      if (ConstructorTmpl)
2877        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2878                                       /*ExplicitArgs*/ 0,
2879                                       From, CandidateSet,
2880                                       SuppressUserConversions);
2881      else
2882        S.AddOverloadCandidate(Constructor, FoundDecl,
2883                               From, CandidateSet,
2884                               SuppressUserConversions);
2885    }
2886  }
2887
2888  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2889
2890  OverloadCandidateSet::iterator Best;
2891  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2892  case OR_Success: {
2893    // Record the standard conversion we used and the conversion function.
2894    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2895    S.MarkFunctionReferenced(From->getLocStart(), Constructor);
2896
2897    QualType ThisType = Constructor->getThisType(S.Context);
2898    // Initializer lists don't have conversions as such.
2899    User.Before.setAsIdentityConversion();
2900    User.HadMultipleCandidates = HadMultipleCandidates;
2901    User.ConversionFunction = Constructor;
2902    User.FoundConversionFunction = Best->FoundDecl;
2903    User.After.setAsIdentityConversion();
2904    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2905    User.After.setAllToTypes(ToType);
2906    return OR_Success;
2907  }
2908
2909  case OR_No_Viable_Function:
2910    return OR_No_Viable_Function;
2911  case OR_Deleted:
2912    return OR_Deleted;
2913  case OR_Ambiguous:
2914    return OR_Ambiguous;
2915  }
2916
2917  llvm_unreachable("Invalid OverloadResult!");
2918}
2919
2920/// Determines whether there is a user-defined conversion sequence
2921/// (C++ [over.ics.user]) that converts expression From to the type
2922/// ToType. If such a conversion exists, User will contain the
2923/// user-defined conversion sequence that performs such a conversion
2924/// and this routine will return true. Otherwise, this routine returns
2925/// false and User is unspecified.
2926///
2927/// \param AllowExplicit  true if the conversion should consider C++0x
2928/// "explicit" conversion functions as well as non-explicit conversion
2929/// functions (C++0x [class.conv.fct]p2).
2930static OverloadingResult
2931IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2932                        UserDefinedConversionSequence &User,
2933                        OverloadCandidateSet &CandidateSet,
2934                        bool AllowExplicit) {
2935  // Whether we will only visit constructors.
2936  bool ConstructorsOnly = false;
2937
2938  // If the type we are conversion to is a class type, enumerate its
2939  // constructors.
2940  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2941    // C++ [over.match.ctor]p1:
2942    //   When objects of class type are direct-initialized (8.5), or
2943    //   copy-initialized from an expression of the same or a
2944    //   derived class type (8.5), overload resolution selects the
2945    //   constructor. [...] For copy-initialization, the candidate
2946    //   functions are all the converting constructors (12.3.1) of
2947    //   that class. The argument list is the expression-list within
2948    //   the parentheses of the initializer.
2949    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2950        (From->getType()->getAs<RecordType>() &&
2951         S.IsDerivedFrom(From->getType(), ToType)))
2952      ConstructorsOnly = true;
2953
2954    S.RequireCompleteType(From->getLocStart(), ToType, 0);
2955    // RequireCompleteType may have returned true due to some invalid decl
2956    // during template instantiation, but ToType may be complete enough now
2957    // to try to recover.
2958    if (ToType->isIncompleteType()) {
2959      // We're not going to find any constructors.
2960    } else if (CXXRecordDecl *ToRecordDecl
2961                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2962
2963      Expr **Args = &From;
2964      unsigned NumArgs = 1;
2965      bool ListInitializing = false;
2966      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2967        // But first, see if there is an init-list-contructor that will work.
2968        OverloadingResult Result = IsInitializerListConstructorConversion(
2969            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
2970        if (Result != OR_No_Viable_Function)
2971          return Result;
2972        // Never mind.
2973        CandidateSet.clear();
2974
2975        // If we're list-initializing, we pass the individual elements as
2976        // arguments, not the entire list.
2977        Args = InitList->getInits();
2978        NumArgs = InitList->getNumInits();
2979        ListInitializing = true;
2980      }
2981
2982      DeclContext::lookup_iterator Con, ConEnd;
2983      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2984           Con != ConEnd; ++Con) {
2985        NamedDecl *D = *Con;
2986        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2987
2988        // Find the constructor (which may be a template).
2989        CXXConstructorDecl *Constructor = 0;
2990        FunctionTemplateDecl *ConstructorTmpl
2991          = dyn_cast<FunctionTemplateDecl>(D);
2992        if (ConstructorTmpl)
2993          Constructor
2994            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2995        else
2996          Constructor = cast<CXXConstructorDecl>(D);
2997
2998        bool Usable = !Constructor->isInvalidDecl();
2999        if (ListInitializing)
3000          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3001        else
3002          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3003        if (Usable) {
3004          bool SuppressUserConversions = !ConstructorsOnly;
3005          if (SuppressUserConversions && ListInitializing) {
3006            SuppressUserConversions = false;
3007            if (NumArgs == 1) {
3008              // If the first argument is (a reference to) the target type,
3009              // suppress conversions.
3010              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3011                                                S.Context, Constructor, ToType);
3012            }
3013          }
3014          if (ConstructorTmpl)
3015            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3016                                           /*ExplicitArgs*/ 0,
3017                                           llvm::makeArrayRef(Args, NumArgs),
3018                                           CandidateSet, SuppressUserConversions);
3019          else
3020            // Allow one user-defined conversion when user specifies a
3021            // From->ToType conversion via an static cast (c-style, etc).
3022            S.AddOverloadCandidate(Constructor, FoundDecl,
3023                                   llvm::makeArrayRef(Args, NumArgs),
3024                                   CandidateSet, SuppressUserConversions);
3025        }
3026      }
3027    }
3028  }
3029
3030  // Enumerate conversion functions, if we're allowed to.
3031  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3032  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3033    // No conversion functions from incomplete types.
3034  } else if (const RecordType *FromRecordType
3035                                   = From->getType()->getAs<RecordType>()) {
3036    if (CXXRecordDecl *FromRecordDecl
3037         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3038      // Add all of the conversion functions as candidates.
3039      const UnresolvedSetImpl *Conversions
3040        = FromRecordDecl->getVisibleConversionFunctions();
3041      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3042             E = Conversions->end(); I != E; ++I) {
3043        DeclAccessPair FoundDecl = I.getPair();
3044        NamedDecl *D = FoundDecl.getDecl();
3045        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3046        if (isa<UsingShadowDecl>(D))
3047          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3048
3049        CXXConversionDecl *Conv;
3050        FunctionTemplateDecl *ConvTemplate;
3051        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3052          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3053        else
3054          Conv = cast<CXXConversionDecl>(D);
3055
3056        if (AllowExplicit || !Conv->isExplicit()) {
3057          if (ConvTemplate)
3058            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3059                                             ActingContext, From, ToType,
3060                                             CandidateSet);
3061          else
3062            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3063                                     From, ToType, CandidateSet);
3064        }
3065      }
3066    }
3067  }
3068
3069  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3070
3071  OverloadCandidateSet::iterator Best;
3072  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3073  case OR_Success:
3074    // Record the standard conversion we used and the conversion function.
3075    if (CXXConstructorDecl *Constructor
3076          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3077      S.MarkFunctionReferenced(From->getLocStart(), Constructor);
3078
3079      // C++ [over.ics.user]p1:
3080      //   If the user-defined conversion is specified by a
3081      //   constructor (12.3.1), the initial standard conversion
3082      //   sequence converts the source type to the type required by
3083      //   the argument of the constructor.
3084      //
3085      QualType ThisType = Constructor->getThisType(S.Context);
3086      if (isa<InitListExpr>(From)) {
3087        // Initializer lists don't have conversions as such.
3088        User.Before.setAsIdentityConversion();
3089      } else {
3090        if (Best->Conversions[0].isEllipsis())
3091          User.EllipsisConversion = true;
3092        else {
3093          User.Before = Best->Conversions[0].Standard;
3094          User.EllipsisConversion = false;
3095        }
3096      }
3097      User.HadMultipleCandidates = HadMultipleCandidates;
3098      User.ConversionFunction = Constructor;
3099      User.FoundConversionFunction = Best->FoundDecl;
3100      User.After.setAsIdentityConversion();
3101      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3102      User.After.setAllToTypes(ToType);
3103      return OR_Success;
3104    }
3105    if (CXXConversionDecl *Conversion
3106                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3107      S.MarkFunctionReferenced(From->getLocStart(), Conversion);
3108
3109      // C++ [over.ics.user]p1:
3110      //
3111      //   [...] If the user-defined conversion is specified by a
3112      //   conversion function (12.3.2), the initial standard
3113      //   conversion sequence converts the source type to the
3114      //   implicit object parameter of the conversion function.
3115      User.Before = Best->Conversions[0].Standard;
3116      User.HadMultipleCandidates = HadMultipleCandidates;
3117      User.ConversionFunction = Conversion;
3118      User.FoundConversionFunction = Best->FoundDecl;
3119      User.EllipsisConversion = false;
3120
3121      // C++ [over.ics.user]p2:
3122      //   The second standard conversion sequence converts the
3123      //   result of the user-defined conversion to the target type
3124      //   for the sequence. Since an implicit conversion sequence
3125      //   is an initialization, the special rules for
3126      //   initialization by user-defined conversion apply when
3127      //   selecting the best user-defined conversion for a
3128      //   user-defined conversion sequence (see 13.3.3 and
3129      //   13.3.3.1).
3130      User.After = Best->FinalConversion;
3131      return OR_Success;
3132    }
3133    llvm_unreachable("Not a constructor or conversion function?");
3134
3135  case OR_No_Viable_Function:
3136    return OR_No_Viable_Function;
3137  case OR_Deleted:
3138    // No conversion here! We're done.
3139    return OR_Deleted;
3140
3141  case OR_Ambiguous:
3142    return OR_Ambiguous;
3143  }
3144
3145  llvm_unreachable("Invalid OverloadResult!");
3146}
3147
3148bool
3149Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3150  ImplicitConversionSequence ICS;
3151  OverloadCandidateSet CandidateSet(From->getExprLoc());
3152  OverloadingResult OvResult =
3153    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3154                            CandidateSet, false);
3155  if (OvResult == OR_Ambiguous)
3156    Diag(From->getLocStart(),
3157         diag::err_typecheck_ambiguous_condition)
3158          << From->getType() << ToType << From->getSourceRange();
3159  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
3160    Diag(From->getLocStart(),
3161         diag::err_typecheck_nonviable_condition)
3162    << From->getType() << ToType << From->getSourceRange();
3163  else
3164    return false;
3165  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3166  return true;
3167}
3168
3169/// \brief Compare the user-defined conversion functions or constructors
3170/// of two user-defined conversion sequences to determine whether any ordering
3171/// is possible.
3172static ImplicitConversionSequence::CompareKind
3173compareConversionFunctions(Sema &S,
3174                           FunctionDecl *Function1,
3175                           FunctionDecl *Function2) {
3176  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
3177    return ImplicitConversionSequence::Indistinguishable;
3178
3179  // Objective-C++:
3180  //   If both conversion functions are implicitly-declared conversions from
3181  //   a lambda closure type to a function pointer and a block pointer,
3182  //   respectively, always prefer the conversion to a function pointer,
3183  //   because the function pointer is more lightweight and is more likely
3184  //   to keep code working.
3185  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3186  if (!Conv1)
3187    return ImplicitConversionSequence::Indistinguishable;
3188
3189  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3190  if (!Conv2)
3191    return ImplicitConversionSequence::Indistinguishable;
3192
3193  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3194    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3195    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3196    if (Block1 != Block2)
3197      return Block1? ImplicitConversionSequence::Worse
3198                   : ImplicitConversionSequence::Better;
3199  }
3200
3201  return ImplicitConversionSequence::Indistinguishable;
3202}
3203
3204/// CompareImplicitConversionSequences - Compare two implicit
3205/// conversion sequences to determine whether one is better than the
3206/// other or if they are indistinguishable (C++ 13.3.3.2).
3207static ImplicitConversionSequence::CompareKind
3208CompareImplicitConversionSequences(Sema &S,
3209                                   const ImplicitConversionSequence& ICS1,
3210                                   const ImplicitConversionSequence& ICS2)
3211{
3212  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3213  // conversion sequences (as defined in 13.3.3.1)
3214  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3215  //      conversion sequence than a user-defined conversion sequence or
3216  //      an ellipsis conversion sequence, and
3217  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3218  //      conversion sequence than an ellipsis conversion sequence
3219  //      (13.3.3.1.3).
3220  //
3221  // C++0x [over.best.ics]p10:
3222  //   For the purpose of ranking implicit conversion sequences as
3223  //   described in 13.3.3.2, the ambiguous conversion sequence is
3224  //   treated as a user-defined sequence that is indistinguishable
3225  //   from any other user-defined conversion sequence.
3226  if (ICS1.getKindRank() < ICS2.getKindRank())
3227    return ImplicitConversionSequence::Better;
3228  if (ICS2.getKindRank() < ICS1.getKindRank())
3229    return ImplicitConversionSequence::Worse;
3230
3231  // The following checks require both conversion sequences to be of
3232  // the same kind.
3233  if (ICS1.getKind() != ICS2.getKind())
3234    return ImplicitConversionSequence::Indistinguishable;
3235
3236  ImplicitConversionSequence::CompareKind Result =
3237      ImplicitConversionSequence::Indistinguishable;
3238
3239  // Two implicit conversion sequences of the same form are
3240  // indistinguishable conversion sequences unless one of the
3241  // following rules apply: (C++ 13.3.3.2p3):
3242  if (ICS1.isStandard())
3243    Result = CompareStandardConversionSequences(S,
3244                                                ICS1.Standard, ICS2.Standard);
3245  else if (ICS1.isUserDefined()) {
3246    // User-defined conversion sequence U1 is a better conversion
3247    // sequence than another user-defined conversion sequence U2 if
3248    // they contain the same user-defined conversion function or
3249    // constructor and if the second standard conversion sequence of
3250    // U1 is better than the second standard conversion sequence of
3251    // U2 (C++ 13.3.3.2p3).
3252    if (ICS1.UserDefined.ConversionFunction ==
3253          ICS2.UserDefined.ConversionFunction)
3254      Result = CompareStandardConversionSequences(S,
3255                                                  ICS1.UserDefined.After,
3256                                                  ICS2.UserDefined.After);
3257    else
3258      Result = compareConversionFunctions(S,
3259                                          ICS1.UserDefined.ConversionFunction,
3260                                          ICS2.UserDefined.ConversionFunction);
3261  }
3262
3263  // List-initialization sequence L1 is a better conversion sequence than
3264  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3265  // for some X and L2 does not.
3266  if (Result == ImplicitConversionSequence::Indistinguishable &&
3267      !ICS1.isBad() &&
3268      ICS1.isListInitializationSequence() &&
3269      ICS2.isListInitializationSequence()) {
3270    if (ICS1.isStdInitializerListElement() &&
3271        !ICS2.isStdInitializerListElement())
3272      return ImplicitConversionSequence::Better;
3273    if (!ICS1.isStdInitializerListElement() &&
3274        ICS2.isStdInitializerListElement())
3275      return ImplicitConversionSequence::Worse;
3276  }
3277
3278  return Result;
3279}
3280
3281static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3282  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3283    Qualifiers Quals;
3284    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3285    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3286  }
3287
3288  return Context.hasSameUnqualifiedType(T1, T2);
3289}
3290
3291// Per 13.3.3.2p3, compare the given standard conversion sequences to
3292// determine if one is a proper subset of the other.
3293static ImplicitConversionSequence::CompareKind
3294compareStandardConversionSubsets(ASTContext &Context,
3295                                 const StandardConversionSequence& SCS1,
3296                                 const StandardConversionSequence& SCS2) {
3297  ImplicitConversionSequence::CompareKind Result
3298    = ImplicitConversionSequence::Indistinguishable;
3299
3300  // the identity conversion sequence is considered to be a subsequence of
3301  // any non-identity conversion sequence
3302  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3303    return ImplicitConversionSequence::Better;
3304  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3305    return ImplicitConversionSequence::Worse;
3306
3307  if (SCS1.Second != SCS2.Second) {
3308    if (SCS1.Second == ICK_Identity)
3309      Result = ImplicitConversionSequence::Better;
3310    else if (SCS2.Second == ICK_Identity)
3311      Result = ImplicitConversionSequence::Worse;
3312    else
3313      return ImplicitConversionSequence::Indistinguishable;
3314  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3315    return ImplicitConversionSequence::Indistinguishable;
3316
3317  if (SCS1.Third == SCS2.Third) {
3318    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3319                             : ImplicitConversionSequence::Indistinguishable;
3320  }
3321
3322  if (SCS1.Third == ICK_Identity)
3323    return Result == ImplicitConversionSequence::Worse
3324             ? ImplicitConversionSequence::Indistinguishable
3325             : ImplicitConversionSequence::Better;
3326
3327  if (SCS2.Third == ICK_Identity)
3328    return Result == ImplicitConversionSequence::Better
3329             ? ImplicitConversionSequence::Indistinguishable
3330             : ImplicitConversionSequence::Worse;
3331
3332  return ImplicitConversionSequence::Indistinguishable;
3333}
3334
3335/// \brief Determine whether one of the given reference bindings is better
3336/// than the other based on what kind of bindings they are.
3337static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3338                                       const StandardConversionSequence &SCS2) {
3339  // C++0x [over.ics.rank]p3b4:
3340  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3341  //      implicit object parameter of a non-static member function declared
3342  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3343  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3344  //      lvalue reference to a function lvalue and S2 binds an rvalue
3345  //      reference*.
3346  //
3347  // FIXME: Rvalue references. We're going rogue with the above edits,
3348  // because the semantics in the current C++0x working paper (N3225 at the
3349  // time of this writing) break the standard definition of std::forward
3350  // and std::reference_wrapper when dealing with references to functions.
3351  // Proposed wording changes submitted to CWG for consideration.
3352  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3353      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3354    return false;
3355
3356  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3357          SCS2.IsLvalueReference) ||
3358         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3359          !SCS2.IsLvalueReference);
3360}
3361
3362/// CompareStandardConversionSequences - Compare two standard
3363/// conversion sequences to determine whether one is better than the
3364/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3365static ImplicitConversionSequence::CompareKind
3366CompareStandardConversionSequences(Sema &S,
3367                                   const StandardConversionSequence& SCS1,
3368                                   const StandardConversionSequence& SCS2)
3369{
3370  // Standard conversion sequence S1 is a better conversion sequence
3371  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3372
3373  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3374  //     sequences in the canonical form defined by 13.3.3.1.1,
3375  //     excluding any Lvalue Transformation; the identity conversion
3376  //     sequence is considered to be a subsequence of any
3377  //     non-identity conversion sequence) or, if not that,
3378  if (ImplicitConversionSequence::CompareKind CK
3379        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3380    return CK;
3381
3382  //  -- the rank of S1 is better than the rank of S2 (by the rules
3383  //     defined below), or, if not that,
3384  ImplicitConversionRank Rank1 = SCS1.getRank();
3385  ImplicitConversionRank Rank2 = SCS2.getRank();
3386  if (Rank1 < Rank2)
3387    return ImplicitConversionSequence::Better;
3388  else if (Rank2 < Rank1)
3389    return ImplicitConversionSequence::Worse;
3390
3391  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3392  // are indistinguishable unless one of the following rules
3393  // applies:
3394
3395  //   A conversion that is not a conversion of a pointer, or
3396  //   pointer to member, to bool is better than another conversion
3397  //   that is such a conversion.
3398  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3399    return SCS2.isPointerConversionToBool()
3400             ? ImplicitConversionSequence::Better
3401             : ImplicitConversionSequence::Worse;
3402
3403  // C++ [over.ics.rank]p4b2:
3404  //
3405  //   If class B is derived directly or indirectly from class A,
3406  //   conversion of B* to A* is better than conversion of B* to
3407  //   void*, and conversion of A* to void* is better than conversion
3408  //   of B* to void*.
3409  bool SCS1ConvertsToVoid
3410    = SCS1.isPointerConversionToVoidPointer(S.Context);
3411  bool SCS2ConvertsToVoid
3412    = SCS2.isPointerConversionToVoidPointer(S.Context);
3413  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3414    // Exactly one of the conversion sequences is a conversion to
3415    // a void pointer; it's the worse conversion.
3416    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3417                              : ImplicitConversionSequence::Worse;
3418  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3419    // Neither conversion sequence converts to a void pointer; compare
3420    // their derived-to-base conversions.
3421    if (ImplicitConversionSequence::CompareKind DerivedCK
3422          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3423      return DerivedCK;
3424  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3425             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3426    // Both conversion sequences are conversions to void
3427    // pointers. Compare the source types to determine if there's an
3428    // inheritance relationship in their sources.
3429    QualType FromType1 = SCS1.getFromType();
3430    QualType FromType2 = SCS2.getFromType();
3431
3432    // Adjust the types we're converting from via the array-to-pointer
3433    // conversion, if we need to.
3434    if (SCS1.First == ICK_Array_To_Pointer)
3435      FromType1 = S.Context.getArrayDecayedType(FromType1);
3436    if (SCS2.First == ICK_Array_To_Pointer)
3437      FromType2 = S.Context.getArrayDecayedType(FromType2);
3438
3439    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3440    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3441
3442    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3443      return ImplicitConversionSequence::Better;
3444    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3445      return ImplicitConversionSequence::Worse;
3446
3447    // Objective-C++: If one interface is more specific than the
3448    // other, it is the better one.
3449    const ObjCObjectPointerType* FromObjCPtr1
3450      = FromType1->getAs<ObjCObjectPointerType>();
3451    const ObjCObjectPointerType* FromObjCPtr2
3452      = FromType2->getAs<ObjCObjectPointerType>();
3453    if (FromObjCPtr1 && FromObjCPtr2) {
3454      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3455                                                          FromObjCPtr2);
3456      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3457                                                           FromObjCPtr1);
3458      if (AssignLeft != AssignRight) {
3459        return AssignLeft? ImplicitConversionSequence::Better
3460                         : ImplicitConversionSequence::Worse;
3461      }
3462    }
3463  }
3464
3465  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3466  // bullet 3).
3467  if (ImplicitConversionSequence::CompareKind QualCK
3468        = CompareQualificationConversions(S, SCS1, SCS2))
3469    return QualCK;
3470
3471  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3472    // Check for a better reference binding based on the kind of bindings.
3473    if (isBetterReferenceBindingKind(SCS1, SCS2))
3474      return ImplicitConversionSequence::Better;
3475    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3476      return ImplicitConversionSequence::Worse;
3477
3478    // C++ [over.ics.rank]p3b4:
3479    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3480    //      which the references refer are the same type except for
3481    //      top-level cv-qualifiers, and the type to which the reference
3482    //      initialized by S2 refers is more cv-qualified than the type
3483    //      to which the reference initialized by S1 refers.
3484    QualType T1 = SCS1.getToType(2);
3485    QualType T2 = SCS2.getToType(2);
3486    T1 = S.Context.getCanonicalType(T1);
3487    T2 = S.Context.getCanonicalType(T2);
3488    Qualifiers T1Quals, T2Quals;
3489    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3490    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3491    if (UnqualT1 == UnqualT2) {
3492      // Objective-C++ ARC: If the references refer to objects with different
3493      // lifetimes, prefer bindings that don't change lifetime.
3494      if (SCS1.ObjCLifetimeConversionBinding !=
3495                                          SCS2.ObjCLifetimeConversionBinding) {
3496        return SCS1.ObjCLifetimeConversionBinding
3497                                           ? ImplicitConversionSequence::Worse
3498                                           : ImplicitConversionSequence::Better;
3499      }
3500
3501      // If the type is an array type, promote the element qualifiers to the
3502      // type for comparison.
3503      if (isa<ArrayType>(T1) && T1Quals)
3504        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3505      if (isa<ArrayType>(T2) && T2Quals)
3506        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3507      if (T2.isMoreQualifiedThan(T1))
3508        return ImplicitConversionSequence::Better;
3509      else if (T1.isMoreQualifiedThan(T2))
3510        return ImplicitConversionSequence::Worse;
3511    }
3512  }
3513
3514  // In Microsoft mode, prefer an integral conversion to a
3515  // floating-to-integral conversion if the integral conversion
3516  // is between types of the same size.
3517  // For example:
3518  // void f(float);
3519  // void f(int);
3520  // int main {
3521  //    long a;
3522  //    f(a);
3523  // }
3524  // Here, MSVC will call f(int) instead of generating a compile error
3525  // as clang will do in standard mode.
3526  if (S.getLangOpts().MicrosoftMode &&
3527      SCS1.Second == ICK_Integral_Conversion &&
3528      SCS2.Second == ICK_Floating_Integral &&
3529      S.Context.getTypeSize(SCS1.getFromType()) ==
3530      S.Context.getTypeSize(SCS1.getToType(2)))
3531    return ImplicitConversionSequence::Better;
3532
3533  return ImplicitConversionSequence::Indistinguishable;
3534}
3535
3536/// CompareQualificationConversions - Compares two standard conversion
3537/// sequences to determine whether they can be ranked based on their
3538/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3539ImplicitConversionSequence::CompareKind
3540CompareQualificationConversions(Sema &S,
3541                                const StandardConversionSequence& SCS1,
3542                                const StandardConversionSequence& SCS2) {
3543  // C++ 13.3.3.2p3:
3544  //  -- S1 and S2 differ only in their qualification conversion and
3545  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3546  //     cv-qualification signature of type T1 is a proper subset of
3547  //     the cv-qualification signature of type T2, and S1 is not the
3548  //     deprecated string literal array-to-pointer conversion (4.2).
3549  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3550      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3551    return ImplicitConversionSequence::Indistinguishable;
3552
3553  // FIXME: the example in the standard doesn't use a qualification
3554  // conversion (!)
3555  QualType T1 = SCS1.getToType(2);
3556  QualType T2 = SCS2.getToType(2);
3557  T1 = S.Context.getCanonicalType(T1);
3558  T2 = S.Context.getCanonicalType(T2);
3559  Qualifiers T1Quals, T2Quals;
3560  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3561  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3562
3563  // If the types are the same, we won't learn anything by unwrapped
3564  // them.
3565  if (UnqualT1 == UnqualT2)
3566    return ImplicitConversionSequence::Indistinguishable;
3567
3568  // If the type is an array type, promote the element qualifiers to the type
3569  // for comparison.
3570  if (isa<ArrayType>(T1) && T1Quals)
3571    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3572  if (isa<ArrayType>(T2) && T2Quals)
3573    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3574
3575  ImplicitConversionSequence::CompareKind Result
3576    = ImplicitConversionSequence::Indistinguishable;
3577
3578  // Objective-C++ ARC:
3579  //   Prefer qualification conversions not involving a change in lifetime
3580  //   to qualification conversions that do not change lifetime.
3581  if (SCS1.QualificationIncludesObjCLifetime !=
3582                                      SCS2.QualificationIncludesObjCLifetime) {
3583    Result = SCS1.QualificationIncludesObjCLifetime
3584               ? ImplicitConversionSequence::Worse
3585               : ImplicitConversionSequence::Better;
3586  }
3587
3588  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3589    // Within each iteration of the loop, we check the qualifiers to
3590    // determine if this still looks like a qualification
3591    // conversion. Then, if all is well, we unwrap one more level of
3592    // pointers or pointers-to-members and do it all again
3593    // until there are no more pointers or pointers-to-members left
3594    // to unwrap. This essentially mimics what
3595    // IsQualificationConversion does, but here we're checking for a
3596    // strict subset of qualifiers.
3597    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3598      // The qualifiers are the same, so this doesn't tell us anything
3599      // about how the sequences rank.
3600      ;
3601    else if (T2.isMoreQualifiedThan(T1)) {
3602      // T1 has fewer qualifiers, so it could be the better sequence.
3603      if (Result == ImplicitConversionSequence::Worse)
3604        // Neither has qualifiers that are a subset of the other's
3605        // qualifiers.
3606        return ImplicitConversionSequence::Indistinguishable;
3607
3608      Result = ImplicitConversionSequence::Better;
3609    } else if (T1.isMoreQualifiedThan(T2)) {
3610      // T2 has fewer qualifiers, so it could be the better sequence.
3611      if (Result == ImplicitConversionSequence::Better)
3612        // Neither has qualifiers that are a subset of the other's
3613        // qualifiers.
3614        return ImplicitConversionSequence::Indistinguishable;
3615
3616      Result = ImplicitConversionSequence::Worse;
3617    } else {
3618      // Qualifiers are disjoint.
3619      return ImplicitConversionSequence::Indistinguishable;
3620    }
3621
3622    // If the types after this point are equivalent, we're done.
3623    if (S.Context.hasSameUnqualifiedType(T1, T2))
3624      break;
3625  }
3626
3627  // Check that the winning standard conversion sequence isn't using
3628  // the deprecated string literal array to pointer conversion.
3629  switch (Result) {
3630  case ImplicitConversionSequence::Better:
3631    if (SCS1.DeprecatedStringLiteralToCharPtr)
3632      Result = ImplicitConversionSequence::Indistinguishable;
3633    break;
3634
3635  case ImplicitConversionSequence::Indistinguishable:
3636    break;
3637
3638  case ImplicitConversionSequence::Worse:
3639    if (SCS2.DeprecatedStringLiteralToCharPtr)
3640      Result = ImplicitConversionSequence::Indistinguishable;
3641    break;
3642  }
3643
3644  return Result;
3645}
3646
3647/// CompareDerivedToBaseConversions - Compares two standard conversion
3648/// sequences to determine whether they can be ranked based on their
3649/// various kinds of derived-to-base conversions (C++
3650/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3651/// conversions between Objective-C interface types.
3652ImplicitConversionSequence::CompareKind
3653CompareDerivedToBaseConversions(Sema &S,
3654                                const StandardConversionSequence& SCS1,
3655                                const StandardConversionSequence& SCS2) {
3656  QualType FromType1 = SCS1.getFromType();
3657  QualType ToType1 = SCS1.getToType(1);
3658  QualType FromType2 = SCS2.getFromType();
3659  QualType ToType2 = SCS2.getToType(1);
3660
3661  // Adjust the types we're converting from via the array-to-pointer
3662  // conversion, if we need to.
3663  if (SCS1.First == ICK_Array_To_Pointer)
3664    FromType1 = S.Context.getArrayDecayedType(FromType1);
3665  if (SCS2.First == ICK_Array_To_Pointer)
3666    FromType2 = S.Context.getArrayDecayedType(FromType2);
3667
3668  // Canonicalize all of the types.
3669  FromType1 = S.Context.getCanonicalType(FromType1);
3670  ToType1 = S.Context.getCanonicalType(ToType1);
3671  FromType2 = S.Context.getCanonicalType(FromType2);
3672  ToType2 = S.Context.getCanonicalType(ToType2);
3673
3674  // C++ [over.ics.rank]p4b3:
3675  //
3676  //   If class B is derived directly or indirectly from class A and
3677  //   class C is derived directly or indirectly from B,
3678  //
3679  // Compare based on pointer conversions.
3680  if (SCS1.Second == ICK_Pointer_Conversion &&
3681      SCS2.Second == ICK_Pointer_Conversion &&
3682      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3683      FromType1->isPointerType() && FromType2->isPointerType() &&
3684      ToType1->isPointerType() && ToType2->isPointerType()) {
3685    QualType FromPointee1
3686      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3687    QualType ToPointee1
3688      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3689    QualType FromPointee2
3690      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3691    QualType ToPointee2
3692      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3693
3694    //   -- conversion of C* to B* is better than conversion of C* to A*,
3695    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3696      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3697        return ImplicitConversionSequence::Better;
3698      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3699        return ImplicitConversionSequence::Worse;
3700    }
3701
3702    //   -- conversion of B* to A* is better than conversion of C* to A*,
3703    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3704      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3705        return ImplicitConversionSequence::Better;
3706      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3707        return ImplicitConversionSequence::Worse;
3708    }
3709  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3710             SCS2.Second == ICK_Pointer_Conversion) {
3711    const ObjCObjectPointerType *FromPtr1
3712      = FromType1->getAs<ObjCObjectPointerType>();
3713    const ObjCObjectPointerType *FromPtr2
3714      = FromType2->getAs<ObjCObjectPointerType>();
3715    const ObjCObjectPointerType *ToPtr1
3716      = ToType1->getAs<ObjCObjectPointerType>();
3717    const ObjCObjectPointerType *ToPtr2
3718      = ToType2->getAs<ObjCObjectPointerType>();
3719
3720    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3721      // Apply the same conversion ranking rules for Objective-C pointer types
3722      // that we do for C++ pointers to class types. However, we employ the
3723      // Objective-C pseudo-subtyping relationship used for assignment of
3724      // Objective-C pointer types.
3725      bool FromAssignLeft
3726        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3727      bool FromAssignRight
3728        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3729      bool ToAssignLeft
3730        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3731      bool ToAssignRight
3732        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3733
3734      // A conversion to an a non-id object pointer type or qualified 'id'
3735      // type is better than a conversion to 'id'.
3736      if (ToPtr1->isObjCIdType() &&
3737          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3738        return ImplicitConversionSequence::Worse;
3739      if (ToPtr2->isObjCIdType() &&
3740          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3741        return ImplicitConversionSequence::Better;
3742
3743      // A conversion to a non-id object pointer type is better than a
3744      // conversion to a qualified 'id' type
3745      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3746        return ImplicitConversionSequence::Worse;
3747      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3748        return ImplicitConversionSequence::Better;
3749
3750      // A conversion to an a non-Class object pointer type or qualified 'Class'
3751      // type is better than a conversion to 'Class'.
3752      if (ToPtr1->isObjCClassType() &&
3753          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3754        return ImplicitConversionSequence::Worse;
3755      if (ToPtr2->isObjCClassType() &&
3756          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3757        return ImplicitConversionSequence::Better;
3758
3759      // A conversion to a non-Class object pointer type is better than a
3760      // conversion to a qualified 'Class' type.
3761      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3762        return ImplicitConversionSequence::Worse;
3763      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3764        return ImplicitConversionSequence::Better;
3765
3766      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3767      if (S.Context.hasSameType(FromType1, FromType2) &&
3768          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3769          (ToAssignLeft != ToAssignRight))
3770        return ToAssignLeft? ImplicitConversionSequence::Worse
3771                           : ImplicitConversionSequence::Better;
3772
3773      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3774      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3775          (FromAssignLeft != FromAssignRight))
3776        return FromAssignLeft? ImplicitConversionSequence::Better
3777        : ImplicitConversionSequence::Worse;
3778    }
3779  }
3780
3781  // Ranking of member-pointer types.
3782  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3783      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3784      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3785    const MemberPointerType * FromMemPointer1 =
3786                                        FromType1->getAs<MemberPointerType>();
3787    const MemberPointerType * ToMemPointer1 =
3788                                          ToType1->getAs<MemberPointerType>();
3789    const MemberPointerType * FromMemPointer2 =
3790                                          FromType2->getAs<MemberPointerType>();
3791    const MemberPointerType * ToMemPointer2 =
3792                                          ToType2->getAs<MemberPointerType>();
3793    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3794    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3795    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3796    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3797    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3798    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3799    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3800    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3801    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3802    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3803      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3804        return ImplicitConversionSequence::Worse;
3805      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3806        return ImplicitConversionSequence::Better;
3807    }
3808    // conversion of B::* to C::* is better than conversion of A::* to C::*
3809    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3810      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3811        return ImplicitConversionSequence::Better;
3812      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3813        return ImplicitConversionSequence::Worse;
3814    }
3815  }
3816
3817  if (SCS1.Second == ICK_Derived_To_Base) {
3818    //   -- conversion of C to B is better than conversion of C to A,
3819    //   -- binding of an expression of type C to a reference of type
3820    //      B& is better than binding an expression of type C to a
3821    //      reference of type A&,
3822    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3823        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3824      if (S.IsDerivedFrom(ToType1, ToType2))
3825        return ImplicitConversionSequence::Better;
3826      else if (S.IsDerivedFrom(ToType2, ToType1))
3827        return ImplicitConversionSequence::Worse;
3828    }
3829
3830    //   -- conversion of B to A is better than conversion of C to A.
