1/***************************************************************************/
2/*                                                                         */
3/*  ftgrays.c                                                              */
4/*                                                                         */
5/*    A new `perfect' anti-aliasing renderer (body).                       */
6/*                                                                         */
7/*  Copyright 2000-2015 by                                                 */
8/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9/*                                                                         */
10/*  This file is part of the FreeType project, and may only be used,       */
11/*  modified, and distributed under the terms of the FreeType project      */
12/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13/*  this file you indicate that you have read the license and              */
14/*  understand and accept it fully.                                        */
15/*                                                                         */
16/***************************************************************************/
17
18  /*************************************************************************/
19  /*                                                                       */
20  /* This file can be compiled without the rest of the FreeType engine, by */
21  /* defining the _STANDALONE_ macro when compiling it.  You also need to  */
22  /* put the files `ftgrays.h' and `ftimage.h' into the current            */
23  /* compilation directory.  Typically, you could do something like        */
24  /*                                                                       */
25  /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
26  /*                                                                       */
27  /* - copy `include/ftimage.h' and `src/smooth/ftgrays.h' to the same     */
28  /*   directory                                                           */
29  /*                                                                       */
30  /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in        */
31  /*                                                                       */
32  /*     cc -c -D_STANDALONE_ ftgrays.c                                    */
33  /*                                                                       */
34  /* The renderer can be initialized with a call to                        */
35  /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
36  /* with a call to `ft_gray_raster.raster_render'.                        */
37  /*                                                                       */
38  /* See the comments and documentation in the file `ftimage.h' for more   */
39  /* details on how the raster works.                                      */
40  /*                                                                       */
41  /*************************************************************************/
42
43  /*************************************************************************/
44  /*                                                                       */
45  /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
46  /* algorithm used here is _very_ different from the one in the standard  */
47  /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
48  /* coverage of the outline on each pixel cell.                           */
49  /*                                                                       */
50  /* It is based on ideas that I initially found in Raph Levien's          */
51  /* excellent LibArt graphics library (see http://www.levien.com/libart   */
52  /* for more information, though the web pages do not tell anything       */
53  /* about the renderer; you'll have to dive into the source code to       */
54  /* understand how it works).                                             */
55  /*                                                                       */
56  /* Note, however, that this is a _very_ different implementation         */
57  /* compared to Raph's.  Coverage information is stored in a very         */
58  /* different way, and I don't use sorted vector paths.  Also, it doesn't */
59  /* use floating point values.                                            */
60  /*                                                                       */
61  /* This renderer has the following advantages:                           */
62  /*                                                                       */
63  /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
64  /*   callback function that will be called by the renderer to draw gray  */
65  /*   spans on any target surface.  You can thus do direct composition on */
66  /*   any kind of bitmap, provided that you give the renderer the right   */
67  /*   callback.                                                           */
68  /*                                                                       */
69  /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
70  /*   each pixel cell.                                                    */
71  /*                                                                       */
72  /* - It performs a single pass on the outline (the `standard' FT2        */
73  /*   renderer makes two passes).                                         */
74  /*                                                                       */
75  /* - It can easily be modified to render to _any_ number of gray levels  */
76  /*   cheaply.                                                            */
77  /*                                                                       */
78  /* - For small (< 20) pixel sizes, it is faster than the standard        */
79  /*   renderer.                                                           */
80  /*                                                                       */
81  /*************************************************************************/
82
83
84  /*************************************************************************/
85  /*                                                                       */
86  /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
87  /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
88  /* messages during execution.                                            */
89  /*                                                                       */
90#undef  FT_COMPONENT
91#define FT_COMPONENT  trace_smooth
92
93
94#ifdef _STANDALONE_
95
96
97  /* The size in bytes of the render pool used by the scan-line converter  */
98  /* to do all of its work.                                                */
99#define FT_RENDER_POOL_SIZE  16384L
100
101
102  /* Auxiliary macros for token concatenation. */
103#define FT_ERR_XCAT( x, y )  x ## y
104#define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
105
106#define FT_BEGIN_STMNT  do {
107#define FT_END_STMNT    } while ( 0 )
108
109#define FT_MAX( a, b )  ( (a) > (b) ? (a) : (b) )
110#define FT_ABS( a )     ( (a) < 0 ? -(a) : (a) )
111
112
113  /*
114   *  Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
115   *  algorithm.  We use alpha = 1, beta = 3/8, giving us results with a
116   *  largest error less than 7% compared to the exact value.
117   */
118#define FT_HYPOT( x, y )                 \
119          ( x = FT_ABS( x ),             \
120            y = FT_ABS( y ),             \
121            x > y ? x + ( 3 * y >> 3 )   \
122                  : y + ( 3 * x >> 3 ) )
123
124
125  /* define this to dump debugging information */
126/* #define FT_DEBUG_LEVEL_TRACE */
127
128
129#ifdef FT_DEBUG_LEVEL_TRACE
130#include <stdio.h>
131#include <stdarg.h>
132#endif
133
134#include <stddef.h>
135#include <string.h>
136#include <setjmp.h>
137#include <limits.h>
138#define FT_UINT_MAX  UINT_MAX
139#define FT_INT_MAX   INT_MAX
140
141#define ft_memset   memset
142
143#define ft_setjmp   setjmp
144#define ft_longjmp  longjmp
145#define ft_jmp_buf  jmp_buf
146
147typedef ptrdiff_t  FT_PtrDist;
148
149
150#define ErrRaster_Invalid_Mode      -2
151#define ErrRaster_Invalid_Outline   -1
152#define ErrRaster_Invalid_Argument  -3
153#define ErrRaster_Memory_Overflow   -4
154
155#define FT_BEGIN_HEADER
156#define FT_END_HEADER
157
158#include "ftimage.h"
159#include "ftgrays.h"
160
161
162  /* This macro is used to indicate that a function parameter is unused. */
163  /* Its purpose is simply to reduce compiler warnings.  Note also that  */
