tcuCompressedTexture.cpp revision 6c307165131fb7249bb044fc79ff0c2747263b3d
1/*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Compressed Texture Utilities.
22 *//*--------------------------------------------------------------------*/
23
24#include "tcuCompressedTexture.hpp"
25#include "tcuTextureUtil.hpp"
26
27#include "deStringUtil.hpp"
28#include "deFloat16.h"
29
30#include <algorithm>
31
32namespace tcu
33{
34
35namespace
36{
37
38enum { ASTC_BLOCK_SIZE_BYTES = 128/8 };
39
40template <typename T, typename Y>
41struct isSameType			{ enum { V = 0 }; };
42template <typename T>
43struct isSameType<T, T>		{ enum { V = 1 }; };
44
45} // anonymous
46
47int getBlockSize (CompressedTexFormat format)
48{
49	if (isAstcFormat(format))
50	{
51		return ASTC_BLOCK_SIZE_BYTES;
52	}
53	else if (isEtcFormat(format))
54	{
55		switch (format)
56		{
57			case COMPRESSEDTEXFORMAT_ETC1_RGB8:							return 8;
58			case COMPRESSEDTEXFORMAT_EAC_R11:							return 8;
59			case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:					return 8;
60			case COMPRESSEDTEXFORMAT_EAC_RG11:							return 16;
61			case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:					return 16;
62			case COMPRESSEDTEXFORMAT_ETC2_RGB8:							return 8;
63			case COMPRESSEDTEXFORMAT_ETC2_SRGB8:						return 8;
64			case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:		return 8;
65			case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:	return 8;
66			case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:					return 16;
67			case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:				return 16;
68
69			default:
70				DE_ASSERT(false);
71				return -1;
72		}
73	}
74	else
75	{
76		DE_ASSERT(false);
77		return -1;
78	}
79}
80
81IVec3 getBlockPixelSize (CompressedTexFormat format)
82{
83	if (isEtcFormat(format))
84	{
85		return IVec3(4, 4, 1);
86	}
87	else if (isAstcFormat(format))
88	{
89		switch (format)
90		{
91			case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:				return IVec3(4,  4,  1);
92			case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:				return IVec3(5,  4,  1);
93			case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:				return IVec3(5,  5,  1);
94			case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:				return IVec3(6,  5,  1);
95			case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:				return IVec3(6,  6,  1);
96			case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:				return IVec3(8,  5,  1);
97			case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:				return IVec3(8,  6,  1);
98			case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:				return IVec3(8,  8,  1);
99			case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:			return IVec3(10, 5,  1);
100			case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:			return IVec3(10, 6,  1);
101			case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:			return IVec3(10, 8,  1);
102			case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:			return IVec3(10, 10, 1);
103			case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:			return IVec3(12, 10, 1);
104			case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:			return IVec3(12, 12, 1);
105			case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:		return IVec3(4,  4,  1);
106			case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:		return IVec3(5,  4,  1);
107			case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:		return IVec3(5,  5,  1);
108			case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:		return IVec3(6,  5,  1);
109			case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:		return IVec3(6,  6,  1);
110			case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:		return IVec3(8,  5,  1);
111			case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:		return IVec3(8,  6,  1);
112			case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:		return IVec3(8,  8,  1);
113			case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:	return IVec3(10, 5,  1);
114			case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:	return IVec3(10, 6,  1);
115			case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:	return IVec3(10, 8,  1);
116			case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:	return IVec3(10, 10, 1);
117			case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:	return IVec3(12, 10, 1);
118			case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:	return IVec3(12, 12, 1);
119
120			default:
121				DE_ASSERT(false);
122				return IVec3();
123		}
124	}
125	else
126	{
127		DE_ASSERT(false);
128		return IVec3(-1);
129	}
130}
131
132bool isEtcFormat (CompressedTexFormat format)
133{
134	switch (format)
135	{
136		case COMPRESSEDTEXFORMAT_ETC1_RGB8:
137		case COMPRESSEDTEXFORMAT_EAC_R11:
138		case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:
139		case COMPRESSEDTEXFORMAT_EAC_RG11:
140		case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:
141		case COMPRESSEDTEXFORMAT_ETC2_RGB8:
142		case COMPRESSEDTEXFORMAT_ETC2_SRGB8:
143		case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
144		case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
145		case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:
146		case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:
147			return true;
148
149		default:
150			return false;
151	}
152}
153
154bool isAstcFormat (CompressedTexFormat format)
155{
156	switch (format)
157	{
158		case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:
159		case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:
160		case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:
161		case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:
162		case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:
163		case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:
164		case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:
165		case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:
166		case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:
167		case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:
168		case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:
169		case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:
170		case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:
171		case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:
172		case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
173		case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
174		case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
175		case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
176		case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
177		case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
178		case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
179		case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
180		case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
181		case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
182		case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
183		case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
184		case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
185		case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
186			return true;
187
188		default:
189			return false;
190	}
191}
192
193bool isAstcSRGBFormat (CompressedTexFormat format)
194{
195	switch (format)
196	{
197		case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
198		case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
199		case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
200		case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
201		case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
202		case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
203		case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
204		case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
205		case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
206		case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
207		case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
208		case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
209		case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
210		case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
211			return true;
212
213		default:
214			return false;
215	}
216}
217
218TextureFormat getUncompressedFormat (CompressedTexFormat format)
219{
220	if (isEtcFormat(format))
221	{
222		switch (format)
223		{
224			case COMPRESSEDTEXFORMAT_ETC1_RGB8:							return TextureFormat(TextureFormat::RGB,	TextureFormat::UNORM_INT8);
225			case COMPRESSEDTEXFORMAT_EAC_R11:							return TextureFormat(TextureFormat::R,		TextureFormat::UNORM_INT16);
226			case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:					return TextureFormat(TextureFormat::R,		TextureFormat::SNORM_INT16);
227			case COMPRESSEDTEXFORMAT_EAC_RG11:							return TextureFormat(TextureFormat::RG,		TextureFormat::UNORM_INT16);
228			case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:					return TextureFormat(TextureFormat::RG,		TextureFormat::SNORM_INT16);
229			case COMPRESSEDTEXFORMAT_ETC2_RGB8:							return TextureFormat(TextureFormat::RGB,	TextureFormat::UNORM_INT8);
230			case COMPRESSEDTEXFORMAT_ETC2_SRGB8:						return TextureFormat(TextureFormat::sRGB,	TextureFormat::UNORM_INT8);
231			case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:		return TextureFormat(TextureFormat::RGBA,	TextureFormat::UNORM_INT8);
232			case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:	return TextureFormat(TextureFormat::sRGBA,	TextureFormat::UNORM_INT8);
233			case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:					return TextureFormat(TextureFormat::RGBA,	TextureFormat::UNORM_INT8);
234			case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:				return TextureFormat(TextureFormat::sRGBA,	TextureFormat::UNORM_INT8);
235
236			default:
237				DE_ASSERT(false);
238				return TextureFormat();
239		}
240	}
241	else if (isAstcFormat(format))
242	{
243		if (isAstcSRGBFormat(format))
244			return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
245		else
246			return TextureFormat(TextureFormat::RGBA, TextureFormat::HALF_FLOAT);
247	}
248	else
249	{
250		DE_ASSERT(false);
251		return TextureFormat();
252	}
253}
254
255CompressedTexFormat getAstcFormatByBlockSize (const IVec3& size, bool isSRGB)
256{
257	if (size.z() > 1)
258		throw InternalError("3D ASTC textures not currently supported");
259
260	for (int fmtI = 0; fmtI < COMPRESSEDTEXFORMAT_LAST; fmtI++)
261	{
262		const CompressedTexFormat fmt = (CompressedTexFormat)fmtI;
263
264		if (isAstcFormat(fmt) && getBlockPixelSize(fmt) == size && isAstcSRGBFormat(fmt) == isSRGB)
265			return fmt;
266	}
267
268	throw InternalError("Invalid ASTC block size " + de::toString(size.x()) + "x" + de::toString(size.y()) + "x" + de::toString(size.z()));
269}
270
271namespace
272{
273
274inline int divRoundUp (int a, int b)
275{
276	return a/b + ((a%b) ? 1 : 0);
277}
278
279// \todo [2013-08-06 nuutti] ETC and ASTC decompression codes are rather unrelated, and are already in their own "private" namespaces - should this be split to multiple files?
280
281namespace EtcDecompressInternal
282{
283
284enum
285{
286	ETC2_BLOCK_WIDTH					= 4,
287	ETC2_BLOCK_HEIGHT					= 4,
288	ETC2_UNCOMPRESSED_PIXEL_SIZE_A8		= 1,
289	ETC2_UNCOMPRESSED_PIXEL_SIZE_R11	= 2,
290	ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11	= 4,
291	ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8	= 3,
292	ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8	= 4,
293	ETC2_UNCOMPRESSED_BLOCK_SIZE_A8		= ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8,
294	ETC2_UNCOMPRESSED_BLOCK_SIZE_R11	= ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11,
295	ETC2_UNCOMPRESSED_BLOCK_SIZE_RG11	= ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11,
296	ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8	= ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8,
297	ETC2_UNCOMPRESSED_BLOCK_SIZE_RGBA8	= ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8
298};
299
300inline deUint64 get64BitBlock (const deUint8* src, int blockNdx)
301{
302	// Stored in big-endian form.
303	deUint64 block = 0;
304
305	for (int i = 0; i < 8; i++)
306		block = (block << 8ull) | (deUint64)(src[blockNdx*8+i]);
307
308	return block;
309}
310
311// Return the first 64 bits of a 128 bit block.
312inline deUint64 get128BitBlockStart (const deUint8* src, int blockNdx)
313{
314	return get64BitBlock(src, 2*blockNdx);
315}
316
317// Return the last 64 bits of a 128 bit block.
318inline deUint64 get128BitBlockEnd (const deUint8* src, int blockNdx)
319{
320	return get64BitBlock(src, 2*blockNdx + 1);
321}
322
323inline deUint32 getBit (deUint64 src, int bit)
324{
325	return (src >> bit) & 1;
326}
327
328inline deUint32 getBits (deUint64 src, int low, int high)
329{
330	const int numBits = (high-low) + 1;
331	DE_ASSERT(de::inRange(numBits, 1, 32));
332	if (numBits < 32)
333		return (src >> low) & ((1u<<numBits)-1);
334	else
335		return (src >> low) & 0xFFFFFFFFu;
336}
337
338inline deUint8 extend4To8 (deUint8 src)
339{
340	DE_ASSERT((src & ~((1<<4)-1)) == 0);
341	return (src << 4) | src;
342}
343
344inline deUint8 extend5To8 (deUint8 src)
345{
346	DE_ASSERT((src & ~((1<<5)-1)) == 0);
347	return (src << 3) | (src >> 2);
348}
349
350inline deUint8 extend6To8 (deUint8 src)
351{
352	DE_ASSERT((src & ~((1<<6)-1)) == 0);
353	return (src << 2) | (src >> 4);
354}
355
356inline deUint8 extend7To8 (deUint8 src)
357{
358	DE_ASSERT((src & ~((1<<7)-1)) == 0);
359	return (src << 1) | (src >> 6);
360}
361
362inline deInt8 extendSigned3To8 (deUint8 src)
363{
364	const bool isNeg = (src & (1<<2)) != 0;
365	return (deInt8)((isNeg ? ~((1<<3)-1) : 0) | src);
366}
367
368inline deUint8 extend5Delta3To8 (deUint8 base5, deUint8 delta3)
369{
370	const deUint8 t = (deUint8)((deInt8)base5 + extendSigned3To8(delta3));
371	return extend5To8(t);
372}
373
374inline deUint16 extend11To16 (deUint16 src)
375{
376	DE_ASSERT((src & ~((1<<11)-1)) == 0);
377	return (src << 5) | (src >> 6);
378}
379
380inline deInt16 extend11To16WithSign (deInt16 src)
381{
382	if (src < 0)
383		return -(deInt16)extend11To16(-src);
384	else
385		return (deInt16)extend11To16(src);
386}
387
388void decompressETC1Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], deUint64 src)
389{
390	const int		diffBit		= (int)getBit(src, 33);
391	const int		flipBit		= (int)getBit(src, 32);
392	const deUint32	table[2]	= { getBits(src, 37, 39), getBits(src, 34, 36) };
393	deUint8			baseR[2];
394	deUint8			baseG[2];
395	deUint8			baseB[2];
396
397	if (diffBit == 0)
398	{
399		// Individual mode.
