pointInsidePen.py revision ac1b4359467ca3deab03186a15eae1d55eb35567
1"""fontTools.pens.pointInsidePen -- Pen implementing "point inside" testing 2for shapes. 3""" 4 5from fontTools.pens.basePen import BasePen 6from fontTools.misc.bezierTools import solveQuadratic, solveCubic 7 8 9__all__ = ["PointInsidePen"] 10 11 12# working around floating point errors 13EPSILON = 1e-10 14ONE_PLUS_EPSILON = 1 + EPSILON 15ZERO_MINUS_EPSILON = 0 - EPSILON 16 17 18class PointInsidePen(BasePen): 19 20 """This pen implements "point inside" testing: to test whether 21 a given point lies inside the shape (black) or outside (white). 22 Instances of this class can be recycled, as long as the 23 setTestPoint() method is used to set the new point to test. 24 25 Typical usage: 26 27 pen = PointInsidePen(glyphSet, (100, 200)) 28 outline.draw(pen) 29 isInside = pen.getResult() 30 31 Both the even-odd algorithm and the non-zero-winding-rule 32 algorithm are implemented. The latter is the default, specify 33 True for the evenOdd argument of __init__ or setTestPoint 34 to use the even-odd algorithm. 35 """ 36 37 # This class implements the classical "shoot a ray from the test point 38 # to infinity and count how many times it intersects the outline" (as well 39 # as the non-zero variant, where the counter is incremented if the outline 40 # intersects the ray in one direction and decremented if it intersects in 41 # the other direction). 42 # I found an amazingly clear explanation of the subtleties involved in 43 # implementing this correctly for polygons here: 44 # http://graphics.cs.ucdavis.edu/~okreylos/TAship/Spring2000/PointInPolygon.html 45 # I extended the principles outlined on that page to curves. 46 47 def __init__(self, glyphSet, testPoint, evenOdd=0): 48 BasePen.__init__(self, glyphSet) 49 self.setTestPoint(testPoint, evenOdd) 50 51 def setTestPoint(self, testPoint, evenOdd=0): 52 """Set the point to test. Call this _before_ the outline gets drawn.""" 53 self.testPoint = testPoint 54 self.evenOdd = evenOdd 55 self.firstPoint = None 56 self.intersectionCount = 0 57 58 def getResult(self): 59 """After the shape has been drawn, getResult() returns True if the test 60 point lies within the (black) shape, and False if it doesn't. 61 """ 62 if self.firstPoint is not None: 63 # always make sure the sub paths are closed; the algorithm only works 64 # for closed paths. 65 self.closePath() 66 if self.evenOdd: 67 result = self.intersectionCount % 2 68 else: 69 result = self.intersectionCount 70 return not not result 71 72 def _addIntersection(self, goingUp): 73 if self.evenOdd or goingUp: 74 self.intersectionCount += 1 75 else: 76 self.intersectionCount -= 1 77 78 def _moveTo(self, point): 79 if self.firstPoint is not None: 80 # always make sure the sub paths are closed; the algorithm only works 81 # for closed paths. 82 self.closePath() 83 self.firstPoint = point 84 85 def _lineTo(self, point): 86 x, y = self.testPoint 87 x1, y1 = self._getCurrentPoint() 88 x2, y2 = point 89 90 if x1 < x and x2 < x: 91 return 92 if y1 < y and y2 < y: 93 return 94 if y1 >= y and y2 >= y: 95 return 96 97 dx = x2 - x1 98 dy = y2 - y1 99 t = float(y - y1) / dy 100 ix = dx * t + x1 101 if ix < x: 102 return 103 self._addIntersection(y2 > y1) 104 105 def _curveToOne(self, bcp1, bcp2, point): 106 x, y = self.testPoint 107 x1, y1 = self._getCurrentPoint() 108 x2, y2 = bcp1 109 x3, y3 = bcp2 110 x4, y4 = point 111 112 if x1 < x and x2 < x and x3 < x and x4 < x: 113 return 114 if y1 < y and y2 < y and y3 < y and y4 < y: 115 return 116 if y1 >= y and y2 >= y and y3 >= y and y4 >= y: 117 return 118 119 dy = y1 120 cy = (y2 - dy) * 3.0 121 by = (y3 - y2) * 3.0 - cy 122 ay = y4 - dy - cy - by 123 solutions = sorted(solveCubic(ay, by, cy, dy - y)) 124 solutions = [t for t in solutions if ZERO_MINUS_EPSILON <= t <= ONE_PLUS_EPSILON] 125 if not solutions: 126 return 127 128 dx = x1 129 cx = (x2 - dx) * 3.0 130 bx = (x3 - x2) * 3.0 - cx 131 ax = x4 - dx - cx - bx 132 133 above = y1 >= y 134 lastT = None 135 for t in solutions: 136 if t == lastT: 137 continue 138 lastT = t 139 t2 = t * t 140 t3 = t2 * t 141 142 direction = 3*ay*t2 + 2*by*t + cy 143 if direction == 0.0: 144 direction = 6*ay*t + 2*by 145 if direction == 0.0: 146 direction = ay 147 goingUp = direction > 0.0 148 149 xt = ax*t3 + bx*t2 + cx*t + dx 150 if xt < x: 151 above = goingUp 152 continue 153 154 if t == 0.0: 155 if not goingUp: 156 self._addIntersection(goingUp) 157 elif t == 1.0: 158 if not above: 159 self._addIntersection(goingUp) 160 else: 161 if above != goingUp: 162 self._addIntersection(goingUp) 163 #else: 164 # we're not really intersecting, merely touching the 'top' 165 above = goingUp 166 167 def _qCurveToOne_unfinished(self, bcp, point): 168 # XXX need to finish this, for now doing it through a cubic 169 # (BasePen implements _qCurveTo in terms of a cubic) will 170 # have to do. 171 x, y = self.testPoint 172 x1, y1 = self._getCurrentPoint() 173 x2, y2 = bcp 174 x3, y3 = point 175 c = y1 176 b = (y2 - c) * 2.0 177 a = y3 - c - b 178 solutions = sorted(solveQuadratic(a, b, c - y)) 179 solutions = [t for t in solutions if ZERO_MINUS_EPSILON <= t <= ONE_PLUS_EPSILON] 180 if not solutions: 181 return 182 XXX 183 184 def _closePath(self): 185 if self._getCurrentPoint() != self.firstPoint: 186 self.lineTo(self.firstPoint) 187 self.firstPoint = None 188 189 _endPath = _closePath 190