asan_allocator.cc revision 37931239a3671ac0d2c7865f3077b0c4f71b94b3
1//===-- asan_allocator.cc ---------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator.
13// Evey piece of memory (AsanChunk) allocated by the allocator
14// has a left redzone of REDZONE bytes and
15// a right redzone such that the end of the chunk is aligned by REDZONE
16// (i.e. the right redzone is between 0 and REDZONE-1).
17// The left redzone is always poisoned.
18// The right redzone is poisoned on malloc, the body is poisoned on free.
19// Once freed, a chunk is moved to a quarantine (fifo list).
20// After quarantine, a chunk is returned to freelists.
21//
22// The left redzone contains ASan's internal data and the stack trace of
23// the malloc call.
24// Once freed, the body of the chunk contains the stack trace of the free call.
25//
26//===----------------------------------------------------------------------===//
27
28#include "asan_allocator.h"
29#include "asan_interceptors.h"
30#include "asan_interface.h"
31#include "asan_internal.h"
32#include "asan_lock.h"
33#include "asan_mapping.h"
34#include "asan_stats.h"
35#include "asan_thread.h"
36#include "asan_thread_registry.h"
37
38#if defined(_WIN32) && !defined(__clang__)
39#include <intrin.h>
40#endif
41
42namespace __asan {
43
44#define  REDZONE FLAG_redzone
45static const size_t kMinAllocSize = REDZONE * 2;
46static const uint64_t kMaxAvailableRam = 128ULL << 30;  // 128G
47static const size_t kMaxThreadLocalQuarantine = 1 << 20;  // 1M
48
49static const size_t kMinMmapSize = (ASAN_LOW_MEMORY) ? 4UL << 17 : 4UL << 20;
50static const size_t kMaxSizeForThreadLocalFreeList =
51    (ASAN_LOW_MEMORY) ? 1 << 15 : 1 << 17;
52
53// Size classes less than kMallocSizeClassStep are powers of two.
54// All other size classes are multiples of kMallocSizeClassStep.
55static const size_t kMallocSizeClassStepLog = 26;
56static const size_t kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
57
58static const size_t kMaxAllowedMallocSize =
59    (__WORDSIZE == 32) ? 3UL << 30 : 8UL << 30;
60
61static inline bool IsAligned(uintptr_t a, uintptr_t alignment) {
62  return (a & (alignment - 1)) == 0;
63}
64
65static inline size_t Log2(size_t x) {
66  CHECK(IsPowerOfTwo(x));
67#if !defined(_WIN32) || defined(__clang__)
68  return __builtin_ctzl(x);
69#elif defined(_WIN64)
70  unsigned long ret;  // NOLINT
71  _BitScanForward64(&ret, x);
72  return ret;
73#else
74  unsigned long ret;  // NOLINT
75  _BitScanForward(&ret, x);
76  return ret;
77#endif
78}
79
80static inline size_t RoundUpToPowerOfTwo(size_t size) {
81  CHECK(size);
82  if (IsPowerOfTwo(size)) return size;
83
84  unsigned long up;  // NOLINT
85#if !defined(_WIN32) || defined(__clang__)
86  up = __WORDSIZE - 1 - __builtin_clzl(size);
87#elif defined(_WIN64)
88  _BitScanReverse64(&up, size);
89#else
90  _BitScanReverse(&up, size);
91#endif
92  CHECK(size < (1ULL << (up + 1)));
93  CHECK(size > (1ULL << up));
94  return 1UL << (up + 1);
95}
96
97static inline size_t SizeClassToSize(uint8_t size_class) {
98  CHECK(size_class < kNumberOfSizeClasses);
99  if (size_class <= kMallocSizeClassStepLog) {
100    return 1UL << size_class;
101  } else {
102    return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
103  }
104}
105
106static inline uint8_t SizeToSizeClass(size_t size) {
107  uint8_t res = 0;
108  if (size <= kMallocSizeClassStep) {
109    size_t rounded = RoundUpToPowerOfTwo(size);
110    res = Log2(rounded);
111  } else {
112    res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
113        + kMallocSizeClassStepLog;
114  }
115  CHECK(res < kNumberOfSizeClasses);
116  CHECK(size <= SizeClassToSize(res));
117  return res;
118}
119
120// Given REDZONE bytes, we need to mark first size bytes
121// as addressable and the rest REDZONE-size bytes as unaddressable.
122static void PoisonHeapPartialRightRedzone(uintptr_t mem, size_t size) {
123  CHECK(size <= REDZONE);
124  CHECK(IsAligned(mem, REDZONE));
125  CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
126  CHECK(IsPowerOfTwo(REDZONE));
127  CHECK(REDZONE >= SHADOW_GRANULARITY);
128  PoisonShadowPartialRightRedzone(mem, size, REDZONE,
129                                  kAsanHeapRightRedzoneMagic);
130}
131
132static uint8_t *MmapNewPagesAndPoisonShadow(size_t size) {
133  CHECK(IsAligned(size, kPageSize));
134  uint8_t *res = (uint8_t*)AsanMmapSomewhereOrDie(size, __FUNCTION__);
135  PoisonShadow((uintptr_t)res, size, kAsanHeapLeftRedzoneMagic);
136  if (FLAG_debug) {
137    Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
138  }
139  return res;
140}
141
142// Every chunk of memory allocated by this allocator can be in one of 3 states:
143// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
144// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
145// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
146//
147// The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
148// the beginning of a AsanChunk (in which case 'next' contains the address
149// of the AsanChunk).