400		baseR[0] = extend4To8((deUint8)getBits(src, 60, 63));
401		baseR[1] = extend4To8((deUint8)getBits(src, 56, 59));
402		baseG[0] = extend4To8((deUint8)getBits(src, 52, 55));
403		baseG[1] = extend4To8((deUint8)getBits(src, 48, 51));
404		baseB[0] = extend4To8((deUint8)getBits(src, 44, 47));
405		baseB[1] = extend4To8((deUint8)getBits(src, 40, 43));
406	}
407	else
408	{
409		// Differential mode (diffBit == 1).
410		deUint8 bR = (deUint8)getBits(src, 59, 63); // 5b
411		deUint8 dR = (deUint8)getBits(src, 56, 58); // 3b
412		deUint8 bG = (deUint8)getBits(src, 51, 55);
413		deUint8 dG = (deUint8)getBits(src, 48, 50);
414		deUint8 bB = (deUint8)getBits(src, 43, 47);
415		deUint8 dB = (deUint8)getBits(src, 40, 42);
416
417		baseR[0] = extend5To8(bR);
418		baseG[0] = extend5To8(bG);
419		baseB[0] = extend5To8(bB);
420
421		baseR[1] = extend5Delta3To8(bR, dR);
422		baseG[1] = extend5Delta3To8(bG, dG);
423		baseB[1] = extend5Delta3To8(bB, dB);
424	}
425
426	static const int modifierTable[8][4] =
427	{
428	//	  00   01   10    11
429		{  2,   8,  -2,   -8 },
430		{  5,  17,  -5,  -17 },
431		{  9,  29,  -9,  -29 },
432		{ 13,  42, -13,  -42 },
433		{ 18,  60, -18,  -60 },
434		{ 24,  80, -24,  -80 },
435		{ 33, 106, -33, -106 },
436		{ 47, 183, -47, -183 }
437	};
438
439	// Write final pixels.
440	for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
441	{
442		const int		x				= pixelNdx / ETC2_BLOCK_HEIGHT;
443		const int		y				= pixelNdx % ETC2_BLOCK_HEIGHT;
444		const int		dstOffset		= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
445		const int		subBlock		= ((flipBit ? y : x) >= 2) ? 1 : 0;
446		const deUint32	tableNdx		= table[subBlock];
447		const deUint32	modifierNdx		= (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx);
448		const int		modifier		= modifierTable[tableNdx][modifierNdx];
449
450		dst[dstOffset+0] = (deUint8)deClamp32((int)baseR[subBlock] + modifier, 0, 255);
451		dst[dstOffset+1] = (deUint8)deClamp32((int)baseG[subBlock] + modifier, 0, 255);
452		dst[dstOffset+2] = (deUint8)deClamp32((int)baseB[subBlock] + modifier, 0, 255);
453	}
454}
455
456// if alphaMode is true, do PUNCHTHROUGH and store alpha to alphaDst; otherwise do ordinary ETC2 RGB8.
457void decompressETC2Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], deUint64 src, deUint8 alphaDst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], bool alphaMode)
458{
459	enum Etc2Mode
460	{
461		MODE_INDIVIDUAL = 0,
462		MODE_DIFFERENTIAL,
463		MODE_T,
464		MODE_H,
465		MODE_PLANAR,
466
467		MODE_LAST
468	};
469
470	const int		diffOpaqueBit	= (int)getBit(src, 33);
471	const deInt8	selBR			= (deInt8)getBits(src, 59, 63);	// 5 bits.
472	const deInt8	selBG			= (deInt8)getBits(src, 51, 55);
473	const deInt8	selBB			= (deInt8)getBits(src, 43, 47);
474	const deInt8	selDR			= extendSigned3To8((deUint8)getBits(src, 56, 58)); // 3 bits.
475	const deInt8	selDG			= extendSigned3To8((deUint8)getBits(src, 48, 50));
476	const deInt8	selDB			= extendSigned3To8((deUint8)getBits(src, 40, 42));
477	Etc2Mode		mode;
478
479	if (!alphaMode && diffOpaqueBit == 0)
480		mode = MODE_INDIVIDUAL;
481	else if (!de::inRange(selBR + selDR, 0, 31))
482		mode = MODE_T;
483	else if (!de::inRange(selBG + selDG, 0, 31))
484		mode = MODE_H;
485	else if (!de::inRange(selBB + selDB, 0, 31))
486		mode = MODE_PLANAR;
487	else
488		mode = MODE_DIFFERENTIAL;
489
490	if (mode == MODE_INDIVIDUAL || mode == MODE_DIFFERENTIAL)
491	{
492		// Individual and differential modes have some steps in common, handle them here.
493		static const int modifierTable[8][4] =
494		{
495		//	  00   01   10    11
496			{  2,   8,  -2,   -8 },
497			{  5,  17,  -5,  -17 },
498			{  9,  29,  -9,  -29 },
499			{ 13,  42, -13,  -42 },
500			{ 18,  60, -18,  -60 },
501			{ 24,  80, -24,  -80 },
502			{ 33, 106, -33, -106 },
503			{ 47, 183, -47, -183 }
504		};
505
506		const int		flipBit		= (int)getBit(src, 32);
507		const deUint32	table[2]	= { getBits(src, 37, 39), getBits(src, 34, 36) };
508		deUint8			baseR[2];
509		deUint8			baseG[2];
510		deUint8			baseB[2];
511
512		if (mode == MODE_INDIVIDUAL)
513		{
514			// Individual mode, initial values.
515			baseR[0] = extend4To8((deUint8)getBits(src, 60, 63));
516			baseR[1] = extend4To8((deUint8)getBits(src, 56, 59));
517			baseG[0] = extend4To8((deUint8)getBits(src, 52, 55));
518			baseG[1] = extend4To8((deUint8)getBits(src, 48, 51));
519			baseB[0] = extend4To8((deUint8)getBits(src, 44, 47));
520			baseB[1] = extend4To8((deUint8)getBits(src, 40, 43));
521		}
522		else
523		{
524			// Differential mode, initial values.
525			baseR[0] = extend5To8(selBR);
526			baseG[0] = extend5To8(selBG);
527			baseB[0] = extend5To8(selBB);
528
529			baseR[1] = extend5To8((deUint8)(selBR + selDR));
530			baseG[1] = extend5To8((deUint8)(selBG + selDG));
531			baseB[1] = extend5To8((deUint8)(selBB + selDB));
532		}
533
534		// Write final pixels for individual or differential mode.
535		for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
536		{
537			const int		x				= pixelNdx / ETC2_BLOCK_HEIGHT;
538			const int		y				= pixelNdx % ETC2_BLOCK_HEIGHT;
539			const int		dstOffset		= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
540			const int		subBlock		= ((flipBit ? y : x) >= 2) ? 1 : 0;
541			const deUint32	tableNdx		= table[subBlock];
542			const deUint32	modifierNdx		= (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx);
543			const int		alphaDstOffset	= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
544
545			// If doing PUNCHTHROUGH version (alphaMode), opaque bit may affect colors.
546			if (alphaMode && diffOpaqueBit == 0 && modifierNdx == 2)
547			{
548				dst[dstOffset+0]			= 0;
549				dst[dstOffset+1]			= 0;
550				dst[dstOffset+2]			= 0;
551				alphaDst[alphaDstOffset]	= 0;
552			}
553			else
554			{
555				int modifier;
556
557				// PUNCHTHROUGH version and opaque bit may also affect modifiers.
558				if (alphaMode && diffOpaqueBit == 0 && (modifierNdx == 0 || modifierNdx == 2))
559					modifier = 0;
560				else
561					modifier = modifierTable[tableNdx][modifierNdx];
562
563				dst[dstOffset+0] = (deUint8)deClamp32((int)baseR[subBlock] + modifier, 0, 255);
564				dst[dstOffset+1] = (deUint8)deClamp32((int)baseG[subBlock] + modifier, 0, 255);
565				dst[dstOffset+2] = (deUint8)deClamp32((int)baseB[subBlock] + modifier, 0, 255);
566
567				if (alphaMode)
568					alphaDst[alphaDstOffset] = 255;
569			}
570		}
571	}
572	else if (mode == MODE_T || mode == MODE_H)
573	{
574		// T and H modes have some steps in common, handle them here.
575		static const int distTable[8] = { 3, 6, 11, 16, 23, 32, 41, 64 };
576
577		deUint8 paintR[4];
578		deUint8 paintG[4];
579		deUint8 paintB[4];
580
581		if (mode == MODE_T)
582		{
583			// T mode, calculate paint values.
584			const deUint8	R1a			= (deUint8)getBits(src, 59, 60);
585			const deUint8	R1b			= (deUint8)getBits(src, 56, 57);
586			const deUint8	G1			= (deUint8)getBits(src, 52, 55);
587			const deUint8	B1			= (deUint8)getBits(src, 48, 51);
588			const deUint8	R2			= (deUint8)getBits(src, 44, 47);
589			const deUint8	G2			= (deUint8)getBits(src, 40, 43);
590			const deUint8	B2			= (deUint8)getBits(src, 36, 39);
591			const deUint32	distNdx		= (getBits(src, 34, 35) << 1) | getBit(src, 32);
592			const int		dist		= distTable[distNdx];
593
594			paintR[0] = extend4To8((R1a << 2) | R1b);
595			paintG[0] = extend4To8(G1);
596			paintB[0] = extend4To8(B1);
597			paintR[2] = extend4To8(R2);
598			paintG[2] = extend4To8(G2);
599			paintB[2] = extend4To8(B2);
600			paintR[1] = (deUint8)deClamp32((int)paintR[2] + dist, 0, 255);
601			paintG[1] = (deUint8)deClamp32((int)paintG[2] + dist, 0, 255);
602			paintB[1] = (deUint8)deClamp32((int)paintB[2] + dist, 0, 255);
603			paintR[3] = (deUint8)deClamp32((int)paintR[2] - dist, 0, 255);
604			paintG[3] = (deUint8)deClamp32((int)paintG[2] - dist, 0, 255);
605			paintB[3] = (deUint8)deClamp32((int)paintB[2] - dist, 0, 255);
606		}
607		else
608		{
609			// H mode, calculate paint values.