3831    //   -- binding of an expression of type B to a reference of type
3832    //      A& is better than binding an expression of type C to a
3833    //      reference of type A&,
3834    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3835        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3836      if (S.IsDerivedFrom(FromType2, FromType1))
3837        return ImplicitConversionSequence::Better;
3838      else if (S.IsDerivedFrom(FromType1, FromType2))
3839        return ImplicitConversionSequence::Worse;
3840    }
3841  }
3842
3843  return ImplicitConversionSequence::Indistinguishable;
3844}
3845
3846/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3847/// determine whether they are reference-related,
3848/// reference-compatible, reference-compatible with added
3849/// qualification, or incompatible, for use in C++ initialization by
3850/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3851/// type, and the first type (T1) is the pointee type of the reference
3852/// type being initialized.
3853Sema::ReferenceCompareResult
3854Sema::CompareReferenceRelationship(SourceLocation Loc,
3855                                   QualType OrigT1, QualType OrigT2,
3856                                   bool &DerivedToBase,
3857                                   bool &ObjCConversion,
3858                                   bool &ObjCLifetimeConversion) {
3859  assert(!OrigT1->isReferenceType() &&
3860    "T1 must be the pointee type of the reference type");
3861  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3862
3863  QualType T1 = Context.getCanonicalType(OrigT1);
3864  QualType T2 = Context.getCanonicalType(OrigT2);
3865  Qualifiers T1Quals, T2Quals;
3866  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3867  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3868
3869  // C++ [dcl.init.ref]p4:
3870  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3871  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3872  //   T1 is a base class of T2.
3873  DerivedToBase = false;
3874  ObjCConversion = false;
3875  ObjCLifetimeConversion = false;
3876  if (UnqualT1 == UnqualT2) {
3877    // Nothing to do.
3878  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3879           IsDerivedFrom(UnqualT2, UnqualT1))
3880    DerivedToBase = true;
3881  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3882           UnqualT2->isObjCObjectOrInterfaceType() &&
3883           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3884    ObjCConversion = true;
3885  else
3886    return Ref_Incompatible;
3887
3888  // At this point, we know that T1 and T2 are reference-related (at
3889  // least).
3890
3891  // If the type is an array type, promote the element qualifiers to the type
3892  // for comparison.
3893  if (isa<ArrayType>(T1) && T1Quals)
3894    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3895  if (isa<ArrayType>(T2) && T2Quals)
3896    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3897
3898  // C++ [dcl.init.ref]p4:
3899  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3900  //   reference-related to T2 and cv1 is the same cv-qualification
3901  //   as, or greater cv-qualification than, cv2. For purposes of
3902  //   overload resolution, cases for which cv1 is greater
3903  //   cv-qualification than cv2 are identified as
3904  //   reference-compatible with added qualification (see 13.3.3.2).
3905  //
3906  // Note that we also require equivalence of Objective-C GC and address-space
3907  // qualifiers when performing these computations, so that e.g., an int in
3908  // address space 1 is not reference-compatible with an int in address
3909  // space 2.
3910  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3911      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3912    T1Quals.removeObjCLifetime();
3913    T2Quals.removeObjCLifetime();
3914    ObjCLifetimeConversion = true;
3915  }
3916
3917  if (T1Quals == T2Quals)
3918    return Ref_Compatible;
3919  else if (T1Quals.compatiblyIncludes(T2Quals))
3920    return Ref_Compatible_With_Added_Qualification;
3921  else
3922    return Ref_Related;
3923}
3924
3925/// \brief Look for a user-defined conversion to an value reference-compatible
3926///        with DeclType. Return true if something definite is found.
3927static bool
3928FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3929                         QualType DeclType, SourceLocation DeclLoc,
3930                         Expr *Init, QualType T2, bool AllowRvalues,
3931                         bool AllowExplicit) {
3932  assert(T2->isRecordType() && "Can only find conversions of record types.");
3933  CXXRecordDecl *T2RecordDecl
3934    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3935
3936  OverloadCandidateSet CandidateSet(DeclLoc);
3937  const UnresolvedSetImpl *Conversions
3938    = T2RecordDecl->getVisibleConversionFunctions();
3939  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3940         E = Conversions->end(); I != E; ++I) {
3941    NamedDecl *D = *I;
3942    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3943    if (isa<UsingShadowDecl>(D))
3944      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3945
3946    FunctionTemplateDecl *ConvTemplate
3947      = dyn_cast<FunctionTemplateDecl>(D);
3948    CXXConversionDecl *Conv;
3949    if (ConvTemplate)
3950      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3951    else
3952      Conv = cast<CXXConversionDecl>(D);
3953
3954    // If this is an explicit conversion, and we're not allowed to consider
3955    // explicit conversions, skip it.
3956    if (!AllowExplicit && Conv->isExplicit())
3957      continue;
3958
3959    if (AllowRvalues) {
3960      bool DerivedToBase = false;
3961      bool ObjCConversion = false;
3962      bool ObjCLifetimeConversion = false;
3963
3964      // If we are initializing an rvalue reference, don't permit conversion
3965      // functions that return lvalues.
3966      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3967        const ReferenceType *RefType
3968          = Conv->getConversionType()->getAs<LValueReferenceType>();
3969        if (RefType && !RefType->getPointeeType()->isFunctionType())
3970          continue;
3971      }
3972
3973      if (!ConvTemplate &&
3974          S.CompareReferenceRelationship(
3975            DeclLoc,
3976            Conv->getConversionType().getNonReferenceType()
3977              .getUnqualifiedType(),
3978            DeclType.getNonReferenceType().getUnqualifiedType(),
3979            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3980          Sema::Ref_Incompatible)
3981        continue;
3982    } else {
3983      // If the conversion function doesn't return a reference type,
3984      // it can't be considered for this conversion. An rvalue reference
3985      // is only acceptable if its referencee is a function type.
3986
3987      const ReferenceType *RefType =
3988        Conv->getConversionType()->getAs<ReferenceType>();
3989      if (!RefType ||
3990          (!RefType->isLValueReferenceType() &&
3991           !RefType->getPointeeType()->isFunctionType()))
3992        continue;
3993    }
3994
3995    if (ConvTemplate)
3996      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3997                                       Init, DeclType, CandidateSet);
3998    else
3999      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4000                               DeclType, CandidateSet);
4001  }
4002
4003  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4004
4005  OverloadCandidateSet::iterator Best;
4006  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4007  case OR_Success:
4008    // C++ [over.ics.ref]p1:
4009    //
4010    //   [...] If the parameter binds directly to the result of
4011    //   applying a conversion function to the argument
4012    //   expression, the implicit conversion sequence is a
4013    //   user-defined conversion sequence (13.3.3.1.2), with the
4014    //   second standard conversion sequence either an identity
4015    //   conversion or, if the conversion function returns an
4016    //   entity of a type that is a derived class of the parameter
4017    //   type, a derived-to-base Conversion.
4018    if (!Best->FinalConversion.DirectBinding)
4019      return false;
4020
4021    if (Best->Function)
4022      S.MarkFunctionReferenced(DeclLoc, Best->Function);
4023    ICS.setUserDefined();
4024    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4025    ICS.UserDefined.After = Best->FinalConversion;
4026    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4027    ICS.UserDefined.ConversionFunction = Best->Function;
4028    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4029    ICS.UserDefined.EllipsisConversion = false;
4030    assert(ICS.UserDefined.After.ReferenceBinding &&
4031           ICS.UserDefined.After.DirectBinding &&
4032           "Expected a direct reference binding!");
4033    return true;
4034
4035  case OR_Ambiguous:
4036    ICS.setAmbiguous();
4037    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4038         Cand != CandidateSet.end(); ++Cand)
4039      if (Cand->Viable)
4040        ICS.Ambiguous.addConversion(Cand->Function);
4041    return true;
4042
4043  case OR_No_Viable_Function:
4044  case OR_Deleted:
4045    // There was no suitable conversion, or we found a deleted
4046    // conversion; continue with other checks.
4047    return false;
4048  }
4049
4050  llvm_unreachable("Invalid OverloadResult!");
4051}
4052
4053/// \brief Compute an implicit conversion sequence for reference
4054/// initialization.
4055static ImplicitConversionSequence
4056TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4057                 SourceLocation DeclLoc,
4058                 bool SuppressUserConversions,
4059                 bool AllowExplicit) {
4060  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4061
4062  // Most paths end in a failed conversion.
4063  ImplicitConversionSequence ICS;
4064  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4065
4066  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4067  QualType T2 = Init->getType();
4068
4069  // If the initializer is the address of an overloaded function, try
4070  // to resolve the overloaded function. If all goes well, T2 is the
4071  // type of the resulting function.
4072  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4073    DeclAccessPair Found;
4074    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4075                                                                false, Found))
4076      T2 = Fn->getType();
4077  }
4078
4079  // Compute some basic properties of the types and the initializer.
4080  bool isRValRef = DeclType->isRValueReferenceType();
4081  bool DerivedToBase = false;
4082  bool ObjCConversion = false;
4083  bool ObjCLifetimeConversion = false;
4084  Expr::Classification InitCategory = Init->Classify(S.Context);
4085  Sema::ReferenceCompareResult RefRelationship
4086    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4087                                     ObjCConversion, ObjCLifetimeConversion);
4088
4089
4090  // C++0x [dcl.init.ref]p5:
4091  //   A reference to type "cv1 T1" is initialized by an expression
4092  //   of type "cv2 T2" as follows:
4093
4094  //     -- If reference is an lvalue reference and the initializer expression
4095  if (!isRValRef) {
4096    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4097    //        reference-compatible with "cv2 T2," or
4098    //
4099    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4100    if (InitCategory.isLValue() &&
4101        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4102      // C++ [over.ics.ref]p1:
4103      //   When a parameter of reference type binds directly (8.5.3)
4104      //   to an argument expression, the implicit conversion sequence
4105      //   is the identity conversion, unless the argument expression
4106      //   has a type that is a derived class of the parameter type,
4107      //   in which case the implicit conversion sequence is a
4108      //   derived-to-base Conversion (13.3.3.1).
4109      ICS.setStandard();
4110      ICS.Standard.First = ICK_Identity;
4111      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4112                         : ObjCConversion? ICK_Compatible_Conversion
4113                         : ICK_Identity;
4114      ICS.Standard.Third = ICK_Identity;
4115      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4116      ICS.Standard.setToType(0, T2);
4117      ICS.Standard.setToType(1, T1);
4118      ICS.Standard.setToType(2, T1);
4119      ICS.Standard.ReferenceBinding = true;
4120      ICS.Standard.DirectBinding = true;
4121      ICS.Standard.IsLvalueReference = !isRValRef;
4122      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4123      ICS.Standard.BindsToRvalue = false;
4124      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4125      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4126      ICS.Standard.CopyConstructor = 0;
4127
4128      // Nothing more to do: the inaccessibility/ambiguity check for
4129      // derived-to-base conversions is suppressed when we're
4130      // computing the implicit conversion sequence (C++
4131      // [over.best.ics]p2).
4132      return ICS;
4133    }
4134
4135    //       -- has a class type (i.e., T2 is a class type), where T1 is
4136    //          not reference-related to T2, and can be implicitly
4137    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4138    //          is reference-compatible with "cv3 T3" 92) (this
4139    //          conversion is selected by enumerating the applicable
4140    //          conversion functions (13.3.1.6) and choosing the best
4141    //          one through overload resolution (13.3)),
4142    if (!SuppressUserConversions && T2->isRecordType() &&
4143        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4144        RefRelationship == Sema::Ref_Incompatible) {
4145      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4146                                   Init, T2, /*AllowRvalues=*/false,
4147                                   AllowExplicit))
4148        return ICS;
4149    }
4150  }
4151
4152  //     -- Otherwise, the reference shall be an lvalue reference to a
4153  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4154  //        shall be an rvalue reference.
4155  //
4156  // We actually handle one oddity of C++ [over.ics.ref] at this
4157  // point, which is that, due to p2 (which short-circuits reference
4158  // binding by only attempting a simple conversion for non-direct
4159  // bindings) and p3's strange wording, we allow a const volatile
4160  // reference to bind to an rvalue. Hence the check for the presence
4161  // of "const" rather than checking for "const" being the only
4162  // qualifier.
4163  // This is also the point where rvalue references and lvalue inits no longer
4164  // go together.
4165  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4166    return ICS;
4167
4168  //       -- If the initializer expression
4169  //
4170  //            -- is an xvalue, class prvalue, array prvalue or function
4171  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4172  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4173      (InitCategory.isXValue() ||
4174      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4175      (InitCategory.isLValue() && T2->isFunctionType()))) {
4176    ICS.setStandard();
4177    ICS.Standard.First = ICK_Identity;
4178    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4179                      : ObjCConversion? ICK_Compatible_Conversion
4180                      : ICK_Identity;
4181    ICS.Standard.Third = ICK_Identity;
4182    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4183    ICS.Standard.setToType(0, T2);
4184    ICS.Standard.setToType(1, T1);
4185    ICS.Standard.setToType(2, T1);
4186    ICS.Standard.ReferenceBinding = true;
4187    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4188    // binding unless we're binding to a class prvalue.
4189    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4190    // allow the use of rvalue references in C++98/03 for the benefit of
4191    // standard library implementors; therefore, we need the xvalue check here.
4192    ICS.Standard.DirectBinding =
4193      S.getLangOpts().CPlusPlus0x ||
4194      (InitCategory.isPRValue() && !T2->isRecordType());
4195    ICS.Standard.IsLvalueReference = !isRValRef;
4196    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4197    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4198    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4199    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4200    ICS.Standard.CopyConstructor = 0;
4201    return ICS;
4202  }
4203
4204  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4205  //               reference-related to T2, and can be implicitly converted to
4206  //               an xvalue, class prvalue, or function lvalue of type
4207  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4208  //               "cv3 T3",
4209  //
4210  //          then the reference is bound to the value of the initializer
4211  //          expression in the first case and to the result of the conversion
4212  //          in the second case (or, in either case, to an appropriate base
4213  //          class subobject).
4214  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4215      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4216      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4217                               Init, T2, /*AllowRvalues=*/true,
4218                               AllowExplicit)) {
4219    // In the second case, if the reference is an rvalue reference
4220    // and the second standard conversion sequence of the
4221    // user-defined conversion sequence includes an lvalue-to-rvalue
4222    // conversion, the program is ill-formed.
4223    if (ICS.isUserDefined() && isRValRef &&
4224        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4225      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4226
4227    return ICS;
4228  }
4229
4230  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4231  //          initialized from the initializer expression using the
4232  //          rules for a non-reference copy initialization (8.5). The
4233  //          reference is then bound to the temporary. If T1 is
4234  //          reference-related to T2, cv1 must be the same
4235  //          cv-qualification as, or greater cv-qualification than,
4236  //          cv2; otherwise, the program is ill-formed.
4237  if (RefRelationship == Sema::Ref_Related) {
4238    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4239    // we would be reference-compatible or reference-compatible with
4240    // added qualification. But that wasn't the case, so the reference
4241    // initialization fails.
4242    //
4243    // Note that we only want to check address spaces and cvr-qualifiers here.
4244    // ObjC GC and lifetime qualifiers aren't important.
4245    Qualifiers T1Quals = T1.getQualifiers();
4246    Qualifiers T2Quals = T2.getQualifiers();
4247    T1Quals.removeObjCGCAttr();
4248    T1Quals.removeObjCLifetime();
4249    T2Quals.removeObjCGCAttr();
4250    T2Quals.removeObjCLifetime();
4251    if (!T1Quals.compatiblyIncludes(T2Quals))
4252      return ICS;
4253  }
4254
4255  // If at least one of the types is a class type, the types are not
4256  // related, and we aren't allowed any user conversions, the
4257  // reference binding fails. This case is important for breaking
4258  // recursion, since TryImplicitConversion below will attempt to
4259  // create a temporary through the use of a copy constructor.
4260  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4261      (T1->isRecordType() || T2->isRecordType()))
4262    return ICS;
4263
4264  // If T1 is reference-related to T2 and the reference is an rvalue
4265  // reference, the initializer expression shall not be an lvalue.
4266  if (RefRelationship >= Sema::Ref_Related &&
4267      isRValRef && Init->Classify(S.Context).isLValue())
4268    return ICS;
4269
4270  // C++ [over.ics.ref]p2:
4271  //   When a parameter of reference type is not bound directly to
4272  //   an argument expression, the conversion sequence is the one
4273  //   required to convert the argument expression to the
4274  //   underlying type of the reference according to
4275  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4276  //   to copy-initializing a temporary of the underlying type with
4277  //   the argument expression. Any difference in top-level
4278  //   cv-qualification is subsumed by the initialization itself
4279  //   and does not constitute a conversion.
4280  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4281                              /*AllowExplicit=*/false,
4282                              /*InOverloadResolution=*/false,
4283                              /*CStyle=*/false,
4284                              /*AllowObjCWritebackConversion=*/false);
4285
4286  // Of course, that's still a reference binding.
4287  if (ICS.isStandard()) {
4288    ICS.Standard.ReferenceBinding = true;
4289    ICS.Standard.IsLvalueReference = !isRValRef;
4290    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4291    ICS.Standard.BindsToRvalue = true;
4292    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4293    ICS.Standard.ObjCLifetimeConversionBinding = false;
4294  } else if (ICS.isUserDefined()) {
4295    // Don't allow rvalue references to bind to lvalues.
4296    if (DeclType->isRValueReferenceType()) {
4297      if (const ReferenceType *RefType
4298            = ICS.UserDefined.ConversionFunction->getResultType()
4299                ->getAs<LValueReferenceType>()) {
4300        if (!RefType->getPointeeType()->isFunctionType()) {
4301          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4302                     DeclType);
4303          return ICS;
4304        }
4305      }
4306    }
4307
4308    ICS.UserDefined.After.ReferenceBinding = true;
4309    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4310    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4311    ICS.UserDefined.After.BindsToRvalue = true;
4312    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4313    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4314  }
4315
4316  return ICS;
4317}
4318
4319static ImplicitConversionSequence
4320TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4321                      bool SuppressUserConversions,
4322                      bool InOverloadResolution,
4323                      bool AllowObjCWritebackConversion,
4324                      bool AllowExplicit = false);
4325
4326/// TryListConversion - Try to copy-initialize a value of type ToType from the
4327/// initializer list From.
4328static ImplicitConversionSequence
4329TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4330                  bool SuppressUserConversions,
4331                  bool InOverloadResolution,
4332                  bool AllowObjCWritebackConversion) {
4333  // C++11 [over.ics.list]p1:
4334  //   When an argument is an initializer list, it is not an expression and
4335  //   special rules apply for converting it to a parameter type.
4336
4337  ImplicitConversionSequence Result;
4338  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4339  Result.setListInitializationSequence();
4340
4341  // We need a complete type for what follows. Incomplete types can never be
4342  // initialized from init lists.
4343  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4344    return Result;
4345
4346  // C++11 [over.ics.list]p2:
4347  //   If the parameter type is std::initializer_list<X> or "array of X" and
4348  //   all the elements can be implicitly converted to X, the implicit
4349  //   conversion sequence is the worst conversion necessary to convert an
4350  //   element of the list to X.
4351  bool toStdInitializerList = false;
4352  QualType X;
4353  if (ToType->isArrayType())
4354    X = S.Context.getBaseElementType(ToType);
4355  else
4356    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4357  if (!X.isNull()) {
4358    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4359      Expr *Init = From->getInit(i);
4360      ImplicitConversionSequence ICS =
4361          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4362                                InOverloadResolution,
4363                                AllowObjCWritebackConversion);
4364      // If a single element isn't convertible, fail.
4365      if (ICS.isBad()) {
4366        Result = ICS;
4367        break;
4368      }
4369      // Otherwise, look for the worst conversion.
4370      if (Result.isBad() ||
4371          CompareImplicitConversionSequences(S, ICS, Result) ==
4372              ImplicitConversionSequence::Worse)
4373        Result = ICS;
4374    }
4375
4376    // For an empty list, we won't have computed any conversion sequence.
4377    // Introduce the identity conversion sequence.
4378    if (From->getNumInits() == 0) {
4379      Result.setStandard();
4380      Result.Standard.setAsIdentityConversion();
4381      Result.Standard.setFromType(ToType);
4382      Result.Standard.setAllToTypes(ToType);
4383    }
4384
4385    Result.setListInitializationSequence();
4386    Result.setStdInitializerListElement(toStdInitializerList);
4387    return Result;
4388  }
4389
4390  // C++11 [over.ics.list]p3:
4391  //   Otherwise, if the parameter is a non-aggregate class X and overload
4392  //   resolution chooses a single best constructor [...] the implicit
4393  //   conversion sequence is a user-defined conversion sequence. If multiple
4394  //   constructors are viable but none is better than the others, the
4395  //   implicit conversion sequence is a user-defined conversion sequence.
4396  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4397    // This function can deal with initializer lists.
4398    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4399                                      /*AllowExplicit=*/false,
4400                                      InOverloadResolution, /*CStyle=*/false,
4401                                      AllowObjCWritebackConversion);
4402    Result.setListInitializationSequence();
4403    return Result;
4404  }
4405
4406  // C++11 [over.ics.list]p4:
4407  //   Otherwise, if the parameter has an aggregate type which can be
4408  //   initialized from the initializer list [...] the implicit conversion
4409  //   sequence is a user-defined conversion sequence.
4410  if (ToType->isAggregateType()) {
4411    // Type is an aggregate, argument is an init list. At this point it comes
4412    // down to checking whether the initialization works.
4413    // FIXME: Find out whether this parameter is consumed or not.
4414    InitializedEntity Entity =
4415        InitializedEntity::InitializeParameter(S.Context, ToType,
4416                                               /*Consumed=*/false);
4417    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4418      Result.setUserDefined();
4419      Result.UserDefined.Before.setAsIdentityConversion();
4420      // Initializer lists don't have a type.
4421      Result.UserDefined.Before.setFromType(QualType());
4422      Result.UserDefined.Before.setAllToTypes(QualType());
4423
4424      Result.UserDefined.After.setAsIdentityConversion();
4425      Result.UserDefined.After.setFromType(ToType);
4426      Result.UserDefined.After.setAllToTypes(ToType);
4427      Result.UserDefined.ConversionFunction = 0;
4428    }
4429    return Result;
4430  }
4431
4432  // C++11 [over.ics.list]p5:
4433  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4434  if (ToType->isReferenceType()) {
4435    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4436    // mention initializer lists in any way. So we go by what list-
4437    // initialization would do and try to extrapolate from that.
4438
4439    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4440
4441    // If the initializer list has a single element that is reference-related
4442    // to the parameter type, we initialize the reference from that.
4443    if (From->getNumInits() == 1) {
4444      Expr *Init = From->getInit(0);
4445
4446      QualType T2 = Init->getType();
4447
4448      // If the initializer is the address of an overloaded function, try
4449      // to resolve the overloaded function. If all goes well, T2 is the
4450      // type of the resulting function.
4451      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4452        DeclAccessPair Found;
4453        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4454                                   Init, ToType, false, Found))
4455          T2 = Fn->getType();
4456      }
4457
4458      // Compute some basic properties of the types and the initializer.
4459      bool dummy1 = false;
4460      bool dummy2 = false;
4461      bool dummy3 = false;
4462      Sema::ReferenceCompareResult RefRelationship
4463        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4464                                         dummy2, dummy3);
4465
4466      if (RefRelationship >= Sema::Ref_Related)
4467        return TryReferenceInit(S, Init, ToType,
4468                                /*FIXME:*/From->getLocStart(),
4469                                SuppressUserConversions,
4470                                /*AllowExplicit=*/false);
4471    }
4472
4473    // Otherwise, we bind the reference to a temporary created from the
4474    // initializer list.
4475    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4476                               InOverloadResolution,
4477                               AllowObjCWritebackConversion);
4478    if (Result.isFailure())
4479      return Result;
4480    assert(!Result.isEllipsis() &&
4481           "Sub-initialization cannot result in ellipsis conversion.");
4482
4483    // Can we even bind to a temporary?
4484    if (ToType->isRValueReferenceType() ||
4485        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4486      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4487                                            Result.UserDefined.After;
4488      SCS.ReferenceBinding = true;
4489      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4490      SCS.BindsToRvalue = true;
4491      SCS.BindsToFunctionLvalue = false;
4492      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4493      SCS.ObjCLifetimeConversionBinding = false;
4494    } else
4495      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4496                    From, ToType);
4497    return Result;
4498  }
4499
4500  // C++11 [over.ics.list]p6:
4501  //   Otherwise, if the parameter type is not a class:
4502  if (!ToType->isRecordType()) {
4503    //    - if the initializer list has one element, the implicit conversion
4504    //      sequence is the one required to convert the element to the
4505    //      parameter type.
4506    unsigned NumInits = From->getNumInits();
4507    if (NumInits == 1)
4508      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4509                                     SuppressUserConversions,
4510                                     InOverloadResolution,
4511                                     AllowObjCWritebackConversion);
4512    //    - if the initializer list has no elements, the implicit conversion
4513    //      sequence is the identity conversion.
4514    else if (NumInits == 0) {
4515      Result.setStandard();
4516      Result.Standard.setAsIdentityConversion();
4517      Result.Standard.setFromType(ToType);
4518      Result.Standard.setAllToTypes(ToType);
4519    }
4520    Result.setListInitializationSequence();
4521    return Result;
4522  }
4523
4524  // C++11 [over.ics.list]p7:
4525  //   In all cases other than those enumerated above, no conversion is possible
4526  return Result;
4527}
4528
4529/// TryCopyInitialization - Try to copy-initialize a value of type
4530/// ToType from the expression From. Return the implicit conversion
4531/// sequence required to pass this argument, which may be a bad
4532/// conversion sequence (meaning that the argument cannot be passed to
4533/// a parameter of this type). If @p SuppressUserConversions, then we
4534/// do not permit any user-defined conversion sequences.
4535static ImplicitConversionSequence
4536TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4537                      bool SuppressUserConversions,
4538                      bool InOverloadResolution,
4539                      bool AllowObjCWritebackConversion,
4540                      bool AllowExplicit) {
4541  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4542    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4543                             InOverloadResolution,AllowObjCWritebackConversion);
4544
4545  if (ToType->isReferenceType())
4546    return TryReferenceInit(S, From, ToType,
4547                            /*FIXME:*/From->getLocStart(),
4548                            SuppressUserConversions,
4549                            AllowExplicit);
4550
4551  return TryImplicitConversion(S, From, ToType,
4552                               SuppressUserConversions,
4553                               /*AllowExplicit=*/false,
4554                               InOverloadResolution,
4555                               /*CStyle=*/false,
4556                               AllowObjCWritebackConversion);
4557}
4558
4559static bool TryCopyInitialization(const CanQualType FromQTy,
4560                                  const CanQualType ToQTy,
4561                                  Sema &S,
4562                                  SourceLocation Loc,
4563                                  ExprValueKind FromVK) {
4564  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4565  ImplicitConversionSequence ICS =
4566    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4567
4568  return !ICS.isBad();
4569}
4570
4571/// TryObjectArgumentInitialization - Try to initialize the object
4572/// parameter of the given member function (@c Method) from the
4573/// expression @p From.
4574static ImplicitConversionSequence
4575TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4576                                Expr::Classification FromClassification,
4577                                CXXMethodDecl *Method,
4578                                CXXRecordDecl *ActingContext) {
4579  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4580  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4581  //                 const volatile object.
4582  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4583    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4584  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4585
4586  // Set up the conversion sequence as a "bad" conversion, to allow us
4587  // to exit early.
4588  ImplicitConversionSequence ICS;
4589
4590  // We need to have an object of class type.
4591  QualType FromType = OrigFromType;
4592  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4593    FromType = PT->getPointeeType();
4594
4595    // When we had a pointer, it's implicitly dereferenced, so we
4596    // better have an lvalue.
4597    assert(FromClassification.isLValue());
4598  }
4599
4600  assert(FromType->isRecordType());
4601
4602  // C++0x [over.match.funcs]p4:
4603  //   For non-static member functions, the type of the implicit object
4604  //   parameter is
4605  //
4606  //     - "lvalue reference to cv X" for functions declared without a
4607  //        ref-qualifier or with the & ref-qualifier
4608  //     - "rvalue reference to cv X" for functions declared with the &&
4609  //        ref-qualifier
4610  //
4611  // where X is the class of which the function is a member and cv is the
4612  // cv-qualification on the member function declaration.
4613  //
4614  // However, when finding an implicit conversion sequence for the argument, we
4615  // are not allowed to create temporaries or perform user-defined conversions
4616  // (C++ [over.match.funcs]p5). We perform a simplified version of
4617  // reference binding here, that allows class rvalues to bind to
4618  // non-constant references.
4619
4620  // First check the qualifiers.
4621  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4622  if (ImplicitParamType.getCVRQualifiers()
4623                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4624      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4625    ICS.setBad(BadConversionSequence::bad_qualifiers,
4626               OrigFromType, ImplicitParamType);
4627    return ICS;
4628  }
4629
4630  // Check that we have either the same type or a derived type. It
4631  // affects the conversion rank.
4632  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4633  ImplicitConversionKind SecondKind;
4634  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4635    SecondKind = ICK_Identity;
4636  } else if (S.IsDerivedFrom(FromType, ClassType))
4637    SecondKind = ICK_Derived_To_Base;
4638  else {
4639    ICS.setBad(BadConversionSequence::unrelated_class,
4640               FromType, ImplicitParamType);
4641    return ICS;
4642  }
4643
4644  // Check the ref-qualifier.
4645  switch (Method->getRefQualifier()) {
4646  case RQ_None:
4647    // Do nothing; we don't care about lvalueness or rvalueness.
4648    break;
4649
4650  case RQ_LValue:
4651    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4652      // non-const lvalue reference cannot bind to an rvalue
4653      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4654                 ImplicitParamType);
4655      return ICS;
4656    }
4657    break;
4658
4659  case RQ_RValue:
4660    if (!FromClassification.isRValue()) {
4661      // rvalue reference cannot bind to an lvalue
4662      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4663                 ImplicitParamType);
4664      return ICS;
4665    }
4666    break;
4667  }
4668
4669  // Success. Mark this as a reference binding.
4670  ICS.setStandard();
4671  ICS.Standard.setAsIdentityConversion();
4672  ICS.Standard.Second = SecondKind;
4673  ICS.Standard.setFromType(FromType);
4674  ICS.Standard.setAllToTypes(ImplicitParamType);
4675  ICS.Standard.ReferenceBinding = true;
4676  ICS.Standard.DirectBinding = true;
4677  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4678  ICS.Standard.BindsToFunctionLvalue = false;
4679  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4680  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4681    = (Method->getRefQualifier() == RQ_None);
4682  return ICS;
4683}
4684
4685/// PerformObjectArgumentInitialization - Perform initialization of
4686/// the implicit object parameter for the given Method with the given
4687/// expression.
4688ExprResult
4689Sema::PerformObjectArgumentInitialization(Expr *From,
4690                                          NestedNameSpecifier *Qualifier,
4691                                          NamedDecl *FoundDecl,
4692                                          CXXMethodDecl *Method) {
4693  QualType FromRecordType, DestType;
4694  QualType ImplicitParamRecordType  =
4695    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4696
4697  Expr::Classification FromClassification;
4698  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4699    FromRecordType = PT->getPointeeType();
4700    DestType = Method->getThisType(Context);
4701    FromClassification = Expr::Classification::makeSimpleLValue();
4702  } else {
4703    FromRecordType = From->getType();
4704    DestType = ImplicitParamRecordType;
4705    FromClassification = From->Classify(Context);
4706  }
4707
4708  // Note that we always use the true parent context when performing
4709  // the actual argument initialization.
4710  ImplicitConversionSequence ICS
4711    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4712                                      Method, Method->getParent());
4713  if (ICS.isBad()) {
4714    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4715      Qualifiers FromQs = FromRecordType.getQualifiers();
4716      Qualifiers ToQs = DestType.getQualifiers();
4717      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4718      if (CVR) {
4719        Diag(From->getLocStart(),
4720             diag::err_member_function_call_bad_cvr)
4721          << Method->getDeclName() << FromRecordType << (CVR - 1)
4722          << From->getSourceRange();
4723        Diag(Method->getLocation(), diag::note_previous_decl)
4724          << Method->getDeclName();
4725        return ExprError();
4726      }
4727    }
4728
4729    return Diag(From->getLocStart(),
4730                diag::err_implicit_object_parameter_init)
4731       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4732  }
4733
4734  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4735    ExprResult FromRes =
4736      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4737    if (FromRes.isInvalid())
4738      return ExprError();
4739    From = FromRes.take();
4740  }
4741
4742  if (!Context.hasSameType(From->getType(), DestType))
4743    From = ImpCastExprToType(From, DestType, CK_NoOp,
4744                             From->getValueKind()).take();
4745  return Owned(From);
4746}
4747
4748/// TryContextuallyConvertToBool - Attempt to contextually convert the
4749/// expression From to bool (C++0x [conv]p3).
4750static ImplicitConversionSequence
4751TryContextuallyConvertToBool(Sema &S, Expr *From) {
4752  // FIXME: This is pretty broken.
4753  return TryImplicitConversion(S, From, S.Context.BoolTy,
4754                               // FIXME: Are these flags correct?
4755                               /*SuppressUserConversions=*/false,
4756                               /*AllowExplicit=*/true,
4757                               /*InOverloadResolution=*/false,
4758                               /*CStyle=*/false,
4759                               /*AllowObjCWritebackConversion=*/false);
4760}
4761
4762/// PerformContextuallyConvertToBool - Perform a contextual conversion
4763/// of the expression From to bool (C++0x [conv]p3).
4764ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4765  if (checkPlaceholderForOverload(*this, From))
4766    return ExprError();
4767
4768  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4769  if (!ICS.isBad())
4770    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4771
4772  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4773    return Diag(From->getLocStart(),
4774                diag::err_typecheck_bool_condition)
4775                  << From->getType() << From->getSourceRange();
4776  return ExprError();
4777}
4778
4779/// Check that the specified conversion is permitted in a converted constant
4780/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4781/// is acceptable.
4782static bool CheckConvertedConstantConversions(Sema &S,
4783                                              StandardConversionSequence &SCS) {
4784  // Since we know that the target type is an integral or unscoped enumeration
4785  // type, most conversion kinds are impossible. All possible First and Third
4786  // conversions are fine.
4787  switch (SCS.Second) {
4788  case ICK_Identity:
4789  case ICK_Integral_Promotion:
4790  case ICK_Integral_Conversion:
4791    return true;
4792
4793  case ICK_Boolean_Conversion:
4794    // Conversion from an integral or unscoped enumeration type to bool is
4795    // classified as ICK_Boolean_Conversion, but it's also an integral
4796    // conversion, so it's permitted in a converted constant expression.