164  /* simply defining it as `(void)x' doesn't avoid warnings with certain */
165  /* ANSI compilers (e.g. LCC).                                          */
166#define FT_UNUSED( x )  (x) = (x)
167
168
169  /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
170
171#ifdef FT_DEBUG_LEVEL_TRACE
172
173  void
174  FT_Message( const char*  fmt,
175              ... )
176  {
177    va_list  ap;
178
179
180    va_start( ap, fmt );
181    vfprintf( stderr, fmt, ap );
182    va_end( ap );
183  }
184
185
186  /* empty function useful for setting a breakpoint to catch errors */
187  int
188  FT_Throw( int          error,
189            int          line,
190            const char*  file )
191  {
192    FT_UNUSED( error );
193    FT_UNUSED( line );
194    FT_UNUSED( file );
195
196    return 0;
197  }
198
199
200  /* we don't handle tracing levels in stand-alone mode; */
201#ifndef FT_TRACE5
202#define FT_TRACE5( varformat )  FT_Message varformat
203#endif
204#ifndef FT_TRACE7
205#define FT_TRACE7( varformat )  FT_Message varformat
206#endif
207#ifndef FT_ERROR
208#define FT_ERROR( varformat )   FT_Message varformat
209#endif
210
211#define FT_THROW( e )                               \
212          ( FT_Throw( FT_ERR_CAT( ErrRaster, e ),   \
213                      __LINE__,                     \
214                      __FILE__ )                  | \
215            FT_ERR_CAT( ErrRaster, e )            )
216
217#else /* !FT_DEBUG_LEVEL_TRACE */
218
219#define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
220#define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
221#define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
222#define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
223
224
225#endif /* !FT_DEBUG_LEVEL_TRACE */
226
227
228#define FT_DEFINE_OUTLINE_FUNCS( class_,               \
229                                 move_to_, line_to_,   \
230                                 conic_to_, cubic_to_, \
231                                 shift_, delta_ )      \
232          static const FT_Outline_Funcs class_ =       \
233          {                                            \
234            move_to_,                                  \
235            line_to_,                                  \
236            conic_to_,                                 \
237            cubic_to_,                                 \
238            shift_,                                    \
239            delta_                                     \
240         };
241
242#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
243                                raster_new_, raster_reset_,       \
244                                raster_set_mode_, raster_render_, \
245                                raster_done_ )                    \
246          const FT_Raster_Funcs class_ =                          \
247          {                                                       \
248            glyph_format_,                                        \
249            raster_new_,                                          \
250            raster_reset_,                                        \
251            raster_set_mode_,                                     \
252            raster_render_,                                       \
253            raster_done_                                          \
254         };
255
256
257#else /* !_STANDALONE_ */
258
259
260#include <ft2build.h>
261#include "ftgrays.h"
262#include FT_INTERNAL_OBJECTS_H
263#include FT_INTERNAL_DEBUG_H
264#include FT_OUTLINE_H
265
266#include "ftsmerrs.h"
267
268#include "ftspic.h"
269
270#define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
271#define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
272#define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
273
274
275#endif /* !_STANDALONE_ */
276
277
278#ifndef FT_MEM_SET
279#define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
280#endif
281
282#ifndef FT_MEM_ZERO
283#define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
284#endif
285
286  /* as usual, for the speed hungry :-) */
287
288#undef RAS_ARG
289#undef RAS_ARG_
290#undef RAS_VAR
291#undef RAS_VAR_
292
293#ifndef FT_STATIC_RASTER
294
295#define RAS_ARG   gray_PWorker  worker
296#define RAS_ARG_  gray_PWorker  worker,
297
298#define RAS_VAR   worker
299#define RAS_VAR_  worker,
300
301#else /* FT_STATIC_RASTER */
302
303#define RAS_ARG   /* empty */
304#define RAS_ARG_  /* empty */
305#define RAS_VAR   /* empty */
306#define RAS_VAR_  /* empty */
307
308#endif /* FT_STATIC_RASTER */
309
310
311  /* must be at least 6 bits! */
312#define PIXEL_BITS  8
313
314#undef FLOOR
315#undef CEILING
316#undef TRUNC
317#undef SCALED
318
319#define ONE_PIXEL       ( 1L << PIXEL_BITS )
320#define PIXEL_MASK      ( -1L << PIXEL_BITS )
321#define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
322#define SUBPIXELS( x )  ( (TPos)(x) << PIXEL_BITS )
323#define FLOOR( x )      ( (x) & -ONE_PIXEL )
324#define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
325#define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
326
327#if PIXEL_BITS >= 6
328#define UPSCALE( x )    ( (x) << ( PIXEL_BITS - 6 ) )
329#define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
330#else
331#define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
332#define DOWNSCALE( x )  ( (x) << ( 6 - PIXEL_BITS ) )
333#endif
334
335
336  /* Compute `dividend / divisor' and return both its quotient and     */
337  /* remainder, cast to a specific type.  This macro also ensures that */
338  /* the remainder is always positive.                                 */
339#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
340  FT_BEGIN_STMNT                                                   \
341    (quotient)  = (type)( (dividend) / (divisor) );                \
342    (remainder) = (type)( (dividend) % (divisor) );                \
343    if ( (remainder) < 0 )                                         \
344    {                                                              \
345      (quotient)--;                                                \
346      (remainder) += (type)(divisor);                              \
347    }                                                              \
348  FT_END_STMNT
349
350#ifdef  __arm__
351  /* Work around a bug specific to GCC which make the compiler fail to */
352  /* optimize a division and modulo operation on the same parameters   */
353  /* into a single call to `__aeabi_idivmod'.  See                     */
354  /*                                                                   */
355  /*  http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721                */
356#undef FT_DIV_MOD
357#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
358  FT_BEGIN_STMNT                                                   \
359    (quotient)  = (type)( (dividend) / (divisor) );                \
360    (remainder) = (type)( (dividend) - (quotient) * (divisor) );   \
361    if ( (remainder) < 0 )                                         \
362    {                                                              \
363      (quotient)--;                                                \
364      (remainder) += (type)(divisor);                              \
365    }                                                              \
366  FT_END_STMNT
367#endif /* __arm__ */
368
369
370  /*************************************************************************/
371  /*                                                                       */
372  /*   TYPE DEFINITIONS                                                    */
373  /*                                                                       */
374
375  /* don't change the following types to FT_Int or FT_Pos, since we might */
376  /* need to define them to "float" or "double" when experimenting with   */
377  /* new algorithms                                                       */
378
379  typedef long  TCoord;   /* integer scanline/pixel coordinate */
380  typedef long  TPos;     /* sub-pixel coordinate              */
381
382  /* determine the type used to store cell areas.  This normally takes at */
383  /* least PIXEL_BITS*2 + 1 bits.  On 16-bit systems, we need to use      */
384  /* `long' instead of `int', otherwise bad things happen                 */
385
386#if PIXEL_BITS <= 7
387
388  typedef int  TArea;
389
390#else /* PIXEL_BITS >= 8 */
391
392  /* approximately determine the size of integers using an ANSI-C header */
393#if FT_UINT_MAX == 0xFFFFU