610			const deUint8	R1		= (deUint8)getBits(src, 59, 62);
611			const deUint8	G1a		= (deUint8)getBits(src, 56, 58);
612			const deUint8	G1b		= (deUint8)getBit(src, 52);
613			const deUint8	B1a		= (deUint8)getBit(src, 51);
614			const deUint8	B1b		= (deUint8)getBits(src, 47, 49);
615			const deUint8	R2		= (deUint8)getBits(src, 43, 46);
616			const deUint8	G2		= (deUint8)getBits(src, 39, 42);
617			const deUint8	B2		= (deUint8)getBits(src, 35, 38);
618			deUint8			baseR[2];
619			deUint8			baseG[2];
620			deUint8			baseB[2];
621			deUint32		baseValue[2];
622			deUint32		distNdx;
623			int				dist;
624
625			baseR[0]		= extend4To8(R1);
626			baseG[0]		= extend4To8((G1a << 1) | G1b);
627			baseB[0]		= extend4To8((B1a << 3) | B1b);
628			baseR[1]		= extend4To8(R2);
629			baseG[1]		= extend4To8(G2);
630			baseB[1]		= extend4To8(B2);
631			baseValue[0]	= (((deUint32)baseR[0]) << 16) | (((deUint32)baseG[0]) << 8) | baseB[0];
632			baseValue[1]	= (((deUint32)baseR[1]) << 16) | (((deUint32)baseG[1]) << 8) | baseB[1];
633			distNdx			= (getBit(src, 34) << 2) | (getBit(src, 32) << 1) | (deUint32)(baseValue[0] >= baseValue[1]);
634			dist			= distTable[distNdx];
635
636			paintR[0]		= (deUint8)deClamp32((int)baseR[0] + dist, 0, 255);
637			paintG[0]		= (deUint8)deClamp32((int)baseG[0] + dist, 0, 255);
638			paintB[0]		= (deUint8)deClamp32((int)baseB[0] + dist, 0, 255);
639			paintR[1]		= (deUint8)deClamp32((int)baseR[0] - dist, 0, 255);
640			paintG[1]		= (deUint8)deClamp32((int)baseG[0] - dist, 0, 255);
641			paintB[1]		= (deUint8)deClamp32((int)baseB[0] - dist, 0, 255);
642			paintR[2]		= (deUint8)deClamp32((int)baseR[1] + dist, 0, 255);
643			paintG[2]		= (deUint8)deClamp32((int)baseG[1] + dist, 0, 255);
644			paintB[2]		= (deUint8)deClamp32((int)baseB[1] + dist, 0, 255);
645			paintR[3]		= (deUint8)deClamp32((int)baseR[1] - dist, 0, 255);
646			paintG[3]		= (deUint8)deClamp32((int)baseG[1] - dist, 0, 255);
647			paintB[3]		= (deUint8)deClamp32((int)baseB[1] - dist, 0, 255);
648		}
649
650		// Write final pixels for T or H mode.
651		for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
652		{
653			const int		x				= pixelNdx / ETC2_BLOCK_HEIGHT;
654			const int		y				= pixelNdx % ETC2_BLOCK_HEIGHT;
655			const int		dstOffset		= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
656			const deUint32	paintNdx		= (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx);
657			const int		alphaDstOffset	= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
658
659			if (alphaMode && diffOpaqueBit == 0 && paintNdx == 2)
660			{
661				dst[dstOffset+0]			= 0;
662				dst[dstOffset+1]			= 0;
663				dst[dstOffset+2]			= 0;
664				alphaDst[alphaDstOffset]	= 0;
665			}
666			else
667			{
668				dst[dstOffset+0] = (deUint8)deClamp32((int)paintR[paintNdx], 0, 255);
669				dst[dstOffset+1] = (deUint8)deClamp32((int)paintG[paintNdx], 0, 255);
670				dst[dstOffset+2] = (deUint8)deClamp32((int)paintB[paintNdx], 0, 255);
671
672				if (alphaMode)
673					alphaDst[alphaDstOffset] = 255;
674			}
675		}
676	}
677	else
678	{
679		// Planar mode.
680		const deUint8 GO1	= (deUint8)getBit(src, 56);
681		const deUint8 GO2	= (deUint8)getBits(src, 49, 54);
682		const deUint8 BO1	= (deUint8)getBit(src, 48);
683		const deUint8 BO2	= (deUint8)getBits(src, 43, 44);
684		const deUint8 BO3	= (deUint8)getBits(src, 39, 41);
685		const deUint8 RH1	= (deUint8)getBits(src, 34, 38);
686		const deUint8 RH2	= (deUint8)getBit(src, 32);
687		const deUint8 RO	= extend6To8((deUint8)getBits(src, 57, 62));
688		const deUint8 GO	= extend7To8((GO1 << 6) | GO2);
689		const deUint8 BO	= extend6To8((BO1 << 5) | (BO2 << 3) | BO3);
690		const deUint8 RH	= extend6To8((RH1 << 1) | RH2);
691		const deUint8 GH	= extend7To8((deUint8)getBits(src, 25, 31));
692		const deUint8 BH	= extend6To8((deUint8)getBits(src, 19, 24));
693		const deUint8 RV	= extend6To8((deUint8)getBits(src, 13, 18));
694		const deUint8 GV	= extend7To8((deUint8)getBits(src, 6, 12));
695		const deUint8 BV	= extend6To8((deUint8)getBits(src, 0, 5));
696
697		// Write final pixels for planar mode.
698		for (int y = 0; y < 4; y++)
699		{
700			for (int x = 0; x < 4; x++)
701			{
702				const int dstOffset			= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
703				const int unclampedR		= (x * ((int)RH-(int)RO) + y * ((int)RV-(int)RO) + 4*(int)RO + 2) >> 2;
704				const int unclampedG		= (x * ((int)GH-(int)GO) + y * ((int)GV-(int)GO) + 4*(int)GO + 2) >> 2;
705				const int unclampedB		= (x * ((int)BH-(int)BO) + y * ((int)BV-(int)BO) + 4*(int)BO + 2) >> 2;
706				const int alphaDstOffset	= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
707
708				dst[dstOffset+0] = (deUint8)deClamp32(unclampedR, 0, 255);
709				dst[dstOffset+1] = (deUint8)deClamp32(unclampedG, 0, 255);
710				dst[dstOffset+2] = (deUint8)deClamp32(unclampedB, 0, 255);
711
712				if (alphaMode)
713					alphaDst[alphaDstOffset] = 255;
714			}
715		}
716	}
717}
718
719void decompressEAC8Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], deUint64 src)
720{
721	static const int modifierTable[16][8] =
722	{
723		{-3,  -6,  -9, -15,  2,  5,  8, 14},
724		{-3,  -7, -10, -13,  2,  6,  9, 12},
725		{-2,  -5,  -8, -13,  1,  4,  7, 12},
726		{-2,  -4,  -6, -13,  1,  3,  5, 12},
727		{-3,  -6,  -8, -12,  2,  5,  7, 11},
728		{-3,  -7,  -9, -11,  2,  6,  8, 10},
729		{-4,  -7,  -8, -11,  3,  6,  7, 10},
730		{-3,  -5,  -8, -11,  2,  4,  7, 10},
731		{-2,  -6,  -8, -10,  1,  5,  7,  9},
732		{-2,  -5,  -8, -10,  1,  4,  7,  9},
733		{-2,  -4,  -8, -10,  1,  3,  7,  9},
734		{-2,  -5,  -7, -10,  1,  4,  6,  9},
735		{-3,  -4,  -7, -10,  2,  3,  6,  9},
736		{-1,  -2,  -3, -10,  0,  1,  2,  9},
737		{-4,  -6,  -8,  -9,  3,  5,  7,  8},
738		{-3,  -5,  -7,  -9,  2,  4,  6,  8}
739	};
740
741	const deUint8	baseCodeword	= (deUint8)getBits(src, 56, 63);
742	const deUint8	multiplier		= (deUint8)getBits(src, 52, 55);
743	const deUint32	tableNdx		= getBits(src, 48, 51);
744
745	for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
746	{
747		const int		x				= pixelNdx / ETC2_BLOCK_HEIGHT;
748		const int		y				= pixelNdx % ETC2_BLOCK_HEIGHT;
749		const int		dstOffset		= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8;
750		const int		pixelBitNdx		= 45 - 3*pixelNdx;
751		const deUint32	modifierNdx		= (getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx);
752		const int		modifier		= modifierTable[tableNdx][modifierNdx];
753
754		dst[dstOffset] = (deUint8)deClamp32((int)baseCodeword + (int)multiplier*modifier, 0, 255);
755	}
756}
757
758void decompressEAC11Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11], deUint64 src, bool signedMode)
759{
760	static const int modifierTable[16][8] =
761	{
762		{-3,  -6,  -9, -15,  2,  5,  8, 14},
763		{-3,  -7, -10, -13,  2,  6,  9, 12},
764		{-2,  -5,  -8, -13,  1,  4,  7, 12},
765		{-2,  -4,  -6, -13,  1,  3,  5, 12},
766		{-3,  -6,  -8, -12,  2,  5,  7, 11},
767		{-3,  -7,  -9, -11,  2,  6,  8, 10},
768		{-4,  -7,  -8, -11,  3,  6,  7, 10},
769		{-3,  -5,  -8, -11,  2,  4,  7, 10},
770		{-2,  -6,  -8, -10,  1,  5,  7,  9},
771		{-2,  -5,  -8, -10,  1,  4,  7,  9},
772		{-2,  -4,  -8, -10,  1,  3,  7,  9},
773		{-2,  -5,  -7, -10,  1,  4,  6,  9},
774		{-3,  -4,  -7, -10,  2,  3,  6,  9},
775		{-1,  -2,  -3, -10,  0,  1,  2,  9},
776		{-4,  -6,  -8,  -9,  3,  5,  7,  8},
777		{-3,  -5,  -7,  -9,  2,  4,  6,  8}
778	};
779
780	const deInt32 multiplier	= (deInt32)getBits(src, 52, 55);
781	const deInt32 tableNdx		= (deInt32)getBits(src, 48, 51);
782	deInt32 baseCodeword		= (deInt32)getBits(src, 56, 63);
783
784	if (signedMode)
785	{
786		if (baseCodeword > 127)
787			baseCodeword -= 256;
788		if (baseCodeword == -128)
789			baseCodeword = -127;
790	}
791
792	for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
793	{
794		const int		x				= pixelNdx / ETC2_BLOCK_HEIGHT;
795		const int		y				= pixelNdx % ETC2_BLOCK_HEIGHT;
796		const int		dstOffset		= (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11;
797		const int		pixelBitNdx		= 45 - 3*pixelNdx;
798		const deUint32	modifierNdx		= (getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx);
799		const int		modifier		= modifierTable[tableNdx][modifierNdx];
800
801		if (signedMode)
802		{
803			deInt16 value;
804
805			if (multiplier != 0)
806				value = (deInt16)deClamp32(baseCodeword*8 + multiplier*modifier*8, -1023, 1023);
807			else
808				value = (deInt16)deClamp32(baseCodeword*8 + modifier, -1023, 1023);
809
810			*((deInt16*)(dst + dstOffset)) = value;
811		}
812		else
813		{
814			deUint16 value;
815
816			if (multiplier != 0)
817				value = (deUint16)deClamp32(baseCodeword*8 + 4 + multiplier*modifier*8, 0, 2047);
818			else
819				value= (deUint16)deClamp32(baseCodeword*8 + 4 + modifier, 0, 2047);
820
821			*((deUint16*)(dst + dstOffset)) = value;
822		}
823	}
824}
825
826} // EtcDecompressInternal
827
828void decompressETC1 (const PixelBufferAccess& dst, const deUint8* src)
829{
830	using namespace EtcDecompressInternal;
831
832	deUint8* const	dstPtr			= (deUint8*)dst.getDataPtr();
833	const deUint64	compressedBlock = get64BitBlock(src, 0);
834
835	decompressETC1Block(dstPtr, compressedBlock);
836}
837
838void decompressETC2 (const PixelBufferAccess& dst, const deUint8* src)
839{
840	using namespace EtcDecompressInternal;
841
842	deUint8* const	dstPtr			= (deUint8*)dst.getDataPtr();
843	const deUint64	compressedBlock = get64BitBlock(src, 0);
844
845	decompressETC2Block(dstPtr, compressedBlock, NULL, false);
846}
847
848void decompressETC2_EAC_RGBA8 (const PixelBufferAccess& dst, const deUint8* src)
849{
850	using namespace EtcDecompressInternal;
851
852	deUint8* const	dstPtr			= (deUint8*)dst.getDataPtr();
853	const int		dstRowPitch		= dst.getRowPitch();
854	const int		dstPixelSize	= ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8;
855
856	const deUint64	compressedBlockAlpha	= get128BitBlockStart(src, 0);
857	const deUint64	compressedBlockRGB		= get128BitBlockEnd(src, 0);
858	deUint8			uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8];
859	deUint8			uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8];
860
861	// Decompress.