4797    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4798           SCS.getToType(2)->isBooleanType();
4799
4800  case ICK_Floating_Integral:
4801  case ICK_Complex_Real:
4802    return false;
4803
4804  case ICK_Lvalue_To_Rvalue:
4805  case ICK_Array_To_Pointer:
4806  case ICK_Function_To_Pointer:
4807  case ICK_NoReturn_Adjustment:
4808  case ICK_Qualification:
4809  case ICK_Compatible_Conversion:
4810  case ICK_Vector_Conversion:
4811  case ICK_Vector_Splat:
4812  case ICK_Derived_To_Base:
4813  case ICK_Pointer_Conversion:
4814  case ICK_Pointer_Member:
4815  case ICK_Block_Pointer_Conversion:
4816  case ICK_Writeback_Conversion:
4817  case ICK_Floating_Promotion:
4818  case ICK_Complex_Promotion:
4819  case ICK_Complex_Conversion:
4820  case ICK_Floating_Conversion:
4821  case ICK_TransparentUnionConversion:
4822    llvm_unreachable("unexpected second conversion kind");
4823
4824  case ICK_Num_Conversion_Kinds:
4825    break;
4826  }
4827
4828  llvm_unreachable("unknown conversion kind");
4829}
4830
4831/// CheckConvertedConstantExpression - Check that the expression From is a
4832/// converted constant expression of type T, perform the conversion and produce
4833/// the converted expression, per C++11 [expr.const]p3.
4834ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4835                                                  llvm::APSInt &Value,
4836                                                  CCEKind CCE) {
4837  assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4838  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4839
4840  if (checkPlaceholderForOverload(*this, From))
4841    return ExprError();
4842
4843  // C++11 [expr.const]p3 with proposed wording fixes:
4844  //  A converted constant expression of type T is a core constant expression,
4845  //  implicitly converted to a prvalue of type T, where the converted
4846  //  expression is a literal constant expression and the implicit conversion
4847  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4848  //  conversions, integral promotions, and integral conversions other than
4849  //  narrowing conversions.
4850  ImplicitConversionSequence ICS =
4851    TryImplicitConversion(From, T,
4852                          /*SuppressUserConversions=*/false,
4853                          /*AllowExplicit=*/false,
4854                          /*InOverloadResolution=*/false,
4855                          /*CStyle=*/false,
4856                          /*AllowObjcWritebackConversion=*/false);
4857  StandardConversionSequence *SCS = 0;
4858  switch (ICS.getKind()) {
4859  case ImplicitConversionSequence::StandardConversion:
4860    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4861      return Diag(From->getLocStart(),
4862                  diag::err_typecheck_converted_constant_expression_disallowed)
4863               << From->getType() << From->getSourceRange() << T;
4864    SCS = &ICS.Standard;
4865    break;
4866  case ImplicitConversionSequence::UserDefinedConversion:
4867    // We are converting from class type to an integral or enumeration type, so
4868    // the Before sequence must be trivial.
4869    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4870      return Diag(From->getLocStart(),
4871                  diag::err_typecheck_converted_constant_expression_disallowed)
4872               << From->getType() << From->getSourceRange() << T;
4873    SCS = &ICS.UserDefined.After;
4874    break;
4875  case ImplicitConversionSequence::AmbiguousConversion:
4876  case ImplicitConversionSequence::BadConversion:
4877    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4878      return Diag(From->getLocStart(),
4879                  diag::err_typecheck_converted_constant_expression)
4880                    << From->getType() << From->getSourceRange() << T;
4881    return ExprError();
4882
4883  case ImplicitConversionSequence::EllipsisConversion:
4884    llvm_unreachable("ellipsis conversion in converted constant expression");
4885  }
4886
4887  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4888  if (Result.isInvalid())
4889    return Result;
4890
4891  // Check for a narrowing implicit conversion.
4892  APValue PreNarrowingValue;
4893  QualType PreNarrowingType;
4894  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4895                                PreNarrowingType)) {
4896  case NK_Variable_Narrowing:
4897    // Implicit conversion to a narrower type, and the value is not a constant
4898    // expression. We'll diagnose this in a moment.
4899  case NK_Not_Narrowing:
4900    break;
4901
4902  case NK_Constant_Narrowing:
4903    Diag(From->getLocStart(),
4904         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4905                             diag::err_cce_narrowing)
4906      << CCE << /*Constant*/1
4907      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4908    break;
4909
4910  case NK_Type_Narrowing:
4911    Diag(From->getLocStart(),
4912         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4913                             diag::err_cce_narrowing)
4914      << CCE << /*Constant*/0 << From->getType() << T;
4915    break;
4916  }
4917
4918  // Check the expression is a constant expression.
4919  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4920  Expr::EvalResult Eval;
4921  Eval.Diag = &Notes;
4922
4923  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4924    // The expression can't be folded, so we can't keep it at this position in
4925    // the AST.
4926    Result = ExprError();
4927  } else {
4928    Value = Eval.Val.getInt();
4929
4930    if (Notes.empty()) {
4931      // It's a constant expression.
4932      return Result;
4933    }
4934  }
4935
4936  // It's not a constant expression. Produce an appropriate diagnostic.
4937  if (Notes.size() == 1 &&
4938      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4939    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4940  else {
4941    Diag(From->getLocStart(), diag::err_expr_not_cce)
4942      << CCE << From->getSourceRange();
4943    for (unsigned I = 0; I < Notes.size(); ++I)
4944      Diag(Notes[I].first, Notes[I].second);
4945  }
4946  return Result;
4947}
4948
4949/// dropPointerConversions - If the given standard conversion sequence
4950/// involves any pointer conversions, remove them.  This may change
4951/// the result type of the conversion sequence.
4952static void dropPointerConversion(StandardConversionSequence &SCS) {
4953  if (SCS.Second == ICK_Pointer_Conversion) {
4954    SCS.Second = ICK_Identity;
4955    SCS.Third = ICK_Identity;
4956    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4957  }
4958}
4959
4960/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4961/// convert the expression From to an Objective-C pointer type.
4962static ImplicitConversionSequence
4963TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4964  // Do an implicit conversion to 'id'.
4965  QualType Ty = S.Context.getObjCIdType();
4966  ImplicitConversionSequence ICS
4967    = TryImplicitConversion(S, From, Ty,
4968                            // FIXME: Are these flags correct?
4969                            /*SuppressUserConversions=*/false,
4970                            /*AllowExplicit=*/true,
4971                            /*InOverloadResolution=*/false,
4972                            /*CStyle=*/false,
4973                            /*AllowObjCWritebackConversion=*/false);
4974
4975  // Strip off any final conversions to 'id'.
4976  switch (ICS.getKind()) {
4977  case ImplicitConversionSequence::BadConversion:
4978  case ImplicitConversionSequence::AmbiguousConversion:
4979  case ImplicitConversionSequence::EllipsisConversion:
4980    break;
4981
4982  case ImplicitConversionSequence::UserDefinedConversion:
4983    dropPointerConversion(ICS.UserDefined.After);
4984    break;
4985
4986  case ImplicitConversionSequence::StandardConversion:
4987    dropPointerConversion(ICS.Standard);
4988    break;
4989  }
4990
4991  return ICS;
4992}
4993
4994/// PerformContextuallyConvertToObjCPointer - Perform a contextual
4995/// conversion of the expression From to an Objective-C pointer type.
4996ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
4997  if (checkPlaceholderForOverload(*this, From))
4998    return ExprError();
4999
5000  QualType Ty = Context.getObjCIdType();
5001  ImplicitConversionSequence ICS =
5002    TryContextuallyConvertToObjCPointer(*this, From);
5003  if (!ICS.isBad())
5004    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5005  return ExprError();
5006}
5007
5008/// Determine whether the provided type is an integral type, or an enumeration
5009/// type of a permitted flavor.
5010static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
5011  return AllowScopedEnum ? T->isIntegralOrEnumerationType()
5012                         : T->isIntegralOrUnscopedEnumerationType();
5013}
5014
5015/// \brief Attempt to convert the given expression to an integral or
5016/// enumeration type.
5017///
5018/// This routine will attempt to convert an expression of class type to an
5019/// integral or enumeration type, if that class type only has a single
5020/// conversion to an integral or enumeration type.
5021///
5022/// \param Loc The source location of the construct that requires the
5023/// conversion.
5024///
5025/// \param FromE The expression we're converting from.
5026///
5027/// \param NotIntDiag The diagnostic to be emitted if the expression does not
5028/// have integral or enumeration type.
5029///
5030/// \param IncompleteDiag The diagnostic to be emitted if the expression has
5031/// incomplete class type.
5032///
5033/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
5034/// explicit conversion function (because no implicit conversion functions
5035/// were available). This is a recovery mode.
5036///
5037/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
5038/// showing which conversion was picked.
5039///
5040/// \param AmbigDiag The diagnostic to be emitted if there is more than one
5041/// conversion function that could convert to integral or enumeration type.
5042///
5043/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
5044/// usable conversion function.
5045///
5046/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
5047/// function, which may be an extension in this case.
5048///
5049/// \param AllowScopedEnumerations Specifies whether conversions to scoped
5050/// enumerations should be considered.
5051///
5052/// \returns The expression, converted to an integral or enumeration type if
5053/// successful.
5054ExprResult
5055Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
5056                                         ICEConvertDiagnoser &Diagnoser,
5057                                         bool AllowScopedEnumerations) {
5058  // We can't perform any more checking for type-dependent expressions.
5059  if (From->isTypeDependent())
5060    return Owned(From);
5061
5062  // Process placeholders immediately.
5063  if (From->hasPlaceholderType()) {
5064    ExprResult result = CheckPlaceholderExpr(From);
5065    if (result.isInvalid()) return result;
5066    From = result.take();
5067  }
5068
5069  // If the expression already has integral or enumeration type, we're golden.
5070  QualType T = From->getType();
5071  if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
5072    return DefaultLvalueConversion(From);
5073
5074  // FIXME: Check for missing '()' if T is a function type?
5075
5076  // If we don't have a class type in C++, there's no way we can get an
5077  // expression of integral or enumeration type.
5078  const RecordType *RecordTy = T->getAs<RecordType>();
5079  if (!RecordTy || !getLangOpts().CPlusPlus) {
5080    if (!Diagnoser.Suppress)
5081      Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange();
5082    return Owned(From);
5083  }
5084
5085  // We must have a complete class type.
5086  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5087    ICEConvertDiagnoser &Diagnoser;
5088    Expr *From;
5089
5090    TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From)
5091      : TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {}
5092
5093    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5094      Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5095    }
5096  } IncompleteDiagnoser(Diagnoser, From);
5097
5098  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5099    return Owned(From);
5100
5101  // Look for a conversion to an integral or enumeration type.
5102  UnresolvedSet<4> ViableConversions;
5103  UnresolvedSet<4> ExplicitConversions;
5104  const UnresolvedSetImpl *Conversions
5105    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5106
5107  bool HadMultipleCandidates = (Conversions->size() > 1);
5108
5109  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5110                                   E = Conversions->end();
5111       I != E;
5112       ++I) {
5113    if (CXXConversionDecl *Conversion
5114          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
5115      if (isIntegralOrEnumerationType(
5116            Conversion->getConversionType().getNonReferenceType(),
5117            AllowScopedEnumerations)) {
5118        if (Conversion->isExplicit())
5119          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5120        else
5121          ViableConversions.addDecl(I.getDecl(), I.getAccess());
5122      }
5123    }
5124  }
5125
5126  switch (ViableConversions.size()) {
5127  case 0:
5128    if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) {
5129      DeclAccessPair Found = ExplicitConversions[0];
5130      CXXConversionDecl *Conversion
5131        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5132
5133      // The user probably meant to invoke the given explicit
5134      // conversion; use it.
5135      QualType ConvTy
5136        = Conversion->getConversionType().getNonReferenceType();
5137      std::string TypeStr;
5138      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
5139
5140      Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy)
5141        << FixItHint::CreateInsertion(From->getLocStart(),
5142                                      "static_cast<" + TypeStr + ">(")
5143        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
5144                                      ")");
5145      Diagnoser.noteExplicitConv(*this, Conversion, ConvTy);
5146
5147      // If we aren't in a SFINAE context, build a call to the
5148      // explicit conversion function.
5149      if (isSFINAEContext())
5150        return ExprError();
5151
5152      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5153      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5154                                                 HadMultipleCandidates);
5155      if (Result.isInvalid())
5156        return ExprError();
5157      // Record usage of conversion in an implicit cast.
5158      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5159                                      CK_UserDefinedConversion,
5160                                      Result.get(), 0,
5161                                      Result.get()->getValueKind());
5162    }
5163
5164    // We'll complain below about a non-integral condition type.
5165    break;
5166
5167  case 1: {
5168    // Apply this conversion.
5169    DeclAccessPair Found = ViableConversions[0];
5170    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5171
5172    CXXConversionDecl *Conversion
5173      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5174    QualType ConvTy
5175      = Conversion->getConversionType().getNonReferenceType();
5176    if (!Diagnoser.SuppressConversion) {
5177      if (isSFINAEContext())
5178        return ExprError();
5179
5180      Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy)
5181        << From->getSourceRange();
5182    }
5183
5184    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5185                                               HadMultipleCandidates);
5186    if (Result.isInvalid())
5187      return ExprError();
5188    // Record usage of conversion in an implicit cast.
5189    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5190                                    CK_UserDefinedConversion,
5191                                    Result.get(), 0,
5192                                    Result.get()->getValueKind());
5193    break;
5194  }
5195
5196  default:
5197    if (Diagnoser.Suppress)
5198      return ExprError();
5199
5200    Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange();
5201    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5202      CXXConversionDecl *Conv
5203        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5204      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5205      Diagnoser.noteAmbiguous(*this, Conv, ConvTy);
5206    }
5207    return Owned(From);
5208  }
5209
5210  if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
5211      !Diagnoser.Suppress) {
5212    Diagnoser.diagnoseNotInt(*this, Loc, From->getType())
5213      << From->getSourceRange();
5214  }
5215
5216  return DefaultLvalueConversion(From);
5217}
5218
5219/// AddOverloadCandidate - Adds the given function to the set of
5220/// candidate functions, using the given function call arguments.  If
5221/// @p SuppressUserConversions, then don't allow user-defined
5222/// conversions via constructors or conversion operators.
5223///
5224/// \param PartialOverloading true if we are performing "partial" overloading
5225/// based on an incomplete set of function arguments. This feature is used by
5226/// code completion.
5227void
5228Sema::AddOverloadCandidate(FunctionDecl *Function,
5229                           DeclAccessPair FoundDecl,
5230                           llvm::ArrayRef<Expr *> Args,
5231                           OverloadCandidateSet& CandidateSet,
5232                           bool SuppressUserConversions,
5233                           bool PartialOverloading,
5234                           bool AllowExplicit) {
5235  const FunctionProtoType* Proto
5236    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5237  assert(Proto && "Functions without a prototype cannot be overloaded");
5238  assert(!Function->getDescribedFunctionTemplate() &&
5239         "Use AddTemplateOverloadCandidate for function templates");
5240
5241  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5242    if (!isa<CXXConstructorDecl>(Method)) {
5243      // If we get here, it's because we're calling a member function
5244      // that is named without a member access expression (e.g.,
5245      // "this->f") that was either written explicitly or created
5246      // implicitly. This can happen with a qualified call to a member
5247      // function, e.g., X::f(). We use an empty type for the implied
5248      // object argument (C++ [over.call.func]p3), and the acting context
5249      // is irrelevant.
5250      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5251                         QualType(), Expr::Classification::makeSimpleLValue(),
5252                         Args, CandidateSet, SuppressUserConversions);
5253      return;
5254    }
5255    // We treat a constructor like a non-member function, since its object
5256    // argument doesn't participate in overload resolution.
5257  }
5258
5259  if (!CandidateSet.isNewCandidate(Function))
5260    return;
5261
5262  // Overload resolution is always an unevaluated context.
5263  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5264
5265  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5266    // C++ [class.copy]p3:
5267    //   A member function template is never instantiated to perform the copy
5268    //   of a class object to an object of its class type.
5269    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5270    if (Args.size() == 1 &&
5271        Constructor->isSpecializationCopyingObject() &&
5272        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5273         IsDerivedFrom(Args[0]->getType(), ClassType)))
5274      return;
5275  }
5276
5277  // Add this candidate
5278  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5279  Candidate.FoundDecl = FoundDecl;
5280  Candidate.Function = Function;
5281  Candidate.Viable = true;
5282  Candidate.IsSurrogate = false;
5283  Candidate.IgnoreObjectArgument = false;
5284  Candidate.ExplicitCallArguments = Args.size();
5285
5286  unsigned NumArgsInProto = Proto->getNumArgs();
5287
5288  // (C++ 13.3.2p2): A candidate function having fewer than m
5289  // parameters is viable only if it has an ellipsis in its parameter
5290  // list (8.3.5).
5291  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5292      !Proto->isVariadic()) {
5293    Candidate.Viable = false;
5294    Candidate.FailureKind = ovl_fail_too_many_arguments;
5295    return;
5296  }
5297
5298  // (C++ 13.3.2p2): A candidate function having more than m parameters
5299  // is viable only if the (m+1)st parameter has a default argument
5300  // (8.3.6). For the purposes of overload resolution, the
5301  // parameter list is truncated on the right, so that there are
5302  // exactly m parameters.
5303  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5304  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5305    // Not enough arguments.
5306    Candidate.Viable = false;
5307    Candidate.FailureKind = ovl_fail_too_few_arguments;
5308    return;
5309  }
5310
5311  // (CUDA B.1): Check for invalid calls between targets.
5312  if (getLangOpts().CUDA)
5313    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5314      if (CheckCUDATarget(Caller, Function)) {
5315        Candidate.Viable = false;
5316        Candidate.FailureKind = ovl_fail_bad_target;
5317        return;
5318      }
5319
5320  // Determine the implicit conversion sequences for each of the
5321  // arguments.
5322  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5323    if (ArgIdx < NumArgsInProto) {
5324      // (C++ 13.3.2p3): for F to be a viable function, there shall
5325      // exist for each argument an implicit conversion sequence
5326      // (13.3.3.1) that converts that argument to the corresponding
5327      // parameter of F.
5328      QualType ParamType = Proto->getArgType(ArgIdx);
5329      Candidate.Conversions[ArgIdx]
5330        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5331                                SuppressUserConversions,
5332                                /*InOverloadResolution=*/true,
5333                                /*AllowObjCWritebackConversion=*/
5334                                  getLangOpts().ObjCAutoRefCount,
5335                                AllowExplicit);
5336      if (Candidate.Conversions[ArgIdx].isBad()) {
5337        Candidate.Viable = false;
5338        Candidate.FailureKind = ovl_fail_bad_conversion;
5339        break;
5340      }
5341    } else {
5342      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5343      // argument for which there is no corresponding parameter is
5344      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5345      Candidate.Conversions[ArgIdx].setEllipsis();
5346    }
5347  }
5348}
5349
5350/// \brief Add all of the function declarations in the given function set to
5351/// the overload canddiate set.
5352void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5353                                 llvm::ArrayRef<Expr *> Args,
5354                                 OverloadCandidateSet& CandidateSet,
5355                                 bool SuppressUserConversions,
5356                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5357  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5358    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5359    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5360      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5361        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5362                           cast<CXXMethodDecl>(FD)->getParent(),
5363                           Args[0]->getType(), Args[0]->Classify(Context),
5364                           Args.slice(1), CandidateSet,
5365                           SuppressUserConversions);
5366      else
5367        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5368                             SuppressUserConversions);
5369    } else {
5370      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5371      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5372          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5373        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5374                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5375                                   ExplicitTemplateArgs,
5376                                   Args[0]->getType(),
5377                                   Args[0]->Classify(Context), Args.slice(1),
5378                                   CandidateSet, SuppressUserConversions);
5379      else
5380        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5381                                     ExplicitTemplateArgs, Args,
5382                                     CandidateSet, SuppressUserConversions);
5383    }
5384  }
5385}
5386
5387/// AddMethodCandidate - Adds a named decl (which is some kind of
5388/// method) as a method candidate to the given overload set.
5389void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5390                              QualType ObjectType,
5391                              Expr::Classification ObjectClassification,
5392                              Expr **Args, unsigned NumArgs,
5393                              OverloadCandidateSet& CandidateSet,
5394                              bool SuppressUserConversions) {
5395  NamedDecl *Decl = FoundDecl.getDecl();
5396  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5397
5398  if (isa<UsingShadowDecl>(Decl))
5399    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5400
5401  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5402    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5403           "Expected a member function template");
5404    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5405                               /*ExplicitArgs*/ 0,
5406                               ObjectType, ObjectClassification,
5407                               llvm::makeArrayRef(Args, NumArgs), CandidateSet,
5408                               SuppressUserConversions);
5409  } else {
5410    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5411                       ObjectType, ObjectClassification,
5412                       llvm::makeArrayRef(Args, NumArgs),
5413                       CandidateSet, SuppressUserConversions);
5414  }
5415}
5416
5417/// AddMethodCandidate - Adds the given C++ member function to the set
5418/// of candidate functions, using the given function call arguments
5419/// and the object argument (@c Object). For example, in a call
5420/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5421/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5422/// allow user-defined conversions via constructors or conversion
5423/// operators.
5424void
5425Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5426                         CXXRecordDecl *ActingContext, QualType ObjectType,
5427                         Expr::Classification ObjectClassification,
5428                         llvm::ArrayRef<Expr *> Args,
5429                         OverloadCandidateSet& CandidateSet,
5430                         bool SuppressUserConversions) {
5431  const FunctionProtoType* Proto
5432    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5433  assert(Proto && "Methods without a prototype cannot be overloaded");
5434  assert(!isa<CXXConstructorDecl>(Method) &&
5435         "Use AddOverloadCandidate for constructors");
5436
5437  if (!CandidateSet.isNewCandidate(Method))
5438    return;
5439
5440  // Overload resolution is always an unevaluated context.
5441  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5442
5443  // Add this candidate
5444  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5445  Candidate.FoundDecl = FoundDecl;
5446  Candidate.Function = Method;
5447  Candidate.IsSurrogate = false;
5448  Candidate.IgnoreObjectArgument = false;
5449  Candidate.ExplicitCallArguments = Args.size();
5450
5451  unsigned NumArgsInProto = Proto->getNumArgs();
5452
5453  // (C++ 13.3.2p2): A candidate function having fewer than m
5454  // parameters is viable only if it has an ellipsis in its parameter
5455  // list (8.3.5).
5456  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5457    Candidate.Viable = false;
5458    Candidate.FailureKind = ovl_fail_too_many_arguments;
5459    return;
5460  }
5461
5462  // (C++ 13.3.2p2): A candidate function having more than m parameters
5463  // is viable only if the (m+1)st parameter has a default argument
5464  // (8.3.6). For the purposes of overload resolution, the
5465  // parameter list is truncated on the right, so that there are
5466  // exactly m parameters.
5467  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5468  if (Args.size() < MinRequiredArgs) {
5469    // Not enough arguments.
5470    Candidate.Viable = false;
5471    Candidate.FailureKind = ovl_fail_too_few_arguments;
5472    return;
5473  }
5474
5475  Candidate.Viable = true;
5476
5477  if (Method->isStatic() || ObjectType.isNull())
5478    // The implicit object argument is ignored.
5479    Candidate.IgnoreObjectArgument = true;
5480  else {
5481    // Determine the implicit conversion sequence for the object
5482    // parameter.
5483    Candidate.Conversions[0]
5484      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5485                                        Method, ActingContext);
5486    if (Candidate.Conversions[0].isBad()) {
5487      Candidate.Viable = false;
5488      Candidate.FailureKind = ovl_fail_bad_conversion;
5489      return;
5490    }
5491  }
5492
5493  // Determine the implicit conversion sequences for each of the
5494  // arguments.
5495  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5496    if (ArgIdx < NumArgsInProto) {
5497      // (C++ 13.3.2p3): for F to be a viable function, there shall
5498      // exist for each argument an implicit conversion sequence
5499      // (13.3.3.1) that converts that argument to the corresponding
5500      // parameter of F.
5501      QualType ParamType = Proto->getArgType(ArgIdx);
5502      Candidate.Conversions[ArgIdx + 1]
5503        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5504                                SuppressUserConversions,
5505                                /*InOverloadResolution=*/true,
5506                                /*AllowObjCWritebackConversion=*/
5507                                  getLangOpts().ObjCAutoRefCount);
5508      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5509        Candidate.Viable = false;
5510        Candidate.FailureKind = ovl_fail_bad_conversion;
5511        break;
5512      }
5513    } else {
5514      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5515      // argument for which there is no corresponding parameter is
5516      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5517      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5518    }
5519  }
5520}
5521
5522/// \brief Add a C++ member function template as a candidate to the candidate
5523/// set, using template argument deduction to produce an appropriate member
5524/// function template specialization.
5525void
5526Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5527                                 DeclAccessPair FoundDecl,
5528                                 CXXRecordDecl *ActingContext,
5529                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5530                                 QualType ObjectType,
5531                                 Expr::Classification ObjectClassification,
5532                                 llvm::ArrayRef<Expr *> Args,
5533                                 OverloadCandidateSet& CandidateSet,
5534                                 bool SuppressUserConversions) {
5535  if (!CandidateSet.isNewCandidate(MethodTmpl))
5536    return;
5537
5538  // C++ [over.match.funcs]p7:
5539  //   In each case where a candidate is a function template, candidate
5540  //   function template specializations are generated using template argument
5541  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5542  //   candidate functions in the usual way.113) A given name can refer to one
5543  //   or more function templates and also to a set of overloaded non-template
5544  //   functions. In such a case, the candidate functions generated from each
5545  //   function template are combined with the set of non-template candidate
5546  //   functions.
5547  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5548  FunctionDecl *Specialization = 0;
5549  if (TemplateDeductionResult Result
5550      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5551                                Specialization, Info)) {
5552    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5553    Candidate.FoundDecl = FoundDecl;
5554    Candidate.Function = MethodTmpl->getTemplatedDecl();
5555    Candidate.Viable = false;
5556    Candidate.FailureKind = ovl_fail_bad_deduction;
5557    Candidate.IsSurrogate = false;
5558    Candidate.IgnoreObjectArgument = false;
5559    Candidate.ExplicitCallArguments = Args.size();
5560    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5561                                                          Info);
5562    return;
5563  }
5564
5565  // Add the function template specialization produced by template argument
5566  // deduction as a candidate.
5567  assert(Specialization && "Missing member function template specialization?");
5568  assert(isa<CXXMethodDecl>(Specialization) &&
5569         "Specialization is not a member function?");
5570  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5571                     ActingContext, ObjectType, ObjectClassification, Args,
5572                     CandidateSet, SuppressUserConversions);
5573}
5574
5575/// \brief Add a C++ function template specialization as a candidate
5576/// in the candidate set, using template argument deduction to produce
5577/// an appropriate function template specialization.
5578void
5579Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5580                                   DeclAccessPair FoundDecl,
5581                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5582                                   llvm::ArrayRef<Expr *> Args,
5583                                   OverloadCandidateSet& CandidateSet,
5584                                   bool SuppressUserConversions) {
5585  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5586    return;
5587
5588  // C++ [over.match.funcs]p7:
5589  //   In each case where a candidate is a function template, candidate
5590  //   function template specializations are generated using template argument
5591  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5592  //   candidate functions in the usual way.113) A given name can refer to one
5593  //   or more function templates and also to a set of overloaded non-template
5594  //   functions. In such a case, the candidate functions generated from each
5595  //   function template are combined with the set of non-template candidate
5596  //   functions.
5597  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5598  FunctionDecl *Specialization = 0;
5599  if (TemplateDeductionResult Result
5600        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5601                                  Specialization, Info)) {
5602    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5603    Candidate.FoundDecl = FoundDecl;
5604    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5605    Candidate.Viable = false;
5606    Candidate.FailureKind = ovl_fail_bad_deduction;
5607    Candidate.IsSurrogate = false;
5608    Candidate.IgnoreObjectArgument = false;
5609    Candidate.ExplicitCallArguments = Args.size();
5610    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5611                                                          Info);
5612    return;
5613  }
5614
5615  // Add the function template specialization produced by template argument
5616  // deduction as a candidate.
5617  assert(Specialization && "Missing function template specialization?");
5618  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5619                       SuppressUserConversions);
5620}
5621
5622/// AddConversionCandidate - Add a C++ conversion function as a
5623/// candidate in the candidate set (C++ [over.match.conv],
5624/// C++ [over.match.copy]). From is the expression we're converting from,
5625/// and ToType is the type that we're eventually trying to convert to
5626/// (which may or may not be the same type as the type that the
5627/// conversion function produces).
5628void
5629Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5630                             DeclAccessPair FoundDecl,
5631                             CXXRecordDecl *ActingContext,
5632                             Expr *From, QualType ToType,
5633                             OverloadCandidateSet& CandidateSet) {
5634  assert(!Conversion->getDescribedFunctionTemplate() &&
5635         "Conversion function templates use AddTemplateConversionCandidate");
5636  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5637  if (!CandidateSet.isNewCandidate(Conversion))
5638    return;
5639
5640  // Overload resolution is always an unevaluated context.
5641  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5642
5643  // Add this candidate
5644  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5645  Candidate.FoundDecl = FoundDecl;
5646  Candidate.Function = Conversion;
5647  Candidate.IsSurrogate = false;
5648  Candidate.IgnoreObjectArgument = false;
5649  Candidate.FinalConversion.setAsIdentityConversion();
5650  Candidate.FinalConversion.setFromType(ConvType);
5651  Candidate.FinalConversion.setAllToTypes(ToType);
5652  Candidate.Viable = true;
5653  Candidate.ExplicitCallArguments = 1;
5654
5655  // C++ [over.match.funcs]p4:
5656  //   For conversion functions, the function is considered to be a member of
5657  //   the class of the implicit implied object argument for the purpose of
5658  //   defining the type of the implicit object parameter.
5659  //
5660  // Determine the implicit conversion sequence for the implicit
5661  // object parameter.
5662  QualType ImplicitParamType = From->getType();
5663  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5664    ImplicitParamType = FromPtrType->getPointeeType();
5665  CXXRecordDecl *ConversionContext
5666    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5667
5668  Candidate.Conversions[0]
5669    = TryObjectArgumentInitialization(*this, From->getType(),
5670                                      From->Classify(Context),
5671                                      Conversion, ConversionContext);
5672
5673  if (Candidate.Conversions[0].isBad()) {
5674    Candidate.Viable = false;
5675    Candidate.FailureKind = ovl_fail_bad_conversion;
5676    return;
5677  }
5678
5679  // We won't go through a user-define type conversion function to convert a
5680  // derived to base as such conversions are given Conversion Rank. They only
5681  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5682  QualType FromCanon
5683    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5684  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5685  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5686    Candidate.Viable = false;
5687    Candidate.FailureKind = ovl_fail_trivial_conversion;
5688    return;
5689  }
5690
5691  // To determine what the conversion from the result of calling the
5692  // conversion function to the type we're eventually trying to
5693  // convert to (ToType), we need to synthesize a call to the
5694  // conversion function and attempt copy initialization from it. This
5695  // makes sure that we get the right semantics with respect to
5696  // lvalues/rvalues and the type. Fortunately, we can allocate this
5697  // call on the stack and we don't need its arguments to be
5698  // well-formed.
5699  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5700                            VK_LValue, From->getLocStart());
5701  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5702                                Context.getPointerType(Conversion->getType()),
5703                                CK_FunctionToPointerDecay,
5704                                &ConversionRef, VK_RValue);
5705
5706  QualType ConversionType = Conversion->getConversionType();
5707  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5708    Candidate.Viable = false;
5709    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5710    return;
5711  }
5712
5713  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5714
5715  // Note that it is safe to allocate CallExpr on the stack here because
5716  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5717  // allocator).
5718  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5719  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
5720                From->getLocStart());
5721  ImplicitConversionSequence ICS =
5722    TryCopyInitialization(*this, &Call, ToType,
5723                          /*SuppressUserConversions=*/true,
5724                          /*InOverloadResolution=*/false,
5725                          /*AllowObjCWritebackConversion=*/false);
5726
5727  switch (ICS.getKind()) {
5728  case ImplicitConversionSequence::StandardConversion:
5729    Candidate.FinalConversion = ICS.Standard;
5730
5731    // C++ [over.ics.user]p3:
5732    //   If the user-defined conversion is specified by a specialization of a
5733    //   conversion function template, the second standard conversion sequence
5734    //   shall have exact match rank.
5735    if (Conversion->getPrimaryTemplate() &&
5736        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5737      Candidate.Viable = false;
5738      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5739    }
5740
5741    // C++0x [dcl.init.ref]p5:
5742    //    In the second case, if the reference is an rvalue reference and
5743    //    the second standard conversion sequence of the user-defined
5744    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5745    //    program is ill-formed.
5746    if (ToType->isRValueReferenceType() &&
5747        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5748      Candidate.Viable = false;
5749      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5750    }
5751    break;
5752
5753  case ImplicitConversionSequence::BadConversion:
5754    Candidate.Viable = false;
5755    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5756    break;
5757
5758  default:
5759    llvm_unreachable(
5760           "Can only end up with a standard conversion sequence or failure");
5761  }
5762}
5763
5764/// \brief Adds a conversion function template specialization
5765/// candidate to the overload set, using template argument deduction
5766/// to deduce the template arguments of the conversion function
5767/// template from the type that we are converting to (C++
5768/// [temp.deduct.conv]).
5769void
5770Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5771                                     DeclAccessPair FoundDecl,
5772                                     CXXRecordDecl *ActingDC,
5773                                     Expr *From, QualType ToType,
5774                                     OverloadCandidateSet &CandidateSet) {
5775  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5776         "Only conversion function templates permitted here");
5777
5778  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5779    return;
5780
5781  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5782  CXXConversionDecl *Specialization = 0;
5783  if (TemplateDeductionResult Result
5784        = DeduceTemplateArguments(FunctionTemplate, ToType,
5785                                  Specialization, Info)) {
5786    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5787    Candidate.FoundDecl = FoundDecl;
5788    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5789    Candidate.Viable = false;
5790    Candidate.FailureKind = ovl_fail_bad_deduction;
5791    Candidate.IsSurrogate = false;
5792    Candidate.IgnoreObjectArgument = false;
5793    Candidate.ExplicitCallArguments = 1;
5794    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5795                                                          Info);
5796    return;
5797  }
5798
5799  // Add the conversion function template specialization produced by
5800  // template argument deduction as a candidate.
5801  assert(Specialization && "Missing function template specialization?");
5802  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5803                         CandidateSet);
5804}
5805
5806/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5807/// converts the given @c Object to a function pointer via the
5808/// conversion function @c Conversion, and then attempts to call it
5809/// with the given arguments (C++ [over.call.object]p2-4). Proto is
5810/// the type of function that we'll eventually be calling.
5811void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5812                                 DeclAccessPair FoundDecl,
5813                                 CXXRecordDecl *ActingContext,
5814                                 const FunctionProtoType *Proto,
5815                                 Expr *Object,
5816                                 llvm::ArrayRef<Expr *> Args,
5817                                 OverloadCandidateSet& CandidateSet) {
5818  if (!CandidateSet.isNewCandidate(Conversion))
5819    return;
5820
5821  // Overload resolution is always an unevaluated context.
5822  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5823
5824  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5825  Candidate.FoundDecl = FoundDecl;
5826  Candidate.Function = 0;
5827  Candidate.Surrogate = Conversion;
5828  Candidate.Viable = true;
5829  Candidate.IsSurrogate = true;
5830  Candidate.IgnoreObjectArgument = false;
5831  Candidate.ExplicitCallArguments = Args.size();
5832
5833  // Determine the implicit conversion sequence for the implicit
5834  // object parameter.
5835  ImplicitConversionSequence ObjectInit
5836    = TryObjectArgumentInitialization(*this, Object->getType(),
5837                                      Object->Classify(Context),
5838                                      Conversion, ActingContext);
5839  if (ObjectInit.isBad()) {
5840    Candidate.Viable = false;
5841    Candidate.FailureKind = ovl_fail_bad_conversion;
5842    Candidate.Conversions[0] = ObjectInit;
5843    return;
5844  }
5845
5846  // The first conversion is actually a user-defined conversion whose
5847  // first conversion is ObjectInit's standard conversion (which is
5848  // effectively a reference binding). Record it as such.