394  typedef long  TArea;
395#else
396  typedef int   TArea;
397#endif
398
399#endif /* PIXEL_BITS >= 8 */
400
401
402  /* maximum number of gray spans in a call to the span callback */
403#define FT_MAX_GRAY_SPANS  32
404
405
406  typedef struct TCell_*  PCell;
407
408  typedef struct  TCell_
409  {
410    TPos    x;     /* same with gray_TWorker.ex    */
411    TCoord  cover; /* same with gray_TWorker.cover */
412    TArea   area;
413    PCell   next;
414
415  } TCell;
416
417
418#if defined( _MSC_VER )      /* Visual C++ (and Intel C++) */
419  /* We disable the warning `structure was padded due to   */
420  /* __declspec(align())' in order to compile cleanly with */
421  /* the maximum level of warnings.                        */
422#pragma warning( push )
423#pragma warning( disable : 4324 )
424#endif /* _MSC_VER */
425
426  typedef struct  gray_TWorker_
427  {
428    ft_jmp_buf  jump_buffer;
429
430    TCoord  ex, ey;
431    TPos    min_ex, max_ex;
432    TPos    min_ey, max_ey;
433    TPos    count_ex, count_ey;
434
435    TArea   area;
436    TCoord  cover;
437    int     invalid;
438
439    PCell       cells;
440    FT_PtrDist  max_cells;
441    FT_PtrDist  num_cells;
442
443    TCoord  cx, cy;
444    TPos    x,  y;
445
446    TPos    last_ey;
447
448    FT_Vector   bez_stack[32 * 3 + 1];
449    int         lev_stack[32];
450
451    FT_Outline  outline;
452    FT_Bitmap   target;
453    FT_BBox     clip_box;
454
455    FT_Span     gray_spans[FT_MAX_GRAY_SPANS];
456    int         num_gray_spans;
457
458    FT_Raster_Span_Func  render_span;
459    void*                render_span_data;
460    int                  span_y;
461
462    int  band_size;
463    int  band_shoot;
464
465    void*       buffer;
466    long        buffer_size;
467
468    PCell*     ycells;
469    TPos       ycount;
470
471  } gray_TWorker, *gray_PWorker;
472
473#if defined( _MSC_VER )
474#pragma warning( pop )
475#endif
476
477
478#ifndef FT_STATIC_RASTER
479#define ras  (*worker)
480#else
481  static gray_TWorker  ras;
482#endif
483
484
485  typedef struct gray_TRaster_
486  {
487    void*         memory;
488
489  } gray_TRaster, *gray_PRaster;
490
491
492
493  /*************************************************************************/
494  /*                                                                       */
495  /* Initialize the cells table.                                           */
496  /*                                                                       */
497  static void
498  gray_init_cells( RAS_ARG_ void*  buffer,
499                            long   byte_size )
500  {
501    ras.buffer      = buffer;
502    ras.buffer_size = byte_size;
503
504    ras.ycells      = (PCell*) buffer;
505    ras.cells       = NULL;
506    ras.max_cells   = 0;
507    ras.num_cells   = 0;
508    ras.area        = 0;
509    ras.cover       = 0;
510    ras.invalid     = 1;
511  }
512
513
514  /*************************************************************************/
515  /*                                                                       */
516  /* Compute the outline bounding box.                                     */
517  /*                                                                       */
518  static void
519  gray_compute_cbox( RAS_ARG )
520  {
521    FT_Outline*  outline = &ras.outline;
522    FT_Vector*   vec     = outline->points;
523    FT_Vector*   limit   = vec + outline->n_points;
524
525
526    if ( outline->n_points <= 0 )
527    {
528      ras.min_ex = ras.max_ex = 0;
529      ras.min_ey = ras.max_ey = 0;
530      return;
531    }
532
533    ras.min_ex = ras.max_ex = vec->x;
534    ras.min_ey = ras.max_ey = vec->y;
535
536    vec++;
537
538    for ( ; vec < limit; vec++ )
539    {
540      TPos  x = vec->x;
541      TPos  y = vec->y;
542
543
544      if ( x < ras.min_ex ) ras.min_ex = x;
545      if ( x > ras.max_ex ) ras.max_ex = x;
546      if ( y < ras.min_ey ) ras.min_ey = y;
547      if ( y > ras.max_ey ) ras.max_ey = y;
548    }
549
550    /* truncate the bounding box to integer pixels */
551    ras.min_ex = ras.min_ex >> 6;
552    ras.min_ey = ras.min_ey >> 6;
553    ras.max_ex = ( ras.max_ex + 63 ) >> 6;
554    ras.max_ey = ( ras.max_ey + 63 ) >> 6;
555  }
556
557
558  /*************************************************************************/
559  /*                                                                       */
560  /* Record the current cell in the table.                                 */
561  /*                                                                       */
562  static PCell
563  gray_find_cell( RAS_ARG )
564  {
565    PCell  *pcell, cell;
566    TPos    x = ras.ex;
567
568
569    if ( x > ras.count_ex )
570      x = ras.count_ex;
571
572    pcell = &ras.ycells[ras.ey];
573    for (;;)
574    {
575      cell = *pcell;
576      if ( cell == NULL || cell->x > x )
577        break;
578
579      if ( cell->x == x )
580        goto Exit;
581
582      pcell = &cell->next;
583    }
584
585    if ( ras.num_cells >= ras.max_cells )
586      ft_longjmp( ras.jump_buffer, 1 );
587
588    cell        = ras.cells + ras.num_cells++;
589    cell->x     = x;
590    cell->area  = 0;
591    cell->cover = 0;
592
593    cell->next  = *pcell;
594    *pcell      = cell;
595
596  Exit:
597    return cell;
598  }
599
600
601  static void
602  gray_record_cell( RAS_ARG )
603  {
604    if ( ras.area | ras.cover )
605    {
606      PCell  cell = gray_find_cell( RAS_VAR );
607
608
609      cell->area  += ras.area;
610      cell->cover += ras.cover;
611    }
612  }
613
614
615  /*************************************************************************/
616  /*                                                                       */
617  /* Set the current cell to a new position.                               */
618  /*                                                                       */
619  static void
620  gray_set_cell( RAS_ARG_ TCoord  ex,
621                          TCoord  ey )
622  {
623    /* Move the cell pointer to a new position.  We set the `invalid'      */
624    /* flag to indicate that the cell isn't part of those we're interested */
625    /* in during the render phase.  This means that:                       */
626    /*                                                                     */
627    /* . the new vertical position must be within min_ey..max_ey-1.        */
628    /* . the new horizontal position must be strictly less than max_ex     */
629    /*                                                                     */
630    /* Note that if a cell is to the left of the clipping region, it is    */
631    /* actually set to the (min_ex-1) horizontal position.                 */
632
633    /* All cells that are on the left of the clipping region go to the */
634    /* min_ex - 1 horizontal position.                                 */
635    ey -= ras.min_ey;
636
637    if ( ex > ras.max_ex )
638      ex = ras.max_ex;
639
640    ex -= ras.min_ex;
641    if ( ex < 0 )
642      ex = -1;
643
644    /* are we moving to a different cell ? */
645    if ( ex != ras.ex || ey != ras.ey )
646    {
647      /* record the current one if it is valid */
648      if ( !ras.invalid )
649        gray_record_cell( RAS_VAR );
650
651      ras.area  = 0;
652      ras.cover = 0;
653      ras.ex    = ex;
654      ras.ey    = ey;
655    }
656
657    ras.invalid = ( (unsigned int)ey >= (unsigned int)ras.count_ey ||
658                                  ex >= ras.count_ex               );
659  }
660
661
662  /*************************************************************************/
663  /*                                                                       */
664  /* Start a new contour at a given cell.                                  */
665  /*                                                                       */
666  static void
667  gray_start_cell( RAS_ARG_ TCoord  ex,
668                            TCoord  ey )
669  {
670    if ( ex > ras.max_ex )
671      ex = (TCoord)( ras.max_ex );
672
673    if ( ex < ras.min_ex )
674      ex = (TCoord)( ras.min_ex - 1 );
675
676    ras.area    = 0;
677    ras.cover   = 0;
678    ras.ex      = ex - ras.min_ex;
679    ras.ey      = ey - ras.min_ey;
680    ras.last_ey = SUBPIXELS( ey );
681    ras.invalid = 0;
682
683    gray_set_cell( RAS_VAR_ ex, ey );
684  }
685
686
687  /*************************************************************************/
688  /*                                                                       */
689  /* Render a scanline as one or more cells.                               */