862	decompressETC2Block(uncompressedBlockRGB, compressedBlockRGB, NULL, false);
863	decompressEAC8Block(uncompressedBlockAlpha, compressedBlockAlpha);
864
865	// Write to dst.
866	for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
867	{
868		for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
869		{
870			const deUint8* const	srcPixelRGB		= &uncompressedBlockRGB[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8];
871			const deUint8* const	srcPixelAlpha	= &uncompressedBlockAlpha[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8];
872			deUint8* const			dstPixel		= dstPtr + y*dstRowPitch + x*dstPixelSize;
873
874			DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4);
875			dstPixel[0] = srcPixelRGB[0];
876			dstPixel[1] = srcPixelRGB[1];
877			dstPixel[2] = srcPixelRGB[2];
878			dstPixel[3] = srcPixelAlpha[0];
879		}
880	}
881}
882
883void decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (const PixelBufferAccess& dst, const deUint8* src)
884{
885	using namespace EtcDecompressInternal;
886
887	deUint8* const	dstPtr			= (deUint8*)dst.getDataPtr();
888	const int		dstRowPitch		= dst.getRowPitch();
889	const int		dstPixelSize	= ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8;
890
891	const deUint64	compressedBlockRGBA	= get64BitBlock(src, 0);
892	deUint8			uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8];
893	deUint8			uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8];
894
895	// Decompress.
896	decompressETC2Block(uncompressedBlockRGB, compressedBlockRGBA, uncompressedBlockAlpha, DE_TRUE);
897
898	// Write to dst.
899	for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
900	{
901		for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
902		{
903			const deUint8* const	srcPixel		= &uncompressedBlockRGB[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8];
904			const deUint8* const	srcPixelAlpha	= &uncompressedBlockAlpha[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8];
905			deUint8* const			dstPixel		= dstPtr + y*dstRowPitch + x*dstPixelSize;
906
907			DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4);
908			dstPixel[0] = srcPixel[0];
909			dstPixel[1] = srcPixel[1];
910			dstPixel[2] = srcPixel[2];
911			dstPixel[3] = srcPixelAlpha[0];
912		}
913	}
914}
915
916void decompressEAC_R11 (const PixelBufferAccess& dst, const deUint8* src, bool signedMode)
917{
918	using namespace EtcDecompressInternal;
919
920	deUint8* const	dstPtr			= (deUint8*)dst.getDataPtr();
921	const int		dstRowPitch		= dst.getRowPitch();
922	const int		dstPixelSize	= ETC2_UNCOMPRESSED_PIXEL_SIZE_R11;
923
924	const deUint64	compressedBlock = get64BitBlock(src, 0);
925	deUint8			uncompressedBlock[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
926
927	// Decompress.
928	decompressEAC11Block(uncompressedBlock, compressedBlock, signedMode);
929
930	// Write to dst.
931	for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
932	{
933		for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
934		{
935			DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 == 2);
936
937			if (signedMode)
938			{
939				const deInt16* const	srcPixel = (deInt16*)&uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
940				deInt16* const			dstPixel = (deInt16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
941
942				dstPixel[0] = extend11To16WithSign(srcPixel[0]);
943			}
944			else
945			{
946				const deUint16* const	srcPixel = (deUint16*)&uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
947				deUint16* const			dstPixel = (deUint16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
948
949				dstPixel[0] = extend11To16(srcPixel[0]);
950			}
951		}
952	}
953}
954
955void decompressEAC_RG11 (const PixelBufferAccess& dst, const deUint8* src, bool signedMode)
956{
957	using namespace EtcDecompressInternal;
958
959	deUint8* const	dstPtr			= (deUint8*)dst.getDataPtr();
960	const int		dstRowPitch		= dst.getRowPitch();
961	const int		dstPixelSize	= ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11;
962
963	const deUint64	compressedBlockR = get128BitBlockStart(src, 0);
964	const deUint64	compressedBlockG = get128BitBlockEnd(src, 0);
965	deUint8			uncompressedBlockR[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
966	deUint8			uncompressedBlockG[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
967
968	// Decompress.
969	decompressEAC11Block(uncompressedBlockR, compressedBlockR, signedMode);
970	decompressEAC11Block(uncompressedBlockG, compressedBlockG, signedMode);
971
972	// Write to dst.
973	for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
974	{
975		for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
976		{
977			DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 == 4);
978
979			if (signedMode)
980			{
981				const deInt16* const	srcPixelR	= (deInt16*)&uncompressedBlockR[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
982				const deInt16* const	srcPixelG	= (deInt16*)&uncompressedBlockG[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
983				deInt16* const			dstPixel	= (deInt16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
984
985				dstPixel[0] = extend11To16WithSign(srcPixelR[0]);
986				dstPixel[1] = extend11To16WithSign(srcPixelG[0]);
987			}
988			else
989			{
990				const deUint16* const	srcPixelR	= (deUint16*)&uncompressedBlockR[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
991				const deUint16* const	srcPixelG	= (deUint16*)&uncompressedBlockG[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
992				deUint16* const			dstPixel	= (deUint16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
993
994				dstPixel[0] = extend11To16(srcPixelR[0]);
995				dstPixel[1] = extend11To16(srcPixelG[0]);
996			}
997		}
998	}
999}
1000
1001namespace ASTCDecompressInternal
1002{
1003
1004enum
1005{
1006	ASTC_MAX_BLOCK_WIDTH	= 12,
1007	ASTC_MAX_BLOCK_HEIGHT	= 12
1008};
1009
1010inline deUint32 getBit (deUint32 src, int ndx)
1011{
1012	DE_ASSERT(de::inBounds(ndx, 0, 32));
1013	return (src >> ndx) & 1;
1014}
1015
1016inline deUint32 getBits (deUint32 src, int low, int high)
1017{
1018	const int numBits = (high-low) + 1;
1019	DE_ASSERT(de::inRange(numBits, 1, 32));
1020	return (src >> low) & ((1u<<numBits)-1);
1021}
1022
1023inline bool isBitSet (deUint32 src, int ndx)
1024{
1025	return getBit(src, ndx) != 0;
1026}
1027
1028inline deUint32 reverseBits (deUint32 src, int numBits)
1029{
1030	DE_ASSERT(de::inRange(numBits, 0, 32));
1031	deUint32 result = 0;
1032	for (int i = 0; i < numBits; i++)
1033		result |= ((src >> i) & 1) << (numBits-1-i);
1034	return result;
1035}
1036
1037inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
1038{
1039	DE_ASSERT(numSrcBits <= numDstBits);
1040	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
1041	deUint32 dst = 0;
1042	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
1043		dst |= shift >= 0 ? src << shift : src >> -shift;
1044	return dst;
1045}
1046
1047inline deInt32 signExtend (deInt32 src, int numSrcBits)
1048{
1049	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
1050	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
1051	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
1052}
1053
1054inline bool isFloat16InfOrNan (deFloat16 v)
1055{
1056	return getBits(v, 10, 14) == 31;
1057}
1058
1059// A helper for getting bits from a 128-bit block.
1060class Block128
1061{
1062private:
1063	typedef deUint64 Word;
1064
1065	enum
1066	{
1067		WORD_BYTES	= sizeof(Word),
1068		WORD_BITS	= 8*WORD_BYTES,
1069		NUM_WORDS	= 128 / WORD_BITS
1070	};
1071
1072	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1073
1074public:
1075	Block128 (const deUint8* src)
1076	{
1077		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1078		{
1079			m_words[wordNdx] = 0;
1080			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1081				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
1082		}
1083	}
1084
1085	deUint32 getBit (int ndx) const
1086	{
1087		DE_ASSERT(de::inBounds(ndx, 0, 128));
1088		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
1089	}
1090
1091	deUint32 getBits (int low, int high) const
1092	{
1093		DE_ASSERT(de::inBounds(low, 0, 128));
1094		DE_ASSERT(de::inBounds(high, 0, 128));
1095		DE_ASSERT(de::inRange(high-low+1, 0, 32));
1096
1097		if (high-low+1 == 0)
1098			return 0;
1099
1100		const int word0Ndx = low / WORD_BITS;
1101		const int word1Ndx = high / WORD_BITS;
1102
1103		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
1104
1105		if (word0Ndx == word1Ndx)
1106			return (m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS);
1107		else
1108		{
1109			DE_ASSERT(word1Ndx == word0Ndx + 1);
1110
1111			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
1112				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
1113		}
1114	}
1115
1116	bool isBitSet (int ndx) const
1117	{
1118		DE_ASSERT(de::inBounds(ndx, 0, 128));
1119		return getBit(ndx) != 0;
1120	}
1121
1122private:
1123	Word m_words[NUM_WORDS];
1124};
1125
1126// A helper for sequential access into a Block128.