5849  Candidate.Conversions[0].setUserDefined();
5850  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5851  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5852  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5853  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5854  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5855  Candidate.Conversions[0].UserDefined.After
5856    = Candidate.Conversions[0].UserDefined.Before;
5857  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5858
5859  // Find the
5860  unsigned NumArgsInProto = Proto->getNumArgs();
5861
5862  // (C++ 13.3.2p2): A candidate function having fewer than m
5863  // parameters is viable only if it has an ellipsis in its parameter
5864  // list (8.3.5).
5865  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5866    Candidate.Viable = false;
5867    Candidate.FailureKind = ovl_fail_too_many_arguments;
5868    return;
5869  }
5870
5871  // Function types don't have any default arguments, so just check if
5872  // we have enough arguments.
5873  if (Args.size() < NumArgsInProto) {
5874    // Not enough arguments.
5875    Candidate.Viable = false;
5876    Candidate.FailureKind = ovl_fail_too_few_arguments;
5877    return;
5878  }
5879
5880  // Determine the implicit conversion sequences for each of the
5881  // arguments.
5882  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5883    if (ArgIdx < NumArgsInProto) {
5884      // (C++ 13.3.2p3): for F to be a viable function, there shall
5885      // exist for each argument an implicit conversion sequence
5886      // (13.3.3.1) that converts that argument to the corresponding
5887      // parameter of F.
5888      QualType ParamType = Proto->getArgType(ArgIdx);
5889      Candidate.Conversions[ArgIdx + 1]
5890        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5891                                /*SuppressUserConversions=*/false,
5892                                /*InOverloadResolution=*/false,
5893                                /*AllowObjCWritebackConversion=*/
5894                                  getLangOpts().ObjCAutoRefCount);
5895      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5896        Candidate.Viable = false;
5897        Candidate.FailureKind = ovl_fail_bad_conversion;
5898        break;
5899      }
5900    } else {
5901      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5902      // argument for which there is no corresponding parameter is
5903      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5904      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5905    }
5906  }
5907}
5908
5909/// \brief Add overload candidates for overloaded operators that are
5910/// member functions.
5911///
5912/// Add the overloaded operator candidates that are member functions
5913/// for the operator Op that was used in an operator expression such
5914/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5915/// CandidateSet will store the added overload candidates. (C++
5916/// [over.match.oper]).
5917void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5918                                       SourceLocation OpLoc,
5919                                       Expr **Args, unsigned NumArgs,
5920                                       OverloadCandidateSet& CandidateSet,
5921                                       SourceRange OpRange) {
5922  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5923
5924  // C++ [over.match.oper]p3:
5925  //   For a unary operator @ with an operand of a type whose
5926  //   cv-unqualified version is T1, and for a binary operator @ with
5927  //   a left operand of a type whose cv-unqualified version is T1 and
5928  //   a right operand of a type whose cv-unqualified version is T2,
5929  //   three sets of candidate functions, designated member
5930  //   candidates, non-member candidates and built-in candidates, are
5931  //   constructed as follows:
5932  QualType T1 = Args[0]->getType();
5933
5934  //     -- If T1 is a class type, the set of member candidates is the
5935  //        result of the qualified lookup of T1::operator@
5936  //        (13.3.1.1.1); otherwise, the set of member candidates is
5937  //        empty.
5938  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5939    // Complete the type if it can be completed. Otherwise, we're done.
5940    if (RequireCompleteType(OpLoc, T1, 0))
5941      return;
5942
5943    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5944    LookupQualifiedName(Operators, T1Rec->getDecl());
5945    Operators.suppressDiagnostics();
5946
5947    for (LookupResult::iterator Oper = Operators.begin(),
5948                             OperEnd = Operators.end();
5949         Oper != OperEnd;
5950         ++Oper)
5951      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5952                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5953                         CandidateSet,
5954                         /* SuppressUserConversions = */ false);
5955  }
5956}
5957
5958/// AddBuiltinCandidate - Add a candidate for a built-in
5959/// operator. ResultTy and ParamTys are the result and parameter types
5960/// of the built-in candidate, respectively. Args and NumArgs are the
5961/// arguments being passed to the candidate. IsAssignmentOperator
5962/// should be true when this built-in candidate is an assignment
5963/// operator. NumContextualBoolArguments is the number of arguments
5964/// (at the beginning of the argument list) that will be contextually
5965/// converted to bool.
5966void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5967                               Expr **Args, unsigned NumArgs,
5968                               OverloadCandidateSet& CandidateSet,
5969                               bool IsAssignmentOperator,
5970                               unsigned NumContextualBoolArguments) {
5971  // Overload resolution is always an unevaluated context.
5972  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5973
5974  // Add this candidate
5975  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5976  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5977  Candidate.Function = 0;
5978  Candidate.IsSurrogate = false;
5979  Candidate.IgnoreObjectArgument = false;
5980  Candidate.BuiltinTypes.ResultTy = ResultTy;
5981  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5982    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5983
5984  // Determine the implicit conversion sequences for each of the
5985  // arguments.
5986  Candidate.Viable = true;
5987  Candidate.ExplicitCallArguments = NumArgs;
5988  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5989    // C++ [over.match.oper]p4:
5990    //   For the built-in assignment operators, conversions of the
5991    //   left operand are restricted as follows:
5992    //     -- no temporaries are introduced to hold the left operand, and
5993    //     -- no user-defined conversions are applied to the left
5994    //        operand to achieve a type match with the left-most
5995    //        parameter of a built-in candidate.
5996    //
5997    // We block these conversions by turning off user-defined
5998    // conversions, since that is the only way that initialization of
5999    // a reference to a non-class type can occur from something that
6000    // is not of the same type.
6001    if (ArgIdx < NumContextualBoolArguments) {
6002      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6003             "Contextual conversion to bool requires bool type");
6004      Candidate.Conversions[ArgIdx]
6005        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6006    } else {
6007      Candidate.Conversions[ArgIdx]
6008        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6009                                ArgIdx == 0 && IsAssignmentOperator,
6010                                /*InOverloadResolution=*/false,
6011                                /*AllowObjCWritebackConversion=*/
6012                                  getLangOpts().ObjCAutoRefCount);
6013    }
6014    if (Candidate.Conversions[ArgIdx].isBad()) {
6015      Candidate.Viable = false;
6016      Candidate.FailureKind = ovl_fail_bad_conversion;
6017      break;
6018    }
6019  }
6020}
6021
6022/// BuiltinCandidateTypeSet - A set of types that will be used for the
6023/// candidate operator functions for built-in operators (C++
6024/// [over.built]). The types are separated into pointer types and
6025/// enumeration types.
6026class BuiltinCandidateTypeSet  {
6027  /// TypeSet - A set of types.
6028  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6029
6030  /// PointerTypes - The set of pointer types that will be used in the
6031  /// built-in candidates.
6032  TypeSet PointerTypes;
6033
6034  /// MemberPointerTypes - The set of member pointer types that will be
6035  /// used in the built-in candidates.
6036  TypeSet MemberPointerTypes;
6037
6038  /// EnumerationTypes - The set of enumeration types that will be
6039  /// used in the built-in candidates.
6040  TypeSet EnumerationTypes;
6041
6042  /// \brief The set of vector types that will be used in the built-in
6043  /// candidates.
6044  TypeSet VectorTypes;
6045
6046  /// \brief A flag indicating non-record types are viable candidates
6047  bool HasNonRecordTypes;
6048
6049  /// \brief A flag indicating whether either arithmetic or enumeration types
6050  /// were present in the candidate set.
6051  bool HasArithmeticOrEnumeralTypes;
6052
6053  /// \brief A flag indicating whether the nullptr type was present in the
6054  /// candidate set.
6055  bool HasNullPtrType;
6056
6057  /// Sema - The semantic analysis instance where we are building the
6058  /// candidate type set.
6059  Sema &SemaRef;
6060
6061  /// Context - The AST context in which we will build the type sets.
6062  ASTContext &Context;
6063
6064  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6065                                               const Qualifiers &VisibleQuals);
6066  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6067
6068public:
6069  /// iterator - Iterates through the types that are part of the set.
6070  typedef TypeSet::iterator iterator;
6071
6072  BuiltinCandidateTypeSet(Sema &SemaRef)
6073    : HasNonRecordTypes(false),
6074      HasArithmeticOrEnumeralTypes(false),
6075      HasNullPtrType(false),
6076      SemaRef(SemaRef),
6077      Context(SemaRef.Context) { }
6078
6079  void AddTypesConvertedFrom(QualType Ty,
6080                             SourceLocation Loc,
6081                             bool AllowUserConversions,
6082                             bool AllowExplicitConversions,
6083                             const Qualifiers &VisibleTypeConversionsQuals);
6084
6085  /// pointer_begin - First pointer type found;
6086  iterator pointer_begin() { return PointerTypes.begin(); }
6087
6088  /// pointer_end - Past the last pointer type found;
6089  iterator pointer_end() { return PointerTypes.end(); }
6090
6091  /// member_pointer_begin - First member pointer type found;
6092  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6093
6094  /// member_pointer_end - Past the last member pointer type found;
6095  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6096
6097  /// enumeration_begin - First enumeration type found;
6098  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6099
6100  /// enumeration_end - Past the last enumeration type found;
6101  iterator enumeration_end() { return EnumerationTypes.end(); }
6102
6103  iterator vector_begin() { return VectorTypes.begin(); }
6104  iterator vector_end() { return VectorTypes.end(); }
6105
6106  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6107  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6108  bool hasNullPtrType() const { return HasNullPtrType; }
6109};
6110
6111/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6112/// the set of pointer types along with any more-qualified variants of
6113/// that type. For example, if @p Ty is "int const *", this routine
6114/// will add "int const *", "int const volatile *", "int const
6115/// restrict *", and "int const volatile restrict *" to the set of
6116/// pointer types. Returns true if the add of @p Ty itself succeeded,
6117/// false otherwise.
6118///
6119/// FIXME: what to do about extended qualifiers?
6120bool
6121BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6122                                             const Qualifiers &VisibleQuals) {
6123
6124  // Insert this type.
6125  if (!PointerTypes.insert(Ty))
6126    return false;
6127
6128  QualType PointeeTy;
6129  const PointerType *PointerTy = Ty->getAs<PointerType>();
6130  bool buildObjCPtr = false;
6131  if (!PointerTy) {
6132    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6133    PointeeTy = PTy->getPointeeType();
6134    buildObjCPtr = true;
6135  } else {
6136    PointeeTy = PointerTy->getPointeeType();
6137  }
6138
6139  // Don't add qualified variants of arrays. For one, they're not allowed
6140  // (the qualifier would sink to the element type), and for another, the
6141  // only overload situation where it matters is subscript or pointer +- int,
6142  // and those shouldn't have qualifier variants anyway.
6143  if (PointeeTy->isArrayType())
6144    return true;
6145
6146  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6147  bool hasVolatile = VisibleQuals.hasVolatile();
6148  bool hasRestrict = VisibleQuals.hasRestrict();
6149
6150  // Iterate through all strict supersets of BaseCVR.
6151  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6152    if ((CVR | BaseCVR) != CVR) continue;
6153    // Skip over volatile if no volatile found anywhere in the types.
6154    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6155
6156    // Skip over restrict if no restrict found anywhere in the types, or if
6157    // the type cannot be restrict-qualified.
6158    if ((CVR & Qualifiers::Restrict) &&
6159        (!hasRestrict ||
6160         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6161      continue;
6162
6163    // Build qualified pointee type.
6164    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6165
6166    // Build qualified pointer type.
6167    QualType QPointerTy;
6168    if (!buildObjCPtr)
6169      QPointerTy = Context.getPointerType(QPointeeTy);
6170    else
6171      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6172
6173    // Insert qualified pointer type.
6174    PointerTypes.insert(QPointerTy);
6175  }
6176
6177  return true;
6178}
6179
6180/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6181/// to the set of pointer types along with any more-qualified variants of
6182/// that type. For example, if @p Ty is "int const *", this routine
6183/// will add "int const *", "int const volatile *", "int const
6184/// restrict *", and "int const volatile restrict *" to the set of
6185/// pointer types. Returns true if the add of @p Ty itself succeeded,
6186/// false otherwise.
6187///
6188/// FIXME: what to do about extended qualifiers?
6189bool
6190BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6191    QualType Ty) {
6192  // Insert this type.
6193  if (!MemberPointerTypes.insert(Ty))
6194    return false;
6195
6196  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6197  assert(PointerTy && "type was not a member pointer type!");
6198
6199  QualType PointeeTy = PointerTy->getPointeeType();
6200  // Don't add qualified variants of arrays. For one, they're not allowed
6201  // (the qualifier would sink to the element type), and for another, the
6202  // only overload situation where it matters is subscript or pointer +- int,
6203  // and those shouldn't have qualifier variants anyway.
6204  if (PointeeTy->isArrayType())
6205    return true;
6206  const Type *ClassTy = PointerTy->getClass();
6207
6208  // Iterate through all strict supersets of the pointee type's CVR
6209  // qualifiers.
6210  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6211  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6212    if ((CVR | BaseCVR) != CVR) continue;
6213
6214    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6215    MemberPointerTypes.insert(
6216      Context.getMemberPointerType(QPointeeTy, ClassTy));
6217  }
6218
6219  return true;
6220}
6221
6222/// AddTypesConvertedFrom - Add each of the types to which the type @p
6223/// Ty can be implicit converted to the given set of @p Types. We're
6224/// primarily interested in pointer types and enumeration types. We also
6225/// take member pointer types, for the conditional operator.
6226/// AllowUserConversions is true if we should look at the conversion
6227/// functions of a class type, and AllowExplicitConversions if we
6228/// should also include the explicit conversion functions of a class
6229/// type.
6230void
6231BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6232                                               SourceLocation Loc,
6233                                               bool AllowUserConversions,
6234                                               bool AllowExplicitConversions,
6235                                               const Qualifiers &VisibleQuals) {
6236  // Only deal with canonical types.
6237  Ty = Context.getCanonicalType(Ty);
6238
6239  // Look through reference types; they aren't part of the type of an
6240  // expression for the purposes of conversions.
6241  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6242    Ty = RefTy->getPointeeType();
6243
6244  // If we're dealing with an array type, decay to the pointer.
6245  if (Ty->isArrayType())
6246    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6247
6248  // Otherwise, we don't care about qualifiers on the type.
6249  Ty = Ty.getLocalUnqualifiedType();
6250
6251  // Flag if we ever add a non-record type.
6252  const RecordType *TyRec = Ty->getAs<RecordType>();
6253  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6254
6255  // Flag if we encounter an arithmetic type.
6256  HasArithmeticOrEnumeralTypes =
6257    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6258
6259  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6260    PointerTypes.insert(Ty);
6261  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6262    // Insert our type, and its more-qualified variants, into the set
6263    // of types.
6264    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6265      return;
6266  } else if (Ty->isMemberPointerType()) {
6267    // Member pointers are far easier, since the pointee can't be converted.
6268    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6269      return;
6270  } else if (Ty->isEnumeralType()) {
6271    HasArithmeticOrEnumeralTypes = true;
6272    EnumerationTypes.insert(Ty);
6273  } else if (Ty->isVectorType()) {
6274    // We treat vector types as arithmetic types in many contexts as an
6275    // extension.
6276    HasArithmeticOrEnumeralTypes = true;
6277    VectorTypes.insert(Ty);
6278  } else if (Ty->isNullPtrType()) {
6279    HasNullPtrType = true;
6280  } else if (AllowUserConversions && TyRec) {
6281    // No conversion functions in incomplete types.
6282    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6283      return;
6284
6285    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6286    const UnresolvedSetImpl *Conversions
6287      = ClassDecl->getVisibleConversionFunctions();
6288    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6289           E = Conversions->end(); I != E; ++I) {
6290      NamedDecl *D = I.getDecl();
6291      if (isa<UsingShadowDecl>(D))
6292        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6293
6294      // Skip conversion function templates; they don't tell us anything
6295      // about which builtin types we can convert to.
6296      if (isa<FunctionTemplateDecl>(D))
6297        continue;
6298
6299      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6300      if (AllowExplicitConversions || !Conv->isExplicit()) {
6301        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6302                              VisibleQuals);
6303      }
6304    }
6305  }
6306}
6307
6308/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6309/// the volatile- and non-volatile-qualified assignment operators for the
6310/// given type to the candidate set.
6311static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6312                                                   QualType T,
6313                                                   Expr **Args,
6314                                                   unsigned NumArgs,
6315                                    OverloadCandidateSet &CandidateSet) {
6316  QualType ParamTypes[2];
6317
6318  // T& operator=(T&, T)
6319  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6320  ParamTypes[1] = T;
6321  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6322                        /*IsAssignmentOperator=*/true);
6323
6324  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6325    // volatile T& operator=(volatile T&, T)
6326    ParamTypes[0]
6327      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6328    ParamTypes[1] = T;
6329    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6330                          /*IsAssignmentOperator=*/true);
6331  }
6332}
6333
6334/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6335/// if any, found in visible type conversion functions found in ArgExpr's type.
6336static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6337    Qualifiers VRQuals;
6338    const RecordType *TyRec;
6339    if (const MemberPointerType *RHSMPType =
6340        ArgExpr->getType()->getAs<MemberPointerType>())
6341      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6342    else
6343      TyRec = ArgExpr->getType()->getAs<RecordType>();
6344    if (!TyRec) {
6345      // Just to be safe, assume the worst case.
6346      VRQuals.addVolatile();
6347      VRQuals.addRestrict();
6348      return VRQuals;
6349    }
6350
6351    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6352    if (!ClassDecl->hasDefinition())
6353      return VRQuals;
6354
6355    const UnresolvedSetImpl *Conversions =
6356      ClassDecl->getVisibleConversionFunctions();
6357
6358    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6359           E = Conversions->end(); I != E; ++I) {
6360      NamedDecl *D = I.getDecl();
6361      if (isa<UsingShadowDecl>(D))
6362        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6363      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6364        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6365        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6366          CanTy = ResTypeRef->getPointeeType();
6367        // Need to go down the pointer/mempointer chain and add qualifiers
6368        // as see them.
6369        bool done = false;
6370        while (!done) {
6371          if (CanTy.isRestrictQualified())
6372            VRQuals.addRestrict();
6373          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6374            CanTy = ResTypePtr->getPointeeType();
6375          else if (const MemberPointerType *ResTypeMPtr =
6376                CanTy->getAs<MemberPointerType>())
6377            CanTy = ResTypeMPtr->getPointeeType();
6378          else
6379            done = true;
6380          if (CanTy.isVolatileQualified())
6381            VRQuals.addVolatile();
6382          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6383            return VRQuals;
6384        }
6385      }
6386    }
6387    return VRQuals;
6388}
6389
6390namespace {
6391
6392/// \brief Helper class to manage the addition of builtin operator overload
6393/// candidates. It provides shared state and utility methods used throughout
6394/// the process, as well as a helper method to add each group of builtin
6395/// operator overloads from the standard to a candidate set.
6396class BuiltinOperatorOverloadBuilder {
6397  // Common instance state available to all overload candidate addition methods.
6398  Sema &S;
6399  Expr **Args;
6400  unsigned NumArgs;
6401  Qualifiers VisibleTypeConversionsQuals;
6402  bool HasArithmeticOrEnumeralCandidateType;
6403  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6404  OverloadCandidateSet &CandidateSet;
6405
6406  // Define some constants used to index and iterate over the arithemetic types
6407  // provided via the getArithmeticType() method below.
6408  // The "promoted arithmetic types" are the arithmetic
6409  // types are that preserved by promotion (C++ [over.built]p2).
6410  static const unsigned FirstIntegralType = 3;
6411  static const unsigned LastIntegralType = 20;
6412  static const unsigned FirstPromotedIntegralType = 3,
6413                        LastPromotedIntegralType = 11;
6414  static const unsigned FirstPromotedArithmeticType = 0,
6415                        LastPromotedArithmeticType = 11;
6416  static const unsigned NumArithmeticTypes = 20;
6417
6418  /// \brief Get the canonical type for a given arithmetic type index.
6419  CanQualType getArithmeticType(unsigned index) {
6420    assert(index < NumArithmeticTypes);
6421    static CanQualType ASTContext::* const
6422      ArithmeticTypes[NumArithmeticTypes] = {
6423      // Start of promoted types.
6424      &ASTContext::FloatTy,
6425      &ASTContext::DoubleTy,
6426      &ASTContext::LongDoubleTy,
6427
6428      // Start of integral types.
6429      &ASTContext::IntTy,
6430      &ASTContext::LongTy,
6431      &ASTContext::LongLongTy,
6432      &ASTContext::Int128Ty,
6433      &ASTContext::UnsignedIntTy,
6434      &ASTContext::UnsignedLongTy,
6435      &ASTContext::UnsignedLongLongTy,
6436      &ASTContext::UnsignedInt128Ty,
6437      // End of promoted types.
6438
6439      &ASTContext::BoolTy,
6440      &ASTContext::CharTy,
6441      &ASTContext::WCharTy,
6442      &ASTContext::Char16Ty,
6443      &ASTContext::Char32Ty,
6444      &ASTContext::SignedCharTy,
6445      &ASTContext::ShortTy,
6446      &ASTContext::UnsignedCharTy,
6447      &ASTContext::UnsignedShortTy,
6448      // End of integral types.
6449      // FIXME: What about complex? What about half?
6450    };
6451    return S.Context.*ArithmeticTypes[index];
6452  }
6453
6454  /// \brief Gets the canonical type resulting from the usual arithemetic
6455  /// converions for the given arithmetic types.
6456  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6457    // Accelerator table for performing the usual arithmetic conversions.
6458    // The rules are basically:
6459    //   - if either is floating-point, use the wider floating-point
6460    //   - if same signedness, use the higher rank
6461    //   - if same size, use unsigned of the higher rank
6462    //   - use the larger type
6463    // These rules, together with the axiom that higher ranks are
6464    // never smaller, are sufficient to precompute all of these results
6465    // *except* when dealing with signed types of higher rank.
6466    // (we could precompute SLL x UI for all known platforms, but it's
6467    // better not to make any assumptions).
6468    // We assume that int128 has a higher rank than long long on all platforms.
6469    enum PromotedType {
6470            Dep=-1,
6471            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6472    };
6473    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6474                                        [LastPromotedArithmeticType] = {
6475/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6476/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6477/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6478/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6479/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6480/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6481/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6482/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6483/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6484/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6485/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6486    };
6487
6488    assert(L < LastPromotedArithmeticType);
6489    assert(R < LastPromotedArithmeticType);
6490    int Idx = ConversionsTable[L][R];
6491
6492    // Fast path: the table gives us a concrete answer.
6493    if (Idx != Dep) return getArithmeticType(Idx);
6494
6495    // Slow path: we need to compare widths.
6496    // An invariant is that the signed type has higher rank.
6497    CanQualType LT = getArithmeticType(L),
6498                RT = getArithmeticType(R);
6499    unsigned LW = S.Context.getIntWidth(LT),
6500             RW = S.Context.getIntWidth(RT);
6501
6502    // If they're different widths, use the signed type.
6503    if (LW > RW) return LT;
6504    else if (LW < RW) return RT;
6505
6506    // Otherwise, use the unsigned type of the signed type's rank.
6507    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6508    assert(L == SLL || R == SLL);
6509    return S.Context.UnsignedLongLongTy;
6510  }
6511
6512  /// \brief Helper method to factor out the common pattern of adding overloads
6513  /// for '++' and '--' builtin operators.
6514  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6515                                           bool HasVolatile,
6516                                           bool HasRestrict) {
6517    QualType ParamTypes[2] = {
6518      S.Context.getLValueReferenceType(CandidateTy),
6519      S.Context.IntTy
6520    };
6521
6522    // Non-volatile version.
6523    if (NumArgs == 1)
6524      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6525    else
6526      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6527
6528    // Use a heuristic to reduce number of builtin candidates in the set:
6529    // add volatile version only if there are conversions to a volatile type.
6530    if (HasVolatile) {
6531      ParamTypes[0] =
6532        S.Context.getLValueReferenceType(
6533          S.Context.getVolatileType(CandidateTy));
6534      if (NumArgs == 1)
6535        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6536      else
6537        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6538    }
6539
6540    // Add restrict version only if there are conversions to a restrict type
6541    // and our candidate type is a non-restrict-qualified pointer.
6542    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6543        !CandidateTy.isRestrictQualified()) {
6544      ParamTypes[0]
6545        = S.Context.getLValueReferenceType(
6546            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6547      if (NumArgs == 1)
6548        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6549      else
6550        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6551
6552      if (HasVolatile) {
6553        ParamTypes[0]
6554          = S.Context.getLValueReferenceType(
6555              S.Context.getCVRQualifiedType(CandidateTy,
6556                                            (Qualifiers::Volatile |
6557                                             Qualifiers::Restrict)));
6558        if (NumArgs == 1)
6559          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1,
6560                                CandidateSet);
6561        else
6562          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6563      }
6564    }
6565
6566  }
6567
6568public:
6569  BuiltinOperatorOverloadBuilder(
6570    Sema &S, Expr **Args, unsigned NumArgs,
6571    Qualifiers VisibleTypeConversionsQuals,
6572    bool HasArithmeticOrEnumeralCandidateType,
6573    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6574    OverloadCandidateSet &CandidateSet)
6575    : S(S), Args(Args), NumArgs(NumArgs),
6576      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6577      HasArithmeticOrEnumeralCandidateType(
6578        HasArithmeticOrEnumeralCandidateType),
6579      CandidateTypes(CandidateTypes),
6580      CandidateSet(CandidateSet) {
6581    // Validate some of our static helper constants in debug builds.
6582    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6583           "Invalid first promoted integral type");
6584    assert(getArithmeticType(LastPromotedIntegralType - 1)
6585             == S.Context.UnsignedInt128Ty &&
6586           "Invalid last promoted integral type");
6587    assert(getArithmeticType(FirstPromotedArithmeticType)
6588             == S.Context.FloatTy &&
6589           "Invalid first promoted arithmetic type");
6590    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6591             == S.Context.UnsignedInt128Ty &&
6592           "Invalid last promoted arithmetic type");
6593  }
6594
6595  // C++ [over.built]p3:
6596  //
6597  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6598  //   is either volatile or empty, there exist candidate operator
6599  //   functions of the form
6600  //
6601  //       VQ T&      operator++(VQ T&);
6602  //       T          operator++(VQ T&, int);
6603  //
6604  // C++ [over.built]p4:
6605  //
6606  //   For every pair (T, VQ), where T is an arithmetic type other
6607  //   than bool, and VQ is either volatile or empty, there exist
6608  //   candidate operator functions of the form
6609  //
6610  //       VQ T&      operator--(VQ T&);
6611  //       T          operator--(VQ T&, int);
6612  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6613    if (!HasArithmeticOrEnumeralCandidateType)
6614      return;
6615
6616    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6617         Arith < NumArithmeticTypes; ++Arith) {
6618      addPlusPlusMinusMinusStyleOverloads(
6619        getArithmeticType(Arith),
6620        VisibleTypeConversionsQuals.hasVolatile(),
6621        VisibleTypeConversionsQuals.hasRestrict());
6622    }
6623  }
6624
6625  // C++ [over.built]p5:
6626  //
6627  //   For every pair (T, VQ), where T is a cv-qualified or
6628  //   cv-unqualified object type, and VQ is either volatile or
6629  //   empty, there exist candidate operator functions of the form
6630  //
6631  //       T*VQ&      operator++(T*VQ&);
6632  //       T*VQ&      operator--(T*VQ&);
6633  //       T*         operator++(T*VQ&, int);
6634  //       T*         operator--(T*VQ&, int);
6635  void addPlusPlusMinusMinusPointerOverloads() {
6636    for (BuiltinCandidateTypeSet::iterator
6637              Ptr = CandidateTypes[0].pointer_begin(),
6638           PtrEnd = CandidateTypes[0].pointer_end();
6639         Ptr != PtrEnd; ++Ptr) {
6640      // Skip pointer types that aren't pointers to object types.
6641      if (!(*Ptr)->getPointeeType()->isObjectType())
6642        continue;
6643
6644      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6645        (!(*Ptr).isVolatileQualified() &&
6646         VisibleTypeConversionsQuals.hasVolatile()),
6647        (!(*Ptr).isRestrictQualified() &&
6648         VisibleTypeConversionsQuals.hasRestrict()));
6649    }
6650  }
6651
6652  // C++ [over.built]p6:
6653  //   For every cv-qualified or cv-unqualified object type T, there
6654  //   exist candidate operator functions of the form
6655  //
6656  //       T&         operator*(T*);
6657  //
6658  // C++ [over.built]p7:
6659  //   For every function type T that does not have cv-qualifiers or a
6660  //   ref-qualifier, there exist candidate operator functions of the form
6661  //       T&         operator*(T*);
6662  void addUnaryStarPointerOverloads() {
6663    for (BuiltinCandidateTypeSet::iterator
6664              Ptr = CandidateTypes[0].pointer_begin(),
6665           PtrEnd = CandidateTypes[0].pointer_end();
6666         Ptr != PtrEnd; ++Ptr) {
6667      QualType ParamTy = *Ptr;
6668      QualType PointeeTy = ParamTy->getPointeeType();
6669      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6670        continue;
6671
6672      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6673        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6674          continue;
6675
6676      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6677                            &ParamTy, Args, 1, CandidateSet);
6678    }
6679  }
6680
6681  // C++ [over.built]p9:
6682  //  For every promoted arithmetic type T, there exist candidate
6683  //  operator functions of the form
6684  //
6685  //       T         operator+(T);
6686  //       T         operator-(T);
6687  void addUnaryPlusOrMinusArithmeticOverloads() {
6688    if (!HasArithmeticOrEnumeralCandidateType)
6689      return;
6690
6691    for (unsigned Arith = FirstPromotedArithmeticType;
6692         Arith < LastPromotedArithmeticType; ++Arith) {
6693      QualType ArithTy = getArithmeticType(Arith);
6694      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6695    }
6696
6697    // Extension: We also add these operators for vector types.
6698    for (BuiltinCandidateTypeSet::iterator
6699              Vec = CandidateTypes[0].vector_begin(),
6700           VecEnd = CandidateTypes[0].vector_end();
6701         Vec != VecEnd; ++Vec) {
6702      QualType VecTy = *Vec;
6703      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6704    }
6705  }
6706
6707  // C++ [over.built]p8:
6708  //   For every type T, there exist candidate operator functions of
6709  //   the form
6710  //
6711  //       T*         operator+(T*);
6712  void addUnaryPlusPointerOverloads() {
6713    for (BuiltinCandidateTypeSet::iterator
6714              Ptr = CandidateTypes[0].pointer_begin(),
6715           PtrEnd = CandidateTypes[0].pointer_end();
6716         Ptr != PtrEnd; ++Ptr) {
6717      QualType ParamTy = *Ptr;
6718      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6719    }
6720  }
6721
6722  // C++ [over.built]p10:
6723  //   For every promoted integral type T, there exist candidate
6724  //   operator functions of the form
6725  //
6726  //        T         operator~(T);
6727  void addUnaryTildePromotedIntegralOverloads() {
6728    if (!HasArithmeticOrEnumeralCandidateType)
6729      return;
6730
6731    for (unsigned Int = FirstPromotedIntegralType;
6732         Int < LastPromotedIntegralType; ++Int) {
6733      QualType IntTy = getArithmeticType(Int);
6734      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6735    }
6736
6737    // Extension: We also add this operator for vector types.
6738    for (BuiltinCandidateTypeSet::iterator
6739              Vec = CandidateTypes[0].vector_begin(),
6740           VecEnd = CandidateTypes[0].vector_end();
6741         Vec != VecEnd; ++Vec) {
6742      QualType VecTy = *Vec;
6743      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6744    }
6745  }
6746
6747  // C++ [over.match.oper]p16:
6748  //   For every pointer to member type T, there exist candidate operator
6749  //   functions of the form
6750  //
6751  //        bool operator==(T,T);
6752  //        bool operator!=(T,T);
6753  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6754    /// Set of (canonical) types that we've already handled.
6755    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6756
6757    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6758      for (BuiltinCandidateTypeSet::iterator
6759                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6760             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6761           MemPtr != MemPtrEnd;
6762           ++MemPtr) {
6763        // Don't add the same builtin candidate twice.
6764        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6765          continue;
6766
6767        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6768        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6769                              CandidateSet);
6770      }
6771    }
6772  }
6773
6774  // C++ [over.built]p15:
6775  //
6776  //   For every T, where T is an enumeration type, a pointer type, or
6777  //   std::nullptr_t, there exist candidate operator functions of the form
6778  //
6779  //        bool       operator<(T, T);
6780  //        bool       operator>(T, T);
6781  //        bool       operator<=(T, T);
6782  //        bool       operator>=(T, T);
6783  //        bool       operator==(T, T);
6784  //        bool       operator!=(T, T);
6785  void addRelationalPointerOrEnumeralOverloads() {
6786    // C++ [over.built]p1:
6787    //   If there is a user-written candidate with the same name and parameter
6788    //   types as a built-in candidate operator function, the built-in operator
6789    //   function is hidden and is not included in the set of candidate
6790    //   functions.
6791    //
6792    // The text is actually in a note, but if we don't implement it then we end
6793    // up with ambiguities when the user provides an overloaded operator for
6794    // an enumeration type. Note that only enumeration types have this problem,
6795    // so we track which enumeration types we've seen operators for. Also, the
6796    // only other overloaded operator with enumeration argumenst, operator=,
6797    // cannot be overloaded for enumeration types, so this is the only place
6798    // where we must suppress candidates like this.
6799    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6800      UserDefinedBinaryOperators;
6801
6802    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6803      if (CandidateTypes[ArgIdx].enumeration_begin() !=
6804          CandidateTypes[ArgIdx].enumeration_end()) {
6805        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6806                                         CEnd = CandidateSet.end();
6807             C != CEnd; ++C) {
6808          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6809            continue;
6810
6811          QualType FirstParamType =
6812            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6813          QualType SecondParamType =
6814            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6815
6816          // Skip if either parameter isn't of enumeral type.
6817          if (!FirstParamType->isEnumeralType() ||
6818              !SecondParamType->isEnumeralType())
6819            continue;
6820
6821          // Add this operator to the set of known user-defined operators.
6822          UserDefinedBinaryOperators.insert(
6823            std::make_pair(S.Context.getCanonicalType(FirstParamType),
6824                           S.Context.getCanonicalType(SecondParamType)));
6825        }
6826      }
6827    }
6828
6829    /// Set of (canonical) types that we've already handled.
6830    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6831
6832    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6833      for (BuiltinCandidateTypeSet::iterator
6834                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6835             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6836           Ptr != PtrEnd; ++Ptr) {
6837        // Don't add the same builtin candidate twice.
6838        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6839          continue;
6840
6841        QualType ParamTypes[2] = { *Ptr, *Ptr };
6842        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6843                              CandidateSet);
6844      }
6845      for (BuiltinCandidateTypeSet::iterator
6846                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6847             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6848           Enum != EnumEnd; ++Enum) {
6849        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6850
6851        // Don't add the same builtin candidate twice, or if a user defined
6852        // candidate exists.
6853        if (!AddedTypes.insert(CanonType) ||
6854            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6855                                                            CanonType)))
6856          continue;
6857
6858        QualType ParamTypes[2] = { *Enum, *Enum };
6859        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6860                              CandidateSet);
6861      }
6862
6863      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6864        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6865        if (AddedTypes.insert(NullPtrTy) &&
6866            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6867                                                             NullPtrTy))) {
6868          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6869          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6870                                CandidateSet);
6871        }
6872      }
6873    }
6874  }
6875
6876  // C++ [over.built]p13:
6877  //
6878  //   For every cv-qualified or cv-unqualified object type T
6879  //   there exist candidate operator functions of the form
6880  //
6881  //      T*         operator+(T*, ptrdiff_t);
6882  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
6883  //      T*         operator-(T*, ptrdiff_t);
6884  //      T*         operator+(ptrdiff_t, T*);
6885  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
6886  //
6887  // C++ [over.built]p14:
6888  //
6889  //   For every T, where T is a pointer to object type, there
6890  //   exist candidate operator functions of the form
6891  //
6892  //      ptrdiff_t  operator-(T, T);
6893  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6894    /// Set of (canonical) types that we've already handled.