690  /*                                                                       */
691  static void
692  gray_render_scanline( RAS_ARG_ TCoord  ey,
693                                 TPos    x1,
694                                 TCoord  y1,
695                                 TPos    x2,
696                                 TCoord  y2 )
697  {
698    TCoord  ex1, ex2, fx1, fx2, delta, mod;
699    long    p, first, dx;
700    int     incr;
701
702
703    dx = x2 - x1;
704
705    ex1 = TRUNC( x1 );
706    ex2 = TRUNC( x2 );
707    fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
708    fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
709
710    /* trivial case.  Happens often */
711    if ( y1 == y2 )
712    {
713      gray_set_cell( RAS_VAR_ ex2, ey );
714      return;
715    }
716
717    /* everything is located in a single cell.  That is easy! */
718    /*                                                        */
719    if ( ex1 == ex2 )
720    {
721      delta      = y2 - y1;
722      ras.area  += (TArea)(( fx1 + fx2 ) * delta);
723      ras.cover += delta;
724      return;
725    }
726
727    /* ok, we'll have to render a run of adjacent cells on the same */
728    /* scanline...                                                  */
729    /*                                                              */
730    p     = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
731    first = ONE_PIXEL;
732    incr  = 1;
733
734    if ( dx < 0 )
735    {
736      p     = fx1 * ( y2 - y1 );
737      first = 0;
738      incr  = -1;
739      dx    = -dx;
740    }
741
742    FT_DIV_MOD( TCoord, p, dx, delta, mod );
743
744    ras.area  += (TArea)(( fx1 + first ) * delta);
745    ras.cover += delta;
746
747    ex1 += incr;
748    gray_set_cell( RAS_VAR_ ex1, ey );
749    y1  += delta;
750
751    if ( ex1 != ex2 )
752    {
753      TCoord  lift, rem;
754
755
756      p = ONE_PIXEL * ( y2 - y1 + delta );
757      FT_DIV_MOD( TCoord, p, dx, lift, rem );
758
759      mod -= (int)dx;
760
761      while ( ex1 != ex2 )
762      {
763        delta = lift;
764        mod  += rem;
765        if ( mod >= 0 )
766        {
767          mod -= (TCoord)dx;
768          delta++;
769        }
770
771        ras.area  += (TArea)(ONE_PIXEL * delta);
772        ras.cover += delta;
773        y1        += delta;
774        ex1       += incr;
775        gray_set_cell( RAS_VAR_ ex1, ey );
776      }
777    }
778
779    delta      = y2 - y1;
780    ras.area  += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
781    ras.cover += delta;
782  }
783
784
785  /*************************************************************************/
786  /*                                                                       */
787  /* Render a given line as a series of scanlines.                         */
788  /*                                                                       */
789  static void
790  gray_render_line( RAS_ARG_ TPos  to_x,
791                             TPos  to_y )
792  {
793    TCoord  ey1, ey2, fy1, fy2, mod;
794    TPos    dx, dy, x, x2;
795    long    p, first;
796    int     delta, rem, lift, incr;
797
798
799    ey1 = TRUNC( ras.last_ey );
800    ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
801    fy1 = (TCoord)( ras.y - ras.last_ey );
802    fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
803
804    dx = to_x - ras.x;
805    dy = to_y - ras.y;
806
807    /* perform vertical clipping */
808    {
809      TCoord  min, max;
810
811
812      min = ey1;
813      max = ey2;
814      if ( ey1 > ey2 )
815      {
816        min = ey2;
817        max = ey1;
818      }
819      if ( min >= ras.max_ey || max < ras.min_ey )
820        goto End;
821    }
822
823    /* everything is on a single scanline */
824    if ( ey1 == ey2 )
825    {
826      gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
827      goto End;
828    }
829
830    /* vertical line - avoid calling gray_render_scanline */
831    incr = 1;
832
833    if ( dx == 0 )
834    {
835      TCoord  ex     = TRUNC( ras.x );
836      TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
837      TArea   area;
838
839
840      first = ONE_PIXEL;
841      if ( dy < 0 )
842      {
843        first = 0;
844        incr  = -1;
845      }
846
847      delta      = (int)( first - fy1 );
848      ras.area  += (TArea)two_fx * delta;
849      ras.cover += delta;
850      ey1       += incr;
851
852      gray_set_cell( RAS_VAR_ ex, ey1 );
853
854      delta = (int)( first + first - ONE_PIXEL );
855      area  = (TArea)two_fx * delta;
856      while ( ey1 != ey2 )
857      {
858        ras.area  += area;
859        ras.cover += delta;
860        ey1       += incr;
861
862        gray_set_cell( RAS_VAR_ ex, ey1 );
863      }
864
865      delta      = (int)( fy2 - ONE_PIXEL + first );
866      ras.area  += (TArea)two_fx * delta;
867      ras.cover += delta;
868
869      goto End;
870    }
871
872    /* ok, we have to render several scanlines */
873    p     = ( ONE_PIXEL - fy1 ) * dx;
874    first = ONE_PIXEL;
875    incr  = 1;
876
877    if ( dy < 0 )
878    {
879      p     = fy1 * dx;
880      first = 0;
881      incr  = -1;
882      dy    = -dy;
883    }
884
885    FT_DIV_MOD( int, p, dy, delta, mod );
886
887    x = ras.x + delta;
888    gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
889
890    ey1 += incr;
891    gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
892
893    if ( ey1 != ey2 )
894    {
895      p     = ONE_PIXEL * dx;
896      FT_DIV_MOD( int, p, dy, lift, rem );
897      mod -= (int)dy;
898
899      while ( ey1 != ey2 )
900      {
901        delta = lift;
902        mod  += rem;
903        if ( mod >= 0 )
904        {
905          mod -= (int)dy;
906          delta++;
907        }
908
909        x2 = x + delta;
910        gray_render_scanline( RAS_VAR_ ey1, x,
911                                       (TCoord)( ONE_PIXEL - first ), x2,
912                                       (TCoord)first );
913        x = x2;
914
915        ey1 += incr;
916        gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
917      }
918    }
919
920    gray_render_scanline( RAS_VAR_ ey1, x,
921                                   (TCoord)( ONE_PIXEL - first ), to_x,
922                                   fy2 );
923
924  End:
925    ras.x       = to_x;
926    ras.y       = to_y;
927    ras.last_ey = SUBPIXELS( ey2 );
928  }
929
930
931  static void
932  gray_split_conic( FT_Vector*  base )
933  {
934    TPos  a, b;
935
936
937    base[4].x = base[2].x;
938    b = base[1].x;
939    a = base[3].x = ( base[2].x + b ) / 2;
940    b = base[1].x = ( base[0].x + b ) / 2;
941    base[2].x = ( a + b ) / 2;
942
943    base[4].y = base[2].y;
944    b = base[1].y;
945    a = base[3].y = ( base[2].y + b ) / 2;
946    b = base[1].y = ( base[0].y + b ) / 2;
947    base[2].y = ( a + b ) / 2;
948  }
949
950
951  static void
952  gray_render_conic( RAS_ARG_ const FT_Vector*  control,
953                              const FT_Vector*  to )
954  {
955    TPos        dx, dy;
956    TPos        min, max, y;
957    int         top, level;
958    int*        levels;
959    FT_Vector*  arc;
960
961
962    levels = ras.lev_stack;
963
964    arc      = ras.bez_stack;
965    arc[0].x = UPSCALE( to->x );
966    arc[0].y = UPSCALE( to->y );
967    arc[1].x = UPSCALE( control->x );
968    arc[1].y = UPSCALE( control->y );
969    arc[2].x = ras.x;
970    arc[2].y = ras.y;
971    top      = 0;
972
973    dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
974    dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
975    if ( dx < dy )
976      dx = dy;
977
978    if ( dx < ONE_PIXEL / 4 )
979      goto Draw;
980
981    /* short-cut the arc that crosses the current band */
982    min = max = arc[0].y;
983
984    y = arc[1].y;
985    if ( y < min ) min = y;
986    if ( y > max ) max = y;
987
988    y = arc[2].y;
989    if ( y < min ) min = y;
990    if ( y > max ) max = y;
991
992    if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
993      goto Draw;
994
995    level = 0;
996    do
997    {
998      dx >>= 2;
999      level++;
1000    } while ( dx > ONE_PIXEL / 4 );
1001
1002    levels[0] = level;
1003
1004    do
1005    {
1006      level = levels[top];
1007      if ( level > 0 )
1008      {
1009        gray_split_conic( arc );
1010        arc += 2;
1011        top++;
1012        levels[top] = levels[top - 1] = level - 1;
1013        continue;
1014      }
1015
1016    Draw:
1017      gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1018      top--;
1019      arc -= 2;
1020