1127class BitAccessStream
1128{
1129public:
1130	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
1131		: m_src				(src)
1132		, m_startNdxInSrc	(startNdxInSrc)
1133		, m_length			(length)
1134		, m_forward			(forward)
1135		, m_ndx				(0)
1136	{
1137	}
1138
1139	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
1140	deUint32 getNext (int num)
1141	{
1142		if (num == 0 || m_ndx >= m_length)
1143			return 0;
1144
1145		const int end				= m_ndx + num;
1146		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
1147		const int low				= m_ndx;
1148		const int high				= m_ndx + numBitsFromSrc - 1;
1149
1150		m_ndx += num;
1151
1152		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
1153						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
1154	}
1155
1156private:
1157	const Block128&		m_src;
1158	const int			m_startNdxInSrc;
1159	const int			m_length;
1160	const bool			m_forward;
1161
1162	int					m_ndx;
1163};
1164
1165enum ISEMode
1166{
1167	ISEMODE_TRIT = 0,
1168	ISEMODE_QUINT,
1169	ISEMODE_PLAIN_BIT,
1170
1171	ISEMODE_LAST
1172};
1173
1174struct ISEParams
1175{
1176	ISEMode		mode;
1177	int			numBits;
1178
1179	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
1180};
1181
1182inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
1183{
1184	switch (iseParams.mode)
1185	{
1186		case ISEMODE_TRIT:			return divRoundUp(numValues*8, 5) + numValues*iseParams.numBits;
1187		case ISEMODE_QUINT:			return divRoundUp(numValues*7, 3) + numValues*iseParams.numBits;
1188		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
1189		default:
1190			DE_ASSERT(false);
1191			return -1;
1192	}
1193}
1194
1195struct ISEDecodedResult
1196{
1197	deUint32 m;
1198	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
1199	deUint32 v;
1200};
1201
1202// Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
1203struct ASTCBlockMode
1204{
1205	bool		isError;
1206	// \note Following fields only relevant if !isError.
1207	bool		isVoidExtent;
1208	// \note Following fields only relevant if !isVoidExtent.
1209	bool		isDualPlane;
1210	int			weightGridWidth;
1211	int			weightGridHeight;
1212	ISEParams	weightISEParams;
1213
1214	ASTCBlockMode (void)
1215		: isError			(true)
1216		, isVoidExtent		(true)
1217		, isDualPlane		(true)
1218		, weightGridWidth	(-1)
1219		, weightGridHeight	(-1)
1220		, weightISEParams	(ISEMODE_LAST, -1)
1221	{
1222	}
1223};
1224
1225inline int computeNumWeights (const ASTCBlockMode& mode)
1226{
1227	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
1228}
1229
1230struct ColorEndpointPair
1231{
1232	UVec4 e0;
1233	UVec4 e1;
1234};
1235
1236struct TexelWeightPair
1237{
1238	deUint32 w[2];
1239};
1240
1241ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
1242{
1243	ASTCBlockMode blockMode;
1244	blockMode.isError = true; // \note Set to false later, if not error.
1245
1246	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
1247
1248	if (!blockMode.isVoidExtent)
1249	{
1250		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
1251			return blockMode; // Invalid ("reserved").
1252
1253		deUint32 r = (deUint32)-1; // \note Set in the following branches.
1254
1255		if (getBits(blockModeData, 0, 1) == 0)
1256		{
1257			const deUint32 r0	= getBit(blockModeData, 4);
1258			const deUint32 r1	= getBit(blockModeData, 2);
1259			const deUint32 r2	= getBit(blockModeData, 3);
1260			const deUint32 i78	= getBits(blockModeData, 7, 8);
1261
1262			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
1263
1264			if (i78 == 3)
1265			{
1266				const bool i5 = isBitSet(blockModeData, 5);
1267				blockMode.weightGridWidth	= i5 ? 10 : 6;
1268				blockMode.weightGridHeight	= i5 ? 6  : 10;
1269			}
1270			else
1271			{
1272				const deUint32 a = getBits(blockModeData, 5, 6);
1273				switch (i78)
1274				{
1275					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
1276					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
1277					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
1278					default: DE_ASSERT(false);
1279				}
1280			}
1281		}
1282		else
1283		{
1284			const deUint32 r0	= getBit(blockModeData, 4);
1285			const deUint32 r1	= getBit(blockModeData, 0);
1286			const deUint32 r2	= getBit(blockModeData, 1);
1287			const deUint32 i23	= getBits(blockModeData, 2, 3);
1288			const deUint32 a	= getBits(blockModeData, 5, 6);
1289
1290			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
1291
1292			if (i23 == 3)
1293			{
1294				const deUint32	b	= getBit(blockModeData, 7);
1295				const bool		i8	= isBitSet(blockModeData, 8);
1296				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
1297				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
1298			}
1299			else
1300			{
1301				const deUint32 b = getBits(blockModeData, 7, 8);
1302
1303				switch (i23)
1304				{
1305					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
1306					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
1307					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
1308					default: DE_ASSERT(false);
1309				}
1310			}
1311		}
1312
1313		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
1314		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
1315		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
1316
1317		{
1318			ISEMode&	m	= blockMode.weightISEParams.mode;
1319			int&		b	= blockMode.weightISEParams.numBits;
1320			m = ISEMODE_PLAIN_BIT;
1321			b = 0;
1322
1323			if (h)
1324			{
1325				switch (r)
1326				{
1327					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
1328					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
1329					case 4:												b = 4;	break;
1330					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
1331					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
1332					case 7:												b = 5;	break;
1333					default: DE_ASSERT(false);
1334				}
1335			}
1336			else
1337			{
1338				switch (r)
1339				{
1340					case 2: 											b = 1;	break;
1341					case 3: 	m = ISEMODE_TRIT;								break;
1342					case 4: 											b = 2;	break;
1343					case 5: 						m = ISEMODE_QUINT;			break;
1344					case 6: 	m = ISEMODE_TRIT;						b = 1;	break;
1345					case 7: 											b = 3;	break;
1346					default: DE_ASSERT(false);
1347				}
1348			}
1349		}
1350	}
1351
1352	blockMode.isError = false;
1353	return blockMode;
1354}
1355
1356inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
1357{
1358	if (isSRGB)
1359	{
1360		deUint8* const dstU = (deUint8*)dst;
1361
1362		for (int i = 0; i < blockWidth*blockHeight; i++)
1363		{
1364			dstU[4*i + 0] = 0xff;
1365			dstU[4*i + 1] = 0;
1366			dstU[4*i + 2] = 0xff;
1367			dstU[4*i + 3] = 0xff;
1368		}
1369	}
1370	else
1371	{
1372		float* const dstF = (float*)dst;
1373
1374		for (int i = 0; i < blockWidth*blockHeight; i++)
1375		{
1376			dstF[4*i + 0] = 1.0f;
1377			dstF[4*i + 1] = 0.0f;
1378			dstF[4*i + 2] = 1.0f;
1379			dstF[4*i + 3] = 1.0f;
1380		}
1381	}
1382}
1383
1384void decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
1385{
1386	const deUint32	minSExtent			= blockData.getBits(12, 24);
1387	const deUint32	maxSExtent			= blockData.getBits(25, 37);
1388	const deUint32	minTExtent			= blockData.getBits(38, 50);
1389	const deUint32	maxTExtent			= blockData.getBits(51, 63);
1390	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
1391	const bool		isHDRBlock			= blockData.isBitSet(9);
1392
1393	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
1394	{
1395		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1396		return;
1397	}
1398
1399	const deUint32 rgba[4] =
1400	{
1401		blockData.getBits(64,  79),
1402		blockData.getBits(80,  95),
1403		blockData.getBits(96,  111),
1404		blockData.getBits(112, 127)
1405	};
1406
1407	if (isSRGB)
1408	{
1409		deUint8* const dstU = (deUint8*)dst;
1410		for (int i = 0; i < blockWidth*blockHeight; i++)
1411		for (int c = 0; c < 4; c++)
1412			dstU[i*4 + c] = (rgba[c] & 0xff00) >> 8;
1413	}
1414	else
1415	{
1416		float* const dstF = (float*)dst;
1417
1418		if (isHDRBlock)
1419		{
1420			for (int c = 0; c < 4; c++)
1421			{
1422				if (isFloat16InfOrNan(rgba[c]))
1423					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
1424			}
1425
1426			for (int i = 0; i < blockWidth*blockHeight; i++)
1427			for (int c = 0; c < 4; c++)
1428				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
1429		}
1430		else
1431		{
1432			for (int i = 0; i < blockWidth*blockHeight; i++)
1433			for (int c = 0; c < 4; c++)
1434				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
1435		}
1436	}
1437
1438	return;
1439}
1440
1441void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
1442{
1443	if (numPartitions == 1)
1444		endpointModesDst[0] = blockData.getBits(13, 16);
1445	else
1446	{
1447		const deUint32 highLevelSelector = blockData.getBits(23, 24);
1448
1449		if (highLevelSelector == 0)
1450		{
1451			const deUint32 mode = blockData.getBits(25, 28);
1452			for (int i = 0; i < numPartitions; i++)
1453				endpointModesDst[i] = mode;
1454		}
1455		else
1456		{
1457			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
1458			{
1459				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
1460				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
1461				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
1462				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
1463				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
1464
1465				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
1466			}
1467		}
1468	}
1469}
1470
1471inline int computeNumColorEndpointValues (deUint32 endpointMode)
1472{
1473	DE_ASSERT(endpointMode < 16);
1474	return (endpointMode/4 + 1) * 2;
1475}
1476
1477int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
1478{
1479	int result = 0;
1480	for (int i = 0; i < numPartitions; i++)
1481		result += computeNumColorEndpointValues(endpointModes[i]);
1482	return result;
1483}
1484
1485void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
1486{
1487	DE_ASSERT(de::inRange(numValues, 1, 5));
1488
1489	deUint32 m[5];
1490
1491	m[0]			= data.getNext(numBits);
1492	deUint32 T01	= data.getNext(2);
1493	m[1]			= data.getNext(numBits);
1494	deUint32 T23	= data.getNext(2);
1495	m[2]			= data.getNext(numBits);
1496	deUint32 T4		= data.getNext(1);
1497	m[3]			= data.getNext(numBits);
1498	deUint32 T56	= data.getNext(2);
1499	m[4]			= data.getNext(numBits);
1500	deUint32 T7		= data.getNext(1);
1501
1502	switch (numValues)
1503	{
1504		// \note Fall-throughs.
1505		case 1: T23		= 0;
1506		case 2: T4		= 0;
1507		case 3: T56		= 0;
1508		case 4: T7		= 0;
1509		case 5: break;
1510		default:
1511			DE_ASSERT(false);
1512	}
1513
1514	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
1515
1516	static const deUint32 tritsFromT[256][5] =
1517	{
1518		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
1519		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
1520		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
1521		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
1522		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
1523		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
1524		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
1525		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
1526		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
1527		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
1528		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
1529		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
1530		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
1531		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
1532		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
1533		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
1534	};
1535
1536	const deUint32 (& trits)[5] = tritsFromT[T];
1537
1538	for (int i = 0; i < numValues; i++)
1539	{
1540		dst[i].m	= m[i];
1541		dst[i].tq	= trits[i];
1542		dst[i].v	= (trits[i] << numBits) + m[i];
1543	}
1544}
1545
1546void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
1547{
1548	DE_ASSERT(de::inRange(numValues, 1, 3));
1549
1550	deUint32 m[3];
1551
1552	m[0]			= data.getNext(numBits);
1553	deUint32 Q012	= data.getNext(3);
1554	m[1]			= data.getNext(numBits);
1555	deUint32 Q34	= data.getNext(2);
1556	m[2]			= data.getNext(numBits);
1557	deUint32 Q56	= data.getNext(2);
1558
1559	switch (numValues)
1560	{
1561		// \note Fall-throughs.
