Translation.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_TRANSLATION_H
11#define EIGEN_TRANSLATION_H
12
13namespace Eigen {
14
15/** \geometry_module \ingroup Geometry_Module
16  *
17  * \class Translation
18  *
19  * \brief Represents a translation transformation
20  *
21  * \param _Scalar the scalar type, i.e., the type of the coefficients.
22  * \param _Dim the  dimension of the space, can be a compile time value or Dynamic
23  *
24  * \note This class is not aimed to be used to store a translation transformation,
25  * but rather to make easier the constructions and updates of Transform objects.
26  *
27  * \sa class Scaling, class Transform
28  */
29template<typename _Scalar, int _Dim>
30class Translation
31{
32public:
33  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
34  /** dimension of the space */
35  enum { Dim = _Dim };
36  /** the scalar type of the coefficients */
37  typedef _Scalar Scalar;
38  /** corresponding vector type */
39  typedef Matrix<Scalar,Dim,1> VectorType;
40  /** corresponding linear transformation matrix type */
41  typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
42  /** corresponding affine transformation type */
43  typedef Transform<Scalar,Dim,Affine> AffineTransformType;
44  /** corresponding isometric transformation type */
45  typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
46
47protected:
48
49  VectorType m_coeffs;
50
51public:
52
53  /** Default constructor without initialization. */
54  Translation() {}
55  /**  */
56  inline Translation(const Scalar& sx, const Scalar& sy)
57  {
58    eigen_assert(Dim==2);
59    m_coeffs.x() = sx;
60    m_coeffs.y() = sy;
61  }
62  /**  */
63  inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
64  {
65    eigen_assert(Dim==3);
66    m_coeffs.x() = sx;
67    m_coeffs.y() = sy;
68    m_coeffs.z() = sz;
69  }
70  /** Constructs and initialize the translation transformation from a vector of translation coefficients */
71  explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
72
73  /** \brief Retruns the x-translation by value. **/
74  inline Scalar x() const { return m_coeffs.x(); }
75  /** \brief Retruns the y-translation by value. **/
76  inline Scalar y() const { return m_coeffs.y(); }
77  /** \brief Retruns the z-translation by value. **/
78  inline Scalar z() const { return m_coeffs.z(); }
79
80  /** \brief Retruns the x-translation as a reference. **/
81  inline Scalar& x() { return m_coeffs.x(); }
82  /** \brief Retruns the y-translation as a reference. **/
83  inline Scalar& y() { return m_coeffs.y(); }
84  /** \brief Retruns the z-translation as a reference. **/
85  inline Scalar& z() { return m_coeffs.z(); }
86
87  const VectorType& vector() const { return m_coeffs; }
88  VectorType& vector() { return m_coeffs; }
89
90  const VectorType& translation() const { return m_coeffs; }
91  VectorType& translation() { return m_coeffs; }
92
93  /** Concatenates two translation */
94  inline Translation operator* (const Translation& other) const
95  { return Translation(m_coeffs + other.m_coeffs); }
96
97  /** Concatenates a translation and a uniform scaling */
98  inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
99
100  /** Concatenates a translation and a linear transformation */
101  template<typename OtherDerived>
102  inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
103
104  /** Concatenates a translation and a rotation */
105  template<typename Derived>
106  inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
107  { return *this * IsometryTransformType(r); }
108
109  /** \returns the concatenation of a linear transformation \a l with the translation \a t */
110  // its a nightmare to define a templated friend function outside its declaration
111  template<typename OtherDerived> friend
112  inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
113  {
114    AffineTransformType res;
115    res.matrix().setZero();
116    res.linear() = linear.derived();
117    res.translation() = linear.derived() * t.m_coeffs;
118    res.matrix().row(Dim).setZero();
119    res(Dim,Dim) = Scalar(1);
120    return res;
121  }
122
123  /** Concatenates a translation and a transformation */
124  template<int Mode, int Options>
125  inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
126  {
127    Transform<Scalar,Dim,Mode> res = t;
128    res.pretranslate(m_coeffs);
129    return res;
130  }
131
132  /** Applies translation to vector */
133  inline VectorType operator* (const VectorType& other) const
134  { return m_coeffs + other; }
135
136  /** \returns the inverse translation (opposite) */
137  Translation inverse() const { return Translation(-m_coeffs); }
138
139  Translation& operator=(const Translation& other)
140  {
141    m_coeffs = other.m_coeffs;
142    return *this;
143  }
144
145  static const Translation Identity() { return Translation(VectorType::Zero()); }
146
147  /** \returns \c *this with scalar type casted to \a NewScalarType
148    *
149    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
150    * then this function smartly returns a const reference to \c *this.
151    */
152  template<typename NewScalarType>
153  inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
154  { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
155
156  /** Copy constructor with scalar type conversion */
157  template<typename OtherScalarType>
158  inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
159  { m_coeffs = other.vector().template cast<Scalar>(); }
160
161  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
162    * determined by \a prec.
163    *
164    * \sa MatrixBase::isApprox() */
165  bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
166  { return m_coeffs.isApprox(other.m_coeffs, prec); }
167
168};
169
170/** \addtogroup Geometry_Module */
171//@{
172typedef Translation<float, 2> Translation2f;
173typedef Translation<double,2> Translation2d;
174typedef Translation<float, 3> Translation3f;
175typedef Translation<double,3> Translation3d;
176//@}
177
178template<typename Scalar, int Dim>
179inline typename Translation<Scalar,Dim>::AffineTransformType
180Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
181{
182  AffineTransformType res;
183  res.matrix().setZero();
184  res.linear().diagonal().fill(other.factor());
185  res.translation() = m_coeffs;
186  res(Dim,Dim) = Scalar(1);
187  return res;
188}
189
190template<typename Scalar, int Dim>
191template<typename OtherDerived>
192inline typename Translation<Scalar,Dim>::AffineTransformType
193Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
194{
195  AffineTransformType res;
196  res.matrix().setZero();
197  res.linear() = linear.derived();
198  res.translation() = m_coeffs;
199  res.matrix().row(Dim).setZero();
200  res(Dim,Dim) = Scalar(1);
201  return res;
202}
203
204} // end namespace Eigen
205
206#endif // EIGEN_TRANSLATION_H
207