1021    } while ( top >= 0 );
1022  }
1023
1024
1025  static void
1026  gray_split_cubic( FT_Vector*  base )
1027  {
1028    TPos  a, b, c, d;
1029
1030
1031    base[6].x = base[3].x;
1032    c = base[1].x;
1033    d = base[2].x;
1034    base[1].x = a = ( base[0].x + c ) / 2;
1035    base[5].x = b = ( base[3].x + d ) / 2;
1036    c = ( c + d ) / 2;
1037    base[2].x = a = ( a + c ) / 2;
1038    base[4].x = b = ( b + c ) / 2;
1039    base[3].x = ( a + b ) / 2;
1040
1041    base[6].y = base[3].y;
1042    c = base[1].y;
1043    d = base[2].y;
1044    base[1].y = a = ( base[0].y + c ) / 2;
1045    base[5].y = b = ( base[3].y + d ) / 2;
1046    c = ( c + d ) / 2;
1047    base[2].y = a = ( a + c ) / 2;
1048    base[4].y = b = ( b + c ) / 2;
1049    base[3].y = ( a + b ) / 2;
1050  }
1051
1052
1053  static void
1054  gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
1055                              const FT_Vector*  control2,
1056                              const FT_Vector*  to )
1057  {
1058    FT_Vector*  arc;
1059    TPos        min, max, y;
1060
1061
1062    arc      = ras.bez_stack;
1063    arc[0].x = UPSCALE( to->x );
1064    arc[0].y = UPSCALE( to->y );
1065    arc[1].x = UPSCALE( control2->x );
1066    arc[1].y = UPSCALE( control2->y );
1067    arc[2].x = UPSCALE( control1->x );
1068    arc[2].y = UPSCALE( control1->y );
1069    arc[3].x = ras.x;
1070    arc[3].y = ras.y;
1071
1072    /* Short-cut the arc that crosses the current band. */
1073    min = max = arc[0].y;
1074
1075    y = arc[1].y;
1076    if ( y < min )
1077      min = y;
1078    if ( y > max )
1079      max = y;
1080
1081    y = arc[2].y;
1082    if ( y < min )
1083      min = y;
1084    if ( y > max )
1085      max = y;
1086
1087    y = arc[3].y;
1088    if ( y < min )
1089      min = y;
1090    if ( y > max )
1091      max = y;
1092
1093    if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
1094      goto Draw;
1095
1096    for (;;)
1097    {
1098      /* Decide whether to split or draw. See `Rapid Termination          */
1099      /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
1100      /* F. Hain, at                                                      */
1101      /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
1102
1103      {
1104        TPos  dx, dy, dx_, dy_;
1105        TPos  dx1, dy1, dx2, dy2;
1106        TPos  L, s, s_limit;
1107
1108
1109        /* dx and dy are x and y components of the P0-P3 chord vector. */
1110        dx = dx_ = arc[3].x - arc[0].x;
1111        dy = dy_ = arc[3].y - arc[0].y;
1112
1113        L = FT_HYPOT( dx_, dy_ );
1114
1115        /* Avoid possible arithmetic overflow below by splitting. */
1116        if ( L > 32767 )
1117          goto Split;
1118
1119        /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
1120        s_limit = L * (TPos)( ONE_PIXEL / 6 );
1121
1122        /* s is L * the perpendicular distance from P1 to the line P0-P3. */
1123        dx1 = arc[1].x - arc[0].x;
1124        dy1 = arc[1].y - arc[0].y;
1125        s = FT_ABS( dy * dx1 - dx * dy1 );
1126
1127        if ( s > s_limit )
1128          goto Split;
1129
1130        /* s is L * the perpendicular distance from P2 to the line P0-P3. */
1131        dx2 = arc[2].x - arc[0].x;
1132        dy2 = arc[2].y - arc[0].y;
1133        s = FT_ABS( dy * dx2 - dx * dy2 );
1134
1135        if ( s > s_limit )
1136          goto Split;
1137
1138        /* Split super curvy segments where the off points are so far
1139           from the chord that the angles P0-P1-P3 or P0-P2-P3 become
1140           acute as detected by appropriate dot products. */
1141        if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
1142             dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
1143          goto Split;
1144
1145        /* No reason to split. */
1146        goto Draw;
1147      }
1148
1149    Split:
1150      gray_split_cubic( arc );
1151      arc += 3;
1152      continue;
1153
1154    Draw:
1155      gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1156
1157      if ( arc == ras.bez_stack )
1158        return;
1159
1160      arc -= 3;
1161    }
1162  }
1163
1164
1165  static int
1166  gray_move_to( const FT_Vector*  to,
1167                gray_PWorker      worker )
1168  {
1169    TPos  x, y;
1170
1171
1172    /* record current cell, if any */
1173    if ( !ras.invalid )
1174      gray_record_cell( RAS_VAR );
1175
1176    /* start to a new position */
1177    x = UPSCALE( to->x );
1178    y = UPSCALE( to->y );
1179
1180    gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
1181
1182    worker->x = x;
1183    worker->y = y;
1184    return 0;
1185  }
1186
1187
1188  static int
1189  gray_line_to( const FT_Vector*  to,
1190                gray_PWorker      worker )
1191  {
1192    gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
1193    return 0;
1194  }
1195
1196
1197  static int
1198  gray_conic_to( const FT_Vector*  control,
1199                 const FT_Vector*  to,
1200                 gray_PWorker      worker )
1201  {
1202    gray_render_conic( RAS_VAR_ control, to );
1203    return 0;
1204  }
1205
1206
1207  static int
1208  gray_cubic_to( const FT_Vector*  control1,
1209                 const FT_Vector*  control2,
1210                 const FT_Vector*  to,
1211                 gray_PWorker      worker )
1212  {
1213    gray_render_cubic( RAS_VAR_ control1, control2, to );
1214    return 0;
1215  }
1216
1217
1218  static void
1219  gray_render_span( int             y,
1220                    int             count,
1221                    const FT_Span*  spans,
1222                    gray_PWorker    worker )
1223  {
1224    unsigned char*  p;
1225    FT_Bitmap*      map = &worker->target;
1226
1227
1228    /* first of all, compute the scanline offset */
1229    p = (unsigned char*)map->buffer - y * map->pitch;
1230    if ( map->pitch >= 0 )
1231      p += ( map->rows - 1 ) * (unsigned int)map->pitch;
1232
1233    for ( ; count > 0; count--, spans++ )
1234    {
1235      unsigned char  coverage = spans->coverage;
1236
1237
1238      if ( coverage )
1239      {
1240        /* For small-spans it is faster to do it by ourselves than
1241         * calling `memset'.  This is mainly due to the cost of the
1242         * function call.
1243         */
1244        if ( spans->len >= 8 )
1245          FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
1246        else
1247        {
1248          unsigned char*  q = p + spans->x;
1249
1250
1251          switch ( spans->len )
1252          {
1253          case 7: *q++ = (unsigned char)coverage;
1254          case 6: *q++ = (unsigned char)coverage;
1255          case 5: *q++ = (unsigned char)coverage;
1256          case 4: *q++ = (unsigned char)coverage;
1257          case 3: *q++ = (unsigned char)coverage;
1258          case 2: *q++ = (unsigned char)coverage;
1259          case 1: *q   = (unsigned char)coverage;
1260          default:
1261            ;
1262          }
1263        }
1264      }
1265    }
1266  }
1267
1268
1269  static void
1270  gray_hline( RAS_ARG_ TCoord  x,
1271                       TCoord  y,
1272                       TPos    area,
1273                       TCoord  acount )
1274  {
1275    int  coverage;
1276
1277
1278    /* compute the coverage line's coverage, depending on the    */
1279    /* outline fill rule                                         */
1280    /*                                                           */
1281    /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
1282    /*                                                           */
1283    coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
1284                                                    /* use range 0..256 */
1285    if ( coverage < 0 )
1286      coverage = -coverage;
1287
1288    if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
1289    {
1290      coverage &= 511;
1291
1292      if ( coverage > 256 )
1293        coverage = 512 - coverage;
1294      else if ( coverage == 256 )
1295        coverage = 255;
1296    }
1297    else
1298    {
1299      /* normal non-zero winding rule */
1300      if ( coverage >= 256 )
1301        coverage = 255;
1302    }
1303
1304    y += (TCoord)ras.min_ey;
1305    x += (TCoord)ras.min_ex;
1306
1307    /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
1308    if ( x >= 32767 )
1309      x = 32767;
1310
1311    /* FT_Span.y is an integer, so limit our coordinates appropriately */
1312    if ( y >= FT_INT_MAX )
1313      y = FT_INT_MAX;
1314
1315    if ( coverage )
1316    {
1317      FT_Span*  span;
1318      int       count;
1319
1320
