revoke.c revision d1154eb460efe588eaed3d439c1caaca149fa362
1/*
2 * linux/fs/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * Revoke information on buffers is a tri-state value:
51 *
52 * RevokeValid clear:	no cached revoke status, need to look it up
53 * RevokeValid set, Revoked clear:
54 *			buffer has not been revoked, and cancel_revoke
55 *			need do nothing.
56 * RevokeValid set, Revoked set:
57 *			buffer has been revoked.
58 */
59
60#ifndef __KERNEL__
61#include "config.h"
62#include "jfs_user.h"
63#else
64#include <linux/sched.h>
65#include <linux/fs.h>
66#include <linux/jbd.h>
67#include <linux/errno.h>
68#include <linux/slab.h>
69#include <linux/locks.h>
70#include <linux/list.h>
71#include <linux/smp_lock.h>
72#include <linux/init.h>
73#endif
74
75static lkmem_cache_t *revoke_record_cache;
76static lkmem_cache_t *revoke_table_cache;
77
78/* Each revoke record represents one single revoked block.  During
79   journal replay, this involves recording the transaction ID of the
80   last transaction to revoke this block. */
81
82struct jbd_revoke_record_s
83{
84	struct list_head  hash;
85	tid_t		  sequence;	/* Used for recovery only */
86	unsigned long	  blocknr;
87};
88
89
90/* The revoke table is just a simple hash table of revoke records. */
91struct jbd_revoke_table_s
92{
93	/* It is conceivable that we might want a larger hash table
94	 * for recovery.  Must be a power of two. */
95	int		  hash_size;
96	int		  hash_shift;
97	struct list_head *hash_table;
98};
99
100
101#ifdef __KERNEL__
102static void write_one_revoke_record(journal_t *, transaction_t *,
103				    struct journal_head **, int *,
104				    struct jbd_revoke_record_s *);
105static void flush_descriptor(journal_t *, struct journal_head *, int);
106#endif
107
108/* Utility functions to maintain the revoke table */
109
110/* Borrowed from buffer.c: this is a tried and tested block hash function */
111static inline int hash(journal_t *journal, unsigned long block)
112{
113	struct jbd_revoke_table_s *table = journal->j_revoke;
114	int hash_shift = table->hash_shift;
115
116	return ((block << (hash_shift - 6)) ^
117		(block >> 13) ^
118		(block << (hash_shift - 12))) & (table->hash_size - 1);
119}
120
121static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
122			      tid_t seq)
123{
124	struct list_head *hash_list;
125	struct jbd_revoke_record_s *record;
126
127#ifdef __KERNEL__
128repeat:
129#endif
130	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
131	if (!record)
132		goto oom;
133
134	record->sequence = seq;
135	record->blocknr = blocknr;
136	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
137	list_add(&record->hash, hash_list);
138	return 0;
139
140oom:
141#ifdef __KERNEL__
142	if (!journal_oom_retry)
143		return -ENOMEM;
144	jbd_debug(1, "ENOMEM in " __FUNCTION__ ", retrying.\n");
145	current->policy |= SCHED_YIELD;
146	schedule();
147	goto repeat;
148#else
149	return -ENOMEM;
150#endif
151}
152
153/* Find a revoke record in the journal's hash table. */
154
155static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
156						      unsigned long blocknr)
157{
158	struct list_head *hash_list;
159	struct jbd_revoke_record_s *record;
160
161	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
162
163	record = (struct jbd_revoke_record_s *) hash_list->next;
164	while (&(record->hash) != hash_list) {
165		if (record->blocknr == blocknr)
166			return record;
167		record = (struct jbd_revoke_record_s *) record->hash.next;
168	}
169	return NULL;
170}
171
172int __init journal_init_revoke_caches(void)
173{
174	revoke_record_cache = kmem_cache_create("revoke_record",
175					   sizeof(struct jbd_revoke_record_s),
176					   0, SLAB_HWCACHE_ALIGN, NULL, NULL);
177	if (revoke_record_cache == 0)
178		return -ENOMEM;
179
180	revoke_table_cache = kmem_cache_create("revoke_table",
181					   sizeof(struct jbd_revoke_table_s),
182					   0, 0, NULL, NULL);
183	if (revoke_table_cache == 0) {
184		kmem_cache_destroy(revoke_record_cache);
185		revoke_record_cache = NULL;
186		return -ENOMEM;
187	}
188	return 0;
189}
190
191void journal_destroy_revoke_caches(void)
192{
193	kmem_cache_destroy(revoke_record_cache);
194	revoke_record_cache = 0;
195	kmem_cache_destroy(revoke_table_cache);
196	revoke_table_cache = 0;
197}
198
199/* Initialise the revoke table for a given journal to a given size. */
200
201int journal_init_revoke(journal_t *journal, int hash_size)
202{
203	int shift, tmp;
204
205	J_ASSERT (journal->j_revoke == NULL);
206
207	journal->j_revoke = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
208	if (!journal->j_revoke)