1562		case 1: Q34		= 0;
1563		case 2: Q56		= 0;
1564		case 3: break;
1565		default:
1566			DE_ASSERT(false);
1567	}
1568
1569	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
1570
1571	static const deUint32 quintsFromQ[256][3] =
1572	{
1573		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
1574		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
1575		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
1576		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
1577		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
1578		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
1579		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
1580		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
1581	};
1582
1583	const deUint32 (& quints)[3] = quintsFromQ[Q];
1584
1585	for (int i = 0; i < numValues; i++)
1586	{
1587		dst[i].m	= m[i];
1588		dst[i].tq	= quints[i];
1589		dst[i].v	= (quints[i] << numBits) + m[i];
1590	}
1591}
1592
1593inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
1594{
1595	dst[0].m = data.getNext(numBits);
1596	dst[0].v = dst[0].m;
1597}
1598
1599void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
1600{
1601	if (params.mode == ISEMODE_TRIT)
1602	{
1603		const int numBlocks = divRoundUp(numValues, 5);
1604		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
1605		{
1606			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
1607			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
1608		}
1609	}
1610	else if (params.mode == ISEMODE_QUINT)
1611	{
1612		const int numBlocks = divRoundUp(numValues, 3);
1613		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
1614		{
1615			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
1616			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
1617		}
1618	}
1619	else
1620	{
1621		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
1622		for (int i = 0; i < numValues; i++)
1623			decodeISEBitBlock(&dst[i], data, params.numBits);
1624	}
1625}
1626
1627ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
1628{
1629	int curBitsForTritMode		= 6;
1630	int curBitsForQuintMode		= 5;
1631	int curBitsForPlainBitMode	= 8;
1632
1633	while (true)
1634	{
1635		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
1636
1637		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
1638		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
1639		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
1640		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
1641
1642		if (maxRange == tritRange)
1643		{
1644			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
1645			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
1646				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
1647			curBitsForTritMode--;
1648		}
1649		else if (maxRange == quintRange)
1650		{
1651			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
1652			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
1653				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
1654			curBitsForQuintMode--;
1655		}
1656		else
1657		{
1658			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
1659			DE_ASSERT(maxRange == plainBitRange);
1660			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
1661				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
1662			curBitsForPlainBitMode--;
1663		}
1664	}
1665}
1666
1667void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
1668{
1669	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1670	{
1671		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
1672		DE_ASSERT(de::inRange(rangeCase, 0, 10));
1673		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
1674		const deUint32			C		= Ca[rangeCase];
1675
1676		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
1677		{
1678			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
1679			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
1680			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
1681			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
1682			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
1683			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
1684
1685			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
1686			const deUint32 B = rangeCase == 0	? 0
1687							 : rangeCase == 1	? 0
1688							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
1689							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
1690							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
1691							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
1692							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
1693							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
1694							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
1695							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
1696							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
1697							 : (deUint32)-1;
1698			DE_ASSERT(B != (deUint32)-1);
1699
1700			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
1701		}
1702	}
1703	else
1704	{
1705		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1706
1707		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
1708			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
1709	}
1710}
1711
1712inline void bitTransferSigned (deInt32& a, deInt32& b)
1713{
1714	b >>= 1;
1715	b |= a & 0x80;
1716	a >>= 1;
1717	a &= 0x3f;
1718	if (isBitSet(a, 5))
1719		a -= 0x40;
1720}
1721
1722inline UVec4 clampedRGBA (const IVec4& rgba)
1723{
1724	return UVec4(de::clamp(rgba.x(), 0, 0xff),
1725				 de::clamp(rgba.y(), 0, 0xff),
1726				 de::clamp(rgba.z(), 0, 0xff),
1727				 de::clamp(rgba.w(), 0, 0xff));
1728}
1729
1730inline IVec4 blueContract (int r, int g, int b, int a)
1731{
1732	return IVec4((r+b)>>1, (g+b)>>1, b, a);
1733}
1734
1735inline bool isColorEndpointModeHDR (deUint32 mode)
1736{
1737	return mode == 2	||
1738		   mode == 3	||
1739		   mode == 7	||
1740		   mode == 11	||
1741		   mode == 14	||
1742		   mode == 15;
1743}
1744
1745void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
1746{
1747	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
1748	const deUint32 m23		= getBits(v0, 6, 7);
1749	const deUint32 majComp	= m10 != 3	? m10
1750							: m23 != 3	? m23
1751							:			  0;
1752	const deUint32 mode		= m10 != 3	? m23
1753							: m23 != 3	? 4
1754							:			  5;
1755
1756	deInt32			red		= (deInt32)getBits(v0, 0, 5);
1757	deInt32			green	= (deInt32)getBits(v1, 0, 4);
1758	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
1759	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
1760
1761	{
1762#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
1763#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
1764
1765		const deUint32	x0	= getBit(v1, 6);
1766		const deUint32	x1	= getBit(v1, 5);
1767		const deUint32	x2	= getBit(v2, 6);
1768		const deUint32	x3	= getBit(v2, 5);
1769		const deUint32	x4	= getBit(v3, 7);
1770		const deUint32	x5	= getBit(v3, 6);
1771		const deUint32	x6	= getBit(v3, 5);
1772
1773		deInt32&		R	= red;
1774		deInt32&		G	= green;
1775		deInt32&		B	= blue;
1776		deInt32&		S	= scale;
1777
1778		switch (mode)
1779		{
1780			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
1781			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
1782			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
1783			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
1784			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
1785			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
1786			default:
1787				DE_ASSERT(false);
1788		}
1789
1790#undef ASSIGN_X_BITS
1791#undef SHOR
1792	}
1793
1794	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
1795	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
1796
1797	red		<<= shiftAmounts[mode];
1798	green	<<= shiftAmounts[mode];
1799	blue	<<= shiftAmounts[mode];
1800	scale	<<= shiftAmounts[mode];
1801
1802	if (mode != 5)
1803	{
1804		green	= red - green;
1805		blue	= red - blue;
1806	}
1807
1808	if (majComp == 1)
1809		std::swap(red, green);
1810	else if (majComp == 2)
1811		std::swap(red, blue);
1812
1813	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
1814			   de::clamp(green	- scale,	0, 0xfff),
1815			   de::clamp(blue	- scale,	0, 0xfff),
1816			   0x780);
1817
1818	e1 = UVec4(de::clamp(red,				0, 0xfff),
1819			   de::clamp(green,				0, 0xfff),
1820			   de::clamp(blue,				0, 0xfff),
1821			   0x780);
1822}
1823
1824void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
1825{
1826	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
1827
1828	if (major == 3)
1829	{
1830		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
1831		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
1832	}
1833	else
1834	{
1835		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
1836
1837		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
1838		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
1839		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
1840		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
1841		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
1842		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
1843
1844		{
1845#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
1846#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
1847
1848			const deUint32 x0 = getBit(v2, 6);
1849			const deUint32 x1 = getBit(v3, 6);
1850			const deUint32 x2 = getBit(v4, 6);
1851			const deUint32 x3 = getBit(v5, 6);
1852			const deUint32 x4 = getBit(v4, 5);
1853			const deUint32 x5 = getBit(v5, 5);
1854
1855			switch (mode)
1856			{
1857				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
1858				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
1859				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
1860				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
1861				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
1862				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
1863				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
1864				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
1865				default:
1866					DE_ASSERT(false);
1867			}
1868
1869#undef ASSIGN_X_BITS
1870#undef SHOR
1871		}
1872
1873		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
1874		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
1875
1876		d0 = signExtend(d0, numDBits[mode]);
1877		d1 = signExtend(d1, numDBits[mode]);
1878
1879		const int shiftAmount = (mode >> 1) ^ 3;
1880		a	<<= shiftAmount;
1881		c	<<= shiftAmount;
1882		b0	<<= shiftAmount;
1883		b1	<<= shiftAmount;
1884		d0	<<= shiftAmount;
1885		d1	<<= shiftAmount;
1886
1887		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
1888				   de::clamp(a-b0-c-d0,		0, 0xfff),
1889				   de::clamp(a-b1-c-d1,		0, 0xfff),
1890				   0x780);
1891
1892		e1 = UVec4(de::clamp(a,				0, 0xfff),
1893				   de::clamp(a-b0,			0, 0xfff),
1894				   de::clamp(a-b1,			0, 0xfff),
1895				   0x780);
1896
1897		if (major == 1)
1898		{
1899			std::swap(e0.x(), e0.y());
1900			std::swap(e1.x(), e1.y());
1901		}
1902		else if (major == 2)
1903		{
1904			std::swap(e0.x(), e0.z());
1905			std::swap(e1.x(), e1.z());
1906		}
1907	}
1908}
1909
1910void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
1911{
1912	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
1913
1914	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
1915	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
1916	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
1917
1918	if (mode == 3)
1919	{
1920		e0.w() = v6 << 5;
1921		e1.w() = v7 << 5;
1922	}
1923	else
1924	{
1925		v6 |= (v7 << (mode+1)) & 0x780;
1926		v7 &= (0x3f >> mode);
1927		v7 ^= 0x20 >> mode;
1928		v7 -= 0x20 >> mode;
1929		v6 <<= 4-mode;
1930		v7 <<= 4-mode;
1931
1932		v7 += v6;
1933		v7 = de::clamp(v7, 0, 0xfff);
1934		e0.w() = v6;
1935		e1.w() = v7;
1936	}
1937}
1938
1939void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
1940{
1941	int unquantizedNdx = 0;
1942
1943	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
1944	{
1945		const deUint32		endpointMode	= endpointModes[partitionNdx];
1946		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
1947		UVec4&				e0				= dst[partitionNdx].e0;
1948		UVec4&				e1				= dst[partitionNdx].e1;
1949
1950		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1951
1952		switch (endpointMode)
1953		{
1954			case 0:
1955				e0 = UVec4(v[0], v[0], v[0], 0xff);
1956				e1 = UVec4(v[1], v[1], v[1], 0xff);
1957				break;
1958
1959			case 1:
1960			{
1961				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1962				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1963				e0 = UVec4(L0, L0, L0, 0xff);
1964				e1 = UVec4(L1, L1, L1, 0xff);
1965				break;
1966			}
1967
1968			case 2:
1969			{
1970				const deUint32 v1Gr		= v[1] >= v[0];
1971				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1972				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1973
1974				e0 = UVec4(y0, y0, y0, 0x780);
1975				e1 = UVec4(y1, y1, y1, 0x780);
1976				break;
1977			}
1978
1979			case 3:
1980			{
1981				const bool		m	= isBitSet(v[0], 7);
1982				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1983										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1984				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
1985										: getBits(v[1], 0, 3) << 1;
1986				const deUint32	y1	= de::min(0xfffu, y0+d);
1987
1988				e0 = UVec4(y0, y0, y0, 0x780);