6895    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6896
6897    for (int Arg = 0; Arg < 2; ++Arg) {
6898      QualType AsymetricParamTypes[2] = {
6899        S.Context.getPointerDiffType(),
6900        S.Context.getPointerDiffType(),
6901      };
6902      for (BuiltinCandidateTypeSet::iterator
6903                Ptr = CandidateTypes[Arg].pointer_begin(),
6904             PtrEnd = CandidateTypes[Arg].pointer_end();
6905           Ptr != PtrEnd; ++Ptr) {
6906        QualType PointeeTy = (*Ptr)->getPointeeType();
6907        if (!PointeeTy->isObjectType())
6908          continue;
6909
6910        AsymetricParamTypes[Arg] = *Ptr;
6911        if (Arg == 0 || Op == OO_Plus) {
6912          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6913          // T* operator+(ptrdiff_t, T*);
6914          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6915                                CandidateSet);
6916        }
6917        if (Op == OO_Minus) {
6918          // ptrdiff_t operator-(T, T);
6919          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6920            continue;
6921
6922          QualType ParamTypes[2] = { *Ptr, *Ptr };
6923          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6924                                Args, 2, CandidateSet);
6925        }
6926      }
6927    }
6928  }
6929
6930  // C++ [over.built]p12:
6931  //
6932  //   For every pair of promoted arithmetic types L and R, there
6933  //   exist candidate operator functions of the form
6934  //
6935  //        LR         operator*(L, R);
6936  //        LR         operator/(L, R);
6937  //        LR         operator+(L, R);
6938  //        LR         operator-(L, R);
6939  //        bool       operator<(L, R);
6940  //        bool       operator>(L, R);
6941  //        bool       operator<=(L, R);
6942  //        bool       operator>=(L, R);
6943  //        bool       operator==(L, R);
6944  //        bool       operator!=(L, R);
6945  //
6946  //   where LR is the result of the usual arithmetic conversions
6947  //   between types L and R.
6948  //
6949  // C++ [over.built]p24:
6950  //
6951  //   For every pair of promoted arithmetic types L and R, there exist
6952  //   candidate operator functions of the form
6953  //
6954  //        LR       operator?(bool, L, R);
6955  //
6956  //   where LR is the result of the usual arithmetic conversions
6957  //   between types L and R.
6958  // Our candidates ignore the first parameter.
6959  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6960    if (!HasArithmeticOrEnumeralCandidateType)
6961      return;
6962
6963    for (unsigned Left = FirstPromotedArithmeticType;
6964         Left < LastPromotedArithmeticType; ++Left) {
6965      for (unsigned Right = FirstPromotedArithmeticType;
6966           Right < LastPromotedArithmeticType; ++Right) {
6967        QualType LandR[2] = { getArithmeticType(Left),
6968                              getArithmeticType(Right) };
6969        QualType Result =
6970          isComparison ? S.Context.BoolTy
6971                       : getUsualArithmeticConversions(Left, Right);
6972        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6973      }
6974    }
6975
6976    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6977    // conditional operator for vector types.
6978    for (BuiltinCandidateTypeSet::iterator
6979              Vec1 = CandidateTypes[0].vector_begin(),
6980           Vec1End = CandidateTypes[0].vector_end();
6981         Vec1 != Vec1End; ++Vec1) {
6982      for (BuiltinCandidateTypeSet::iterator
6983                Vec2 = CandidateTypes[1].vector_begin(),
6984             Vec2End = CandidateTypes[1].vector_end();
6985           Vec2 != Vec2End; ++Vec2) {
6986        QualType LandR[2] = { *Vec1, *Vec2 };
6987        QualType Result = S.Context.BoolTy;
6988        if (!isComparison) {
6989          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6990            Result = *Vec1;
6991          else
6992            Result = *Vec2;
6993        }
6994
6995        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6996      }
6997    }
6998  }
6999
7000  // C++ [over.built]p17:
7001  //
7002  //   For every pair of promoted integral types L and R, there
7003  //   exist candidate operator functions of the form
7004  //
7005  //      LR         operator%(L, R);
7006  //      LR         operator&(L, R);
7007  //      LR         operator^(L, R);
7008  //      LR         operator|(L, R);
7009  //      L          operator<<(L, R);
7010  //      L          operator>>(L, R);
7011  //
7012  //   where LR is the result of the usual arithmetic conversions
7013  //   between types L and R.
7014  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7015    if (!HasArithmeticOrEnumeralCandidateType)
7016      return;
7017
7018    for (unsigned Left = FirstPromotedIntegralType;
7019         Left < LastPromotedIntegralType; ++Left) {
7020      for (unsigned Right = FirstPromotedIntegralType;
7021           Right < LastPromotedIntegralType; ++Right) {
7022        QualType LandR[2] = { getArithmeticType(Left),
7023                              getArithmeticType(Right) };
7024        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7025            ? LandR[0]
7026            : getUsualArithmeticConversions(Left, Right);
7027        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
7028      }
7029    }
7030  }
7031
7032  // C++ [over.built]p20:
7033  //
7034  //   For every pair (T, VQ), where T is an enumeration or
7035  //   pointer to member type and VQ is either volatile or
7036  //   empty, there exist candidate operator functions of the form
7037  //
7038  //        VQ T&      operator=(VQ T&, T);
7039  void addAssignmentMemberPointerOrEnumeralOverloads() {
7040    /// Set of (canonical) types that we've already handled.
7041    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7042
7043    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7044      for (BuiltinCandidateTypeSet::iterator
7045                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7046             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7047           Enum != EnumEnd; ++Enum) {
7048        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7049          continue;
7050
7051        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
7052                                               CandidateSet);
7053      }
7054
7055      for (BuiltinCandidateTypeSet::iterator
7056                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7057             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7058           MemPtr != MemPtrEnd; ++MemPtr) {
7059        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7060          continue;
7061
7062        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
7063                                               CandidateSet);
7064      }
7065    }
7066  }
7067
7068  // C++ [over.built]p19:
7069  //
7070  //   For every pair (T, VQ), where T is any type and VQ is either
7071  //   volatile or empty, there exist candidate operator functions
7072  //   of the form
7073  //
7074  //        T*VQ&      operator=(T*VQ&, T*);
7075  //
7076  // C++ [over.built]p21:
7077  //
7078  //   For every pair (T, VQ), where T is a cv-qualified or
7079  //   cv-unqualified object type and VQ is either volatile or
7080  //   empty, there exist candidate operator functions of the form
7081  //
7082  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7083  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7084  void addAssignmentPointerOverloads(bool isEqualOp) {
7085    /// Set of (canonical) types that we've already handled.
7086    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7087
7088    for (BuiltinCandidateTypeSet::iterator
7089              Ptr = CandidateTypes[0].pointer_begin(),
7090           PtrEnd = CandidateTypes[0].pointer_end();
7091         Ptr != PtrEnd; ++Ptr) {
7092      // If this is operator=, keep track of the builtin candidates we added.
7093      if (isEqualOp)
7094        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7095      else if (!(*Ptr)->getPointeeType()->isObjectType())
7096        continue;
7097
7098      // non-volatile version
7099      QualType ParamTypes[2] = {
7100        S.Context.getLValueReferenceType(*Ptr),
7101        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7102      };
7103      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7104                            /*IsAssigmentOperator=*/ isEqualOp);
7105
7106      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7107                          VisibleTypeConversionsQuals.hasVolatile();
7108      if (NeedVolatile) {
7109        // volatile version
7110        ParamTypes[0] =
7111          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7112        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7113                              /*IsAssigmentOperator=*/isEqualOp);
7114      }
7115
7116      if (!(*Ptr).isRestrictQualified() &&
7117          VisibleTypeConversionsQuals.hasRestrict()) {
7118        // restrict version
7119        ParamTypes[0]
7120          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7121        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7122                              /*IsAssigmentOperator=*/isEqualOp);
7123
7124        if (NeedVolatile) {
7125          // volatile restrict version
7126          ParamTypes[0]
7127            = S.Context.getLValueReferenceType(
7128                S.Context.getCVRQualifiedType(*Ptr,
7129                                              (Qualifiers::Volatile |
7130                                               Qualifiers::Restrict)));
7131          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7132                                CandidateSet,
7133                                /*IsAssigmentOperator=*/isEqualOp);
7134        }
7135      }
7136    }
7137
7138    if (isEqualOp) {
7139      for (BuiltinCandidateTypeSet::iterator
7140                Ptr = CandidateTypes[1].pointer_begin(),
7141             PtrEnd = CandidateTypes[1].pointer_end();
7142           Ptr != PtrEnd; ++Ptr) {
7143        // Make sure we don't add the same candidate twice.
7144        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7145          continue;
7146
7147        QualType ParamTypes[2] = {
7148          S.Context.getLValueReferenceType(*Ptr),
7149          *Ptr,
7150        };
7151
7152        // non-volatile version
7153        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7154                              /*IsAssigmentOperator=*/true);
7155
7156        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7157                           VisibleTypeConversionsQuals.hasVolatile();
7158        if (NeedVolatile) {
7159          // volatile version
7160          ParamTypes[0] =
7161            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7162          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7163                                CandidateSet, /*IsAssigmentOperator=*/true);
7164        }
7165
7166        if (!(*Ptr).isRestrictQualified() &&
7167            VisibleTypeConversionsQuals.hasRestrict()) {
7168          // restrict version
7169          ParamTypes[0]
7170            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7171          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7172                                CandidateSet, /*IsAssigmentOperator=*/true);
7173
7174          if (NeedVolatile) {
7175            // volatile restrict version
7176            ParamTypes[0]
7177              = S.Context.getLValueReferenceType(
7178                  S.Context.getCVRQualifiedType(*Ptr,
7179                                                (Qualifiers::Volatile |
7180                                                 Qualifiers::Restrict)));
7181            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7182                                  CandidateSet, /*IsAssigmentOperator=*/true);
7183
7184          }
7185        }
7186      }
7187    }
7188  }
7189
7190  // C++ [over.built]p18:
7191  //
7192  //   For every triple (L, VQ, R), where L is an arithmetic type,
7193  //   VQ is either volatile or empty, and R is a promoted
7194  //   arithmetic type, there exist candidate operator functions of
7195  //   the form
7196  //
7197  //        VQ L&      operator=(VQ L&, R);
7198  //        VQ L&      operator*=(VQ L&, R);
7199  //        VQ L&      operator/=(VQ L&, R);
7200  //        VQ L&      operator+=(VQ L&, R);
7201  //        VQ L&      operator-=(VQ L&, R);
7202  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7203    if (!HasArithmeticOrEnumeralCandidateType)
7204      return;
7205
7206    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7207      for (unsigned Right = FirstPromotedArithmeticType;
7208           Right < LastPromotedArithmeticType; ++Right) {
7209        QualType ParamTypes[2];
7210        ParamTypes[1] = getArithmeticType(Right);
7211
7212        // Add this built-in operator as a candidate (VQ is empty).
7213        ParamTypes[0] =
7214          S.Context.getLValueReferenceType(getArithmeticType(Left));
7215        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7216                              /*IsAssigmentOperator=*/isEqualOp);
7217
7218        // Add this built-in operator as a candidate (VQ is 'volatile').
7219        if (VisibleTypeConversionsQuals.hasVolatile()) {
7220          ParamTypes[0] =
7221            S.Context.getVolatileType(getArithmeticType(Left));
7222          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7223          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7224                                CandidateSet,
7225                                /*IsAssigmentOperator=*/isEqualOp);
7226        }
7227      }
7228    }
7229
7230    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7231    for (BuiltinCandidateTypeSet::iterator
7232              Vec1 = CandidateTypes[0].vector_begin(),
7233           Vec1End = CandidateTypes[0].vector_end();
7234         Vec1 != Vec1End; ++Vec1) {
7235      for (BuiltinCandidateTypeSet::iterator
7236                Vec2 = CandidateTypes[1].vector_begin(),
7237             Vec2End = CandidateTypes[1].vector_end();
7238           Vec2 != Vec2End; ++Vec2) {
7239        QualType ParamTypes[2];
7240        ParamTypes[1] = *Vec2;
7241        // Add this built-in operator as a candidate (VQ is empty).
7242        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7243        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7244                              /*IsAssigmentOperator=*/isEqualOp);
7245
7246        // Add this built-in operator as a candidate (VQ is 'volatile').
7247        if (VisibleTypeConversionsQuals.hasVolatile()) {
7248          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7249          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7250          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7251                                CandidateSet,
7252                                /*IsAssigmentOperator=*/isEqualOp);
7253        }
7254      }
7255    }
7256  }
7257
7258  // C++ [over.built]p22:
7259  //
7260  //   For every triple (L, VQ, R), where L is an integral type, VQ
7261  //   is either volatile or empty, and R is a promoted integral
7262  //   type, there exist candidate operator functions of the form
7263  //
7264  //        VQ L&       operator%=(VQ L&, R);
7265  //        VQ L&       operator<<=(VQ L&, R);
7266  //        VQ L&       operator>>=(VQ L&, R);
7267  //        VQ L&       operator&=(VQ L&, R);
7268  //        VQ L&       operator^=(VQ L&, R);
7269  //        VQ L&       operator|=(VQ L&, R);
7270  void addAssignmentIntegralOverloads() {
7271    if (!HasArithmeticOrEnumeralCandidateType)
7272      return;
7273
7274    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7275      for (unsigned Right = FirstPromotedIntegralType;
7276           Right < LastPromotedIntegralType; ++Right) {
7277        QualType ParamTypes[2];
7278        ParamTypes[1] = getArithmeticType(Right);
7279
7280        // Add this built-in operator as a candidate (VQ is empty).
7281        ParamTypes[0] =
7282          S.Context.getLValueReferenceType(getArithmeticType(Left));
7283        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
7284        if (VisibleTypeConversionsQuals.hasVolatile()) {
7285          // Add this built-in operator as a candidate (VQ is 'volatile').
7286          ParamTypes[0] = getArithmeticType(Left);
7287          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7288          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7289          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7290                                CandidateSet);
7291        }
7292      }
7293    }
7294  }
7295
7296  // C++ [over.operator]p23:
7297  //
7298  //   There also exist candidate operator functions of the form
7299  //
7300  //        bool        operator!(bool);
7301  //        bool        operator&&(bool, bool);
7302  //        bool        operator||(bool, bool);
7303  void addExclaimOverload() {
7304    QualType ParamTy = S.Context.BoolTy;
7305    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
7306                          /*IsAssignmentOperator=*/false,
7307                          /*NumContextualBoolArguments=*/1);
7308  }
7309  void addAmpAmpOrPipePipeOverload() {
7310    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7311    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
7312                          /*IsAssignmentOperator=*/false,
7313                          /*NumContextualBoolArguments=*/2);
7314  }
7315
7316  // C++ [over.built]p13:
7317  //
7318  //   For every cv-qualified or cv-unqualified object type T there
7319  //   exist candidate operator functions of the form
7320  //
7321  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7322  //        T&         operator[](T*, ptrdiff_t);
7323  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7324  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7325  //        T&         operator[](ptrdiff_t, T*);
7326  void addSubscriptOverloads() {
7327    for (BuiltinCandidateTypeSet::iterator
7328              Ptr = CandidateTypes[0].pointer_begin(),
7329           PtrEnd = CandidateTypes[0].pointer_end();
7330         Ptr != PtrEnd; ++Ptr) {
7331      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7332      QualType PointeeType = (*Ptr)->getPointeeType();
7333      if (!PointeeType->isObjectType())
7334        continue;
7335
7336      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7337
7338      // T& operator[](T*, ptrdiff_t)
7339      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7340    }
7341
7342    for (BuiltinCandidateTypeSet::iterator
7343              Ptr = CandidateTypes[1].pointer_begin(),
7344           PtrEnd = CandidateTypes[1].pointer_end();
7345         Ptr != PtrEnd; ++Ptr) {
7346      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7347      QualType PointeeType = (*Ptr)->getPointeeType();
7348      if (!PointeeType->isObjectType())
7349        continue;
7350
7351      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7352
7353      // T& operator[](ptrdiff_t, T*)
7354      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7355    }
7356  }
7357
7358  // C++ [over.built]p11:
7359  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7360  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7361  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7362  //    there exist candidate operator functions of the form
7363  //
7364  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7365  //
7366  //    where CV12 is the union of CV1 and CV2.
7367  void addArrowStarOverloads() {
7368    for (BuiltinCandidateTypeSet::iterator
7369             Ptr = CandidateTypes[0].pointer_begin(),
7370           PtrEnd = CandidateTypes[0].pointer_end();
7371         Ptr != PtrEnd; ++Ptr) {
7372      QualType C1Ty = (*Ptr);
7373      QualType C1;
7374      QualifierCollector Q1;
7375      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7376      if (!isa<RecordType>(C1))
7377        continue;
7378      // heuristic to reduce number of builtin candidates in the set.
7379      // Add volatile/restrict version only if there are conversions to a
7380      // volatile/restrict type.
7381      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7382        continue;
7383      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7384        continue;
7385      for (BuiltinCandidateTypeSet::iterator
7386                MemPtr = CandidateTypes[1].member_pointer_begin(),
7387             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7388           MemPtr != MemPtrEnd; ++MemPtr) {
7389        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7390        QualType C2 = QualType(mptr->getClass(), 0);
7391        C2 = C2.getUnqualifiedType();
7392        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7393          break;
7394        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7395        // build CV12 T&
7396        QualType T = mptr->getPointeeType();
7397        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7398            T.isVolatileQualified())
7399          continue;
7400        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7401            T.isRestrictQualified())
7402          continue;
7403        T = Q1.apply(S.Context, T);
7404        QualType ResultTy = S.Context.getLValueReferenceType(T);
7405        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7406      }
7407    }
7408  }
7409
7410  // Note that we don't consider the first argument, since it has been
7411  // contextually converted to bool long ago. The candidates below are
7412  // therefore added as binary.
7413  //
7414  // C++ [over.built]p25:
7415  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7416  //   enumeration type, there exist candidate operator functions of the form
7417  //
7418  //        T        operator?(bool, T, T);
7419  //
7420  void addConditionalOperatorOverloads() {
7421    /// Set of (canonical) types that we've already handled.
7422    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7423
7424    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7425      for (BuiltinCandidateTypeSet::iterator
7426                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7427             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7428           Ptr != PtrEnd; ++Ptr) {
7429        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7430          continue;
7431
7432        QualType ParamTypes[2] = { *Ptr, *Ptr };
7433        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7434      }
7435
7436      for (BuiltinCandidateTypeSet::iterator
7437                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7438             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7439           MemPtr != MemPtrEnd; ++MemPtr) {
7440        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7441          continue;
7442
7443        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7444        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7445      }
7446
7447      if (S.getLangOpts().CPlusPlus0x) {
7448        for (BuiltinCandidateTypeSet::iterator
7449                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7450               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7451             Enum != EnumEnd; ++Enum) {
7452          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7453            continue;
7454
7455          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7456            continue;
7457
7458          QualType ParamTypes[2] = { *Enum, *Enum };
7459          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7460        }
7461      }
7462    }
7463  }
7464};
7465
7466} // end anonymous namespace
7467
7468/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7469/// operator overloads to the candidate set (C++ [over.built]), based
7470/// on the operator @p Op and the arguments given. For example, if the
7471/// operator is a binary '+', this routine might add "int
7472/// operator+(int, int)" to cover integer addition.
7473void
7474Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7475                                   SourceLocation OpLoc,
7476                                   Expr **Args, unsigned NumArgs,
7477                                   OverloadCandidateSet& CandidateSet) {
7478  // Find all of the types that the arguments can convert to, but only
7479  // if the operator we're looking at has built-in operator candidates
7480  // that make use of these types. Also record whether we encounter non-record
7481  // candidate types or either arithmetic or enumeral candidate types.
7482  Qualifiers VisibleTypeConversionsQuals;
7483  VisibleTypeConversionsQuals.addConst();
7484  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7485    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7486
7487  bool HasNonRecordCandidateType = false;
7488  bool HasArithmeticOrEnumeralCandidateType = false;
7489  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7490  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7491    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7492    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7493                                                 OpLoc,
7494                                                 true,
7495                                                 (Op == OO_Exclaim ||
7496                                                  Op == OO_AmpAmp ||
7497                                                  Op == OO_PipePipe),
7498                                                 VisibleTypeConversionsQuals);
7499    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7500        CandidateTypes[ArgIdx].hasNonRecordTypes();
7501    HasArithmeticOrEnumeralCandidateType =
7502        HasArithmeticOrEnumeralCandidateType ||
7503        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7504  }
7505
7506  // Exit early when no non-record types have been added to the candidate set
7507  // for any of the arguments to the operator.
7508  //
7509  // We can't exit early for !, ||, or &&, since there we have always have
7510  // 'bool' overloads.
7511  if (!HasNonRecordCandidateType &&
7512      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7513    return;
7514
7515  // Setup an object to manage the common state for building overloads.
7516  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7517                                           VisibleTypeConversionsQuals,
7518                                           HasArithmeticOrEnumeralCandidateType,
7519                                           CandidateTypes, CandidateSet);
7520
7521  // Dispatch over the operation to add in only those overloads which apply.
7522  switch (Op) {
7523  case OO_None:
7524  case NUM_OVERLOADED_OPERATORS:
7525    llvm_unreachable("Expected an overloaded operator");
7526
7527  case OO_New:
7528  case OO_Delete:
7529  case OO_Array_New:
7530  case OO_Array_Delete:
7531  case OO_Call:
7532    llvm_unreachable(
7533                    "Special operators don't use AddBuiltinOperatorCandidates");
7534
7535  case OO_Comma:
7536  case OO_Arrow:
7537    // C++ [over.match.oper]p3:
7538    //   -- For the operator ',', the unary operator '&', or the
7539    //      operator '->', the built-in candidates set is empty.
7540    break;
7541
7542  case OO_Plus: // '+' is either unary or binary
7543    if (NumArgs == 1)
7544      OpBuilder.addUnaryPlusPointerOverloads();
7545    // Fall through.
7546
7547  case OO_Minus: // '-' is either unary or binary
7548    if (NumArgs == 1) {
7549      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7550    } else {
7551      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7552      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7553    }
7554    break;
7555
7556  case OO_Star: // '*' is either unary or binary
7557    if (NumArgs == 1)
7558      OpBuilder.addUnaryStarPointerOverloads();
7559    else
7560      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7561    break;
7562
7563  case OO_Slash:
7564    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7565    break;
7566
7567  case OO_PlusPlus:
7568  case OO_MinusMinus:
7569    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7570    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7571    break;
7572
7573  case OO_EqualEqual:
7574  case OO_ExclaimEqual:
7575    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7576    // Fall through.
7577
7578  case OO_Less:
7579  case OO_Greater:
7580  case OO_LessEqual:
7581  case OO_GreaterEqual:
7582    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7583    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7584    break;
7585
7586  case OO_Percent:
7587  case OO_Caret:
7588  case OO_Pipe:
7589  case OO_LessLess:
7590  case OO_GreaterGreater:
7591    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7592    break;
7593
7594  case OO_Amp: // '&' is either unary or binary
7595    if (NumArgs == 1)
7596      // C++ [over.match.oper]p3:
7597      //   -- For the operator ',', the unary operator '&', or the
7598      //      operator '->', the built-in candidates set is empty.
7599      break;
7600
7601    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7602    break;
7603
7604  case OO_Tilde:
7605    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7606    break;
7607
7608  case OO_Equal:
7609    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7610    // Fall through.
7611
7612  case OO_PlusEqual:
7613  case OO_MinusEqual:
7614    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7615    // Fall through.
7616
7617  case OO_StarEqual:
7618  case OO_SlashEqual:
7619    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7620    break;
7621
7622  case OO_PercentEqual:
7623  case OO_LessLessEqual:
7624  case OO_GreaterGreaterEqual:
7625  case OO_AmpEqual:
7626  case OO_CaretEqual:
7627  case OO_PipeEqual:
7628    OpBuilder.addAssignmentIntegralOverloads();
7629    break;
7630
7631  case OO_Exclaim:
7632    OpBuilder.addExclaimOverload();
7633    break;
7634
7635  case OO_AmpAmp:
7636  case OO_PipePipe:
7637    OpBuilder.addAmpAmpOrPipePipeOverload();
7638    break;
7639
7640  case OO_Subscript:
7641    OpBuilder.addSubscriptOverloads();
7642    break;
7643
7644  case OO_ArrowStar:
7645    OpBuilder.addArrowStarOverloads();
7646    break;
7647
7648  case OO_Conditional:
7649    OpBuilder.addConditionalOperatorOverloads();
7650    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7651    break;
7652  }
7653}
7654
7655/// \brief Add function candidates found via argument-dependent lookup
7656/// to the set of overloading candidates.
7657///
7658/// This routine performs argument-dependent name lookup based on the
7659/// given function name (which may also be an operator name) and adds
7660/// all of the overload candidates found by ADL to the overload
7661/// candidate set (C++ [basic.lookup.argdep]).
7662void
7663Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7664                                           bool Operator, SourceLocation Loc,
7665                                           llvm::ArrayRef<Expr *> Args,
7666                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7667                                           OverloadCandidateSet& CandidateSet,
7668                                           bool PartialOverloading,
7669                                           bool StdNamespaceIsAssociated) {
7670  ADLResult Fns;
7671
7672  // FIXME: This approach for uniquing ADL results (and removing
7673  // redundant candidates from the set) relies on pointer-equality,
7674  // which means we need to key off the canonical decl.  However,
7675  // always going back to the canonical decl might not get us the
7676  // right set of default arguments.  What default arguments are
7677  // we supposed to consider on ADL candidates, anyway?
7678
7679  // FIXME: Pass in the explicit template arguments?
7680  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
7681                          StdNamespaceIsAssociated);
7682
7683  // Erase all of the candidates we already knew about.
7684  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7685                                   CandEnd = CandidateSet.end();
7686       Cand != CandEnd; ++Cand)
7687    if (Cand->Function) {
7688      Fns.erase(Cand->Function);
7689      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7690        Fns.erase(FunTmpl);
7691    }
7692
7693  // For each of the ADL candidates we found, add it to the overload
7694  // set.
7695  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7696    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7697    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7698      if (ExplicitTemplateArgs)
7699        continue;
7700
7701      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7702                           PartialOverloading);
7703    } else
7704      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7705                                   FoundDecl, ExplicitTemplateArgs,
7706                                   Args, CandidateSet);
7707  }
7708}
7709
7710/// isBetterOverloadCandidate - Determines whether the first overload
7711/// candidate is a better candidate than the second (C++ 13.3.3p1).
7712bool
7713isBetterOverloadCandidate(Sema &S,
7714                          const OverloadCandidate &Cand1,
7715                          const OverloadCandidate &Cand2,
7716                          SourceLocation Loc,
7717                          bool UserDefinedConversion) {
7718  // Define viable functions to be better candidates than non-viable
7719  // functions.
7720  if (!Cand2.Viable)
7721    return Cand1.Viable;
7722  else if (!Cand1.Viable)
7723    return false;
7724
7725  // C++ [over.match.best]p1:
7726  //
7727  //   -- if F is a static member function, ICS1(F) is defined such
7728  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7729  //      any function G, and, symmetrically, ICS1(G) is neither
7730  //      better nor worse than ICS1(F).
7731  unsigned StartArg = 0;
7732  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7733    StartArg = 1;
7734
7735  // C++ [over.match.best]p1:
7736  //   A viable function F1 is defined to be a better function than another
7737  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7738  //   conversion sequence than ICSi(F2), and then...
7739  unsigned NumArgs = Cand1.NumConversions;
7740  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7741  bool HasBetterConversion = false;
7742  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7743    switch (CompareImplicitConversionSequences(S,
7744                                               Cand1.Conversions[ArgIdx],
7745                                               Cand2.Conversions[ArgIdx])) {
7746    case ImplicitConversionSequence::Better:
7747      // Cand1 has a better conversion sequence.
7748      HasBetterConversion = true;
7749      break;
7750
7751    case ImplicitConversionSequence::Worse:
7752      // Cand1 can't be better than Cand2.
7753      return false;
7754
7755    case ImplicitConversionSequence::Indistinguishable:
7756      // Do nothing.
7757      break;
7758    }
7759  }
7760
7761  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7762  //       ICSj(F2), or, if not that,
7763  if (HasBetterConversion)
7764    return true;
7765
7766  //     - F1 is a non-template function and F2 is a function template
7767  //       specialization, or, if not that,
7768  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7769      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7770    return true;
7771
7772  //   -- F1 and F2 are function template specializations, and the function
7773  //      template for F1 is more specialized than the template for F2
7774  //      according to the partial ordering rules described in 14.5.5.2, or,
7775  //      if not that,
7776  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7777      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7778    if (FunctionTemplateDecl *BetterTemplate
7779          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7780                                         Cand2.Function->getPrimaryTemplate(),
7781                                         Loc,
7782                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7783                                                             : TPOC_Call,
7784                                         Cand1.ExplicitCallArguments))
7785      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7786  }
7787
7788  //   -- the context is an initialization by user-defined conversion
7789  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7790  //      from the return type of F1 to the destination type (i.e.,
7791  //      the type of the entity being initialized) is a better
7792  //      conversion sequence than the standard conversion sequence
7793  //      from the return type of F2 to the destination type.
7794  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7795      isa<CXXConversionDecl>(Cand1.Function) &&
7796      isa<CXXConversionDecl>(Cand2.Function)) {
7797    // First check whether we prefer one of the conversion functions over the
7798    // other. This only distinguishes the results in non-standard, extension
7799    // cases such as the conversion from a lambda closure type to a function
7800    // pointer or block.
7801    ImplicitConversionSequence::CompareKind FuncResult
7802      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7803    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7804      return FuncResult;
7805
7806    switch (CompareStandardConversionSequences(S,
7807                                               Cand1.FinalConversion,
7808                                               Cand2.FinalConversion)) {
7809    case ImplicitConversionSequence::Better:
7810      // Cand1 has a better conversion sequence.
7811      return true;
7812
7813    case ImplicitConversionSequence::Worse:
7814      // Cand1 can't be better than Cand2.
7815      return false;
7816
7817    case ImplicitConversionSequence::Indistinguishable:
7818      // Do nothing
7819      break;
7820    }
7821  }
7822
7823  return false;
7824}
7825
7826/// \brief Computes the best viable function (C++ 13.3.3)
7827/// within an overload candidate set.
7828///
7829/// \param Loc The location of the function name (or operator symbol) for
7830/// which overload resolution occurs.
7831///
7832/// \param Best If overload resolution was successful or found a deleted
7833/// function, \p Best points to the candidate function found.
7834///
7835/// \returns The result of overload resolution.
7836OverloadingResult
7837OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7838                                         iterator &Best,
7839                                         bool UserDefinedConversion) {
7840  // Find the best viable function.
7841  Best = end();
7842  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7843    if (Cand->Viable)
7844      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7845                                                     UserDefinedConversion))
7846        Best = Cand;
7847  }
7848
7849  // If we didn't find any viable functions, abort.
7850  if (Best == end())
7851    return OR_No_Viable_Function;
7852
7853  // Make sure that this function is better than every other viable
7854  // function. If not, we have an ambiguity.
7855  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7856    if (Cand->Viable &&
7857        Cand != Best &&
7858        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7859                                   UserDefinedConversion)) {
7860      Best = end();
7861      return OR_Ambiguous;
7862    }
7863  }
7864
7865  // Best is the best viable function.
7866  if (Best->Function &&
7867      (Best->Function->isDeleted() ||
7868       S.isFunctionConsideredUnavailable(Best->Function)))
7869    return OR_Deleted;
7870
7871  return OR_Success;
7872}
7873
7874namespace {
7875
7876enum OverloadCandidateKind {
7877  oc_function,
7878  oc_method,
7879  oc_constructor,
7880  oc_function_template,
7881  oc_method_template,
7882  oc_constructor_template,
7883  oc_implicit_default_constructor,
7884  oc_implicit_copy_constructor,
7885  oc_implicit_move_constructor,
7886  oc_implicit_copy_assignment,
7887  oc_implicit_move_assignment,
7888  oc_implicit_inherited_constructor
7889};
7890
7891OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7892                                                FunctionDecl *Fn,
7893                                                std::string &Description) {
7894  bool isTemplate = false;
7895
7896  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7897    isTemplate = true;
7898    Description = S.getTemplateArgumentBindingsText(
7899      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7900  }
7901
7902  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7903    if (!Ctor->isImplicit())
7904      return isTemplate ? oc_constructor_template : oc_constructor;
7905
7906    if (Ctor->getInheritedConstructor())
7907      return oc_implicit_inherited_constructor;
7908
7909    if (Ctor->isDefaultConstructor())
7910      return oc_implicit_default_constructor;
7911
7912    if (Ctor->isMoveConstructor())
7913      return oc_implicit_move_constructor;
7914
7915    assert(Ctor->isCopyConstructor() &&
7916           "unexpected sort of implicit constructor");
7917    return oc_implicit_copy_constructor;
7918  }
7919
7920  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7921    // This actually gets spelled 'candidate function' for now, but
7922    // it doesn't hurt to split it out.
7923    if (!Meth->isImplicit())
7924      return isTemplate ? oc_method_template : oc_method;
7925
7926    if (Meth->isMoveAssignmentOperator())
7927      return oc_implicit_move_assignment;
7928
7929    if (Meth->isCopyAssignmentOperator())
7930      return oc_implicit_copy_assignment;
7931
7932    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
7933    return oc_method;
7934  }
7935
7936  return isTemplate ? oc_function_template : oc_function;
7937}
7938
7939void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7940  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7941  if (!Ctor) return;
7942
7943  Ctor = Ctor->getInheritedConstructor();
7944  if (!Ctor) return;
7945
7946  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7947}
7948
7949} // end anonymous namespace
7950
7951// Notes the location of an overload candidate.
7952void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7953  std::string FnDesc;
7954  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7955  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7956                             << (unsigned) K << FnDesc;
7957  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7958  Diag(Fn->getLocation(), PD);
7959  MaybeEmitInheritedConstructorNote(*this, Fn);
7960}
7961
7962//Notes the location of all overload candidates designated through
7963// OverloadedExpr
7964void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7965  assert(OverloadedExpr->getType() == Context.OverloadTy);
7966
7967  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7968  OverloadExpr *OvlExpr = Ovl.Expression;
7969
7970  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7971                            IEnd = OvlExpr->decls_end();
7972       I != IEnd; ++I) {
7973    if (FunctionTemplateDecl *FunTmpl =
7974                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7975      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7976    } else if (FunctionDecl *Fun
7977                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7978      NoteOverloadCandidate(Fun, DestType);
7979    }
7980  }
7981}
7982
7983/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7984/// "lead" diagnostic; it will be given two arguments, the source and
7985/// target types of the conversion.
7986void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7987                                 Sema &S,
7988                                 SourceLocation CaretLoc,
7989                                 const PartialDiagnostic &PDiag) const {
7990  S.Diag(CaretLoc, PDiag)
7991    << Ambiguous.getFromType() << Ambiguous.getToType();
7992  for (AmbiguousConversionSequence::const_iterator
7993         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7994    S.NoteOverloadCandidate(*I);
7995  }
7996}
7997
7998namespace {
7999
8000void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8001  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8002  assert(Conv.isBad());
8003  assert(Cand->Function && "for now, candidate must be a function");
8004  FunctionDecl *Fn = Cand->Function;
8005
8006  // There's a conversion slot for the object argument if this is a
8007  // non-constructor method.  Note that 'I' corresponds the
8008  // conversion-slot index.