1321      /* see whether we can add this span to the current list */
1322      count = ras.num_gray_spans;
1323      span  = ras.gray_spans + count - 1;
1324      if ( count > 0                          &&
1325           ras.span_y == y                    &&
1326           (int)span->x + span->len == (int)x &&
1327           span->coverage == coverage         )
1328      {
1329        span->len = (unsigned short)( span->len + acount );
1330        return;
1331      }
1332
1333      if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
1334      {
1335        if ( ras.render_span && count > 0 )
1336          ras.render_span( ras.span_y, count, ras.gray_spans,
1337                           ras.render_span_data );
1338
1339#ifdef FT_DEBUG_LEVEL_TRACE
1340
1341        if ( count > 0 )
1342        {
1343          int  n;
1344
1345
1346          FT_TRACE7(( "y = %3d ", ras.span_y ));
1347          span = ras.gray_spans;
1348          for ( n = 0; n < count; n++, span++ )
1349            FT_TRACE7(( "[%d..%d]:%02x ",
1350                        span->x, span->x + span->len - 1, span->coverage ));
1351          FT_TRACE7(( "\n" ));
1352        }
1353
1354#endif /* FT_DEBUG_LEVEL_TRACE */
1355
1356        ras.num_gray_spans = 0;
1357        ras.span_y         = (int)y;
1358
1359        span  = ras.gray_spans;
1360      }
1361      else
1362        span++;
1363
1364      /* add a gray span to the current list */
1365      span->x        = (short)x;
1366      span->len      = (unsigned short)acount;
1367      span->coverage = (unsigned char)coverage;
1368
1369      ras.num_gray_spans++;
1370    }
1371  }
1372
1373
1374#ifdef FT_DEBUG_LEVEL_TRACE
1375
1376  /* to be called while in the debugger --                                */
1377  /* this function causes a compiler warning since it is unused otherwise */
1378  static void
1379  gray_dump_cells( RAS_ARG )
1380  {
1381    int  yindex;
1382
1383
1384    for ( yindex = 0; yindex < ras.ycount; yindex++ )
1385    {
1386      PCell  cell;
1387
1388
1389      printf( "%3d:", yindex );
1390
1391      for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
1392        printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
1393      printf( "\n" );
1394    }
1395  }
1396
1397#endif /* FT_DEBUG_LEVEL_TRACE */
1398
1399
1400  static void
1401  gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
1402  {
1403    int  yindex;
1404
1405    FT_UNUSED( target );
1406
1407
1408    if ( ras.num_cells == 0 )
1409      return;
1410
1411    ras.num_gray_spans = 0;
1412
1413    FT_TRACE7(( "gray_sweep: start\n" ));
1414
1415    for ( yindex = 0; yindex < ras.ycount; yindex++ )
1416    {
1417      PCell   cell  = ras.ycells[yindex];
1418      TCoord  cover = 0;
1419      TCoord  x     = 0;
1420
1421
1422      for ( ; cell != NULL; cell = cell->next )
1423      {
1424        TPos  area;
1425
1426
1427        if ( cell->x > x && cover != 0 )
1428          gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
1429                      cell->x - x );
1430
1431        cover += cell->cover;
1432        area   = cover * ( ONE_PIXEL * 2 ) - cell->area;
1433
1434        if ( area != 0 && cell->x >= 0 )
1435          gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
1436
1437        x = cell->x + 1;
1438      }
1439
1440      if ( cover != 0 )
1441        gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
1442                    ras.count_ex - x );
1443    }
1444
1445    if ( ras.render_span && ras.num_gray_spans > 0 )
1446      ras.render_span( ras.span_y, ras.num_gray_spans,
1447                       ras.gray_spans, ras.render_span_data );
1448
1449#ifdef FT_DEBUG_LEVEL_TRACE
1450
1451    if ( ras.num_gray_spans > 0 )
1452    {
1453      FT_Span*  span;
1454      int       n;
1455
1456
1457      FT_TRACE7(( "y = %3d ", ras.span_y ));
1458      span = ras.gray_spans;
1459      for ( n = 0; n < ras.num_gray_spans; n++, span++ )
1460        FT_TRACE7(( "[%d..%d]:%02x ",
1461                    span->x, span->x + span->len - 1, span->coverage ));
1462      FT_TRACE7(( "\n" ));
1463    }
1464
1465    FT_TRACE7(( "gray_sweep: end\n" ));
1466
1467#endif /* FT_DEBUG_LEVEL_TRACE */
1468
1469  }
1470
1471
1472#ifdef _STANDALONE_
1473
1474  /*************************************************************************/
1475  /*                                                                       */
1476  /*  The following function should only compile in stand-alone mode,      */
1477  /*  i.e., when building this component without the rest of FreeType.     */
1478  /*                                                                       */
1479  /*************************************************************************/
1480
1481  /*************************************************************************/
1482  /*                                                                       */
1483  /* <Function>                                                            */
1484  /*    FT_Outline_Decompose                                               */
1485  /*                                                                       */
1486  /* <Description>                                                         */
1487  /*    Walk over an outline's structure to decompose it into individual   */
1488  /*    segments and Bézier arcs.  This function is also able to emit      */
1489  /*    `move to' and `close to' operations to indicate the start and end  */
1490  /*    of new contours in the outline.                                    */
1491  /*                                                                       */
1492  /* <Input>                                                               */
1493  /*    outline        :: A pointer to the source target.                  */
1494  /*                                                                       */
1495  /*    func_interface :: A table of `emitters', i.e., function pointers   */
1496  /*                      called during decomposition to indicate path     */
1497  /*                      operations.                                      */
1498  /*                                                                       */
1499  /* <InOut>                                                               */
1500  /*    user           :: A typeless pointer which is passed to each       */
1501  /*                      emitter during the decomposition.  It can be     */
1502  /*                      used to store the state during the               */
1503  /*                      decomposition.                                   */
1504  /*                                                                       */
1505  /* <Return>                                                              */
1506  /*    Error code.  0 means success.                                      */
1507  /*                                                                       */
1508  static int
1509  FT_Outline_Decompose( const FT_Outline*        outline,
1510                        const FT_Outline_Funcs*  func_interface,
1511                        void*                    user )
1512  {
1513#undef SCALED
1514#define SCALED( x )  ( ( (x) << shift ) - delta )
1515
1516    FT_Vector   v_last;
1517    FT_Vector   v_control;
1518    FT_Vector   v_start;
1519
1520    FT_Vector*  point;
1521    FT_Vector*  limit;
1522    char*       tags;
1523
1524    int         error;
1525
1526    int   n;         /* index of contour in outline     */
1527    int   first;     /* index of first point in contour */
1528    char  tag;       /* current point's state           */
1529
1530    int   shift;
1531    TPos  delta;
1532
1533
1534    if ( !outline )
1535      return FT_THROW( Invalid_Outline );
1536
1537    if ( !func_interface )
1538      return FT_THROW( Invalid_Argument );
1539
1540    shift = func_interface->shift;
1541    delta = func_interface->delta;
1542    first = 0;
1543
1544    for ( n = 0; n < outline->n_contours; n++ )
1545    {
1546      int  last;  /* index of last point in contour */
1547
1548
1549      FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
1550
1551      last  = outline->contours[n];
1552      if ( last < 0 )
1553        goto Invalid_Outline;
1554      limit = outline->points + last;
1555
1556      v_start   = outline->points[first];
1557      v_start.x = SCALED( v_start.x );
1558      v_start.y = SCALED( v_start.y );
1559
1560      v_last   = outline->points[last];
1561      v_last.x = SCALED( v_last.x );
1562      v_last.y = SCALED( v_last.y );
1563
1564      v_control = v_start;
1565