209		return -ENOMEM;
210
211	/* Check that the hash_size is a power of two */
212	J_ASSERT ((hash_size & (hash_size-1)) == 0);
213
214	journal->j_revoke->hash_size = hash_size;
215
216	shift = 0;
217	tmp = hash_size;
218	while((tmp >>= 1UL) != 0UL)
219		shift++;
220	journal->j_revoke->hash_shift = shift;
221
222	journal->j_revoke->hash_table =
223		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
224	if (!journal->j_revoke->hash_table) {
225		kmem_cache_free(revoke_table_cache, journal->j_revoke);
226		journal->j_revoke = NULL;
227		return -ENOMEM;
228	}
229
230	for (tmp = 0; tmp < hash_size; tmp++)
231		INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
232
233	return 0;
234}
235
236/* Destoy a journal's revoke table.  The table must already be empty! */
237
238void journal_destroy_revoke(journal_t *journal)
239{
240	struct jbd_revoke_table_s *table;
241	struct list_head *hash_list;
242	int i;
243
244	table = journal->j_revoke;
245	if (!table)
246		return;
247
248	for (i=0; i<table->hash_size; i++) {
249		hash_list = &table->hash_table[i];
250		J_ASSERT (list_empty(hash_list));
251	}
252
253	kfree(table->hash_table);
254	kmem_cache_free(revoke_table_cache, table);
255	journal->j_revoke = NULL;
256}
257
258
259#ifdef __KERNEL__
260
261/*
262 * journal_revoke: revoke a given buffer_head from the journal.  This
263 * prevents the block from being replayed during recovery if we take a
264 * crash after this current transaction commits.  Any subsequent
265 * metadata writes of the buffer in this transaction cancel the
266 * revoke.
267 *
268 * Note that this call may block --- it is up to the caller to make
269 * sure that there are no further calls to journal_write_metadata
270 * before the revoke is complete.  In ext3, this implies calling the
271 * revoke before clearing the block bitmap when we are deleting
272 * metadata.
273 *
274 * Revoke performs a journal_forget on any buffer_head passed in as a
275 * parameter, but does _not_ forget the buffer_head if the bh was only
276 * found implicitly.
277 *
278 * bh_in may not be a journalled buffer - it may have come off
279 * the hash tables without an attached journal_head.
280 *
281 * If bh_in is non-zero, journal_revoke() will decrement its b_count
282 * by one.
283 */
284
285int journal_revoke(handle_t *handle, unsigned long blocknr,
286		   struct buffer_head *bh_in)
287{
288	struct buffer_head *bh = NULL;
289	journal_t *journal;
290	kdev_t dev;
291	int err;
292
293	if (bh_in)
294		BUFFER_TRACE(bh_in, "enter");
295
296	journal = handle->h_transaction->t_journal;
297	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
298		J_ASSERT (!"Cannot set revoke feature!");
299		return -EINVAL;
300	}
301
302	dev = journal->j_fs_dev;
303	bh = bh_in;
304
305	if (!bh) {
306		bh = get_hash_table(dev, blocknr, journal->j_blocksize);
307		if (bh)
308			BUFFER_TRACE(bh, "found on hash");
309	}
310#ifdef JBD_EXPENSIVE_CHECKING
311	else {
312		struct buffer_head *bh2;
313
314		/* If there is a different buffer_head lying around in
315		 * memory anywhere... */
316		bh2 = get_hash_table(dev, blocknr, journal->j_blocksize);
317		if (bh2) {
318			/* ... and it has RevokeValid status... */
319			if ((bh2 != bh) &&
320			    test_bit(BH_RevokeValid, &bh2->b_state))
321				/* ...then it better be revoked too,
322				 * since it's illegal to create a revoke
323				 * record against a buffer_head which is
324				 * not marked revoked --- that would
325				 * risk missing a subsequent revoke
326				 * cancel. */
327				J_ASSERT_BH(bh2, test_bit(BH_Revoked, &
328							  bh2->b_state));
329			__brelse(bh2);
330		}
331	}
332#endif
333
334	/* We really ought not ever to revoke twice in a row without
335           first having the revoke cancelled: it's illegal to free a
336           block twice without allocating it in between! */
337	if (bh) {
338		J_ASSERT_BH(bh, !test_bit(BH_Revoked, &bh->b_state));
339		set_bit(BH_Revoked, &bh->b_state);
340		set_bit(BH_RevokeValid, &bh->b_state);
341		if (bh_in) {
342			BUFFER_TRACE(bh_in, "call journal_forget");
343			journal_forget(handle, bh_in);
344		} else {
345			BUFFER_TRACE(bh, "call brelse");
346			__brelse(bh);
347		}
348	}
349
350	lock_journal(journal);
351	jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
352	err = insert_revoke_hash(journal, blocknr,
353				handle->h_transaction->t_tid);
354	unlock_journal(journal);
355	BUFFER_TRACE(bh_in, "exit");
356	return err;
357}
358
359/*
360 * Cancel an outstanding revoke.  For use only internally by the
361 * journaling code (called from journal_get_write_access).