150//
151// The magic numbers for the enum values are taken randomly.
152enum {
153  CHUNK_AVAILABLE  = 0x573B,
154  CHUNK_ALLOCATED  = 0x3204,
155  CHUNK_QUARANTINE = 0x1978,
156  CHUNK_MEMALIGN   = 0xDC68,
157};
158
159struct ChunkBase {
160  uint16_t   chunk_state;
161  uint8_t    size_class;
162  uint32_t   offset;  // User-visible memory starts at this+offset (beg()).
163  int32_t    alloc_tid;
164  int32_t    free_tid;
165  size_t     used_size;  // Size requested by the user.
166  AsanChunk *next;
167
168  uintptr_t   beg() { return (uintptr_t)this + offset; }
169  size_t Size() { return SizeClassToSize(size_class); }
170  uint8_t SizeClass() { return size_class; }
171};
172
173struct AsanChunk: public ChunkBase {
174  uint32_t *compressed_alloc_stack() {
175    CHECK(REDZONE >= sizeof(ChunkBase));
176    return (uint32_t*)((uintptr_t)this + sizeof(ChunkBase));
177  }
178  uint32_t *compressed_free_stack() {
179    CHECK(REDZONE >= sizeof(ChunkBase));
180    return (uint32_t*)((uintptr_t)this + REDZONE);
181  }
182
183  // The left redzone after the ChunkBase is given to the alloc stack trace.
184  size_t compressed_alloc_stack_size() {
185    return (REDZONE - sizeof(ChunkBase)) / sizeof(uint32_t);
186  }
187  size_t compressed_free_stack_size() {
188    return (REDZONE) / sizeof(uint32_t);
189  }
190
191  bool AddrIsInside(uintptr_t addr, size_t access_size, size_t *offset) {
192    if (addr >= beg() && (addr + access_size) <= (beg() + used_size)) {
193      *offset = addr - beg();
194      return true;
195    }
196    return false;
197  }
198
199  bool AddrIsAtLeft(uintptr_t addr, size_t access_size, size_t *offset) {
200    if (addr < beg()) {
201      *offset = beg() - addr;
202      return true;
203    }
204    return false;
205  }
206
207  bool AddrIsAtRight(uintptr_t addr, size_t access_size, size_t *offset) {
208    if (addr + access_size >= beg() + used_size) {
209      if (addr <= beg() + used_size)
210        *offset = 0;
211      else
212        *offset = addr - (beg() + used_size);
213      return true;
214    }
215    return false;
216  }
217
218  void DescribeAddress(uintptr_t addr, size_t access_size) {
219    size_t offset;
220    Printf("%p is located ", addr);
221    if (AddrIsInside(addr, access_size, &offset)) {
222      Printf("%zu bytes inside of", offset);
223    } else if (AddrIsAtLeft(addr, access_size, &offset)) {
224      Printf("%zu bytes to the left of", offset);
225    } else if (AddrIsAtRight(addr, access_size, &offset)) {
226      Printf("%zu bytes to the right of", offset);
227    } else {
228      Printf(" somewhere around (this is AddressSanitizer bug!)");
229    }
230    Printf(" %zu-byte region [%p,%p)\n",
231           used_size, beg(), beg() + used_size);
232  }
233};
234
235static AsanChunk *PtrToChunk(uintptr_t ptr) {
236  AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
237  if (m->chunk_state == CHUNK_MEMALIGN) {
238    m = m->next;
239  }
240  return m;
241}
242
243
244void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
245  CHECK(q->size() > 0);
246  if (last_) {
247    CHECK(first_);
248    CHECK(!last_->next);
249    last_->next = q->first_;
250    last_ = q->last_;
251  } else {
252    CHECK(!first_);
253    last_ = q->last_;
254    first_ = q->first_;
255    CHECK(first_);
256  }
257  CHECK(last_);
258  CHECK(!last_->next);
259  size_ += q->size();
260  q->clear();
261}
262
263void AsanChunkFifoList::Push(AsanChunk *n) {
264  CHECK(n->next == NULL);
265  if (last_) {
266    CHECK(first_);
267    CHECK(!last_->next);
268    last_->next = n;
269    last_ = n;
270  } else {
271    CHECK(!first_);
272    last_ = first_ = n;
273  }
274  size_ += n->Size();
275}
276
277// Interesting performance observation: this function takes up to 15% of overal
278// allocator time. That's because *first_ has been evicted from cache long time
279// ago. Not sure if we can or want to do anything with this.