8009  bool isObjectArgument = false;
8010  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8011    if (I == 0)
8012      isObjectArgument = true;
8013    else
8014      I--;
8015  }
8016
8017  std::string FnDesc;
8018  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8019
8020  Expr *FromExpr = Conv.Bad.FromExpr;
8021  QualType FromTy = Conv.Bad.getFromType();
8022  QualType ToTy = Conv.Bad.getToType();
8023
8024  if (FromTy == S.Context.OverloadTy) {
8025    assert(FromExpr && "overload set argument came from implicit argument?");
8026    Expr *E = FromExpr->IgnoreParens();
8027    if (isa<UnaryOperator>(E))
8028      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8029    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8030
8031    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8032      << (unsigned) FnKind << FnDesc
8033      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8034      << ToTy << Name << I+1;
8035    MaybeEmitInheritedConstructorNote(S, Fn);
8036    return;
8037  }
8038
8039  // Do some hand-waving analysis to see if the non-viability is due
8040  // to a qualifier mismatch.
8041  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8042  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8043  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8044    CToTy = RT->getPointeeType();
8045  else {
8046    // TODO: detect and diagnose the full richness of const mismatches.
8047    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8048      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8049        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8050  }
8051
8052  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8053      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8054    Qualifiers FromQs = CFromTy.getQualifiers();
8055    Qualifiers ToQs = CToTy.getQualifiers();
8056
8057    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8058      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8059        << (unsigned) FnKind << FnDesc
8060        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8061        << FromTy
8062        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8063        << (unsigned) isObjectArgument << I+1;
8064      MaybeEmitInheritedConstructorNote(S, Fn);
8065      return;
8066    }
8067
8068    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8069      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8070        << (unsigned) FnKind << FnDesc
8071        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8072        << FromTy
8073        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8074        << (unsigned) isObjectArgument << I+1;
8075      MaybeEmitInheritedConstructorNote(S, Fn);
8076      return;
8077    }
8078
8079    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8080      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8081      << (unsigned) FnKind << FnDesc
8082      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8083      << FromTy
8084      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8085      << (unsigned) isObjectArgument << I+1;
8086      MaybeEmitInheritedConstructorNote(S, Fn);
8087      return;
8088    }
8089
8090    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8091    assert(CVR && "unexpected qualifiers mismatch");
8092
8093    if (isObjectArgument) {
8094      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8095        << (unsigned) FnKind << FnDesc
8096        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8097        << FromTy << (CVR - 1);
8098    } else {
8099      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8100        << (unsigned) FnKind << FnDesc
8101        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8102        << FromTy << (CVR - 1) << I+1;
8103    }
8104    MaybeEmitInheritedConstructorNote(S, Fn);
8105    return;
8106  }
8107
8108  // Special diagnostic for failure to convert an initializer list, since
8109  // telling the user that it has type void is not useful.
8110  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8111    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8112      << (unsigned) FnKind << FnDesc
8113      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8114      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8115    MaybeEmitInheritedConstructorNote(S, Fn);
8116    return;
8117  }
8118
8119  // Diagnose references or pointers to incomplete types differently,
8120  // since it's far from impossible that the incompleteness triggered
8121  // the failure.
8122  QualType TempFromTy = FromTy.getNonReferenceType();
8123  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8124    TempFromTy = PTy->getPointeeType();
8125  if (TempFromTy->isIncompleteType()) {
8126    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8127      << (unsigned) FnKind << FnDesc
8128      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8129      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8130    MaybeEmitInheritedConstructorNote(S, Fn);
8131    return;
8132  }
8133
8134  // Diagnose base -> derived pointer conversions.
8135  unsigned BaseToDerivedConversion = 0;
8136  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8137    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8138      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8139                                               FromPtrTy->getPointeeType()) &&
8140          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8141          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8142          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8143                          FromPtrTy->getPointeeType()))
8144        BaseToDerivedConversion = 1;
8145    }
8146  } else if (const ObjCObjectPointerType *FromPtrTy
8147                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8148    if (const ObjCObjectPointerType *ToPtrTy
8149                                        = ToTy->getAs<ObjCObjectPointerType>())
8150      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8151        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8152          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8153                                                FromPtrTy->getPointeeType()) &&
8154              FromIface->isSuperClassOf(ToIface))
8155            BaseToDerivedConversion = 2;
8156  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8157    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8158        !FromTy->isIncompleteType() &&
8159        !ToRefTy->getPointeeType()->isIncompleteType() &&
8160        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8161      BaseToDerivedConversion = 3;
8162    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8163               ToTy.getNonReferenceType().getCanonicalType() ==
8164               FromTy.getNonReferenceType().getCanonicalType()) {
8165      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8166        << (unsigned) FnKind << FnDesc
8167        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8168        << (unsigned) isObjectArgument << I + 1;
8169      MaybeEmitInheritedConstructorNote(S, Fn);
8170      return;
8171    }
8172  }
8173
8174  if (BaseToDerivedConversion) {
8175    S.Diag(Fn->getLocation(),
8176           diag::note_ovl_candidate_bad_base_to_derived_conv)
8177      << (unsigned) FnKind << FnDesc
8178      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8179      << (BaseToDerivedConversion - 1)
8180      << FromTy << ToTy << I+1;
8181    MaybeEmitInheritedConstructorNote(S, Fn);
8182    return;
8183  }
8184
8185  if (isa<ObjCObjectPointerType>(CFromTy) &&
8186      isa<PointerType>(CToTy)) {
8187      Qualifiers FromQs = CFromTy.getQualifiers();
8188      Qualifiers ToQs = CToTy.getQualifiers();
8189      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8190        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8191        << (unsigned) FnKind << FnDesc
8192        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8193        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8194        MaybeEmitInheritedConstructorNote(S, Fn);
8195        return;
8196      }
8197  }
8198
8199  // Emit the generic diagnostic and, optionally, add the hints to it.
8200  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8201  FDiag << (unsigned) FnKind << FnDesc
8202    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8203    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8204    << (unsigned) (Cand->Fix.Kind);
8205
8206  // If we can fix the conversion, suggest the FixIts.
8207  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8208       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8209    FDiag << *HI;
8210  S.Diag(Fn->getLocation(), FDiag);
8211
8212  MaybeEmitInheritedConstructorNote(S, Fn);
8213}
8214
8215void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8216                           unsigned NumFormalArgs) {
8217  // TODO: treat calls to a missing default constructor as a special case
8218
8219  FunctionDecl *Fn = Cand->Function;
8220  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8221
8222  unsigned MinParams = Fn->getMinRequiredArguments();
8223
8224  // With invalid overloaded operators, it's possible that we think we
8225  // have an arity mismatch when it fact it looks like we have the
8226  // right number of arguments, because only overloaded operators have
8227  // the weird behavior of overloading member and non-member functions.
8228  // Just don't report anything.
8229  if (Fn->isInvalidDecl() &&
8230      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8231    return;
8232
8233  // at least / at most / exactly
8234  unsigned mode, modeCount;
8235  if (NumFormalArgs < MinParams) {
8236    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8237           (Cand->FailureKind == ovl_fail_bad_deduction &&
8238            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8239    if (MinParams != FnTy->getNumArgs() ||
8240        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8241      mode = 0; // "at least"
8242    else
8243      mode = 2; // "exactly"
8244    modeCount = MinParams;
8245  } else {
8246    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8247           (Cand->FailureKind == ovl_fail_bad_deduction &&
8248            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8249    if (MinParams != FnTy->getNumArgs())
8250      mode = 1; // "at most"
8251    else
8252      mode = 2; // "exactly"
8253    modeCount = FnTy->getNumArgs();
8254  }
8255
8256  std::string Description;
8257  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8258
8259  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8260    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8261      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8262      << Fn->getParamDecl(0) << NumFormalArgs;
8263  else
8264    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8265      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8266      << modeCount << NumFormalArgs;
8267  MaybeEmitInheritedConstructorNote(S, Fn);
8268}
8269
8270/// Diagnose a failed template-argument deduction.
8271void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8272                          unsigned NumArgs) {
8273  FunctionDecl *Fn = Cand->Function; // pattern
8274
8275  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8276  NamedDecl *ParamD;
8277  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8278  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8279  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8280  switch (Cand->DeductionFailure.Result) {
8281  case Sema::TDK_Success:
8282    llvm_unreachable("TDK_success while diagnosing bad deduction");
8283
8284  case Sema::TDK_Incomplete: {
8285    assert(ParamD && "no parameter found for incomplete deduction result");
8286    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8287      << ParamD->getDeclName();
8288    MaybeEmitInheritedConstructorNote(S, Fn);
8289    return;
8290  }
8291
8292  case Sema::TDK_Underqualified: {
8293    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8294    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8295
8296    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8297
8298    // Param will have been canonicalized, but it should just be a
8299    // qualified version of ParamD, so move the qualifiers to that.
8300    QualifierCollector Qs;
8301    Qs.strip(Param);
8302    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8303    assert(S.Context.hasSameType(Param, NonCanonParam));
8304
8305    // Arg has also been canonicalized, but there's nothing we can do
8306    // about that.  It also doesn't matter as much, because it won't
8307    // have any template parameters in it (because deduction isn't
8308    // done on dependent types).
8309    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8310
8311    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8312      << ParamD->getDeclName() << Arg << NonCanonParam;
8313    MaybeEmitInheritedConstructorNote(S, Fn);
8314    return;
8315  }
8316
8317  case Sema::TDK_Inconsistent: {
8318    assert(ParamD && "no parameter found for inconsistent deduction result");
8319    int which = 0;
8320    if (isa<TemplateTypeParmDecl>(ParamD))
8321      which = 0;
8322    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8323      which = 1;
8324    else {
8325      which = 2;
8326    }
8327
8328    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8329      << which << ParamD->getDeclName()
8330      << *Cand->DeductionFailure.getFirstArg()
8331      << *Cand->DeductionFailure.getSecondArg();
8332    MaybeEmitInheritedConstructorNote(S, Fn);
8333    return;
8334  }
8335
8336  case Sema::TDK_InvalidExplicitArguments:
8337    assert(ParamD && "no parameter found for invalid explicit arguments");
8338    if (ParamD->getDeclName())
8339      S.Diag(Fn->getLocation(),
8340             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8341        << ParamD->getDeclName();
8342    else {
8343      int index = 0;
8344      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8345        index = TTP->getIndex();
8346      else if (NonTypeTemplateParmDecl *NTTP
8347                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8348        index = NTTP->getIndex();
8349      else
8350        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8351      S.Diag(Fn->getLocation(),
8352             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8353        << (index + 1);
8354    }
8355    MaybeEmitInheritedConstructorNote(S, Fn);
8356    return;
8357
8358  case Sema::TDK_TooManyArguments:
8359  case Sema::TDK_TooFewArguments:
8360    DiagnoseArityMismatch(S, Cand, NumArgs);
8361    return;
8362
8363  case Sema::TDK_InstantiationDepth:
8364    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8365    MaybeEmitInheritedConstructorNote(S, Fn);
8366    return;
8367
8368  case Sema::TDK_SubstitutionFailure: {
8369    // Format the template argument list into the argument string.
8370    llvm::SmallString<128> TemplateArgString;
8371    if (TemplateArgumentList *Args =
8372          Cand->DeductionFailure.getTemplateArgumentList()) {
8373      TemplateArgString = " ";
8374      TemplateArgString += S.getTemplateArgumentBindingsText(
8375          Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
8376    }
8377
8378    // If this candidate was disabled by enable_if, say so.
8379    PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
8380    if (PDiag && PDiag->second.getDiagID() ==
8381          diag::err_typename_nested_not_found_enable_if) {
8382      // FIXME: Use the source range of the condition, and the fully-qualified
8383      //        name of the enable_if template. These are both present in PDiag.
8384      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8385        << "'enable_if'" << TemplateArgString;
8386      return;
8387    }
8388
8389    // Format the SFINAE diagnostic into the argument string.
8390    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8391    //        formatted message in another diagnostic.
8392    llvm::SmallString<128> SFINAEArgString;
8393    SourceRange R;
8394    if (PDiag) {
8395      SFINAEArgString = ": ";
8396      R = SourceRange(PDiag->first, PDiag->first);
8397      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8398    }
8399
8400    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8401      << TemplateArgString << SFINAEArgString << R;
8402    MaybeEmitInheritedConstructorNote(S, Fn);
8403    return;
8404  }
8405
8406  // TODO: diagnose these individually, then kill off
8407  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8408  case Sema::TDK_NonDeducedMismatch:
8409  case Sema::TDK_FailedOverloadResolution:
8410    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8411    MaybeEmitInheritedConstructorNote(S, Fn);
8412    return;
8413  }
8414}
8415
8416/// CUDA: diagnose an invalid call across targets.
8417void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8418  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8419  FunctionDecl *Callee = Cand->Function;
8420
8421  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8422                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8423
8424  std::string FnDesc;
8425  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8426
8427  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8428      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8429}
8430
8431/// Generates a 'note' diagnostic for an overload candidate.  We've
8432/// already generated a primary error at the call site.
8433///
8434/// It really does need to be a single diagnostic with its caret
8435/// pointed at the candidate declaration.  Yes, this creates some
8436/// major challenges of technical writing.  Yes, this makes pointing
8437/// out problems with specific arguments quite awkward.  It's still
8438/// better than generating twenty screens of text for every failed
8439/// overload.
8440///
8441/// It would be great to be able to express per-candidate problems
8442/// more richly for those diagnostic clients that cared, but we'd
8443/// still have to be just as careful with the default diagnostics.
8444void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8445                           unsigned NumArgs) {
8446  FunctionDecl *Fn = Cand->Function;
8447
8448  // Note deleted candidates, but only if they're viable.
8449  if (Cand->Viable && (Fn->isDeleted() ||
8450      S.isFunctionConsideredUnavailable(Fn))) {
8451    std::string FnDesc;
8452    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8453
8454    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8455      << FnKind << FnDesc
8456      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8457    MaybeEmitInheritedConstructorNote(S, Fn);
8458    return;
8459  }
8460
8461  // We don't really have anything else to say about viable candidates.
8462  if (Cand->Viable) {
8463    S.NoteOverloadCandidate(Fn);
8464    return;
8465  }
8466
8467  switch (Cand->FailureKind) {
8468  case ovl_fail_too_many_arguments:
8469  case ovl_fail_too_few_arguments:
8470    return DiagnoseArityMismatch(S, Cand, NumArgs);
8471
8472  case ovl_fail_bad_deduction:
8473    return DiagnoseBadDeduction(S, Cand, NumArgs);
8474
8475  case ovl_fail_trivial_conversion:
8476  case ovl_fail_bad_final_conversion:
8477  case ovl_fail_final_conversion_not_exact:
8478    return S.NoteOverloadCandidate(Fn);
8479
8480  case ovl_fail_bad_conversion: {
8481    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8482    for (unsigned N = Cand->NumConversions; I != N; ++I)
8483      if (Cand->Conversions[I].isBad())
8484        return DiagnoseBadConversion(S, Cand, I);
8485
8486    // FIXME: this currently happens when we're called from SemaInit
8487    // when user-conversion overload fails.  Figure out how to handle
8488    // those conditions and diagnose them well.
8489    return S.NoteOverloadCandidate(Fn);
8490  }
8491
8492  case ovl_fail_bad_target:
8493    return DiagnoseBadTarget(S, Cand);
8494  }
8495}
8496
8497void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8498  // Desugar the type of the surrogate down to a function type,
8499  // retaining as many typedefs as possible while still showing
8500  // the function type (and, therefore, its parameter types).
8501  QualType FnType = Cand->Surrogate->getConversionType();
8502  bool isLValueReference = false;
8503  bool isRValueReference = false;
8504  bool isPointer = false;
8505  if (const LValueReferenceType *FnTypeRef =
8506        FnType->getAs<LValueReferenceType>()) {
8507    FnType = FnTypeRef->getPointeeType();
8508    isLValueReference = true;
8509  } else if (const RValueReferenceType *FnTypeRef =
8510               FnType->getAs<RValueReferenceType>()) {
8511    FnType = FnTypeRef->getPointeeType();
8512    isRValueReference = true;
8513  }
8514  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8515    FnType = FnTypePtr->getPointeeType();
8516    isPointer = true;
8517  }
8518  // Desugar down to a function type.
8519  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8520  // Reconstruct the pointer/reference as appropriate.
8521  if (isPointer) FnType = S.Context.getPointerType(FnType);
8522  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8523  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8524
8525  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8526    << FnType;
8527  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8528}
8529
8530void NoteBuiltinOperatorCandidate(Sema &S,
8531                                  const char *Opc,
8532                                  SourceLocation OpLoc,
8533                                  OverloadCandidate *Cand) {
8534  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8535  std::string TypeStr("operator");
8536  TypeStr += Opc;
8537  TypeStr += "(";
8538  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8539  if (Cand->NumConversions == 1) {
8540    TypeStr += ")";
8541    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8542  } else {
8543    TypeStr += ", ";
8544    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8545    TypeStr += ")";
8546    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8547  }
8548}
8549
8550void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8551                                  OverloadCandidate *Cand) {
8552  unsigned NoOperands = Cand->NumConversions;
8553  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8554    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8555    if (ICS.isBad()) break; // all meaningless after first invalid
8556    if (!ICS.isAmbiguous()) continue;
8557
8558    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8559                              S.PDiag(diag::note_ambiguous_type_conversion));
8560  }
8561}
8562
8563SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8564  if (Cand->Function)
8565    return Cand->Function->getLocation();
8566  if (Cand->IsSurrogate)
8567    return Cand->Surrogate->getLocation();
8568  return SourceLocation();
8569}
8570
8571static unsigned
8572RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8573  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8574  case Sema::TDK_Success:
8575    llvm_unreachable("TDK_success while diagnosing bad deduction");
8576
8577  case Sema::TDK_Incomplete:
8578    return 1;
8579
8580  case Sema::TDK_Underqualified:
8581  case Sema::TDK_Inconsistent:
8582    return 2;
8583
8584  case Sema::TDK_SubstitutionFailure:
8585  case Sema::TDK_NonDeducedMismatch:
8586    return 3;
8587
8588  case Sema::TDK_InstantiationDepth:
8589  case Sema::TDK_FailedOverloadResolution:
8590    return 4;
8591
8592  case Sema::TDK_InvalidExplicitArguments:
8593    return 5;
8594
8595  case Sema::TDK_TooManyArguments:
8596  case Sema::TDK_TooFewArguments:
8597    return 6;
8598  }
8599  llvm_unreachable("Unhandled deduction result");
8600}
8601
8602struct CompareOverloadCandidatesForDisplay {
8603  Sema &S;
8604  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8605
8606  bool operator()(const OverloadCandidate *L,
8607                  const OverloadCandidate *R) {
8608    // Fast-path this check.
8609    if (L == R) return false;
8610
8611    // Order first by viability.
8612    if (L->Viable) {
8613      if (!R->Viable) return true;
8614
8615      // TODO: introduce a tri-valued comparison for overload
8616      // candidates.  Would be more worthwhile if we had a sort
8617      // that could exploit it.
8618      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8619      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8620    } else if (R->Viable)
8621      return false;
8622
8623    assert(L->Viable == R->Viable);
8624
8625    // Criteria by which we can sort non-viable candidates:
8626    if (!L->Viable) {
8627      // 1. Arity mismatches come after other candidates.
8628      if (L->FailureKind == ovl_fail_too_many_arguments ||
8629          L->FailureKind == ovl_fail_too_few_arguments)
8630        return false;
8631      if (R->FailureKind == ovl_fail_too_many_arguments ||
8632          R->FailureKind == ovl_fail_too_few_arguments)
8633        return true;
8634
8635      // 2. Bad conversions come first and are ordered by the number
8636      // of bad conversions and quality of good conversions.
8637      if (L->FailureKind == ovl_fail_bad_conversion) {
8638        if (R->FailureKind != ovl_fail_bad_conversion)
8639          return true;
8640
8641        // The conversion that can be fixed with a smaller number of changes,
8642        // comes first.
8643        unsigned numLFixes = L->Fix.NumConversionsFixed;
8644        unsigned numRFixes = R->Fix.NumConversionsFixed;
8645        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8646        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8647        if (numLFixes != numRFixes) {
8648          if (numLFixes < numRFixes)
8649            return true;
8650          else
8651            return false;
8652        }
8653
8654        // If there's any ordering between the defined conversions...
8655        // FIXME: this might not be transitive.
8656        assert(L->NumConversions == R->NumConversions);
8657
8658        int leftBetter = 0;
8659        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8660        for (unsigned E = L->NumConversions; I != E; ++I) {
8661          switch (CompareImplicitConversionSequences(S,
8662                                                     L->Conversions[I],
8663                                                     R->Conversions[I])) {
8664          case ImplicitConversionSequence::Better:
8665            leftBetter++;
8666            break;
8667
8668          case ImplicitConversionSequence::Worse:
8669            leftBetter--;
8670            break;
8671
8672          case ImplicitConversionSequence::Indistinguishable:
8673            break;
8674          }
8675        }
8676        if (leftBetter > 0) return true;
8677        if (leftBetter < 0) return false;
8678
8679      } else if (R->FailureKind == ovl_fail_bad_conversion)
8680        return false;
8681
8682      if (L->FailureKind == ovl_fail_bad_deduction) {
8683        if (R->FailureKind != ovl_fail_bad_deduction)
8684          return true;
8685
8686        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8687          return RankDeductionFailure(L->DeductionFailure)
8688               < RankDeductionFailure(R->DeductionFailure);
8689      } else if (R->FailureKind == ovl_fail_bad_deduction)
8690        return false;
8691
8692      // TODO: others?
8693    }
8694
8695    // Sort everything else by location.
8696    SourceLocation LLoc = GetLocationForCandidate(L);
8697    SourceLocation RLoc = GetLocationForCandidate(R);
8698
8699    // Put candidates without locations (e.g. builtins) at the end.
8700    if (LLoc.isInvalid()) return false;
8701    if (RLoc.isInvalid()) return true;
8702
8703    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8704  }
8705};
8706
8707/// CompleteNonViableCandidate - Normally, overload resolution only
8708/// computes up to the first. Produces the FixIt set if possible.
8709void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8710                                llvm::ArrayRef<Expr *> Args) {
8711  assert(!Cand->Viable);
8712
8713  // Don't do anything on failures other than bad conversion.
8714  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8715
8716  // We only want the FixIts if all the arguments can be corrected.
8717  bool Unfixable = false;
8718  // Use a implicit copy initialization to check conversion fixes.
8719  Cand->Fix.setConversionChecker(TryCopyInitialization);
8720
8721  // Skip forward to the first bad conversion.
8722  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8723  unsigned ConvCount = Cand->NumConversions;
8724  while (true) {
8725    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8726    ConvIdx++;
8727    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8728      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8729      break;
8730    }
8731  }
8732
8733  if (ConvIdx == ConvCount)
8734    return;
8735
8736  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8737         "remaining conversion is initialized?");
8738
8739  // FIXME: this should probably be preserved from the overload
8740  // operation somehow.
8741  bool SuppressUserConversions = false;
8742
8743  const FunctionProtoType* Proto;
8744  unsigned ArgIdx = ConvIdx;
8745
8746  if (Cand->IsSurrogate) {
8747    QualType ConvType
8748      = Cand->Surrogate->getConversionType().getNonReferenceType();
8749    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8750      ConvType = ConvPtrType->getPointeeType();
8751    Proto = ConvType->getAs<FunctionProtoType>();
8752    ArgIdx--;
8753  } else if (Cand->Function) {
8754    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8755    if (isa<CXXMethodDecl>(Cand->Function) &&
8756        !isa<CXXConstructorDecl>(Cand->Function))
8757      ArgIdx--;
8758  } else {
8759    // Builtin binary operator with a bad first conversion.
8760    assert(ConvCount <= 3);
8761    for (; ConvIdx != ConvCount; ++ConvIdx)
8762      Cand->Conversions[ConvIdx]
8763        = TryCopyInitialization(S, Args[ConvIdx],
8764                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
8765                                SuppressUserConversions,
8766                                /*InOverloadResolution*/ true,
8767                                /*AllowObjCWritebackConversion=*/
8768                                  S.getLangOpts().ObjCAutoRefCount);
8769    return;
8770  }
8771
8772  // Fill in the rest of the conversions.
8773  unsigned NumArgsInProto = Proto->getNumArgs();
8774  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8775    if (ArgIdx < NumArgsInProto) {
8776      Cand->Conversions[ConvIdx]
8777        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8778                                SuppressUserConversions,
8779                                /*InOverloadResolution=*/true,
8780                                /*AllowObjCWritebackConversion=*/
8781                                  S.getLangOpts().ObjCAutoRefCount);
8782      // Store the FixIt in the candidate if it exists.
8783      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8784        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8785    }
8786    else
8787      Cand->Conversions[ConvIdx].setEllipsis();
8788  }
8789}
8790
8791} // end anonymous namespace
8792
8793/// PrintOverloadCandidates - When overload resolution fails, prints
8794/// diagnostic messages containing the candidates in the candidate
8795/// set.
8796void OverloadCandidateSet::NoteCandidates(Sema &S,
8797                                          OverloadCandidateDisplayKind OCD,
8798                                          llvm::ArrayRef<Expr *> Args,
8799                                          const char *Opc,
8800                                          SourceLocation OpLoc) {
8801  // Sort the candidates by viability and position.  Sorting directly would
8802  // be prohibitive, so we make a set of pointers and sort those.
8803  SmallVector<OverloadCandidate*, 32> Cands;
8804  if (OCD == OCD_AllCandidates) Cands.reserve(size());
8805  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8806    if (Cand->Viable)
8807      Cands.push_back(Cand);
8808    else if (OCD == OCD_AllCandidates) {
8809      CompleteNonViableCandidate(S, Cand, Args);
8810      if (Cand->Function || Cand->IsSurrogate)
8811        Cands.push_back(Cand);
8812      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
8813      // want to list every possible builtin candidate.
8814    }
8815  }
8816
8817  std::sort(Cands.begin(), Cands.end(),
8818            CompareOverloadCandidatesForDisplay(S));
8819
8820  bool ReportedAmbiguousConversions = false;
8821
8822  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8823  const DiagnosticsEngine::OverloadsShown ShowOverloads =
8824      S.Diags.getShowOverloads();
8825  unsigned CandsShown = 0;
8826  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8827    OverloadCandidate *Cand = *I;
8828
8829    // Set an arbitrary limit on the number of candidate functions we'll spam
8830    // the user with.  FIXME: This limit should depend on details of the
8831    // candidate list.
8832    if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
8833      break;
8834    }
8835    ++CandsShown;
8836
8837    if (Cand->Function)
8838      NoteFunctionCandidate(S, Cand, Args.size());
8839    else if (Cand->IsSurrogate)
8840      NoteSurrogateCandidate(S, Cand);
8841    else {
8842      assert(Cand->Viable &&
8843             "Non-viable built-in candidates are not added to Cands.");
8844      // Generally we only see ambiguities including viable builtin
8845      // operators if overload resolution got screwed up by an
8846      // ambiguous user-defined conversion.
8847      //
8848      // FIXME: It's quite possible for different conversions to see
8849      // different ambiguities, though.
8850      if (!ReportedAmbiguousConversions) {
8851        NoteAmbiguousUserConversions(S, OpLoc, Cand);
8852        ReportedAmbiguousConversions = true;
8853      }
8854
8855      // If this is a viable builtin, print it.
8856      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8857    }
8858  }
8859
8860  if (I != E)
8861    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8862}
8863
8864// [PossiblyAFunctionType]  -->   [Return]
8865// NonFunctionType --> NonFunctionType
8866// R (A) --> R(A)
8867// R (*)(A) --> R (A)
8868// R (&)(A) --> R (A)
8869// R (S::*)(A) --> R (A)
8870QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8871  QualType Ret = PossiblyAFunctionType;
8872  if (const PointerType *ToTypePtr =
8873    PossiblyAFunctionType->getAs<PointerType>())
8874    Ret = ToTypePtr->getPointeeType();
8875  else if (const ReferenceType *ToTypeRef =
8876    PossiblyAFunctionType->getAs<ReferenceType>())
8877    Ret = ToTypeRef->getPointeeType();
8878  else if (const MemberPointerType *MemTypePtr =
8879    PossiblyAFunctionType->getAs<MemberPointerType>())
8880    Ret = MemTypePtr->getPointeeType();
8881  Ret =
8882    Context.getCanonicalType(Ret).getUnqualifiedType();
8883  return Ret;
8884}
8885
8886// A helper class to help with address of function resolution
8887// - allows us to avoid passing around all those ugly parameters
8888class AddressOfFunctionResolver
8889{
8890  Sema& S;
8891  Expr* SourceExpr;
8892  const QualType& TargetType;
8893  QualType TargetFunctionType; // Extracted function type from target type
8894
8895  bool Complain;
8896  //DeclAccessPair& ResultFunctionAccessPair;
8897  ASTContext& Context;
8898
8899  bool TargetTypeIsNonStaticMemberFunction;
8900  bool FoundNonTemplateFunction;
8901
8902  OverloadExpr::FindResult OvlExprInfo;
8903  OverloadExpr *OvlExpr;
8904  TemplateArgumentListInfo OvlExplicitTemplateArgs;
8905  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8906
8907public:
8908  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8909                            const QualType& TargetType, bool Complain)
8910    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8911      Complain(Complain), Context(S.getASTContext()),
8912      TargetTypeIsNonStaticMemberFunction(
8913                                    !!TargetType->getAs<MemberPointerType>()),
8914      FoundNonTemplateFunction(false),
8915      OvlExprInfo(OverloadExpr::find(SourceExpr)),
8916      OvlExpr(OvlExprInfo.Expression)
8917  {
8918    ExtractUnqualifiedFunctionTypeFromTargetType();
8919
8920    if (!TargetFunctionType->isFunctionType()) {
8921      if (OvlExpr->hasExplicitTemplateArgs()) {
8922        DeclAccessPair dap;
8923        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8924                                            OvlExpr, false, &dap) ) {
8925
8926          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8927            if (!Method->isStatic()) {
8928              // If the target type is a non-function type and the function
8929              // found is a non-static member function, pretend as if that was
8930              // the target, it's the only possible type to end up with.
8931              TargetTypeIsNonStaticMemberFunction = true;
8932
8933              // And skip adding the function if its not in the proper form.
8934              // We'll diagnose this due to an empty set of functions.
8935              if (!OvlExprInfo.HasFormOfMemberPointer)
8936                return;
8937            }
8938          }
8939
8940          Matches.push_back(std::make_pair(dap,Fn));
8941        }
8942      }
8943      return;
8944    }
8945
8946    if (OvlExpr->hasExplicitTemplateArgs())
8947      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8948
8949    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8950      // C++ [over.over]p4:
8951      //   If more than one function is selected, [...]
8952      if (Matches.size() > 1) {
8953        if (FoundNonTemplateFunction)
8954          EliminateAllTemplateMatches();
8955        else
8956          EliminateAllExceptMostSpecializedTemplate();
8957      }
8958    }
8959  }
8960
8961private:
8962  bool isTargetTypeAFunction() const {
8963    return TargetFunctionType->isFunctionType();
8964  }
8965
8966  // [ToType]     [Return]
8967
8968  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8969  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8970  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
8971  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8972    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8973  }
8974
8975  // return true if any matching specializations were found
8976  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8977                                   const DeclAccessPair& CurAccessFunPair) {
8978    if (CXXMethodDecl *Method
8979              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8980      // Skip non-static function templates when converting to pointer, and
8981      // static when converting to member pointer.
8982      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8983        return false;
8984    }
8985    else if (TargetTypeIsNonStaticMemberFunction)
8986      return false;
8987
8988    // C++ [over.over]p2:
8989    //   If the name is a function template, template argument deduction is
8990    //   done (14.8.2.2), and if the argument deduction succeeds, the
8991    //   resulting template argument list is used to generate a single
8992    //   function template specialization, which is added to the set of
8993    //   overloaded functions considered.
8994    FunctionDecl *Specialization = 0;
8995    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8996    if (Sema::TemplateDeductionResult Result
8997          = S.DeduceTemplateArguments(FunctionTemplate,
8998                                      &OvlExplicitTemplateArgs,
8999                                      TargetFunctionType, Specialization,
9000                                      Info)) {
9001      // FIXME: make a note of the failed deduction for diagnostics.
9002      (void)Result;
9003      return false;
9004    }
9005
9006    // Template argument deduction ensures that we have an exact match.
9007    // This function template specicalization works.
9008    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9009    assert(TargetFunctionType
9010                      == Context.getCanonicalType(Specialization->getType()));
9011    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9012    return true;
9013  }
9014
9015  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9016                                      const DeclAccessPair& CurAccessFunPair) {
9017    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9018      // Skip non-static functions when converting to pointer, and static
9019      // when converting to member pointer.
9020      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9021        return false;
9022    }
9023    else if (TargetTypeIsNonStaticMemberFunction)
9024      return false;
9025
9026    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9027      if (S.getLangOpts().CUDA)
9028        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9029          if (S.CheckCUDATarget(Caller, FunDecl))
9030            return false;
9031
9032      QualType ResultTy;
9033      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9034                                         FunDecl->getType()) ||
9035          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9036                                 ResultTy)) {
9037        Matches.push_back(std::make_pair(CurAccessFunPair,
9038          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9039        FoundNonTemplateFunction = true;
9040        return true;
9041      }
9042    }
9043
9044    return false;
9045  }
9046
9047  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9048    bool Ret = false;
9049
9050    // If the overload expression doesn't have the form of a pointer to
9051    // member, don't try to convert it to a pointer-to-member type.
9052    if (IsInvalidFormOfPointerToMemberFunction())
9053      return false;
9054
9055    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9056                               E = OvlExpr->decls_end();
9057         I != E; ++I) {
9058      // Look through any using declarations to find the underlying function.
9059      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9060
9061      // C++ [over.over]p3:
9062      //   Non-member functions and static member functions match
9063      //   targets of type "pointer-to-function" or "reference-to-function."
9064      //   Nonstatic member functions match targets of
9065      //   type "pointer-to-member-function."
9066      // Note that according to DR 247, the containing class does not matter.
9067      if (FunctionTemplateDecl *FunctionTemplate
9068                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9069        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9070          Ret = true;
9071      }
9072      // If we have explicit template arguments supplied, skip non-templates.
9073      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9074               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9075        Ret = true;
9076    }
9077    assert(Ret || Matches.empty());
9078    return Ret;
9079  }
9080
9081  void EliminateAllExceptMostSpecializedTemplate() {
9082    //   [...] and any given function template specialization F1 is
9083    //   eliminated if the set contains a second function template
9084    //   specialization whose function template is more specialized
9085    //   than the function template of F1 according to the partial
9086    //   ordering rules of 14.5.5.2.
9087
9088    // The algorithm specified above is quadratic. We instead use a
9089    // two-pass algorithm (similar to the one used to identify the
9090    // best viable function in an overload set) that identifies the
9091    // best function template (if it exists).
9092
9093    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9094    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9095      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9096
9097    UnresolvedSetIterator Result =
9098      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
9099                           TPOC_Other, 0, SourceExpr->getLocStart(),
9100                           S.PDiag(),
9101                           S.PDiag(diag::err_addr_ovl_ambiguous)
9102                             << Matches[0].second->getDeclName(),
9103                           S.PDiag(diag::note_ovl_candidate)
9104                             << (unsigned) oc_function_template,
9105                           Complain, TargetFunctionType);
9106
9107    if (Result != MatchesCopy.end()) {
9108      // Make it the first and only element
9109      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9110      Matches[0].second = cast<FunctionDecl>(*Result);
9111      Matches.resize(1);
9112    }
9113  }
9114
9115  void EliminateAllTemplateMatches() {
9116    //   [...] any function template specializations in the set are
9117    //   eliminated if the set also contains a non-template function, [...]