362 *
363 * We trust the BH_Revoked bit on the buffer if the buffer is already
364 * being journaled: if there is no revoke pending on the buffer, then we
365 * don't do anything here.
366 *
367 * This would break if it were possible for a buffer to be revoked and
368 * discarded, and then reallocated within the same transaction.  In such
369 * a case we would have lost the revoked bit, but when we arrived here
370 * the second time we would still have a pending revoke to cancel.  So,
371 * do not trust the Revoked bit on buffers unless RevokeValid is also
372 * set.
373 *
374 * The caller must have the journal locked.
375 */
376int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
377{
378	struct jbd_revoke_record_s *record;
379	journal_t *journal = handle->h_transaction->t_journal;
380	int need_cancel;
381	int did_revoke = 0;	/* akpm: debug */
382	struct buffer_head *bh = jh2bh(jh);
383
384	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
385
386	/* Is the existing Revoke bit valid?  If so, we trust it, and
387	 * only perform the full cancel if the revoke bit is set.  If
388	 * not, we can't trust the revoke bit, and we need to do the
389	 * full search for a revoke record. */
390	if (test_and_set_bit(BH_RevokeValid, &bh->b_state))
391		need_cancel = (test_and_clear_bit(BH_Revoked, &bh->b_state));
392	else {
393		need_cancel = 1;
394		clear_bit(BH_Revoked, &bh->b_state);
395	}
396
397	if (need_cancel) {
398		record = find_revoke_record(journal, bh->b_blocknr);
399		if (record) {
400			jbd_debug(4, "cancelled existing revoke on "
401				  "blocknr %lu\n", bh->b_blocknr);
402			list_del(&record->hash);
403			kmem_cache_free(revoke_record_cache, record);
404			did_revoke = 1;
405		}
406	}
407
408#ifdef JBD_EXPENSIVE_CHECKING
409	/* There better not be one left behind by now! */
410	record = find_revoke_record(journal, bh->b_blocknr);
411	J_ASSERT_JH(jh, record == NULL);
412#endif
413
414	/* Finally, have we just cleared revoke on an unhashed
415	 * buffer_head?  If so, we'd better make sure we clear the
416	 * revoked status on any hashed alias too, otherwise the revoke
417	 * state machine will get very upset later on. */
418	if (need_cancel && !bh->b_pprev) {
419		struct buffer_head *bh2;
420		bh2 = get_hash_table(bh->b_dev, bh->b_blocknr, bh->b_size);
421		if (bh2) {
422			clear_bit(BH_Revoked, &bh2->b_state);
423			__brelse(bh2);
424		}
425	}
426
427	return did_revoke;
428}
429
430
431/*
432 * Write revoke records to the journal for all entries in the current
433 * revoke hash, deleting the entries as we go.
434 *
435 * Called with the journal lock held.
436 */
437
438void journal_write_revoke_records(journal_t *journal,
439				  transaction_t *transaction)
440{
441	struct journal_head *descriptor;
442	struct jbd_revoke_record_s *record;
443	struct jbd_revoke_table_s *revoke;
444	struct list_head *hash_list;
445	int i, offset, count;
446
447	descriptor = NULL;
448	offset = 0;
449	count = 0;
450	revoke = journal->j_revoke;
451
452	for (i = 0; i < revoke->hash_size; i++) {
453		hash_list = &revoke->hash_table[i];
454
455		while (!list_empty(hash_list)) {
456			record = (struct jbd_revoke_record_s *)
457				hash_list->next;
458			write_one_revoke_record(journal, transaction,
459						&descriptor, &offset,
460						record);
461			count++;
462			list_del(&record->hash);
463			kmem_cache_free(revoke_record_cache, record);
464		}
465	}
466	if (descriptor)
467		flush_descriptor(journal, descriptor, offset);
468	jbd_debug(1, "Wrote %d revoke records\n", count);
469}
470
471/*
472 * Write out one revoke record.  We need to create a new descriptor
473 * block if the old one is full or if we have not already created one.