280AsanChunk *AsanChunkFifoList::Pop() {
281  CHECK(first_);
282  AsanChunk *res = first_;
283  first_ = first_->next;
284  if (first_ == NULL)
285    last_ = NULL;
286  CHECK(size_ >= res->Size());
287  size_ -= res->Size();
288  if (last_) {
289    CHECK(!last_->next);
290  }
291  return res;
292}
293
294// All pages we ever allocated.
295struct PageGroup {
296  uintptr_t beg;
297  uintptr_t end;
298  size_t size_of_chunk;
299  uintptr_t last_chunk;
300  bool InRange(uintptr_t addr) {
301    return addr >= beg && addr < end;
302  }
303};
304
305class MallocInfo {
306 public:
307
308  explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
309
310  AsanChunk *AllocateChunks(uint8_t size_class, size_t n_chunks) {
311    AsanChunk *m = NULL;
312    AsanChunk **fl = &free_lists_[size_class];
313    {
314      ScopedLock lock(&mu_);
315      for (size_t i = 0; i < n_chunks; i++) {
316        if (!(*fl)) {
317          *fl = GetNewChunks(size_class);
318        }
319        AsanChunk *t = *fl;
320        *fl = t->next;
321        t->next = m;
322        CHECK(t->chunk_state == CHUNK_AVAILABLE);
323        m = t;
324      }
325    }
326    return m;
327  }
328
329  void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
330                                       bool eat_free_lists) {
331    CHECK(FLAG_quarantine_size > 0);
332    ScopedLock lock(&mu_);
333    AsanChunkFifoList *q = &x->quarantine_;
334    if (q->size() > 0) {
335      quarantine_.PushList(q);
336      while (quarantine_.size() > FLAG_quarantine_size) {
337        QuarantinePop();
338      }
339    }
340    if (eat_free_lists) {
341      for (size_t size_class = 0; size_class < kNumberOfSizeClasses;
342           size_class++) {
343        AsanChunk *m = x->free_lists_[size_class];
344        while (m) {
345          AsanChunk *t = m->next;
346          m->next = free_lists_[size_class];
347          free_lists_[size_class] = m;
348          m = t;
349        }
350        x->free_lists_[size_class] = 0;
351      }
352    }
353  }
354
355  void BypassThreadLocalQuarantine(AsanChunk *chunk) {
356    ScopedLock lock(&mu_);
357    quarantine_.Push(chunk);
358  }
359
360  AsanChunk *FindMallocedOrFreed(uintptr_t addr, size_t access_size) {
361    ScopedLock lock(&mu_);
362    return FindChunkByAddr(addr);
363  }
364
365  size_t AllocationSize(uintptr_t ptr) {
366    if (!ptr) return 0;
367    ScopedLock lock(&mu_);
368
369    // first, check if this is our memory
370    PageGroup *g = FindPageGroupUnlocked(ptr);
371    if (!g) return 0;
372    AsanChunk *m = PtrToChunk(ptr);
373    if (m->chunk_state == CHUNK_ALLOCATED) {
374      return m->used_size;
375    } else {
376      return 0;
377    }
378  }
379
380  void ForceLock() {
381    mu_.Lock();
382  }
383
384  void ForceUnlock() {
385    mu_.Unlock();
386  }
387
388  void PrintStatus() {
389    ScopedLock lock(&mu_);
390    size_t malloced = 0;
391
392    Printf(" MallocInfo: in quarantine: %zu malloced: %zu; ",
393           quarantine_.size() >> 20, malloced >> 20);
394    for (size_t j = 1; j < kNumberOfSizeClasses; j++) {
395      AsanChunk *i = free_lists_[j];
396      if (!i) continue;
397      size_t t = 0;
398      for (; i; i = i->next) {
399        t += i->Size();
400      }
401      Printf("%zu:%zu ", j, t >> 20);
402    }
403    Printf("\n");
404  }
405
406  PageGroup *FindPageGroup(uintptr_t addr) {
407    ScopedLock lock(&mu_);
408    return FindPageGroupUnlocked(addr);
409  }
410
411 private:
412  PageGroup *FindPageGroupUnlocked(uintptr_t addr) {
413    int n = n_page_groups_;
414    // If the page groups are not sorted yet, sort them.
415    if (n_sorted_page_groups_ < n) {
416      SortArray((uintptr_t*)page_groups_, n);
417      n_sorted_page_groups_ = n;
418    }
419    // Binary search over the page groups.
420    int beg = 0, end = n;
421    while (beg < end) {
422      int med = (beg + end) / 2;
423      uintptr_t g = (uintptr_t)page_groups_[med];
424      if (addr > g) {
425        // 'g' points to the end of the group, so 'addr'
426        // may not belong to page_groups_[med] or any previous group.
427        beg = med + 1;
428      } else {
429        // 'addr' may belong to page_groups_[med] or a previous group.
430        end = med;
431      }
432    }
433    if (beg >= n)
434      return NULL;
435    PageGroup *g = page_groups_[beg];
436    CHECK(g);
437    if (g->InRange(addr))
438      return g;
439    return NULL;
440  }
441
442  // We have an address between two chunks, and we want to report just one.