9118    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9119      if (Matches[I].second->getPrimaryTemplate() == 0)
9120        ++I;
9121      else {
9122        Matches[I] = Matches[--N];
9123        Matches.set_size(N);
9124      }
9125    }
9126  }
9127
9128public:
9129  void ComplainNoMatchesFound() const {
9130    assert(Matches.empty());
9131    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9132        << OvlExpr->getName() << TargetFunctionType
9133        << OvlExpr->getSourceRange();
9134    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9135  }
9136
9137  bool IsInvalidFormOfPointerToMemberFunction() const {
9138    return TargetTypeIsNonStaticMemberFunction &&
9139      !OvlExprInfo.HasFormOfMemberPointer;
9140  }
9141
9142  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9143      // TODO: Should we condition this on whether any functions might
9144      // have matched, or is it more appropriate to do that in callers?
9145      // TODO: a fixit wouldn't hurt.
9146      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9147        << TargetType << OvlExpr->getSourceRange();
9148  }
9149
9150  void ComplainOfInvalidConversion() const {
9151    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9152      << OvlExpr->getName() << TargetType;
9153  }
9154
9155  void ComplainMultipleMatchesFound() const {
9156    assert(Matches.size() > 1);
9157    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9158      << OvlExpr->getName()
9159      << OvlExpr->getSourceRange();
9160    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9161  }
9162
9163  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9164
9165  int getNumMatches() const { return Matches.size(); }
9166
9167  FunctionDecl* getMatchingFunctionDecl() const {
9168    if (Matches.size() != 1) return 0;
9169    return Matches[0].second;
9170  }
9171
9172  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9173    if (Matches.size() != 1) return 0;
9174    return &Matches[0].first;
9175  }
9176};
9177
9178/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9179/// an overloaded function (C++ [over.over]), where @p From is an
9180/// expression with overloaded function type and @p ToType is the type
9181/// we're trying to resolve to. For example:
9182///
9183/// @code
9184/// int f(double);
9185/// int f(int);
9186///
9187/// int (*pfd)(double) = f; // selects f(double)
9188/// @endcode
9189///
9190/// This routine returns the resulting FunctionDecl if it could be
9191/// resolved, and NULL otherwise. When @p Complain is true, this
9192/// routine will emit diagnostics if there is an error.
9193FunctionDecl *
9194Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9195                                         QualType TargetType,
9196                                         bool Complain,
9197                                         DeclAccessPair &FoundResult,
9198                                         bool *pHadMultipleCandidates) {
9199  assert(AddressOfExpr->getType() == Context.OverloadTy);
9200
9201  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9202                                     Complain);
9203  int NumMatches = Resolver.getNumMatches();
9204  FunctionDecl* Fn = 0;
9205  if (NumMatches == 0 && Complain) {
9206    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9207      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9208    else
9209      Resolver.ComplainNoMatchesFound();
9210  }
9211  else if (NumMatches > 1 && Complain)
9212    Resolver.ComplainMultipleMatchesFound();
9213  else if (NumMatches == 1) {
9214    Fn = Resolver.getMatchingFunctionDecl();
9215    assert(Fn);
9216    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9217    MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
9218    if (Complain)
9219      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9220  }
9221
9222  if (pHadMultipleCandidates)
9223    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9224  return Fn;
9225}
9226
9227/// \brief Given an expression that refers to an overloaded function, try to
9228/// resolve that overloaded function expression down to a single function.
9229///
9230/// This routine can only resolve template-ids that refer to a single function
9231/// template, where that template-id refers to a single template whose template
9232/// arguments are either provided by the template-id or have defaults,
9233/// as described in C++0x [temp.arg.explicit]p3.
9234FunctionDecl *
9235Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9236                                                  bool Complain,
9237                                                  DeclAccessPair *FoundResult) {
9238  // C++ [over.over]p1:
9239  //   [...] [Note: any redundant set of parentheses surrounding the
9240  //   overloaded function name is ignored (5.1). ]
9241  // C++ [over.over]p1:
9242  //   [...] The overloaded function name can be preceded by the &
9243  //   operator.
9244
9245  // If we didn't actually find any template-ids, we're done.
9246  if (!ovl->hasExplicitTemplateArgs())
9247    return 0;
9248
9249  TemplateArgumentListInfo ExplicitTemplateArgs;
9250  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9251
9252  // Look through all of the overloaded functions, searching for one
9253  // whose type matches exactly.
9254  FunctionDecl *Matched = 0;
9255  for (UnresolvedSetIterator I = ovl->decls_begin(),
9256         E = ovl->decls_end(); I != E; ++I) {
9257    // C++0x [temp.arg.explicit]p3:
9258    //   [...] In contexts where deduction is done and fails, or in contexts
9259    //   where deduction is not done, if a template argument list is
9260    //   specified and it, along with any default template arguments,
9261    //   identifies a single function template specialization, then the
9262    //   template-id is an lvalue for the function template specialization.
9263    FunctionTemplateDecl *FunctionTemplate
9264      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9265
9266    // C++ [over.over]p2:
9267    //   If the name is a function template, template argument deduction is
9268    //   done (14.8.2.2), and if the argument deduction succeeds, the
9269    //   resulting template argument list is used to generate a single
9270    //   function template specialization, which is added to the set of
9271    //   overloaded functions considered.
9272    FunctionDecl *Specialization = 0;
9273    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
9274    if (TemplateDeductionResult Result
9275          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9276                                    Specialization, Info)) {
9277      // FIXME: make a note of the failed deduction for diagnostics.
9278      (void)Result;
9279      continue;
9280    }
9281
9282    assert(Specialization && "no specialization and no error?");
9283
9284    // Multiple matches; we can't resolve to a single declaration.
9285    if (Matched) {
9286      if (Complain) {
9287        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9288          << ovl->getName();
9289        NoteAllOverloadCandidates(ovl);
9290      }
9291      return 0;
9292    }
9293
9294    Matched = Specialization;
9295    if (FoundResult) *FoundResult = I.getPair();
9296  }
9297
9298  return Matched;
9299}
9300
9301
9302
9303
9304// Resolve and fix an overloaded expression that can be resolved
9305// because it identifies a single function template specialization.
9306//
9307// Last three arguments should only be supplied if Complain = true
9308//
9309// Return true if it was logically possible to so resolve the
9310// expression, regardless of whether or not it succeeded.  Always
9311// returns true if 'complain' is set.
9312bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9313                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9314                   bool complain, const SourceRange& OpRangeForComplaining,
9315                                           QualType DestTypeForComplaining,
9316                                            unsigned DiagIDForComplaining) {
9317  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9318
9319  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9320
9321  DeclAccessPair found;
9322  ExprResult SingleFunctionExpression;
9323  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9324                           ovl.Expression, /*complain*/ false, &found)) {
9325    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9326      SrcExpr = ExprError();
9327      return true;
9328    }
9329
9330    // It is only correct to resolve to an instance method if we're
9331    // resolving a form that's permitted to be a pointer to member.
9332    // Otherwise we'll end up making a bound member expression, which
9333    // is illegal in all the contexts we resolve like this.
9334    if (!ovl.HasFormOfMemberPointer &&
9335        isa<CXXMethodDecl>(fn) &&
9336        cast<CXXMethodDecl>(fn)->isInstance()) {
9337      if (!complain) return false;
9338
9339      Diag(ovl.Expression->getExprLoc(),
9340           diag::err_bound_member_function)
9341        << 0 << ovl.Expression->getSourceRange();
9342
9343      // TODO: I believe we only end up here if there's a mix of
9344      // static and non-static candidates (otherwise the expression
9345      // would have 'bound member' type, not 'overload' type).
9346      // Ideally we would note which candidate was chosen and why
9347      // the static candidates were rejected.
9348      SrcExpr = ExprError();
9349      return true;
9350    }
9351
9352    // Fix the expresion to refer to 'fn'.
9353    SingleFunctionExpression =
9354      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9355
9356    // If desired, do function-to-pointer decay.
9357    if (doFunctionPointerConverion) {
9358      SingleFunctionExpression =
9359        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9360      if (SingleFunctionExpression.isInvalid()) {
9361        SrcExpr = ExprError();
9362        return true;
9363      }
9364    }
9365  }
9366
9367  if (!SingleFunctionExpression.isUsable()) {
9368    if (complain) {
9369      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9370        << ovl.Expression->getName()
9371        << DestTypeForComplaining
9372        << OpRangeForComplaining
9373        << ovl.Expression->getQualifierLoc().getSourceRange();
9374      NoteAllOverloadCandidates(SrcExpr.get());
9375
9376      SrcExpr = ExprError();
9377      return true;
9378    }
9379
9380    return false;
9381  }
9382
9383  SrcExpr = SingleFunctionExpression;
9384  return true;
9385}
9386
9387/// \brief Add a single candidate to the overload set.
9388static void AddOverloadedCallCandidate(Sema &S,
9389                                       DeclAccessPair FoundDecl,
9390                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9391                                       llvm::ArrayRef<Expr *> Args,
9392                                       OverloadCandidateSet &CandidateSet,
9393                                       bool PartialOverloading,
9394                                       bool KnownValid) {
9395  NamedDecl *Callee = FoundDecl.getDecl();
9396  if (isa<UsingShadowDecl>(Callee))
9397    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9398
9399  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9400    if (ExplicitTemplateArgs) {
9401      assert(!KnownValid && "Explicit template arguments?");
9402      return;
9403    }
9404    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9405                           PartialOverloading);
9406    return;
9407  }
9408
9409  if (FunctionTemplateDecl *FuncTemplate
9410      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9411    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9412                                   ExplicitTemplateArgs, Args, CandidateSet);
9413    return;
9414  }
9415
9416  assert(!KnownValid && "unhandled case in overloaded call candidate");
9417}
9418
9419/// \brief Add the overload candidates named by callee and/or found by argument
9420/// dependent lookup to the given overload set.
9421void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9422                                       llvm::ArrayRef<Expr *> Args,
9423                                       OverloadCandidateSet &CandidateSet,
9424                                       bool PartialOverloading) {
9425
9426#ifndef NDEBUG
9427  // Verify that ArgumentDependentLookup is consistent with the rules
9428  // in C++0x [basic.lookup.argdep]p3:
9429  //
9430  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9431  //   and let Y be the lookup set produced by argument dependent
9432  //   lookup (defined as follows). If X contains
9433  //
9434  //     -- a declaration of a class member, or
9435  //
9436  //     -- a block-scope function declaration that is not a
9437  //        using-declaration, or
9438  //
9439  //     -- a declaration that is neither a function or a function
9440  //        template
9441  //
9442  //   then Y is empty.
9443
9444  if (ULE->requiresADL()) {
9445    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9446           E = ULE->decls_end(); I != E; ++I) {
9447      assert(!(*I)->getDeclContext()->isRecord());
9448      assert(isa<UsingShadowDecl>(*I) ||
9449             !(*I)->getDeclContext()->isFunctionOrMethod());
9450      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9451    }
9452  }
9453#endif
9454
9455  // It would be nice to avoid this copy.
9456  TemplateArgumentListInfo TABuffer;
9457  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9458  if (ULE->hasExplicitTemplateArgs()) {
9459    ULE->copyTemplateArgumentsInto(TABuffer);
9460    ExplicitTemplateArgs = &TABuffer;
9461  }
9462
9463  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9464         E = ULE->decls_end(); I != E; ++I)
9465    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9466                               CandidateSet, PartialOverloading,
9467                               /*KnownValid*/ true);
9468
9469  if (ULE->requiresADL())
9470    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9471                                         ULE->getExprLoc(),
9472                                         Args, ExplicitTemplateArgs,
9473                                         CandidateSet, PartialOverloading,
9474                                         ULE->isStdAssociatedNamespace());
9475}
9476
9477/// Attempt to recover from an ill-formed use of a non-dependent name in a
9478/// template, where the non-dependent name was declared after the template
9479/// was defined. This is common in code written for a compilers which do not
9480/// correctly implement two-stage name lookup.
9481///
9482/// Returns true if a viable candidate was found and a diagnostic was issued.
9483static bool
9484DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9485                       const CXXScopeSpec &SS, LookupResult &R,
9486                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9487                       llvm::ArrayRef<Expr *> Args) {
9488  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9489    return false;
9490
9491  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9492    if (DC->isTransparentContext())
9493      continue;
9494
9495    SemaRef.LookupQualifiedName(R, DC);
9496
9497    if (!R.empty()) {
9498      R.suppressDiagnostics();
9499
9500      if (isa<CXXRecordDecl>(DC)) {
9501        // Don't diagnose names we find in classes; we get much better
9502        // diagnostics for these from DiagnoseEmptyLookup.
9503        R.clear();
9504        return false;
9505      }
9506
9507      OverloadCandidateSet Candidates(FnLoc);
9508      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9509        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9510                                   ExplicitTemplateArgs, Args,
9511                                   Candidates, false, /*KnownValid*/ false);
9512
9513      OverloadCandidateSet::iterator Best;
9514      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9515        // No viable functions. Don't bother the user with notes for functions
9516        // which don't work and shouldn't be found anyway.
9517        R.clear();
9518        return false;
9519      }
9520
9521      // Find the namespaces where ADL would have looked, and suggest
9522      // declaring the function there instead.
9523      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9524      Sema::AssociatedClassSet AssociatedClasses;
9525      SemaRef.FindAssociatedClassesAndNamespaces(Args,
9526                                                 AssociatedNamespaces,
9527                                                 AssociatedClasses);
9528      // Never suggest declaring a function within namespace 'std'.
9529      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9530      if (DeclContext *Std = SemaRef.getStdNamespace()) {
9531        for (Sema::AssociatedNamespaceSet::iterator
9532               it = AssociatedNamespaces.begin(),
9533               end = AssociatedNamespaces.end(); it != end; ++it) {
9534          if (!Std->Encloses(*it))
9535            SuggestedNamespaces.insert(*it);
9536        }
9537      } else {
9538        // Lacking the 'std::' namespace, use all of the associated namespaces.
9539        SuggestedNamespaces = AssociatedNamespaces;
9540      }
9541
9542      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9543        << R.getLookupName();
9544      if (SuggestedNamespaces.empty()) {
9545        SemaRef.Diag(Best->Function->getLocation(),
9546                     diag::note_not_found_by_two_phase_lookup)
9547          << R.getLookupName() << 0;
9548      } else if (SuggestedNamespaces.size() == 1) {
9549        SemaRef.Diag(Best->Function->getLocation(),
9550                     diag::note_not_found_by_two_phase_lookup)
9551          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9552      } else {
9553        // FIXME: It would be useful to list the associated namespaces here,
9554        // but the diagnostics infrastructure doesn't provide a way to produce
9555        // a localized representation of a list of items.
9556        SemaRef.Diag(Best->Function->getLocation(),
9557                     diag::note_not_found_by_two_phase_lookup)
9558          << R.getLookupName() << 2;
9559      }
9560
9561      // Try to recover by calling this function.
9562      return true;
9563    }
9564
9565    R.clear();
9566  }
9567
9568  return false;
9569}
9570
9571/// Attempt to recover from ill-formed use of a non-dependent operator in a
9572/// template, where the non-dependent operator was declared after the template
9573/// was defined.
9574///
9575/// Returns true if a viable candidate was found and a diagnostic was issued.
9576static bool
9577DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9578                               SourceLocation OpLoc,
9579                               llvm::ArrayRef<Expr *> Args) {
9580  DeclarationName OpName =
9581    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9582  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9583  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9584                                /*ExplicitTemplateArgs=*/0, Args);
9585}
9586
9587namespace {
9588// Callback to limit the allowed keywords and to only accept typo corrections
9589// that are keywords or whose decls refer to functions (or template functions)
9590// that accept the given number of arguments.
9591class RecoveryCallCCC : public CorrectionCandidateCallback {
9592 public:
9593  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9594      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9595    WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
9596    WantRemainingKeywords = false;
9597  }
9598
9599  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9600    if (!candidate.getCorrectionDecl())
9601      return candidate.isKeyword();
9602
9603    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9604           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9605      FunctionDecl *FD = 0;
9606      NamedDecl *ND = (*DI)->getUnderlyingDecl();
9607      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9608        FD = FTD->getTemplatedDecl();
9609      if (!HasExplicitTemplateArgs && !FD) {
9610        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9611          // If the Decl is neither a function nor a template function,
9612          // determine if it is a pointer or reference to a function. If so,
9613          // check against the number of arguments expected for the pointee.
9614          QualType ValType = cast<ValueDecl>(ND)->getType();
9615          if (ValType->isAnyPointerType() || ValType->isReferenceType())
9616            ValType = ValType->getPointeeType();
9617          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9618            if (FPT->getNumArgs() == NumArgs)
9619              return true;
9620        }
9621      }
9622      if (FD && FD->getNumParams() >= NumArgs &&
9623          FD->getMinRequiredArguments() <= NumArgs)
9624        return true;
9625    }
9626    return false;
9627  }
9628
9629 private:
9630  unsigned NumArgs;
9631  bool HasExplicitTemplateArgs;
9632};
9633
9634// Callback that effectively disabled typo correction
9635class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9636 public:
9637  NoTypoCorrectionCCC() {
9638    WantTypeSpecifiers = false;
9639    WantExpressionKeywords = false;
9640    WantCXXNamedCasts = false;
9641    WantRemainingKeywords = false;
9642  }
9643
9644  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9645    return false;
9646  }
9647};
9648}
9649
9650/// Attempts to recover from a call where no functions were found.
9651///
9652/// Returns true if new candidates were found.
9653static ExprResult
9654BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9655                      UnresolvedLookupExpr *ULE,
9656                      SourceLocation LParenLoc,
9657                      llvm::MutableArrayRef<Expr *> Args,
9658                      SourceLocation RParenLoc,
9659                      bool EmptyLookup, bool AllowTypoCorrection) {
9660
9661  CXXScopeSpec SS;
9662  SS.Adopt(ULE->getQualifierLoc());
9663  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9664
9665  TemplateArgumentListInfo TABuffer;
9666  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9667  if (ULE->hasExplicitTemplateArgs()) {
9668    ULE->copyTemplateArgumentsInto(TABuffer);
9669    ExplicitTemplateArgs = &TABuffer;
9670  }
9671
9672  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9673                 Sema::LookupOrdinaryName);
9674  RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
9675  NoTypoCorrectionCCC RejectAll;
9676  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9677      (CorrectionCandidateCallback*)&Validator :
9678      (CorrectionCandidateCallback*)&RejectAll;
9679  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9680                              ExplicitTemplateArgs, Args) &&
9681      (!EmptyLookup ||
9682       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9683                                   ExplicitTemplateArgs, Args)))
9684    return ExprError();
9685
9686  assert(!R.empty() && "lookup results empty despite recovery");
9687
9688  // Build an implicit member call if appropriate.  Just drop the
9689  // casts and such from the call, we don't really care.
9690  ExprResult NewFn = ExprError();
9691  if ((*R.begin())->isCXXClassMember())
9692    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9693                                                    R, ExplicitTemplateArgs);
9694  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9695    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9696                                        ExplicitTemplateArgs);
9697  else
9698    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9699
9700  if (NewFn.isInvalid())
9701    return ExprError();
9702
9703  // This shouldn't cause an infinite loop because we're giving it
9704  // an expression with viable lookup results, which should never
9705  // end up here.
9706  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9707                               MultiExprArg(Args.data(), Args.size()),
9708                               RParenLoc);
9709}
9710
9711/// ResolveOverloadedCallFn - Given the call expression that calls Fn
9712/// (which eventually refers to the declaration Func) and the call
9713/// arguments Args/NumArgs, attempt to resolve the function call down
9714/// to a specific function. If overload resolution succeeds, returns
9715/// the function declaration produced by overload
9716/// resolution. Otherwise, emits diagnostics, deletes all of the
9717/// arguments and Fn, and returns NULL.
9718ExprResult
9719Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
9720                              SourceLocation LParenLoc,
9721                              Expr **Args, unsigned NumArgs,
9722                              SourceLocation RParenLoc,
9723                              Expr *ExecConfig,
9724                              bool AllowTypoCorrection) {
9725#ifndef NDEBUG
9726  if (ULE->requiresADL()) {
9727    // To do ADL, we must have found an unqualified name.
9728    assert(!ULE->getQualifier() && "qualified name with ADL");
9729
9730    // We don't perform ADL for implicit declarations of builtins.
9731    // Verify that this was correctly set up.
9732    FunctionDecl *F;
9733    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9734        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9735        F->getBuiltinID() && F->isImplicit())
9736      llvm_unreachable("performing ADL for builtin");
9737
9738    // We don't perform ADL in C.
9739    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9740  } else
9741    assert(!ULE->isStdAssociatedNamespace() &&
9742           "std is associated namespace but not doing ADL");
9743#endif
9744
9745  UnbridgedCastsSet UnbridgedCasts;
9746  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9747    return ExprError();
9748
9749  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9750
9751  // Add the functions denoted by the callee to the set of candidate
9752  // functions, including those from argument-dependent lookup.
9753  AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
9754                              CandidateSet);
9755
9756  // If we found nothing, try to recover.
9757  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9758  // out if it fails.
9759  if (CandidateSet.empty()) {
9760    // In Microsoft mode, if we are inside a template class member function then
9761    // create a type dependent CallExpr. The goal is to postpone name lookup
9762    // to instantiation time to be able to search into type dependent base
9763    // classes.
9764    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9765        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9766      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
9767                                          Context.DependentTy, VK_RValue,
9768                                          RParenLoc);
9769      CE->setTypeDependent(true);
9770      return Owned(CE);
9771    }
9772    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9773                                 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9774                                 RParenLoc, /*EmptyLookup=*/true,
9775                                 AllowTypoCorrection);
9776  }
9777
9778  UnbridgedCasts.restore();
9779
9780  OverloadCandidateSet::iterator Best;
9781  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
9782  case OR_Success: {
9783    FunctionDecl *FDecl = Best->Function;
9784    MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9785    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
9786    DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9787    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9788    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
9789                                 ExecConfig);
9790  }
9791
9792  case OR_No_Viable_Function: {
9793    // Try to recover by looking for viable functions which the user might
9794    // have meant to call.
9795    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9796                                  llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9797                                                RParenLoc,
9798                                                /*EmptyLookup=*/false,
9799                                                AllowTypoCorrection);
9800    if (!Recovery.isInvalid())
9801      return Recovery;
9802
9803    Diag(Fn->getLocStart(),
9804         diag::err_ovl_no_viable_function_in_call)
9805      << ULE->getName() << Fn->getSourceRange();
9806    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9807                                llvm::makeArrayRef(Args, NumArgs));
9808    break;
9809  }
9810
9811  case OR_Ambiguous:
9812    Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
9813      << ULE->getName() << Fn->getSourceRange();
9814    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
9815                                llvm::makeArrayRef(Args, NumArgs));
9816    break;
9817
9818  case OR_Deleted:
9819    {
9820      Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
9821        << Best->Function->isDeleted()
9822        << ULE->getName()
9823        << getDeletedOrUnavailableSuffix(Best->Function)
9824        << Fn->getSourceRange();
9825      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9826                                  llvm::makeArrayRef(Args, NumArgs));
9827
9828      // We emitted an error for the unvailable/deleted function call but keep
9829      // the call in the AST.
9830      FunctionDecl *FDecl = Best->Function;
9831      Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9832      return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9833                                   RParenLoc, ExecConfig);
9834    }
9835  }
9836
9837  // Overload resolution failed.
9838  return ExprError();
9839}
9840
9841static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9842  return Functions.size() > 1 ||
9843    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9844}
9845
9846/// \brief Create a unary operation that may resolve to an overloaded
9847/// operator.
9848///
9849/// \param OpLoc The location of the operator itself (e.g., '*').
9850///
9851/// \param OpcIn The UnaryOperator::Opcode that describes this
9852/// operator.
9853///
9854/// \param Functions The set of non-member functions that will be
9855/// considered by overload resolution. The caller needs to build this
9856/// set based on the context using, e.g.,
9857/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9858/// set should not contain any member functions; those will be added
9859/// by CreateOverloadedUnaryOp().
9860///
9861/// \param input The input argument.
9862ExprResult
9863Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9864                              const UnresolvedSetImpl &Fns,
9865                              Expr *Input) {
9866  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9867
9868  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9869  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9870  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9871  // TODO: provide better source location info.
9872  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9873
9874  if (checkPlaceholderForOverload(*this, Input))
9875    return ExprError();
9876
9877  Expr *Args[2] = { Input, 0 };
9878  unsigned NumArgs = 1;
9879
9880  // For post-increment and post-decrement, add the implicit '0' as
9881  // the second argument, so that we know this is a post-increment or
9882  // post-decrement.
9883  if (Opc == UO_PostInc || Opc == UO_PostDec) {
9884    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9885    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9886                                     SourceLocation());
9887    NumArgs = 2;
9888  }
9889
9890  if (Input->isTypeDependent()) {
9891    if (Fns.empty())
9892      return Owned(new (Context) UnaryOperator(Input,
9893                                               Opc,
9894                                               Context.DependentTy,
9895                                               VK_RValue, OK_Ordinary,
9896                                               OpLoc));
9897
9898    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9899    UnresolvedLookupExpr *Fn
9900      = UnresolvedLookupExpr::Create(Context, NamingClass,
9901                                     NestedNameSpecifierLoc(), OpNameInfo,
9902                                     /*ADL*/ true, IsOverloaded(Fns),
9903                                     Fns.begin(), Fns.end());
9904    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9905                                                  &Args[0], NumArgs,
9906                                                   Context.DependentTy,
9907                                                   VK_RValue,
9908                                                   OpLoc));
9909  }
9910
9911  // Build an empty overload set.
9912  OverloadCandidateSet CandidateSet(OpLoc);
9913
9914  // Add the candidates from the given function set.
9915  AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
9916                        false);
9917
9918  // Add operator candidates that are member functions.
9919  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9920
9921  // Add candidates from ADL.
9922  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9923                                       OpLoc, llvm::makeArrayRef(Args, NumArgs),
9924                                       /*ExplicitTemplateArgs*/ 0,
9925                                       CandidateSet);
9926
9927  // Add builtin operator candidates.
9928  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9929
9930  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9931
9932  // Perform overload resolution.
9933  OverloadCandidateSet::iterator Best;
9934  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9935  case OR_Success: {
9936    // We found a built-in operator or an overloaded operator.
9937    FunctionDecl *FnDecl = Best->Function;
9938
9939    if (FnDecl) {
9940      // We matched an overloaded operator. Build a call to that
9941      // operator.
9942
9943      MarkFunctionReferenced(OpLoc, FnDecl);
9944
9945      // Convert the arguments.
9946      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9947        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
9948
9949        ExprResult InputRes =
9950          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
9951                                              Best->FoundDecl, Method);
9952        if (InputRes.isInvalid())
9953          return ExprError();
9954        Input = InputRes.take();
9955      } else {
9956        // Convert the arguments.
9957        ExprResult InputInit
9958          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9959                                                      Context,
9960                                                      FnDecl->getParamDecl(0)),
9961                                      SourceLocation(),
9962                                      Input);
9963        if (InputInit.isInvalid())
9964          return ExprError();
9965        Input = InputInit.take();
9966      }
9967
9968      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9969
9970      // Determine the result type.
9971      QualType ResultTy = FnDecl->getResultType();
9972      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9973      ResultTy = ResultTy.getNonLValueExprType(Context);
9974
9975      // Build the actual expression node.
9976      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9977                                                HadMultipleCandidates, OpLoc);
9978      if (FnExpr.isInvalid())
9979        return ExprError();
9980
9981      Args[0] = Input;
9982      CallExpr *TheCall =
9983        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9984                                          Args, NumArgs, ResultTy, VK, OpLoc);
9985
9986      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9987                              FnDecl))
9988        return ExprError();
9989
9990      return MaybeBindToTemporary(TheCall);
9991    } else {
9992      // We matched a built-in operator. Convert the arguments, then
9993      // break out so that we will build the appropriate built-in
9994      // operator node.
9995      ExprResult InputRes =
9996        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
9997                                  Best->Conversions[0], AA_Passing);
9998      if (InputRes.isInvalid())
9999        return ExprError();
10000      Input = InputRes.take();
10001      break;
10002    }
10003  }
10004
10005  case OR_No_Viable_Function:
10006    // This is an erroneous use of an operator which can be overloaded by
10007    // a non-member function. Check for non-member operators which were
10008    // defined too late to be candidates.
10009    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
10010                                       llvm::makeArrayRef(Args, NumArgs)))
10011      // FIXME: Recover by calling the found function.
10012      return ExprError();
10013
10014    // No viable function; fall through to handling this as a
10015    // built-in operator, which will produce an error message for us.
10016    break;
10017
10018  case OR_Ambiguous:
10019    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10020        << UnaryOperator::getOpcodeStr(Opc)
10021        << Input->getType()
10022        << Input->getSourceRange();
10023    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10024                                llvm::makeArrayRef(Args, NumArgs),
10025                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10026    return ExprError();
10027
10028  case OR_Deleted:
10029    Diag(OpLoc, diag::err_ovl_deleted_oper)
10030      << Best->Function->isDeleted()
10031      << UnaryOperator::getOpcodeStr(Opc)
10032      << getDeletedOrUnavailableSuffix(Best->Function)
10033      << Input->getSourceRange();
10034    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10035                                llvm::makeArrayRef(Args, NumArgs),
10036                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10037    return ExprError();
10038  }
10039
10040  // Either we found no viable overloaded operator or we matched a
10041  // built-in operator. In either case, fall through to trying to
10042  // build a built-in operation.
10043  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10044}
10045
10046/// \brief Create a binary operation that may resolve to an overloaded
10047/// operator.
10048///
10049/// \param OpLoc The location of the operator itself (e.g., '+').
10050///
10051/// \param OpcIn The BinaryOperator::Opcode that describes this
10052/// operator.
10053///
10054/// \param Functions The set of non-member functions that will be
10055/// considered by overload resolution. The caller needs to build this
10056/// set based on the context using, e.g.,
10057/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10058/// set should not contain any member functions; those will be added
10059/// by CreateOverloadedBinOp().
10060///
10061/// \param LHS Left-hand argument.
10062/// \param RHS Right-hand argument.
10063ExprResult
10064Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10065                            unsigned OpcIn,
10066                            const UnresolvedSetImpl &Fns,
10067                            Expr *LHS, Expr *RHS) {
10068  Expr *Args[2] = { LHS, RHS };
10069  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10070
10071  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10072  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10073  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10074
10075  // If either side is type-dependent, create an appropriate dependent
10076  // expression.
10077  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10078    if (Fns.empty()) {
10079      // If there are no functions to store, just build a dependent
10080      // BinaryOperator or CompoundAssignment.
10081      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10082        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10083                                                  Context.DependentTy,
10084                                                  VK_RValue, OK_Ordinary,
10085                                                  OpLoc));
10086
10087      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10088                                                        Context.DependentTy,
10089                                                        VK_LValue,
10090                                                        OK_Ordinary,
10091                                                        Context.DependentTy,
10092                                                        Context.DependentTy,
10093                                                        OpLoc));
10094    }
10095
10096    // FIXME: save results of ADL from here?
10097    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10098    // TODO: provide better source location info in DNLoc component.
10099    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10100    UnresolvedLookupExpr *Fn
10101      = UnresolvedLookupExpr::Create(Context, NamingClass,
10102                                     NestedNameSpecifierLoc(), OpNameInfo,
10103                                     /*ADL*/ true, IsOverloaded(Fns),
10104                                     Fns.begin(), Fns.end());
10105    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
10106                                                   Args, 2,
10107                                                   Context.DependentTy,
10108                                                   VK_RValue,
10109                                                   OpLoc));
10110  }
10111
10112  // Always do placeholder-like conversions on the RHS.
10113  if (checkPlaceholderForOverload(*this, Args[1]))
10114    return ExprError();
10115
10116  // Do placeholder-like conversion on the LHS; note that we should
10117  // not get here with a PseudoObject LHS.
10118  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10119  if (checkPlaceholderForOverload(*this, Args[0]))
10120    return ExprError();
10121
10122  // If this is the assignment operator, we only perform overload resolution
10123  // if the left-hand side is a class or enumeration type. This is actually
10124  // a hack. The standard requires that we do overload resolution between the
10125  // various built-in candidates, but as DR507 points out, this can lead to
10126  // problems. So we do it this way, which pretty much follows what GCC does.
10127  // Note that we go the traditional code path for compound assignment forms.
10128  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10129    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10130
10131  // If this is the .* operator, which is not overloadable, just
10132  // create a built-in binary operator.
10133  if (Opc == BO_PtrMemD)
10134    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10135
10136  // Build an empty overload set.
10137  OverloadCandidateSet CandidateSet(OpLoc);
10138
10139  // Add the candidates from the given function set.
10140  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10141
10142  // Add operator candidates that are member functions.
10143  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10144
10145  // Add candidates from ADL.
10146  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10147                                       OpLoc, Args,
10148                                       /*ExplicitTemplateArgs*/ 0,
10149                                       CandidateSet);
10150
10151  // Add builtin operator candidates.
10152  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10153
10154  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10155
10156  // Perform overload resolution.
10157  OverloadCandidateSet::iterator Best;
10158  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10159    case OR_Success: {
10160      // We found a built-in operator or an overloaded operator.
10161      FunctionDecl *FnDecl = Best->Function;
10162
10163      if (FnDecl) {
10164        // We matched an overloaded operator. Build a call to that
10165        // operator.
10166
10167        MarkFunctionReferenced(OpLoc, FnDecl);
10168
10169        // Convert the arguments.
10170        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10171          // Best->Access is only meaningful for class members.
10172          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10173
10174          ExprResult Arg1 =
10175            PerformCopyInitialization(
10176              InitializedEntity::InitializeParameter(Context,
10177                                                     FnDecl->getParamDecl(0)),
10178              SourceLocation(), Owned(Args[1]));
10179          if (Arg1.isInvalid())
10180            return ExprError();
10181
10182          ExprResult Arg0 =
10183            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10184                                                Best->FoundDecl, Method);
10185          if (Arg0.isInvalid())
10186            return ExprError();
10187          Args[0] = Arg0.takeAs<Expr>();
10188          Args[1] = RHS = Arg1.takeAs<Expr>();
10189        } else {
10190          // Convert the arguments.
10191          ExprResult Arg0 = PerformCopyInitialization(
10192            InitializedEntity::InitializeParameter(Context,
10193                                                   FnDecl->getParamDecl(0)),
10194            SourceLocation(), Owned(Args[0]));
10195          if (Arg0.isInvalid())
10196            return ExprError();
10197
10198          ExprResult Arg1 =
10199            PerformCopyInitialization(
10200              InitializedEntity::InitializeParameter(Context,
10201                                                     FnDecl->getParamDecl(1)),
10202              SourceLocation(), Owned(Args[1]));
10203          if (Arg1.isInvalid())
10204            return ExprError();
10205          Args[0] = LHS = Arg0.takeAs<Expr>();
10206          Args[1] = RHS = Arg1.takeAs<Expr>();
10207        }
10208
10209        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10210
10211        // Determine the result type.
10212        QualType ResultTy = FnDecl->getResultType();
10213        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10214        ResultTy = ResultTy.getNonLValueExprType(Context);
10215
10216        // Build the actual expression node.
10217        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10218                                                  HadMultipleCandidates, OpLoc);
10219        if (FnExpr.isInvalid())
10220          return ExprError();
10221
10222        CXXOperatorCallExpr *TheCall =
10223          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10224                                            Args, 2, ResultTy, VK, OpLoc);
10225
10226        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10227                                FnDecl))
10228          return ExprError();
10229
10230        return MaybeBindToTemporary(TheCall);
10231      } else {
10232        // We matched a built-in operator. Convert the arguments, then
10233        // break out so that we will build the appropriate built-in
10234        // operator node.