474 */
475
476static void write_one_revoke_record(journal_t *journal,
477				    transaction_t *transaction,
478				    struct journal_head **descriptorp,
479				    int *offsetp,
480				    struct jbd_revoke_record_s *record)
481{
482	struct journal_head *descriptor;
483	int offset;
484	journal_header_t *header;
485
486	/* If we are already aborting, this all becomes a noop.  We
487           still need to go round the loop in
488           journal_write_revoke_records in order to free all of the
489           revoke records: only the IO to the journal is omitted. */
490	if (is_journal_aborted(journal))
491		return;
492
493	descriptor = *descriptorp;
494	offset = *offsetp;
495
496	/* Make sure we have a descriptor with space left for the record */
497	if (descriptor) {
498		if (offset == journal->j_blocksize) {
499			flush_descriptor(journal, descriptor, offset);
500			descriptor = NULL;
501		}
502	}
503
504	if (!descriptor) {
505		descriptor = journal_get_descriptor_buffer(journal);
506		if (!descriptor)
507			return;
508		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
509		header->h_magic     = htonl(JFS_MAGIC_NUMBER);
510		header->h_blocktype = htonl(JFS_REVOKE_BLOCK);
511		header->h_sequence  = htonl(transaction->t_tid);
512
513		/* Record it so that we can wait for IO completion later */
514		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
515		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
516
517		offset = sizeof(journal_revoke_header_t);
518		*descriptorp = descriptor;
519	}
520
521	* ((unsigned int *)(&jh2bh(descriptor)->b_data[offset])) =
522		htonl(record->blocknr);
523	offset += 4;
524	*offsetp = offset;
525}
526
527/*
528 * Flush a revoke descriptor out to the journal.  If we are aborting,
529 * this is a noop; otherwise we are generating a buffer which needs to
530 * be waited for during commit, so it has to go onto the appropriate
531 * journal buffer list.
532 */
533
534static void flush_descriptor(journal_t *journal,
535			     struct journal_head *descriptor,
536			     int offset)
537{
538	journal_revoke_header_t *header;
539
540	if (is_journal_aborted(journal)) {
541		JBUFFER_TRACE(descriptor, "brelse");
542		__brelse(jh2bh(descriptor));
543		return;
544	}
545
546	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
547	header->r_count = htonl(offset);
548	set_bit(BH_JWrite, &jh2bh(descriptor)->b_state);
549	{
550		struct buffer_head *bh = jh2bh(descriptor);
551		BUFFER_TRACE(bh, "write");
552		ll_rw_block (WRITE, 1, &bh);
553	}
554}
555
556#endif
557
558/*
559 * Revoke support for recovery.
560 *
561 * Recovery needs to be able to:
562 *
563 *  record all revoke records, including the tid of the latest instance
564 *  of each revoke in the journal
565 *
566 *  check whether a given block in a given transaction should be replayed
567 *  (ie. has not been revoked by a revoke record in that or a subsequent
568 *  transaction)
569 *
570 *  empty the revoke table after recovery.
571 */
572
573/*
574 * First, setting revoke records.  We create a new revoke record for
575 * every block ever revoked in the log as we scan it for recovery, and
576 * we update the existing records if we find multiple revokes for a
577 * single block.
578 */
579
580int journal_set_revoke(journal_t *journal,
581		       unsigned long blocknr,
582		       tid_t sequence)
583{
584	struct jbd_revoke_record_s *record;
585
586	record = find_revoke_record(journal, blocknr);
587	if (record) {
588		/* If we have multiple occurences, only record the
589		 * latest sequence number in the hashed record */
590		if (tid_gt(sequence, record->sequence))
591			record->sequence = sequence;
592		return 0;
593	}
594	return insert_revoke_hash(journal, blocknr, sequence);
595}
596
597/*
598 * Test revoke records.  For a given block referenced in the log, has
599 * that block been revoked?  A revoke record with a given transaction
600 * sequence number revokes all blocks in that transaction and earlier
601 * ones, but later transactions still need replayed.
602 */
603
604int journal_test_revoke(journal_t *journal,
605			unsigned long blocknr,
606			tid_t sequence)
607{
608	struct jbd_revoke_record_s *record;
609
610	record = find_revoke_record(journal, blocknr);
611	if (!record)
612		return 0;
613	if (tid_gt(sequence, record->sequence))
614		return 0;
615	return 1;
616}
617
618/*
619 * Finally, once recovery is over, we need to clear the revoke table so
620 * that it can be reused by the running filesystem.
621 */
622
623void journal_clear_revoke(journal_t *journal)
624{
625	int i;
626	struct list_head *hash_list;
627	struct jbd_revoke_record_s *record;
628	struct jbd_revoke_table_s *revoke;
629
630	revoke = journal->j_revoke;
631
632	for (i = 0; i < revoke->hash_size; i++) {
633		hash_list = &revoke->hash_table[i];
634		while (!list_empty(hash_list)) {
635			record = (struct jbd_revoke_record_s*) hash_list->next;
636			list_del(&record->hash);
637			kmem_cache_free(revoke_record_cache, record);
638		}
639	}
640}
641
642