443  AsanChunk *ChooseChunk(uintptr_t addr,
444                         AsanChunk *left_chunk, AsanChunk *right_chunk) {
445    // Prefer an allocated chunk or a chunk from quarantine.
446    if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
447        right_chunk->chunk_state != CHUNK_AVAILABLE)
448      return right_chunk;
449    if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
450        left_chunk->chunk_state != CHUNK_AVAILABLE)
451      return left_chunk;
452    // Choose based on offset.
453    size_t l_offset = 0, r_offset = 0;
454    CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
455    CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
456    if (l_offset < r_offset)
457      return left_chunk;
458    return right_chunk;
459  }
460
461  AsanChunk *FindChunkByAddr(uintptr_t addr) {
462    PageGroup *g = FindPageGroupUnlocked(addr);
463    if (!g) return 0;
464    CHECK(g->size_of_chunk);
465    uintptr_t offset_from_beg = addr - g->beg;
466    uintptr_t this_chunk_addr = g->beg +
467        (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
468    CHECK(g->InRange(this_chunk_addr));
469    AsanChunk *m = (AsanChunk*)this_chunk_addr;
470    CHECK(m->chunk_state == CHUNK_ALLOCATED ||
471          m->chunk_state == CHUNK_AVAILABLE ||
472          m->chunk_state == CHUNK_QUARANTINE);
473    size_t offset = 0;
474    if (m->AddrIsInside(addr, 1, &offset))
475      return m;
476
477    if (m->AddrIsAtRight(addr, 1, &offset)) {
478      if (this_chunk_addr == g->last_chunk)  // rightmost chunk
479        return m;
480      uintptr_t right_chunk_addr = this_chunk_addr + g->size_of_chunk;
481      CHECK(g->InRange(right_chunk_addr));
482      return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
483    } else {
484      CHECK(m->AddrIsAtLeft(addr, 1, &offset));
485      if (this_chunk_addr == g->beg)  // leftmost chunk
486        return m;
487      uintptr_t left_chunk_addr = this_chunk_addr - g->size_of_chunk;
488      CHECK(g->InRange(left_chunk_addr));
489      return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
490    }
491  }
492
493  void QuarantinePop() {
494    CHECK(quarantine_.size() > 0);
495    AsanChunk *m = quarantine_.Pop();
496    CHECK(m);
497    // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
498
499    CHECK(m->chunk_state == CHUNK_QUARANTINE);
500    m->chunk_state = CHUNK_AVAILABLE;
501    PoisonShadow((uintptr_t)m, m->Size(), kAsanHeapLeftRedzoneMagic);
502    CHECK(m->alloc_tid >= 0);
503    CHECK(m->free_tid >= 0);
504
505    size_t size_class = m->SizeClass();
506    m->next = free_lists_[size_class];
507    free_lists_[size_class] = m;
508
509    // Statistics.
510    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
511    thread_stats.real_frees++;
512    thread_stats.really_freed += m->used_size;
513    thread_stats.really_freed_redzones += m->Size() - m->used_size;
514    thread_stats.really_freed_by_size[m->SizeClass()]++;
515  }
516
517  // Get a list of newly allocated chunks.
518  AsanChunk *GetNewChunks(uint8_t size_class) {
519    size_t size = SizeClassToSize(size_class);
520    CHECK(IsPowerOfTwo(kMinMmapSize));
521    CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
522    size_t mmap_size = Max(size, kMinMmapSize);
523    size_t n_chunks = mmap_size / size;
524    CHECK(n_chunks * size == mmap_size);
525    if (size < kPageSize) {
526      // Size is small, just poison the last chunk.
527      n_chunks--;
528    } else {
529      // Size is large, allocate an extra page at right and poison it.
530      mmap_size += kPageSize;
531    }
532    CHECK(n_chunks > 0);
533    uint8_t *mem = MmapNewPagesAndPoisonShadow(mmap_size);
534
535    // Statistics.
536    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
537    thread_stats.mmaps++;
538    thread_stats.mmaped += mmap_size;
539    thread_stats.mmaped_by_size[size_class] += n_chunks;
540
541    AsanChunk *res = NULL;
542    for (size_t i = 0; i < n_chunks; i++) {
543      AsanChunk *m = (AsanChunk*)(mem + i * size);
544      m->chunk_state = CHUNK_AVAILABLE;
545      m->size_class = size_class;
546      m->next = res;
547      res = m;
548    }
549    PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
550    // This memory is already poisoned, no need to poison it again.