1566      point = outline->points + first;
1567      tags  = outline->tags   + first;
1568      tag   = FT_CURVE_TAG( tags[0] );
1569
1570      /* A contour cannot start with a cubic control point! */
1571      if ( tag == FT_CURVE_TAG_CUBIC )
1572        goto Invalid_Outline;
1573
1574      /* check first point to determine origin */
1575      if ( tag == FT_CURVE_TAG_CONIC )
1576      {
1577        /* first point is conic control.  Yes, this happens. */
1578        if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
1579        {
1580          /* start at last point if it is on the curve */
1581          v_start = v_last;
1582          limit--;
1583        }
1584        else
1585        {
1586          /* if both first and last points are conic,         */
1587          /* start at their middle and record its position    */
1588          /* for closure                                      */
1589          v_start.x = ( v_start.x + v_last.x ) / 2;
1590          v_start.y = ( v_start.y + v_last.y ) / 2;
1591
1592          v_last = v_start;
1593        }
1594        point--;
1595        tags--;
1596      }
1597
1598      FT_TRACE5(( "  move to (%.2f, %.2f)\n",
1599                  v_start.x / 64.0, v_start.y / 64.0 ));
1600      error = func_interface->move_to( &v_start, user );
1601      if ( error )
1602        goto Exit;
1603
1604      while ( point < limit )
1605      {
1606        point++;
1607        tags++;
1608
1609        tag = FT_CURVE_TAG( tags[0] );
1610        switch ( tag )
1611        {
1612        case FT_CURVE_TAG_ON:  /* emit a single line_to */
1613          {
1614            FT_Vector  vec;
1615
1616
1617            vec.x = SCALED( point->x );
1618            vec.y = SCALED( point->y );
1619
1620            FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1621                        vec.x / 64.0, vec.y / 64.0 ));
1622            error = func_interface->line_to( &vec, user );
1623            if ( error )
1624              goto Exit;
1625            continue;
1626          }
1627
1628        case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
1629          v_control.x = SCALED( point->x );
1630          v_control.y = SCALED( point->y );
1631
1632        Do_Conic:
1633          if ( point < limit )
1634          {
1635            FT_Vector  vec;
1636            FT_Vector  v_middle;
1637
1638
1639            point++;
1640            tags++;
1641            tag = FT_CURVE_TAG( tags[0] );
1642
1643            vec.x = SCALED( point->x );
1644            vec.y = SCALED( point->y );
1645
1646            if ( tag == FT_CURVE_TAG_ON )
1647            {
1648              FT_TRACE5(( "  conic to (%.2f, %.2f)"
1649                          " with control (%.2f, %.2f)\n",
1650                          vec.x / 64.0, vec.y / 64.0,
1651                          v_control.x / 64.0, v_control.y / 64.0 ));
1652              error = func_interface->conic_to( &v_control, &vec, user );
1653              if ( error )
1654                goto Exit;
1655              continue;
1656            }
1657
1658            if ( tag != FT_CURVE_TAG_CONIC )
1659              goto Invalid_Outline;
1660
1661            v_middle.x = ( v_control.x + vec.x ) / 2;
1662            v_middle.y = ( v_control.y + vec.y ) / 2;
1663
1664            FT_TRACE5(( "  conic to (%.2f, %.2f)"
1665                        " with control (%.2f, %.2f)\n",
1666                        v_middle.x / 64.0, v_middle.y / 64.0,
1667                        v_control.x / 64.0, v_control.y / 64.0 ));
1668            error = func_interface->conic_to( &v_control, &v_middle, user );
1669            if ( error )
1670              goto Exit;
1671
1672            v_control = vec;
1673            goto Do_Conic;
1674          }
1675
1676          FT_TRACE5(( "  conic to (%.2f, %.2f)"
1677                      " with control (%.2f, %.2f)\n",
1678                      v_start.x / 64.0, v_start.y / 64.0,
1679                      v_control.x / 64.0, v_control.y / 64.0 ));
1680          error = func_interface->conic_to( &v_control, &v_start, user );
1681          goto Close;
1682
1683        default:  /* FT_CURVE_TAG_CUBIC */
1684          {
1685            FT_Vector  vec1, vec2;
1686
1687
1688            if ( point + 1 > limit                             ||
1689                 FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
1690              goto Invalid_Outline;
1691
1692            point += 2;
1693            tags  += 2;
1694
1695            vec1.x = SCALED( point[-2].x );
1696            vec1.y = SCALED( point[-2].y );
1697
1698            vec2.x = SCALED( point[-1].x );
1699            vec2.y = SCALED( point[-1].y );
1700
1701            if ( point <= limit )
1702            {
1703              FT_Vector  vec;
1704
1705
1706              vec.x = SCALED( point->x );
1707              vec.y = SCALED( point->y );
1708
1709              FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1710                          " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1711                          vec.x / 64.0, vec.y / 64.0,
1712                          vec1.x / 64.0, vec1.y / 64.0,
1713                          vec2.x / 64.0, vec2.y / 64.0 ));
1714              error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
1715              if ( error )
1716                goto Exit;
1717              continue;
1718            }
1719
1720            FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1721                        " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1722                        v_start.x / 64.0, v_start.y / 64.0,
1723                        vec1.x / 64.0, vec1.y / 64.0,
1724                        vec2.x / 64.0, vec2.y / 64.0 ));
1725            error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
1726            goto Close;
1727          }
1728        }
1729      }
1730
1731      /* close the contour with a line segment */
1732      FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1733                  v_start.x / 64.0, v_start.y / 64.0 ));
1734      error = func_interface->line_to( &v_start, user );
1735
1736   Close:
1737      if ( error )
1738        goto Exit;
1739
1740      first = last + 1;
1741    }
1742
1743    FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
1744    return 0;
1745
1746  Exit:
1747    FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
1748    return error;
1749
1750  Invalid_Outline:
1751    return FT_THROW( Invalid_Outline );
1752  }
1753
1754#endif /* _STANDALONE_ */
1755
1756
1757  typedef struct  gray_TBand_
1758  {
1759    TPos  min, max;
1760
1761  } gray_TBand;
1762
1763
1764  FT_DEFINE_OUTLINE_FUNCS(
1765    func_interface,
1766
1767    (FT_Outline_MoveTo_Func) gray_move_to,
1768    (FT_Outline_LineTo_Func) gray_line_to,
1769    (FT_Outline_ConicTo_Func)gray_conic_to,
1770    (FT_Outline_CubicTo_Func)gray_cubic_to,
1771    0,
1772    0 )
1773
1774
1775  static int
1776  gray_convert_glyph_inner( RAS_ARG )
1777  {
1778
1779    volatile int  error = 0;
1780
1781#ifdef FT_CONFIG_OPTION_PIC
1782      FT_Outline_Funcs func_interface;
1783      Init_Class_func_interface(&func_interface);
1784#endif
1785
1786    if ( ft_setjmp( ras.jump_buffer ) == 0 )
1787    {
1788      error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
1789      if ( !ras.invalid )
1790        gray_record_cell( RAS_VAR );
1791    }
1792    else
1793      error = FT_THROW( Memory_Overflow );
1794
1795    return error;
1796  }
1797
1798
1799  static int
1800  gray_convert_glyph( RAS_ARG )
1801  {
1802    gray_TBand            bands[40];
1803    gray_TBand* volatile  band;
1804    int volatile          n, num_bands;
1805    TPos volatile         min, max, max_y;
1806    FT_BBox*              clip;
1807
1808
1809    /* Set up state in the raster object */
1810    gray_compute_cbox( RAS_VAR );
1811
1812    /* clip to target bitmap, exit if nothing to do */
1813    clip = &ras.clip_box;
1814
1815    if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
1816         ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
1817      return 0;
1818
1819    if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
1820    if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
1821
1822    if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
1823    if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
1824
1825    ras.count_ex = ras.max_ex - ras.min_ex;
1826    ras.count_ey = ras.max_ey - ras.min_ey;
1827
1828    /* set up vertical bands */
1829    num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
1830    if ( num_bands == 0 )