10235        ExprResult ArgsRes0 =
10236          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10237                                    Best->Conversions[0], AA_Passing);
10238        if (ArgsRes0.isInvalid())
10239          return ExprError();
10240        Args[0] = ArgsRes0.take();
10241
10242        ExprResult ArgsRes1 =
10243          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10244                                    Best->Conversions[1], AA_Passing);
10245        if (ArgsRes1.isInvalid())
10246          return ExprError();
10247        Args[1] = ArgsRes1.take();
10248        break;
10249      }
10250    }
10251
10252    case OR_No_Viable_Function: {
10253      // C++ [over.match.oper]p9:
10254      //   If the operator is the operator , [...] and there are no
10255      //   viable functions, then the operator is assumed to be the
10256      //   built-in operator and interpreted according to clause 5.
10257      if (Opc == BO_Comma)
10258        break;
10259
10260      // For class as left operand for assignment or compound assigment
10261      // operator do not fall through to handling in built-in, but report that
10262      // no overloaded assignment operator found
10263      ExprResult Result = ExprError();
10264      if (Args[0]->getType()->isRecordType() &&
10265          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10266        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10267             << BinaryOperator::getOpcodeStr(Opc)
10268             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10269      } else {
10270        // This is an erroneous use of an operator which can be overloaded by
10271        // a non-member function. Check for non-member operators which were
10272        // defined too late to be candidates.
10273        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10274          // FIXME: Recover by calling the found function.
10275          return ExprError();
10276
10277        // No viable function; try to create a built-in operation, which will
10278        // produce an error. Then, show the non-viable candidates.
10279        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10280      }
10281      assert(Result.isInvalid() &&
10282             "C++ binary operator overloading is missing candidates!");
10283      if (Result.isInvalid())
10284        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10285                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10286      return move(Result);
10287    }
10288
10289    case OR_Ambiguous:
10290      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10291          << BinaryOperator::getOpcodeStr(Opc)
10292          << Args[0]->getType() << Args[1]->getType()
10293          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10294      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10295                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10296      return ExprError();
10297
10298    case OR_Deleted:
10299      if (isImplicitlyDeleted(Best->Function)) {
10300        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10301        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10302          << getSpecialMember(Method)
10303          << BinaryOperator::getOpcodeStr(Opc)
10304          << getDeletedOrUnavailableSuffix(Best->Function);
10305
10306        if (getSpecialMember(Method) != CXXInvalid) {
10307          // The user probably meant to call this special member. Just
10308          // explain why it's deleted.
10309          NoteDeletedFunction(Method);
10310          return ExprError();
10311        }
10312      } else {
10313        Diag(OpLoc, diag::err_ovl_deleted_oper)
10314          << Best->Function->isDeleted()
10315          << BinaryOperator::getOpcodeStr(Opc)
10316          << getDeletedOrUnavailableSuffix(Best->Function)
10317          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10318      }
10319      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10320                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10321      return ExprError();
10322  }
10323
10324  // We matched a built-in operator; build it.
10325  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10326}
10327
10328ExprResult
10329Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10330                                         SourceLocation RLoc,
10331                                         Expr *Base, Expr *Idx) {
10332  Expr *Args[2] = { Base, Idx };
10333  DeclarationName OpName =
10334      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10335
10336  // If either side is type-dependent, create an appropriate dependent
10337  // expression.
10338  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10339
10340    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10341    // CHECKME: no 'operator' keyword?
10342    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10343    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10344    UnresolvedLookupExpr *Fn
10345      = UnresolvedLookupExpr::Create(Context, NamingClass,
10346                                     NestedNameSpecifierLoc(), OpNameInfo,
10347                                     /*ADL*/ true, /*Overloaded*/ false,
10348                                     UnresolvedSetIterator(),
10349                                     UnresolvedSetIterator());
10350    // Can't add any actual overloads yet
10351
10352    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10353                                                   Args, 2,
10354                                                   Context.DependentTy,
10355                                                   VK_RValue,
10356                                                   RLoc));
10357  }
10358
10359  // Handle placeholders on both operands.
10360  if (checkPlaceholderForOverload(*this, Args[0]))
10361    return ExprError();
10362  if (checkPlaceholderForOverload(*this, Args[1]))
10363    return ExprError();
10364
10365  // Build an empty overload set.
10366  OverloadCandidateSet CandidateSet(LLoc);
10367
10368  // Subscript can only be overloaded as a member function.
10369
10370  // Add operator candidates that are member functions.
10371  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10372
10373  // Add builtin operator candidates.
10374  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10375
10376  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10377
10378  // Perform overload resolution.
10379  OverloadCandidateSet::iterator Best;
10380  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10381    case OR_Success: {
10382      // We found a built-in operator or an overloaded operator.
10383      FunctionDecl *FnDecl = Best->Function;
10384
10385      if (FnDecl) {
10386        // We matched an overloaded operator. Build a call to that
10387        // operator.
10388
10389        MarkFunctionReferenced(LLoc, FnDecl);
10390
10391        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10392        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
10393
10394        // Convert the arguments.
10395        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10396        ExprResult Arg0 =
10397          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10398                                              Best->FoundDecl, Method);
10399        if (Arg0.isInvalid())
10400          return ExprError();
10401        Args[0] = Arg0.take();
10402
10403        // Convert the arguments.
10404        ExprResult InputInit
10405          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10406                                                      Context,
10407                                                      FnDecl->getParamDecl(0)),
10408                                      SourceLocation(),
10409                                      Owned(Args[1]));
10410        if (InputInit.isInvalid())
10411          return ExprError();
10412
10413        Args[1] = InputInit.takeAs<Expr>();
10414
10415        // Determine the result type
10416        QualType ResultTy = FnDecl->getResultType();
10417        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10418        ResultTy = ResultTy.getNonLValueExprType(Context);
10419
10420        // Build the actual expression node.
10421        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10422        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10423        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10424                                                  HadMultipleCandidates,
10425                                                  OpLocInfo.getLoc(),
10426                                                  OpLocInfo.getInfo());
10427        if (FnExpr.isInvalid())
10428          return ExprError();
10429
10430        CXXOperatorCallExpr *TheCall =
10431          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10432                                            FnExpr.take(), Args, 2,
10433                                            ResultTy, VK, RLoc);
10434
10435        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10436                                FnDecl))
10437          return ExprError();
10438
10439        return MaybeBindToTemporary(TheCall);
10440      } else {
10441        // We matched a built-in operator. Convert the arguments, then
10442        // break out so that we will build the appropriate built-in
10443        // operator node.
10444        ExprResult ArgsRes0 =
10445          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10446                                    Best->Conversions[0], AA_Passing);
10447        if (ArgsRes0.isInvalid())
10448          return ExprError();
10449        Args[0] = ArgsRes0.take();
10450
10451        ExprResult ArgsRes1 =
10452          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10453                                    Best->Conversions[1], AA_Passing);
10454        if (ArgsRes1.isInvalid())
10455          return ExprError();
10456        Args[1] = ArgsRes1.take();
10457
10458        break;
10459      }
10460    }
10461
10462    case OR_No_Viable_Function: {
10463      if (CandidateSet.empty())
10464        Diag(LLoc, diag::err_ovl_no_oper)
10465          << Args[0]->getType() << /*subscript*/ 0
10466          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10467      else
10468        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10469          << Args[0]->getType()
10470          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10471      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10472                                  "[]", LLoc);
10473      return ExprError();
10474    }
10475
10476    case OR_Ambiguous:
10477      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10478          << "[]"
10479          << Args[0]->getType() << Args[1]->getType()
10480          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10481      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10482                                  "[]", LLoc);
10483      return ExprError();
10484
10485    case OR_Deleted:
10486      Diag(LLoc, diag::err_ovl_deleted_oper)
10487        << Best->Function->isDeleted() << "[]"
10488        << getDeletedOrUnavailableSuffix(Best->Function)
10489        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10490      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10491                                  "[]", LLoc);
10492      return ExprError();
10493    }
10494
10495  // We matched a built-in operator; build it.
10496  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10497}
10498
10499/// BuildCallToMemberFunction - Build a call to a member
10500/// function. MemExpr is the expression that refers to the member
10501/// function (and includes the object parameter), Args/NumArgs are the
10502/// arguments to the function call (not including the object
10503/// parameter). The caller needs to validate that the member
10504/// expression refers to a non-static member function or an overloaded
10505/// member function.
10506ExprResult
10507Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10508                                SourceLocation LParenLoc, Expr **Args,
10509                                unsigned NumArgs, SourceLocation RParenLoc) {
10510  assert(MemExprE->getType() == Context.BoundMemberTy ||
10511         MemExprE->getType() == Context.OverloadTy);
10512
10513  // Dig out the member expression. This holds both the object
10514  // argument and the member function we're referring to.
10515  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10516
10517  // Determine whether this is a call to a pointer-to-member function.
10518  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10519    assert(op->getType() == Context.BoundMemberTy);
10520    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10521
10522    QualType fnType =
10523      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10524
10525    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10526    QualType resultType = proto->getCallResultType(Context);
10527    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10528
10529    // Check that the object type isn't more qualified than the
10530    // member function we're calling.
10531    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10532
10533    QualType objectType = op->getLHS()->getType();
10534    if (op->getOpcode() == BO_PtrMemI)
10535      objectType = objectType->castAs<PointerType>()->getPointeeType();
10536    Qualifiers objectQuals = objectType.getQualifiers();
10537
10538    Qualifiers difference = objectQuals - funcQuals;
10539    difference.removeObjCGCAttr();
10540    difference.removeAddressSpace();
10541    if (difference) {
10542      std::string qualsString = difference.getAsString();
10543      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10544        << fnType.getUnqualifiedType()
10545        << qualsString
10546        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10547    }
10548
10549    CXXMemberCallExpr *call
10550      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10551                                        resultType, valueKind, RParenLoc);
10552
10553    if (CheckCallReturnType(proto->getResultType(),
10554                            op->getRHS()->getLocStart(),
10555                            call, 0))
10556      return ExprError();
10557
10558    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10559      return ExprError();
10560
10561    return MaybeBindToTemporary(call);
10562  }
10563
10564  UnbridgedCastsSet UnbridgedCasts;
10565  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10566    return ExprError();
10567
10568  MemberExpr *MemExpr;
10569  CXXMethodDecl *Method = 0;
10570  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10571  NestedNameSpecifier *Qualifier = 0;
10572  if (isa<MemberExpr>(NakedMemExpr)) {
10573    MemExpr = cast<MemberExpr>(NakedMemExpr);
10574    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10575    FoundDecl = MemExpr->getFoundDecl();
10576    Qualifier = MemExpr->getQualifier();
10577    UnbridgedCasts.restore();
10578  } else {
10579    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10580    Qualifier = UnresExpr->getQualifier();
10581
10582    QualType ObjectType = UnresExpr->getBaseType();
10583    Expr::Classification ObjectClassification
10584      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10585                            : UnresExpr->getBase()->Classify(Context);
10586
10587    // Add overload candidates
10588    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10589
10590    // FIXME: avoid copy.
10591    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10592    if (UnresExpr->hasExplicitTemplateArgs()) {
10593      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10594      TemplateArgs = &TemplateArgsBuffer;
10595    }
10596
10597    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10598           E = UnresExpr->decls_end(); I != E; ++I) {
10599
10600      NamedDecl *Func = *I;
10601      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10602      if (isa<UsingShadowDecl>(Func))
10603        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10604
10605
10606      // Microsoft supports direct constructor calls.
10607      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10608        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10609                             llvm::makeArrayRef(Args, NumArgs), CandidateSet);
10610      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10611        // If explicit template arguments were provided, we can't call a
10612        // non-template member function.
10613        if (TemplateArgs)
10614          continue;
10615
10616        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10617                           ObjectClassification,
10618                           llvm::makeArrayRef(Args, NumArgs), CandidateSet,
10619                           /*SuppressUserConversions=*/false);
10620      } else {
10621        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10622                                   I.getPair(), ActingDC, TemplateArgs,
10623                                   ObjectType,  ObjectClassification,
10624                                   llvm::makeArrayRef(Args, NumArgs),
10625                                   CandidateSet,
10626                                   /*SuppressUsedConversions=*/false);
10627      }
10628    }
10629
10630    DeclarationName DeclName = UnresExpr->getMemberName();
10631
10632    UnbridgedCasts.restore();
10633
10634    OverloadCandidateSet::iterator Best;
10635    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10636                                            Best)) {
10637    case OR_Success:
10638      Method = cast<CXXMethodDecl>(Best->Function);
10639      MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10640      FoundDecl = Best->FoundDecl;
10641      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10642      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10643      break;
10644
10645    case OR_No_Viable_Function:
10646      Diag(UnresExpr->getMemberLoc(),
10647           diag::err_ovl_no_viable_member_function_in_call)
10648        << DeclName << MemExprE->getSourceRange();
10649      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10650                                  llvm::makeArrayRef(Args, NumArgs));
10651      // FIXME: Leaking incoming expressions!
10652      return ExprError();
10653
10654    case OR_Ambiguous:
10655      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10656        << DeclName << MemExprE->getSourceRange();
10657      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10658                                  llvm::makeArrayRef(Args, NumArgs));
10659      // FIXME: Leaking incoming expressions!
10660      return ExprError();
10661
10662    case OR_Deleted:
10663      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10664        << Best->Function->isDeleted()
10665        << DeclName
10666        << getDeletedOrUnavailableSuffix(Best->Function)
10667        << MemExprE->getSourceRange();
10668      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10669                                  llvm::makeArrayRef(Args, NumArgs));
10670      // FIXME: Leaking incoming expressions!
10671      return ExprError();
10672    }
10673
10674    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10675
10676    // If overload resolution picked a static member, build a
10677    // non-member call based on that function.
10678    if (Method->isStatic()) {
10679      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10680                                   Args, NumArgs, RParenLoc);
10681    }
10682
10683    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10684  }
10685
10686  QualType ResultType = Method->getResultType();
10687  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10688  ResultType = ResultType.getNonLValueExprType(Context);
10689
10690  assert(Method && "Member call to something that isn't a method?");
10691  CXXMemberCallExpr *TheCall =
10692    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10693                                    ResultType, VK, RParenLoc);
10694
10695  // Check for a valid return type.
10696  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10697                          TheCall, Method))
10698    return ExprError();
10699
10700  // Convert the object argument (for a non-static member function call).
10701  // We only need to do this if there was actually an overload; otherwise
10702  // it was done at lookup.
10703  if (!Method->isStatic()) {
10704    ExprResult ObjectArg =
10705      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10706                                          FoundDecl, Method);
10707    if (ObjectArg.isInvalid())
10708      return ExprError();
10709    MemExpr->setBase(ObjectArg.take());
10710  }
10711
10712  // Convert the rest of the arguments
10713  const FunctionProtoType *Proto =
10714    Method->getType()->getAs<FunctionProtoType>();
10715  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10716                              RParenLoc))
10717    return ExprError();
10718
10719  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10720
10721  if (CheckFunctionCall(Method, TheCall))
10722    return ExprError();
10723
10724  if ((isa<CXXConstructorDecl>(CurContext) ||
10725       isa<CXXDestructorDecl>(CurContext)) &&
10726      TheCall->getMethodDecl()->isPure()) {
10727    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10728
10729    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10730      Diag(MemExpr->getLocStart(),
10731           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10732        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10733        << MD->getParent()->getDeclName();
10734
10735      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10736    }
10737  }
10738  return MaybeBindToTemporary(TheCall);
10739}
10740
10741/// BuildCallToObjectOfClassType - Build a call to an object of class
10742/// type (C++ [over.call.object]), which can end up invoking an
10743/// overloaded function call operator (@c operator()) or performing a
10744/// user-defined conversion on the object argument.
10745ExprResult
10746Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10747                                   SourceLocation LParenLoc,
10748                                   Expr **Args, unsigned NumArgs,
10749                                   SourceLocation RParenLoc) {
10750  if (checkPlaceholderForOverload(*this, Obj))
10751    return ExprError();
10752  ExprResult Object = Owned(Obj);
10753
10754  UnbridgedCastsSet UnbridgedCasts;
10755  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10756    return ExprError();
10757
10758  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10759  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10760
10761  // C++ [over.call.object]p1:
10762  //  If the primary-expression E in the function call syntax
10763  //  evaluates to a class object of type "cv T", then the set of
10764  //  candidate functions includes at least the function call
10765  //  operators of T. The function call operators of T are obtained by
10766  //  ordinary lookup of the name operator() in the context of
10767  //  (E).operator().
10768  OverloadCandidateSet CandidateSet(LParenLoc);
10769  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10770
10771  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10772                          diag::err_incomplete_object_call, Object.get()))
10773    return true;
10774
10775  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10776  LookupQualifiedName(R, Record->getDecl());
10777  R.suppressDiagnostics();
10778
10779  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10780       Oper != OperEnd; ++Oper) {
10781    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10782                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10783                       /*SuppressUserConversions=*/ false);
10784  }
10785
10786  // C++ [over.call.object]p2:
10787  //   In addition, for each (non-explicit in C++0x) conversion function
10788  //   declared in T of the form
10789  //
10790  //        operator conversion-type-id () cv-qualifier;
10791  //
10792  //   where cv-qualifier is the same cv-qualification as, or a
10793  //   greater cv-qualification than, cv, and where conversion-type-id
10794  //   denotes the type "pointer to function of (P1,...,Pn) returning
10795  //   R", or the type "reference to pointer to function of
10796  //   (P1,...,Pn) returning R", or the type "reference to function
10797  //   of (P1,...,Pn) returning R", a surrogate call function [...]
10798  //   is also considered as a candidate function. Similarly,
10799  //   surrogate call functions are added to the set of candidate
10800  //   functions for each conversion function declared in an
10801  //   accessible base class provided the function is not hidden
10802  //   within T by another intervening declaration.
10803  const UnresolvedSetImpl *Conversions
10804    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10805  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10806         E = Conversions->end(); I != E; ++I) {
10807    NamedDecl *D = *I;
10808    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10809    if (isa<UsingShadowDecl>(D))
10810      D = cast<UsingShadowDecl>(D)->getTargetDecl();
10811
10812    // Skip over templated conversion functions; they aren't
10813    // surrogates.
10814    if (isa<FunctionTemplateDecl>(D))
10815      continue;
10816
10817    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10818    if (!Conv->isExplicit()) {
10819      // Strip the reference type (if any) and then the pointer type (if
10820      // any) to get down to what might be a function type.
10821      QualType ConvType = Conv->getConversionType().getNonReferenceType();
10822      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10823        ConvType = ConvPtrType->getPointeeType();
10824
10825      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10826      {
10827        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10828                              Object.get(), llvm::makeArrayRef(Args, NumArgs),
10829                              CandidateSet);
10830      }
10831    }
10832  }
10833
10834  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10835
10836  // Perform overload resolution.
10837  OverloadCandidateSet::iterator Best;
10838  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10839                             Best)) {
10840  case OR_Success:
10841    // Overload resolution succeeded; we'll build the appropriate call
10842    // below.
10843    break;
10844
10845  case OR_No_Viable_Function:
10846    if (CandidateSet.empty())
10847      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
10848        << Object.get()->getType() << /*call*/ 1
10849        << Object.get()->getSourceRange();
10850    else
10851      Diag(Object.get()->getLocStart(),
10852           diag::err_ovl_no_viable_object_call)
10853        << Object.get()->getType() << Object.get()->getSourceRange();
10854    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10855                                llvm::makeArrayRef(Args, NumArgs));
10856    break;
10857
10858  case OR_Ambiguous:
10859    Diag(Object.get()->getLocStart(),
10860         diag::err_ovl_ambiguous_object_call)
10861      << Object.get()->getType() << Object.get()->getSourceRange();
10862    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10863                                llvm::makeArrayRef(Args, NumArgs));
10864    break;
10865
10866  case OR_Deleted:
10867    Diag(Object.get()->getLocStart(),
10868         diag::err_ovl_deleted_object_call)
10869      << Best->Function->isDeleted()
10870      << Object.get()->getType()
10871      << getDeletedOrUnavailableSuffix(Best->Function)
10872      << Object.get()->getSourceRange();
10873    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10874                                llvm::makeArrayRef(Args, NumArgs));
10875    break;
10876  }
10877
10878  if (Best == CandidateSet.end())
10879    return true;
10880
10881  UnbridgedCasts.restore();
10882
10883  if (Best->Function == 0) {
10884    // Since there is no function declaration, this is one of the
10885    // surrogate candidates. Dig out the conversion function.
10886    CXXConversionDecl *Conv
10887      = cast<CXXConversionDecl>(
10888                         Best->Conversions[0].UserDefined.ConversionFunction);
10889
10890    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10891    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10892
10893    // We selected one of the surrogate functions that converts the
10894    // object parameter to a function pointer. Perform the conversion
10895    // on the object argument, then let ActOnCallExpr finish the job.
10896
10897    // Create an implicit member expr to refer to the conversion operator.
10898    // and then call it.
10899    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10900                                             Conv, HadMultipleCandidates);
10901    if (Call.isInvalid())
10902      return ExprError();
10903    // Record usage of conversion in an implicit cast.
10904    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10905                                          CK_UserDefinedConversion,
10906                                          Call.get(), 0, VK_RValue));
10907
10908    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10909                         RParenLoc);
10910  }
10911
10912  MarkFunctionReferenced(LParenLoc, Best->Function);
10913  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10914  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10915
10916  // We found an overloaded operator(). Build a CXXOperatorCallExpr
10917  // that calls this method, using Object for the implicit object
10918  // parameter and passing along the remaining arguments.
10919  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10920  const FunctionProtoType *Proto =
10921    Method->getType()->getAs<FunctionProtoType>();
10922
10923  unsigned NumArgsInProto = Proto->getNumArgs();
10924  unsigned NumArgsToCheck = NumArgs;
10925
10926  // Build the full argument list for the method call (the
10927  // implicit object parameter is placed at the beginning of the
10928  // list).
10929  Expr **MethodArgs;
10930  if (NumArgs < NumArgsInProto) {
10931    NumArgsToCheck = NumArgsInProto;
10932    MethodArgs = new Expr*[NumArgsInProto + 1];
10933  } else {
10934    MethodArgs = new Expr*[NumArgs + 1];
10935  }
10936  MethodArgs[0] = Object.get();
10937  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
10938    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
10939
10940  DeclarationNameInfo OpLocInfo(
10941               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
10942  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
10943  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
10944                                           HadMultipleCandidates,
10945                                           OpLocInfo.getLoc(),
10946                                           OpLocInfo.getInfo());
10947  if (NewFn.isInvalid())
10948    return true;
10949
10950  // Once we've built TheCall, all of the expressions are properly
10951  // owned.
10952  QualType ResultTy = Method->getResultType();
10953  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10954  ResultTy = ResultTy.getNonLValueExprType(Context);
10955
10956  CXXOperatorCallExpr *TheCall =
10957    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
10958                                      MethodArgs, NumArgs + 1,
10959                                      ResultTy, VK, RParenLoc);
10960  delete [] MethodArgs;
10961
10962  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
10963                          Method))
10964    return true;
10965
10966  // We may have default arguments. If so, we need to allocate more
10967  // slots in the call for them.
10968  if (NumArgs < NumArgsInProto)
10969    TheCall->setNumArgs(Context, NumArgsInProto + 1);
10970  else if (NumArgs > NumArgsInProto)
10971    NumArgsToCheck = NumArgsInProto;
10972
10973  bool IsError = false;
10974
10975  // Initialize the implicit object parameter.
10976  ExprResult ObjRes =
10977    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
10978                                        Best->FoundDecl, Method);
10979  if (ObjRes.isInvalid())
10980    IsError = true;
10981  else
10982    Object = move(ObjRes);
10983  TheCall->setArg(0, Object.take());
10984
10985  // Check the argument types.
10986  for (unsigned i = 0; i != NumArgsToCheck; i++) {
10987    Expr *Arg;
10988    if (i < NumArgs) {
10989      Arg = Args[i];
10990
10991      // Pass the argument.
10992
10993      ExprResult InputInit
10994        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10995                                                    Context,
10996                                                    Method->getParamDecl(i)),
10997                                    SourceLocation(), Arg);
10998
10999      IsError |= InputInit.isInvalid();
11000      Arg = InputInit.takeAs<Expr>();
11001    } else {
11002      ExprResult DefArg
11003        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11004      if (DefArg.isInvalid()) {
11005        IsError = true;
11006        break;
11007      }
11008
11009      Arg = DefArg.takeAs<Expr>();
11010    }
11011
11012    TheCall->setArg(i + 1, Arg);
11013  }
11014
11015  // If this is a variadic call, handle args passed through "...".
11016  if (Proto->isVariadic()) {
11017    // Promote the arguments (C99 6.5.2.2p7).
11018    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
11019      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11020      IsError |= Arg.isInvalid();
11021      TheCall->setArg(i + 1, Arg.take());
11022    }
11023  }
11024
11025  if (IsError) return true;
11026
11027  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
11028
11029  if (CheckFunctionCall(Method, TheCall))
11030    return true;
11031
11032  return MaybeBindToTemporary(TheCall);
11033}
11034
11035/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11036///  (if one exists), where @c Base is an expression of class type and
11037/// @c Member is the name of the member we're trying to find.
11038ExprResult
11039Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
11040  assert(Base->getType()->isRecordType() &&
11041         "left-hand side must have class type");
11042
11043  if (checkPlaceholderForOverload(*this, Base))
11044    return ExprError();
11045
11046  SourceLocation Loc = Base->getExprLoc();
11047
11048  // C++ [over.ref]p1:
11049  //
11050  //   [...] An expression x->m is interpreted as (x.operator->())->m
11051  //   for a class object x of type T if T::operator->() exists and if
11052  //   the operator is selected as the best match function by the
11053  //   overload resolution mechanism (13.3).
11054  DeclarationName OpName =
11055    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11056  OverloadCandidateSet CandidateSet(Loc);
11057  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11058
11059  if (RequireCompleteType(Loc, Base->getType(),
11060                          diag::err_typecheck_incomplete_tag, Base))
11061    return ExprError();
11062
11063  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11064  LookupQualifiedName(R, BaseRecord->getDecl());
11065  R.suppressDiagnostics();
11066
11067  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11068       Oper != OperEnd; ++Oper) {
11069    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11070                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
11071  }
11072
11073  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11074
11075  // Perform overload resolution.
11076  OverloadCandidateSet::iterator Best;
11077  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11078  case OR_Success:
11079    // Overload resolution succeeded; we'll build the call below.
11080    break;
11081
11082  case OR_No_Viable_Function:
11083    if (CandidateSet.empty())
11084      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11085        << Base->getType() << Base->getSourceRange();
11086    else
11087      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11088        << "operator->" << Base->getSourceRange();
11089    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11090    return ExprError();
11091
11092  case OR_Ambiguous:
11093    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11094      << "->" << Base->getType() << Base->getSourceRange();
11095    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11096    return ExprError();
11097
11098  case OR_Deleted:
11099    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11100      << Best->Function->isDeleted()
11101      << "->"
11102      << getDeletedOrUnavailableSuffix(Best->Function)
11103      << Base->getSourceRange();
11104    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11105    return ExprError();
11106  }
11107
11108  MarkFunctionReferenced(OpLoc, Best->Function);
11109  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11110  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
11111
11112  // Convert the object parameter.
11113  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11114  ExprResult BaseResult =
11115    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11116                                        Best->FoundDecl, Method);
11117  if (BaseResult.isInvalid())
11118    return ExprError();
11119  Base = BaseResult.take();
11120
11121  // Build the operator call.
11122  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
11123                                            HadMultipleCandidates, OpLoc);
11124  if (FnExpr.isInvalid())
11125    return ExprError();
11126
11127  QualType ResultTy = Method->getResultType();
11128  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11129  ResultTy = ResultTy.getNonLValueExprType(Context);
11130  CXXOperatorCallExpr *TheCall =
11131    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11132                                      &Base, 1, ResultTy, VK, OpLoc);
11133
11134  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11135                          Method))
11136          return ExprError();
11137
11138  return MaybeBindToTemporary(TheCall);
11139}
11140
11141/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11142/// a literal operator described by the provided lookup results.
11143ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11144                                          DeclarationNameInfo &SuffixInfo,
11145                                          ArrayRef<Expr*> Args,
11146                                          SourceLocation LitEndLoc,
11147                                       TemplateArgumentListInfo *TemplateArgs) {
11148  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11149
11150  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11151  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11152                        TemplateArgs);
11153
11154  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11155
11156  // Perform overload resolution. This will usually be trivial, but might need
11157  // to perform substitutions for a literal operator template.
11158  OverloadCandidateSet::iterator Best;
11159  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11160  case OR_Success:
11161  case OR_Deleted:
11162    break;
11163
11164  case OR_No_Viable_Function:
11165    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11166      << R.getLookupName();
11167    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11168    return ExprError();
11169
11170  case OR_Ambiguous:
11171    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11172    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11173    return ExprError();
11174  }
11175
11176  FunctionDecl *FD = Best->Function;
11177  MarkFunctionReferenced(UDSuffixLoc, FD);
11178  DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
11179
11180  ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
11181                                        SuffixInfo.getLoc(),
11182                                        SuffixInfo.getInfo());
11183  if (Fn.isInvalid())
11184    return true;
11185
11186  // Check the argument types. This should almost always be a no-op, except
11187  // that array-to-pointer decay is applied to string literals.
11188  Expr *ConvArgs[2];
11189  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
11190    ExprResult InputInit = PerformCopyInitialization(
11191      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11192      SourceLocation(), Args[ArgIdx]);
11193    if (InputInit.isInvalid())
11194      return true;
11195    ConvArgs[ArgIdx] = InputInit.take();
11196  }
11197
11198  QualType ResultTy = FD->getResultType();
11199  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11200  ResultTy = ResultTy.getNonLValueExprType(Context);
11201
11202  UserDefinedLiteral *UDL =
11203    new (Context) UserDefinedLiteral(Context, Fn.take(), ConvArgs, Args.size(),
11204                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11205
11206  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11207    return ExprError();
11208
11209  if (CheckFunctionCall(FD, UDL))
11210    return ExprError();
11211
11212  return MaybeBindToTemporary(UDL);
11213}
11214
11215/// FixOverloadedFunctionReference - E is an expression that refers to
11216/// a C++ overloaded function (possibly with some parentheses and
11217/// perhaps a '&' around it). We have resolved the overloaded function
11218/// to the function declaration Fn, so patch up the expression E to
11219/// refer (possibly indirectly) to Fn. Returns the new expr.
11220Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11221                                           FunctionDecl *Fn) {
11222  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11223    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11224                                                   Found, Fn);
11225    if (SubExpr == PE->getSubExpr())
11226      return PE;
11227
11228    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11229  }
11230
11231  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11232    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11233                                                   Found, Fn);
11234    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11235                               SubExpr->getType()) &&
11236           "Implicit cast type cannot be determined from overload");
11237    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11238    if (SubExpr == ICE->getSubExpr())
11239      return ICE;
11240
11241    return ImplicitCastExpr::Create(Context, ICE->getType(),
11242                                    ICE->getCastKind(),
11243                                    SubExpr, 0,
11244                                    ICE->getValueKind());
11245  }
11246
11247  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11248    assert(UnOp->getOpcode() == UO_AddrOf &&
11249           "Can only take the address of an overloaded function");
11250    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11251      if (Method->isStatic()) {
11252        // Do nothing: static member functions aren't any different
11253        // from non-member functions.
11254      } else {
11255        // Fix the sub expression, which really has to be an
11256        // UnresolvedLookupExpr holding an overloaded member function
11257        // or template.
11258        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11259                                                       Found, Fn);
11260        if (SubExpr == UnOp->getSubExpr())
11261          return UnOp;
11262
11263        assert(isa<DeclRefExpr>(SubExpr)
11264               && "fixed to something other than a decl ref");
11265        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11266               && "fixed to a member ref with no nested name qualifier");
11267
11268        // We have taken the address of a pointer to member
11269        // function. Perform the computation here so that we get the
11270        // appropriate pointer to member type.
11271        QualType ClassType
11272          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11273        QualType MemPtrType
11274          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11275
11276        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11277                                           VK_RValue, OK_Ordinary,
11278                                           UnOp->getOperatorLoc());
11279      }
11280    }
11281    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11282                                                   Found, Fn);
11283    if (SubExpr == UnOp->getSubExpr())
11284      return UnOp;
11285
11286    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11287                                     Context.getPointerType(SubExpr->getType()),
11288                                       VK_RValue, OK_Ordinary,
11289                                       UnOp->getOperatorLoc());
11290  }
11291
11292  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11293    // FIXME: avoid copy.
11294    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11295    if (ULE->hasExplicitTemplateArgs()) {
11296      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11297      TemplateArgs = &TemplateArgsBuffer;
11298    }
11299
11300    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11301                                           ULE->getQualifierLoc(),
11302                                           ULE->getTemplateKeywordLoc(),
11303                                           Fn,
11304                                           /*enclosing*/ false, // FIXME?
11305                                           ULE->getNameLoc(),
11306                                           Fn->getType(),
11307                                           VK_LValue,
11308                                           Found.getDecl(),
11309                                           TemplateArgs);
11310    MarkDeclRefReferenced(DRE);
11311    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11312    return DRE;
11313  }
11314
11315  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11316    // FIXME: avoid copy.
11317    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11318    if (MemExpr->hasExplicitTemplateArgs()) {
11319      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11320      TemplateArgs = &TemplateArgsBuffer;
11321    }
11322
11323    Expr *Base;
11324
11325    // If we're filling in a static method where we used to have an
11326    // implicit member access, rewrite to a simple decl ref.
11327    if (MemExpr->isImplicitAccess()) {
11328      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11329        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11330                                               MemExpr->getQualifierLoc(),
11331                                               MemExpr->getTemplateKeywordLoc(),
11332                                               Fn,
11333                                               /*enclosing*/ false,
11334                                               MemExpr->getMemberLoc(),
11335                                               Fn->getType(),
11336                                               VK_LValue,
11337                                               Found.getDecl(),
11338                                               TemplateArgs);
11339        MarkDeclRefReferenced(DRE);
11340        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11341        return DRE;
11342      } else {
11343        SourceLocation Loc = MemExpr->getMemberLoc();
11344        if (MemExpr->getQualifier())
11345          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11346        CheckCXXThisCapture(Loc);
11347        Base = new (Context) CXXThisExpr(Loc,
11348                                         MemExpr->getBaseType(),
11349                                         /*isImplicit=*/true);
11350      }
11351    } else
11352      Base = MemExpr->getBase();
11353
11354    ExprValueKind valueKind;
11355    QualType type;
11356    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11357      valueKind = VK_LValue;
11358      type = Fn->getType();
11359    } else {
11360      valueKind = VK_RValue;
11361      type = Context.BoundMemberTy;
11362    }
11363
11364    MemberExpr *ME = MemberExpr::Create(Context, Base,
11365                                        MemExpr->isArrow(),
11366                                        MemExpr->getQualifierLoc(),
11367                                        MemExpr->getTemplateKeywordLoc(),
11368                                        Fn,
11369                                        Found,
11370                                        MemExpr->getMemberNameInfo(),
11371                                        TemplateArgs,
11372                                        type, valueKind, OK_Ordinary);
11373    ME->setHadMultipleCandidates(true);
11374    return ME;
11375  }
11376
11377  llvm_unreachable("Invalid reference to overloaded function");
11378}
11379
11380ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11381                                                DeclAccessPair Found,
11382                                                FunctionDecl *Fn) {
11383  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11384}
11385
11386} // end namespace clang
11387