551    pg->beg = (uintptr_t)mem;
552    pg->end = pg->beg + mmap_size;
553    pg->size_of_chunk = size;
554    pg->last_chunk = (uintptr_t)(mem + size * (n_chunks - 1));
555    int page_group_idx = AtomicInc(&n_page_groups_) - 1;
556    CHECK(page_group_idx < (int)ASAN_ARRAY_SIZE(page_groups_));
557    page_groups_[page_group_idx] = pg;
558    return res;
559  }
560
561  AsanChunk *free_lists_[kNumberOfSizeClasses];
562  AsanChunkFifoList quarantine_;
563  AsanLock mu_;
564
565  PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
566  int n_page_groups_;  // atomic
567  int n_sorted_page_groups_;
568};
569
570static MallocInfo malloc_info(LINKER_INITIALIZED);
571
572void AsanThreadLocalMallocStorage::CommitBack() {
573  malloc_info.SwallowThreadLocalMallocStorage(this, true);
574}
575
576static void Describe(uintptr_t addr, size_t access_size) {
577  AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
578  if (!m) return;
579  m->DescribeAddress(addr, access_size);
580  CHECK(m->alloc_tid >= 0);
581  AsanThreadSummary *alloc_thread =
582      asanThreadRegistry().FindByTid(m->alloc_tid);
583  AsanStackTrace alloc_stack;
584  AsanStackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
585                                  m->compressed_alloc_stack_size());
586  AsanThread *t = asanThreadRegistry().GetCurrent();
587  CHECK(t);
588  if (m->free_tid >= 0) {
589    AsanThreadSummary *free_thread =
590        asanThreadRegistry().FindByTid(m->free_tid);
591    Printf("freed by thread T%d here:\n", free_thread->tid());
592    AsanStackTrace free_stack;
593    AsanStackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
594                                    m->compressed_free_stack_size());
595    free_stack.PrintStack();
596    Printf("previously allocated by thread T%d here:\n",
597           alloc_thread->tid());
598
599    alloc_stack.PrintStack();
600    t->summary()->Announce();
601    free_thread->Announce();
602    alloc_thread->Announce();
603  } else {
604    Printf("allocated by thread T%d here:\n", alloc_thread->tid());
605    alloc_stack.PrintStack();
606    t->summary()->Announce();
607    alloc_thread->Announce();
608  }
609}
610
611static uint8_t *Allocate(size_t alignment, size_t size, AsanStackTrace *stack) {
612  __asan_init();
613  CHECK(stack);
614  if (size == 0) {
615    size = 1;  // TODO(kcc): do something smarter
616  }
617  CHECK(IsPowerOfTwo(alignment));
618  size_t rounded_size = RoundUpTo(size, REDZONE);
619  size_t needed_size = rounded_size + REDZONE;
620  if (alignment > REDZONE) {
621    needed_size += alignment;
622  }
623  CHECK(IsAligned(needed_size, REDZONE));
624  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
625    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", size);
626    return 0;
627  }
628
629  uint8_t size_class = SizeToSizeClass(needed_size);
630  size_t size_to_allocate = SizeClassToSize(size_class);
631  CHECK(size_to_allocate >= kMinAllocSize);
632  CHECK(size_to_allocate >= needed_size);
633  CHECK(IsAligned(size_to_allocate, REDZONE));
634
635  if (FLAG_v >= 3) {
636    Printf("Allocate align: %zu size: %zu class: %u real: %zu\n",
637         alignment, size, size_class, size_to_allocate);
638  }
639
640  AsanThread *t = asanThreadRegistry().GetCurrent();
641  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
642  // Statistics
643  thread_stats.mallocs++;
644  thread_stats.malloced += size;
645  thread_stats.malloced_redzones += size_to_allocate - size;
646  thread_stats.malloced_by_size[size_class]++;
647
648  AsanChunk *m = NULL;
649  if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
650    // get directly from global storage.
651    m = malloc_info.AllocateChunks(size_class, 1);
652    thread_stats.malloc_large++;
653  } else {
654    // get from the thread-local storage.
655    AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
656    if (!*fl) {
657      size_t n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
658      *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
659      thread_stats.malloc_small_slow++;
660    }
661    m = *fl;
662    *fl = (*fl)->next;
663  }
664  CHECK(m);
665  CHECK(m->chunk_state == CHUNK_AVAILABLE);
666  m->chunk_state = CHUNK_ALLOCATED;
667  m->next = NULL;
668  CHECK(m->Size() == size_to_allocate);
669  uintptr_t addr = (uintptr_t)m + REDZONE;
670  CHECK(addr == (uintptr_t)m->compressed_free_stack());
671
672  if (alignment > REDZONE && (addr & (alignment - 1))) {
673    addr = RoundUpTo(addr, alignment);
674    CHECK((addr & (alignment - 1)) == 0);
675    AsanChunk *p = (AsanChunk*)(addr - REDZONE);
676    p->chunk_state = CHUNK_MEMALIGN;
677    p->next = m;
678  }
679  CHECK(m == PtrToChunk(addr));
680  m->used_size = size;
681  m->offset = addr - (uintptr_t)m;
682  CHECK(m->beg() == addr);
683  m->alloc_tid = t ? t->tid() : 0;
684  m->free_tid   = AsanThread::kInvalidTid;
685  AsanStackTrace::CompressStack(stack, m->compressed_alloc_stack(),
686                                m->compressed_alloc_stack_size());
687  PoisonShadow(addr, rounded_size, 0);
688  if (size < rounded_size) {
689    PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
690                                  size & (REDZONE - 1));
691  }
692  if (size <= FLAG_max_malloc_fill_size) {
693    REAL(memset)((void*)addr, 0, rounded_size);
694  }
695  return (uint8_t*)addr;
696}
697
698static void Deallocate(uint8_t *ptr, AsanStackTrace *stack) {
699  if (!ptr) return;
700  CHECK(stack);
701
702  if (FLAG_debug) {
703    CHECK(malloc_info.FindPageGroup((uintptr_t)ptr));
704  }
705
706  // Printf("Deallocate %p\n", ptr);
707  AsanChunk *m = PtrToChunk((uintptr_t)ptr);
708
709  // Flip the state atomically to avoid race on double-free.