1831      num_bands = 1;
1832    if ( num_bands >= 39 )
1833      num_bands = 39;
1834
1835    ras.band_shoot = 0;
1836
1837    min   = ras.min_ey;
1838    max_y = ras.max_ey;
1839
1840    for ( n = 0; n < num_bands; n++, min = max )
1841    {
1842      max = min + ras.band_size;
1843      if ( n == num_bands - 1 || max > max_y )
1844        max = max_y;
1845
1846      bands[0].min = min;
1847      bands[0].max = max;
1848      band         = bands;
1849
1850      while ( band >= bands )
1851      {
1852        TPos  bottom, top, middle;
1853        int   error;
1854
1855        {
1856          PCell  cells_max;
1857          int    yindex;
1858          long   cell_start, cell_end, cell_mod;
1859
1860
1861          ras.ycells = (PCell*)ras.buffer;
1862          ras.ycount = band->max - band->min;
1863
1864          cell_start = (long)sizeof ( PCell ) * ras.ycount;
1865          cell_mod   = cell_start % (long)sizeof ( TCell );
1866          if ( cell_mod > 0 )
1867            cell_start += (long)sizeof ( TCell ) - cell_mod;
1868
1869          cell_end  = ras.buffer_size;
1870          cell_end -= cell_end % (long)sizeof ( TCell );
1871
1872          cells_max = (PCell)( (char*)ras.buffer + cell_end );
1873          ras.cells = (PCell)( (char*)ras.buffer + cell_start );
1874          if ( ras.cells >= cells_max )
1875            goto ReduceBands;
1876
1877          ras.max_cells = cells_max - ras.cells;
1878          if ( ras.max_cells < 2 )
1879            goto ReduceBands;
1880
1881          for ( yindex = 0; yindex < ras.ycount; yindex++ )
1882            ras.ycells[yindex] = NULL;
1883        }
1884
1885        ras.num_cells = 0;
1886        ras.invalid   = 1;
1887        ras.min_ey    = band->min;
1888        ras.max_ey    = band->max;
1889        ras.count_ey  = band->max - band->min;
1890
1891        error = gray_convert_glyph_inner( RAS_VAR );
1892
1893        if ( !error )
1894        {
1895          gray_sweep( RAS_VAR_ &ras.target );
1896          band--;
1897          continue;
1898        }
1899        else if ( error != ErrRaster_Memory_Overflow )
1900          return 1;
1901
1902      ReduceBands:
1903        /* render pool overflow; we will reduce the render band by half */
1904        bottom = band->min;
1905        top    = band->max;
1906        middle = bottom + ( ( top - bottom ) >> 1 );
1907
1908        /* This is too complex for a single scanline; there must */
1909        /* be some problems.                                     */
1910        if ( middle == bottom )
1911        {
1912#ifdef FT_DEBUG_LEVEL_TRACE
1913          FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
1914#endif
1915          return 1;
1916        }
1917
1918        if ( bottom-top >= ras.band_size )
1919          ras.band_shoot++;
1920
1921        band[1].min = bottom;
1922        band[1].max = middle;
1923        band[0].min = middle;
1924        band[0].max = top;
1925        band++;
1926      }
1927    }
1928
1929    if ( ras.band_shoot > 8 && ras.band_size > 16 )
1930      ras.band_size = ras.band_size / 2;
1931
1932    return 0;
1933  }
1934
1935
1936  static int
1937  gray_raster_render( gray_PRaster             raster,
1938                      const FT_Raster_Params*  params )
1939  {
1940    const FT_Outline*  outline     = (const FT_Outline*)params->source;
1941    const FT_Bitmap*   target_map  = params->target;
1942
1943    gray_TWorker  worker[1];
1944
1945    TCell  buffer[FT_MAX( FT_RENDER_POOL_SIZE, 2048 ) / sizeof ( TCell )];
1946    long   buffer_size = sizeof ( buffer );
1947    int    band_size   = (int)( buffer_size /
1948                                (long)( sizeof ( TCell ) * 8 ) );
1949
1950
1951    if ( !raster )
1952      return FT_THROW( Invalid_Argument );
1953
1954    if ( !outline )
1955      return FT_THROW( Invalid_Outline );
1956
1957    /* return immediately if the outline is empty */
1958    if ( outline->n_points == 0 || outline->n_contours <= 0 )
1959      return 0;
1960
1961    if ( !outline->contours || !outline->points )
1962      return FT_THROW( Invalid_Outline );
1963
1964    if ( outline->n_points !=
1965           outline->contours[outline->n_contours - 1] + 1 )
1966      return FT_THROW( Invalid_Outline );
1967
1968    /* if direct mode is not set, we must have a target bitmap */
1969    if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1970    {
1971      if ( !target_map )
1972        return FT_THROW( Invalid_Argument );
1973
1974      /* nothing to do */
1975      if ( !target_map->width || !target_map->rows )
1976        return 0;
1977
1978      if ( !target_map->buffer )
1979        return FT_THROW( Invalid_Argument );
1980    }
1981
1982    /* this version does not support monochrome rendering */
1983    if ( !( params->flags & FT_RASTER_FLAG_AA ) )
1984      return FT_THROW( Invalid_Mode );
1985
1986    /* compute clipping box */
1987    if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1988    {
1989      /* compute clip box from target pixmap */
1990      ras.clip_box.xMin = 0;
1991      ras.clip_box.yMin = 0;
1992      ras.clip_box.xMax = (FT_Pos)target_map->width;
1993      ras.clip_box.yMax = (FT_Pos)target_map->rows;
1994    }
1995    else if ( params->flags & FT_RASTER_FLAG_CLIP )
1996      ras.clip_box = params->clip_box;
1997    else
1998    {
1999      ras.clip_box.xMin = -32768L;
2000      ras.clip_box.yMin = -32768L;
2001      ras.clip_box.xMax =  32767L;
2002      ras.clip_box.yMax =  32767L;
2003    }
2004
2005    gray_init_cells( RAS_VAR_ buffer, buffer_size );
2006
2007    ras.outline        = *outline;
2008    ras.num_cells      = 0;
2009    ras.invalid        = 1;
2010    ras.band_size      = band_size;
2011    ras.num_gray_spans = 0;
2012    ras.span_y         = 0;
2013
2014    if ( params->flags & FT_RASTER_FLAG_DIRECT )
2015    {
2016      ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
2017      ras.render_span_data = params->user;
2018    }
2019    else
2020    {
2021      ras.target           = *target_map;
2022      ras.render_span      = (FT_Raster_Span_Func)gray_render_span;
2023      ras.render_span_data = &ras;
2024    }
2025
2026    return gray_convert_glyph( RAS_VAR );
2027  }
2028
2029
2030  /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
2031  /****                         a static object.                   *****/
2032
2033#ifdef _STANDALONE_
2034
2035  static int
2036  gray_raster_new( void*       memory,
2037                   FT_Raster*  araster )
2038  {
2039    static gray_TRaster  the_raster;
2040
2041    FT_UNUSED( memory );
2042
2043
2044    *araster = (FT_Raster)&the_raster;
2045    FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
2046
2047    return 0;
2048  }
2049
2050
2051  static void
2052  gray_raster_done( FT_Raster  raster )
2053  {
2054    /* nothing */
2055    FT_UNUSED( raster );
2056  }
2057
2058#else /* !_STANDALONE_ */
2059
2060  static int
2061  gray_raster_new( FT_Memory   memory,
2062                   FT_Raster*  araster )
2063  {
2064    FT_Error      error;
2065    gray_PRaster  raster = NULL;
2066
2067
2068    *araster = 0;
2069    if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
2070    {
2071      raster->memory = memory;
2072      *araster       = (FT_Raster)raster;
2073    }
2074
2075    return error;
2076  }
2077
2078
2079  static void
2080  gray_raster_done( FT_Raster  raster )
2081  {
2082    FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
2083
2084
2085    FT_FREE( raster );
2086  }
2087
2088#endif /* !_STANDALONE_ */
2089
2090
2091  static void
2092  gray_raster_reset( FT_Raster  raster,
2093                     char*      pool_base,
2094                     long       pool_size )
2095  {
2096    FT_UNUSED( raster );
2097    FT_UNUSED( pool_base );
2098    FT_UNUSED( pool_size );
2099  }
2100
2101
2102  static int
2103  gray_raster_set_mode( FT_Raster      raster,
2104                        unsigned long  mode,
2105                        void*          args )
2106  {
2107    FT_UNUSED( raster );
2108    FT_UNUSED( mode );
2109    FT_UNUSED( args );
2110
2111
2112    return 0; /* nothing to do */
2113  }
2114
2115
2116  FT_DEFINE_RASTER_FUNCS(
2117    ft_grays_raster,
2118
2119    FT_GLYPH_FORMAT_OUTLINE,
2120
2121    (FT_Raster_New_Func)     gray_raster_new,
2122    (FT_Raster_Reset_Func)   gray_raster_reset,
2123    (FT_Raster_Set_Mode_Func)gray_raster_set_mode,
2124    (FT_Raster_Render_Func)  gray_raster_render,
2125    (FT_Raster_Done_Func)    gray_raster_done )
2126
2127
2128/* END */
2129
2130
2131/* Local Variables: */
2132/* coding: utf-8    */
2133/* End:             */
2134