1989				e1 = UVec4(y1, y1, y1, 0x780);
1990				break;
1991			}
1992
1993			case 4:
1994				e0 = UVec4(v[0], v[0], v[0], v[2]);
1995				e1 = UVec4(v[1], v[1], v[1], v[3]);
1996				break;
1997
1998			case 5:
1999			{
2000				deInt32 v0 = (deInt32)v[0];
2001				deInt32 v1 = (deInt32)v[1];
2002				deInt32 v2 = (deInt32)v[2];
2003				deInt32 v3 = (deInt32)v[3];
2004				bitTransferSigned(v1, v0);
2005				bitTransferSigned(v3, v2);
2006
2007				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
2008				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
2009				break;
2010			}
2011
2012			case 6:
2013				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
2014				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
2015				break;
2016
2017			case 7:
2018				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
2019				break;
2020
2021			case 8:
2022				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
2023				{
2024					e0 = UVec4(v[0], v[2], v[4], 0xff);
2025					e1 = UVec4(v[1], v[3], v[5], 0xff);
2026				}
2027				else
2028				{
2029					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
2030					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
2031				}
2032				break;
2033
2034			case 9:
2035			{
2036				deInt32 v0 = (deInt32)v[0];
2037				deInt32 v1 = (deInt32)v[1];
2038				deInt32 v2 = (deInt32)v[2];
2039				deInt32 v3 = (deInt32)v[3];
2040				deInt32 v4 = (deInt32)v[4];
2041				deInt32 v5 = (deInt32)v[5];
2042				bitTransferSigned(v1, v0);
2043				bitTransferSigned(v3, v2);
2044				bitTransferSigned(v5, v4);
2045
2046				if (v1+v3+v5 >= 0)
2047				{
2048					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
2049					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
2050				}
2051				else
2052				{
2053					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
2054					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
2055				}
2056				break;
2057			}
2058
2059			case 10:
2060				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
2061				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
2062				break;
2063
2064			case 11:
2065				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
2066				break;
2067
2068			case 12:
2069				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
2070				{
2071					e0 = UVec4(v[0], v[2], v[4], v[6]);
2072					e1 = UVec4(v[1], v[3], v[5], v[7]);
2073				}
2074				else
2075				{
2076					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
2077					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
2078				}
2079				break;
2080
2081			case 13:
2082			{
2083				deInt32 v0 = (deInt32)v[0];
2084				deInt32 v1 = (deInt32)v[1];
2085				deInt32 v2 = (deInt32)v[2];
2086				deInt32 v3 = (deInt32)v[3];
2087				deInt32 v4 = (deInt32)v[4];
2088				deInt32 v5 = (deInt32)v[5];
2089				deInt32 v6 = (deInt32)v[6];
2090				deInt32 v7 = (deInt32)v[7];
2091				bitTransferSigned(v1, v0);
2092				bitTransferSigned(v3, v2);
2093				bitTransferSigned(v5, v4);
2094				bitTransferSigned(v7, v6);
2095
2096				if (v1+v3+v5 >= 0)
2097				{
2098					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
2099					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
2100				}
2101				else
2102				{
2103					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
2104					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
2105				}
2106
2107				break;
2108			}
2109
2110			case 14:
2111				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
2112				e0.w() = v[6];
2113				e1.w() = v[7];
2114				break;
2115
2116			case 15:
2117				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
2118				break;
2119
2120			default:
2121				DE_ASSERT(false);
2122		}
2123	}
2124}
2125
2126void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
2127{
2128	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
2129	ISEDecodedResult	colorEndpointData[18];
2130
2131	{
2132		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
2133		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
2134	}
2135
2136	{
2137		deUint32 unquantizedEndpoints[18];
2138		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
2139		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
2140	}
2141}
2142
2143void unquantizeWeights (deUint32* dst, const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
2144{
2145	const int			numWeights	= computeNumWeights(blockMode);
2146	const ISEParams&	iseParams	= blockMode.weightISEParams;
2147
2148	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2149	{
2150		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
2151
2152		if (rangeCase == 0 || rangeCase == 1)
2153		{
2154			static const deUint32 map0[3]	= { 0, 32, 63 };
2155			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
2156			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
2157			for (int i = 0; i < numWeights; i++)
2158			{
2159				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
2160				dst[i] = map[weightGrid[i].v];
2161			}
2162		}
2163		else
2164		{
2165			DE_ASSERT(rangeCase <= 6);
2166			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
2167			const deUint32			C		= Ca[rangeCase-2];
2168
2169			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2170			{
2171				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
2172				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
2173				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
2174
2175				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
2176				const deUint32 B = rangeCase == 2 ? 0
2177								 : rangeCase == 3 ? 0
2178								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
2179								 : rangeCase == 5 ? (b << 6) |								(b << 1)
2180								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
2181								 : (deUint32)-1;
2182
2183				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
2184			}
2185		}
2186	}
2187	else
2188	{
2189		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
2190
2191		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2192			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
2193	}
2194
2195	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2196		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
2197}
2198
2199void interpolateWeights (TexelWeightPair* dst, const deUint32* unquantizedWeights, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
2200{
2201	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
2202	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
2203	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
2204
2205	for (int texelY = 0; texelY < blockHeight; texelY++)
2206	{
2207		for (int texelX = 0; texelX < blockWidth; texelX++)
2208		{
2209			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
2210			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
2211			const deUint32 jX	= gX >> 4;
2212			const deUint32 jY	= gY >> 4;
2213			const deUint32 fX	= gX & 0xf;
2214			const deUint32 fY	= gY & 0xf;
2215			const deUint32 w11	= (fX*fY + 8) >> 4;
2216			const deUint32 w10	= fY - w11;
2217			const deUint32 w01	= fX - w11;
2218			const deUint32 w00	= 16 - fX - fY + w11;
2219			const deUint32 v0	= jY*blockMode.weightGridWidth + jX;
2220
2221			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
2222			{
2223				const deUint32 p00	= unquantizedWeights[(v0)									* numWeightsPerTexel + texelWeightNdx];
2224				const deUint32 p01	= unquantizedWeights[(v0 + 1)								* numWeightsPerTexel + texelWeightNdx];
2225				const deUint32 p10	= unquantizedWeights[(v0 + blockMode.weightGridWidth)		* numWeightsPerTexel + texelWeightNdx];
2226				const deUint32 p11	= unquantizedWeights[(v0 + blockMode.weightGridWidth + 1)	* numWeightsPerTexel + texelWeightNdx];
2227
2228				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
2229			}
2230		}
2231	}
2232}
2233
2234void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
2235{
2236	ISEDecodedResult weightGrid[64];
2237
2238	{
2239		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
2240		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
2241	}
2242
2243	{
2244		deUint32 unquantizedWeights[64];
2245		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
2246		interpolateWeights(dst, &unquantizedWeights[0], blockWidth, blockHeight, blockMode);
2247	}
2248}
2249
2250inline deUint32 hash52 (deUint32 v)
2251{
2252	deUint32 p = v;
2253	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
2254	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
2255	p ^= p <<  6;	p ^= p >> 17;
2256	return p;
2257}
2258
2259int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
2260{
2261	DE_ASSERT(zIn == 0);
2262	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
2263	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
2264	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
2265	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
2266	const deUint32	rnum	= hash52(seed);
2267	deUint8			seed1	=  rnum							& 0xf;
2268	deUint8			seed2	= (rnum >>  4)					& 0xf;
2269	deUint8			seed3	= (rnum >>  8)					& 0xf;
2270	deUint8			seed4	= (rnum >> 12)					& 0xf;
2271	deUint8			seed5	= (rnum >> 16)					& 0xf;
2272	deUint8			seed6	= (rnum >> 20)					& 0xf;
2273	deUint8			seed7	= (rnum >> 24)					& 0xf;
2274	deUint8			seed8	= (rnum >> 28)					& 0xf;
2275	deUint8			seed9	= (rnum >> 18)					& 0xf;
2276	deUint8			seed10	= (rnum >> 22)					& 0xf;
2277	deUint8			seed11	= (rnum >> 26)					& 0xf;
2278	deUint8			seed12	= ((rnum >> 30) | (rnum << 2))	& 0xf;
2279
2280	seed1 *= seed1;		seed5 *= seed5;		seed9  *= seed9;
2281	seed2 *= seed2;		seed6 *= seed6;		seed10 *= seed10;
2282	seed3 *= seed3;		seed7 *= seed7;		seed11 *= seed11;
2283	seed4 *= seed4;		seed8 *= seed8;		seed12 *= seed12;
2284
2285	const int shA = (seed & 2) != 0		? 4		: 5;
2286	const int shB = numPartitions == 3	? 6		: 5;
2287	const int sh1 = (seed & 1) != 0		? shA	: shB;
2288	const int sh2 = (seed & 1) != 0		? shB	: shA;
2289	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
2290
2291	seed1 >>= sh1;		seed2  >>= sh2;		seed3  >>= sh1;		seed4  >>= sh2;
2292	seed5 >>= sh1;		seed6  >>= sh2;		seed7  >>= sh1;		seed8  >>= sh2;
2293	seed9 >>= sh3;		seed10 >>= sh3;		seed11 >>= sh3;		seed12 >>= sh3;
2294
2295	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
2296	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
2297	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
2298	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
2299
2300	return a >= b && a >= c && a >= d	? 0
2301		 : b >= c && b >= d				? 1
2302		 : c >= d						? 2
2303		 :								  3;
2304}
2305
2306void setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
2307							int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
2308{
2309	const bool	smallBlock = blockWidth*blockHeight < 31;
2310	bool		isHDREndpoint[4];
2311
2312	for (int i = 0; i < numPartitions; i++)
2313		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
2314
2315	for (int texelY = 0; texelY < blockHeight; texelY++)
2316	for (int texelX = 0; texelX < blockWidth; texelX++)
2317	{
2318		const int				texelNdx			= texelY*blockWidth + texelX;
2319		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
2320		DE_ASSERT(colorEndpointNdx < numPartitions);
2321		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
2322		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
2323		const TexelWeightPair&	weight				= texelWeights[texelNdx];
2324
2325		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
2326		{
2327			if (isSRGB)
2328			{
2329				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
2330				((deUint8*)dst)[texelNdx*4 + 1] = 0;
2331				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
2332				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
2333			}
2334			else
2335			{
2336				((float*)dst)[texelNdx*4 + 0] = 1.0f;
2337				((float*)dst)[texelNdx*4 + 1] = 0;
2338				((float*)dst)[texelNdx*4 + 2] = 1.0f;
2339				((float*)dst)[texelNdx*4 + 3] = 1.0f;
2340			}
2341		}
2342		else
2343		{
2344			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
2345			{
2346				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
2347				{
2348					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
2349					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
2350					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
2351					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
2352
2353					if (isSRGB)
2354						((deUint8*)dst)[texelNdx*4 + channelNdx] = (c & 0xff00) >> 8;
2355					else
2356						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
2357				}
2358				else
2359				{
2360					DE_STATIC_ASSERT((isSameType<deFloat16, deUint16>::V));
2361					const deUint32		c0	= e0[channelNdx] << 4;
2362					const deUint32		c1	= e1[channelNdx] << 4;
2363					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
2364					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
2365					const deUint32		e	= getBits(c, 11, 15);
2366					const deUint32		m	= getBits(c, 0, 10);
2367					const deUint32		mt	= m < 512		? 3*m
2368											: m >= 1536		? 5*m - 2048
2369											:				  4*m - 512;
2370					const deFloat16		cf	= (e << 10) + (mt >> 3);
2371
2372					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
2373				}
2374			}
2375		}
2376	}
2377}
2378
2379void decompressASTCBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
2380{
2381	DE_ASSERT(isLDR || !isSRGB);
2382
2383	// Decode block mode.