710  uint16_t old_chunk_state = AtomicExchange(&m->chunk_state, CHUNK_QUARANTINE);
711
712  if (old_chunk_state == CHUNK_QUARANTINE) {
713    Report("ERROR: AddressSanitizer attempting double-free on %p:\n", ptr);
714    stack->PrintStack();
715    Describe((uintptr_t)ptr, 1);
716    ShowStatsAndAbort();
717  } else if (old_chunk_state != CHUNK_ALLOCATED) {
718    Report("ERROR: AddressSanitizer attempting free on address which was not"
719           " malloc()-ed: %p\n", ptr);
720    stack->PrintStack();
721    ShowStatsAndAbort();
722  }
723  CHECK(old_chunk_state == CHUNK_ALLOCATED);
724  CHECK(m->free_tid == AsanThread::kInvalidTid);
725  CHECK(m->alloc_tid >= 0);
726  AsanThread *t = asanThreadRegistry().GetCurrent();
727  m->free_tid = t ? t->tid() : 0;
728  AsanStackTrace::CompressStack(stack, m->compressed_free_stack(),
729                                m->compressed_free_stack_size());
730  size_t rounded_size = RoundUpTo(m->used_size, REDZONE);
731  PoisonShadow((uintptr_t)ptr, rounded_size, kAsanHeapFreeMagic);
732
733  // Statistics.
734  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
735  thread_stats.frees++;
736  thread_stats.freed += m->used_size;
737  thread_stats.freed_by_size[m->SizeClass()]++;
738
739  CHECK(m->chunk_state == CHUNK_QUARANTINE);
740  if (t) {
741    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
742    CHECK(!m->next);
743    ms->quarantine_.Push(m);
744
745    if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
746      malloc_info.SwallowThreadLocalMallocStorage(ms, false);
747    }
748  } else {
749    CHECK(!m->next);
750    malloc_info.BypassThreadLocalQuarantine(m);
751  }
752}
753
754static uint8_t *Reallocate(uint8_t *old_ptr, size_t new_size,
755                           AsanStackTrace *stack) {
756  CHECK(old_ptr && new_size);
757
758  // Statistics.
759  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
760  thread_stats.reallocs++;
761  thread_stats.realloced += new_size;
762
763  AsanChunk *m = PtrToChunk((uintptr_t)old_ptr);
764  CHECK(m->chunk_state == CHUNK_ALLOCATED);
765  size_t old_size = m->used_size;
766  size_t memcpy_size = Min(new_size, old_size);
767  uint8_t *new_ptr = Allocate(0, new_size, stack);
768  if (new_ptr) {
769    CHECK(REAL(memcpy) != NULL);
770    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
771    Deallocate(old_ptr, stack);
772  }
773  return new_ptr;
774}
775
776}  // namespace __asan
777
778// Malloc hooks declaration.
779// ASAN_NEW_HOOK(ptr, size) is called immediately after
780//   allocation of "size" bytes, which returned "ptr".
781// ASAN_DELETE_HOOK(ptr) is called immediately before
782//   deallocation of "ptr".
783// If ASAN_NEW_HOOK or ASAN_DELETE_HOOK is defined, user
784// program must provide implementation of this hook.
785// If macro is undefined, the hook is no-op.
786#ifdef ASAN_NEW_HOOK
787extern "C" void ASAN_NEW_HOOK(void *ptr, size_t size);
788#else
789static inline void ASAN_NEW_HOOK(void *ptr, size_t size) { }
790#endif
791
792#ifdef ASAN_DELETE_HOOK
793extern "C" void ASAN_DELETE_HOOK(void *ptr);
794#else
795static inline void ASAN_DELETE_HOOK(void *ptr) { }
796#endif
797
798namespace __asan {
799
800void *asan_memalign(size_t alignment, size_t size, AsanStackTrace *stack) {
801  void *ptr = (void*)Allocate(alignment, size, stack);
802  ASAN_NEW_HOOK(ptr, size);
803  return ptr;
804}
805
806void asan_free(void *ptr, AsanStackTrace *stack) {
807  ASAN_DELETE_HOOK(ptr);
808  Deallocate((uint8_t*)ptr, stack);
809}
810
811void *asan_malloc(size_t size, AsanStackTrace *stack) {
812  void *ptr = (void*)Allocate(0, size, stack);
813  ASAN_NEW_HOOK(ptr, size);
814  return ptr;
815}
816
817void *asan_calloc(size_t nmemb, size_t size, AsanStackTrace *stack) {
818  void *ptr = (void*)Allocate(0, nmemb * size, stack);
819  if (ptr)
820    REAL(memset)(ptr, 0, nmemb * size);
821  ASAN_NEW_HOOK(ptr, nmemb * size);
822  return ptr;
823}
824
825void *asan_realloc(void *p, size_t size, AsanStackTrace *stack) {
826  if (p == NULL) {
827    void *ptr = (void*)Allocate(0, size, stack);
828    ASAN_NEW_HOOK(ptr, size);
829    return ptr;
830  } else if (size == 0) {
831    ASAN_DELETE_HOOK(p);
832    Deallocate((uint8_t*)p, stack);
833    return NULL;
834  }
835  return Reallocate((uint8_t*)p, size, stack);
836}
837
838void *asan_valloc(size_t size, AsanStackTrace *stack) {
839  void *ptr = (void*)Allocate(kPageSize, size, stack);
840  ASAN_NEW_HOOK(ptr, size);
841  return ptr;
842}
843
844void *asan_pvalloc(size_t size, AsanStackTrace *stack) {
845  size = RoundUpTo(size, kPageSize);
846  if (size == 0) {
847    // pvalloc(0) should allocate one page.
848    size = kPageSize;
849  }
850  void *ptr = (void*)Allocate(kPageSize, size, stack);
851  ASAN_NEW_HOOK(ptr, size);
852  return ptr;
853}
854
855int asan_posix_memalign(void **memptr, size_t alignment, size_t size,
856                          AsanStackTrace *stack) {
857  void *ptr = Allocate(alignment, size, stack);
858  CHECK(IsAligned((uintptr_t)ptr, alignment));
859  ASAN_NEW_HOOK(ptr, size);
860  *memptr = ptr;
861  return 0;
862}
863
864size_t asan_malloc_usable_size(void *ptr, AsanStackTrace *stack) {
865  CHECK(stack);
866  if (ptr == NULL) return 0;
867  size_t usable_size = malloc_info.AllocationSize((uintptr_t)ptr);
868  if (FLAG_check_malloc_usable_size && (usable_size == 0)) {
869    Report("ERROR: AddressSanitizer attempting to call malloc_usable_size() "
870           "for pointer which is not owned: %p\n", ptr);
871    stack->PrintStack();
872    Describe((uintptr_t)ptr, 1);
873    ShowStatsAndAbort();
874  }
875  return usable_size;
876}
877
878size_t asan_mz_size(const void *ptr) {
879  return malloc_info.AllocationSize((uintptr_t)ptr);
880}
881
882void DescribeHeapAddress(uintptr_t addr, uintptr_t access_size) {
883  Describe(addr, access_size);
884}
885
886void asan_mz_force_lock() {
887  malloc_info.ForceLock();
888}
889
890void asan_mz_force_unlock() {
891  malloc_info.ForceUnlock();
892}
893
894// ---------------------- Fake stack-------------------- {{{1
895FakeStack::FakeStack() {
896  CHECK(REAL(memset) != NULL);
897  REAL(memset)(this, 0, sizeof(*this));
898}
899
900bool FakeStack::AddrIsInSizeClass(uintptr_t addr, size_t size_class) {
901  uintptr_t mem = allocated_size_classes_[size_class];
902  uintptr_t size = ClassMmapSize(size_class);
903  bool res = mem && addr >= mem && addr < mem + size;
904  return res;
905}
906
907uintptr_t FakeStack::AddrIsInFakeStack(uintptr_t addr) {
908  for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
909    if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
910  }
911  return 0;
912}
913
914// We may want to compute this during compilation.
915inline size_t FakeStack::ComputeSizeClass(size_t alloc_size) {
916  size_t rounded_size = RoundUpToPowerOfTwo(alloc_size);
917  size_t log = Log2(rounded_size);
918  CHECK(alloc_size <= (1UL << log));
919  if (!(alloc_size > (1UL << (log-1)))) {
920    Printf("alloc_size %zu log %zu\n", alloc_size, log);
921  }
922  CHECK(alloc_size > (1UL << (log-1)));
923  size_t res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
924  CHECK(res < kNumberOfSizeClasses);
925  CHECK(ClassSize(res) >= rounded_size);
926  return res;
927}
928
929void FakeFrameFifo::FifoPush(FakeFrame *node) {
930  CHECK(node);
931  node->next = 0;
932  if (first_ == 0 && last_ == 0) {
933    first_ = last_ = node;
934  } else {
935    CHECK(first_);
936    CHECK(last_);
937    last_->next = node;
938    last_ = node;
939  }
940}
941
942FakeFrame *FakeFrameFifo::FifoPop() {
943  CHECK(first_ && last_ && "Exhausted fake stack");
944  FakeFrame *res = 0;
945  if (first_ == last_) {
946    res = first_;
947    first_ = last_ = 0;
948  } else {
949    res = first_;
950    first_ = first_->next;
951  }
952  return res;
953}
954
955void FakeStack::Init(size_t stack_size) {
956  stack_size_ = stack_size;
957  alive_ = true;
958}
959
960void FakeStack::Cleanup() {
961  alive_ = false;
962  for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
963    uintptr_t mem = allocated_size_classes_[i];
964    if (mem) {
965      PoisonShadow(mem, ClassMmapSize(i), 0);
966      allocated_size_classes_[i] = 0;
967      AsanUnmapOrDie((void*)mem, ClassMmapSize(i));
968    }
969  }
970}
971
972size_t FakeStack::ClassMmapSize(size_t size_class) {
973  return RoundUpToPowerOfTwo(stack_size_);
974}
975
976void FakeStack::AllocateOneSizeClass(size_t size_class) {
977  CHECK(ClassMmapSize(size_class) >= kPageSize);
978  uintptr_t new_mem = (uintptr_t)AsanMmapSomewhereOrDie(