2384
2385	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
2386
2387	// Check for block mode errors.
2388
2389	if (blockMode.isError)
2390	{
2391		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
2392		return;
2393	}
2394
2395	// Separate path for void-extent.
2396
2397	if (blockMode.isVoidExtent)
2398	{
2399		decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
2400		return;
2401	}
2402
2403	// Compute weight grid values.
2404
2405	const int numWeights			= computeNumWeights(blockMode);
2406	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
2407	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
2408
2409	// Check for errors in weight grid, partition and dual-plane parameters.
2410
2411	if (numWeights > 64								||
2412		numWeightDataBits > 96						||
2413		numWeightDataBits < 24						||
2414		blockMode.weightGridWidth > blockWidth		||
2415		blockMode.weightGridHeight > blockHeight	||
2416		(numPartitions == 4 && blockMode.isDualPlane))
2417	{
2418		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
2419		return;
2420	}
2421
2422	// Compute number of bits available for color endpoint data.
2423
2424	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
2425	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
2426											  (blockMode.isDualPlane ? 2 : 0);
2427	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
2428	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
2429																		: numPartitions == 4	? 7
2430																		: numPartitions == 3	? 4
2431																		: numPartitions == 2	? 1
2432																		: 0);
2433	// Decode color endpoint modes.
2434
2435	deUint32 colorEndpointModes[4];
2436	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
2437
2438	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
2439
2440	// Check for errors in color endpoint value count.
2441
2442	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < divRoundUp(13*numColorEndpointValues, 5))
2443	{
2444		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
2445		return;
2446	}
2447
2448	// Compute color endpoints.
2449
2450	ColorEndpointPair colorEndpoints[4];
2451	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
2452						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
2453
2454	// Compute texel weights.
2455
2456	TexelWeightPair texelWeights[ASTC_MAX_BLOCK_WIDTH*ASTC_MAX_BLOCK_HEIGHT];
2457	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
2458
2459	// Set texel colors.
2460
2461	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
2462	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
2463
2464	setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
2465}
2466
2467} // ASTCDecompressInternal
2468
2469void decompressASTC (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
2470{
2471	using namespace ASTCDecompressInternal;
2472
2473	DE_ASSERT(isLDR || !isSRGB);
2474
2475	const int blockWidth = dst.getWidth();
2476	const int blockHeight = dst.getHeight();
2477
2478	union
2479	{
2480		deUint8		sRGB[ASTC_MAX_BLOCK_WIDTH*ASTC_MAX_BLOCK_HEIGHT*4];
2481		float		linear[ASTC_MAX_BLOCK_WIDTH*ASTC_MAX_BLOCK_HEIGHT*4];
2482	} decompressedBuffer;
2483
2484	const Block128 blockData(data);
2485	decompressASTCBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
2486						blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
2487
2488	if (isSRGB)
2489	{
2490		for (int i = 0; i < blockHeight; i++)
2491		for (int j = 0; j < blockWidth; j++)
2492		{
2493			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
2494									decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
2495									decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
2496									decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
2497		}
2498	}
2499	else
2500	{
2501		for (int i = 0; i < blockHeight; i++)
2502		for (int j = 0; j < blockWidth; j++)
2503		{
2504			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
2505								   decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
2506								   decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
2507								   decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
2508		}
2509	}
2510}
2511
2512void decompressBlock (CompressedTexFormat format, const PixelBufferAccess& dst, const deUint8* src, const TexDecompressionParams& params)
2513{
2514	// No 3D blocks supported right now
2515	DE_ASSERT(dst.getDepth() == 1);
2516
2517	switch (format)
2518	{
2519		case COMPRESSEDTEXFORMAT_ETC1_RGB8:							decompressETC1							(dst, src);			break;
2520		case COMPRESSEDTEXFORMAT_EAC_R11:							decompressEAC_R11						(dst, src, false);	break;
2521		case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:					decompressEAC_R11						(dst, src, true);	break;
2522		case COMPRESSEDTEXFORMAT_EAC_RG11:							decompressEAC_RG11						(dst, src, false);	break;
2523		case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:					decompressEAC_RG11						(dst, src, true);	break;
2524		case COMPRESSEDTEXFORMAT_ETC2_RGB8:							decompressETC2							(dst, src);			break;
2525		case COMPRESSEDTEXFORMAT_ETC2_SRGB8:						decompressETC2							(dst, src);			break;
2526		case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:		decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1	(dst, src);			break;
2527		case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:	decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1	(dst, src);			break;
2528		case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:					decompressETC2_EAC_RGBA8				(dst, src);			break;
2529		case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:				decompressETC2_EAC_RGBA8				(dst, src);			break;
2530
2531		case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:
2532		case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:
2533		case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:
2534		case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:
2535		case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:
2536		case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:
2537		case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:
2538		case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:
2539		case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:
2540		case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:
2541		case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:
2542		case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:
2543		case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:
2544		case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:
2545		case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
2546		case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
2547		case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
2548		case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
2549		case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
2550		case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
2551		case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
2552		case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
2553		case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
2554		case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
2555		case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
2556		case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
2557		case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
2558		case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
2559		{
2560			DE_ASSERT(params.astcMode == TexDecompressionParams::ASTCMODE_LDR || params.astcMode == TexDecompressionParams::ASTCMODE_HDR);
2561
2562			const bool isSRGBFormat = isAstcSRGBFormat(format);
2563			decompressASTC(dst, src, isSRGBFormat, isSRGBFormat || params.astcMode == TexDecompressionParams::ASTCMODE_LDR);
2564
2565			break;
2566		}
2567
2568		default:
2569			DE_ASSERT(false);
2570			break;
2571	}
2572}
2573
2574int componentSum (const IVec3& vec)
2575{
2576	return vec.x() + vec.y() + vec.z();
2577}
2578
2579} // anonymous
2580
2581void decompress (const PixelBufferAccess& dst, CompressedTexFormat fmt, const deUint8* src, const TexDecompressionParams& params)
2582{
2583	const int				blockSize			= getBlockSize(fmt);
2584	const IVec3				blockPixelSize		(getBlockPixelSize(fmt));
2585	const IVec3				blockCount			(divRoundUp(dst.getWidth(),		blockPixelSize.x()),
2586												 divRoundUp(dst.getHeight(),	blockPixelSize.y()),
2587												 divRoundUp(dst.getDepth(),		blockPixelSize.z()));
2588	const IVec3				blockPitches		(blockSize, blockSize * blockCount.x(), blockSize * blockCount.x() * blockCount.y());
2589
2590	std::vector<deUint8>	uncompressedBlock	(dst.getFormat().getPixelSize() * blockPixelSize.x() * blockPixelSize.y() * blockPixelSize.z());
2591	const PixelBufferAccess	blockAccess			(getUncompressedFormat(fmt), blockPixelSize.x(), blockPixelSize.y(), blockPixelSize.z(), &uncompressedBlock[0]);
2592
2593	DE_ASSERT(dst.getFormat() == getUncompressedFormat(fmt));
2594
2595	for (int blockZ = 0; blockZ < blockCount.z(); blockZ++)
2596	for (int blockY = 0; blockY < blockCount.y(); blockY++)
2597	for (int blockX = 0; blockX < blockCount.x(); blockX++)
2598	{
2599		const IVec3				blockPos	(blockX, blockY, blockZ);
2600		const deUint8* const	blockPtr	= src + componentSum(blockPos * blockPitches);
2601		const IVec3				copySize	(de::min(blockPixelSize.x(), dst.getWidth()		- blockPos.x() * blockPixelSize.x()),
2602											 de::min(blockPixelSize.y(), dst.getHeight()	- blockPos.y() * blockPixelSize.y()),
2603											 de::min(blockPixelSize.z(), dst.getDepth()		- blockPos.z() * blockPixelSize.z()));
2604		const IVec3				dstPixelPos	= blockPos * blockPixelSize;
2605
2606		decompressBlock(fmt, blockAccess, blockPtr, params);
2607
2608		copy(getSubregion(dst, dstPixelPos.x(), dstPixelPos.y(), dstPixelPos.z(), copySize.x(), copySize.y(), copySize.z()), getSubregion(blockAccess, 0, 0, 0, copySize.x(), copySize.y(), copySize.z()));
2609	}
2610}
2611
2612CompressedTexture::CompressedTexture (void)
2613	: m_format	(COMPRESSEDTEXFORMAT_LAST)
2614	, m_width	(0)
2615	, m_height	(0)
2616	, m_depth	(0)
2617{
2618}
2619
2620CompressedTexture::CompressedTexture (CompressedTexFormat format, int width, int height, int depth)
2621	: m_format	(COMPRESSEDTEXFORMAT_LAST)
2622	, m_width	(0)
2623	, m_height	(0)
2624	, m_depth	(0)
2625{
2626	setStorage(format, width, height, depth);
2627}
2628
2629CompressedTexture::~CompressedTexture (void)
2630{
2631}
2632
2633void CompressedTexture::setStorage (CompressedTexFormat format, int width, int height, int depth)
2634{
2635	m_format	= format;
2636	m_width		= width;
2637	m_height	= height;
2638	m_depth		= depth;
2639
2640	if (isAstcFormat(m_format) && m_depth > 1)
2641		throw InternalError("3D ASTC textures not currently supported");
2642
2643	if (m_format != COMPRESSEDTEXFORMAT_LAST)
2644	{
2645		const IVec3	blockPixelSize	= getBlockPixelSize(m_format);
2646		const int	blockSize		= getBlockSize(m_format);
2647
2648		m_data.resize(divRoundUp(m_width, blockPixelSize.x()) * divRoundUp(m_height, blockPixelSize.y()) * divRoundUp(m_depth, blockPixelSize.z()) * blockSize);
2649	}
2650	else
2651	{
2652		DE_ASSERT(m_format == COMPRESSEDTEXFORMAT_LAST);
2653		DE_ASSERT(m_width == 0 && m_height == 0 && m_depth == 0);
2654		m_data.resize(0);
2655	}
2656}
2657
2658/*--------------------------------------------------------------------*//*!
2659 * \brief Decode to uncompressed pixel data
2660 * \param dst Destination buffer
2661 *//*--------------------------------------------------------------------*/
2662void CompressedTexture::decompress (const PixelBufferAccess& dst, const TexDecompressionParams& params) const
2663{
2664	DE_ASSERT(dst.getWidth() == m_width && dst.getHeight() == m_height && dst.getDepth() == m_depth);
2665	DE_ASSERT(dst.getFormat() == getUncompressedFormat(m_format));
2666
2667	tcu::decompress(dst, m_format, &m_data[0], params);
2668}
2669
2670} // tcu
2671