979      ClassMmapSize(size_class), __FUNCTION__);
980  // Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
981  //       asanThreadRegistry().GetCurrent()->tid(),
982  //       size_class, new_mem, new_mem + ClassMmapSize(size_class),
983  //       ClassMmapSize(size_class));
984  size_t i;
985  for (i = 0; i < ClassMmapSize(size_class);
986       i += ClassSize(size_class)) {
987    size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
988  }
989  CHECK(i == ClassMmapSize(size_class));
990  allocated_size_classes_[size_class] = new_mem;
991}
992
993uintptr_t FakeStack::AllocateStack(size_t size, size_t real_stack) {
994  if (!alive_) return real_stack;
995  CHECK(size <= kMaxStackMallocSize && size > 1);
996  size_t size_class = ComputeSizeClass(size);
997  if (!allocated_size_classes_[size_class]) {
998    AllocateOneSizeClass(size_class);
999  }
1000  FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
1001  CHECK(fake_frame);
1002  fake_frame->size_minus_one = size - 1;
1003  fake_frame->real_stack = real_stack;
1004  while (FakeFrame *top = call_stack_.top()) {
1005    if (top->real_stack > real_stack) break;
1006    call_stack_.LifoPop();
1007    DeallocateFrame(top);
1008  }
1009  call_stack_.LifoPush(fake_frame);
1010  uintptr_t ptr = (uintptr_t)fake_frame;
1011  PoisonShadow(ptr, size, 0);
1012  return ptr;
1013}
1014
1015void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
1016  CHECK(alive_);
1017  size_t size = fake_frame->size_minus_one + 1;
1018  size_t size_class = ComputeSizeClass(size);
1019  CHECK(allocated_size_classes_[size_class]);
1020  uintptr_t ptr = (uintptr_t)fake_frame;
1021  CHECK(AddrIsInSizeClass(ptr, size_class));
1022  CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
1023  size_classes_[size_class].FifoPush(fake_frame);
1024}
1025
1026void FakeStack::OnFree(size_t ptr, size_t size, size_t real_stack) {
1027  FakeFrame *fake_frame = (FakeFrame*)ptr;
1028  CHECK(fake_frame->magic = kRetiredStackFrameMagic);
1029  CHECK(fake_frame->descr != 0);
1030  CHECK(fake_frame->size_minus_one == size - 1);
1031  PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
1032}
1033
1034}  // namespace __asan
1035
1036// ---------------------- Interface ---------------- {{{1
1037using namespace __asan;  // NOLINT
1038
1039size_t __asan_stack_malloc(size_t size, size_t real_stack) {
1040  if (!FLAG_use_fake_stack) return real_stack;
1041  AsanThread *t = asanThreadRegistry().GetCurrent();
1042  if (!t) {
1043    // TSD is gone, use the real stack.
1044    return real_stack;
1045  }
1046  size_t ptr = t->fake_stack().AllocateStack(size, real_stack);
1047  // Printf("__asan_stack_malloc %p %zu %p\n", ptr, size, real_stack);
1048  return ptr;
1049}
1050
1051void __asan_stack_free(size_t ptr, size_t size, size_t real_stack) {
1052  if (!FLAG_use_fake_stack) return;
1053  if (ptr != real_stack) {
1054    FakeStack::OnFree(ptr, size, real_stack);
1055  }
1056}
1057
1058// ASan allocator doesn't reserve extra bytes, so normally we would
1059// just return "size".
1060size_t __asan_get_estimated_allocated_size(size_t size) {
1061  if (size == 0) return 1;
1062  return Min(size, kMaxAllowedMallocSize);
1063}
1064
1065bool __asan_get_ownership(const void *p) {
1066  return malloc_info.AllocationSize((uintptr_t)p) > 0;
1067}
1068
1069size_t __asan_get_allocated_size(const void *p) {
1070  if (p == NULL) return 0;
1071  size_t allocated_size = malloc_info.AllocationSize((uintptr_t)p);
1072  // Die if p is not malloced or if it is already freed.
1073  if (allocated_size == 0) {
1074    Report("ERROR: AddressSanitizer attempting to call "
1075           "__asan_get_allocated_size() for pointer which is "
1076           "not owned: %p\n", p);
1077    PRINT_CURRENT_STACK();
1078    Describe((uintptr_t)p, 1);
1079    ShowStatsAndAbort();
1080  }
1081  return allocated_size;
1082}
1083